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Foreword

I was pleased and honored when Jonathan M. Hanes asked me to write the
foreword for this book. As a researcher who studies the interactions of plant life
cycle events (phenology) with land surface and atmospheric processes, including
the impacts of changing climates on the timing of these seasonal transitions, I have
long appreciated the unique and developing role that satellite-derived measures
play in biophysical research efforts. Simply stated, there is currently no other
means to gather diverse large-scale vegetation information systematically across
the Earth’s surface, without employing remote sensing.

One of the most important developments in recent years has been the growing
realization that integration of diverse perspectives and paradigms from many
traditional fields will be essential to address the complex challenges posed by
the expected worldwide impacts of global climate change on ecosystems.
Increasingly, individual researchers must broadly cross-train, and research teams
need quick access to diverse multidisciplinary techniques, in order to conduct
cutting-edge global change research studies. The expert authors assembled for this
book have collectively done an excellent job in their chapters of comprehensively
addressing the major techniques used to measure and analyze land and ocean
vegetation activity and biophysical processes at global scales. Such information
will prove to be an invaluable part of advancing future global change and
large-scale ecological research. Thus, I will look forward to adding this volume to
my personal technical reference library, and expect to consult it often in the years
ahead. I presume that many of my colleagues will want to do the same.

June 2013 Mark D. Schwartz
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Preface

The utility of measurements of reflected and emitted radiation from the Earth
system captured by space-borne sensors on satellites has been realized in
numerous scientific disciplines in recent decades. This form of data collection
(called satellite remote sensing) has enjoyed wide application in efforts to study
the Earth system because space-borne sensors can monitor the planet consistently
and at spatial scales not accessible by other methods of observation (Kerr and
Ostrovsky 2003). In addition, the occurrence of significant environmental change
has brought the tools of satellite remote sensing to the forefront of research on the
physical characteristics and processes of Earth’s biosphere (Myneni et al. 1997;
Nemani et al. 2003; Pettorelli et al. 2005). With an eye toward assessing global
environmental change, scientists have harnessed the capabilities of satellite remote
sensing to derive various metrics of the biophysical characteristics of terrestrial
and oceanic ecosystems.

The purpose of this edited volume is to highlight selected Biophysical Appli-
cations of Satellite Remote Sensing in terrestrial and oceanic ecosystems for the
benefit of scientists, educators, and students. While the applications presented in
this volume are distinct because they focus on particular biophysical characteris-
tics of terrestrial and oceanic ecosystems, they all relate, in some form, to eco-
system productivity. As a collection of diverse metrics unified by the common
theme of productivity, this volume provides the reader with a sampling of tools
that can be used to better understand Earth’s living systems. Within each chapter,
the reader will find a discussion of the theoretical basis for the biophysical
application, methods of validation, research findings, and future research direc-
tions. Chapters 1–6 focus on applications of satellite remote sensing to the study of
terrestrial ecosystems, while Chaps. 7 and 8 concentrate on oceanic ecosystems.

Jonathan M. Hanes
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Chapter 1
Indices of Vegetation Activity

Alfredo Huete, Tomoaki Miura, Hiroki Yoshioka, Piyachat Ratana
and Mark Broich

Abstract In this chapter we explain satellite-based vegetation indices (VIs) as
dynamic spectral measures of vegetation activity. VIs are among the most widely
used satellite products in monitoring ecosystems and agriculture, resource man-
agement, and estimations of many biophysical canopy properties. A theoretical
basis for their formulation is presented and we describe how VIs are processed and
composited from satellite imagery. Recent trends in their validation and quality
assessment using in situ tower measurements are also discussed. Finally, a cross
section of major findings involving the use of satellite VIs in ecological and
climate science is presented and we conclude with research challenges and envi-
ronmental issues that will drive future uses of satellite VIs.

1.1 Introduction

Vegetation indices (VIs) are spectral measures of the green foliage, and in some
cases, moisture status of a canopy. They are seamless and highly robust satellite
measurements computed the same across all pixels in time and space. Due in part
to their simplicity and transparency, they are among the most widely used satellite
products, providing key measurements in productivity, phenology, climate,
hydrology, biogeochemical and biodiversity studies. They have become indis-
pensable tools across an array of ecological, agricultural, and natural resource
management applications.

A. Huete (&) � P. Ratana � M. Broich
University of Technology Sydney, NSW, Australia
e-mail: Alfredo.Huete@uts.edu.au

T. Miura
University of Hawaii, Honolulu, HI, USA
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J. M. Hanes (ed.), Biophysical Applications of Satellite Remote Sensing,
Springer Remote Sensing/Photogrammetry, DOI: 10.1007/978-3-642-25047-7_1,
� Springer-Verlag Berlin Heidelberg 2014
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VIs generally have the scientific requirement of contrasting an absorbing leaf
spectral feature with a non-absorbing one in a globally robust manner to capture
essential plant biophysical phenomena with adequate fidelity. Most VIs will
combine a chlorophyll-absorbing spectral band in the Red with a non-absorbing
band in the near-infrared (NIR) to depict canopy greenness, or area-averaged
canopy photosynthetic activity. Vegetation water indices, on the other hand, may
combine a water absorbing leaf spectral feature in the shortwave infrared (SWIR)
with the NIR to provide measures of canopy moisture content (Ceccato et al.
2002a, b; Gao 1996).

As a greenness measure, VIs encapsulate leaf- and whole-canopy optical
properties expressed through several biophysical quantities related to foliage
amount and structure (vegetation fraction, leaf angles, and leaf area) and physi-
ological (pigments, water) status of a canopy. VIs have been widely used as
proxies in the assessment of canopy biophysical/biochemical variables, including
leaf area index (LAI), fraction of absorbed photosynthetically-active radiation
(fAPAR), chlorophyll content, green vegetation fraction (Fveg), biomass, and canopy
biophysical processes (Sellers 1985; Field et al. 1995; Gitelson et al. 2003; Glenn
et al. 2008). Several comprehensive reviews on the use of VIs to assess ecological
properties are found in Kerr and Ostrovsky (2003), Pettorelli et al. (2005), and
Huete and Glenn (2011).

1.2 Theoretical Description of Vegetation Indices

The theoretical basis for vegetation indices is derived from an examination of leaf,
soil, woody, and senesced plant spectral reflectance signatures (Fig. 1.1). The
reflected energy from a green leaf is very low in the visible portion of the spectrum
due to high absorption of photosynthetically active radiation (PAR) by leaf pig-
ments, primarily in the Blue (470 nm) and Red (670 nm), whereas nearly all of the
NIR radiation is scattered (reflected and transmitted) in a manner dependent on
leaf type, morphology, and cellular structure. The resulting contrast between Red
and NIR reflectances is a sensitive measure of variations in leaf physiology and
structure, with maximum contrast occurring in healthy, structurally-developed
leaves and minimal contrast in stressed and senesced leaves. At the canopy level,
maximum NIR-Red contrasts occur in densely foliated canopies containing vig-
orous leaves, with lower contrasts found in stressed and open canopies, and the
least contrasts occur in defoliated or sparse canopies.

1.2.1 Index Formulations

There are a variety of ways in which two or more spectral bands may be combined
to quantify the NIR-Red contrast as a measure of canopy greenness or moisture.
This has resulted in a multitude of VI formulas and variants that include two-band

2 A. Huete et al.



ratios and differences (Gallo and Eidenshink 1988), weighted differences and
normalized differences (Tucker 1979), linear spectral band combinations, angle-
based VIs (Jiang et al. 2006a), and optimized spectral band combinations (Gobron
et al. 2000; Verstraete and Pinty 1996; Huete 1988; Qi et al. 1994). All VIs relate
positively with plant canopy biophysical properties, and to a certain extent, some
are functionally equivalent. Despite this, there are important differences in how
they depict vegetation foliage and multiple VIs offer a more complete character-
ization of vegetation canopies. For example, in Fig. 1.2 there is a twofold dif-
ference in enhanced vegetation index (EVI) values (0.30–0.65) across forest
canopy types where there is a much smaller range in normalized difference veg-
etation index (NDVI) values (0.70–0.90).

The Simple Ratio (SR), computed as a ratio of NIR and Red reflectances, is the
most fundamental greenness measure of vegetation in a pixel (Rouse et al. 1973),

SR ¼ qNIR= qred ð1:1Þ

where q is reflectance. Similarly a vegetation water index (WI) is constructed as
the ratio of NIR with a water-absorbing SWIR band, as in the Moisture Stress
Index (MSI) (Hunt and Rock 1989),

MSI ¼ qNIR= qSWIR ð1:2Þ

Normalized versions of these ratios constrain values between -1 and +1, e.g.,
the NDVI (Tucker 1979), which is functionally equivalent to SR,

NDVI ¼ SR� 1ð Þ = SRþ 1ð Þ ¼ qNIR� qredð Þ = qNIR þ qredð Þ ð1:3Þ

Fig. 1.1 Field spectral signatures of green leaf, senesced grass, woody bark, and dry and wet
soil. As measured in situ with an Analytical Spectral Devices-Pro, ASD spectroradiometer

1 Indices of Vegetation Activity 3



Similarly, the normalized difference water index (NDWI) and land surface
water index (LSWI) are normalized versions of NIR and water absorption band
ratios (Gao 1996; Xiao et al. 2004),

NDWI ¼ qNIR� q1240nmð Þ = qNIR þ q1240nmð Þ ð1:4Þ

LSWI ¼ qNIR� q1600nmð Þ = qNIR þ q1600nmð Þ; ð1:5Þ

The global vegetation moisture index (GVMI) has also been used for retrieval
of equivalent water thickness (EWT) in a canopy (Ceccato et al. 2002a, b),

GVMI ¼ qNIR þ 0:1ð Þ � qSWIR þ 0:02ð Þ½ � = qNIR þ 0:1ð Þ þ qSWIR þ 0:02ð Þ½ �
ð1:6Þ

In combination, VIs and WIs are important in analyzing canopy ecophysio-
logical functioning, and some model-based studies have suggested that they can
independently estimate canopy chlorophyll and water contents (Zarco-Tejada et al.
2003). Vegetation water indices are further deemed useful in assessing canopy
drying and fire vulnerability (Caccamo et al. 2011). However, there are several
studies showing little if any evidence that SWIR-based indices can sense water
stress (Bates and Hall 1981). For example, Waring et al. (1979) found very small
changes in leaf water content in needle-leaf evergreen conifers subjected to
drought stress.

The ratio- and normalized difference-based VIs have the advantage of mini-
mizing noise and influences attributed to variations in irradiance, clouds and cloud
shadows. Their main disadvantage involve inherent non-linearities associated with

Fig. 1.2 Satellite-derived spectral signatures of various forest canopy types as measured from
MODIS. The corresponding NDVI and EVI values for each forest canopy are shown in the inset.
Sites include Siberian Yakutsk Larch, Hubbard Brook Deciduous Broadleaf Forest, Chamela
Tropical Dry Evergreen Broadleaf Forest, Black Spruce Evergreen Needle-Leaf Forest, H.J.
Andrews Pacific Northwest Evergreen Needle-Leaf Forest, and MaeKlong Tropical Evergreen
Broadleaf Forest
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ratios and potential scaling issues (Yoshioka et al. 2000). Ratios also fail to
account for canopy-background and mutual canopy shadowing associated with
bidirectional reflectance anisotropies.

1.2.2 Vegetation Index and Vegetation Biophysical Isolines

Key theoretical differences among VIs can be depicted through NIR-Red band
cross plots (Fig. 1.3a). A triangular cloud of points delineated by vegetation and
soil end members characterize pixels of varying vegetation amounts and different
canopy backgrounds representing a range of landscape surface conditions. The
canopy background baseline is located close to the 1:1 line and represents the
boundary condition of ‘zero’ vegetation, sometimes known as the ‘‘soil line’’
(Richardson and Wiegand 1977). The end members consist of dense green veg-
etation at the highest NIR and lowest Red reflectances, bright canopy backgrounds
(dry soil, cement, or snow) and dark backgrounds (wet soil, organic soil, or
standing water). The dense green apex exhibits the maximum Red-NIR contrast
while the soil baseline shows the least differences between Red and NIR
reflectances.

The points inside the triangular structure are mixed pixels composed of spectral
signals from vegetation and canopy backgrounds. As noted by Graetz (1990), over
70 % of the Earth’s terrestrial surface is classified as open canopies, with mixed
background and vegetation signals. Relative to surfaces devoid of plants, partially
vegetated pixels shift away from the lower baseline toward the apex of maximum
NIR and lowest Red reflectance in a manner dependent upon the optical and
structural properties of the canopy and soil background type (Fig. 1.3a). The
greater the amount of green vegetation present in a pixel, the greater will be its’
Red-NIR contrast and shift from the lower soil line, and there is also a conver-
gence toward the apex of maximum vegetation density. The theoretical basis and
defining characteristic of VIs are in how they model these spectrally mixed pixels,
their boundary conditions, and associated variations in time and space.

The SR and NDVI characterize variations in NIR-Red space with vegetation
index isolines of increasing slopes diverging out from the origin, i.e., isoline slopes
become steeper with increasing vegetation amounts but their NIR intercepts are
constant, and at zero (Fig. 1.3b). Isolines of constant VI values define the manner
in which the VI quantifies the subpixel amounts of vegetation present. The NDVI
approximates the soil baseline with an isoline defined by an NIR-Red slope
between 1.25–1.5, which yields NDVI values of 0.10–0.20 for non-vegetated areas
(see Eq. 1.3).

1 Indices of Vegetation Activity 5



1.2.3 Linear Combination and Optimized Indices

Linear spectral band combination indices are also widely used to measure foliage
greenness and water status (Gobron et al. 2000; Huete and Glenn 2011). The
Tasseled Cap (TC) greenness and wetness indices, as well as the perpendicular
vegetation index (PVI) and spectral mixture analysis (SMA) schemes, are all

Fig. 1.3 a Vegetation index isolines representing NDVI, SAVI, and PVI in NIR-Red crossband
space. These lines are diagrammed over the triangular cloud of crop canopy spectral
measurements (cotton, corn, wheat) over a growing season. The numbers on top and right side
are simple NIR/Red ratio and NDVI values of their isolines. b Vegetation biophysical isolines of
constant LAI (symbols connected by solid lines) plotted alongside NDVI isolines (dotted). The
NIR- Red reflectances for varying LAI were derived with the SAIL model. Each biophysical
isoline has an NIR-intercept and the soil line is estimated by the LAI = 0.01 case. �[2000]
Adapted and reprinted with permission from Yoshioka et al. (2000)
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examples of linear combination indices of 2 or more spectral bands that have been
applied to Landsat imagery and coarse resolution Moderate Resolution Imaging
Spectroradiometer (MODIS) (Justice et al. 1998; Crist and Cicone 1984; Lobser
and Cohen 2007). These indices have the added advantage of generating multiple
measures of subpixel components, including vegetation, soil, shade, and other
scene elements (Souza et al. 2003). The shade fractional component in SMA
provides a useful measure of canopy shadowing that has been used to diagnose
tropical forest structural properties (Anderson et al. 2011).

Linear combination spectral indices form parallel isolines of constant slope and
increasing NIR intercepts, in Red-NIR space, significantly departing from how
ratio-based and normalized difference VIs characterize vegetation spectral varia-
tions in time and space (Fig. 1.3a). Soil and vegetation are modeled as non-inter-
acting horizontal, or checkerboard, fractions within a pixel, and the vegetation
fraction is retrieved using linear mixing theory. The shade fraction in SMA is
sometimes used to account for non-linear mixing of soil and vegetation components
as expressed by canopy shading from vertical tree and shrub canopy structures.

In the case of optimized indices, simplified radiative transfer theory on soil-
vegetation interactions is utilized. This involves formulating a VI equation so that
the VI isolines line up with the vegetation biophysical isolines (Figs. 1.3, 1.4). The
enhanced vegetation index (EVI) gains its heritage from the soil-adjusted vege-
tation index (SAVI) and the atmosphere resistance vegetation index (ARVI, Ka-
ufman and Tanre 1992), and is an optimized combination of blue, red and NIR
bands, designed to extract canopy greenness, independent of the underlying soil
background and atmospheric aerosol variations,

SAVI ¼ 1þ Lð Þ qNIR�qRedð Þ = L þ qNIR þ qRedð Þ ð1:7Þ

EVI ¼ 2:5 qNIR�qRedð Þ = L þ qNIR þ C1qRed� C2qBlueð Þ; ð1:8Þ

where q are reflectances in the NIR, Red, and Blue bands, respectively; L is the
canopy background adjustment factor; and C1 and C2 are the aerosol resistance

Fig. 1.4 Illustration of first order two layer canopy model of canopy layer and background used
in theoretical studies of isoline patterns and interactions with atmosphere, sensor-canopy-sun
geometry, and in formulating optimized vegetation indices. � [2000] Adapted and reprinted with
permission from Yoshioka et al. (2000)
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weights. The coefficients of the EVI equation for Landsat Enhanced Thematic
Mapper (ETM+) and MODIS bands are L = 1; C1 = 6 and C2 = 7.5 (Huete et al.
2002). A greater weighing of the NIR band extends greenness sensitivity in high
biomass areas, while the Blue reflectance term stabilizes aerosol influences and
mis-corrections of Red reflectance retrievals, as originally developed in ARVI.

The NIR and Red reflectances for a constant canopy (e.g. any fixed LAI and
structural arrangement) with variable underlying backgrounds is represented with
a line connecting the various background-dependent spectra, with a slope and Y-
intercept specific to that value of LAI (Baret and Guyot 1991; Huete 1988). This
line of constant vegetation is known as a ‘biophysical isoline’, and includes the
information needed to minimize or remove the background influences from veg-
etation indices. We can distinguish between biophysical isolines and VI isolines
with a SAIL radiative transfer model simulation of NDVI isolines (Fig. 1.3b). The
discrepancies between the two types of isolines are related to optical influences
other than the vegetation layer, and provide methods for improving or designing
optimal VIs so as to align the VI isolines with the biophysical isolines.

Canopy background signals are inherent to most canopies, and are non-linearly
coupled to the vegetation signal to various extents dependent on the structural
arrangement of the vegetation in a canopy. Red and NIR transmittance (extinction)
through a photosynthetically-active canopy differs significantly with much higher
optical thickness in the Red, due to the highly absorptive properties of leaf pig-
ments, and relatively low NIR optical extinction due to the highly scattered
(transmitted and reflected) signal (Fig. 1.4).

A primary difference among ratio-based, linear combination, and optimized
indices is in the ‘L’ parameter, which optimizes the measure of greenness through
a simple, first-order application of Beer-Lambert’s law to describe differential red
and NIR extinction through vegetation canopies,

qc ¼ qv þ t2
cqs ð1:9Þ

where canopy reflectance, qc, is the sum of the vegetation layer reflectance, qv, and
the two-way canopy transmitted- soil reflected signal, t2

c qs. When ‘L’ is optimized
correctly, the VI signal becomes blind to soil background variations as the relative
optical depths of the two bands are more closely adjusted to only see the greenness
of the canopy. The NDVI represents the special case of L = 0, in contrast to
L = 1 in the EVI. Larger values of L (L [ 10), on the other hand, approximate the
linear combination and SMA derived indices.

The use of multiple VIs offers a more complete characterization of canopy
properties. The PVI, EVI and TC greenness are more spectrally sensitive to the
NIR and will contain information from multiple canopy leaf layers, due to the
higher canopy optical penetration depths. In contrast, the NDVI is most sensitive
to the canopy-absorbing Red band and will sense primarily the uppermost leaf
layers. As a result, the first set of indices presents higher canopy penetration,
allowing extended sensitivity over higher LAI/biomass areas where the NDVI
saturates (Fensholt et al. 2004; Huete et al. 2006).
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1.3 Development of Satellite VI Products

A primary aim of a satellite VI product is to produce cloud-free, atmosphere-
corrected, and globally consistent VI values. A sequence of data processing steps
is generally made to achieve retrievals of higher quality satellite VI values. The at-
satellite radiances are normalized by top-of-atmosphere solar irradiances to cal-
culate ‘apparent reflectances’. The derived ‘apparent VI’ values will contain both
surface and atmosphere signals that confuse the interpretation of spatial and
temporal VI variations, since atmosphere scattering and absorption processes alter
the Red and NIR spectral contrasts of vegetated surfaces, thereby contaminating
the VI values. Atmosphere corrections are utilized to minimize this contamination
and produce top-of-canopy VI values that are more consistent with field-based and
tower-sensor VI measurements.

The VIs will remain particularly sensitive to any disproportionate atmospheric
correction of the Red and NIR bands. The inclusion of the Blue band in the EVI
was found to stabilize atmospheric aerosol effects in Northern Asia (Xiao et al.
2003) and in the Amazon during the biomass burning season (Miura et al. 2001).

There may also be sun-target-sensor geometry effects, described by the bidi-
rectional reflectance distribution function (BRDF), that alter the effective pro-
portion of sunlit and shaded vegetation viewed by a sensor (Fig. 1.5). These

Fig. 1.5 Illustration of
bidirectional reflectance
distribution function (BRDF)
satellite observations with
sensor view angle and solar
zenith angles. Note the
canopy shadow effect, clouds,
and cloud shadow, and in the
case of sensor cross-track
scanning pixel size shifts.
Adapted from van Leeuwen
et al. (1999), Copyright
(1999), reprinted with
permission from Elsevier
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anisotropic influences can dramatically alter the spectral contrast between Red and
NIR reflectances and result in angular biases (Cihlar et al. 1997; Schaaf et al.
2002). BRDF effects become more pronounced when atmosphere corrections are
applied to satellite VI data sets (van Leeuwen et al. 1999).

Fensholt et al. (2006) studied the dependence of NDVI on solar and viewing
geometries with MODIS and the Meteosat Second Generation (MSG) Spinning
Enhanced Visible and Infrared Imager (SEVIRI) sensor, and found higher Red
reflectances relative to NIR under backscatter conditions resulting in a decrease of
NDVI, while in the forward scatter direction, Red reflectances were more strongly
reduced due to shadowing relative to the scattered NIR, resulting in higher NDVI.
The EVI responds in an opposite manner, and has a positive bias in the more
sunlit, backscatter canopy view orientation due to the much stronger NIR signal
(Fig. 1.5).

1.3.1 Compositing Approaches

Coarse resolution sensors with wide swath and near-daily imaging are important in
obtaining sufficient acquisitions of cloud-free data necessary to improve temporal
and spatial monitoring of surface vegetation dynamics. However, their wide
swaths of over 2,000 km result in pronounced BRDF effects associated with
sensor-surface-sun observation geometries. The sequential VI imagery is thus
composited over set time intervals to reduce cloud and cloud shadow contami-
nation as well as improve the viewing geometry quality of selected pixels in the
final product.

Standard compositing methods used in coarse resolution satellite data are based
on the maximum value composite (MVC) concept developed for the Advanced
Very High Resolution Radiometer (AVHRR) NDVI time series data (Holben
1986). The MVC method selects the highest NDVI value over a compositing cycle
to best represent the greenness status of an area for that period. In the early
AVHRR era, this was applied to non-atmosphere and non-BRDF corrected
satellite data and accurately presumed that the highest NDVI would occur on the
day with least cloud and aerosol contamination and smallest atmosphere optical
path length (i.e., the most nadir viewing geometry).

However, recent advancements in atmospheric correction have rendered the
MVC approach less useful as surface anisotropy influences are more prominently
revealed in the data. The MVC approach confuses higher VI values associated
with lower residual cloud/aerosol contamination from high VI values caused by
off-nadir viewing angles, i.e., the highest NDVI value within a compositing period
does not necessarily correspond to near-nadir sensor viewing angles or to the least
contaminated measurement (van Leeuwen et al. 1999). Lastly, higher VIs may also
result from over-correction of atmosphere contamination, resulting in a negative
bias in Red reflectances and positive bias in NDVI.
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A constrained view angle MVC (CV-MVC) has been adopted for use with
MODIS VI products (Huete et al. 2011). This method attempts to restrict pixel
selections to within ±30� by choosing the closest to nadir view pixel from a set of
2 or 3 highest NDVI values in the compositing period. Additionally, a per-pixel
QA-based methodology is used to filter out known problematic and noisy pixels
contaminated by residual clouds, shadow, high aerosol loadings, and large viewing
geometries. The CV-MVC method is then applied to the remaining higher quality
pixels. The selected VI value represents an actual observation (not modeled) for
the local solar zenith angle and close to nadir view geometry, and retain full
traceability to the sensor acquisition. Thus, they are not BRDF-corrected, but
rather minimized for BRDF influences. In a compositing study of MODIS and
AVHRR daily data for mapping burned area over the Iberian Peninsula, Chuvieco
et al. (2005) found this VI compositing procedure provided close to nadir obser-
vation angles and good spatial coherency, while the traditional MVC compositing
criterion of maximizing NDVI values provided poor results. An example of daily
to 16-day composite image generation for the Amazon is illustrated in Fig. 1.6.

In general, satellite products now provide per-pixel observation geometry
information, including sensor zenith view angle, solar zenith angle, and relative
azimuth observation geometry, and the selected day of year (DOY). Thus, added

Fig. 1.6 Example of a 16-day composited product derived from single daily MODIS images
over an Amazon tile (left) to all of South America (right). The composited product aims to
remove clouds and select best quality with minimal aerosol contamination and near nadir sensor
viewing conditions. Courtesy of Robert Simmons, NASA
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value BRDF applications may be employed to further reduce angular variations.
This has been accomplished in the Nadir BRDF-Adjusted Reflectance (NBAR)
MODIS product, which generates nadir reflectances through BRDF model inver-
sions applied to seven or more good quality, cloud-free acquisitions within a
composite cycle. The MODIS VI and NBAR products are produced at local solar
zenith and local solar noon angle, respectively, and thus still contain latitudinal
and seasonal sun angle influences. Although a sun angle seasonal bias may be
present, it is less of a problem in inter-annual time series data and trend analyses,
providing there is no sensor orbital drift. Los (1993) documented AVHRR orbital
drift issues in the NDVI time series (Pathfinder AVHRR Land) and adjusted the
data to a standard illumination and viewing geometry by applying MODIS derived
kernels, resulting in a 50–85 % reduction of BRDF effects.

1.4 Validation

As one of the most widely used satellite data products by the research and
applications user community, the validation of VIs is essential to assess their
quality, accuracy, and reliability. Previous validation efforts have involved finer
resolution airborne and satellite imagery, field radiometer measurements, bio-
physical field sampling, and automated ground observation networks (Privette
et al. 2000), with the objective of validating VIs through independent radiometric
and biophysical measures.

Radiometrically, VIs are considered validated by independent, top-of-canopy
reflectance measurements as uncertainties in VI measures of greenness are solely
attributed to atmosphere correction accuracies and BRDF influences. VIs are
readily computed with in situ spectroradiometers, tower-mounted sensors, and
airborne instruments. Calibrated and traceable ‘‘transfer radiometers’’ mounted on
light aircraft and unmanned airborne vehicles (UAVs) can be flown at altitudes of
150–300 m above ground level (AGL) and acquire top-of-canopy reflectances with
nadir looks and prescribed sun angles for independent characterization of VIs. This
extends locally-constrained, sub-canopy scale field radiometric measurements to
kilometer length scales enabling sampling of site heterogeneity. Airborne sensors
can also be flown at higher altitudes (1–20 km AGL) for scaling and larger area
analyses encompassing a range of terrestrial biome types. The MODLAND Quick
Airborne Looks (MQUALS) is an example of light aircraft sensor and spectral-
digital camera deployment flown at the Jornada Experimental Range for ground
truth characterization of surface conditions and sampling of landscape variability
(Huete et al. 1999).

The quality of satellite-based VI retrievals vary in space and time due to
geographic and seasonal variations in cloud persistence, unresolved clouds,
aerosols, quality of atmosphere correction, view-sun angle geometries, topogra-
phy, and sensor performance (Wolfe et al. 1998; Miura et al. 2000; Samanta et al.
2010; Kobayashi and Dye 2005). Cloud and aerosol residual effects and artifacts
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will invariably persist at subpixel scales in satellite imagery, given the coarse
nature of cloud detection algorithms and aerosol optical depth determinations.
High aerosol pixels will generally not be corrected to the same accuracy as low
aerosol pixels, and often there will be under- or over-estimations (and corrections)
for aerosols. Kaufman et al. (2005) noted difficulties in aerosol correction attrib-
uted to residual cirrus as well as defining cloud contamination versus aerosol
growth. Accuracy and precision values for the MODIS VIs are generally within
0.02–0.05 VI values (http://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=
MOD13, accessed November 2013).

1.4.1 Ground Observation Networks

In-situ observation networks are evolving into highly calibrated and traceable
sensor systems that offer great potential in providing in situ temporally continuous
data to complement field and airborne validation data acquired as ‘spatial’ snap-
shots in time. These networks can provide higher quality (finer spatial and tem-
poral resolution) measurements than the satellite, and can facilitate various
methods of quality, uncertainty, and cross-sensor continuity assessments involving
multiple satellites. They include the AERONET-based Surface Reflectance Vali-
dation Network (ASRVN), the baseline surface radiation network (BSRN), various
phenology networks, and FLUXNET. These provide in situ measurements of
surface and atmosphere conditions that enable independent assessments of vege-
tation canopy states and phenophases.

The ASRVN collects operational satellite data from over 100 AERONET sites,
equipped with automated sun photometers that provide atmospheric properties to
enable an independent rigorous atmospheric correction of satellite measurements
and allow computed VIs to be compared against their equivalent satellite products
(Wang et al. 2009; Holben et al. 1998). Compared to ground-based, aircraft, and
finer resolution satellite measurements, this approach has the advantage of iden-
tical spectral, spatial, and observation geometry sampling consistent with the
satellite measurement. The sun-photometer based atmosphere correction is
applicable to relatively large areas around an AERONET site for more rigorous
spatial analysis. Further, ASRVN also outputs top-of-canopy bidirectional reflec-
tances that provide realistic assessments of accuracies and uncertainties in VIs due
to variability in atmosphere and sensor observation view angles.

In Fig. 1.7a, in situ VI measures from ASRVN results are compared with
simultaneous day MODIS VI values, while in Fig. 1.7b, the nadir view angle
ASRVN in situ results are compared with the MODIS 16-day composited VI
product that attempts to retrieve near-nadir values, hence such a comparison
allows one to ascertain the accuracy and uncertainty of such retrievals. These
comparisons are applicable to all compositing schemes, including the assessment
of NBAR nadir-view retrievals. The ASRVN data is not completely independent,
however, in that the same sensor is used to generate both the VI product and the
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in situ VI version of that product (i.e., it is only the atmosphere correction that is
independently accomplished). Thus, sensor degradation artifacts, drifts in cali-
bration, cross-band (Red, NIR, Blue) loss in spectral integrity and geolocation
error would be present in both data sets and not be readily detected.

Many towers are now instrumented with shortwave and longwave radiation
sensors that enable computation of broadband versions of the NDVI. The Baseline
Surface Radiation Network (BSRN), for example, enables the measurement of
visible (Qpar) and shortwave solar radiation (Rg) with quantum sensors and pyr-
anometers, respectively, that can be used to represent contributions from reflected
NIR and visible radiation (Wilson and Meyers 2007) as,

NDVItower ¼ Rg � Qpar

� �
NIR � Qpar

�� ��
VIS

h i
= Rg � Qpar

� �
NIR þ Qpar

�� ��
VIS

h i

ð1:10Þ

which simplifies to

NDVItower ¼ 1� 2� Qpar=Rg ð1:11Þ

Fig. 1.7 a Relationship between MODIS VIs (NDVI, EVI, and two-band EVI, EVI2 (Jiang et al.
2008)) and ASRVN derived VIs for clear day observations, and b comparisons of nadir-derived
ASRVN VIs with standard MODIS VI composite values. This analysis was conducted over the
Howland Temperate Conifer Forest Aeronet and Fluxnet site for year 2007
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The BSRN network is primarily used to validate the theoretical computations of
radiative fluxes by models, and has been endorsed by the World Climate Research
Programme (WCRP) as the global surface radiation network for the Global Cli-
mate Observing System (GCOS). Wilson and Meyers (2007) demonstrated how
well these tower sensors could trace MODIS NDVI across numerous tower sites as
independent verifications of NDVI data over smaller, but homogeneous footprint
areas (Fig. 1.8). Figure 1.8, however, shows the tower-based broadband NDVI to
be somewhat poor in the Pine Needle Forest, temperate grasses, and deciduous
forests. Wang et al. (2004) used the tower-based broadband NDVI calculated from
observed upward and downward PAR and global radiation measurements and
found the broadband NDVI to be a good index to describe physiological activity of
a pine forest during certain periods, and a means for obtaining other physiological
parameters that are required by ecosystem models.

Increasingly, automated sensors are being mounted on towers for canopy
spectra measurements. Light-emitting diode (LED) sensors are now readily
mounted at tower sites to collect continuous diurnal and seasonal time series data
(e.g. Soudani et al. 2012; Ryu et al. 2010) (Fig. 1.9). Richardson et al. (2007)

Fig. 1.8 Relationship between MODIS NDVI and tower derived broadband NDVI using PAR
and shortwave radiation sensors for 9 GEWEX sites in North America during 2003–2005.
Adapted from Wilson and Meyers (2007). Copyright (2007) Reprinted with permission form
Elsevier
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demonstrated the use of digital webcam, RGB imagery and ratios of green and red
components for detection of forest phenology. An automated tower-based, multi-
angular spectroradiometer platform (AMSPEC) provides continuous spectral
measures of a canopy through a range of viewing angles over all azimuthal
directions (Hilker et al. 2011).

The global network known as FLUXNET coordinates observations from a
multitude of micrometeorological tower sites (Running et al. 1999). The tower
sites use eddy covariance methods for continuous measurements of carbon, water,

Fig. 1.9 In-situ automated sensors provide continuous spectral measures of vegetation indices
for diurnal, seasonal, and interannual comparisons with satellite data. a Example of in situ NDVI
time series over varying crops (wheat, sugar beet, and mustard) in Belgium (adapted from
Soudani et al. 2012) and b comparisons of daily canopy photosynthesis from eddy flux tower and
midday LEDs derived NDVI over a California annual grassland site (Adapted from Ryu et al.
2010. Copyright (2010) Reprinted with permission from Elsevier)
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and energy exchanges between ecosystems and atmosphere. This provides valu-
able opportunities for evaluation of satellite VI measures of vegetation growth,
phenology, and seasonal dynamics. Monteith and Unsworth (1990) noted that VIs
can legitimately be used to estimate the rate of processes that depend on absorbed
light, such as gross primary production (GPP, photosynthesis) and transpiration.

Several studies have shown potential satellite data validation opportunities via
FLUXNET, e.g., strong, multiple-biome satellite EVI relationships have been
reported with tower GPP flux measurements across AmeriFlux tower sites and
tropical forests in the Amazon and Southeast Asia with MODIS and SPOT-VGT
satellite data (Rahman et al. 2005; Sims et al. 2006; Xiao et al. 2004, 2005; Huete
et al. 2006, 2008) (Fig. 1.10).

1.4.2 Biophysical Validation

Field-based vegetation sampling is fundamental for validating and assessing VI
performance in depicting vegetation dynamics and biophysical phenomena. A
good correspondence between VIs and field measurements lends confidence in
their use as biophysical surrogates for variables that are otherwise difficult to
sample in the field. VI relationships with biophysical properties are mostly derived
from empirical field measurements and canopy radiative transfer models, where
numerous and often ambiguous relationships have been reported (Sellers 1985).
Hence, although VIs have been validated within numerous environments, the
resulting biophysical relationships tend to be local-based and with limited spatial
extent that rarely extend to landscape-relevant temporal and spatial scales.

The biophysical validation of VIs is complicated by a lack of consensus on
what VIs explicitly measure about a canopy and how to interpret a VI value. VIs
respond to upper sunlit leaves to a greater extent than lower leaves, resulting in
strongly non-linear relationships with field-derived LAI values. NDVI sensitivity
to LAI variations is generally restricted to values below 2 or 3 with differing
correlations between broadleaf vs needle-leaf canopy stands (Fassnacht et al. 1997;
Chen et al. 2005). NDVI-LAI relationships may further vary across different
canopy phenophases, as was found in a beech deciduous forest in Europe (Wang
et al. 2005) (Fig. 1.11).

Linear combination and optimized indices provide extended LAI sensitivity and
are less prone to saturate in high-biomass areas (Fensholt et al. 2004). Houborg
and Soegaard (2004) found EVI from MODIS to accurately describe the variations
in green LAI up to 5 in agriculture areas in Denmark (r2 = 0.91). However, in
comparison with relationships reported using fine resolution Landsat satellite data,
poorer relationships are commonly found when using coarser resolution VIs, such
as MODIS and SPOT-VEGETATION (VGT). In a multi-biome validation field
campaign known as Bigfoot, Cohen et al. (2003) found only weak correlations
between field measured LAI and several MODIS products, including LAI and VIs.
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Several field studies have shown NDVI more strongly and linearly related with
the fraction of absorbed PAR, fAPAR, over a range of land cover types (Huemmrich
et al. 2005). Fensholt et al. (2004) found a strong linear relationship between
in situ fAPAR and NDVI across three different vegetation types, suggesting that
covariance between fAPAR and NDVI is insensitive to variations in leaf angle
distribution (LAD) and vegetation heterogeneity. However, the type of soil
background and PAR absorption by non-photosynthetic vegetation (NPV) can alter

Fig. 1.10 Relationships of tower-derived flux measurements of gross primary productivity
(GPP) and MODIS EVI for (a) annual averages for a range of North America temperate
ecosystems (forest, savanna, grassland), and (b) monthly averages for tropical forests in SE Asia
(dry and humid tropical broadleaf forests) and the Amazon (humid tropical evergreen broadleaf
forest). Adapted from (a) Sims et al. (2006), Copyright (2006), Reprinted with permission from
John Wiley and Sons and (b) Huete et al. (2008), Copyright (2008), Reprinted with permission
from Elsevier
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the NDVI- fAPAR relationship and affect its linearity with important consequences
to scaling (Jiang et al. 2006b). The fAPAR measured in a Kalahari woodland field
campaign also varied distinctly with NDVI during phenologic green-up and dry-
down periods (Huemmrich et al. 2005). In an attempt to encompass cross-biome
variations, Sims et al. (2006) empirically derived a global-based, linear fAPAR–
NDVI relationship as,

fAPAR ¼ 1:24� NDVI � 0:168 ð1:12Þ

The SAVI and EVI have also been found useful in estimating fAPAR in vege-
tated canopies, with relationships that are largely independent of soil background
and NPV (Gao et al. 2000; Xiao et al. 2004). Lastly, Zhang et al. (2005) combined
MODIS data with a radiative transfer model to separate fAPAR into chlorophyll-,
leaf-, and canopy-absorbed components. They showed large differences in the
fAPAR absorbed by chlorophyll versus that absorbed by the canopy and noted that
only chlorophyll-absorbed fAPAR is used in photosynthesis. They found NDVI to
be correlated with total canopy fAPAR, while EVI was better correlated with the
chlorophyll fAPAR, presumably more closely related to the green fAPAR.

Gitelson et al. (2003) have conducted extensive field measurements relating
canopy chlorophyll content with satellite vegetation indices, including chlorophyll
spectral measures. The MERIS instrument onboard ENVISAT has a Total Chlo-
rophyll Index (MTCI) product derived from inverse canopy reflectance modeling,
in which maps of canopy chlorophyll content (CCC) and leaf area index (LAI) are
derived simultaneously. The MTCI product is output at 300 m spatial resolution
and validated with indirect field measurements (Vuolo et al. 2012).

VIs have also been successfully related with the fraction of vegetation cover in
Landsat data, but with strong relationship dependencies associated with extent of
tree clumping, LAI, and tree species (Smith et al. 2009; Carlson and Ripley 1997).
There also remains a phenologic dependence similar to that with fAPAR.

Fig. 1.11 Local-based
biophysical relationships
between in situ LAI with
NOAA-AVHRR NDVI in the
Hesse Beech Forest
highlighting strong
phenological dependencies
with unique green-up and
dry-down relationships.
Adapted from Wang et al.
(2005), Copyright (2005),
reprinted with permission
from Elsevier
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The validation of VIs with specific in situ biophysical quantities across a vege-
tation, phenologic growing season is made more complicated by the large number of
co-varying canopy properties that make it difficult to explicitly quantify one variable
from the others without constructing generalizations and assumptions about the
canopy. Phenologic canopy development often involve simultaneous changes in
LAI, specific leaf area, chlorophyll content, fractional cover, leaf angle, leaf phe-
nology, litterfall, and canopy shadows (Hilker et al. 2008). Each of these variables
result in unique spectral variations and the retrieval of specific biophysical details
from the integrative ‘greenness’ signal would require the use of radiative transfer
(RT) models, productivity models, or for local site conditions, empirical models.

1.5 Findings

Vegetation indices have been remarkably successful in providing coherent data
sets with large spatial coverage for mapping and characterization of landscape
vegetation dynamics. Satellite VI products are seamlessly computed across all
pixels and at high temporal frequencies. A wide range of the earth science,
modeling, and applications user group community are using VI time-series data in
natural resource management, agriculture, public health, and hydrology and bio-
geochemical models. In this section we highlight some recent examples of
important findings involving the use of vegetation indices within the earth science
research and applications communities.

1.5.1 Phenology Studies

High temporal frequency vegetation index time series data from coarse resolution
sensors, including MODIS, AVHRR, SPOT-VGT, MERIS are now widely used to
trace and characterize land surface seasonal dynamics and phenology with quan-
tifiable metrics, such as the onset date of greening, peak greenness date, browning,
and growing season length, all critical to understanding ecosystem functioning
(Fig. 1.12) (Zhang et al. 2006; Reed et al. 2003). Phenology is the study of
recurring biological events, such as the timing of leaf emergence and development,
senescence, and litterfall (Schwartz and Hanes 2010). It is an important integrative
science for quantifying vegetation responses and feedbacks to climate variability
(Penuelas et al. 2009).

Using AVHRR-NDVI time series data, Myneni et al. (1997) showed evidence
of a lengthening of the plant growing season at northern latitudes in response to
global temperature increases. Vegetation phenologies in high latitude environ-
ments are difficult to interpret due to the short growing seasons, long periods of
darkness, and persistent snow cover in winter. More recently, Beck et al. (2006)
were able to estimate biophysical parameters related to the timing of spring and
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Fig. 1.12 a Global maps of phenological transition dates from MODIS phenology product
(MODQ12) using NBAR-EVI, and b zonal averages (0.1�) for phenological transition dates and
MODIS land surface temperature in Europe/Asia. Adapted from Zhang et al. (2006), Copyright
(2006). Reprinted with permission from John Wiley and Sons
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autumn phenology events in northern Scandinavia by applying double logistic
functions (Fischer 1994) to MODIS NDVI time series data.

MODIS VIs have been used to characterize the phenology patterns of varying
physiognomic vegetation classes in the Brazilian cerrado biome (Ratana et al.
2005). Kawamura et al. (2005) monitored short-term phenological changes in
rangeland forage conditions with EVI in the semi-arid Xilingol steppe in Inner
Mongolia. They were able to estimate forage quantity and derive seasonal changes
in live biomass and standing crude protein amounts over areas with different
grazing intensities, useful in providing timing information for hay cutting based on
nutritive value to range managers. NDVI data from the MODIS sensor has provided
timely monitoring of locust outbreaks in East China based on its accurate assess-
ments of vegetation conditions (Zha et al. 2005). Xiao et al. (2006) developed a
MODIS-based VI phenology algorithm using NDVI, EVI, and LSWI for mapping
paddy rice distributions in support of irrigation, food security, trace gas emission
estimates, and risk assessment of avian flu over South and Southeast Asia.

Fig. 1.13 a Three-dimensional phenological transition dates of MODIS EVI along an east to
west transect in which seasonally dry rainforest grades to a perhumid rainforest. The eastern
portion is an area of forest clearing and disturbance; and b tower flux measurements of gross
primary productivity (GPP) compared with MODIS EVI at the seasonally dry Tapajos forest site
and adjacent forest disturbance area. Adapted from Huete et al. (2006), Copyright (2006).
Reprinted with permission from John Wiley and Sons
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The extended sensitivity of the EVI has facilitated phenology studies in dense
tropical rainforests, where MODIS and SPOT-VGT EVI were shown to discrim-
inate phenology cycles in Amazon rainforests (Huete et al. 2006; Xiao et al. 2005,
2006) (Fig. 1.13a). Using 250 m and 0.05�EVI data from MODIS, Huete et al.
(2006) found Amazon rainforests to green-up by 25 % in the dry season in
response to the increased availability of sunlight. Disturbed forest areas, on the
other hand, showed dry-season declines in EVI, presumably because the more
shallow-rooted vegetation had reduced access to deep soil water. This was verified
by a strong linear and consistent relationship between seasonal EVI and tower-
calibrated GPP measurements of carbon fluxes in both intact rainforest and forest
conversion to pasture/agriculture sites in the Amazon (Fig. 1.13b).

Saleska et al. (2007) later analyzed Amazon rainforest EVI response to drought
and found a positive greening response to a short drought event in 2005, rather than
the expected negative response. Samanta et al. (2010) reported a much smaller
spatial extent in greening after more rigorous screening of contaminated pixels,
however, the proportion of acceptable quality pixels that showed greening remained
the same, and there was little drought-induced browning observed. Other studies
have confirmed the positive greening response to the 2005 drought, while reporting a
definitive negative response to a more severe drought in 2010 that clearly suppressed
photosynthetic activity (Xu et al. 2011; Anderson 2012; Brando et al. 2010).

The MODIS vegetation phenology product (MOD12Q2) uses maximum
inflections in seasonal NBAR-EVI profiles to produce a global set of phenology
metrics based on key transition dates related to vegetation growth activity (Zhang
et al. 2003; Ganguly et al. 2010). The NBAR-EVI has been successfully used to
map the phenology of single, double, and triple rice cropping patterns in the
Mekong delta where previously this was only accomplished with SAR data
(Sakamoto et al. 2006). NBAR-EVI was also used to show the effect of urban
climates on vegetation phenology transition dates in North American cities (Zhang
et al. 2004). Strong heat island effects were found in urban areas with increases in
the growing season of *15 days and delays in the onset of dormancy, relative to
adjacent non-disturbed ecosystems, a pattern that decays exponentially with dis-
tance from urban areas.

1.5.2 Carbon and Water Science

Vegetation indices have demonstrated their utility in studies of ecosystem functions
which affect net ecosystem exchange of CO2 and water between the land and the
atmosphere. Most carbon exchange models use a light-use efficiency (LUE) rela-
tionship in which gross primary productivity (GPP) is related to the amount of PAR
absorbed by green vegetation multiplied by the efficiency with which the absorbed
light is used in carbon fixation, or photosynthesis (Monteith and Unsworth 1990),

GPP ¼ LUE� APAR ¼ LUE� fAPAR � PAR: ð1:13Þ
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fAPAR is derived through VI relationships and LUE is scaled down with
meteorological information available, normally, at much coarser resolution. In the
BIOME-BGC (BioGeochemical Cycles) model, biome specific LUEmax values are
scaled down using meteorological data (Running et al. 2004). Net Primary Pro-
ductivity (NPP) has been modeled with AVHRR-NDVI inputs to the NASA-
CASA (Carnegie Ames Stanford Approach) model, and more recently, Potter et al.
(2007) found monthly EVI inputs to the CASA model significantly improved both
predicted high- and low-seasonal carbon fluxes, associated with peak growing
season uptake rates of CO2 in irrigated croplands and moist temperate forests.

There is also much interest in estimating GPP solely with remote sensing
methods in order to avoid the large uncertainties in LUE estimates based on land
cover generalizations and coarse meteorological inputs. In the Vegetation Photo-
synthesis Model (VPM) LUEmax is downscaled using remotely-sensed temperature
(T), canopy moisture status (W), and phenology (P) scalars (Xiao et al. 2004),

GPP ¼ LUEmax � T � W � Pð ÞAPAR�PAR ð1:14Þ

in which fAPAR is derived from EVI and W is derived from LSWI. VPM has
produced tower-calibrated predictions of GPP across a wide series of biomes,
including evergreen and deciduous forests, grasslands, and shrub sites in temperate
North America and in seasonally moist tropical evergreen forest in the Amazon
(Mahadevan et al. 2008; Xiao et al. 2005).

Several studies have shown the EVI to estimate GPP with relatively high
accuracy without direct consideration of LUE, thus potentially simplifying carbon
balance models over most vegetation types (Rahman et al. 2005; Sims et al. 2006).
Strong linear relationships between EVI and tower GPP were shown in North
American temperate forests, Southeast Asia tropical dry forests, and Amazon
tropical humid forests with the strength of the relationship greater for seasonally
contrasting deciduous forests compared with evergreen forests (Xiao et al. 2004;
Sims et al. 2006; Huete et al. 2006, 2008) (Figs. 1.11,1.13b). These relationships
were independent of the need for climatic drivers and LUE, thus greatly simpli-
fying carbon balance and water flux models.

However there are also studies showing limitations of satellite vegetation
products in predicting GPP, including VIs, demonstrating the need to include
information on radiation and temperature environmental drivers, including land
surface temperature (LST) (Jahan and Gan 2009; Sims et al. 2008; Schubert et al.
2010; Ryu et al. 2011). Li et al. (2008) also demonstrated limitations associated
with disparate footprints between satellite and tower flux measurements and the
need for Landsat spatial resolutions for flux footprint matching in non-forested
canopies.

Ichii et al. (2007) combined EVI from MODIS with the BIOME-BGC (Bio-
Geochemical Cycles) model to constrain spatial variability in rooting depths of
forest trees over the Amazon and improve the assessments of carbon, water and
energy cycles in tropical forests. They simulated seasonal variations in GPP with
different rooting depths from 1 to 10 m and determined which rooting depths best
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estimated GPP consistent with satellite-based EVI, and hence were able to map
rooting depths at regional scales across the Amazon with satellite data.

Combined remote sensing and in situ tower flux measurements have also
yielded close relationships with water fluxes (Glenn et al. 2007, 2011). Guersch-
man et al. (2009) developed an algorithm for estimating monthly actual evapo-
transpiration (AET) across varying sites in Australia. They used EVI and GVMI
from MODIS data, scaled to Priestley-Taylor potential evapotranspiration. The
EVI provided information on LAI while GVMI provided information on surface
water, bare soil and vegetation water content. Yang et al. (2006) derived conti-
nental-scale estimates of evapotranspiration (ET) by combining MODIS data with
eddy covariance flux tower measurements using an inductive machine learning
technique called support vector machines (SVM). EVI was found to be the most
important explanatory factor in their fairly accurate estimates of ET (root mean
square of 0.62 mm d-1). ET measurements at regional scales, from 9 flux towers
established in riparian plant communities on the Middle Rio Grande, Upper San
Pedro River, and Lower Colorado River were also found to correlate strongly with
EVI values and the inclusion of maximum daily air temperatures (Ta) measured at
the tower sites further improved this relationship (r2 = 0.74) (Nagler et al. 2005a).
Other ET studies at flux tower sites in semiarid riparian and upland grass and shrub
plant communities were also found strongly correlated with MODIS EVI
(r = 0.80–0.94) (Nagler et al. 2005b, 2007).

The AVHRR-NDVI has a long history of vegetation drought and climate
variability studies. Anyamba and Tucker (2005) demonstrated the strong corre-
spondence of 20+ year NDVI trends and anomalies with rainfall in the Sahel
(Fig. 1.14), and Breshears et al. (2005) showed large scale, drought-induced
vegetation mortality over the western U.S. with AVHRR- NDVI satellite data.
Many ecologists are concerned of the potential impacts on biodiversity and forest
ecosystem services resulting from major shifts in climate and wish to develop
predictive relationships between tree species richness and forest productivity under
current climate conditions (Turner et al. 2003). Waring et al. (2006) found a good
relationship between EVI, as a surrogate of productivity, and tree species richness
measured across the forest eco-regions of the conterminous USA (Fig. 1.15). They
used phenology metrics of growing season EVI values from MODIS in developing
their species diversity relationships and found climate- independent satellite
methods to be more useful in assessing tree biodiversity than models requiring
climate data owing to the problem in extrapolating such data accurately.

Various studies have found much utility in VI products for landscape distur-
bance mapping and impacts of invasive species. As an example, Jin and Sader
(2005) successfully used MODIS NDVI to detect and quantify forest disturbances
in northern Maine. The MODIS-based Global Disturbance Index (MGDI) was
designed to provide information on the timing, location, and extent of large scale
disturbances on ecosystems, involving fires, hurricanes, pests, and woody plant
species mortality (Mildrexler et al. 2009). Large scale disturbance events have
major impacts on the global carbon cycle and can result in sudden and large pulses
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of CO2 and other trace gases released into the atmosphere. The MGDI combines
LST and EVI data from the Aqua-MODIS sensor and detects and maps event-
specific disturbances based on anomalous changes in EVI and LST that exceed the
normal ranges of natural variability (Fig. 1.16). VI time series data have also been
used to predict potential invasive species habitats so that control or preventative
measures can be applied before irreversible changes occur. Using MODIS NDVI,
Franklin et al. (2006) studied the negative impacts of an invasive African grass

Fig. 1.14 a NDVI trends in the Sahel from 1981 to 2003. Yellow to red colors indicate areas of
significant change and gray areas show no significant trend, b comparisons of Sahel rainfall
anomaly index (RAI, 1930–2000) and NDVI anomaly index (NAI, 1981–2003). Adapted from
Anyamba and Tucker (2005), Copyright (2008), reprinted with permission from Elsevier
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species, buffelgrass (Pennisetum ciliare), on diversity of native rangeland plant
communities in Sonora, Mexico.

1.6 Future Directions and Challenges

The remote sensing literature of the past 30 years attests to the enormous utility
and applications of VIs for landscape monitoring and vegetation health assess-
ments. Nevertheless, new challenges and demands for robust remote sensing tools
exist in order to address upcoming ecological challenges that require more accu-
rate and long term VI data records for climate studies, ecosystem sustainability,
and a more explicit understanding of the biophysical information contained in VI
measurements. Advancements in hyperspectral and combined optical-thermal
indices offer much potential in advancing remote sensing based landscape moni-
toring and applications.

Fig. 1.15 a Relationship
between tree species richness
and seasonal mid-point EVI
values derived from MODIS
using forest field survey
plots; and b map of predicted
tree richness delineated by
ecoregions into five classes
derived from mid-season
MODIS EVI values. Adapted
from Waring et al. (2006),
Copyright (2006), reprinted
with permission from
Elsevier
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1.6.1 VI Continuity and Long Term Data Records

The Intergovernmental Panel on Climate Change report (IPCC 2007) emphasized
the need to assess climate change impacts on forest resources through repeatable,
long term, and accurate satellite measures. VIs derived from the numerous Earth
Observing satellites partly fill this critical need by providing frequent temporal
satellite measurements that can be used to generate a seamless, long-term data
record for global change and climate change studies. Relative to more complex
satellite algorithms, VIs are more easily fused across multiple sensor systems
facilitating the underlying need to ensure continuity for long term monitoring
(Fig. 1.17).

Numerous investigations have empirically evaluated NDVI continuity and
consistency across AVHRR sensors (e.g. Los 1993; Roderick et al. 1996) and
confirmed the feasibility of NDVI translation across MODIS, SPOT-VGT, Sea-
viewing Wide Field-of-view Sensor (SeaWiFS), AVHRR, and the Landsat
ETM+ sensors (Fensholt 2004; Gallo et al. 2005; Gitelson and Kaufman 1998;
Miura et al. 2006; Trishchenko et al. 2002; Tucker et al. 2005; Yoshioka et al.
2012; van Leeuwen et al. 2006). The Visible Infrared Imaging Radiometer Suite
(VIIRS) instrument on the Joint Polar Satellite System (JPSS) program will extend
the VI data record of essential measurements begun by the NOAA-AVHRR and

Fig. 1.16 Illustration of the MODIS Global Disturbance Index (MGDI) concept for detection
and mapping large-scale landscape disturbances. Disturbances will cause departures from normal
variations dependent on the type and severity of the event. a In the case of wildfire, there are
instantaneous changes in MODIS LST and EVI, while in the case of hurricanes (b), there is no
immediate spike on LST and MGDI values increase the year after the disturbance event. Adapted
from Mildrexler et al. (2009), Copyright (2009), reprinted with permission from Elsevier
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EOS MODIS. Both the NDVI and EVI have been selected as one of JPSS Envi-
ronmental Data Records (EDR’s). The first VIIRS sensor onboard the current
Suomi National Polar-orbiting Partnership (NPP) provides a bridge between EOS-
MODIS and the operational JPSS VIIRS planned for launch in 2016 (Fig. 1.17).

Intercalibration across these sensors and more rigorous translation approaches
are desired and will be critical to long term VI data continuity in support of climate
science. In a study of cross-sensor influences on NDVI-LAI relationships with
NOAA-14 AVHRR, SPOT-4 VGT, and Terra MODIS data, Wang et al. (2005)
found significant differences in slope, intercept, and strengths of relationships,
despite empirical NDVI agreements among the sensors. Yoshioka et al. (2012)
developed bottom-to-top approaches in translating the NDVI from one sensor to
another using Red and NIR cross-sensor isolines. This theoretical approach provided
a better mechanistic understanding and predictive modeling of cross-sensor rela-
tionships for the NDVI and input reflectances as well as other VIs, such as EVI. The
EVI can be computed from many sensors that carry a blue channel, and SPOT-VGT
and Advanced Earth Orbiting Satellite (ADEOS-II) GLI have provided EVI values
compatible with Aqua and Terra MODIS EVI (Yamamoto et al. 2005). Fensholt
et al. (2006) explored the consistency of EVI values across different sensors and
suggested the EVI may be more problematic due to the additional variations asso-
ciated with the blue band. Jiang et al. (2008) developed a functionally equivalent 2-
band version of EVI, or EVI2, for use in sensors without a blue band,

Fig. 1.17 Vegetation index long term time series continuity across the NOAA-AVHRR, EOS-
Terra and Aqua MODIS, and VIIRS Suomi National Polar-orbiting Partnership (NPP) and JPSS
VIIRS, in support of climate studies
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EVI2 ¼ 2:5 qNIR�qRedð Þ = L þ qNIR þ C1 � qRedð Þ ð1:15Þ

where L = 1 and C1 = 2.4. A backward compatibility of the EVI2 (and other 2-
band VIs) to the historical AVHRR record to complement the NDVI is highly
desirable. Rocha and Shaver (2009) applied the EVI2 to a burn severity gradient in
the arctic tundra and found EVI2 was best able to resolve LAI variations along the
gradient consisting of highly variable background soil albedo variations associated
with the burns. Soil darkening positively biased NDVI values requiring separate
relationships between LAI and NDVI for burned and unburned areas. Yang et al.
(2012) combined EVI2 from MODIS with meteorological records to develop a
regional phenology model in New England, U.S.

1.6.2 Multi-sensor Fusion

Multiple sensor systems with different combinations of spectral, spatial and tem-
poral resolutions will be needed to characterize ecosystem structure and function
and effectively capture the important spatiotemporal complexities of landscapes.
Coarse spatial resolution sensors provide consistent and timely information of
ecosystem health, functioning, and large scale disturbance events, whereas species
dynamics, and more subtle land degradation processes, fragmentation and land use
modifications are better resolved with finer spatial resolution satellite imagery. By
realizing the spectral-spatial detail present in finer resolution data, one is able to
fully interpret and characterize the spatial patterns hidden inside pixels of coarser
spatial resolution satellite imagery.

Global mosaics of Landsat imagery, including the Landsat Multi Spectral
Scanner (MSS), Thematic Mapper (TM), and Enhanced Thematic Mapper
(ETM+) have recently been made freely available for detailed mapping of land-
scapes from the early 1970s (Tucker et al. 2004; Roy et al. 2010) and numerous
studies have demonstrated their tremendous value to global change mapping
studies (e.g. Giri et al. 2011; Broich et al. 2011a, Potapov et al. 2012). High
temporal frequency MODIS satellite data are increasingly being blended with fine
spatial resolution Landsat data for applications that require high resolution in both
time and space. Two methods for generating dense, synthetic time series of high
spatial resolution imagery are the spatial and temporal adaptive reflectance fusion
model (STARFM) algorithm (Gao et al. 2006) and the multi-temporal MODIS–
Landsat data fusion method (Roy et al. 2008). Such methods to integrate multi-
resolution satellite sensor data provide better resolution properties than the indi-
vidual data sources and are vital to better understand interactions and processes
that influence carbon stocks, water resources, and land use activities. For example,
Asner (2009) demonstrated that forest degradation and selective logging poten-
tially contribute as much carbon loss as larger scale clear-cutting. Whereas, coarse
resolution satellites may detect large-scale clearings, the finer resolution data is
needed for forest degradation assessments. Broich et al. (2011b) provided the first
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annual map of forest loss for persistently cloudy Indonesia at Landsat spatial
resolution. Their approach used annual MODIS forest loss detections to temporally
disaggregate epochal Landsat-mapped forest loss.

Schmidt et al. (2012) investigated the utility of the STARFM algorithm with
MODIS and Landsat time series to map and monitor subtle changes in vegetation
cover in a heterogeneous savanna and wetland landscape. They found that the
synthesized high spatial and temporal resolution time series allowed the detailed
phenological description of various vegetation communities that would have not
been possible across large areas otherwise.

The majority satellite sensor measurements are made using broad spectral
bands that are limited in their ability to capture fine resolution biochemical spectral
variability associated with multi-species canopies, leaf age spectral variations, and
variable plant stress responses. Broadband vegetation and water indices often lack
the fidelity to capture subtle absorption variations associated with vegetation stress
and changes in biochemistry. Hyperspectral remote sensing measurements add
spectral fidelity that enable the retrieval of important biochemical canopy features.
Their fusion with high temporal frequency satellite measurements can provide
powerful monitoring tools for the characterization of landscape phenology, eco-
system processes, and ecosystem health.

Hyperspectral indices can be formulated with narrow bandwidths that offer
greater sensitivity in the retrieval of foliage biochemical properties (Carter and
Knapp 2001), and many narrow-band indices have been developed that aim to
quantify canopy absorption processes associated with pigments, water, and ligno-
cellulose compounds from litter and woody material (see Ustin et al. 2004). The
photochemical reflectance index (PRI) is a hyperspectral index that provides a
scaled LUE measure as (Middleton et al. 2011; Gamon et al. 1992),

PRI ¼ q531nm�q570nmð Þ = q531nm þ q570nmð Þ ð1:16Þ

Spectral variations at 531 nm are closely associated with the dissipation of
excess light energy by xanthophyll pigments in order to protect the photosynthetic
leaf apparatus (Ripullone et al. 2011). The upcoming potential launches of new
hyperspectral missions, such as Hyperspectral Infrared Imager (HyspIRI), will
provide future data fusion opportunities for the scaling and extension of leaf
physiologic processes and phenology from species and ecosystem to regional and
global scales.

Opportunities to fuse dynamic VI optical measurements and hyperspectral data
with Lidar (light detection and ranging) sensors also have promising potentials to
improve the assessments of standing wood biomass, forest disturbance and bio-
mass loss, carbon accumulation through forest regrowth, and mapping the spread
of invasive species (Lefsky et al. 2002; Baccini et al. 2008; Asner et al. 2011).
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1.6.3 VI Biophysical Definition

Despite the success of vegetation indices, there are increasing demands to better
define what VI values represent and measure about a canopy. VIs, as measures of
canopy greenness, depict integrative spatial and temporal variations in canopy
biophysics (fractional cover and LAI), leaf physiology (pigments, age, nitrogen),
and structure (leaf thickness, leaf angles and shading). A temporal sequence of VI
values will most likely include simultaneous changes in many of these variables,
and the retrieval of specific variables will either require multiple indices or inverse
radiative transfer models with required implicit assumptions and generalizations
about land cover type, leaf phenology, and biochemistry.

To a large extent VIs are used opportunistically with the aim of finding the best
correlation between a local site experimental data set and a selection of VIs. A VI
correlation made with seasonal LAI will incorporate, and confuse, simultaneous
changes in leaf chemistry and traits that accompany the measured changes in LAI.
There is a tendency to search for the ‘‘best VI’’, although such studies rarely offer
insight into the mechanisms of the VI relationships to specific variables. There are
far less multi-site studies and spatial and temporal extension analyses of VI-
biophysical relationships. This contributes to the overall lack of consensus as to
what VIs measure about a canopy and how to further interpret VI values. EVI may
provide a more direct relationship with photosynthesis (GPP) in high biomass
canopies by relying on the more sensitive NIR reflectances that are able to sense to
a greater canopy depth compared with the chlorophyll-sensitive Red band that only
senses the uppermost leaf layer. However, Vickers et al. (2012) noted that VIs can
only be used to determine the upper limits of canopy exchange processes (pho-
tosynthesis and transpiration) as environmental drivers, such as water vapor def-
icits and soil drought, will influence these processes without affecting canopy
spectral properties.

However, it may not always be necessary to deconstruct canopy spectral signals
into their biophysical components (LAI, chlorophyll, etc.). The convergence of
relationships between VIs and tower fluxes across different ecosystems (Figs. 1.10,
1.13) is surprising since, in theory CO2 and water exchanges can vary considerably
over short time periods; and are related not just to foliage density but environ-
mental variables (PAR, air temperature, vapor pressure deficit, etc.), which can
vary considerably over short time periods. VIs provide both a measure of the
capacity to absorb photosynthetically active radiation, as well as reflect recent
environmental forcings acting on the canopy. Ecological processes tend to adjust
plant characteristics over time periods of weeks or months to match the capacity of
the environment to support photosynthesis and maximize growth. This is known as
the resource balance or resource optimization theory (Field et al. 1995), which
treats photosynthesis or primary production as integrators of resource availability.
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Chapter 2
Green Leaf Area and Fraction
of Photosynthetically Active Radiation
Absorbed by Vegetation

Sangram Ganguly, Ramakrishna R. Nemani, Frederic Baret, Jian Bi,
Marie Weiss, Gong Zhang, Cristina Milesi, Hirofumi Hashimoto,
Arindam Samanta, Aleixandre Verger, Kumaresh Singh and Ranga
B. Myneni

Abstract Leaf Area Index (LAI), the area of leaves per unit ground area, and the
Fraction of Photosynthetically Active Radiation (FPAR; 400–700 nm) absorbed
by vegetation are important biophysical variables for quantifying the cycling of
water, carbon and nutrients through ecosystems. The LAI/FPAR products from the
Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor and the Système Pour l’Observation
de la Terre (SPOT) sensor have a large Earth science community user base and the
ease of access, provision of pixel quality and validation information have greatly
aided the use of these products. Recent research efforts focusing on inter-sensor
product consistencies have developed a foundation upon which mature algorithms
and a validation framework can act synergistically to further refine the accuracy
and precision of these existing long-term products. This chapter provides a brief
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overview of the recent progresses in LAI/FPAR estimation algorithms and
resulting biophysical products from the AVHRR, MODIS, SPOT and Landsat
data.

2.1 Introduction

Leaf Area Index (LAI), the one-sided green leaf area per unit ground area, and the
Fraction of Photosynthetically Active Radiation (FPAR; 400–700 nm) absorbed
by vegetation are important biophysical variables for quantifying the cycling of
water, carbon and nutrients through ecosystems (Demarty et al. 2007; Sellers et al.
1996; Tian et al. 2004). LAI characterizes the functioning surface area of a veg-
etation canopy (Myneni et al. 2002). The interactions between the vegetation
surface and the atmosphere, for example, radiation exchange, transpiration rates,
precipitation interception, momentum and gas exchange, is predominantly deter-
mined by leaf area (Monteith and Unsworth 1990). An increase in leaf area, for
example, increases the uptake of CO2 from the atmosphere due to greater sunlight
absorption and hence results in increased canopy conductance and transpiration
rates (Field and Mooney 1983). Field measurements of LAI include hemispherical
photography and optical instruments like TRAC, LAI-2000 or LI-3000C (Chen
et al. 1997; Weiss et al. 2004). Satellite remote sensing enables retrieval of LAI
globally at different spatial resolutions and temporal frequency with algorithms
based on the physics of radiative transfer. Another parameter that characterizes the
energy absorption capacity of a vegetation canopy is FPAR, defined as the fraction
of photosynthetically active radiation (0.4–0.7 lm) absorbed by the vegetation
canopy. FPAR depends on the incident radiation field, architecture and absorption,
reflectance and transmission spectra of the canopy as well as the reflectance of the
soil and/or understory background. FPAR is well related to NDVI and usually
increases with fractional canopy cover and plant leaf area (Myneni and Williams
1994). It is one of the fundamental parameters used to estimate net primary pro-
duction and for modeling of terrestrial carbon processes (Knorr and Kattge 2005;
Pitman 2003; Sellers et al. 1986). Similar to LAI, FPAR has also been identified as
one of the fundamental terrestrial state variables in the context of global change
studies (GCOS 2006).

The LAI/FPAR products from the Advanced Very High Resolution Radiometer
(AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor
and the Système Pour l’Observation de la Terre (SPOT) sensor have a large Earth
science community user base and the ease of access, provision of pixel quality and
validation information have greatly aided the use of these products. Recent
research efforts focusing on inter-sensor product consistencies have developed a
foundation upon which mature algorithms and a validation framework can act
synergistically to further refine the accuracy and precision of these existing long-
term products (Brown et al. 2006; Ganguly et al. 2008b; Tarnavsky et al. 2008;
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Van Leeuwen et al. 2006). Multi-decadal, validated, consistent global and regional
data sets of LAI/FPAR from the AVHRR, MODIS, and the SPOT-VGT sensors
are now available at resolutions of 1 km to 1� in service of several national and
international initiatives (Chen 2002; Fernandes and Butson 2003; Ganguly et al.
2008a; Myneni et al. 2002). Long-term records of LAI and FPAR are required by
various terrestrial biosphere models, like the Terrestrial Ecosystem Model (TEM)
(Melillo et al. 1993), Biome-BGC (Running and Gower 1991), Simple Biospheric
Model (SiB) (Sellers et al. 1986), Integrated Biosphere Simulated Model (IBIS)
(Foley et al. 1996), Lund-Potsdam-Jena (LPJ) dynamic global vegetation model in
Land Surface Model (LSM) (Bonan et al. 2003) and the Atmospheric-Vegetation
Interactive Model (AVIM) (Jinjun 1995), for the investigation of the response of
ecosystems to the changes in climate, carbon cycle, land cover and land use. The
Landsat series of sensors also provides a unique opportunity to characterize ter-
restrial ecosystem processes at a spatial scale at which most natural resources
management decisions are made. Although regional- to continental-scale multi-
temporal mosaics of Landsat data have been constructed for pilot studies of
national land use change monitoring and disturbance mapping (Chander et al.
2009; Hansen et al. 2008; Wulder et al. 2002), the Landsat archive has not yet been
exploited to derive long-term biophysical products. This chapter provides a brief
overview of the recent progresses in some of the key LAI/FPAR estimation
algorithms and resulting biophysical products from the AVHRR, MODIS, SPOT
and Landsat data at global to continental scales.

2.2 Algorithmic Theoretical Basis

There is considerable literature on the estimation of LAI from vegetation indices
like the Normalized Difference Vegetation Index (NDVI), Simple Ratio and
Reduced Simple Ratio (RSR) (Asrar et al. 1984; Chen and Cihlar 1996; Stenberg
et al. 2004; Brown et al. 2000). In particular, (Sellers et al. 1996) introduced an
empirical algorithm that calculated FPAR as a function of the simple ratio. Lu and
Shuttleworth (2002) used this definition of FPAR and approximated the relation-
ship between LAI and FPAR to be exponential (Monteith and Unsworth 1990) for
evenly distributed vegetation. Strong positive correlations were found between
LAI and NDVI for various vegetation types (Myneni et al. 1997), as well as with
simple ratio in coniferous forests (Chen and Cihlar 1996). Site-specific NDVI/
RSR-LAI empirical relationships have been used in various ecosystems (Colombo
et al. 2003; Fassnacht et al. 1997; Stenberg et al. 2004), but with limited success
when applied across sites and vegetation classes.

The sensitivity of NDVI or RSR to LAI is controlled by the relationship
between NDVI/RSR and fractional vegetation cover when LAI is in the range of
about 2–4 (Carlson and Ripley 1997; Stenberg et al. 2004). Steltzer and Welker
(2006) incorporated fractional cover of photosynthetic vegetation for multiple
species into the exponential NDVI-LAI model for a regional scale analysis, and
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suggested that species composition affects the NDVI-LAI relationship through
leaf-level properties (leaf optics, leaf structure and orientation) and canopy-level
structural properties that influence the vertical and horizontal distribution of leaf
area within a canopy. Relationships between RSR and LAI in closed canopy
regimes suggest that the inclusion of the short-wave band decreases the effect of
understory reflectance on the retrieval of LAI below a certain threshold value of
crown-closure (Nemani et al. 1993; Rautiainen 2005). It is evident that NDVI/
RSR-LAI empirical relationships do vary across different species and are sensitive
to canopy structure and fractional ground cover. These empirical relationships can
also vary both seasonally and inter-annually with respect to phenological devel-
opment of the vegetation. Thus, a relationship established between LAI and NDVI
in a particular year may not be applicable in other years (Wang 2004). Conse-
quently, the empirical relationships will be site-, time-, and species-specific, and,
therefore, poorly suited for large-scale operational use (Houborg et al. 2007).

An alternate approach is to use physically based models that describe the
interaction of radiation inside a canopy based on physical principles and provide
an explicit connection between biophysical variables and canopy reflectance
(Combal et al. 2002). The physical models of radiation transfer and interaction in
vegetation canopies are usually categorized into four broad types: (1) radiative
transfer models (Knyazikhin et al. 1998; Myneni et al. 1989), (2) geometrical
optical models (Li and Strahler 1992), (3) hybrid models that incorporate both
radiative transfer as well geometric optics (Welles and Norman 1991), and (4)
Monte-Carlo simulation models (Lewis 1999; Ross and Marshak 1988). In
Sects. 2.1 and 2.2, we describe in brief two state-of-the art physical algorithms in
retrieving LAI and FPAR that have evolved over time.

2.3 Modis LAI/FPAR Algorithm: Scaling to AVHRR
and Landsat

The MODIS LAI/FPAR algorithm retrieves LAI and FPAR values given sun and
view directions, Bidirectional Reflectance Factor (BRF) for each MODIS spectral
band, uncertainties in input BRFs, and land cover classes based on a 8-biome
classification map (Myneni et al. 2002; Yang et al. 2006). The retrieval technique
compares observed and modeled BRFs stored in a Look_Up_Table (LUT) for a
suite of canbiome-opy structures and soil patterns that represent an expected range
of typical conditions for a given biome type. The modeled BRFs are simulated
using a canopy 3D stochastic radiative transfer model. All canopy/soil patterns for
which modeled and observed BRFs differ within a specified uncertainty level are
considered acceptable solutions. The mean values of LAI averaged over all
acceptable solutions and the dispersion are reported as the output of the algorithm
(Knyazikhin et al. 1998). The algorithm currently requires: (a) atmospherically
corrected surface reflectances at Red and NIR bands, and (b) an 8-biome Land
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Cover classification map distinguishing the following biomes types: (1) grasses
and cereal crops, (2) shrubs, (3) broadleaf crops, (4) savannas, (5) evergreen
broadleaf forests, (6) deciduous broadleaf forests, (7) evergreen needle leaf forests,
(8) deciduous needle leaf forests. The biome map reduces the number of unknowns
of the inverse problem through the use of simplifying assumptions (e.g., biome-
specific models of leaf orientation distributions; Knyazikhin et al. 1998) and
standard constants (e.g., biome-specific leaf and soil optical properties at given
wavelengths). Over 11 years of Terra MODIS and about 10 years of Aqua
MODIS LAI/FPAR products have been generated with this algorithm. Figure 2.1
shows global fields of annual average LAI and FPAR derived from 10 years of
Terra MODIS Collection 5 data.

A consistent retrieval of LAI/FPAR from different sensors depends on the
parameterization of the physically-based algorithm by adjusting for sensor-specific
features of the BRF measurements (spatial resolution, bandwidth, calibration,
atmospheric correction, information content, etc.). The theory of canopy spectral
invariants provides the required BRF parameterization via a small set of well-
defined measurable variables that specify the relationship between the spectral
response of vegetation canopy bounded be biome-specific canopy architecture low
by a non-reflecting surface to the incident radiation at the leaf and canopy scales
(Huang et al. 2007; Yuri Knyazikhin et al. 2011; Lewis and Disney 2007; Smo-
lander and Stenberg 2005). The core theory provides a more easy and efficient way
of simulating wavelength dependent BRFs as a function of biome-specific canopy
structural attributes. The first order approximation of the BRF for a vegetation
canopy bounded below by a non-reflecting surface (Ganguly et al. 2008b; Huang
et al. 2007) is approximated as:

BRFBS;k Xð Þ ¼ xkR1 Xð Þ þ x2
k

1� pxk
R2 Xð Þ; ð2:1Þ

where xk is the leaf single scattering albedo, R1 and R2 are escape probabilities
expressed relative to the number of incident photons and p refers to the recollision
probability, which is defined as the probability that a photon scattered by a foliage
element in the canopy will interact within the canopy again. The spectral
absorptance, aBS,k of the vegetation canopy with non-reflecting background can be
expressed as:

aBS;k ¼
1� xk

1� pxk
i0; ð2:2Þ

where i0 is the probability of initial collisions, or canopy interceptance, defined as
the portion of photons from the incident beam that are intercepted, i.e., collide with
phytoelements for the first time. The FPAR is a weighted integral of Eq. (2.2) over
the photosynthetically active radiation (PAR) spectral region (Knyazikhin et al.
1998). The formulation in Eq. (2.1) permits decoupling of the structural and
radiometric components of any optical sensor signal, and requires a set of sensor-
specific values of configurable parameters, namely the ‘‘single scattering albedo’’
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Fig. 2.1 Global color-coded maps of Terra MODIS Collection 5 annual average LAI and FPAR.
These maps were generated from nearly 10 years of Terra MODIS data (January 2001 to
December 2010). Leaf area index (LAI) is defined as the one-sided green leaf area per unit
ground area in broadleaf canopies and as one-half the total needle surface area per unit ground
area in coniferous canopies. FPAR is defined as the fraction of incident photosynthetically active
radiation (400–700 nm) absorbed by the green elements of a vegetation canopy. Both quantities
are dimensionless
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and ‘‘uncertainties in surface reflectances’’ that allow to maintain consistency in
the retrieved LAI (Ganguly et al. 2008b). The analytical expressions for the total
BRF formulation (e.g. contributions from understory and canopy that are related to
reflectance, transmittance and absorptance simulations) are documented in (Gan-
guly et al. 2012) and are not provided here for the sake of brevity.

To achieve accurate retrievals from a particular sensor like Landsat, the sim-
ulated surface reflectances making up the LUT should be adjusted to be consistent
with the expected range of measured surface reflectances. The simulated surface
reflectances are highly sensitive to leaf single scattering albedo for medium-to-
high LAI and to soil reflectances for low LAI. The single scattering albedo is a
function of spatial resolution and accounts for the variation in BRF with sensor
spatial resolution and spectral bandwidth (c.f. Sects. 4 and 5 of Ganguly et al.
2008b). The theoretical scaling of the algorithm has been demonstrated by
(Ganguly et al. 2008a) to derive LAI from the AVHRR dataset that is consistent
with LAI products from other sensors such as MODIS and SPOT. In essence, the
BRF can be computed for the sensor-specific resolution and spectral bands by
adjusting the single scattering albedo. For Landsat, the initial set of single scat-
tering albedos for the red, NIR and SWIR bands are calculated for each biome as
the mean single scattering albedo, such that

x ¼
Zb

a

xkf kð Þdk ð2:3Þ

where f(k) is the relative spectral response function for the Landsat spectral bands.
a and b represents the lower and upper bounds for wavelengths in the red and NIR
bands and xk for different biomes is obtained from field measured leaf spectral
measurements (Tian et al. 2004). x is further tuned to achieve the best possible
overlap of simulated BRFs with Landsat observed surface reflectances over a suite
of biomes (Ganguly et al. 2012). The dominant factors in classifying the biomes,
based on RED, NIR, and SWIR bands, are soil reflectances and single scattering
albedos in the respective bands.

The LAI retrieval algorithm exploits the location information in the reflectance
cross planes by attributing each point in the spectral space to a specific physical
state that is characterized by a background brightness and LAI (Knyazikhin et al.
1998). A pixel can have a background ranging from dark to bright depending on
the type of soil, and the LAI can vary over a range for each specific instance of
background brightness. Given a Landsat pixel with a reflectance triplet (RED,
NIR, SWIR), a merit function is used to select the set of acceptable solutions such
that

D2 ¼ BRFNIR � BRFNIR;sim

r2
NIR

þ BRFRED � BRFRED;sim

r2
RED

þ BRFSW � BRFSW ;sim

r2
SW

þ

ð2:4Þ
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Here, BRFNIR, BRFRED and BRFSW denote values of measured surface reflec-
tances in the NIR, Red and SWIR spextral bands, while BRFNIR,sim, BRFRED,sim and
BRFSW,sim correspond to respective simulated reflectances from the LUT. The
dispersions r2

NIR; r
2
RED and r2

SW quantify combined model and observational uncer-
tainties in NIR, RED and SWIR spectral bands and are configurable parameters in
the retrieval approach (Wang et al. 2001). The dispersions are represented as
rNIR ¼ eNIR � NIR; rRED ¼ eRED � RED; and rSWIR ¼ eSWIR � SWIR;where eNIR; eRED;
and eSWIR are the corresponding relative uncertainties (Wang et al. 2001). The
optimum values of relative uncertainties used in this study (Ganguly et al. 2008a) are
those that result in maximizing the retrieval index without loss of information
content. The variable D2, characterizing how close the measured surface reflectances
are to the simulated ones, has a Chi square distribution with three degrees of free-
dom. A value of D2 B 3 (3-band inversion) indicates good proximity between
observations and simulations. All LAI and soil reflectance values satisfying this
criterion constitute the set of acceptable solutions for a particular Landsat obser-
vation (NIR, RED and SWIR). In the situation in which D2 B 3 fails to localize a
solution set, Eq. (2.4) limits to a two band based merit function (excluding SWIR
and D2 B 2). If the reflectance based inversion fails, an empirical relationship
between Simple Ratio and LAI is used to retrieve LAIs. (Ganguly et al. 2012) shows
the implementation of the algorithm to derive LAI from Landsat derived surface
reflectances. Figure 2.2 shows a 30 m forest LAI for the Conterminous United
States derived from the Landsat Global Land Survey (GLS) 2005 dataset.

2.4 Spot GEOV2 LAI/FPAR Algorithm

The GEOV2 LAI and FPAR products derive from the past experience gained in
the development of GEOV1 products from the SPOT VEGETATION (GEOV1/
VGT) instrument (Baret et al. 2010, 2013) and AVHRR (GEOV1/AVHRR) (A
Verger et al. 2012). The theoretical framework for GEOV1/VGT capitalizes on the
MODIS and CYCLOPES products development. A database of sites representative
at the global scale was populated with MODIS (Myneni et al. 2002; Shabanov
et al. 2005) and CYCLOPES (Baret et al. 2007) products that were combined to
retain the advantages while minimizing their deficiencies shown in few validation
exercises (Garrigues et al. 2008; Weiss et al. 2007; McCallum et al. 2010). The
resulting LAI or FPAR products values were used to train a neural network with
VEGETATION derived top of the canopy directionally normalized reflectance
values as inputs. This approach provided improved performances as compared to
both MODIS and CYCLOPES products as demonstrated by few validation exer-
cises (Camacho et al. 2012). However, these GEOV1/VGT products did not
improve the continuity of the original MODIS and CYCLOPES products. Further,
the pre-processing steps used to normalize the directional effects was based on a
30 days compositing window, making at least a 15 days delay between the actual
date of the product and its delivery. Several operational applications require real
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time delivery of the products and the 15 days delay was clearly a limitation for
these users. Finally, the VEGETATION observations were starting only from
1998, while several applications require long time series.

The AVHRR archive was consequently exploited to derive the GEOV1/AV-
HRR products that extend the GEOV1/VGT products back to 1981. For this
purpose, the 1999–2000 years where both VEGETATION and AVHRR overlap
were used to train a neural network with GEOV1/VGT products as output and
AVHRR reflectance as inputs. The AVHRR LTDR reflectance products (Devadiga
et al. 2007) were used here. They correspond to atmospherically corrected and
directionally normalized daily values. The corresponding daily LAI and FPAR
products were smoothed using TSGF algorithm (Verger et al. 2011) and gap filled
using the climatology as background information when limited observations are
available. The GEOV1/AVHRR products have been demonstrated to be highly
consistent with the GEOV1/VGT product values while improving largely the
continuity, with almost no gaps (Verger et al. 2012). Figure 2.3a shows a global
map of the GEOV1/VGT LAI product for the first dekad of May 2002 and
Fig. 2.3b demonstrates the consistency between the GEOV1/VGT and GEOV1/
AVHRR products for the overlapping time period.

Fig. 2.2 A 30 m Forest LAI for the Conterminous United States derived from the Landsat
Global Land Survey (GLS) 2005 dataset. Most of the GLS Landsat scenes are acquired during the
peak of growing season. The forested pixels are delineated from the National Land Cover Dataset
(NLCD 2006) classification map. The Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) framework is used to convert the GLS Landsat data to surface reflectances at
the Red, NIR and Shortwave Infrared (SWIR) bands. Following the approach as detailed in
Ganguly et al. (2012), a radiative transfer based inversion methodology was implemented to
retrieve LAI for each pixel given the surface reflectances at the Red, NIR and SWIR bands
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The GEOV2/VGT products were later developed to improve the continuity of
GEOV1/VGT as well as to provide real time estimates of the products. The
MODIS and CYCLOPES products were first combined similarly as what was
achieved with GEOV1/VGT over a globally representative data set. Then the daily
VEGETATION reflectances were used as input to train a neural network to esti-
mate the LAI and FPAR computed from the combination of MODIS and

Fig. 2.3 a GEOV1/VGT LAI global map for the first dekad of May 2002. b Typical temporal
profiles derived from GEOV1/AVHRR (black) and GEOV1/VGT (blue). The overlap period in
1999–2000 shows good consistency between both products. The red crosses correspond to
available ground measurements of LAI
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CYCLOPES products. The resulting daily LAI and FPAR estimates were gap
filled and smoothed with the time series-processing algorithm developed previ-
ously for GEOV1/AVHRR. The use of the background climatology information on
LAI and FPAR values, as well as the smoothing algorithm allowed for short-term
projections required for deriving real time estimates of the products. The resulting
GEOV2/VGT products were demonstrated to be highly consistent with GEOV1/
VGT values with a large improvement in the continuity of the data (Baret et al.
2013). GEOV2/VGT is also fairly consistent with GEOV1/AVHRR and provides
thus a time series of more than 32 years of LAI and FPAR products. The GEOV
series of products are shown below in Table 2.1.

2.5 Availability of Data Products

The LAI/FPAR products as described above are available to use by the scientific
research community. The standard MODIS Collection 5 LAI/FPAR products are
available via the Reverb/ECHO web service at http://reverb.echo.nasa.gov/reverb/.
The standard MODIS products from 2000 till present are available at a spatial
resolution of 1 km and at 8 day temporal frequency. The long-term multi-year
(1981 till present) monthly AVHRR LAI/FPAR dataset based on a scaled version
of the MODIS algorithm is available upon request at the Climate and Vegetation
Research Group at http://cliveg.bu.edu/modismisr/index.html. The GEOV2 LAI/
FPAR products can be downloaded freely from the GEOLAND2 web portal
located at http://www.geoland2.eu/portal/. They are available at the dekadal time
step with 0.05� and 0.0089� spatial sampling interval in lat-lon geographic pro-
jection system. The MODIS LAI products at a spatial resolution of 250 m is also
available upon request via the NASA Earth Exchange (NEX) web portal located at
https://c3.nasa.gov/nex/. NEX in collaboration with USGS EROS is also currently
making Landsat derived LAI available to research community on demand basis.

2.6 Validation Efforts

There has been an extensive effort since the inception of the NASA EOS era to
validate biophysical products. Validation campaigns from existing network of sites
like the BigFoot, AERONET, FLUXNET, EOS Land Validation Core Sites, and
Valeri with sustained efforts from several research teams across the globe have
provided the necessary platform to validate these biophysical products (Garrigues
et al. 2008; Morisette et al. 2006; Pisek and Chen 2007). Both the MODIS and
SPOT derived LAI/FPAR products have been extensively validated over a suite of
vegetation types and climatic regimes. It is to be noted that ‘‘validation’’ refers to
both (a) direct and (b) indirect validation, where the former refers to comparing
satellite derived measures with ground truth while the later refers to an exercise
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intercomparing products from different sensor systems to test consistency. Both
direct and indirect validation provides a comprehensive knowledge about the
accuracy of these products and level of uncertainties that may results due to input
data and modeling errors.

Direct validation results for the MODIS LAI/FPAR over vegetation types
representative of all the major biome types suggest that the product provides
reasonable estimates of LAI for most cover types and land use types (Garrigues
et al. 2008; Huang et al. 2006; Kauwe et al. 2011; Pisek and Chen 2007; Sea et al.
2011; Tan et al. 2005; Yang et al. 2006). The MODIS LAI/FPAR products are
categorized as a Stage 2 land validated product (http://landval.gsfc.nasa.gov/
ProductStatus.php?ProductID=MOD15) that have the following characteristics: (a)
LAI accuracy of 0.5 LAI units (uncertainty of 0.66 LAI), FPAR accuracy of 0.1;
(b) spatial resolution from 500 m to 1 km; (c) temporal frequency from 4 days to
monthly (Yang et al. 2006). Direct validation of the GEOV-1 products also shows
a satisfactory agreement with field observations. An indirect validation imple-
menting a scaled version of the MODIS algorithm to derive an LAI dataset from
AVHRR shows satisfactory agreement with the MODIS and CYCLOPES LAI
products at a range of spatial resolutions and field data (Ganguly et al. 2008a). The
Landsat based LAI products are not rigorously validated, however an indirect
validation with MODIS shows comparable results (Ganguly et al. 2012).
Figure 2.4 briefly demonstrates the results obtained from validation exercises
performed with the AVHRR, MODIS and GEOV suite of LAI products.

2.7 Concluding Remarks

Current scientific research and application studies have demonstrated the useful-
ness of physically derived LAI/FPAR products at local-to-regional scales; how-
ever, there are certain limitations in physically based approaches. First, data
measurement uncertainties from different sensors can impact the retrieval of a
biophysical product. Data uncertainties mostly result from calibration ambiguities,
current state of the atmospheric correction algorithm and other effects introduced
by solar/view angle corrections. Second, global retrievals of LAI/FPAR products
utilize land cover classification maps. Classification inaccuracies are a critical
source of error in the LAI retrieval process, especially for those regions under-
going dynamic land cover change (e.g. changes from herbaceous to woody bio-
mes). There are intrinsic limitations in the retrieval algorithms that mostly include
(1) accurately modeling the uncertainty of the input reflectances and incorporating
the variability in model and input uncertainties with biome types; (2) incorporating
a better understory reflectance characterization in simulating the soil reflectance
behavior and (3) using constrained definitions of leaf spectral properties as defined
by the broad biome types. Finally, a global validation of coarse-to-fine resolution
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LAI/FPAR products with ground measurements is a complicated task because of
issues with aggregation of plot-level measurements to sensor resolution, limited
temporal and spatial sampling of the ground data, field instrument calibrations,
sampling errors, etc.

Future research on LAI/FPAR product development will continue along the
following directions:

(a) Implementation of physical algorithms to derive high-resolution LAI/FPAR
products—this will involve characterizing land cover types at a sufficiently
high resolution.

Fig. 2.4 Validation of global LAI/FPAR products. Panel a shows comparison between MODIS
Collection 5 and AVHRR LAI product from Ganguly et al. (2008b) for the year 2001 (blue color)
and 2002 (red color) for different vegetation classes. The LAI values are globally averaged values
for the respective vegetation pixels. Panel b shows a comparison of AVHRR LAI as in a with
field measurements for the six major vegetation classes. Altogether 44 field data values were used
(Table B2 of Appendix B in Ganguly et al. 2008b). Panel c shows comparison between GEOV1
(GEO_V01 on y-axis) LAI product and ground measurements (DIRECT on x-axis). All ground
measurements for the period January, 1999 till August, 2012 are used. Panel d shows a similar
comparison as in c but with MODIS Collection 5 LAI product. Reprinted from Remote Sensing
of Environment, 112, Ganguly, S., Samanta, A., Schull, M. A., Shabanov, N. V., Milesi, C.,
Nemani, R. R., Knyazikhin, Y., Myneni, R.B., Generating vegetation leaf area index Earth system
data record from multiple sensors. Part 2: Implementation, analysis and validation, 4318–4332,
Copyright (2008), with permission from Elsevier
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(b) Continued validation of coarse-to-high resolution LAI/FPAR products with
available and future acquisitions of field measurements in enhancing the
accuracy of the satellite-derived products. Field measurements that provide
synoptic knowledge about biome-specific spectral characteristics, will be an
integral part of product assessment efforts that feed into algorithm refinement.

(c) Utilization of high-resolution LAI products for estimating above ground bio-
mass and Net Primary Productivity (NPP) estimates. Current algorithms in
fusing Landsat derived LAI and canopy height estimates from the ICESat
GLAS instrument have shown significant potential in estimating biomass over
forested regions.

(d) Enhancing the MODIS experience to Landsat LAI/FPAR products to monitor
long-term changes and trends in land surface characteristics due to climatic
variability and human-induced changes.
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Chapter 3
Remote Sensing of Forest Biomass

Xiaoyang Zhang and Wenge Ni-meister

Abstract Forest biomass reflects sequestration or release of carbon between ter-
restrial ecosystems and the atmosphere. Measuring the size and complexity of
forest biomass over large areas can enable us to better understand the environ-
mental processes, availability of renewable energy, and global carbon cycle. This
chapter reviews recent progress in measuring forest biomass from remote sensing.
In quantifying forest biomass, forest properties are often characterized from three
types of remote sensing data. Passive optical spectral reflectances are sensitive to
vegetation structure (leaf area index, crown size and tree density), texture and
shadow. Radar data measure dielectric and geometrical properties of forests. Lidar
data characterize vegetation vertical structure and height. Because these instru-
ments have their advantages and disadvantages in reflecting forest properties, data
fusion techniques can combine data from multiple sensors and related information
from associated databases to achieve improved accuracy in biomass estimation.
The remote sensing data or derived forest attributes are commonly correlated to
forest biomass using empirical regression models, non-parametric methods, and
physically-based allometric models. Although forest biomass is widely estimated
at various scales from remote sensing data, models tend to underestimate large
biomass densities and overestimate small ones because of saturation issues.
Finally, the assessment and validation of forest biomass obtained from remote
sensing is critical because current biomass estimates at large area are of large
uncertainties.
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3.1 Introduction

Biomass is defined as the mass per unit area of live or dead plant organic matter.
Forest ecosystem covers about a third of the Earth’s land surface, and it stores about
80 % of all above-ground and 40 % of all below-ground terrestrial organic carbon
(IPCC 2001). Forest significantly affects the exchange of gases and energy between
the atmosphere and the surface, through photosynthesis and the production of woody
plant matter. During productive seasons, forests take up carbon dioxide (CO2) from
the atmosphere and store as plant biomass (Losi et al. 2003; Phat et al. 2004), while
they release CO2 to atmosphere during deforestation, decomposition, and biomass
burning (Chambers et al. 2000; Van der Werf et al. 2010; Zhang et al. 2012). Changes
of forest biomass in time can be used as an essential climate variable, because it is a
direct measure of sequestration or release of carbon between terrestrial ecosystems
and the atmosphere. Measuring the size and complexity of forest biomass over large
areas would enable scientists to better understand the environmental processes,
availability of renewable energy, and global carbon cycle.

Forest biomass consists of above-ground biomass (AGB) and below-ground
biomass. AGB represents all living biomass above the soil including stem, stump,
branches, bark, seeds, and foliage, while below-ground biomass consists of all
living roots excluding fine roots (less than 2 mm in diameter) (FAO 2004).
Because it is relatively easy to measure and it accounts for the majority of the total
accumulated biomass in forest ecosystem, AGB is usually estimated in many
studies to refer as to forest biomass (Aboal et al. 2005; Brown 1997; Kraenzel
et al. 2003; Laclau 2003; Losi et al. 2003; Segura and Kanninen 2005).

Forest biomass has been traditionally estimated at field plot scales (usually less
than one acre). To calculate tree biomass, a large number of studies have focused
on the development of species and site specific allometric models depending on
bole diameter at breast height (e.g., Paster et al. 1984; Ter-Mikaelian and Korzukin
1997). The plot estimates of national forest inventories are commonly aggregated
to represent forest biomass at national or regional scales (Brown et al. 1999;
Jenkins et al. 2001).

Recently, remote sensing has been extensively used as a robust tool in deriving
forest structure and AGB because it provides a practical means of acquiring spa-
tially-distributed forest biomass from local, continental, to global areas (Dobson
2000; Saatchi et al. 2007a, b; Houghton et al. 2007; Baccini et al. 2004; Blackard
et al. 2008; Zhang and Kondragunta 2006; Zheng et al. 2004; Lu 2006; Le Toan et al.
2011). Three types of remote sensing data are often used, which are passive optical
remote sensing, radar (radio detection and ranging, microwave) data, and lidar (light
detection and ranging) data. Optical spectral reflectances are sensitive to vegetation
structure (leaf area index, crown size and tree density), texture and shadow, which
are strongly correlated with AGB. Radar data are related to AGB through measuring
dielectric and geometrical properties of forests (Le Toan et al. 2011). Lidar remote
sensing is promising in characterizing vegetation vertical structure and height which
are then associated to ABG (Lefsky et al. 2005; Drake et al. 2002).
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3.2 General Principles

Remote sensing measures the amount of radiation energy in the electromagnetic
spectrum that is emitted or reflected by the object or surrounding area being
observed. Passive optical remote sensing is particularly sensitive to forest foliage
which provides a synoptic view of the area of interest that enables the estimation
of biomass values over a large area. Satellite observations represent the top-
of-atmosphere (TOA) radiance which is a combination of top-of-canopy (TOC)
and atmospheric radiance. TOC reflectance reflects forest properties, particularly,
leaf area index (Jarvis and Leverenz 1983), which can be retrieved using vege-
tation radiative transfer models from satellite data by minimizing atmospheric
effects. Canopy green leaves scatter strongly solar radiation in both near-infrared
wavelength (0.7–1.3 lm) with a value of about 40–50 % of incident light and
green wavelength while the leaves absorb radiation in blue and red wavelengths by
chlorophyll and foliage water (Hofer 1978; Ripple 1986). The radiation measured
in spectral bands helps us to distinguish the forest properties. A combination of
two or more spectral bands produces a vegetation index (VI), which can be cal-
culated by rationing, differencing, rationing differences, and linear combinations of
spectral bands. Vegetation index generally enhances vegetation signal while it
minimizes the influences from solar irradiance, solar angle, sensor view angle,
atmospheric and soil background effects.

Spectral reflectance and vegetation index characterize forest properties and
forest biomass. Biomass is basically calculated using the density of unit biomass
and the area of forest growth. The unit biomass of AGB (foliage, branch, and stem)
can be estimated from optical remote sensing in two different ways. First, forest
biomass is generally estimated using models that are statistically established in a
relationship between spectral responses and field samples of biomass measure-
ments. The models are generated using either regression analyses or non-parametric
imputation approaches. The model parameters or coefficients are affected by
various factors that include the atmosphere, sun angle, satellite view angle,
phenological state of vegetation growth at the time of image acquisition, topog-
raphy, and imperfections in radiometric calibration and geo-metric registration.
Second, forest biomass is calculated using satellite-based allometric models. Such
models are physically meaningful because biomass is associated with forest com-
ponents (attributes) which include leaf area index (LAI) and canopy structure
(crown closure and height). These components can be directly estimated from
optical remotely sensed data.

Radar wavelengths range from less than 1 mm to 1 m. They are sensitive to
dielectric and geometrical properties of forests, and are thus more closely related to
measurements of AGB than optical data, which mainly respond to chemical
properties of the vegetation constituents. Theory and observations show that the
radar backscattering coefficient (i.e. the normalized backscattered power) varies
with increasing forest biomass for lower levels of biomass, but saturates (remains
approximately constant) for higher levels.
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Light Detection And Ranging (Lidar) use laser ranging to measure the distance
between a sensor and target based on half the elapsed time between the emission of a
pulse and the detection of a reflected return. Lidar is an active optical remote sensing
technology and has been used to measure three dimension vegetation structure.

Lidar systems are classified as small footprint lidar (laser footprint less than
1 m scale) and large footprint lidar (laser footprint 10 m or greater) based on the
size of laser footprint or profiling lidar (recording only along a narrow ling at nadir
along the flight path) versus scanning lidar (recording across a wide swath along
the flight path) systems or discrete return and full waveform recording (Dubayah
and Drake 2000; Lefsky et al. 2002; Lim et al. 2003). Discrete return systems
record single or multiple returns from a given laser pulse. As the laser signal is
reflected back to the sensor, large peaks (i.e., bright returns) represent discrete
objects in the path of the laser beam and are recorded as discrete points. Most
small footprint lidar systems record discrete energy returns. In contrast, full
waveform recording lidar systems digitize the entire reflected energy from a
return, resulting in complete sub-meter vertical vegetation profiles. The waveform
is a function of canopy height and vertical distribution of foliage, as it is made up
of the reflected energy from the surface area of canopy components such as
foliage, trunks, twigs, and branches, at varying heights within the large footprint.
The total waveform is therefore a measure of both the vertical distribution of
vegetation surface area and the distribution of the underlying ground height.
Waveform recording instruments are mainly large footprint lidar systems; how-
ever, recent advances have seen full waveform instruments with increasingly
smaller footprint sizes (Wagner et al. 2006, 2008).

Lidar measures the three-dimensional distribution of plant canopies. The
measured canopy structure parameters include vegetation height, cover, and
canopy structure. Canopy height is calculated as the distance between the first
significant return above threshold and the ground. Canopy cover, the fraction of
background obscured by vertically projected foliage and woody area above a
certain height, is calculated using the cumulative laser returns from the canopy to
that height divided by the total returns from the canopy and the ground. Canopy
height profile (CHP) quantitatively represents the relative vertical distribution of
canopy surface area. All the lidar measured vegetation structure parameters are
closely related to field measurements and are then used to derive AGB estimates.

3.3 Approaches

3.3.1 Field Samples

In situ data of forest biomass are inevitable in biomass estimates. These data serve
as a tool to establish biomass predictive models from remote sensing, to evaluate
the developed models, and to validate the accuracy of biomass calculations. In situ
data can be obtained using a destructive method for a single tree or on an area
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(plot) basis (Brown et al. 1989; Brown and Iverson 1992; Brown and Lugo 1992;
Gillespie et al. 1992). This method entails harvesting plants, drying them, and then
weighing the biomass. The destructive measurement is most accurate but it is very
expensive and time consuming.

A non-destructive method is first to measure tree variables, such as canopy
crown size, crown depth, tree height, and stem diameter. These components on
randomly selected sample trees are then converted to tree biomass using allometric
models (Brown et al. 1989; Brown and Iverson 1992; Brown and Lugo 1992;
Gillespie et al. 1992; Paster et al. 1984; Ter-Mikaelian and Korzukin 1997).
The allomatric models are developed in various forms for biomass estimates (e.g.,
Ter-Mikaelian and Korzukin 1997; Paster et al. 1984), but the simplest and most
commonly used model is:

AGB ¼ aDc ð3:1Þ

where AGB is above-ground biomass (kg), D is the diameter of tree at breast height
(DBH) (m), a and c are coefficients.

Field data of biomass are commonly measured based on sample plots designed
for a specified study. Such field data can be aggregated to generate National Forest
Inventories (NFI) (Brown et al. 1999; Jenkins et al. 2001; Chojnacky et al. 2004).
The NFI dataset currently contains the most accurate biomass estimates in various
countries, such as in Finland and Sweden (Tomppo 1991; Reese et al. 2003),
Norway (Gjersten 2005), Austria (Koukal et al. 2005), New Zealand (Tomppo
et al. 1999), China (Tomppo et al. 2001), Germany (Diemer et al. 2000), Italy
(Maselli et al. 2005), and the United States (Franco-Lopez et al. 2001; McRoberts
2006; McRoberts et al. 2002, 2007). However, it is challenging to extrapolate plot
estimates to unit ground area of high-quality geo-referenced ground-truth (Gibbs
et al. 2007; Goetz et al. 2009).

3.3.2 Forest Biomass from Passive Optical Remote Sensing

Forest biomass is a function of remote sensing metrics that are closely related to
vegetation function (leaf area, volume, photosynthetic activity) and horizontal
structure (crown cover). Particularly, forest biomass is estimated using spectral
reflectance and vegetation indices from various satellite instruments of passive
optical remote sensing. Both empirical regression techniques (Hall et al. 2006;
Jakubauskas and Price 1997; Lefsky et al. 2001; Rahman et al. 2008; Zheng et al.
2004; Labrecque et al. 2006; Powell et al. 2010) and nonlinear nonparametric
approaches (Baccini et al. 2004; Fraser and Li 2002) are developed to estimate
forest biomass following the basic strategy as presented in Fig. 3.1. In contrast,
satellite-based allometric models calculate forest biomass using forest attributes
derived from satellite data, which is described in Fig. 3.2 (Zhang and Kondragunta
2006; Soenen et al. 2010).
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Fig. 3.1 Flowchart of forest biomass estimates from satellite data using empirical models
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Fig. 3.2 Flowchart of forest biomass estimates from satellite data using physically-based models
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3.3.2.1 Satellite-Derived Variables for Biomass Estimates

Several passive optical satellite instruments are available for determining the
spatial coverage of biomass. NOAA Advanced Very High Resolution Radiometer
(VAHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data at a
spatial resolution from 250 m to 1,000 m are frequently used to produce biomass
estimates at long term and global scales (Dong et al. 2003; Baccini et al. 2004,
2008; Zhang and Kondragunta 2006). Landsat Thematic Mapper (TM), Enhanced
Thematic Mapper Plus (ETM+), and Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) with a spatial resolution of 30 m are the most
frequently used data to quantify biomass at local and regional scales (e.g., Fazakas
et al. 1999; Häme et al. 1997; Krankina et al. 2004; Tomppo et al. 2002; Turner
et al. 2004; Muukkonen and Heiskanen 2005). Local tree biomass is usually cal-
culated from high-resolution satellite imagery (HRSI) on QuickBird and IKONOS
(Leboeuf et al. 2007; Gonzalez, et al. 2010; Palace et al. 2008). The IKONOS has a
spatial resolution of 3.2 m in multispectral and 0.82 m in panchromatic at nadir
while QuickBird has a resolution of 2.44 and 0.61 m, separately.

Spectral reflectances of optical remote sensing are the simplest variables in bio-
mass estimates. Spectral bands from visible to short-wave infrared wavelength are all
applicable in biomass investigation although the band wavelength varies slightly in
various satellite instruments (Table 3.1). Moreover, both IKONOS and QuickBird
capture panchromatic, blue, green, red, and near infrared reflectances (NIR).

Vegetation index is particularly useful in biomass observations because it
enhances green vegetation signals and minimizes the impacts from surface and
atmospheric effects (Bausch 1993; Huete et al. 1985; Ben-Ze’ev et al. 2006;
Kaufman and Tanré 1992; Miura et al. 1998). Most frequently used VI is
Normalized Difference Vegetation Index (NDVI) because green vegetation has
high NIR but low red reflectance. The tasseled cap (TC) transformation or

Table 3.1 Satellite spectral bands (nm) and spatial resolution of optical remote sensing

ETM+ MODIS SPOT ASTER AVHRR

450–520
(30 m)

450–520
(500 m)

Blue (qB)

530–610
(30 m)

530–610
(500 m)

500–590
(20 m)

520–600
(15 m)

Green (qG)

630–690
(30 m)

630–690
(250 m)

610–680
(20 m)

630–690
(15 m)

0.58–0.68
(1.1 km)

Red (qR)

780–900
(30 m)

780–900
(250 m)

790–890
(20 m)

760–860
(15 m)

0.72–1.0
(1.1 km)

Near Infrared
(qNIR)

1,230–1,250
(500 m)

Near Infrared
(qNIR2)

1,550–1,750
(30 m)

1,550–1,750
(500 m)

1,580–1,750
(20 m)

1,600–1,700
(30 m)

1.58–1.64
(1.1 km)

Short-wave Infrared
(qSWIR1)

2,090–2,350
(30 m)

2,090–2,350
(500 m)

Short-wave Infrared
(qSWIR2)
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Principal Component Analysis (PCA) is another widely applicable tool because it
compresses spectral data into a few bands associated with physical scene char-
acteristics (Crist and Cicone 1984). It produces three important variables that are
brightness index (TCb), greenness index (TCg) and wetness index (TCw). How-
ever, the TC coefficients are sensor-dependent, so that the coefficients have been
developed for Landsat TM (Crist and Cicone 1984), Landsat ETM/ETM+ (Huang
et al. 2002), MODIS data (Zhang et al. 2002), and IKONOS (Horne 2003), sep-
arately. Furthermore, the spatial texture of spectral bands, which is a characteristic
for identifying objects or regions of interest in an image, is also used to enhance
biomass estimates (Sarker and Nichol 2011). Although there are numerous veg-
etation indices developed (e.g., Foody et al. 2003; Heiskanen 2006a, b), Table 3.2
lists several commonly used vegetation indices for biomass estimates.

Alternatively, tree canopy attributes are derived from optical satellite data and
are considered to be effective proxies of AGB. Tree components are physically
correlated in allometric functions (Nelson et al. 1999; Phua and Saito 2003;
Popescu et al. 2003), so that several canopy variables that are retrieved from
satellites are frequently applied to estimate forest biomass.

(1) LAI is one half the total green leaf area per unit ground surface area and is
expressed in terms of square meters of leaf (half surface area) per square meter
of ground. This biophysical parameter can be related to photosynthesis,
evaporation and transpiration, rainfall interception, and carbon flux. LAI can
be estimated from spectral vegetation index using either various regression
models (e.g., Heiskanen 2006a, b) or radiative transfer (RT) algorithm
(Myneni et al. 1997; Knyazikhin et al. 1998; Myneni et al. 2002). The latter
simulates the surface reflectances (bidirectional reflectance factors) as a
function of biome type, view/illumination geometry, LAI/FPAR, canopy
structure, leaf optical properties, and soil patterns. The final LAI estimate is
the average of all acceptable solutions within specified uncertainties from the
algorithm outputs which are retrieved from all canopy and soil patterns
(Myneni et al. 2002).

(2) Canopy structure, such as tree crown size (area), height, and density, is
effective parameters in calculating foliage biomass and total standing biomass
(Franklin and Hiernaux 1991; Wu and Strahler 1994; Soenen et al. 2010). The
crown size and density in each satellite pixel can be estimated using
Li–Strahler geometric-optical (GO) canopy reflectance model (Li and Strahler
1985, 1986). The Li-Strahler model is a three-dimensional model in describing
individual plant canopies, which characterizes the variation in reflectance due
to different vegetation properties, illumination (solar) and view (sensor)
angles. This model treats vegetation cover as a collection of discrete objects
and the reflectance from vegetation cover is modeled as a function of the
pattern of plants, shadows, and soil visible from a given viewing position.
The GO model has been used to derived meaningful canopy structural
parameters from multiangle data (Zeng and Schaepman 2009; Chopping et al.
2008, 2009, 2012; Wang et al. 2011; and Laurent et al 2011). Using data from
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NASA’s Multi-angle Imaging SpectroRadiometer (MISR), GO model
retrieved distributions of crown cover and mean canopy height for forested
areas in New Mexico and Arizona (Chopping et al. 2008), which showed good
matches with data from US Forest Service (USFS) Interior West (FS-IW)
maps, with R2 values of 0.78 and 0.69, and absolute mean errors of 0.10 and
2.2 m respectively.
Moreover, forest canopy structure can also be derived from multiangle
reflectance data using empirical methods and physical or semi-empirical
models (Nolin 2004; Chopping et al. 2012). Specifically, a neural network was
used to derive canopy height estimates (R2 = *0.9) from the Airborne MISR
(AirMISR) after trained by height data from the NASA Laser Vegetation
Imaging Sensor (LVIS, a waveform lidar) (Kimes et al. 2006), and from MISR
data at 275 m and 1.1 km resolutions after trained and assessed by high-
resolution biotope inventory data, where the tree cover estimates had a RMSE
of 6.5 % (relative RMSE 56.1 %) at 275 m resolution and of 4.1 % (36.9 %)
at 1.1 km resolution, and the tree height estimates had a RMSE of 2.0 m
(37.6 %) and 1.3 m (25.4 %), respectively (Heiskanen 2006a, b). Moreover,
the multivariate linear regression models were developed to estimate LVIS
height measures from 28 AirMISR multi-angle spectral reflectances and from
the spectrally invariant escape probability at 7 AirMISR view angles (Schull
et al. 2007).

(3) Tree shadow fraction (SF) is defined as the sum of individual tree shadow (TS)
areas divided by a ground reference area. Individual TS is composed of both
shadowed crown and crown shadow cast on the ground (Li and Strahler 1985).
Although it is not a physical attribute of forests, the SF is a suitable variable
for estimating forest biomass, LAI, and chlorophyll concentration (Greenberg
et al. 2005; Peddle et al. 2001). Besides using canopy reflectance model, SF
can also be inferred from medium resolution spectral images (e.g. ETM/
ETM+) using spectral unmixing models (Hall et al. 1995; Peddle et al. 1995;
Peddle and Johnson 2000). For the HRSI data, TS in a given local or plot area
can be calculated by applying a threshold to the digital values of individual
pixels (Leboeuf et al. 2007).

3.3.2.2 Simple Models of Biomass Estimates

Forest biomass models in a local area can be produced by comparing single
vegetation index or spectral reflectance with samples of field biomass measure-
ments (Roy and Ravan 1996; Calvao and Palmeririm 2004; Salvador and pons
1998; Steininger 2000; Heiskanen 2006a, b). The frequently used empirical model
format is:

Y ¼ aþ bX þ e ð3:2Þ
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where Y is forest biomass, a and b are regression coefficients, X is a independent
parameter including a vegetation index, spectral reflectance, or satellite-based
forest attribute, and e is the residual.

The variables of either X or Y in this simple format of model could be a
logarithm transformation value. In this way, the non-linear correlation between
biomass and satellite-derived variables are easily established. The model coeffi-
cients (a and b) are commonly determined using the ordinary least-squares (OLS)
approach with the assumption that the independent variable is accurately
measured. The regression slope from OLS will be biased if spectral bands and
vegetation indices are measured with errors. Alternatively, the Reduced Major
Axis (RMA) regression, an orthogonal regression technique that minimizes error
in both the X and Y directions (Larsson 1993), is believed to be more appropriate
at modeling forest biomass (Powell et al. 2010).

Either vegetation index or spectral reflectance has been correlated to AGB in
numerous simple linear equations in a local region (Foody et al. 2003; Lu et al.
2004; Rhaman et al. 2005; Roy and Ravan 1996; Heiskanen 2006a, b). The model
significance varies greatly with the type of spectral variables and local environ-
ment conditions (Foody et al. 2003; Lu 2006). Indeed, spectral biomass models
developed using shortwave infrared bands are more reliable as compared to the
visible bands which are more sensitive to atmospheric changes (Roy and Ravan
1996). Vegetation indices involving the red spectral band correlates poorly to
forest biomass in Brazilian but strongly in Malaysia (Lu et al. 2004). AGB in
Canadian forests has no relation to red, NIR, and SWIR reflectance (R2 = 0.01,
0.05, and 0.09, respectively) or to the NDVI (R2 = 0.03) and it is also weakly
associated with the SWVI (short-wave vegetation index) computed from the NIR
and SWIR (short-wave infrared) channels (R2 = 0.25) (Fraser and Li 2002).
Simple band ratios produce higher correlation with AGB than complex vegetation
indices do (Lu et al. 2004). TC brightness and wetness parameters show very
strong relationship with the biomass values (Roy and Ravan 1996).

SF from QuickBird HRSI linearly correlates to tree biomass and is able to
produce a biomass map effectively in a high spatial resolution (Leboeuf et al.
2007) while the RMSE varies from 11 to 18 Mg/ha and bias from 2 to 5 Mg/ha in
different test sites. In contrast, SF from IKONOS is related to biomass in a log-
arithmic form and exhibits a saturation level in large biomass values (Hall et al.
1995; Jasinski and Crago 1999). SF at sub-pixel of SPOT imagery from spectral
mixture modeling produces AGB at both deciduous and conifer plots with a RMSE
of 32.6 Mg/ha (Soenen et al. 2010).

LAI is also strongly correlated to AGB as demonstrated by regression equa-
tions. The linear relationships are generally significant in the deciduous forests in
the Western Ghats of Karnataka, India (R2 = 0.63) (Madugundu et al. 2008) and
the logarithmic relationship works well in low-density forests and savanna
woodlands during the dry season (R2 = 0.66) (Saatchi et al. 2007a, b).

3 Remote Sensing of Forest Biomass 73



Evidently, although strong relationships between a spectral variable and bio-
mass have been found in various studies, transferring those predictive relationships
to different regions remains problematic (Foody et al. 2003).

3.3.2.3 Multiple Regression Models

Biomass estimates can be improved by combining satellite raw spectral bands,
spectral vegetation indices, and biophysically-related variables (Hall et al. 2006;
Zheng et al. 2004). These variables are usually integrated in multiple regression
models to qualify AGB. The basic model format is:

Y ¼ b0 þ b1X1. . .biXi þ e ð3:3Þ

where Y is the forest biomass; Xi is the independent variable for the ith observation
assumed to be measured without error; b0, b1, bi are constant parameters of the
model that need to be determined; and e is the error term.

Multiple regression analysis is conducted in several ways. Multiple regression
from OLS approach takes all variables into account even though variables them-
selves are significantly correlated and some variables may have little relationship
with biomass. Stepwise regression analysis selects the most significant variables
while eliminating less significant variables. Canonical correlation analysis (CCA)
enables multiple regression analysis in a simple linear context (Cohen et al. 2003),
maximizes the correlation between variables, and provides a set of weights for the
spectral bands that aligns them with the variation in the forest variables
(Heiskanen 2006a). Basically, multiple regression models assume that the inde-
pendent variables are uncorrelated and that a linear relationship exists between the
remotely sensed data and the biophysical property.

A large number of multiple regression models have been established for the
estimates of forest biomass (Table 3.3). Model variables vary greatly in various
case studies. It is not always apparent which sets of independent and uncorrelated
variables are optimal for a given research.

3.3.2.4 Non-Parametric Imputation Approaches

The non-parametric approach is a computing tool for general purposes. It performs
recursive partitioning of data sets, makes no assumptions regarding the distribution
and correlation of the input data, effectively solves complex non-linear relation-
ships between the response and predictor variables, and provides easily under-
standable output. Unlike both simple linear models and multiple regression
models, this approach can handle a large number of variables from satellite and
ancillary data.
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Neural network
Neural networks typically comprise a large number of simple processing units

linked by weighted connections according to a specified architecture. Such net-
works are typically massively parallel in nature and can learn by example and then
generalize (Foody et al. 2001). In the estimates of forest biomass, a variety of
neural networks have been used. In mapping the biomass of tropical forests in
north-eastern Borneo from Landsat TM data, Foody et al. (2001) found that the
multi-layer perception (MLP) performed better than both radial basis function
(RBF) and generalized regression neural networks (GRNN). Using SPOT data in
Canada, six artificial neural network models containing between 5 and 35 neurons
all predicted forest biomass in test set with an accuracy of 60 %, R2 = 0.80, and
RMS = 32 Mg/ha (Fraser and Li 2002).

k-Nearest Neighbor Algorithm
The k-nearest neighbor (k-NN) technique is a means to determine points that

are most similar or nearest in a covariate space (McRoberts et al. 2002, 2007;
Tomppo 1991; Tomppo and Halme, 2004). Given a set of n points, defined in real
d-dimensional space, and a query point q, the k-NN technique is simply to cal-
culate the minimum Euclidean distances for the n points to the query point
q (Finley and Mcroberts 2008). This technique is generic, which does not specify
both the similarity or distance metric and the number of nearest neighbor sampling
units on which predictions are based. The biomass estimate in point q is calculated
by a weighted value of the biomass value of the k nearest reference points, where
the weight is determined by spectral distance. Several methods have been pro-
posed in defining the d-dimensional space within which the nearest neighbor
search is executed (Finley and Mcroberts 2008). The methods include the
Euclidean distance or a weighted Euclidean distance (Franco-Lopez et al. 2001;
Reese et al. 2003), most similar neighbor (MSN) (Moeur and Stage 1995), and
gradient nearest neighbor (GNN) (Ohmann and Gregory 2002). The k-NN tech-
nique has been frequently applied to calculate forest attributes by combining
strategic inventory data, TM imagery, and other ancillary variables (Franco-Lopez
et al. 2001; Halme and Tomppo 2001; Katila and Tomppo 2001; McRoberts et al.
2007; Trotter et al. 1997; Fazakas et al. 1999; Ohmann and Gregory 2002; Pierce
et al. 2009). When mapping biomass from Landsat TM and inventory data in
Canada, k-NN method produces a RMSE of 59 Mg/ha compared with inventory
plots (Labrecque et al. 2006).

Regression tree model
Tree-based models, such as Random Forests (RF), establish a large number of

trees, in which different bootstrap samples of the data are used to estimate each
tree. RF constructs numerous small regression trees that vote on predictions and is
robust to over-fitting (Breiman 2001). Similar to other non-parametric approaches,
RF models are built up using training samples of biomass (such as Forest
Inventory data), satellite data, and other ancillary variables. The tree is composed
of a root node (comprised of all of the data), a set of internal nodes which are split
using a randomly selected sub-set of the predictor variables, and a set of terminal
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nodes (leaves). The splitting procedure stops either when the variability within a
node is considered sufficiently low (based on the deviance within the node) or
when a prescribed minimum number of cases is reached.

A regression tree approach has been widely used in biomass estimates from
time series MODIS data at large scales. Baccini et al. (2004) generated tree-based
models using MODIS Nadir BRDF (Bidirectional Reflectance Distribution
Function) Adjusted Reflectance (NBAR), climate, and topographic variables in
California. The model produced forest biomass in 1 km pixels with an RMSE of
44.4 Mg/ha. Similarly, time series of MODIS NBAR was employed to establish
regression tree models to predict AGB in Africa (Baccini et al. 2008), which
revealed that the model explained 82 % of the variance in AGB ranging from
0 to 545 Mg/ha, with a RMSE of 50.5 Mg/ha. Houghton et al. (2007) applied
bootstrapped regression trees to develop associations between mean MODIS
reflectance and biomass in Russia. After creating 500 regression trees using
different random samples of the data at 500 m resolution, forest biomass was
calculated with an error of *40 %.

The regression tree approach was also applied to calculate AGB at a spatial
resolution of 250 m across conterminous United States (CONUS) (Blackard et al.
2008). The variables used in the model were MODIS-derived land cover, Landsat-
derived National Land Cover Dataset (NLCD), topographic variables, monthly and
annual climate parameters, and time series of MODIS land surface reflectance and
vegetation index. The estimated biomass shows that pixel-based error ranges from
42 to 163 Mg/h and relative error from 0.51 to 0.92 in different regions where the
western regions had substantially better results than the eastern regions.

Powell et al. (2010) established RF models using a set of variables that were
Landsat TM Tasseled Cap indices, spectral indices, topographic variables, and
climate variables. The model was served to calculate biomass in Arizona and
Minnesota with a RMSE of 32 and 39 Mg/ha, respectively. A comparison indi-
cates that the RF model consistently yields smaller RMSE than both multiple
regression models and a k-NN algorithm (Gradient Nearest Neighbor) do while RF
model produces relatively larger variance.

3.3.2.5 Satellite-Based Generalized Allometric Models

Generalized allometric model is a physically-based approach in forest biomass
determinations. Although the tree allometric models are generally species-specific
and site-specific, they are also generalized to estimate biomass in mixed species
across large regions (e.g., Jenkins et al. 2003; Wirth et al. 2004).

Foliage-based generalized allometric model can link remotely sensed data to
forest biomass over a continental scale (Zhang and Kondragunta 2006). Unlike
DBH, canopy leaf properties are sensitively reflected in passive optical remote
sensing and are widely measured from optical satellite data. Thus, a foliage-based
allometric model has been developed (Zhang and Kondragunta 2006):
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AGB ¼ dMc
f ð3:4Þ

where Mf is foliage biomass, c and d are coefficients.
The foliage-based generalized allometric model was applied to estimate forest

biomass over North America after coefficients c and d were determined using a set
of simulated samples (Fig. 3.3, Zhang and Kondragunta 2006). The biomass
samples were derived for broadleaf forests and needleleaf forests, respectively,
using the existing diameter-based models in literature (e.g., Gholz et al. 1979;
Ter-Mikaelian and Korzukin 1997). Foliage biomass was functionally associated
with maximum forest LAI and specific leaf area (SLA) (Zhang and Kondragunta
2006). In the processing, the maximum monthly forest LAI derived from MODIS
LAI products at a spatial resolution of 1 km (Myneni et al. 2002) was unmixed for
needleleaf trees, broadleaf trees, and mixed trees, respectively. Comparison of
AGB indicates that estimates from MODIS data and allometric models match the
average of Forest Inventory and Analysis (FIA) values at a state level with a
RMSE of 21 Mg/ha in eastern US and at a pixel level with a RMSE of 46 Mg/ha in
California (Zhang and Kondragunta 2006).

An alternative satellite-based biomass allometric model is established using tree
crown surface area (SA) which is a function of horizontal crown radius (r) and
vertical crown radius (b). The general allometric models are generated using field
measurements for conifer and deciduous trees, separately, using linear least

Fig. 3.3 AGB (tons/ha) derived from MODIS land data (1 km) and foliage-based generalized
allometric models (from Zhang and Kondragunta 2006)
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squares regression. After derived from a geometric-optical canopy reflectance
model (Soenen et al. 2010; Chopping et al. 2011), SA is applied to calculate
biomass based on general allometric relationships in a large regional area. This
approach has been demonstrated to successfully calculate biomass in Canada using
10 m multispectral SPOT data with a plot-based accuracy of 31.7 Mg/ha, which is
superior to empirical methods (NDVI and shadow fraction) (Soenen et al. 2010).
Similarly, the canopy structure parameters have also been retrieved from MODIS
and MISR data for biomass calculation (Chopping et al. 2011).

The satellite-based generalized allometric model has advantages over others
although the model construction requires a set of spatially representative samples
acquired from field plots. Once the parameters of canopy properties are derived
from satellite data, the model could be applied to calculate forest biomass in a
broad area without regeneration and calibration of models. As a result, the biomass
can be easily updated interannually. Moreover, this approach does not require
geo-referenced plots to match satellite-derived parameters. This avoids the model
errors caused by matching samples between field measurements and satellite
pixels.

3.3.3 Forest Biomass from Radar

Radar data physically measure biomass through the interaction of the radar waves
with tree scattering elements. The widely used active radar data are from space-
borne synthetic aperture radar (SAR) sensors, such as the L-band ALOS PALSAR,
the C-band ERS/SAR, RADARSAT/SAR or ENVISAT/ASAR and the X-band
TerraSAR-X instruments, which transmit microwave energy at wavelengths from
3.0 (X-band) to 23.6 cm (L-band). The proposed ESAEarth Explorer Mission
BIOMASS is the prime candidate to be the first P-band SAR satellite (Le Toan
et al. 2011). The major advantage of all SAR systems is their weather- and day-
light-independency.

The ability of radar sensors to measure biomass mainly depends on how deep
the radar signals can penetrate into the canopy. The longer the wavelength is, the
deeper the penetration is. The L- and P-band backscatter, particularly single
polarization HV (horizontal transmit and vertical receive) and HH (horizontal
transmit and horizontal receive) polarized backscatter, is strongly dependent on
biomass amount (e.g., Le Toan et al. 1992; Ranson and Sun 1994; Imhoff 1995;
Saatchi et al. 2007a, b). P-band backscatter shows stronger dependence on biomass
than L-band backscatter. The radar backscatter increases approximately linearly
with increasing biomass until it is saturated at a certain biomass level that varies
with the radar wavelength (Dobson et al. 1992). The biomass level for backscatter
saturation is about 200 Mg/ha at P-band, 100 Mg/ha at L-band, and 30–50 Mg/ha
at X- and C-bands (Le Toan et al. 2011).

The observed relationship between radar backscatter and biomass can be
physically illustrated using electromagnetic scattering models (Ulaby et al. 1990;
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Sun and Ranson 1995). HV backscatter is dominated by volume scattering from
the woody elements in the trees, so that HV is strongly related to AGB. For the HH
and VV polarisations, ground conditions can affect the biomass-backscatter rela-
tionship, because HH backscatter comes mainly from trunk-ground scattering
while VV backscatter results from both volume and ground scattering.

Forest biomass can be retrieved from radar data using regression models and
inversion models. Ranson and Sun (1994, 2000) and Saatchi et al. (2007a, b) used
nonlinear regression models to estimate AGB from polarimetric or dual-polarimetic
measurements (e.g., HV and HH) by simplifying the complex modeling formula-
tion. At L-band frequency, the regression method can estimate AGB with a 20 %
precision up to 200 Mg/ha in boreal and temperate forests and 150 Mg/ha over
tropical forests (Saatchi et al. 2007a, b).

The inversion of scattering physical models is often categorized as either
random-media or structure-based methods. The random-media approach models
the canopy as layers of homogeneous random media (Treuhaft et al. 1996;
Treuhaft and Siqueira 2000). However, the structure-based method ‘‘grows’’
realizations of high fidelity, naturally-varying tree structures, and then examines
the scattering from a sample of trees to determine canopy scattering properties
(Sun and Ranson 1995). In a three-dimensional forest backscatter model, a ray
tracing method calculates backscattering components from crowns, trunk, and
ground, and scattering between crowns and back-ground, and between trunk and
ground (Sun and Ranson 1995).

Because the sensitivity of the backscattering coefficient to biomass decreases at
high levels of biomass, inversion methods based solely on intensity are insufficient
to cover the full range of the world’s biomass. To overcome this problem,
polarimetric interferometry is used to derive height of vegetation phase scattering
center, which is closely related to vegetation height characteristics. The interfer-
ometric coherence can be calculated using two images of a scene acquired at
different times (for a repeat pass system) and with slightly different geometries,
which is decomposed into the noise decorrelation, the temporal coherence, and the
volume decorrelation. The latter is effectively correlated to vegetation height.
A major advantage of this approach is that both height and biomass measurements
are provided independently by the same radar sensor. In addition, the sensitivity of
Polarimetric SAR Interferometry (Pol-InSAR) to height increases with height (and
hence biomass), whereas the sensitivity of intensity to biomass decreases with
biomass, so that the two measurements complement each other when used jointly
in retrieval (Treuhaft and Siqueira 2000).

Application of the radar biomass estimation at continental or globe scale is best
at 1.0 ha scale (100 9 100 m pixel size). At this scale, the distribution of AGB
over the landscape is both stationary and normal, so that the radar resolution is
large enough to reduce the speckle noise and the geolocation error between radar
pixel and the plot location. Errors associated with the biomass estimation from
radar backscatter or height measurements at this scale can be reduced to acceptable
levels (10–20 %) for mapping the aboveground biomass globally (Saatchi et al.
2011).
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3.3.4 Biomass from Lidar

Recently lidar data have become widely available to study the linkage between
lidar signals and vegetation structure characteristics. AGB is strongly related to
lidar measured tree height, ranging from boreal conifers to equatorial rain forests.
Lidar data are mainly from airborne discrete-return lidar (Lim and Treitz 2004;
Lim et al. 2003; Popescu 2007; García et al. 2010), airborne profiling lidar (e.g.,
Nelson et al. 1988), airborne waveform lidar (Drake et al. 2002; Lefsky et al.
1999a, b, c; Ni-Meister et al. 2010), satellite waveform lidar (Boudreau et al. 2008;
Nelson 2010; Lefsky et al. 2002, 2005), and ground-based lidar (Ni-Meister et al.
2010). Lidar is recognized as the state-of-the-art remote sensing technology for
mapping AGB because it is much less sensitive to the saturation problem, com-
pared to conventional optical remote sensing and radar data. In the following, we
summarize recent progress on lidar-based biomass mapping activities from small
footprint discrete return lidar and large footprint full waveform lidar.

3.3.4.1 Small Footprint Discrete Return Lidar

Small-footprint discrete multiple return lidar data has been collected in many small
regions of the globe. Such small footprint airborne lidar systems are available on a
commercial basis and are now operationally used for forest resource inventories
(Næsset and Gobakken 2008). With many ground lidar systems, complex and
detailed vegetation structure data have been recorded over various study sites.
These global, regional, and local lidar data can provide the detailed vegetation
structure and biomass maps necessary for carbon models and ecosystem processes
studies.

AGB has been successfully estimated using small footprint discrete lidar data
(Lim et al. 2003; Næsset 2004; Nelson et al. 1988; Popescu et al. 2007; García
et al. 2010). Tree height obtained from airborne lidar is a good predictor of
biomass for large area averages (Nelson et al. 2003, 2004), which can explain 88
and 85 % of the variability in aboveground and belowground biomass, respec-
tively, for 1,395 sample plots in the coniferous boreal zone of Norway (Næsset and
Gobakken 2008). Regardless of the type of lidar system used, however, estimation
of biomass is generally conducted based on regression equations relating vege-
tation biomass to lidar-derived variables across different scales from individual
tree to plot and stand scales.

At plot scale, field-measured biomass is regressed against derived statistics
from plot-level lidar data. The lidar statistics can be obtained from the individual
returns or from the height of canopy (also called canopy height model (CHM))
where lidar return values are interpolated to a certain size raster. This approach
adopts distributional metrics such as the mean canopy height and the standard
deviation of the canopy height derived from CHM or the raw returns. These
metrics are then used in conjunction with regression equations to predict forest
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properties (Nelson et al. 1988, 2004; Lim et al. 2003; Lim and Treitz 2004; and
García et al. 2010). However, lidar intensity or height combined with intensity data
provides better biomass estimate than height metrics alone (García et al. 2010;
Lim et al. 2003).

At individual tree level, biomass is estimated based on individual tree structure
parameters. The properties are located and measured using different tree seg-
mentation approaches (Popescu and Wynne 2003, 2004). Specifically, the
parameters, including tree height, crown width, and tree locations, are derived
from CHM using a local maximum filtering approach with a variable circular
window to locate individual trees. Crown width is estimated using polynomial
fitting on two perpendicular vertical profiles through each identified tree crown.
The crown base height for each lidar-derived tree is calculated with the lidar
voxel-based approach (Popescu and Zhao 2008).

3.3.4.2 Large Footprint Full Waveform Lidar

Large footprint full-waveform systems can accurately estimate AGB in various
forest types. The commonly used airborne lidar data over the past decade are
collected from the Scanning Lidar Imager of Canopies by Echo Recovery (SLI-
CER) with a *15 m footprint and the Laser Vegetation Imaging Sensor (LVIS)
with a *25 m footprint (Blair et al. 1999). These data have been successfully used
to retrieve AGB over various biomes across the US, which includes SLICER for
estimating AGB in Cascade Mountain Range in Oregon and Washington States
(Lefsky et al. 2005) and in Annapolis in Maryland (Lefsky et al. 1999a), and LVIS
for AGB in La Selva (Drake et al. 2002), White Mountain (Anderson et al. 2006;
Ni-Meister et al. 2010), Sierra Nevada in California (Hyde et al. 2005; Swatantran
et al., 2011), and Costa Rica (Drake et al. 2002, 2003). In most studies, stepwise
multiple regressions are adapted to predict ground-based measures of stand
structure from both conventional canopy structure indices (including mean and
maximum canopy surface height and canopy cover) and indices derived from CHP
(the height relative to the ground elevation, at which 100, 75, 50 and 25 %,
respectively, of the accumulated full waveform energy occurs) (Blair et al. 2004).

The spaceborne Geoscience Laser Altimeter System (GLAS), part of the Ice,
Cloud and land Elevation Satellite (ICESat) mission, provides global lidar data
with a variable diameter of *70 m footprint spaced at *170 m (Zwally et al.
2002; Harding et al. 2005; Lefsky et al. 2005). GLAS is a full waveform digitizing
lidar system that acquires information of topography and vertical vegetation
structure (Zwally et al. 2002; Harding and Carabajal 2005). The GLAS data have
been applied for estimating forest biomass on ground plots in tropical, temperate
and conifer forests (Boudreau et al. 2008; Lefsky et al. 2005, 2007; and Nelson
et al. 2009). One major limitation of current spaceborne lidar systems is the lack of
imaging capabilities, which only provides sparse sampling information on the
forest structure. To overcome this problem, it has been fused with other data to

82 X. Zhang and W. Ni-meister



map AGB at large scales. For example, Boudreau et al. (2008) and Nelson et al.
(2009) used a multiphase sampling approach to relate GLAS waveforms to air-
borne profiling lidar measurements which relate to field AGB estimates. Another
issue is that the lidar waveform mixes lidar energy returns from both vegetation
and underneath topography. The impact of underneath topography needs to be
removed using waveform shapes (Lefsky et al. 2005, 2007) and other physical
approaches (Yang et al. 2011).

3.3.5 Biomass from Multisensors

Data fusion techniques combine data from multiple sensors and related informa-
tion from associated databases to achieve improved accuracy. In essence, the
methods statistically combine or fuse information from multiple sensors to take
advantage of the highly detailed vertical measurements provided by lidar and the
broad scale mapping capabilities of horizontal and vertical structure afforded by
radar and passive optical remote sensing data.

The fusion methods can lie on employing an approach to stratify field plots with
lidar samples of AGB with environmental controls through a stratification or
regression approach for scaling up to regions outside of lidar coverage. Stratifi-
cation of a region is employed by vegetation type, topography and other envi-
ronmental datasets measured by passive optical and radar remote sensing data
(Saatchi et al. 2007a, b, 2011). These methods make it possible to map forest
structure and biomass at intermediate scales. Currently, data fusion methods of two
or more sensors are based primarily on empirical analyses (Hyde et al. 2007;
Walker et al. 2007) although it is suggested to develop physical-based models as a
needed advancement.

Most recently, a multisensor dataset has been used to produce a high-resolution
‘‘National Biomass and Carbon Dataset for the year 2000 (NBCD2000)’’
(Kellndorfer et al. 2010, 2013). This dataset includes baseline estimates of basal
area-weighted canopy height, aboveground live dry biomass, and standing carbon
stock for CONUS at a 30 m spatial resolution. The dataset was developed using an
empirical modeling approach that combines USFS FIA data with high-resolution
InSAR data acquired from the 2000 Shuttle Radar Topography Mission (SRTM) and
optical remote sensing data acquired from the Landsat ETM+ sensor. Both the USGS
National Land Cover Dataset 2001(landcover and canopy density) (NLCD 2001)
and the existing vegetation type from the LANDFIRE project as well as topographic
information from the USGS National Elevation Dataset (NED) were used as spatial
predictor layers for canopy height and biomass estimation. The USFS FIA canopy
height and biomass were used in model development and validation.

Multisensor data have also been applied to generate a ‘‘benchmark’’ map of
biomass carbon stocks over 2.5 billion ha of forests on three tropical continents
(Saatchi et al. 2007a, b, 2011). The map was developed through a combination of
data from inventory plots, samples of forest structure from ICESat GLAS in
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combination of optical and microwave imageries (1-km resolution) of leaf area
index, vegetation cover, vegetation types and topography. The uncertainty of
biomass estimate ranges from 6 to 53 % at the pixel level (100 ha) and 5 and 1 % at
the typical project (10,000 ha) and national ([1,000,000 ha) scales, respectively.

Moreover, a multisensory system has been developed to fully probe forest
structure, function and composition of ecosystems at the macroscale (Asner et al.
2012a). For example, the Carnegie Airborne Observatory (CAO) Airborne Tax-
onomic Mapping System (AToMS) was developed, which includes a high fidelity
visible-to-shortwave infrared (VSWIR) imaging spectrometer (280–2,510 nm),
dual-laser waveform lidar scanner, and high spatial resolution visible-to-near
infrared (VNIR) imaging spectrometer (365–1,052 nm). CAO-2 AToMS is a
newer version of CAO Alpha system (Asner et al. 2007), which can measure not
only high spatial resolution AGB (Asner et al. 2012b), but also ecosystem phys-
iology, biogeochemistry, species and biodiversity.

There are several other fusion studies in biomass estimates using empirical and
physical methods. Hudak et al. (2002) developed an empirical relationship
between VIR and lidar data based on kriging and cokriging, which concluded that
the spacing of the lidar data should be \250 m for accurate extrapolation. Kel-
lendorfer et al. (2004) extrapolated lidar heights by regressing with SRTM (In-
SAR), Landsat (tasseled-cap), and a canopy density layer, which resulted in a
RMSE of 3 meters. Hyde et al. (2007) and Nelson et al. (2007) developed linear
regression models to relate biomass with lidar height metrics, low frequency, low
wavelength (VHF), GOESAR (a dual-frequency, dual-polarimetic interferometric
airborne SAR instrument), and SAR data, which proved that lidar is most useful
for predicting forest biomass and radar adds little improvement in biomass esti-
mation. Slatton et al. (2001) used a physical modeling with Kalman Filter based
multiscale estimation to retrieve surface topography and vegetation height from
lidar and InSAR data, which demonstrated significant improvement of bare surface
topography and vegetation height estimates obtained from InSAR alone. Kimes
et al. (2006) studied fusion of lidar with multi-angle data using an optical model to
exploit both spectral information and tree structure.

3.4 Validation Efforts Using In-Situ Measurements

The assessment and validation of forest biomass obtained from remote sensing is a
critical but challenging task. This requires a large set of reliable in situ data or
other estimates of biomass. In-situ measurements are generally obtained using
either destructive method or species-specific allometric models in field plots as
described in Sect. 3.1. The plots should be designed in homogeneous areas located
with GPS (Sarker and Nichol 2011; Soenen et al. 2010; Heiskanen 2006a).
Because field measurements are time consuming and expensive, the plot size is
generally small (\30 m) and the plot number is limited. These types of data are
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applicable for matching with pixels of moderate-high resolution data, such as
HRSI and Landsat TM, at local regions.

In-situ data that are comparable with moderate resolution instrument (including
MODIS, AVHRR, MISR, and SPOT VGT) pixels are basically not available. As a
result, assessment instead of direct validation is implemented for continental
biomass estimates. Generally, biomass estimates from MODIS data are evaluated
using values estimated from lidar, panchromatic imagery of IKONOS and
QuickBird, Landsat TM data (Palace et al. 2008; Chopping 2010; Baccini et al.
2004; Zhang and Kondragunta 2006). To evaluate biomass estimates appropriately
at large scales, efforts are needed to upscale biomass measurements from plot (or
lidar measurements) to HRSI, Landsat TM and then to MODIS pixels.

Moreover, there are no standard approaches to validate biomass estimates from
satellites. The commonly used indices for validation/assessment of biomass are:
correlation of determination (R2), total biomass, mean biomass, root mean square
error (RMSE), relative RMSE, bias, and relative bias (Heiskanen 2006a;
Labrecque et al. 2006; Powell et al. 2010). High quality of biomass results dem-
onstrated from one index is not necessary to correspond to high quality based on
other indices. In a given area, therefore, high quality of biomass estimates needs to
be qualified by considering various indices described above.

3.5 Major Findings

Selecting an optimal method from numerous models and satellite instruments for
biomass calculations needs to follow several principles. Broadly, methods are
acceptable if they meet their objectives or design requirements. Simply speaking,
the reasonableness of the methods and the availability of data are the main prin-
ciples when selecting a method. All biomass models seek to simplify the com-
plexity of forest properties by selectively exaggerating the fundamental variables.
Several simple rules are suggested to estimate forest biomass from satellite data.
First, a simplest method that will provide acceptable accuracy should then be
adopted. Secondly, the assumptions and limitations of the method (model) should
always be remembered, and the degree of uncertainty associated with model
predictions should always be known. More complex variables used in a model are
clearly more versatile, but such method may also be difficult to use widely.
Because the presence or absence of available input data constraints the method
selection, the availability of data will determine which method may be selected.

Numerous regression modeling approaches have been proposed for empirical
estimation of aboveground biomass with satellite variables and biophysical data. A
regression model is commonly created by selecting samples in field biomass and
satellite variables from one single scene, such as Landsat data. The model is then
applied to the entire scene, which is expected to work well in the given condition
and satellite scene. However, it is impracticable to directly transfer the model
across biomes and the time periods of satellite data because spectral properties
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from satellites are strongly dependent on tree canopy phenology, forest types, and
local environmental conditions. As a result, each study region should design its
own models to match its own condition and to suit related satellite data, or to use
the same variables but different coefficients.

Among various regression models, it is difficult to conclude outright that one
model is superior to another. Model applicability is dependent upon the locations
that a model applied and the criteria (such as RMS, R2, variance, bias, and overall
accuracy) that a validation/assessment is used (Powell et al. 2010). The latter are
always inconsistent. Generally, the models including multiple variables produce
relatively better estimates than single variable, and vegetation index-based models
better than single band models. Because of the uncertainty in the samples and
model establishment, linear regression models are recommended since non-linear
models could not always enhance the reliability statistics (Heiskanen 2006a, b).
Because there is no widely acceptable satellite variables across a range of forest
conditions, efforts are needed on comparisons of possible models in practical
purpose in a given region.

The non-parametric approach is optimal and robust for biomass estimates using
large number of input variables. It can implement various datasets, such as annual
time series of MODIS data, radar data, lidar, and other climate parameters. The
level of precision of biomass map is strongly dependent on the details of training
samples (Labrecque et al. 2006). If the training samples represent a very detailed
and broad range of real biomass values, the resultant biomass could be highly
accurate. Like the spectral-based regression models (Labrecque et al. 2006), the
non-parameteric methods rely on image-specific relationships and the transfer-
ability of these relationships to other images is usually difficult. In other words,
sufficient field samples over a research area are required to train the non-parametric
models. Moreover, to implement the non-parametric methods effectively, it would
be important to conduct a feature selection to extract variables which are highly
sensitive to forest biomass.

Satellite-based allometric models based on forest structural variables are
applicable across biomes once the models are established. The challenge is to
retrieve forest canopy attributes appropriately from satellite data. From passive
optical satellite data, canopy reflectance models are promising in retrieving forest
structural parameters using little or no field data (Soenen et al. 2010). As a result,
the satellite-based generalized allometric models are particularly useful for the
regions where little field measurements are available (Zhang and Kondragunta
2006). Radar and lidar data have advantages in calculating forest structures for
allometric biomass models.

Different satellite instruments serve as a tool to estimate biomass in various
spatial resolution and coverage. Lidar data and high-resolution passive satellite
imagery, such as QuickBird and IKNOS data, are optimal for the generation of
forest inventory at an individual tree crown scale in local areas (Bauer et al. 1997;
Wu and Strahler 1994; Gougeon and Leckie 1999; Wulder et al. 2000; García et al.
2010). Optical data at a medium–high spatial resolution produce biomass
distributions in a spatial stratification of vegetation. Data such as 30 m Landsat
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TM/ETM+ data are most frequently used for calculating forest biomass in regional
areas.

MODIS data seem the best option for the investigation of forest biomass in
national and continental scales. Although the spatial resolution is relatively coarse
(250–1,000 m), time series of MODIS data contain forest phenological variation
which is an important variable in producing a trained model that generally rep-
resents forest properties well for biomass estimates. However, MODIS pixels are
generally a mixture of forests and non-forests, which affect the accuracy of results.
Indeed, models established from field plots of a single tree species are better than
those with multiple species (Eklundh et al. 2003) and most errors and unexplained
variation in the biomass models are from complex vegetation composition
(Heiskanen 2006a, b).

Using discrete small footprint lidar data, the individual tree-based approach
provides biomass estimates at different levels. This approach permits the estima-
tion of parameters at the tree level rather than at the plot or stand level. It has
advantages in highly fragmented forests. However the individual tree-based
approach may not be able to separate individual trees in dense forests.

Large footprint full waveform lidar data, based on statistical regression models,
can provide accurate estimates of AGB at plot and stand levels. This method
predicts field-measured AGB with a large variation of accuracies and uncertainties
with the correlation coefficients ranging from 0.65 to 0.96 and with RMSEs from 4
to 80 Mg/ha (Lefsky et al. 1999a, b, c, 2002; Drake et al. 2002, 2003; Nelson et al.
1988; Popescu et al. 2004; Lim et al. 2003; Lim and Treitz 2004; Ni-Meister et al.
2010). The large variations come from using different lidar systems, different lidar
sensed vegetation structure parameters, and different site conditions. In general,
the higher the lidar point cloud density is, the better the accuracy is. Using
combination of different height metrics achieves better accuracies than using
maximum canopy height as an AGB predictor. However it remains challenging to
accurately estimate biomass over dense deciduous forests at present.

Rader data have the advantage of weather- and daylight-independency. These
data are quite useful in the investigation of biomass in tropical forests where
cloud-free satellite data are rare. The current use of radar sensors to measure
biomass is limited mainly in low biomass regions and biomass change due to
deforestation using L- and P-band backscattering.

Finally, saturation is a common issue in biomass estimates using passive
optimal satellite and radar data. Because of the saturation of reflectance values,
models tend to underestimate large biomass densities and overestimate small ones
(Cohen et al. 2003; Blackard et al. 2008). The threshold of saturation varies with
satellite data. From MODIS data, aboveground biomass is slightly underestimated
for the areas where the biomass is larger than *300 Mg/ha in tropical Africa
(Baccini et al. 2008) and 250 Mg/ha and it is over-predicted biomass values below
45Mg/ha in California (Baccini et al. 2004; Zhang and Kondragunta 2006).
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3.6 Future Research Directions

The validation and accuracy analysis of satellite-derived forest biomass is one of
the most important and challenging tasks. The accurate estimation of forest
biomass is crucial for monitoring fuel wood availability, modeling global carbon
consequences, and managing forest change. Unfortunately, current biomass esti-
mates of regional area are widely inconsistent. For example, seven products in
Uganda produce total AGB estimates that range from 343 to 2,201 Tg and also
present different spatial distribution patterns (Avitabile et al. 2011). Thus, it is
necessary to generate a set of reliable true measures of biomass from various
ecosystems and plant species, which are sufficient to account for spatial hetero-
geneity and to represent forest types. It is recognized that reconciliation of the
ground and satellite-based biomass is extremely challenging and that in situ
datasets collected across ecosystems at spatial scales commensurate with moder-
ate-coarse resolution data are urgently required. To make substantial validation
possible in future, it is urgent to generate a series of core validation data sets by
up-scaling intensive field data or HRSI and lidar data to the Landsat pixel scale
and MODIS pixel scales.

In the mean time, biomass estimates from remote sensing currently still rely
heavily on field based training data sets. At regional and global scales, these field
measurements are always far from sufficient to represent complex forest proper-
ties. Thus, using physically-based or physical approaches to retrieve forest attri-
butes and biomass seems the most promising and avenues of advancement.
However to accomplish this, more efforts are needed to investigate canopy
reflectance models and forest allometric models which can provide the possibility
to estimate biomass at continental scales with limited ground-based training
samples.

It must be acknowledged that forest biomass is a dynamic process governed by
disturbance and subsequent re-growth processes (Harmon et al. 1990; Wofsy and
Harris 2002; Kennedy et al. 2007). Currently biomass at two specific times
(images) is generally produced and the difference between the two different
periods (images) is commonly used to detect change (Coppin et al. 2004). The
detection of trajectory-based changes (Kennedy et al. 2007) is a more meaningful
method of monitoring forest biomass. Given that the global archive of long-term
Landsat data is being made available for free in a standard processing format
(Woodcock et al. 2008) and the time series of global MODIS and VIIRS data is
available for more than a decade, robust approaches are required to automatically
retrieve forest biomass trajectories.

Passive optical remote sensing, lidar, and microwave remote sensing have
advantages and disadvantages in forest biomass estimates. Fusion of both data
would be a promising tool. Lidar provides accurate measure of woody volume
while accurate estimates of AGB require vegetation types, which can be obtained
from passive optical remote sensing. The small footprint lidar data is only limited
to small regions. Large footprint lidar can directly measure the horizontal and
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vertical vegetation structure of ecosystems at regional and continental scales;
however it lacks the imaging capabilities. Fusion of lidar remote sensing with
imaging capability from radar or passive optical remote sensing provides a
promising in mapping above-ground biomass in future.
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Chapter 4
Land Surface Phenology

Jonathan M. Hanes, Liang Liang and Jeffrey T. Morisette

Abstract Certain vegetation types (e.g., deciduous shrubs, deciduous trees,
grasslands) have distinct life cycles marked by the growth and senescence of
leaves and periods of enhanced photosynthetic activity. Where these types exist,
recurring changes in foliage alter the reflectance of electromagnetic radiation from
the land surface, which can be measured using remote sensors. The timing of these
recurring changes in reflectance is called land surface phenology (LSP). During
recent decades, a variety of methods have been used to derive LSP metrics from
time series of reflectance measurements acquired by satellite-borne sensors. In
contrast to conventional phenology observations, LSP metrics represent the timing
of reflectance changes that are driven by the aggregate activity of vegetation
within the areal unit measured by the satellite sensor and do not directly provide
information about the phenology of individual plants, species, or their pheno-
phases. Despite the generalized nature of satellite sensor-derived measurements,
they have proven useful for studying changes in LSP associated with various
phenomena. This chapter provides a detailed overview of the use of satellite
remote sensing to monitor LSP. First, the theoretical basis for the application of
satellite remote sensing to the study of vegetation phenology is presented. After
establishing a theoretical foundation for LSP, methods of deriving and validating
LSP metrics are discussed. This chapter concludes with a discussion of major
research findings and current and future research directions.
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4.1 Introduction

Vegetation phenology is the study of the timing of recurring plant life cycle events
that are driven by environmental factors (Morisette et al. 2009). The occurrence of
particular life cycle events, such as the emergence, growth, and senescence of
leaves, is driven predominantly by weather and climate (Hanes et al. 2013) and has
feedback effects on ecosystem processes (Baldocchi et al. 2005; Richardson et al.
2009b; Schwartz and Hanes 2010) and climate variables (Schwartz 1996; Hayden
1998; Fitzjarrald et al. 2001; Hanes 2012). The integrated nature of vegetation
phenology has motivated many to use it as an indicator of climate change, as
evidenced by the Intergovernmental Panel on Climate Change’s contention that
phenology ‘‘…is perhaps the simplest process in which to track changes in the
ecology of species in response to climate change.’’ (Rosenzweig et al. 2007).

The timing of phenological events has traditionally been documented using
in situ, visual observations of selected plants. While these observations have
proven useful, the lack of spatially and temporally-extensive in situ data inhibits
systematic assessments of vegetation phenology at large spatial scales (e.g., con-
tinental, global). Given this limitation of conventional phenology data, researchers
utilize satellite sensor-derived measurements of reflected electromagnetic radiation
from the land surface to study vegetation phenology over large geographic areas.
These measurements of land surface reflectance exhibit recurring changes that are
determined by vegetation phenology. The timing of these recurring changes in
reflectance is called land surface phenology (LSP).

During recent decades, a variety of methods has been used to derive metrics of
LSP from time series of satellite observations (White et al. 2009; Schwartz and
Hanes 2010). Although LSP metrics do facilitate large-scale assessments of sea-
sonal vegetation dynamics, they are different than conventional phenology data. In
contrast to conventional phenology data, which typically include the timing of
specific phenophases for individual plants, metrics of LSP represent the timing of
reflectance changes that are driven by the aggregate activity of vegetation within
the areal unit measured by satellite sensors, such as the Advanced Very High
Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spect-
roradiometer (MODIS) (see Table 1 in Reed et al. 2009 for a list of satellite
sensors used commonly in LSP studies and the spatial resolution of their mea-
surements). Therefore, these satellite-derived LSP metrics do not provide specific
information about the phenology of individual plants, species, or their pheno-
phases (e.g., buds open, leaf emergence, leaf unfolding). Despite the generalized
nature of satellite sensor-derived measurements, they have proven useful for
studying changes in LSP associated with various phenomena, including climate
(Myneni et al. 1997; Hanes and Schwartz 2011), institutional changes (de Beurs
and Henebry 2004), and urban heat islands (White et al. 2002; Zhang et al. 2004;
Fisher et al. 2006).

This chapter provides a detailed overview of the use of satellite remote sensing
to monitor LSP. First, the theoretical basis for the application of satellite remote
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sensing to the study of vegetation phenology is presented. After establishing a
theoretical foundation for LSP, methods of deriving and validating LSP metrics
are discussed. This chapter concludes with a discussion of major research findings
and current and future research directions.

4.2 Theoretical Basis

The emission of electromagnetic radiation from the Sun and its reflection from the
Earth’s surface provide a basis for satellite remote sensing and, consequently, for
LSP. Therefore, our discussion of the theoretical basis for LSP begins by
describing briefly the nature of electromagnetic radiation. We then present the
reflectance characteristics of foliage, which are subsequently used to describe how
the timing of recurring changes in vegetation can be studied using satellite remote
sensing.

Electromagnetic radiation (hereafter referred to as ‘‘radiation’’) is energy
emitted in the form of waves by objects possessing heat (Anderson and Strahler
2008). The amount and wavelengths of radiation are of particular interest in the
field of remote sensing, which focuses on monitoring and analyzing characteristics
of the Earth from afar by measuring its emitted or reflected radiation. The amount
of radiation emitted by an object is proportional to its temperature, with warmer
temperatures leading to larger emissions of radiation and cooler temperatures
resulting in lower emissions of radiation. The peak wavelength of emitted radia-
tion is inversely proportional to the temperature of the emitting object. Because
different objects have different temperatures, radiation can be emitted at a variety
of wavelengths. The various wavelengths of radiation are classified commonly into
different categories, or types, of radiation and represented as a continuous spec-
trum beginning with those that are shortest and ending with those that are longest.
Progressing from shorter to longer wavelengths, the general types of radiation are
gamma-rays, x-rays, ultraviolet radiation, visible light, near-infrared radiation,
middle infrared radiation, thermal infrared radiation, microwaves, and radio waves
(Shellito 2012).

Measurements of emitted and reflected radiation have facilitated the develop-
ment of numerous methods to monitor the Earth from afar. In the context of land
surface phenology, methods of documenting and analyzing the timing of seasonal
changes in vegetation have relied primarily on visible and near-infrared radiation
(NIR) emitted by the Sun. Variable amounts of visible light and NIR emitted by
the Sun are transmitted through the atmosphere and received by the Earth’s sur-
face. When the Earth receives this radiation from the Sun, it is absorbed, trans-
mitted, or reflected. Sensors (often called radiometers or spectroradiometers)
mounted on satellites orbiting the Earth effectively measure the amount of visible
light and NIR reflected from the land surface. The measured reflectances of visible
light and NIR from a specified areal unit on the Earth’s surface are assigned digital
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numbers that provide an indication of how much radiation is reflected. The digital
numbers from multiple areal units (or pixels) are used to create images that display
the reflection of radiation from the land surface (Shellito 2012).

The surface characteristics of the Earth primarily determine the amounts of
visible light and NIR that are reflected and captured by the sensors mounted on
satellites. As evidenced by the spectral profile of a trembling aspen leaf in Fig. 4.1,
healthy green foliage strongly reflects NIR (*0.8–0.9 lm), but reflects small
proportions of the visible light (*0.4–0.7 lm) received. The high proportion of
reflected NIR is related to leaf structural characteristics [e.g., internal cellular
structure (Knipling 1970); leaf thickness (Knapp and Carter 1998), leaf bicolor-
ation and the presence of a thick leaf cuticle (Slaton et al. 2001)]. The low
reflectance of visible light by healthy green foliage is attributed to the strong
absorption of these wavelengths by leaf pigments (most notably chlorophyll).
While chlorophyll strongly absorbs visible light, it does not absorb all wavelengths
of visible light equally. Chlorophyll is a stronger absorber of blue and red
wavelengths than green wavelengths, which gives healthy foliage its green color
(as indicated by the ‘‘spike’’ in reflectance between 0.5 and 0.6 lm in Fig. 4.1).
Unlike blue wavelengths (*0.4–0.5 lm), which are also absorbed by carotenoids
(Ollinger 2011), the absorption of red wavelengths (*0.6–0.7 lm) is a primary
indicator of chlorophyll content (Filella and Peñuelas 1994; Peñuelas and Filella
1998). Any changes in leaf area and pigmentation will cause corresponding
changes in the reflectance of NIR and red wavelengths, respectively. Conse-
quently, the remote sensing community has paid special attention to reflectance in
the near-infrared and red sections of the electromagnetic spectrum (either sepa-
rately or in the form of vegetation indices) when attempting to measure and study
green leaf biomass (Gamon et al. 1995), leaf area and the fraction of absorbed
photosynthetically active radiation (Myneni et al. 1997; Yang et al. 2006), and
discriminate between land cover types (Loveland et al. 1991; DeFries et al. 1995).

Fig. 4.1 Spectral profile of a
trembling aspen leaf (Populus
tremuloides) (Clark et al.
2007)
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Certain vegetative land cover types (e.g., deciduous shrubs, deciduous trees,
grasslands) have distinct life cycles marked by the growth and senescence of
leaves and periods of enhanced photosynthetic activity. Where these land cover
types exist, the growth and senescence of leaves cause changes in the reflectance
of NIR and visible light from the land surface. For example, the emergence and
growth of new leaves are associated with increases in chlorophyll concentration
and leaf area, which increase the absorption of red wavelengths (Richardson et al.
2007) and the reflectance of NIR. During leaf senescence, the collapse of the
mesophyll reduces the proportion of reflected NIR (Knipling 1970; but see Castro
and Sanchez-Azofeifa 2008). In addition, declining chlorophyll concentrations and
de novo synthesis of anthocyanins in senescing leaves (Lee et al. 2003) increase
the reflectance of red wavelengths (Richardson et al. 2009a). The close corre-
spondence between leaf growth and senescence and the reflectance of NIR and
visible light makes it possible to study vegetation phenology using reflectance
measurements acquired by remote sensors.

Annual time series of satellite-derived vegetation indices [e.g., normalized
difference vegetation index (NDVI), enhanced vegetation index (EVI) (Huete et al.
2002)] and biophysical metrics [e.g., leaf area index (LAI), fraction of absorbed
photosynthetically active radiation (FPAR) (Myneni et al. 2002)] that incorporate
the reflectance of NIR and red wavelengths generally capture the spectral changes
associated with leaf growth and senescence in the large areal units monitored by
the sensor. Therefore, these metrics can be used to document the phenology of the
land surface with variable accuracy and precision (White et al. 2009; Schwartz and
Hanes 2010). With this said, it must be noted that the degree to which these
satellite-derived metrics can be used to study LSP depends on the surface char-
acteristics of the entire areal unit measured. Considering that the large areal units
measured from space can integrate a variety of land cover types (vegetative and
non-vegetative, deciduous and evergreen), there has been some effort to restrict the
analysis of LSP to pixels containing land cover types that exhibit distinct phe-
nologies that are most observable from space [e.g., deciduous forests (Fisher et al.
2006)] and have a strong response to climate (White et al. 2005).

4.3 Methods

Remote sensing indices characterizing vegetation conditions form the basis of
deriving LSP metrics. The most ubiquitous algorithm is the Normalized Difference
Vegetation Index (NDVI), which utilizes chlorophyll and leaf structure-induced
reflectance contrast between red and near-infrared spectral bands from live veg-
etation (Rouse et al. 1974). Using the normalized difference [(NIR - R)/
(NIR ? R)] rather than quantifications of single bands effectively captures the
relative reflectance difference between the red and near-infrared bands. Specifics
regarding algorithms of this and the following vegetation indices discussed here
may be found in Chap. 3 of this book. The NDVI is able to effectively differentiate
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vegetated and non-vegetated areas, and capture the overall condition, magnitude,
and phenology of vegetation growth. Additional vegetation indices are formulated
on essentially the similar principle as NDVI with additional improvement such as
accounting for atmospheric noise through adding the blue band information to
specific indices, etc. Examples of these alternative vegetation indices include the
soil adjusted vegetation index (SAVI, Huete 1988), the atmospherically resistant
vegetation index (ARVI, Kaufman and Tanre 1992), and the soil and atmo-
spherically resistant vegetation index (SARVI, Huete and Liu 1994), which inte-
grates the former two algorithms. These efforts culminated in the development of
the enhanced vegetation index (EVI, Huete and Justice 1999), which was spe-
cifically targeted at improved vegetation monitoring through the MODIS plat-
forms. The EVI corrects both soil and atmospheric effects akin to SARVI and has
improved sensitivity to high biomass, which leads to NDVI saturation (Huete et al.
2002). Both NDVI and EVI are widely employed vegetation indices and are used
for LSP metrics derivation and studies. For boreal regions where snow cover
affects vegetation recognition, the normalized difference water index (NDWI; Gao
1996) is useful for more accurate LSP analysis, as NDWI decreases with snowmelt
and increases with canopy growth (from leaf water content) versus NDVI, which
increases with snowmelt and therefore introduces biases if used alone (Delbart
et al. 2005). Recent development also includes an attempt to combine the use of
NDVI and the normalized difference infrared index (NDII) to produce a remote
sensing phenology index (PI) to better overcome the background soil and snow
contaminations (Gonsamo et al. 2012),

Biophysical variables corresponding to detailed vegetation processes can also
be estimated from satellite data and in turn used for LSP metric development. Such
variables include notably the leaf area index (LAI) and fraction of absorbed
photosynthetically active radiation (FAPAR or FPAR) as described in another
chapter of this book. The field observation-originated LAI can be remotely sensed
and is more directly related to vegetation properties and functions, such as
structure, evapotranspiration, and primary production. The FPAR relates to similar
vegetation activities and is a basis for remote sensing of the gross and net primary
productions (GPP and NPP; Running et al. 2004). Chapters 2 and 5 of this book
outline the details of these aspects of vegetation parameterization. Therefore, in
addition to the use of vegetation indices, there were studies deriving LSP metrics
from LAI and/or FPAR (Ahl et al. 2006; Kang et al. 2003; Wang et al. 2005). The
LAI and/or FPAR are strongly correlated with NDVI. In particular, LAI has an
approximately linear correspondence with NDVI when LAI is low, yet a highly
non-linear relationship when LAI is higher (http://earthobservatory.nasa.gov/
Features/LAI/LAI3.php). The NDVI, along with EVI, is still most commonly used
for generating phenology information from data acquired through earth resource
satellites.

The remote sensing data used for LSP monitoring and studies are primarily
derived from multispectral sensors onboard sun-synchronous polar orbiting sat-
ellites. The AVHRR onboard NOAA series polar orbiting environmental satellites
(POES) has provided long-term global NDVI products since the early 1980s
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(Goward et al. 1985; Tarpley 1991; Eidenshink 1992). AVHRR acquires global
coverage daily with its broad scanning swath (2700 km) and as a tradeoff it has a
relatively coarse (1.1 km) spatial resolution. At the turn of the century, a type of
sensor with improved spectral, radiometric, and geometric quality was imple-
mented. The MODIS onboard NASA’s Terra (1999–present) and Aqua (2002–
present) satellites began operating to provide better remote sensing data for
multidisciplinary research on global change (Justice et al. 1998). The MODIS
instruments provide similar global and near-daily repeat coverage and improved
spatial resolutions: 250 m (bands 1–2), 500 m (bands 3–7), and 1 km (bands
8–36). In addition, the EVI was developed along with the implementation of this
sensor, increasing the ability to extract vegetation information. Both AVHRR and
MODIS allow frequent monitoring of vegetation conditions for large geographic
regions and, therefore, are ideal for LSP monitoring at continental and global
scales. However, the presence of clouds has been a major hindrance to acquiring
high temporal resolution image time series of vegetation at a given location. A
maximum value composite method is hence employed to remove cloud contam-
ination for both AVHRR and MODIS vegetation indices time series, with nominal
temporal resolutions of resultant products reduced to about 2 weeks (Thayn and
Price 2008).

Specifically, the available vegetation indices (VI) values from satellite obser-
vation over a year comprise time series corresponding to annual growing seasons
of vegetation. Given the cloud contamination problem mentioned previously, the
cloud-free images that allow vegetation of a specific location to be seen are often
few for a growing season. Besides atmospheric interference, the quality of data is
also affected by noises from sensor systems, surface properties, and solar and
sensor viewing angles. Therefore data smoothing approaches from simple running
median to curve-fitting models are employed as a necessary procedure in image
preprocessing (Reed et al. 1994; Bradley et al. 2007). Obvious spurious data points
such as extremely low VI values caused by snow, clouds, or water bodies can also
be removed manually. Such an approach is meant to reduce the signal contami-
nations and retain the essence of annual and interannual variations of phenology.
As stated earlier, VI products available are typically processed with the maximum
value composite method to remove cloud effects (Holben 1986). For a 16-day
composite window, the maximum VI value is retained to indicate the vegetation
condition during that time period. This temporal limitation of applicable data
entails the use of interpolation approaches for generating continuous VI curves for
LSP estimation.

Curve geometry of VI time series is used for further extracting satellite pixel-
based phenological patterns, because VI values fluctuate in annual cycles in
accordance with vegetation phenology. For instance, the rise and drop of VI levels
reflect respectively the increase and decrease of vegetation activities. Conventional
phenology studies pay most attention to the critical annual events, such as leaf bud
burst, flower bloom, and sometimes leaf fall and growing season length. Remotely
sensed phenology has been mostly focused on leaf phenology, given the spatial
resolution available that makes detecting flower phenology in mixed landscapes
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very difficult. Based on annual variations of VI time series, phenological param-
eters such as dates of the start of season (SOS) and end of season (EOS) and
consequently the growing season length can be estimated. Additional parameters
may also include the dates when vegetation activities reach a stably high level in
the summer (maturity) and a subsequent transitional autumn phase when foliage
starts to decline (senescence) (Zhang et al. 2001).

Various methods have been adopted to estimate the threshold points or phe-
nologically important dates using multi-temporal VI imagery (Lloyd 1990; Reed
et al. 1994; White et al. 1997, 1999, 2002; Zhang et al. 2001, 2003). An early
attempt using fixed threshold values was made to mark the SOS in selected eco-
systems (Lloyd 1990). Lloyd (1990) employed a constant value of 0.099 for
AVHRR NDVI time series as the threshold to mark the start and end of the
growing season. This threshold selection was based on tests in selected regions and
the general assumption was that vegetation growth is unlikely to be occurring if
the NDVI value is below the specified threshold (Henricksen and Durkin 1986;
Justice et al. 1986). Given that the same criterion is applied to all land cover types,
geographic variations of LSP may be highlighted using this approach. However,
whether a unified threshold corresponds to the vegetation greenness onset for a
large region is difficult to verify. The assumption of land cover homogeneity puts a
fundamental limit to simple threshold-based phenology for representing spatially
variant biophysical reality in vegetated landscapes. Depending on the vegetation
types and background reflectance properties, the NDVI threshold marking SOS
may be different across locations. Hence, more accurate determination of pheno-
logical transition points and growing season length requires land cover/pixel-
specific extraction methods that account for the heterogeneous nature of LSP.

More accurate and also more computationally intensive approaches were later
developed in the same era marked with prevalent vegetation studies using AVHRR
NDVI, especially driven by an increased need to monitor LSP for continental and
global-scale coverage (Reed et al. 1994; White et al. 1997). Reed et al. (1994)
derived phenological metrics using primarily a delayed moving average (DMA)
method and compared the results for agricultural crops, grasslands, and forests.
Biweekly composited NDVI time series were interpolated to remove gaps between
adjacent data points, and cloud contamination was further removed using a run-
ning median line-smoother. Moving averages of previous n observations (sum of
all values divided by the time interval) were calculated for all pixels. Through
repetitive testing, a nine-value composite period was selected and new DMA time
series were generated. A new time series represents a predicted trend based on
NDVI values in the past. The time when an observed value exceeds the predicated
trend (smoothed NDVI curve crosses the DMA curve) was designated as the onset
of greenness or start of the growing season (SOS). This crossing indicates an
abrupt change of vegetation activities that have surpassed the preexisting ten-
dency. A chronologically reversed DMA procedure was performed in like manner
to derive a metric for the end of the growing season.

White et al. (1997) developed a NDVI ratio-based approach for deriving phe-
nological markers. Instead of using biweekly composite NDVI data, the raw data

106 J. M. Hanes et al.



points were used. In order to remove contaminations from clouds and the atmo-
sphere, a best index slope extraction (BISE) method was employed. The essence of
the BISE approach is to extract the phenological development curve from NDVI
raw data points based on the assumptions that vegetation growth is consistent (free
from erratic changes) and cloud effects depress the NDVI as reflected by aber-
rantly low values. A continuous NDVI curve is then extracted from the unswerving
boundary of the annual data point distribution (see White et al. 1997 for details).
An NDVI ratio [(NDVI–NDVImin)/(NDVImax–NDVImin)] was computed for each
pixel, and a constant ratio value of 0.5 was used to mark the SOS. White et al.
(1999, 2002) further simplified this approach to the seasonal midpoint NDVI
(SMN) method, which computes the midpoint between minimum and maximum
NDVI values for each pixel as the threshold (maximum composite data were used
in these follow-up studies). Thus, the determined SOS is proportional to site-
specific NDVI amplitude and is therefore sensitive to spatial and temporal phe-
nological variations.

Among the algorithms used for phenological signal extraction from annual VI
profiles, a method using the growth curve (modeled with a logistic function) bears
a closer resemblance to actual springtime vegetation development (Fischer 1994;
Zhang et al. 2003). The logistic function is a common type of sigmoid model that
approximates an s-shaped curve, which is used to simulate a natural process with
an initial stage of exponential growth, followed with a tapering growth rate as
saturation begins, indicating maturity of development. The formula of this model
according to Zhang et al. (2003) is given as follows:

y tð Þ ¼ c

1þ eaþbt
þ d

where t is time in day of year, y(t) is the VI value at time t, a and b are fitting
parameters, c ? d is the maximum VI value, and d is the initial background VI
value. Parameter a dictates the date of the onset of the rise in greenness and
b dictates the steepness of the VI curve. This model corresponds well with the
phenological development of deciduous vegetation, which is characterized with a
flush of greening at first, followed with a steady increase in foliage expansion
throughout the spring, and a plateau of growth in the summer. A second logistic
function is used to quantify the decline of vegetation activities due to growth
cessation in the fall, approximately mirroring the spring phases. Fischer (1994)
applied a double logistic method to NDVI time profiles to characterize the phe-
nological cycle of crops. Inflection points (when the concavity of a logistic curve
changes signs) were used to mark the start and end of the growing season. As these
inflection points are found approximately at the mid-point of steady increasing/
decreasing segments of a logistic curve, the growing season duration may be
underestimated. Zhang et al. (2001, 2003) modeled the AVHRR and MODIS
VI-based phenology with logistic functions with an improved method for deriving
transition dates. The time points at which a VI curve experiences fastest changes are
related to the thresholds of phenological phase shift. The curvature and curvature
change rates can be calculated using formulas detailed in Zhang et al. (2003).
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The maxima (on the ascending segment) and minima (on the descending segment)
of curvature change rate correspond to transition dates of an annual phenology
cycle (Fig. 4.2). The initiation and ending of fast vegetation growth are marked by
the time when curvature changes are greatest on the ascending segment of an annual
curve and the start and finish of vegetation senescence are indicated with times at
which minimum curvature change rates (negative) on the descending segment are
reached. These four phenological markers are related specifically to the onset dates
of green-up, maturity, senescence, and dormancy of seasonal vegetation growth.
The inflection points corresponding to the extreme curvature change rates occur
half way between each pair of transition dates, the slopes at which may be used to
characterize the average green-up and brown-down rates. Besides, a further effort
was made to refine brown-down date estimation, which is usually more uncertain
given the foliage coloration processes (Zhang and Goldberg 2011).

The LSP metrics extraction algorithm of Zhang et al. (2003) is used in MODIS
Land Cover Dynamics products (MCD12Q2). An alternative curve smoothing and
SOS derivation approach akin to that of Zhang et al. (2003) was developed using an
asymmetric Gaussian model (Jönsson and Eklundh 2004; Gao et al. 2008; Tan et al.
2008; 2010). Jönsson and Eklundh (2004) developed an open source LSP extraction
software (TIMESAT), which includes both the double logistic and asymmetric
Gaussian algorithms. Gao et al. (2008) employed the asymmetric Gaussian method
for smoothing MODIS LAI time series. Tan et al. (2008) and Tan et al. (2010)
developed a modified TIMESAT method for generating MODIS LSP for the North
American Carbon Program (NACP). This enhanced TIMESAT approach utilizes
asymmetric Gaussian curve fitting and the third derivative of a fitted curve to
determine key phenological dates. Both double logistic and asymmetric Gaussian
methods utilize semilocal curve geometry to characterize LSP time series and extract
transition dates. The two curve fitting approaches were found to generate similar
results with the exception that the asymmetric Gaussian method is less sensitive to an
incomplete time series with many data gaps (Beck et al. 2006; Gao et al. 2008).

Fig. 4.2 A schematic showing how transition dates are calculated using minimum and maximum
values in the rate of change in curvature. The solid line is an idealized time series of VI data, and
the dashed line is the rate of change in curvature from the VI data. The circles indicate transition
dates. The extreme values located between circles indicate the points at which the curvature
changes sign. The figure is reprinted from Zhang et al. (2003) with permission from Elsevier
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4.4 Validation Efforts Using In Situ Measurements

Satellite-derived phenology has advantages of covering broad geographic regions,
integrating information from multiple species, and providing regular multi-tem-
poral capability that is useful for change detection. However, common limitations
and signal contaminations associated with remote sensing data reduce the accuracy
of LSP estimates. The primary limitations include the relatively coarse spatial
resolution (250 m–1 km) and the fairly large temporal resolution of useable
observations at a given location caused primarily by clouds. The standard VI
products are usually available as 8–16 day maximum value composites, but there
have been attempts to use daily MODIS surface reflectance to compute customized
NDVI for optimized temporal precision in LSP derivation (Graham et al. 2010; Ju
et al. 2010). Other uncertainties may be from additional atmospheric path radiance
effects, sensor systematic errors, and ground reflectance noises. The different
approaches used for the extraction of phenology metrics may also contain inherent
biases. Therefore, validation of LSP with appropriate ground measurements is
essential for improving phenological monitoring abilities (Schwartz and Reed
1999).

Given the lack of in situ data that are comparable with LSP in spatial coverage
and landscape representativeness, the initial attempt to bridge ground phenology
with satellite phenology was through using bioclimatic models (Schwartz and
Reed 1999; Schwartz et al. 2002). A suite of climate data-driven phenological
models (spring indices, SI) was developed using phenological records of indicator
species: Syringa chinensis (a lilac) and two varieties of honeysuckle (Lonicera
tararica and Lonicera korolkowii) distributed across eastern North America
(Schwartz 1990, 1994, 1997). Schwartz (1994, 1997) outlined the utility of SI as a
‘‘backbone’’ to produce spatially continuous phenological measures for large
regions and thus enable comparison of surface phenology with satellite phenology.
Simulated phenology as derived according to ground-based phenology and inde-
pendently from LSP serves as a proxy of in situ phenology to compare with LSP
over broad regions where actual phenology data are not available. An initial
comparison was made between satellite-derived SOS and SI first leaf and first
bloom estimates using a land cover stratified correlation approach (Schwartz and
Reed 1999). The first bloom phenology was used as a reference of late spring
events rather than to correspond with the landscape greening as detected by sat-
ellites. The SOS dates were calculated from 1 km AVHRR NDVI data using an
updated version of the DMA approach described previously and in Reed et al.
(1994). This study found that satellite-derived SOS was systematically earlier than
the SI first leaf, suggesting that satellite signals record the greening of understory
vegetation before the onset of tree foliage growth. A follow-up study compared SI
with both DMA SOS and SMN SOS over the conterminous United States
(Schwartz et al. 2002). Results pointed out that SMN SOS corresponds more
closely in timing with the late spring phenology event (e.g., SI first bloom date).
Regardless of the lack of explicit linkages with ground biophysical processes,
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these SOS measures showed the ability to detect general interannual and large-scale
geographic variations of LSP.

An alternative approach to bridging in situ phenology with satellite phenology
was attempted using Landsat data as an intermediary (Fisher et al. 2006; Fisher
and Mustard 2007). Relatively high spatial resolution (30 m) data from Landsat
TM and ETM ? have a repeat coverage of 16 days (can be reduced to 8 days if
data from multiple platforms are used). Due to the data loss from cloud effects,
estimating vegetation phenology using data from a single year of Landsat data is
not practical. Fisher et al. (2006) utilized multi-year Landsat data to approximate
phenological development over an annual cycle. A modified double logistic model
akin to that of Zhang et al. (2003) was used to fit a growth season curve. Fractional
vegetation cover, which was estimated using a sub-pixel spectral mixture analysis
(SMA) method (estimating vegetation percentage cover at the subpixel level), was
used instead of vegetation indices. Fisher et al. (2006) suggested that the SOS is
marked when vegetation reaches half maximum greenness, similar to the SMN
approach of White et al. (1997).

The Fisher et al. (2006) approach accepted a compromise in using 19-year
composited time series to take advantage of the higher spatial resolution of
Landsat data. In spite of the unavoidable loss of interannual change information
when multi-year data are merged, results seemed to show spatial variations of
phenology with interesting details. In particular, the micro-topographic and mi-
croclimatological gradients seem to play an evident role in influencing spring leaf
phenology. Cold air drainage in the New England area delays the phenology of
trees grown in low laying areas. The sequence of phenological development as
observed onsite with both visual estimates and photography agreed with findings
from satellite data. Further, maritime effects seem to be responsible for the delayed
coastal vegetation phenology due to a lag of spring temperature increase. The
urban heat island effect that advances phenology is also documented in the
Landsat-based LSP estimates.

The effort to relate ground and satellite phenology is furthered from considering
only Landsat data to using Landsat data as a bridge to connect to MODIS data
(Fisher and Mustard 2007). This is a necessary step because most of the large-scale
vegetation studies are carried out at coarser spatial resolutions as provided by
MODIS (250 m–1 km) or AVHRR (1 km), which are better suited for global
monitoring. In this follow-up study, Fisher and Mustard (2007) attempted to
address the need of interannual phenology comparison in relation to detecting
climatic influences on phenology. This was not possible in the previous study with
time-integrated Landsat data. The investigation of interannual change mainly
relied on the MODIS time series and field-observed data. The spatial variation was
checked mainly between Landsat-based and MODIS-based phenological mea-
surements. These two sets of independent satellite measurements appeared to show
relatively coherent spatial variations when averaged phenology is of concern. This
study further compared MODIS phenology with field-observed phenology at two
sites, incorporating interannual variations. Year-to-year change of MODIS phe-
nology seemed to match the general variations observed in situ at the field sites,
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with satellite-derived onset dates situated between the earlier bud break-based
onset dates and later leaf expansion-based onset dates.

Two notable efforts to validate different LSP methodologies developed for
AVHRR NDVI and MODIS NDVI/EVI highlighted large uncertainties in the
connection between satellite and ground phenology measurements (White et al.
2009; Schwartz and Hanes 2010). Both studies were conducted at the continental
scale and were specifically aimed towards validating SOS estimates. White et al.
(2009) performed an inter-comparison among 10 selected SOS derivation tech-
niques using 8 km 15-day composite AVHRR NDVI data for 1982–2006. Ground-
based measurements used included phenology network records, phenology model
predictions, as well as cryospheric/hydrologic seasonality data. Results indicated
that SOS dates predicted by different methods deviate from each other up to
2 months, in addition to large variations across geographic regions. Schwartz and
Hanes (2010) utilized 1 km 16-day composite MODIS NDVI and EVI data from
2000 to 2006, and compared 10 sets of SOS estimates derived from selected
methods. Some important SOS methods, such as those using double logistic
functions (Zhang et al. 2003; Fisher et al. 2006) and modified TIMESAT (Tan
et al. 2008), which were missing in the analyses of White et al. (2009), were
covered. The inter-comparison was made for eastern North America against sur-
face data, which included both modeled phenology (SI) and local species phe-
nology data from several study sites across the region. The comparison results
alike suggested a lack of significant correlations between the satellite and ground
measurements and the performance of different SOS methods varied across sites.
Though targeting on LSP estimates from different satellite data sources, both
studies noted here implied that the differences in spatial scales and temporal
resolutions of satellite and ground data are a major hurdle to validation tasks.
These studies also demonstrated that ground phenology data as collected in an
extensive manner at discrete locations (e.g., from the Nature’s Notebook of the
USA National Phenology Network) need to be complemented with more detailed
field observations in order to be used for validating LSP.

More specifically, remote sensing and in situ observation of plant phenology
both investigate essentially the same phenomena, but deviate in coverage and
resolution, as well as in the forms of information recorded. Observer-based
recording of phenology relies on the synthetic capability of human eyes in
detecting integrated phenological development phases, such as bud burst or leaf
expansion. Often some statistical criteria are employed to guide the character-
ization of differential growth within the same canopy. Human eyes do not provide
quantitatively precise recordings when multiple observations are translated into a
series of values, but do capture ordinal progression sequences. For key pheno-
logical events, visual observations are most reliable. Remote sensing, on the other
hand, would allow quantification of vegetation growth at more differentiable levels
as allowed by the sensor’s radiometric resolution, but lacks the direct correspon-
dence with traditionally defined phenological events. In addition, the majority of
local species ground phenology data from observation networks are available for
limited plant individuals registered to approximate geographic locations, while
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continuous satellite data incorporate mixed signals from all plants as well as
background substrates. Therefore, the exact biophysical meanings of LSP, in
particular SOS, remain vague when ground data that lack landscape representa-
tiveness are employed for validation.

To meet this challenge, phenology data collection in a spatially concentrated
manner which allows detailed characterization of landscape heterogeneity became
crucial (Liang and Schwartz 2009; Liang et al. 2011; Schwartz et al. 2013).
Beginning from 2006, high density phenology observations were carried out in a
mixed forest located in northern Wisconsin, near an AmeriFlux tower site (Park
Falls/WLEF). A high resolution spatial sampling of major canopy species was
deployed at the study sites, initially for a 625 9 275 m area (2006 and 2007), and
later for two 625 9 625 m expanded areas (since 2008). At least three of the
largest trees at 288 plots were sampled. The coverage of sampling grids matched
the size of MODIS pixels, and the density of sampling allowed capturing spatial
variations within the pixels. As shown in Fig. 4.3, the spatial setting of in situ data
collection allowed better compatibility with coarse resolution satellite pixels in
both extent and representativeness. In addition to high spatial density, phenology
observation was conducted with high temporal frequency. The field crew took
measurements for all sampled trees every other day (modified to a 4-day interval
since 2010) throughout the early spring time period (about a month). A detailed
field protocol was used to describe phenology from buds to leaves and with

Fig. 4.3 High resolution
sampling design for satellite
phenology validation
showing: (1) in situ
phenological observation
transects/plots (according to a
cyclic sampling design, see
Burrows et al. 2002); (2)
MODIS pixel grids
(250 9 250 m squares,
sinusoidal projection); and
(3) 2.4 m resolution NDVI
image derived from a May
18, 2007 QuickBird image
underlying the plots and
MODIS pixel grids. This
figure is reprinted from Liang
et al. (2011) with permission
from Elsevier
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different percentage characterization for canopies undergoing a particular
phenological stage transition.

To fully utilize the data from high resolution phenology for the purpose of
validating satellite phenology, adequate scaling methods are required. Liang and
Schwartz (2009) proposed the concept of landscape phenology, which integrates
discrete phenology information to the synthetic levels of ecosystem organization.
Observations for individual plants may be aggregated to form population, com-
munity, and landscape phenology representations with additional data related to
species dominance, abundance, and distribution. The concept was fully imple-
mented in a practical scaling ladder that effectively produced landscape phenology
(LP) indices that are readily comparable with LSP metrics (Liang et al. 2011).
Liang et al. (2011) developed a step-wise nested hierarchical scaling approach
linking landscape phenology and hierarchical patch dynamics (Wu and Loucks
1995). This scaling design allowed practicality of data aggregation and simulta-
neously took into consideration the predefined ecosystem structure and coherence,
as well as the patchiness of forest landscapes.

To achieve each step of scale transition following the individual-population-
community-landscape (ecosystem patch) sequence, a suite of digital image pro-
cessing techniques (with ancillary high resolution imagery) was employed to
characterize the forest landscapes and provide required additional information for
spatially aggregating phenology data (for details see Liang et al. 2011). Two sets
of LP indices were developed with one being compatible with landscape spectral
reflectance and the other retaining field protocol meanings. MODIS VI time series
were first compared with the time series of reflectance calibrated LP index. Then
full bud burst dates as estimated from the LP indices (which retained biological
meanings) for deciduous and coniferous species respectively were compared with
LSP SOS dates. The maximum curvature logistic approach (Zhang et al. 2003) was
used to develop SOS estimates given its use in the MODIS global land cover
dynamics products (Ganguly et al. 2010). With the high resolution field data, the
spatial matching with MODIS satellite pixels was able to be conducted in a more
precise manner. Pixel values were weighted with corresponding spectral contri-
butions of the areal fractions overlapping with the study areas. Detailed compar-
isons revealed relatively close connections of satellite phenology with the ground
observations. Instead of a linear relationship, the phenological development on the
ground appeared to influence LSP exponentially. The phenology protocol used in
the field describes the progression of canopy growth from buds to leaves. The
primary impact of phenology on surface greening occurs after bud burst and
accelerates with rapid leaf unfolding and expansion. This general trend also agrees
with the initiating pattern of a logistic curve. Coniferous LP index time series
lagged behind those of LSP and deciduous LP index, implying the major role of
deciduous land covers in influencing LSP. Maximum absolute errors between LP
deciduous full bud burst dates and SOS dates were 15 days and 2 days for NDVI
and EVI, respectively.

In addition to the effort to validate LSP using traditional observer-based
phenology, there has been much work done to utilize in situ observations from
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near-surface remote sensors (Richardson et al. 2007, 2009a; Graham et al. 2010;
Hufkens et al. 2012). In particular, networked webcams have been used to record
repeat canopy phenology in association with the existing eddy covariance flux
tower sites (cf. PhenoCam program, http://phenocam.sr.unh.edu/webcam/). Web-
cam-based phenology observation has the advantages of being more objective
(free from observer biases) and low-cost in logistics, which allows for consistent
and continuous monitoring of forest canopy conditions (Sonnentag et al. 2012).
The tradeoff is that it provides optical signals akin to satellite remote sensing and
does not give particular details of phenological development (e.g., bud break) that
traditional observer-based protocols offer.

In particular, Huemmrich et al. (1999) and Richardson et al. (2007) employed a
broad-band NDVI measured from flux tower-based radiometric measurements.
The broad-band NDVI utilizes the entire visible spectrum ([NIR-VIS]/[NIR ? -
VIS]) instead of the red band as is typical for satellite-derived NDVI. However,
more widely available near-surface remote sensing analyses have relied on visible
light digital camera measurements. The visible light digital photos contain separate
color bands (Red [R], Green [G], and Blue [B] respectively), which were used to
derive band algebra-based greenness indices, such as the excess green (2G-R-B)
and green chromatic coordinate (G/[R ? G ? B]; Sonnentag et al. 2012). Hufkens
et al. (2012) performed a comparison of near-surface remote sensing-based phe-
nology with satellite (i.e. MODIS) remote sensing-based phenology at four Phe-
noCam sites across the United States. Results from the study showed relatively
consistent correspondence between the MODIS VI time series and camera excess
green time series and suggested that the mismatch of camera field of view and
satellite pixel-covered areas may contribute the major uncertainty in linking the
two types of phenological measurements. Related studies also utilized webcam
data to compare with MODIS-based LSP (Graham et al. 2010) and Landsat-based
LSP (Elmore et al. 2012). The continuous monitoring of near-surface remote
sensing also provided opportunities for validation in both the spring and autumn
seasons (Hufkens et al. 2012; Elmore et al. 2012). Elmore et al. (2012) utilized a
different index ([G-R]/[G ? R]) other than the excess green utilized in other
studies for deriving phenological information and attempted to use aerial photos to
compare with Landsat-based autumn phenology. In summary, the webcam phe-
nology data provide a valuable source of in situ observation for validating LSP.
With the improvement of technology and data analyzing techniques, we anticipate
the ground-based radiometric measurements of tree canopy phenology will pro-
vide more insights on the links between phenological processes of plants and
corresponding remote sensing indices.

Recent validation efforts also include a study utilizing extensive data from the
Canadian phenology network (PlantWatch) and AVHRR and MERIS-integrated
LSP (Pouliot et al. 2011). Given that high resolution intensive phenology data are
only available at specific study sites, the growing extensive ground phenology data
from crowd-sourcing observation networks, such as PlantWatch (http://
www.naturewatch.ca) and the USA National Phenology Network (http://
www.usanpn.org), with real-time forest canopy monitoring using near-surface
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remote sensing, will contribute to broader LSP validation efforts synergizing
observations from different sources. Surface datasets from network volunteer
observations, high resolution observations at intensive study sites, and the digital
camera records are meant to be used to complement one another in order to
achieve a more complete understanding of LSP and the corresponding surface
processes. Overall, the validation efforts to date have significantly increased our
confidence in using satellite-based LSP for deriving relatively accurate biospheric
information for global change studies. Additional efforts may be directed towards
validating new LSP products and investigating LSP performance within diversely
vegetated environments, as well as for the autumn season.

4.5 Current and Future Research Directions

This section will describe some of the research findings that have emerged from
the study of LSP as well as potential directions for future work. As described
above, the community has developed a well-established theoretical basis for LSP
and there have been advances in both methodology and validation. A Google
Scholar search with the string ‘‘Land Surface Phenology’’ returned over 500
papers with an exponential growth pattern over the last 10 years (Fig. 4.4). It is
important to note that there are many publications related to LSP that are not
necessarily labeled as such. However, this query does reveal that the first paper
found using this particular label was by Henebry and Su (1995) and that the term is
becoming more established in the literature. With the large (and growing) body of
LSP literature, it is beyond the scope of this chapter to do a full literature review of
that body of work. Rather, the remainder of this chapter will summarize some of

Fig. 4.4 Number of land surface phenology publications by year [This figure is similar to Fig.
21.1 in Henebry and de Beurs (2013), who also noted the trends in literature pertaining to Land
Surface Phenology.]
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the major findings related to climate and phenology connections, some of the
limitations of current work, and how the advances in LSP research will help
address these issues and lead to greater utility.

The earliest documented work we could find pertaining to remote sensing and
phenology was a progress report from Texas A&M University on a project
sponsored by NASA’s Goddard Space Flight Center in the early 1970s (Rouse
et al. 1974). That study concludes that satellite data can provide a quantitative
description of vegetation conditions as phenological indicators for seasonal and
climate effects. It is interesting to note this study was based on ‘‘Landsat 1’’
(originally called ERTS-1, Earth Resources Technology Satellite 1) Multispectral
Sensor (MSS) data. The satellite was launched on July 23, 1972 and the report was
written in the fall of 1973. While this is an impressive turnaround time, it is also an
indication that, at least for some researchers, satellites clearly offered an approach
to connect vegetation growth to climate drivers. Many similar (relatively) local
studies using Landsat and other 10–30 m spatial resolution sensors have been done
since then. However, to better understand climate and vegetation phenology
connections, LSP studies needed to expand to the continental and global scales.

Within a few years of the earliest demonstration of how AVHRR could be used
to monitor vegetation health (Gray and McCrary 1981, Schneider et al. 1981,
Townshend and Tucker 1981), researchers started evaluating LSP from that sensor
at regional scales far larger than then current Landsat studies. As an example of
some of the earliest work on continental LSP, Justice et al. (1986) used AVHRR to
monitor 1 year of phenology in Kenya. Particular emphasis was placed on quan-
tifying the phenology of the Acacia Commiphora bushlands. Considerable varia-
tion was found and explained through the high spatial variability in the distribution
of rainfall and the resulting green-up of the vegetation. They explored the rela-
tionship between rainfall and NDVI using meteorological stations existing within
the bushland, which shows that the early AVHRR work also considered the
relationship between satellite-observed LSP and annual weather patterns (Justice
et al. 1986; Justice 1986).

Building on this and other studies demonstrating the utility of AVHRR to
monitor vegetation for larger areas over time, much of which was led by the
Global Inventory Monitoring and Modeling Studies (GIMMS) group at NASA/
Goddard Space Flight Center (GSFC) (Justice 1986), NOAA and NASA initiated
the AHVRR pathfinder program to produce global, 8 km NDVI. The pathfinder
data were processed using the best available methods at that time to produce a
consistent time series of data; including cross-satellite calibration, navigation
using an orbital model and updated ephemerides, and correction for Rayleigh
scattering. The data were made openly available to the community as both daily
and composite data. Analysis of this initial global time series provided insight into
terrestrial processes, seasonal and annual variability, and methods for handling
large volume data sets and facilitated land surface phenology (James et al. .). As
such, it truly did establish a path for subsequent global land vegetation products
from MODIS, MERIS, and the Visible Infrared Imaging Radiometer Suite
(VIIRS).
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Perhaps one of the most seminal articles on large-scale land surface phenology
was Myneni et al. (1997), which presented evidence from satellite data that the
photosynthetic activity of terrestrial vegetation in northern latitudes increased from
1981 to 1991 in a manner that is suggestive of an increase in plant growth asso-
ciated with a lengthening of the active growing season. This was one of first
articles to link large-scale vegetation trends to a warming climate.

As the available time series of remote sensing data increases, so too have the
time spans for LSP studies. As the time series increases, studies are able to better
extract more ‘‘signal’’ from the ‘‘noise’’ and explore correlation between LSP and
climate events and distinguish between natural variability and trends. Ivits et al.
(2012) used LSP derived from the AVHRR from 1982 to 2006 to explore the
correlations between phenology and climate and trends in both. Park et al. (2012)
used two decades of AVHRR data to explore the relationship between El Niño–
Southern Oscillation (ENSO) events and the onset of spring. These are just two
examples among many where the long record from AVHRR is being used to
explore how vegetation responds to a changing climate.

However, there is considerable uncertainty associated with LSP studies that link
climate forcings with vegetation change. At the very heart of the problem is the
uncertainty in methods and techniques used to extract phenology parameters from
a satellite time series. The foundational intercomparison work of White et al.
(2009) demonstrated that start of season estimates vary extensively within and
among methods and that selecting the strongest method is difficult without some
additional ecosystem information. In addition to differences in algorithms, specific
regional phenomena may complicate the analysis. For example, Samanta et al.
(2012) detail how clouds and aerosols complicate LSP studies in the Amazon.

Indeed, we can use the Amazon as an example to expose how uncertainty
associated with LSP studies can lead to controversy and confusion. In 2010, a
Boston University press release1 stated that a recent study (Samanta et al. 2010)
showed results that were contrary to a previously published report and claims by
the Intergovernmental Panel on Climate Change (IPCC). Because of its potential
relevance to national and international policy, the conclusions of the IPCC can be
highly contentious. The uncertainly involved with discerning trends in the Amazon
(Saleska et al. 2007; Samanta et al. 2010) provided considerable fodder for cli-
mate-related blogs,2,3 On the technical side, it is not surprising that LSP products
may indicate different, somewhat inconsistent results (White et al. 2009; Samanta
et al. 2012). However, if LSP results are to contribute to policy-relevant infor-
mation, it is important, at the very least, to quantify the uncertainty and, at best,
provide consistent and reliable information. Hopefully advances in sensors,
methods, and validation will help address this uncertainty and lead to greater
utility.

1 http://www.eurekalert.org/pub_releases/2010-03/bumc-nsd031110.php
2 http://scienceblogs.com/deltoid/2010/03/14/its-always-bad-news-for-the-ip/
3 http://www.realclimate.org/index.php/archives/2010/03/saleska-responds-green-is-green/
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Referring back to Fig. 4.4, the increasing number of publications on LSP is
likely to be connected to enhanced computational power and storage capacity,
improved LSP product quality, and easier access to satellite imagery. However, the
increase is likely also tied to the increasing relevance of LSP studies as the
community is looking to explore the connection between climate variability and
changes or trends in vegetation seasonality as well as the connection between
observed LSP and ecosystem functions.

The future likely will bring more satellite imagery and a longer time series of
data from which to construct ever-increasing LSP time series. This longer time
series will help LSP distinguish between temporal variability, actual trends, and
correlation with climate forcings. Perhaps the most pressing need for this line of
research will be for common LSP products derived from multiple sensors. The
works of Tucker et al. (2005) and Cao et al. (2008) have demonstrated the ability
to extend the time series through a multi-sensor approach (see also the Long Term
Data Record project at NASA4). Future work with LSP will need to build on such
work as well as utilize the validation techniques described above to ensure that
LSP derived from a multi-sensor time series are free from artifacts from the
different data streams. Also, with the entire archive of Landsat data now available
and efforts to mosaic and composite those data (Roy et al. 2010), there is the
opportunity to consider kilo-, hecto-, and deca-resolution imagery (Morisette
2010) LSP products (Kovalskyy et al. 2012) for regional, continental, and even
global LSP studies.

In addition to longer time series, the validation techniques described above will
be able to take advantage of an increasing amount of coordinated phenology-
related ground-based observations and modeling techniques that can integrate
these observations with satellite data. In May 2012, the archive of observations
within the USA National Phenology Network recorded its one millionth obser-
vation.5 These offer an unprecedented archive of information with which to
compare LSP products. Furthermore, there is now an expanding network of tower-
based near-surface cameras to complement field-based phenology observations
and help scale from the individual plant to a wider area representing a CO2 flux
tower footprint (Richardson et al. 2009a). The integration of plant phenology and
LSP products with CO2 monitoring and modeling has led the community to call for
improved understanding of the environmental controls on vegetation phenology
and incorporation of this knowledge into better phenological models (Richardson
et al. 2012). Some work is being done toward this objective through data assim-
ilation of empirical phenology models and remote sensing observations (Stockli
et al. 2008, 2011). More connection and integration between the carbon modeling
and LSP communities are likely to improve our understanding of the global carbon
cycle and its impact on climate and feedback to phenological processes (Morisette
et al. 2009).

4 http://ltdr.nascom.nasa.gov
5 http://www.usgs.gov/newsroom/article.asp?ID=3195#.UAQsGvXNkxE
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Finally, it is worth mentioning the integration of LSP products into habitat
assessment; including both the evaluation of plant species habitat with a time
series of deca-resolution imagery (Evangelista et al. 2009) to animal species using
kilo-resolution LSP products (Herfindal et al. 2006). The use of LSP products in
habitat modeling can provide spatial predictions of species habitat at higher levels
of ecological complexity, including the consideration of functional groups and
species assemblages (Guisan and Thuiller 2005).

This section has described some of the foundational work in LSP research and
some potential future directions. With the various challenges and opportunities
related to this research, it is exciting to consider future research directions for LSP.
As we head into the future there will be an ever-longer time series of satellite data
from which to extract phenology metrics and look for trends across multiple
decades. The expanding size, coordination, and communication among the ground-
based phenological networks will offer opportunities for the validation of LSP
products as well as a larger community of users who can use and understand LSP
products. Finally, with the extended time series and a stronger connection to
ground-based observations, it is likely that LSP can provide substantial input to
improve carbon, climate, and ecological models.
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Chapter 5
Gross Primary Production of Terrestrial
Vegetation

Xiangming Xiao, Cui Jin and Jinwei Dong

Abstract Gross primary production (GPP) of vegetation is the first and important
flux of the terrestrial carbon cycle, and there is no direct measurement technique
for GPP at ecosystem and landscape scales. A number of satellite-based Light Use
Efficiency (LUE) models or Production Efficiency Models (PEM) have been
developed to estimate GPP in the past few decades, and they are driven by satellite
images with or without climate data. This chapter provides a brief review on some
of these LUE models, and illustrates the Vegetation Photosynthesis Model (VPM)
through its simulations of C3 crop (soybean) and C4 crop (maize) at the CO2 eddy
flux tower site in Nebraska, USA.

5.1 Introduction

Gross primary production (GPP) and net primary production (NPP) are two
important components of the carbon cycle. GPP is defined as the rate at which
vegetation captures and stores carbon dioxide in a given length of time via a
photosynthetic process. NPP is defined as the difference between GPP and auto-
trophic respiration (Ra), and is often measured as net production or accumulation
of dry matter in vegetation during a year (Roxburgh et al. 2005). Plant photo-
synthesis at the chloroplast and leaf levels can be accurately measured through
various instruments (Taiz and Zeiger 2002). However, GPP at the canopy, eco-
system, and landscape scales cannot be directly measured through instruments, yet.
Therefore, how to scale up the estimates of GPP from individual leaves to the
canopy, ecosystem and landscape scales is still a challenging scientific question.
Currently, three research approaches are widely applied to estimate GPP at
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ecosystem and landscape scales: (1) CO2 flux measurements by eddy covariance
technique (Goulden et al. 2011; Moureaux et al. 2008; Verbeeck et al. 2008);
(2) process-based biogeochemical models that incorporate a number of physio-
logical processes and use climate data as inputs (Matsushita et al. 2004; Running
1993); and (3) Production Efficiency Models (PEM) that use the principle of
radiation-use efficiency (RUE) or light-use efficiency (LUE) with the inputs of
satellite images and climate data (Peng and Gitelson 2012; Potter et al. 1993; Prince
and Goward 1995a, b; Running et al. 1999; Sims et al. 2008; Sims et al. 2006a; Xiao
et al. 2005a, b).

The first year-long continuous measurements of net ecosystem CO2 exchange
(NEE) from the eddy covariance technique were conducted at the Harvard Forest
site in Massachusetts in 1990 (Wofsy et al. 1993). The integrated CO2 flux
measurements available at CO2 flux tower sites cover footprints with various sizes
and shapes, which range from hundreds of meters to several kilometers, depending
on tower heights, canopy physical characteristics, and wind velocity (Baldocchi
et al. 1996). Continuous measurements of NEE between terrestrial ecosystems and
the atmosphere from eddy flux towers at half-hour intervals allow for more
detailed study of ecosystem respiration (Re) and GPP at ecosystem and landscape
scales (Wofsy et al. 1993). NEE data can be gap-filled and partitioned into Re and
GPP with different methods (Papale et al. 2006; Reichstein et al. 2005); however,
there are still large uncertainties in estimating seasonal dynamics and spatial
variation of Re and GPP at the canopy and landscape scales due to spatial heter-
ogeneity within the footprints of flux measurements in a flux tower.

Process-based biogeochemical models describe the energy conversion in the
vegetation growth process, including photosynthesis and respiration. A number of
process-based biogeochemical models have been developed, such as the Bio-
Geochemical Cycles model (BIOME-BGC) (Running and Gower 1991), the
Terrestrial Ecosystem Model (TEM) (McGuire et al. 1995), the CENTURY model
(Parton et al. 1993), the Carbon Exchange in the Vegetation-Soil-Atmosphere
model (CEVSA) (Cao and Woodward 1998a, b; Woodward et al. 1995), and the
Atmosphere-Vegetation Interaction Model (AVIM) (Ji 1995). These models often
have a number of state variables and a large number of parameters that describe
the responses of various biogeochemical processes to climate, soils, and water.
Model calibration is essential and is often done before these models are applied to
simulate the carbon dynamics of terrestrial ecosystems at landscape and regional
scales (Chen and Zhuang 2012; Chiesi et al. 2012).

The PEM was first proposed to estimate NPP of vegetation by Monteith
(Monteith 1972; Monteith 1977), based on the theory of RUE or LUE. In simple
terms, NPP is estimated as the product of absorbed photosynthetically active
radiation (PAR) and RUE or LUE. Based on this concept, a number of PEMs have
been developed to estimate gross and net primary productions with the use of
satellite image data and climate data (Field et al. 1995; Potter et al. 1993; Prince
and Goward 1995; Running et al. 1994, 2004; Xiao et al. 2004c), such as the
Global Production Efficiency Model (GLO-PEM) (Prince and Goward 1995),
the Carnegie-Ames-Stanford Approach model (CASA) (Potter 1999; Potter et al.
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1993), the Vegetation Photosynthesis Model (VPM) (Xiao et al. 2004a), the
Terrestrial Uptake and Release of Carbon model (TRUC) (Ruimy et al. 1996a),
and the MODIS Daily Photosynthesis model (PSN) (Running et al. 2000). Several
recent reviews have discussed existing PEMs from different perspectives (Hilker
et al. 2008; McCallum 2009). There is still a need to compare PEMs in the context
of model variables (e.g., light absorption) and model parameters (e.g., maximum
light-use efficiency).

This book chapter is organized into five sections. In the first section we briefly
review the theory of PEMs. The second section compares several well-developed
PEMs in the contexts of model variables (e.g., light absorption) and model
parameters (e.g., light-use efficiency). The third section presents the validation
strategy using in situ data from eddy covariance technique. In the fourth section we
illustrate the simulation and evaluation processes of PEMs with a case study that
estimates GPP of maize (C4 plant) and soybeans (C3 plant) over years using the
VPM model. We conclude with a series of recommendations for parameter
estimation and improvements of validation exercises for PEMs.

5.2 Theoretical Basis

Plant photosynthesis occurs within the chloroplasts of plant leaves and is com-
posed of two processes: (1) light absorption and (2) carbon fixation. Chlorophyll
pigment absorbs incoming PAR (mostly in the spectrum of 400–700 nm) from
sunlight, and the absorbed energy is then used to combine water and CO2 to
produce carbohydrates.

When incoming radiance reaches the plant canopy, we can measure the
amounts of radiance that are reflected, transmitted, and absorbed. What fractions
of PAR are absorbed by the vegetation canopy and by chlorophyll pigment,
respectively? At the leaf level, individual green leaves have pigments (chlorophyll
and other pigments) and nonphotosynthetic materials (e.g., cell walls, veins, etc.).
At the canopy level, a plant canopy has chlorophyll pigments and nonphotosyn-
thetic vegetation (NPV; e.g., nonphotosynthetic branches, stems, trunks, senescent
leaves). Therefore, the fraction of PAR absorbed by the vegetation canopy
(FPARcanopy) should be partitioned into the fraction of PAR absorbed by chloro-
phyll (FPARchl) and the fraction of PAR absorbed by the nonphotosynthetic
vegetation component (FPARNPV). The total amount of PAR absorbed by the
vegetation canopy (APARcanopy) is the sum of (1) the amount of PAR absorbed by
chlorophyll (APARchl) and (2) the amount of PAR absorbed by NPV (APARNPV).

Canopy ¼ chlorophyll þ NPV ð5:1Þ

FPARcanopy ¼ FPARchl þ FPARNPV ð5:2Þ

APARcanopy ¼ APARchl þ APARNPV ð5:3Þ
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APARcanopy ¼ FPARcanopy � PAR ð5:4Þ

APARchl ¼ FPARchl � PAR ð5:5Þ

APARNPV ¼ FPARNPV � PAR ð5:6Þ

The framework of PEMs was first proposed in the early 1970s as a function of
APAR and LUE (Monteith 1972, 1977). Therefore, GPP and NPP can be estimated
as a product of (1) the total amount of absorbed PAR, and (2) the radiation (light)-
use efficiency (eg for GPP, and en for NPP) with the following formulas:

GPP ¼ eg � APAR ð5:7Þ

NPP ¼ en � APAR ð5:8Þ

Based on the above-mentioned conceptual partitioning between FPARchl and
FPARnpv, the PEMs can be divided into two groups. One group of PEMs uses
FPARcanopy to estimate GPP:

GPP ¼ eg � FPARcanopy � PAR ð5:9Þ

The other group of PEMs uses FPARchl to estimate GPP:

GPP ¼ eg � FPARchl � PAR ð5:10Þ

5.3 Methods

The development histories, key parameters, and variables of several well-
established PEMs are summarized in Table 5.1. Variations among the different
PEMs appear in the calculation of FPAR, the estimation of the maximum LUE
parameter, and the use of scalars or downregulation factors.

Generally, FPARcanopy can be estimated with two methods by using (1) the leaf
area index (LAI) from in situ measurements at the site scale, or (2) satellite-
derived vegetation indices at the large scale. For large scale GPP modeling with
PEMs, the Normalized Difference Vegetation Index (NDVI, Tucker et al. 1979) is
often used to estimate FPARcanopy (Potter et al. 1993; Prince and Goward 1995;
Ruimy et al. 1999; Running et al. 2004; Veroustraete et al. 2002; Yuan et al. 2007)
with a simple empirical or physical function, as shown in Eqs. 5.11 and 5.12.
About the estimation of FPARchl, Xiao et al. (2004a) first proposed using the
Enhanced Vegetation Index (EVI) (Huete et al. 1997) to estimate FPARchl (see
Eqs. 5.13 and 5.14). By simulating FPARcanopy and FPARchl using the radiative
transfer model, it was reported that EVI time series data are closer to the dynamic
of FPARchl (Zhang et al. 2006). Recently, EVI and other chlorophyll vegetation
indices have increasingly been adopted by new PEMs (Gitelson et al. 2006; Potter
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2012; Sims et al. 2006a; Xiao et al. 2005b), such as the updated version of the
CASA model (Potter et al. 2012).

FPARcanopy ¼ f NDVIð Þ ð5:11Þ

where NDVI is calculated using surface reflectance from the red and near-infrared
bands (Tucker 1979):

NDVI ¼ qNIR � qred

qNIR þ qred

ð5:12Þ

FPARchl ¼ f EVIð Þ ð5:13Þ

where EVI directly adjusts the reflectance in the red band as a function of the
reflectance in the blue band, accounting for residual atmospheric contamination
(e.g., aerosols), variable soil, and canopy background reflectance (Huete et al. 1997):

EVI ¼ G qNIR � qredð Þ
qNIR þ C1 � qred � C2 � qblueð Þ þ L

ð5:14Þ

Table 5.1 A comparison of major model variables among the 10 well-documented Production
Efficiency Models (PEMs)
Model FPAR FPAR

estimation
eg or en

(g C m-2 MJ-1

APAR)

E0 (g C m-2 MJ-1

APAR)
Year and
references

CASA FPARcanopy NDVI en = e0 9 T 9 f
(AET, PET)

0.55 Potter (1999),
Potter et al. (1993)

CASA FPARchl EVI en = e0 9 T 9 f
(AET, PET)

0.389 Potter (2012)

GLO-
PEM

FPARcanopy NDVI eg = e0 9 T 9
SM 9 VPD

55.2aa, 2.76b Prince (1995)

TURC FPARcanopy NDVI eg = e0 4.04 Ruimy et al. (1996a, b),
(1994)

MODIS-
PSN

FPARcanopy NDVI eg = e0 9 T 9 VPD 0.604-1.259c Running et al. (2000)

C-Fix FPARcanopy NDVI eg = e0 9 T 9 CO2 1.1 Veroustraete et al.
(2002)

VPM FPARchl EVI eg = e0 9 T 9
W 9 P

2.208d; 2.484e Xiao et al. (2005b)

GR FPARchl VIchl eg = f (VIchl) – Gitelson et al. (2006)
TG FPARchl EVI eg = f(EVI, LST) – Sims et al. (2008),

(2006a)
EC-

LUE
FPARcanopy NDVI eg = e0 9 min(T,

EF)
2.14 Yuan et al (2007),

(2010)

T Air temperature scalar; SM soil moisture scalar; VPD water vapor pressure deficit scalar; AET Actual
Evapotranspiration; PET Potential Evapotranspiration; CO2 the normalized CO2 fertilization factor; EF
Evaporative Fraction; LST Land Surface Temperature
a For C3 vegetation, a is quantum yield
b For C4 vegetation
c For 11 standard global biome types
d For evergreen needle leaf forests
e For moist tropical evergreen forests
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where G = 2.5, C1 = 6, C2 = 7.5, and L = 1, and qNIR, qred, and qblue are the
land surface reflectance of the NIR, red, and blue bands, respectively. EVI is more
sensitive in medium-to-high biomass areas than NDVI (Huete et al. 1997). The
following sections describe detailed calculation methods of FPAR in different
PEMs.

LUE is the rate at which absorbed radiation is converted into dry matter. It can
be estimated with various methods: a constant conversion efficiency or the product
of a maximum (optimum) constant adjusted by environmental stress scalars
(Ruimy et al. 1999). Various environmental stress scalars, such as air temperature
and soil moisture, result in downregulation of the maximum LUE (McCallum I.
2009). The GR and TG models estimate the parameter eg using remote sensing
vegetation indices (Table 5.1). The TURC model assumes maximum light-use
efficiency for all biome types without considering the environmental stresses. The
other six PEMs calculate the parameter eg by adjusting maximum light-use effi-
ciency e0 with soil moisture, air temperature, or CO2 concentration scalars.
Moreover, the CASA, TURC, C-Fix, and EC-LUE models use the same e0 across
all vegetation types. GLO-PEM, VPM, and PSN models assign specific e0 for
different biome types. A brief description of the unique variable calculations of
PEMs is listed below.

5.3.1 The Carnegie-Ames-Stanford Approach (CASA) Model

The CASA model is a simple and mechanical process model, and it describes the
processes of carbon dynamics in terrestrial vegetation and soils (Potter et al. 1993).
The CASA model directly estimates NPP, avoiding complicated calculation of
autotrophic respiration.

In the earlier version of the CASA model, FPARcanopy is estimated with NDVI
and biome type (Potter et al. 1993). The maximum value of FPARcanopy is 0.95.
FPARcanopy is defined as below:

FPARcanopy ¼ min
SR� SRmin

SRmax � SRmin

; 0:95

� �
ð5:15Þ

SR ¼ 1þ NDVI

1� NDVI
ð5:16Þ

where SRmin is 1.08 for bare land surface, and SRmax is determined by biome type,
ranging from 4.14 to 6.17.

The updated version of the CASA model uses EVI to estimate FPARchl (Potter
2012), following the work suggested by Xiao et al. (2004a):

FPARchl ¼ EVI ð5:17Þ
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The CASA model defines the constant values of e0 as 0.55 g C m-2 MJ-1

APAR (Potter 1999; Potter et al. 1993) or 0.389 g C m-2 MJ-1 APAR (Potter
et al. 2003; Potter 2012) for global biome types, and en is determined by Eq. 5.18

en ¼ e0 � T � W ð5:18Þ

where T is the temperature stress scalar computed with reference to the derivation
of the optimal temperature (Topt) for production; and W refers to the monthly
relative soil moisture deficit based on the difference between actual and potential
evapotranspiration estimated by a soil/water balance model (Nayak et al. 2010;
Potter and Klooster 1997; Potter et al. 1993, 1998).

5.3.2 The Global Production Efficiency Model (GLO-PEM)

The GLO-PEM model estimates both GPP and NPP based on the production
efficiency concept. It includes the components that describe the processes of
canopy radiation absorption, utilization, autotrophic respiration, and the regula-
tions of these processes by environmental factors (Goetz et al. 2000; Prince and
Goward 1995). The GLO-PEM model estimates FPARcanopy with NDVI. NDVI of
bare soil is approximately 0.05, and NDVI of the closed, thick, and green vege-
tation canopy is usually 0.9 or higher (Goward and Huemmrich 1992).

FPARcanopy ¼ 1:08 � NDVI� 0:08 ð5:19Þ

eg is estimated through a modeling approach based on plant physiological
principles (Prince and Goward 1995). Plant photosynthesis depends on both the
capacity of photosynthetic enzymes to assimilate CO2 (Collatz et al. 1991; Far-
quhar et al. 1980) and the stomatal conductance of CO2 from the atmosphere into
intercellular spaces (Harley et al. 1992). These two processes are affected by
environmental factors such as air temperature (T), water vapor pressure deficit
(VPD), and soil moisture (SM).

eg ¼ e0 � T � SM � VPD ð5:20Þ

Detailed approaches for modeling eg are described in earlier publications
(Collatz et al. 1991, 1992; Goetz and Prince 1998, 1999; Prince and Goward 1995).

5.3.3 The Terrestrial Uptake and Release of Carbon (TURC)
Model

The TURC model calculates NPP as the difference between GPP and autotrophic
respiration (Cramer et al. 1999; Lafont et al. 2002; Ruimy et al. 1996a, 1999). The
linear relationship between FPARcanopy and NDVI is defined with Eq. 5.21:
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FPARcanopy ¼ 2:186 � NDVI � 0:1914 ð5:21Þ

The TURC model assumes one constant eg (4.04 g C m-2 MJ-1 APAR) across
all ecosystem types (Lafont et al. 2002). Autotrophic respiration is calculated as
the sum of maintenance and growth respiration. Maintenance respiration is a linear
function of air temperature and biomass for leaves, fine roots, and wood. Growth
respiration is taken as a constant fraction (0.28) of GPP minus maintenance
respiration (Lafont et al. 2002).

5.3.4 The MODIS Daily Photosynthesis (PSN) Model

The PSN model was developed from a process-based ecosystem model BIOME-
BGC, and it estimates both GPP and NPP (Running et al. 2004). The PSN model is
driven by datasets, including land cover, FPAR/LAI, and daily meteorological data
from the Global Modeling and Assimilation Office (GMAO), NASA. It produces
8-day and yearly GPP and NPP estimates as the standard MODIS GPP/NPP
product (MOD17) (Running et al. 1994; Zhao et al. 2005).

FPARcanopy is estimated as a function of NDVI, derived from the MODIS
standard land product (MOD15) (Running et al. 1999, 2000, 2004).

FPARcanopy � NDVI ð5:22Þ

A set of e0 is predefined for 12 biome types and recorded in the Biome Prop-
erties Look-Up Table (BPLUT) (Running et al. 2000), and eg is expressed by
Eq. 5.23:

eg ¼ e0 � T � VPD ð5:23Þ

where T is the daily minimum temperature scalar, and VPD is the daylight average
water vapor pressure deficit.

5.3.5 The C-Fix Model

The C-Fix model estimates daily GPP and NPP, and also calculates Net Ecosystem
Production (NEP) by taking account of soil respiration flux (Veroustraete et al.
2002, 2004). The FPARcanopy of the C-Fix model is calculated as follows:

FPARcanopy ¼ 0:8642 � NDVI� 0:0814 ð5:24Þ

e0 is predefined as 1.1 (g C m-2 MJ-1 APAR) for all kinds of biomes. Then it is
adjusted by air temperature and CO2 fertilization within the upper atmosphere
(Veroustraete et al. 2002, 2004).

eg ¼ e0 � T � CO2 ð5:25Þ

134 X. Xiao et al.



5.3.6 The Vegetation Photosynthesis Model (VPM)

The VPM model estimates FPARchl as a linear function of EVI and the coefficient
a, which is currently set to be 1.0 (Xiao et al. 2004a, b, c, 2005b):

FPARchl ¼ a � EVI ð5:26Þ

eg is estimated by the theoretical e0 predefined for various vegetation types, air
temperature (T), land surface water conditions (W), and vegetation phenology (P):

eg ¼ e0 � T � W � P ð5:27Þ

5.3.7 The Greenness and Radiance Model

In the GR model, both the absorbed radiation for photosynthesis and LUE, are
driven by total chlorophyll content (Chlcanopy, defined as a product of LAI and leaf
chlorophyll content) (Gitelson et al. 2006), and FPARchl can be estimated as below
(Peng and Gitelson 2012):

FPARchl ¼ VIchl ð5:28Þ

where VIchl can be divided into two groups: (1) commonly used VIs, such as
NDVI, TVI, MTVI, and WDRVI, to estimate the green leaf area index (LAI),
which indirectly indicate total chlorophyll content; (2) Chlorophyll VIs, such as
the MERIS Terrestrial Chlorophyll Index (MTCI), which are chlorophyll indices
that directly represent the leaf chlorophyll content (CIgreen and CIred edge) (Peng
and Gitelson 2012). The choices of VIchl mainly depend on spectral characteristics
of satellite sensors (Peng et al. 2011). The GR model was applied to estimate GPP
of crops, including maize, soybeans (Peng and Gitelson 2012; Peng et al. 2011;
Sakamoto et al. 2011), and wheat (Wu et al. 2009).

5.3.8 The Temperature and Greenness Model

The TG model is entirely driven by remote sensing data: EVI and Land Surface
Temperature (LST) (Sims et al. 2006a, 2008).

GPP ¼ scaledEVI � scaledLSTð Þ � m ð5:29Þ

The m is a scalar with the unit of mol C m-2 day-1. It is estimated for deciduous
and evergreen vegetation, respectively.

m ¼ 2:49� 0:074� LSTan for deciduous sites ð5:30Þ

m ¼ 2:1� 0:065� LSTan for evergreen sites ð5:31Þ
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The scaledEVI and scaledLST are calculated as below:

scaledEVI ¼ EVI� 0:1 ð5:32Þ

scaledLST ¼ min LST=30ð Þ; 2:5� 0:05� LSTð Þð Þ½ � ð5:33Þ

where LSTan is the annual mean nighttime LST. Like the GR model, without
predefining the e0, the TG model directly calculates eg using both scaled EVI and
LST. LST measures the surface temperature instead of air temperature. LST is an
effective measurement of the physiological activity of top canopy leaves. More-
over, LST has been proven to have a strong relationship with VPD and can be used
as the measurement of drought stress (Sims et al. 2008).

5.3.9 The Eddy Covariance Light-Use Efficiency Model (EC-
LUE)

The EC-LUE model is driven by four variables: NDVI, PAR, air temperature, and the
Bowenratioof sensible to latentheatflux(Yuanetal. 2007).Theparameters in theEC-
LUE model are independent across various land cover types. However, the accurate
estimation of the Bowen ratio with remote sensing datasets restricts the application
of the EC-LUE model. FPARcanopy is expressed as the linear function of NDVI:

FPARcanopy ¼ 1:24 � NDVI � 0:186 ð5:34Þ

eg is estimated as the product of e0 (2.14 g C m-2 MJ -1 APAR) and the
downregulation factor of air temperature (T) or water stress (W):

eg ¼ e0 � min T; EFð Þ ð5:35Þ

EF (evaporative fraction) is defined as a proxy of water condition:

EF ¼ LE

LE þ H
ð5:36Þ

where LE and H are latent heat flux and sensible heat flux (W m-2) from eddy
covariance measurements, respectively. Recently, EF has been estimated as the
ratio of evapotranspiration (ET) to net radiation, and can be derived from the
Remote Sensing-Penman–Monteith (RS-PM) model.

5.4 Validation Efforts Using In Situ Measurements

In-situ observations from eddy covariance flux towers are effective data sources
for the validation of GPP estimations by PEMs. Around six hundred eddy
covariance flux tower sites continuously measure CO2, water, and energy fluxes in
various types of terrestrial ecosystems across the world (Xiao et al. 2011).
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Several data-processing steps are necessary to generate high-quality and con-
tinuous datasets of NEE, GPP, and ecosystem respiration. Firstly, half-hourly CO2

flux data (NEE) are examined, based on wind speed (i. e. less than 0.5 m s-1),
presence of rain and snow, incomplete sample periods, and instrument malfunc-
tion. Nighttime CO2 flux data are also checked if the friction velocity (u*) is below
a certain threshold (i. e. 0.25 m s-1). Secondly, all NEE data with PAR values less
than 5 umol m-2s-1 (NEEnight) are used to estimate nighttime respiration (R night).
NEEnight is regressed against air or soil temperature (Lloyd and Taylor 1994;
Reichstein et al. 2005):

R nightð Þ NEEnight

� �
¼ c � ekT ð5:37Þ

where Rnight is night ecosystem respiration; it equals nighttime NEE (NEEnight). c
and k are regression coefficients determined by nonlinear optimization. And Rnight

is used to extrapolate daytime ecosystem respiration (Rday). Thirdly, NEEday is
gap-filled with the Michaelis-Menten equation:

NEEday ¼
/ �PPFD� GPPmax

/ �PPFDþ GPPmax

� Rday ð5:38Þ

where a is the apparent quantum yield as PPFD approaches 0. Finally, gap-filled
NEEday and Rday data are used to estimate GPP (here simply called GPPEC.):

GPPEC ¼ Rday�NEEday ð5:39Þ

The resultant half-hourly GPP, NEE, and Rh data are aggregated to daily,
weekly, and monthly intervals. Daily, weekly, and monthly GPPEC estimated by
the eddy covariance technique as ground truth data are used to evaluate GPP
estimates from PEMs (GPPPEM). Generally, seasonal dynamics and interannual
variations of both GPPPEM and GPPEC during the vegetation growing season are
analyzed. Correlation analysis is conducted to evaluate the relationship between
GPPPEM and GPPEC, in addition to the calculation of the root mean squared error
(RMSE) between GPPPEM and GPPEC within the vegetation growing season. The
seasonal sums of GPPPEM and GPPEC within the vegetation growing season are
also computed and compared for measuring their discrepancies at the seasonal
scale.

5.5 Major Findings

The VPM has been extensively verified for various types of terrestrial ecosystems,
including temperate, boreal, moist tropical evergreen forests (Xiao et al. 2004c,
2005b), temperate and plateau grassland (Li et al. 2007; Wu et al. 2008), and
agricultural ecosystems (Kalfas et al. 2011; Wang et al. 2010) across American
and Asian continents. Here, we presented a case study of maize (C4) and soybean
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(C3) rotation cropland with the VPM model to illustrate the PEM simulation and
validation processes.

Our study site is the Mead site at the University of Nebraska Agricultural
Research and Development Center, near Mead, Nebraska, U.S.A. The site is at the
western edge of the favorably rain-fed corn belt, and it has a deep, silty clay-loam
soil texture and a temperate continental climate. The plant growing season starts in
May and ends in October. It covers 524 000 m2 and rotates between maize and
soybean cultivation via a center-pivot irrigation system. The maize canopy height
is up to 2.9 m. The eddy covariance flux measurement height is 3 m when the
canopy height is less than 1 m, and is adjusted to 6 m after the canopy height is
greater than 1 m until the harvest period (Verma et al. 2005). During the study
period of 2001–2005, maize was cultivated in 2001, 2003, and 2005, and soybeans
were cultivated in 2002 and 2004.

Figure 5.1 shows the seasonal dynamic of PAR, air temperature, and precipi-
tation. The annual average temperature is around 10.5 �C. Fifty-five percent of
annual precipitation occurs during the cultivation period, and 45 % occurs during
late winter and early spring.

In this case study, the MODIS eight-day Land Surface Reflectance (MOD09A1)
time-series dataset for the flux tower site was obtained from the MODIS data
portal at the Earth Observation and Modeling Facility (EMOF), University of
Oklahoma (http://www.eomf.ou.edu/visualization/manual/). MOD09A1 provides
an estimation of land surface reflectance after the atmosphere correction. It con-
tains Bands 1–7 at 500 m spatial resolution in eight-day intervals: 620–670 nm
(red), 841–876 nm (NIR1), 459–479 nm (blue), 545–565 nm (green),
1230–1250 nm (NIR2), 1628–1652 nm (SWIR1), and 2105–2155 nm (SWIR2),
respectively. With the reflectance values of blue, red, NIR1, and SWIR1, three
satellite vegetation indices (NDVI, EVI, and LSWI) were calculated. The seasonal
dynamics and interannual variation of three vegetation indices are shown in
Fig. 5.2. The flux tower’s footprint (less than a 250 m radius) is approximately
comparable to one MODIS pixel (500 9 500 m) (Kalfas et al. 2011). Thus, the
time-series vegetation indices during 2001–2005 from the MODIS pixel covering
the eddy covariance flux tower site were applied for the VPM simulation.

Fig. 5.1 Seasonal dynamics and interannual variations of the mean air temperature, photosyn-
thetically active radiation (PAR), and precipitation during 2001–2005 at the Mead site, Nebraska,
U.S.A. The gray area represents the crop growing season
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All meteorological and CO2 flux datasets used in this case study were down-
loaded from the AmeriFlux data portal (http://public.ornl.gov/ameriflux/). The
AmeriFlux network is a part of FLUXNET (http://daac.ornl.gov/FLUXNET),
which aims to continuously observe CO2, water, and energy fluxes at ecosystem
and landscape levels. It provides meteorological and CO2 flux datasets at daily,
weekly, and monthly intervals. The weekly gap-filled and CO2 flux-partitioned
datasets of Level 4 products during 2001–2005 were chosen for this study, as this
time scale matches the MODIS eight-day composite products used here.

The seasonal dynamics of GPPVPM predicted by the VPM were compared with
GPPEC (Fig. 5.3). Both GPPVPM and GPPEC rose rapidly in June, and reached
seasonal peaks in July–August for maize and soybeans. GPPVPM decreased to zero
in September and remained near zero until harvest, which agreed well with GPPEC

dynamics.
The scatterplots between GPPVPM and GPPEC of maize over the crop-growth

period for an individual year and all years (Fig. 5.4) show that GPPVPM is strongly
correlated with GPPEC, the correlation coefficient (R2) is 0.92 across multiple

Fig. 5.2 Seasonal dynamics and interannual variations of Normalized Difference Vegetation
Index (NDVI), Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) during
2001–2005 at the Mead site, Nebraska, USA

Fig. 5.3 Seasonal dynamics and interannual variations of the VPM-predicted gross primary
production (GPPVPM, g C m-2 day-1) and the estimated GPP from the CO2 eddy flux tower data
(GPPEC) during 2001–2005 at the Mead site, Nebraska, USA
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years, and R2 values are 0.92, 0.93, and 0.94 for 2001, 2003, and 2005, respec-
tively. As shown in Table 5.2, the root mean square deviation (RMSD) values of
maize are less than 3 g C m-2 d-1 (2.4, 2.7, and 2.0 g C m-2 d-1 for 2001, 2003,
and 2005, respectively). The seasonal sums of GPP over the crop-growth period
between GPPVPM and GPPEC are also compared in Table 5.2. The relative error
(%RE) ranged from 14.8 to 5.0 %.

Figure 5.5 shows the scatterplots between GPPVPM and GPPEC of soybeans
over the crop-growth period across individual years and all years. The correlation
between GPPVPM and GPPEC for soybeans is less strong than the relationship for
maize. However, the R2 is still relatively high, with the value of 0.85 across
multiple years, and R2 values are 0.82 and 0.88 for 2002 and 2004, respectively.

Fig. 5.4 Scatterplots between GPPEC and GPPVPM of maize in individual and multiple years
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Table 5.2 Seasonal sums and statistics of gross primary production (GPP) at the Mead site,
Nebraska, USA

Year Crop Type GPPEC GPPVPM GPP %RE RMSD

2001 Maize 1662.32 1745.81 5.02 2.37
2003 Maize 1592.72 1828.19 14.78 2.66
2005 Maize 1593.92 1744.45 9.44 2.01
2002 Soybean 910.24 913.66 0.38 1.87
2004 Soybean 845.68 830.30 -1.82 1.46

RMSD Root Mean Squared Deviation
GPPEC seasonal sum of GPP estimated from eddy covariance flux tower observations
in g C m-2 yr-1

GPPVPM seasonal sum of GPP predicted by the VPM in g C m-2 yr-1

GPP %RE: relative error in GPP sums calculated as [(GPPEC-GPPVPM)/GPPEC] 9 100

Fig. 5.5 Scatterplots between GPPEC and GPPVPM of soybean in individual and multiple years
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As shown in Table 5.2, the RMSD values of soybeans were lower than 2 g C
m-2 d-1 across multiple years (1.9 and 1.5 g C m-2 d-1 for 2002 and 2004,
respectively). The relative error (%RE) values between the seasonal sums of
GPPVPM and GPPEC were 0.4 and -1.8 % in 2002 and 2004, respectively.

The above simulation results show that the VPM, based on the concept of light
absorption by chlorophyll, had great potential to estimate the seasonal dynamics
and interannual variation of GPP for soybean (C3) and maize (C4) cropland
rotation in different years. Another earlier study (Yan et al. 2009) used the VPM
model to estimate GPP of winter wheat (C3) and maize (C4) rotation within a year
in the North China Plain, China, and also reported good agreement between
GPPVPM and GPPEC in the cropland site (Yan et al. 2009).

5.6 Future Research Directions

Remotely sensed data and PEMs have been widely used to estimate GPP and NPP
over the last few decades, as several coarse and moderate resolution sensors (e.g.,
AVHRR, SPOT-VEGETATION, MODIS, and MERIS) provide images for the globe
every day. However, further development and implementation of satellite-based
PEMs still face three major challenges for more accurate estimation of GPP and NPP.

First, the uncertainty concerning the scaling-up of light absorption from chlo-
rophyll and leaf levels to canopy, ecosystem and landscape levels is still signifi-
cant, and how to accurately estimate the amount of light absorbed by chlorophyll is
a challenging task from the perspectives of both field measurements and radiative
transfer models (Zhang et al. 2005, 2006, 2009). The concept of FPAR at the
canopy level (FPARcanopy) has been widely adopted by the remote sensing and
ecosystem modeling communities, and FPARcanopy is often calculated as a semi-
empirical linear function of NDVI and leaf area index (LAI). It is noted that only
light absorbed by chlorophyll pigments is used for photosynthesis, and the concept
of FPARchl is more meaningful for GPP estimation. Simulation results from a
coupled leaf-canopy radiative transfer model have suggested that FPARcanopy is
much higher than FPARleaf or FPARchl (Zhang et al. 2006). Recently, FPARchl has
been used for the development of several new PEMs and updated versions of
existing PEMs (Potter 2012; Sims et al. 2006b, 2008 Wu et al. 2012; Xiao et al.
2005b; Yan et al. 2009). In these PEMs, FPARchl is often estimated as the linear
function of EVI or other chlorophyll-related vegetation indices, which have proved
more consistent with the light absorption for photosynthesis at the chlorophyll
level. Nevertheless, difficulties still exist in accurately quantifying leaf chlorophyll
content and FPARchl. The empirical and semiempirical relationships between
vegetation indices and FPARchl, (for example, FPARchl = a 9 EVI), need to be
evaluated across various biome types with accurate in situ measurement, better
implementation of radiative transfer models (both model variables and parame-
ters), and selection of satellite images from various sensors (e.g., MODIS, MERIS
and RapidEye). It is necessary to regularly measure both biochemical (chlorophyll
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and FPARchl) and structural (LAI and FPARcanopy) variables across leaf, canopy,
and landscape levels and develope novel algorithms of chlorophyll content over
terrestrial ecosystems. Since a large portion of leaf nitrogen is contained within
leaf chloroplasts, more attention should also be paid to develop quantitative
relationships among chlorophyll, FPARchl, and nitrogen content.

Secondly, the uncertainty concerning the scaling-up of light-use efficiency from
chloroplast and leaf levels to canopy, ecosystem, and landscape levels is also still
significant. The estimation methods and values of maximum light-use efficiency
for various types of terrestrial ecosystems differ substantially and need more
integrative studies across various levels: chloroplast, leaf, plant, canopy, ecosys-
tem and landscape. LUE is the primary controlling parameter of satellite-based
PEMs. For most PEMs, a species- or biome-specific maximum LUE value is
predefined, and it is then down-regulated by the scalars representing various
environmental stresses. Different definitions and choices of maximum LUE and
environmental scalars are the main sources of uncertainty about PEMs. Daily NEE
and PAR data are used to examine the continuous short-time changes of LUE.
Recently, increasing effort has been reported for estimating LUE with remote
sensing techniques (Garbulsky et al. 2011). Remote sensing can indirectly estimate
LUE by adjusting maximum LUE values through environmental factors, including
soil water content, temperature, nitrogen content, and so forth. Remote sensing can
also directly estimate LUE by detecting the photoprotective mechanism from the
leaf spectral reflectance change due to the epoxidation of xanthophyll cycle pig-
ments (Barton and North 2001). The PRI (Photochemical Reflectance Index),
which demonstrates the characteristics of spectrum absorption around 505 nm and
531 nm (Gamon et al. 1992), is found to have a strong correlation with LUE
(Garbulsky et al. 2011; Hilker et al. 2009, 2010, 2012; Wu et al. 2010). Even
though the temporal, spatial, and spectral resolutions of remote sensing, and the
semiempirical feature of this approach, limit its application, the PRI can represent
the integral effect of various environmental factors, and it has great potential to
estimate LUE on regional and global scales in the future (Drolet et al. 2008).
Considerations of the temporal and spatial dynamics of LUE will greatly improve
the simulation accuracy of PEMs (Garbulsky et al. 2011).

Thirdly, there is still a great deal of uncertainty in delineating vegetation
growing seasons (starting date, ending date, and the length of the vegetation
growing season) from remote sensing data, which substantially affects the esti-
mates of total GPP over the vegetation growing season (Falge et al. 2002; Rich-
ardson et al. 2010). There is a need for better understanding and quantification of
vegetation phenology through analyses of both remote sensing data and CO2 flux
data (ecosystem physiology approach). Vegetation phenology varies over years,
driven by interannual climate variability and climate change (e.g., temperature and
precipitation) (Piao et al. 2006, 2011), and is also affected by topography (Doktor
et al. 2009; Hwang et al. 2011; Piao et al. 2011). In addition, there are also
significant differences among various algorithms that use remotely sensed data to
retrieve vegetation phenology (Cong et al. 2012). Therefore, it is very important to
continue evaluation and development of satellite-based algorithms to retrieve
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vegetation phenology over time, with the assistance of in situ carbon and water
flux data from the flux towers.

Data from eddy covariance flux tower sites have been widely used to evaluate
the PEMs at ecosystem and landscape levels. Long-term efforts are required to
validate satellite-based PEMs with the data from ground-based CO2 eddy
covariance technique. Currently, six hundred CO2 eddy flux towers are operated
across various biome types, with different land management and stages of dis-
turbance and recovery. Abundant NEE data have been accumulated and are freely
available to scientific users. Through a community-based effort, many researchers
have partitioned the half-hourly NEE into GPP and ecosystem respiration, and
made the data available to users, such as the Ameriflux and Asiaflux websites.
Collaboration between the remote sensing community and the CO2 flux tower
community will certainly help evaluate and improve satellite-based PEMs.
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Chapter 6
Assessing Net Ecosystem Exchange of
Carbon Dioxide Between the Terrestrial
Biosphere and the Atmosphere Using
Fluxnet Observations and Remote Sensing

Jingfeng Xiao

Abstract The quantification of net ecosystem exchange (NEE) of carbon dioxide
over regions, continents, or the globe is essential for understanding the feedbacks
between the terrestrial biosphere and the atmosphere in the context of global climate
change. The eddy covariance technique provides continuous NEE measurements for
a variety of ecosystem and climate types. These measurements, however, only
represent the fluxes at the scale of the tower footprint. Here a data-driven approach
and satellite remote sensing are used to upscale NEE observations from eddy
covariance flux towers to the continental scale and to produce gridded flux estimates
for the conterminous U.S. over the period 2000–2009. The resulting 10-year gridded
flux estimates (EC-MOD) have 1 km spatial resolution and 8-day time step, and
provide independent and alternative NEE estimates compared to traditional
approaches. These flux estimates are used to examine the spatial and temporal
dynamics of NEE at seasonal, annual, and interannual scales. On average, the annual
NEE of U.S. natural ecosystems is -0.54 Pg C year-1. The EC-MOD estimate of
the U.S. carbon sink agrees with recent estimates from the literature. The dominant
sources of the interannual variability in NEE of the U.S. include drought and
disturbances. EC-MOD is also valuable for evaluating simulations from ecosystem
models and atmospheric inversions.

6.1 Introduction

The quantification of net ecosystem exchange (NEE) of carbon dioxide (CO2) over
regions, continents, or the globe is essential for understanding the feedbacks
between the terrestrial biosphere and the atmosphere in the context of global
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climate change. Several methods including inventory approaches (e.g., Pacala
et al. 2001; Goodale et al. 2002; SOCCR 2007), ecosystem modeling (e.g., Potter
et al. 1993; Running and Hunt 1993; Xiao et al. 2009), and atmospheric inversions
(e.g., Tans et al. 1990; Deng et al. 2007) have been widely used to estimate NEE
over broad regions. The resulting flux estimates, however, exhibit large differences
in both patterns and magnitude (e.g., Huntzinger et al. 2012) despite the general
agreement that the terrestrial ecosystems in the northern hemisphere provide a
large carbon sink (e.g., Pacala et al. 2001; Goodale et al. 2002; Deng et al. 2007;
Pan et al. 2011a).

The eddy covariance technique provides an alternative approach for estimating
NEE. Eddy covariance flux towers have been providing continuous measurements
of ecosystem-level exchange of carbon, water, and energy spanning diurnal,
synoptic, seasonal, and interannual time scales since the early 1990s (Wofsy et al.
1993; Baldocchi et al. 2001). These flux towers provides probably the best esti-
mates of ecosystem-level carbon fluxes. These NEE measurements are routinely
partitioned into its two major components: gross primary productivity (GPP) and
ecosystem respiration (Re) (Reichstein et al. 2005; Desai et al. 2008).

At present, over 500 eddy covariance flux towers are operating on a long-term
and continuous basis around the world (FLUXNET, http://daac.ornl.gov/
FLUXNET). This global network encompasses a large range of climate and
biome types (Baldocchi et al. 2001). AmeriFlux is the regional network that
coordinates analyses of observations from flux towers within the U.S. Despite the
larger number of flux towers, the flux observations only represent fluxes at the
scale of the tower footprint with longitudinal dimensions ranging between a
hundred meters and several kilometers depending on homogeneous vegetation and
fetch (Schmid 1994; Göckede et al. 2008). To quantify the net exchange of CO2

between the terrestrial biosphere and the atmosphere over regions, continents, or
the globe, significant efforts are needed to upscale flux observations from towers to
these broad regions (Xiao et al. 2008).

Considerable advances have been made in the upscaling of flux observations
during recent years (e.g., Xiao et al. 2008, 2010, 2011a; Jung et al. 2009; Sun et al.
2011; Zhang et al. 2011). For instance, a data-driven approach has been used to
upscale carbon fluxes from the AmeriFlux network to the continental scale and
to produce gridded fields of GPP and NEE with high spatial (1 km) and temporal
(8-day) resolutions for the conterminous U.S. over the period 2000–2006 (Xiao
et al. 2008, 2010, 2011a). The GPP and NEE fields were derived from eddy
covariance (EC) flux measurements and MODIS data, and are referred to as
EC-MOD. The continuous EC-MOD flux fields were used to assess the magnitude,
distribution, and interannual variability of recent U.S. ecosystem carbon exchange
(Xiao et al. 2010, 2011a). One of the main innovations in the EC-MOD estimates
compared to traditional approaches is the use of daily NEE measurements from flux
towers. These measurements represent direct samples of net CO2 exchange from
sites encompassing a wide variety of U.S. biomes and climate types, which have not
been previously utilized in U.S. carbon budget studies (e.g., Houghton et al. 1999;
Caspersen et al. 2000; Schimel et al. 2000; Pacala et al. 2001; SOCCR 2007).
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The analysis based on EC-MOD flux estimates provides an alternative, indepen-
dent, and novel perspective on recent U.S. ecosystem carbon exchange (Xiao et al.
2010, 2011a).

The gridded flux estimates are also valuable for evaluating simulations of eco-
system models and atmospheric inversions. EC-MOD fluxes have been used to
evaluate GPP and NEE (Sun et al. 2011). The North American Carbon Program
(NACP) regional interim synthesis also compared EC-MOD fluxes with simulations
from a number of ecosystem models for temperate North America (Huntzinger
et al. 2012). EC-MOD fluxes have also been used to evaluate the flux estimates
derived from a boundary layer model at regional scales (Dang et al. 2011) and
inversions for North America derived from a nested inversion model at the conti-
nental scale (Deng et al. 2013).

A number of upscaling studies have been reported at recent professional
meetings and journals, following the early work by Xiao et al. (2008). The advances
in the upscaling of flux observations were summarized in plenary talks at the 2nd
North American Carbon Program (NACP) All-Investigators Meeting in San Diego,
California (February 2009) and the AmeriFlux Science Meeting and 3rd NACP
All-Investigators Meeting in New Orleans, Louisiana (January 31–February 4,
2011). A recent special issue in Journal of Geophysical Research—Biogeosciences
is devoted to the upscaling of flux observations. This special issue consists of seven
research articles on different topics of upscaling science and reflects the most recent
advances in the upscaling of flux observations (Xiao et al. 2012).

Here I use a data-driven approach (Xiao et al. 2008) and satellite remote
sensing to extend the NEE estimates of EC-MOD for the conterminous U.S.
(2000–2006) (Xiao et al. 2011a) to the 10-year period from 2000 to 2009. Flux
observations from the AmeriFlux network and various satellite data streams are
combined to develop a predictive model for NEE, and the predictive model is then
used to produce gridded NEE estimates with 1 km spatial resolution and 8-day
time step for the 10-year period. The extended gridded flux estimates (EC-MOD)
are then used to examine the spatial and temporal dynamics of NEE for U.S.
terrestrial ecosystems at seasonal, annual, and interannual scales.

6.2 Theoretical Basis

NEE is the difference between GPP and ecosystem respiration (Re). NEE is
influenced by a variety of meteorological, physiological, atmospheric, hydrologic,
and edaphic variables (Xiao et al. 2008). GPP is the amount of carbon fixed by
vegetation through photosynthesis, and is influenced by incoming solar radiation,
air temperature, vapor pressure deficit, soil moisture, and nitrogen availability
(Clark et al. 1999, 2004). GPP is also regulated by leaf area index (LAI) and canopy
phenology at the ecosystem level (Richardson et al. 2010). Ecosystem respiration
(Re) includes autotrophic (Ra) and heterotrophic respiration (Rh). The controlling
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factors of Ra include air temperature, tissue carbon (foliage, stem, roots), and
nitrogen content in vegetation compartments (Ryan 1991), whereas Rh is often
modeled as a function of substrate availability, soil temperature and soil moisture
(Ryan and Law 2005). All these factors influence NEE by regulating GPP and/or
Re. NEE is also affected by disturbances from fire and harvest (Amiro et al. 2010;
Liu et al. 2011).

Satellite remote sensing can be used to account for many of these factors
influencing NEE (Xiao et al. 2008). For instance, surface reflectance of vegetation
depends on not only wavelength region and sun-object-sensor geometry but also on
biophysical properties (e.g., biomass, leaf area, and stand age) and soil moisture
(Ranson et al. 1985; Penuelas et al. 1993). Vegetation indices and biophysical
parameters derived from surface reflectance can also account for factors influencing
NEE, such as the enhanced vegetation index (EVI), the land surface temperature
(LST), the normalized difference water index (NDWI), the fraction of photosyn-
thetically active radiation absorbed by vegetation canopies (fPAR), and LAI.

Vegetation indices such as the normalized difference vegetation index (NDVI)
capture the contrast between the visible-red and near-infrared reflectance of
vegetation canopies, and are closely correlated to fPAR (Asrar et al. 1984). These
vegetation indices are also related to vegetation biomass (Myneni et al. 2001),
photosynthetic activity (Zhou et al. 2001; Xiao and Moody 2004), and fractional
vegetation cover (Xiao and Moody 2005). However, NDVI has several limitations,
including saturation in a multilayer closed canopy and sensitivity to both atmo-
spheric aerosols and soil background (Huete et al. 2002; Xiao and Moody 2005).
To account for these limitations of NDVI, Huete et al. (1997) developed the
improved vegetation index—EVI:

EVI ¼ 2:5
qnir � qred

qnir þ 6qred � 7:5qblueð Þ þ 1
ð6:1Þ

where qnir, qred, and qblue are the spectral reflectance at the near-infrared, red, and
blue wavelengths, respectively.

The LST derived from MODIS is a measure of the soil temperature at the
surface. The MODIS LST agreed with in situ measured LST within 1 K in the
range 263–322 K (Wan et al. 2002). LST is likely a good indicator of Re as both
Ra and RH are significantly affected by air/surface temperature. For instance,
Rahman et al. (2005) showed that satellite-derived LST was strongly correlated
with Re.

A combination of NIR and shortwave infrared (SWIR) bands has been used to
derive water-sensitive vegetation indices (Ceccato et al. 2002) because of the
sensitivity of SWIR to vegetation water content and soil moisture. For instance,
Gao (1996) developed the NDWI from satellite data to measure vegetation liquid
water:

NDWI ¼ qnir � qswir

qnir þ qswir
ð6:2Þ
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where qswir is the reflectance at the shortwave infrared (SWIR) spectral band. The
capability of NDWI for estimating canopy water stress status that affects photo-
synthesis is limited by its sensitivity to the relatively small changes in relative
water content observed in natural vegetation and inability to discern changes in
canopy biomass from changes in canopy moisture status (Hunt and Rock 1989;
Gao 1996). Some studies, however, have shown that the NDWI is strongly cor-
related with leaf water content (equivalent water thickness) (Jackson et al. 2004)
and soil moisture (Fensholt and Sandholt 2003) over time. NDWI has been used to
derive a water scalar in a light use efficiency model (Xiao et al. 2005).

Satellite remote sensing has also been used to quantify LAI and fPAR (e.g.,
Myneni et al. 2002). These two variables characterize vegetation canopy func-
tioning and energy absorption capacity (Myneni et al. 2002), and are key
parameters in most ecosystem productivity and biogeochemical models due to
their high correlation with GPP (Sellers et al. 1997).

The explanatory variables used in the data-driven approach include land cover,
EVI, LST, NDWI, fPAR, LAI, and photosynthetically active radiation (PAR), and
these variables can account for factors influencing NEE. The explanatory variables
used here are slightly different from those used previously (Xiao et al. 2008) in that
surface reflectance is not used here. All these variables can be obtained from
MODIS data products, which also avoid the complications and difficulties to
merge disparate data sources.

6.3 Methods

A data-driven approach (Xiao et al. 2008) is used to develop a predictive model for
NEE using flux observations from AmeriFlux and MODIS data streams. The
predictive model is then used to produce continuous NEE estimates for the con-
terminous U.S. over the period 2000–2009.

6.3.1 AmeriFlux Data

The AmeriFlux network consists of a number of active and inactive flux towers
across the U.S. (Fig. 6.1). The Level 4 NEE data were obtained for AmeriFlux
sites over the period 2000–2006 (Xiao et al. 2008). These sites are distributed
across the conterminous U.S. The Level 4 product consists of NEE data with four
different time steps, including half-hourly, daily, 8-day, and monthly. NEE was
calculated using the storage obtained from the discrete approach or using a vertical
CO2 profile system, and was gap-filled using artificial neural network. The 8-day
NEE data (g C m-2 day-1) were used to match the compositing intervals of
MODIS data.
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NEE is the difference of two large carbon fluxes—photosynthesis (GPP) and
ecosystem respiration (Re), and the errors of these two fluxes compensate each
other. For instance, underestimated GPP and underestimated Re may lead to an
accurate NEE estimate. A small error in GPP or Re can also translate to a large
error in NEE as the magnitude of GPP or Re is typically much larger than NEE. To
avoid compensating errors the basic processes underlying ecosystem carbon
uptake and release should both be modeled well (Richardson et al. 2007). Unlike
most modeling approaches, the data-driven approach directly estimates NEE,
which avoids the compensating errors.

6.3.2 MODIS Data

MODIS ASCII (American Standard Code for Information Interchange) subsets
(Collection 5) were obtained for each AmeriFlux site from the Oak Ridge National
Laboratory’s Distributed Active Archive Center (ORNL DAAC). These subsets
consist of 7 9 7 km regions centered on the flux tower, including surface

Fig. 6.1 The location and distribution of AmeriFlux sites in the conterminous U.S. Symbols
stand for flux sites. The base map is the MODIS land cover map, and its land cover classes
include: evergreen needleleaf forests (ENF), evergreen broadleaf forests (EBF), deciduous
needleleaf forests (DNF), deciduous broadleaf forests (DBF), mixed forests (MF), closed
shrublands (CSH), open shrublands (OSH), woody savannas (WSA), savannas (SAV), grasslands
(GRA), croplands (CRO), urban areas (Urban), barren or sparsely vegetated (Barren), and water
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reflectance, daytime and nighttime LST, EVI, LAI, and fPAR over the period
2000–2006. The processing of these subsets has been described in detail by Xiao
et al. (2008). Average values were extracted for the central 3 9 3 km area within
the 7 9 7 km cutouts to better represent the flux tower footprint (Rahman et al.
2005; Xiao et al. 2008). For each variable, the quality of the value of each pixel
within the area was determined using the quality assurance (QA) flags included in
the product. Each 16-day EVI value was used for the two 8-day intervals corre-
sponding with the compositing interval of other MODIS data products. NDWI was
calculated from band 2 and band 6 of the surface reflectance product.

Wall-to-wall MODIS data (Collection 5) including surface reflectance, daytime
and nighttime LST, LAI, and EVI with 1 km spatial resolution were used for the
estimation of NEE at the continental scale. These data were obtained from
NASA’s Warehouse Inventory Search Tool (WIST) for the period from March
2000 to December 2009. Similarly, for each variable, the quality of the value of
each pixel was determined using the QA flags and replaced the bad-quality value
using a linear interpolation approach (Zhao et al. 2005). The NDWI was calculated
from band 2 (near-infrared, 841–876 nm) and band 6 (shortwave infrared,
1628–1652 nm) of the surface reflectance product (MOD09A1). Each 16-day EVI
composite was used for two 8-day intervals corresponding to the compositing
interval of other MODIS products.

The 1 km MODIS land cover map (Friedl et al. 2002; Fig. 6.1) is used to
specify the vegetation type of each cell across the conterminous U.S. The land
cover map is based on the University of Maryland (UMD) classification scheme.
The vegetation classes of the land cover map are reclassified to seven broad
classes: evergreen forests, deciduous forests, mixed forests, shrublands, savannas,
grasslands, and croplands.

6.3.3 PAR Data

Gridded PAR data were obtained from the Modern Era Retrospective-Analysis for
Research and Applications (MERRA) reanalysis data set. The MERRA time
period covers the modern era of remotely sensed data from 1979 through the
present. MERRA makes use of observations from NASA’s Earth Observing
System satellites and reduce the uncertainty in precipitation and interannual
variability by improving the representation of the water cycle in reanalyses
(Rienecker et al. 2011). MERRA data were obtained from the Global Modeling
and Assimilation Office (GMAO; http://gmao.gsfc.nasa.gov/). This data set has a
spatial resolution of 0.5� 9 0.667�. The PAR data were resampled to 1 km spatial
resolution to match the resolution of other explanatory variables.
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6.3.4 Data-Driven Approach

A data-driven approach is used to upscale fluxes from the tower footprint to the
continental scale. This approach has been fully describedelsewhere (Xiao et al. 2008),
and is briefly summarized here. The data-driven method is essentially an ensemble
of regression models. This approach relies on rule-based models, each of which is
a set of conditions associated with a multivariate linear submodel. These rule-
based, piecewise regression models allow both numerical (e.g., carbon fluxes,
temperature, vegetation index) and categorical variables (e.g., land cover type) as
input variables, and account for possible nonlinear relationships between predic-
tive and target variables.

In this approach, the predictive accuracy of a rule-based model can be improved
by combining it with an instance-based/nearest-neighbor model that predicts the
target value of a new case using the average predicted values of the n most similar
cases (RuleQuest 2008). The use of the composite model can improve the pre-
dictive accuracy relative to the rule-based model alone. This approach can also
generate committee models made up of several rule-based models, and each
member of the committee model predicts the target value for a case (RuleQuest
2008). The member’s predictions are averaged to give a final prediction.

A predictive NEE model was constructed using AmeriFlux and MODIS data.
The predictive variables include a variety of MODIS data streams, such as veg-
etation type, EVI, LST, NDWI, and PAR. Three statistical measures are used to
evaluate the quality of the constructed predictive model, including mean absolute
error (MAE), relative error (RE), and product-moment correlation coefficient
(Yang et al. 2003; Xiao et al. 2008). MAE is calculated as:

MAE ¼ 1
N

XN

i ¼ 1

yi � ŷij j ð6:3Þ

where N is the number of samples used to establish the predictive model, and yi

and ŷi are the actual and predicted values of the response variable, respectively. RE
is calculated as:

RE ¼ MAET

MAEl
ð6:4Þ

where MAET is the MAE of the constructed model, and MAEl is the MAE that
would result from always predicting the mean value.

For forest sites, the MAE and RE are 0.48 g C m-2 day-1 and 0.37, respec-
tively for the predictive model. For non-forest sites, the MAE and RE are 0.73 g C
m-2 day-1 and 0.61, respectively. The performance of the model is slightly better
for forest sites than for non-forest sites. Given the diversity in ecosystem types, age
structures, fire and insect disturbances, and management practices, the perfor-
mance of these models is encouraging (Xiao et al. 2008).

156 J. Xiao



6.4 Validation

Cross-validation can provide an estimate of the predictive accuracy of the
predictive model. The k-fold cross-validation, in which the cases are divided into
k blocks of roughly the same size and target value distribution, is used here. For
each block, a predictive model is constructed from the cases in the remaining
blocks, while the cases in the hold-out block is then used to test the performance of
the model (RuleQuest 2008). The cross-validation shows that the predictive
models estimate NEE fairly well (Fig. 6.2). The performance of the model is
slightly better for forest sites (y = 0.87x - 0.08, R2 = 0.87, p \ 0.0001) than for
non-forest sites (y = 0.85x - 0.08, R2 = 0.85, p \ 0.0001). The Root Mean
Squared Error (RMSE) of the model for forest sites is 34.0 % lower than that of
the model for non-forest sites.

6.5 Major Findings

With validation, the predictive model is used to estimate NEE for each 1 9 1 km
cell within the conterminous U.S. and for each 8-day interval from March 2000 to
December 2009 to produce continuous NEE estimates with high spatial (1 km) and
temporal (8-day) resolutions. EC-MOD provides alternative, independent gridded
flux estimates for the U.S. compared to traditional methods including inventory
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Fig. 6.2 Observed NEE versus predicted NEE based on 10-fold cross validation: a forest sites
(y = 0.87x - 0.08, R2 = 0.87, p \ 0.0001; RMSE = 0.62 g C m-2 day-1); b non-forest sites
(y = 0.85x - 0.08, R2 = 0.85, p \ 0.0001; RMSE = 0.94 g C m2 day-1). The units are g C
m-2 day-1
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approaches, ecosystem modeling, and atmospheric inversions. The extended
EC-MOD flux estimates are used to examine the spatial and temporal dynamics of
NEE at seasonal, annual, and interannual scales.

6.5.1 Monthly NEE and Seasonality

Figure 6.3 shows monthly NEE from January to December in 2009. The monthly
NEE was aggregated from the 8-day NEE estimates. The results show that the
data-driven model generally captures the spatial and temporal patterns of NEE.
NEE varies substantially from month to month and from season to season. For
each month/season, the flux also varies substantially over space. In the winter

Fig. 6.3 Monthly NEE for the conterminous U.S. from January through December in 2009. The
units are g C m-2 mo-1. Negative values indicate carbon uptake, and positive values indicate
carbon release. Gray lines indicate state boundaries
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(December–March), the majority of the U.S. terrestrial ecosystems is nearly car-
bon neutral or slightly releases carbon. This is because the canopies of the ter-
restrial ecosystems are largely dormant in the winter with photosynthesis
approaching 0 and ecosystem respiration exceeding photosynthesis.

In the spring (March–May), the onset of the growing season starts in the Gulf
Coast region, and then progresses to north. In March, ecosystems in some areas,
including the Gulf Coast, coastal Pacific Northwest, and California, slightly absorb
carbon from the atmosphere because of the dominance of evergreen forests and mild
temperatures in these areas (Waring and Franklin 1979; Anthoni et al. 2002). In May,
the majority of eastern U.S. and many regions in the West assimilate carbon. The
Midwestern region including the Upper Great Lakes region and the northern Great
Plains still releases carbon. This region is dominated by croplands with most crops
planted between April and June (Shroyer et al. 1996), and crops are sparse in the
beginning of the growing season and ecosystem respiration exceeds GPP.

In the summer, the entire eastern U.S. assimilates carbon from the atmosphere.
Croplands in the Midwest generally exhibit higher net carbon uptake than eastern
forests. The majority of the West except the coastal Pacific Northwest and central
California is nearly carbon neutral. Some areas in the west release carbon. The fall
months (September–November) are the transition from the summer to the winter.
Most ecosystems absorb less carbon in the fall than in the summer months as
vegetation begins to the senesce and days become shorter.

The trajectory of the monthly NEE averaged over the U.S. depends on vege-
tation type (Fig. 6.4). Deciduous forests and croplands have large intra-annual
variability in NEE, while evergreen forests, grasslands, and savannas have much
less variability. During the peak of the growing season (June–August), deciduous
forests and croplands have the largest net carbon uptake; mixed forests, savannas,
and evergreen forests have intermediate carbon uptake; grasslands have the lowest
carbon uptake. Shrublands release carbon from June to October due to high
temperatures and large water deficits. Deciduous forests and croplands release
carbon from late fall to early spring.
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6.5.2 Annual NEE

The 8-day NEE estimates were aggregated to the annual scale for each year from
2001 to 2009, and mean annual NEE was then calculated for the 9-year period
(Fig. 6.5). The net flux here represents the terrestrial part of the carbon cycle
without fire emissions and immediate carbon loss caused by the removal and
burning of biomass. The mean annual NEE map shows that the eastern U.S.
sequesters CO2 from the atmosphere and thus provides a carbon sink. The coastal
Pacific Northwest, the Rocky Mountains, and a part of California also provide
carbon sinks. Many other areas in the western U.S. including the Great Basin, the
Colorado Plateau, and the western Great Plains, however, do not significantly
sequester CO2 from the atmosphere or release carbon and are thus nearly carbon
neutral likely due to sparse vegetation and water stress. Some regions in the West,
particularly southwestern states including Nevada, Arizona, New Mexico, and
western Texas, provide minor carbon sources.

Figure 6.6 shows the mean annual NEE integrated over the U.S. and for each
broad vegetation type. On average, the total annual NEE of the U.S. terrestrial
ecosystems is -0.97 Pg C year-1 (1 Pg = 1015 g). The annual NEE of natural
ecosystems and croplands is -0.54 and -0.43 Pg C year-1, respectively. These
estimates are slightly lower than the previous EC-MOD estimates in absolute
magnitude for the period 2001–2006 (-0.63 and -0.58 Pg C year-1 for natural
ecosystems and croplands, respectively; Xiao et al. 2011a). Among natural
ecosystems, forests and savannas provide the largest net carbon uptake, followed
by savannas; grasslands provide the least carbon sink. Shrublands provide a minor
carbon source.

The annual NEE estimates are not annual net biome productivity (NBP) as they
do not explicitly include the fire emissions and immediate carbon loss caused by the
removal and burning of biomass. The estimate from EC-MOD (0.54 Pg C year-1)

Fig. 6.5 Mean annual NEE
for the conterminous U.S.
over the period 2001–2009.
Units are g C m-2 year-1.
Negative values indicate
carbon uptake, and positive
values indicate carbon
release. Gray lines indicate
state boundaries
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likely overestimates the magnitude of the U.S. carbon sink. Wiedinmyer and Neff
(2007) estimated that wildfire in the U.S. released 0.06 Pg C year-1. With fire
emissions deducted, the EC-MOD estimate for the magnitude of the U.S. carbon
sink is 0.48 Pg C year-1 over the period 2001–2009. This estimate is within the
range (0.30–0.58 g C year-1) estimated by Pacala et al. (2001) and almost identical
with the estimate (0.49 Pg C year-1) by the first North American State of the
Carbon Cycle Report (SOCCR 2007).

6.5.3 Interannual Variability of NEE

The anomalies of annual NEE were calculated for each year relative to the 9-year
mean (2001–2009) to examine the interannual variability of NEE. The NEE of
terrestrial ecosystems exhibits large interannual variability over the 9-year period.
Figure 6.7 shows the anomalies of annual NEE for 2002. The sign and magnitude
of the anomalies vary over space. The Great Plains and some regions in the
Midwest exhibit large positive anomalies, indicating reduced carbon uptake or net
carbon release. Some regions in the eastern U.S., including Minnesota, Kentucky,
and Tennessee, exhibit large negative anomalies, indicating increased net carbon
uptake. The remaining regions large exhibit small anomalies.

The annual NEE of U.S. terrestrial ecosystems varies from year to year
(Fig. 6.8). The annual NEE of the U.S. terrestrial ecosystems varies between
-0.77 and -1.09 Pg C year-1 over the period 2001–2009. During the 9 years,
2009 had the lowest net carbon uptake (-0.77 Pg C year-1), followed by 2002 and
2006 (-0.90 and -0.89 Pg C year-1, respectively). The annual NEE in 2009 was
20.6 % lower than the 9-year mean (-0.97 Pg C year-1) and 29.4 % lower than
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Fig. 6.6 Mean annual NEE
for each broad vegetation
type within the conterminous
U.S. over the period
2001–2009: evergreen forests
(EF), deciduous forests (DF),
mixed forests (MF),
shrublands (Sh), savannas
(Sa), grasslands (Gr), and
croplands (Cr). Natural
ecosystems (Natural) consist
of all these broad vegetation
types except croplands. The
units are Pg C year-1
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2005 with the highest net carbon uptake (-1.09 Pg C year-1). The reduction of
annual NEE is mainly caused by the decrease in NEE for natural ecosystems. The
annual NEE of croplands is less variable than that of natural ecosystems because
irrigation can effectively reduce water stress for crops.

The dominant sources of the interannual variability in annual NEE of the U.S.
include severe extended drought and disturbances (e.g., fires, hurricanes, and
insect outbreaks) (Xiao et al. 2011a). Major forest disturbances include fire, hur-
ricanes, harvesting, and insect outbreaks, each of which can have substantial
impacts on carbon stocks and fluxes via their effects on forest structure and
function (Amiro et al. 2010). Disturbances affect carbon dynamics in two major
ways (Liu et al. 2011). First, disturbance transfer carbon among pools (e.g., from
live boles to dead coarse woody debris, or from live biomass pool and surface soil

Fig. 6.7 Anomaly of annual
NEE in 2002 relative to the
2001–2009 mean. The units
are g C m-2 year-1.
Negatives values indicate
increased carbon uptake, and
positive values indicate
reduced carbon uptake or net
carbon release
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Fig. 6.8 Annual NEE of
natural ecosystems and
croplands for the
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pool to atmosphere). Second, disturbances modify soil physical and chemical
factors and microclimate, creating ecological legacies that affect carbon dynamics
over ensuing decades or even centuries. The low net carbon uptake in 2002, 2006,
and 2009 are likely mainly caused by severe extended droughts and wild fires.

6.5.4 Sources of Uncertainty

Despite the encouraging performance of the data-driven model, the resulting
gridded flux estimates for the U.S. exhibit significant uncertainties. There are
several sources of uncertainty associated with the NEE estimates, including
uncertainty in flux observations from towers, uncertainty in other input data (e.g.,
land cover), model structural uncertainty, and uncertainty resulting from the
representativeness of the AmeriFlux network (Xiao et al. 2011a).

The uncertainty of input data can propagate through model simulations and lead
to biases in the flux estimates. The NEE measurements from eddy covariance flux
towers contain significant uncertainty largely due to random measurement error
(Hollinger and Richardson 2005). The potential uncertainties associated with the
eddy covariance technique include systematic errors from insensitivity to high-
frequency turbulence, random errors from inadequate sample size associated with
averaging period, vertical and horizontal advection, u* filtering, and gap-filling
methods (e.g., Hollinger and Richardson 2005; Loescher et al. 2006). Other input
data, particularly the land cover map, also contain significant uncertainty. Land-
cover maps are typically derived from satellite remote sensing, and their uncertainty
is associated with the limited accuracy of image classification. The sub-grid
heterogeneity in land cover, topography, and climate can also influence the accuracy
of the gridded flux estimates.

There is also significant uncertainty associated with the algorithm of the data-
driven approach. As mentioned earlier, a variety of variables derived from satellite
remote sensing including EVI, LST, NDWI, and LAI are used as explanatory
variables for the prediction of NEE. Although these variables can partly account
for the climatic, physiological, and hydrological factors controlling NEE, some
important factors influencing NEE such as soil organic carbon pools and distur-
bances are not represented. In addition, it is debatable whether NDWI provides a
sufficient measure of ecosystem water stress, although it is strongly related to leaf
water content (Jackson et al. 2004) and soil moisture (Fensholt and Sandholt
2003). Microwave sensors including AMSR-E provide global estimates of soil
moisture that can be potentially used in upscaling efforts. These estimates, how-
ever, are not available for densely vegetated areas that are important for terrestrial
carbon cycling. For a given cell, the data-driven approach can also introduce
biases to the flux estimates if the values of the explanatory variables are beyond
the range of the training data.

The representativeness of the AmeriFlux network also leads to uncertainty in
the gridded flux estimates. Although the AmeriFlux sites are fairly representative
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of the major U.S. ecosystem and climate types (Hargrove et al. 2003; Xiao et al.
2011a), some geographical regions and vegetation types are still underrepresented.
For example, there are very few sites in the Great Basin, the Rocky Mountain, and
the western Great Plains regions. There are also very limited sites for open
shrublands and savannas. The temporal representativeness of the AmeirFlux data
may also influence the flux estimates. Multiple years of data (2000–2004) were
used to train the models here to account for the interannual variability of fluxes.
A 5-year period of time, however, is perhaps still limited for capturing some
extreme events.

6.6 Future Research Directions

Satellite remote sensing provides valuable information for upscaling flux obser-
vations from the tower footprint to regional and continental scales. The resulting
gridded flux estimates generally capture the spatial and temporal patterns of NEE.
These flux estimates can be used to examine the magnitude, distribution, and
interannual variability of net carbon uptake/release over broad regions.

In future work, the upscaling of flux observations should explicitly incorporate
the impacts of disturbance on ecosystem carbon exchange (e.g., Amiro et al. 2010;
Liu et al. 2011). Satellite remote sensing can be used to produce spatially-explicit
information on aboveground biomass (Zhang and Kondragunta 2006), disturbance
(Goward et al. 2008; Huang et al. 2010), and stand age (Pan et al. 2011b), which is
potentially useful for accounting for the state and stages of forest ecosystems and
the impacts of disturbances. Future upscaling work is also expected to advance
towards quantifying uncertainties associated with gridded flux estimates by con-
sidering various sources of uncertainty (Xiao et al. 2011b, 2012). Future upscaling
efforts will benefit from the intercomparison of multiple upscaling methods
including data-driven (e.g., Xiao et al. 2008, 2010, 2011a; Jung et al. 2009; Zhang
et al. 2011) and data assimilation (e.g., Xiao et al. 2011b) approaches and the
resulting flux fields. The intercomparison of flux estimates resulting from different
upscaling approaches as well as comparison of these approaches to other methods
such as atmospheric inversions, biomass inventories, and ecosystem models can
provide complementary information for the diagnostics of net carbon exchange
between the terrestrial biosphere and the atmosphere and valuable information for
future improvement of these approaches (Xiao et al. 2012).
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Chapter 7
Oceanic Chlorophyll-a Content

Chuanmin Hu and Janet Campbell

Abstract Ever since the first Earth-observing satellite was launched, it became
the dream of oceanographers to measure ocean chlorophyll a from space. Through
more than a decade of dedicated theoretical, laboratory, and field research, the
Coastal Zone Color Scanner was launched onboard NASA’s Nimbus-7 satellite in
1978. Originally intended as a proof-of-concept mission, the CZCS endured well
beyond its two-year design life (1978–1986), and provided oceanographers with
clear evidence that ocean chlorophyll a could be observed from space. Continued
community effort led to the successor missions of the Sea-viewing Wide Field-of-
view Sensor (SeaWiFS, 1997–2010), Moderate Resolution Imaging Spectroradi-
ometer (MODIS, 1999—present for Terra and 2002—present for Aqua), Medium
Resolution Imaging Spectrometer (MERIS, 2002–2012), and other modern satel-
lite instruments. This chapter provides a brief review of how oceanic chlorophyll
a is ‘‘measured’’, validated, and used in various research studies and applications
including the ocean’s response to climate variability and the assessment of coastal
ocean changes to help resource management. Particular emphasis is given to
atmospheric correction, bio-optical inversion, and algorithm validation. Finally,
future satellite ocean color missions and research directions to support these
missions are briefly discussed.
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7.1 Introduction

Soon after the first satellite images of the Earth became available in the 1960s,
biological oceanographers started to wonder whether it was possible to measure the
ocean’s phytoplankton biomass from space. Yentsch (1965) first discussed the
distribution of chlorophyll and phaeophytin in the ocean and described how their
varying patterns might appear in satellite images. In 1967, the debut of the first
airborne spectroradiometer on the C-47 aircraft of the Woods Hole Oceanographic
Institute represented the birth of biological ocean remote sensing (Clarke et al.
1970). In the 1970s, several research institutions and research groups pioneered
instrument and radiative transfer theory development that provided the basis for a
proof-of-concept satellite mission. These included, for example, the Scripps
VisLab’s development of various spectroradiometers, the NOAA R/V Discoverer’s
optical survey of the Peru coastal upwelling, and theoretical work of Preisendorfer,
Morel, Gordon, Zaneveld, and their coworkers (e.g., Preisendorfer 1976; Morel and
Prieur 1977; Zaneveld 1982; Gordon and Morel 1983). After more than a decade of
effort, in 1978, the Coastal Zone Color Scanner (CZCS) was launched onboard the
Nimbus-7 satellite and, until 1986, provided unprecedented data to study the ocean’s
biology (Hovis et al. 1980). Initial results showed moderate success in estimating the
surface chlorophyll concentration (Gordon et al. 1980; Smith and Baker 1982), and
numerous studies of the ocean’s primary productivity, biogeochemistry, and
response to climate perturbations followed thereafter. These were summarized in a
special volume of the Journal of Geophysical Research (Mitchell 1994).

There was a 10 year gap between 1986 and 1996 before the next ocean color
sensor, the short-lived Ocean Color and Temperature Sensor (OCTS, Nov 1996–
June 1997), was carried aboard the Japanese Midori satellite. Soon thereafter, the
Sea-viewing Wide Field-of-view Sensor (SeaWiFS, August 1997–December
2010) was launched onboard the Orbview-2 satellite, ushering in the modern era of
continuous space-based ocean color observations (Hooker et al. 1992; McClain
2009). Since then, many follow-on ocean color sensors have been launched into
space by the U.S. NASA, the European Space Agency (ESA), and other interna-
tional agencies. These include the Moderate Resolution Imaging Spectroradiom-
eter (MODIS, 1999–present for Terra and 2002–present for Aqua, NASA), the
Medium Resolution Imaging Spectrometer (MERIS, 2002–2012, ESA), the Ocean
Color Monitor (OCM-1, 1999–present; OCM-2, 2009–present, India), and more
recently, the Geostationary Ocean Color Imager (GOCI, 2010–present, South
Korea) and the Visible Infrared Imager Radiometer Suite (VIIRS, 2011–present,
NASA and NOAA). For a reference, Table 7.1 lists the characteristics of several
ocean color sensors commonly used by the scientific community. After proper
calibration and validation, the frequent and synoptic observations of the global and
regional oceans from these large-swath satellite observations have been used in a
variety of research and applications well beyond the original scope of mapping
ocean chlorophyll. For example, ocean color observations have been used to study
the ocean’s biogeochemistry and primary production, to trace ocean circulation
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and upwelling, to monitor harmful algal blooms (HABs) and pollution events such
as oil spills, to document coastal water quality changes, to assess ocean fishery and
other resources, and to help make management decisions. Yet, to date, the single
most-often used parameter from these satellite missions is the surface ocean
chlorophyll-a concentration (Chl in mg m-3), which has often been used inter-
changeably with the term ‘‘ocean color.’’

Here, based on the most recent research findings from the ocean color com-
munity, a brief review is provided on how Chl is derived from satellite mea-
surements and how Chl maps help to understand global ocean biology and
biogeochemistry, regional oceanography, and coastal water quality changes. This
chapter is not meant to present a comprehensive list of all possible topics enabled
by satellite-based Chl observations, but rather its focus is on the methods of Chl
retrievals with several examples showing major findings. Interested readers may
read the refereed literature and technical reports compiled by the International
Ocean Colour Coordinating Group (http://www.ioccg.org) to get a full breadth and
depth of knowledge in the various aspects of ocean color remote sensing.

7.2 Theoretical Basis

The theory of ocean optics and optical remote sensing has been described in
numerous textbooks and articles (e.g., Gordon and Morel 1983; Mobley 1994;
Morel and Maritorena 2001). Conceptually, the dominant material affecting ocean
color is the water itself, which scatters blue light and absorbs red light. Variability
in ocean color is determined by the light absorption and scattering properties of the
materials suspended and dissolved in the upper ocean. Over most of the ocean, the
only suspended materials are microscopic algae, known as phytoplankton, and
organic matter produced by the algae. The ubiquitous green pigment chlorophyll
a is found in all phytoplankton, as in other photosynthetic plants, and its con-
centration has traditionally been used as a measure of phytoplankton biomass. In
the simplest terms, waters low in Chl are blue whereas waters with higher Chl are
green. This basic concept led to the premise that remote sensing measurements of
blue and green reflectance could be used to quantify Chl in the surface ocean.

Table 7.1 Characteristics of several popular ocean color sensors

Sensor Res. (km) Swath (km) Revisit (day) Bands (nm) Source Duration

CZCS (8) 0.8 1556 1–3 4, 443–670 NASA 1978–1986
SeaWiFS (10) 1.1 2801 1–2 8, 412–865 NASA 1997–2010
MODISA (12) 1.1 2330 1–2 9, 412–869 NASA 2002–now
MERIS (12) 1.2 1150 1–3 12, 413–865 ESA 2002–2012

Only ocean bands are included here. Numbers in the parentheses are digitization bits. Signal-to-
noise ratios (SNRs) determined from measurements over homogeneous ocean targets under
typical radiance inputs are presented in Hu et al. (2012a)
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More precisely, the spectral reflectance (R(k)) of the ocean is determined by the
inherent optical properties (IOPs) of the water molecules and constituents dis-
solved or suspended in the surface waters. Optically significant constituents
(OSCs) in the ocean include phytoplankton, colored dissolved organic matter
(CDOM), and non-algal particles. Non-algal particles include both phytoplankton
degradation products (organic detrital particles) and inorganic particles (e.g., re-
suspended sediments generally found in coastal waters). In shallow waters the
bottom may also influence the color of the ocean, and under windy conditions, the
OSCs also include bubbles (Zhang et al. 1998). The two fundamental IOPs are the
spectral absorption coefficient (a(k), m-1) and volume scattering coefficient (b(k),
m-1 sr-1). In remote sensing, an often used IOP is the backscattering coefficient,
bb(k) (m-1), which is derived as bb kð Þ ¼

R
b kð Þ dH, where integration is over the

backward hemisphere.
From radiative transfer equations, early efforts in the 1970s showed the fol-

lowing simple relationship (Prieur 1976):

R kð Þ ¼ 0:33 bb kð Þ=a kð Þð Þ 1þ Dð Þ; ð7:1Þ

where R is the irradiance reflectance just below the water surface and D, typically
small (a few percent) and often omitted, is related to the radiance distribution
which depends on the solar zenith angle. The simple relationship in Eq. 7.1 has
evolved continuously with improvements in predicting R(k) under various sce-
narios (Gordon et al. 1975, 1988; Kirk 1984; Morel and Gentili 1991).

For modeling the remotely sensed radiance, irradiance reflectance is normally
replaced by the remote-sensing reflectance (Rrs, sr-1) defined as the ratio of
upwelling radiance to downwelling irradiance, which is considered more appro-
priate since the sensor actually measures spectral radiance. A simplified equation
for Rrs, similar to Eq. 7.1, that has often been used is:

Rrs ¼ G bbw þ bbp

� �
= aþ bbw þ bbp

� �
: ð7:2Þ

where for simplicity the dependence on k is omitted, and G is a parameter related
to the solar and sensor viewing geometry. Justification for this simplified
expression has been explained using radiative transfer theory by Zaneveld (1995)
and Zaneveld et al. (2005).

In these equations, the total absorption coefficient, a, is a mathematical sum of
the individual absorption coefficients of water (aw) and the various OSCs, namely
phytoplankton pigments (aph), CDOM (ag), and detrital particles (ad). Thus, the
color (reflectance) of the ocean is:

Rrs ¼ G bbw þ bbp

� �
= aw þ aph þ ag þ ad þ bbw þ bbp

� �
: ð7:3Þ

Equation 7.3 shows that for optically deep waters (i.e., where bottom contri-
bution to surface reflectance is negligible), deriving Rrs(k) is straightforward once
the individual IOPs are known. In this equation, aw and bbw are known from
laboratory measurements (Pope and Fry 1997, Fig 7.1a) and can be treated as
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constants except at extreme salinity (Sullivan et al. 2006; Zhang et al. 2009). In
practice, ag and ad are often combined (adg) because of the similarity in their
spectral shapes, and the IOPs can be expressed as (IOCCG 2006):

aph kð Þ ¼ aph 443ð Þ aþph kð Þ
adg kð Þ ¼ adg 443ð Þ e�S k�443ð Þ

bbp kð Þ ¼ bbp 443ð Þ 443
k

� �g
ð7:4Þ

where each IOP is expressed as the product of its value at a reference wavelength
(443 nm) and a spectral shape function. The wavelength 443 nm is commonly
chosen because it is the location of a chlorophyll absorption peak, and thus is the
center of a blue band used by all ocean color sensors since the CZCS.

In the open ocean, so-called Case I waters (Morel and Prieur 1977)1 where
optical properties are dominated by phytoplankton, the terms in Eq. 7.4 tend to
covary with Chl. Thus, both aph(k) and aph

+ (k), have been modeled as functions of
Chl (Bricaud et al. 1995, 2004; IOCCG 2006). For example, aph(k), can be
modeled as:

aph kð Þ ¼ A kð ÞChlB kð Þ; ð7:5Þ

where A(k) and B(k) are empirical regression coefficients determined from mea-
surements. Bricaud et al. (2004) reported typical values of A(k) and B(k) while
recognizing that they do change with phytoplankton community composition.
Similarly, for phytoplankton-dominated waters bbp(k) has also been modeled as a
function of Chl (Morel 1988; Gordon 1992) although it has been noted that
phytoplankton cannot fully account for the backscattering variability even in the
open ocean (Morel and Ahn, 1990; Antoine et al. 2011). The spectral slope
parameter for adg, S, varies only slightly with typical values of 0.015–0.018 nm-1,
and the spectral slope parameter for bbp, g, varies inversely with Chl, owing to a
relationship between particle size distributions and the trophic state as indicated by
Chl. Figure 7.1b, c show typical modeled IOP spectra (Eq. 7.4), while Fig. 7.1d
shows how Rrs varies with Chl (Eq. 7.3).

While several optical models have been developed to derive Rrs using Chl and
other IOPs (e.g., Sathyendranath et al. 1989; Maritorena et al. 2002; IOCCG 2006;
also see Mobley 1994 and references therein), their fundamental principles are the
same and the mathematical expressions are similar to the above. Likewise, inversion

1 The concept of Case I and Case II waters introduced by Morel and Prieur (1977) has been used
extensively by the ocean color community. Case I refers to waters with optical properties
dominated by phytoplankton and their degradation products, whereas Case II waters include all
other water types in which optical properties are influenced by CDOM, inorganic particles, or the
shallow ocean bottom. The concept has been recently revisited by Mobley et al. (2004) and Lee
and Hu (2006), who found that water types can be better described by their different IOPs.
Nevertheless, the terminology of Case I and Case II follows the convention in this context.

7 Oceanic Chlorophyll-a Content 175



models have been developed to derive Chl and IOPs using Rrs (e.g., Sathyendranath
et al. 1989; Maritorena et al. 2002; IOCCG 2006; Brewin et al. 2013).

Figure 7.2 is a schematic diagram showing how the color of the ocean (Rrs(k))
is determined (and therefore can be modeled) by the various OSCs and in par-
ticular by Chl, when Rrs(k) is measured in the field, for example from a ship. As
shown in Fig. 7.1d, the magnitude and spectral shape of Rrs(k) are functions of
Chl, hence the latter can be derived from the former using inversion algorithms
(See Methods).

Fig 7.1 An example showing effects of Chl on inherent optical properties (IOPs) and remote-
sensing reflectance (Rrs). a Absorption and backscattering coefficients of water molecules (Pope
and Fry 1997). b Phytoplankton pigment absorption coefficients (solid lines) and particulate
backscattering coefficients (dashed lines) for three Chl concentrations. c CDOM and detrital
particle absorption coefficients for three Chl concentrations. d Rrs spectra corresponding to the
IOPs in a–c, as derived from Eqs. 7.3–7.5. Note that chlorophyll-a fluorescence was not included
in the model

Chl
CDOM
Detritus

a
bb 

Rrs ρ t 

Forward modeling Atmospheric 
contribution

Atmospheric 
correctionSemi-analytical inversion

Empirical inversion

Fig 7.2 Schematic diagram showing how Chl and other OSCs determine the IOPs (a and bb),
remote-sensing reflectance (Rrs), and together with the atmosphere determine the satellite signal
(qt). To derive Chl from satellite measurements, the whole process is reversed through
atmospheric correction and bio-optical inversion (either empirically or semi-analytically)

176 C. Hu and J. Campbell



When measured by a satellite above the atmosphere, Rrs is modulated by the
atmospheric diffuse transmission (t), while the atmosphere itself contributes a
significant (often dominant) portion of the satellite signal (Gordon 1997). This is
expressed as:

qt kð Þ ¼ qr kð Þ þ qar kð Þ þ t kð Þqwc kð Þ þ T kð Þqg kð Þ þ pt kð Þt0 kð ÞRrs kð Þ; ð7:6Þ

where qt(k) is the satellite measured total reflectance after accounting for gaseous
absorption, qr is the atmosphere reflectance due to Rayleigh scattering, qar is that
due to aerosol scattering and aerosol-Rayleigh interactions, qwc is the whitecap
reflectance, qg is the sun glint reflectance, T and t are the direct and diffuse
transmittance from the ocean to the satellite, and t0 is the diffuse transmittance
from the sun to the ocean. Note that this notation assumes that the ocean signal
(Rrs) is sufficiently small so that it can be de-coupled from the atmosphere signal.
Similar to modeling of Rrs using OSCs, the various reflectance and transmittance
terms in Eq. 7.6 can be modeled as functions of the atmospheric surface pressure,
aerosol optical thickness and type, water vapor, and wind speed through radiative
transfer theory (Gordon 1997; IOCCG 2010, and references therein).

Thus, the satellite signal (qt) is a function of Chl and other in-water OSCs as
well as atmospheric properties through forward radiative transfer modeling, as
depicted in Fig 7.2. The inverse process of deriving Chl from qt through atmo-
spheric correction and bio-optical algorithms is described in the next section.

7.3 Methods

For most open ocean waters, Rrs(k) contributes only a small portion (\10 %) to the
total satellite signal, and thus estimation of the various reflectance and transmit-
tance terms in Eq. 7.6 requires a sophisticated atmospheric correction scheme to
derive Rrs(k) from qt(k). The scheme was first detailed in works prepared for
CZCS (Gordon and Morel 1983; Gordon 1994), and recently updated for modern
sensors (Gordon and Wang 1994a; Gordon 1997; Ahmad et al. 2010; Bailey et al.
2010). A thorough review is given by IOCCG (2010).

7.3.1 Atmospheric Correction

The first step is to calibrate the sensor-received signal (usually a digitized voltage)
radiometrically to obtain radiance (Lt) in mW cm-2 lm-1 sr-1. This involves a
series of corrections of the sensor’s response to temperature, out-of-band stray
light, polarization, temporal stability, and vicarious calibration (e.g., Franz et al.
2007). The calibration requires reliable measurements under optimal conditions
which are currently provided by the Marine Optical Buoy (MOBY) (Clark et al.
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1997) or the Bouée pour l’acquisition de Séries Optiques â Long Terme
(BOUSOULLE) mooring (Antoine et al. 2008). Then from Lt, the calibrated total
reflectance (qt = pLt/(Focosho)) is calculated where Fo is the time-dependent solar
irradiance and ho is the solar zenith angle. After adjustment for gaseous absorption,
qt(k) is used in Eq. 7.6 to derive Rrs(k) through atmospheric correction.

Whitecap (qwc) and sun glint (qg) contributions to qt are first estimated using
surface wind and solar/viewing geometry (Gordon and Wang 1994b; Frouin et al.
1996; Wang and Bailey 2001), and then removed from qt. For a known solar/
viewing geometry at a given location (satellite image pixel) and surface pressure
(obtained from ancillary data), qr is estimated accurately using an exact compu-
tation (Gordon 1993) and subtracted from qt, resulting in

q
0

t kð Þ ¼ qar kð Þ þ pt kð Þt0 kð ÞRrs kð Þ; ð7:7Þ

where q
0
t kð Þ is qt kð Þ after correction for whitecaps, sun glint, and Rayleigh scat-

tering contributions.
The remaining step in the atmospheric correction, also the most challenging

one, is to estimate and remove the effects of aerosols (represented by qar(k) as well
as the transmittances). At certain wavelengths (kr) in the red and near IR, it can be
assumed that Rrs is negligible (i.e.,\1 digital count) due to strong water absorption
(Fig. 7.1a) so that q

0

t krð Þ ¼ qar krð Þ. Because qar(k) is only a function of aerosol
type and optical thickness, this dependence can be computed using radiative
transfer simulations and stored in look-up tables. Then, a pair of satellite-derived
qar(kr) at two wavelengths is used to search the look-up tables to determine the
corresponding aerosol type and thickness, and to determine the spectral qar, t, and
t0 for all wavelengths. Rrs(k) is then derived from q

0
t kð Þ using Eq. 7.7. For most

scenarios, simulation results have shown Rrs(443) retrieval uncertainties to
within ± 0.0006 sr-1 (Gordon and Wang 1994a; Gordon 1997), corresponding to
about 5 % of the clear-water Rrs(443).

For modern sensors, such as SeaWiFS, MODIS, and MERIS, the bands used for
kr are in the NIR because for most ocean waters Rrs(kr) is indeed negligible.
However, for turbid coastal waters, this ‘‘dark pixel’’ assumption often fails due to
significant amounts of scattering by particulate matter (either phytoplankton or
non-algal particles). In these cases, several alternative approaches have been
proposed (Arnone et al. 1998; Hu et al. 2000; Ruddick et al. 2000; Siegel et al.
2000; Chomko and Gordon 2001; Chomko et al. 2003; Stumpf et al. 2003a;
Lavender et al. 2005; Bailey et al. 2010). More recently, kr were chosen at longer
wavelengths in the shortwave IR (Wang 2007; Wang and Shi 2007), for example
at 1240, 1640, or 2130 nm. Because of the significantly increased water absorption
at those bands, Rrs(kr) in the shortwave IR is negligible for nearly all turbid waters,
so that the Gordon and Wang (1994a) ‘‘dark pixel’’ scheme can be extended.
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7.3.2 Bio-Optical Inversion

Once Rrs(k) is derived from qt(k) through atmospheric correction, the next step is
to derive Chl from Rrs(k) through bio-optical inversion (Fig. 7.2). Two general
approaches have been developed and applied to satellite data for the inversion:
empirical regression and semi-analytical modeling.

The earliest empirical inversion used a blue/green band ratio (Clarke et al.
1970; Morel and Prieur 1977), that was later applied to CZCS data by Gordon and
Clark (1980), Smith and Baker (1982), and others. The approach took the fol-
lowing form:

Chl ¼ ARB; ð7:8Þ

where A and B are regression coefficients (constants) and R is the ratio of
reflectance or radiance at 443 or 520 to that at 550 nm. The rationale for using a
blue/green band ratio to derive Chl was simple: as the green pigment, Chl, is
increased, its strong absorption in the blue shifts the reflectance from blue toward
green wavelengths. The CZCS algorithm switched from 443 to 520 as radiance in
the 443 band diminished due to strong Chl absorption. The band at 550 nm was
chosen because it is located in a stable spectral region minimally affected by Chl.
Furthermore, by using a ratio of bands, extraneous effects (e.g. the G factor in
Eq. 7.3) tend to cancel one another. This rationale has also been used for modern
sensors, with an algorithm fitted to data from a large (n [ 3,000) in situ dataset
(Fig. 7.3). These algorithms use the following form (O’Reilly et al. 2000):

Chl ¼ 10y

y ¼ a0 þ a1 � vþ a2 � v2 þ a3 � v3 þ a4 � v4

v ¼ log10 MBRð Þ;
ð7:9Þ

Fig 7.3 Empirical Chl algorithm for SeaWiFS (OC4V6). a Algorithm curve (red line, Eq. 7.9)
fitted to in situ measurements of surface Chl versus the maximal band ratio (MBR), defined as
max(Rrs(kb))/Rrs(555) for kb = 443, 490, 510 nm; b Algorithm-derived Chl versus measured Chl.
Figure adapted from NASA Ocean Biology Processing Group after version 6 of algorithm
coefficient tuning (http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/ocv6/)
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where a0–a4 are the empirical regression coefficients, and MBR is the maximum
blue/green band ratio selected as follows:

MBR ¼ max Rrs 443ð Þ;Rrs 490ð Þ;Rrs 510ð Þ½ �=Rrs 555ð Þ for SeaWiFS

MBR ¼ max Rrs 443ð Þ;Rrs 488ð Þ½ �=Rrs 547ð Þ for MODIS

MBR ¼ max Rrs 443ð Þ;Rrs 490ð Þ;Rrs 510ð Þ½ �=Rrs 560ð Þ for MERIS

The most recent SeaWiFS Chl algorithm (version 6) uses the regression coef-
ficient values a0–a4 = 0.3272, -2.9940, 2.7218, -1.2259, -0.5683, respectively
(http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/ocv6/). Coefficients for
MODIS and MERIS are different to adapt for the different band centers. These
algorithms are currently used as the default Chl algorithms in the NASA data
processing software package (SeaWiFS Data Processing System or SeaDAS), and
they are often termed as OCxVy, where ‘‘x’’ stands for the number of bands and
‘‘y’’ is the algorithm version. Figure 7.3 shows the OC4V6 regression algorithm
for SeaWiFS, and Fig. 7.4 illustrates the results after each step of SeaWiFS data
processing as it generates the different data products, from qt (4a), to Rrs (4b), to
Chl (4c) using the OC4V6 algorithm, and the result of averaging Chl over 4 years
between 1997 and 2001 (4d).

Several other forms of empirical inversion algorithms have also been proposed
in the past. Campbell and Esaias (1983) proposed to use a curvature algorithm in
the form of Sj

2/(SiSk) to derive Chl, where Sj represents the measured signal in one
band and Si and Sk represent the signals from the two neighboring bands. Frouin
(1997) combined the band ratios of 443/555 and 490/555 for the POLarization and
Directionality of the Earth’s Reflectances (POLDER) instrument (Mukai et al.
2000). Early efforts for algorithm development also proposed blue-green band-
difference algorithms (Viollier et al. 1978; Viollier et al. 1980; Tassan 1981). More
recently, a 3-band difference color index algorithm (CI) was proposed for clear
waters (Chl B 0.25 mg m-3) in order to increase algorithm tolerance to atmo-
spheric correction errors (Hu et al. 2012b). For SeaWiFS, the algorithm takes the
form:

CI ¼ Rrs 555ð Þ � Rrs 443ð Þ þ 555� 443ð Þ= 670� 443ð Þ � Rrs 670ð Þ � Rrs 443ð Þð Þ½ �
Chl ¼ 10�0:4909þ191:6590�CI CI� � 0:0005½ �

ð7:10Þ

The algorithm appears to have better performance over band-ratio algorithms in
both accuracy and image quality for low Chl (B0.25 mg m-3) waters (Hu et al.
2012b), because the algorithm is nearly immune to the spectrally related atmo-
spheric correction errors that are amplified when extrapolated to blue wavelengths.
For intermediate Chl waters (between 0.25 and 0.3), a blending scheme was used
to transition to the standard band-ratio algorithm when Chl is [0.3 mg m-3.

A recent round-robin effort compared the performance of several Chl algorithms
and many other IOP inversion algorithms (Brewin et al. 2013), where the pros and
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cons of the algorithms have been discussed. The pros and cons of empirical band-
ratio Chl algorithms have also been discussed in Dierssen (2010). The algorithms
are based on the assumption that optical properties are dominated by phytoplankton
and their degradation products (i.e., Case I waters). The impact of other OSCs is
implicitly included in the algorithm coefficients. For global applications, the
algorithm coefficients are tuned to minimize uncertainty from the global datasets.
However, different ocean regions are known to have different OSC compositions
(i.e., relative contributions of CDOM and detrital particles to total a and bb), and the
same amount of Chl can result in different aph depending on community compo-
sition. Szeto et al. (2011) found systematic biases in the global algorithms among
the major oceans, and concluded that these are related to differences in the relative
proportion of the OSCs and their optical properties. Likewise, Sauer et al. (2012)
reported on the influence of varying IOPs on the empirical algorithm. To improve
algorithm performance, the coefficients may be tuned for regional applications
(e.g., Kahru and Mitchell 1999; McKee et al. 2007a; Mitchell and Kahru 2009).

Fig. 7.4 Illustration of the general steps in deriving the surface ocean Chl from SeaWiFS
measurements over the eastern Gulf of Mexico. a Composite image using qt(670) (red), qt(555)
(green), and qt(443) (blue). Most of the signal over the ocean comes from the atmosphere. b RGB
composite using Rrs(670), Rrs(555), and Rrs(443) after atmospheric correction. c Chl image
derived from Rrs(k) using the OC4V6 empirical band-ratio algorithm (Eq. 7.9). d Average Chl
from SeaWiFS measurements between 1997 and 2001 over the global ocean, together with
normalized difference vegetation index (NDVI) over land (image courtesy of NASA Goddard
Space Flight Center)
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Similarly, other empirical approaches, such as neural networks (e.g., Schiller and
Doerffer 1999; Dzwonkowski and Yan 2005; Schroeder et al. 2007) that require
algorithm tuning often use regional data, and are thus applicable to regions with
similar optical properties. On the other hand, empirical algorithms are relatively
easy to implement, and the resulting satellite images have smooth transitions
between different regions when the same algorithm coefficients are used. More
importantly, some of the residual errors from atmospheric correction, often spec-
trally related, are partially removed in the band-ratio OCx algorithms and nearly
completely removed in the band-subtraction CI algorithm.

Empirical algorithms do not separate Chl from other OSCs, but treat all OSCs
as a whole. In contrast, semi-analytical algorithms derive all OSCs (including Chl)
simultaneously, or derive a–ph first and then use a pre-defined Chl-aph relationship
to derive Chl (e.g., Sathyendranath et al. 1989; Roesler and Perry 1995; Hoge and
Lyon 1996; Carder et al. 1991, 1999; Lee et al. 1999, 2002; Maritorena et al.
2002). In these approaches, the absorption spectral shapes of CDOM, detritus, and
phytoplankton pigments are often derived from global datasets and assumed time-
and space-independent. Therefore, in waters (especially coastal waters) where
these absorption shapes differ significantly from the global mean, algorithm
retuning is required. Because the emphasis of this chapter is on empirical algo-
rithms, interested readers are referred to the published literature to get more in-
depth knowledge on semi-analytical algorithms.

Coastal waters, especially river plumes and estuaries, often have a significant
amount of CDOM from terrestrial discharge that dominates the light absorption in
the blue, resulting in a poor relationship between blue/green band ratios and Chl
(e.g., Odriozola et al. 2007). Figure 7.5a shows an example of the poor perfor-
mance of blue/green band ratio algorithms (OC3 and OC4) in deriving Chl for a
moderately turbid estuary, Tampa Bay (Le et al. 2013). Under these circumstances,
spectral bands in the red and NIR, which are less affected by CDOM than in the
blue, can be used to avoid this problem. MODIS and MERIS are equipped with
bands specifically designed to quantify solar-stimulated phytoplankton fluores-
cence in the red, and band-subtraction algorithms have been developed to derive
fluorescence line height (FLH, Letilier et al. 1996) and maximum chlorophyll
index (MCI, Gower et al. 2005) as proxies for Chl. Application of the MODIS
FLH over the global open ocean, after adjustments for non-photochemical
quenching and phytoplankton packaging effects, showed excellent agreement with
the band-ratio-derived Chl for a large dynamic range (Behrenfeld et al. 2009).
Application in SW Florida coastal waters also showed tight correlation with in situ
Chl in CDOM-rich waters (Hu et al. 2005). Moreover, radiative transfer simula-
tions showed that FLH is insensitive to CDOM changes, such that a 10-fold
increase in CDOM only resulted in a 50 % decrease in FLH (McKee et al. 2007b).
However, for sediment-rich waters, FLH is positively biased due to the unequal
contribution of the sediments to the reflectance in the FLH bands (Gilerson et al.
2007), resulting in a poor relationship between FLH and Chl.

Other forms of empirical algorithms using various band combinations in the red
and NIR have been proposed to avoid the CDOM contamination problems and to
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account for sediment resuspension. Among these are the 2-band ratio algorithms
(Ruddick et al. 2001; Jiao et al. 2006; Dall’Olmo et al. 2005; Gitelson et al. 2008;
Pierson and Sträombäack 2000; Thiemann and Kaufman, 2000), 3-band algorithms
(Dall’Olmo et al. 2005; Gitelson et al. 2008), and 4-band algorithms (Tassan and
Ferrari 2003; Tzortziou et al. 2006; Le et al. 2009). Applications of these algo-
rithms often require regional tuning of the algorithm coefficients to account for the
specific optical variability in coastal waters. Figure 7.5b shows that after algorithm
tuning, all 2-, 3-, and 4-band algorithms performed reasonably well for
Chl [ 2 mg m-3 in Tampa Bay (Le et al. 2013). Alternatively, all spectral bands
may be used in a neural-network approach (Keiner and Brown 1999) or empirical
orthogonal function (EOF) analysis (Craig et al. 2012) in order to derive empirical
Chl using locally tuned algorithm coefficients.

The globally tuned OCx algorithms have been implemented in various satellite
data processing software such as SeaDAS (http://seadas.gsfc.nasa.gov/) and
BEAM (http://envisat.esa.int/beam). SeaDAS was originally developed by NASA
to process SeaWiFS data, but it has evolved over the past decade to process CZCS,
MODIS, MERIS, and OCTS. Sensor calibration, atmospheric correction, and bio-
optical inversion have all been updated periodically to incorporate the most recent
research results. Likewise, the BEAM software was originally developed to
facilitate the use of ENVISAT data, but now can be used to analyze data from
several other satellite sensors including MODIS. Briefly, to derive the Chl data
products, one would start from Level-0 or Level-1A data (un-calibrated digital
counts) and process to Level-1B (calibrated radiance). Then, vicarious calibration
and atmospheric correction are applied to process from Level-1B to Level-2,
where spectral Rrs(k) are derived and fed into bio-optical algorithms to derive Chl.
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Fig. 7.5 a Chl derived from the OC3 and OC4 blue-green Rrs ratio algorithms shows poor
correlation with measured Chl in Tampa Bay, Florida; b In contrast, algorithms using Rrs in the
red and NIR show much improved performance for Chl [ 2 mg m-3. Figure adapted from Le
et al. (2013). Reprinted from Remote Sensing of Environment, 129, C. Le, C. Hu, J. Cannizzaro,
D. English, F. Muller-Karger, and Z. Lee, Evaluation of chlorophyll-a remote sensing algorithms
for an optically complex estuary, 75–89, Copyright (2013), with permission from Elsevier
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Currently the default algorithms used by SeaDAS are the OC4 (SeaWiFS) and
OC3 (MODIS) band-ratio algorithms (O’Reilly et al. 2000; Eq. 7.9 for version 6)
while the Carder et al. (1999) and Maritorena et al. (2002) semi-analytical algo-
rithms as well as the most recent CI algorithm (Hu et al. 2012b) are options within
the software. Based on the Level-2 Rrs(k) data one can also implement regional
empirical or semi-analytical algorithms. Finally, the Level-2 Chl data products are
map-projected or binned to produce geo-referenced Chl data products at regional
or global scales. Figure 7.4a–c show examples of map-projected products for the
eastern Gulf of Mexico, while Fig. 7.4d shows an example of the globally map-
projected Chl product (after binning) from SeaWiFS multi-year measurements. All
data products are stored in HDF or NetCDF computer files. Most of these data
products can be obtained from the U.S. NASA Goddard Space Flight Center
(http://oceancolor.gsfc.nasa.gov). Likewise, MERIS data products can be obtained
from the European Space Agency.

7.4 Validation Efforts Using in Situ Measurements

As with algorithm development, in situ Chl must be determined and quality
controlled in order to validate the algorithm performance. Starting in 1997, the
Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic
Studies (SIMBIOS, Fargion et al. 2004) program initiated by NASA has funded
numerous researchers to collect bio-optical data in the global oceans, most of
which have been archived in the SeaWiFS Bio-optical Archive and Storage Sys-
tem (SeaBASS, http://seabass.gsfc.nasa.gov, Hooker et al. 1994) and are available
for both algorithm development and validation. Also available is a subset of
SeaBASS, the NOMAD dataset (Werdell and Bailey 2005), that was specifically
compiled for bio-optical algorithm development, as it contains coincident mea-
surements of Chl, Rrs(k), and other data collected simultaneously in the global
oceans. In addition to data available in SeaBASS, researchers working on indi-
vidual projects have collected regional bio-optical data, which can also be used for
algorithm development and validation.

Most of the Chl data collected from field and laboratory measurements and
available in SeaBASS were determined using fluorometric methods. Other Chl
data have been determined via HPLC (Hooker and Heukelem 2011), most of
which show excellent agreement with fluorometric Chl (Fig. 7.6 of Werdell and
Bailey 2005). However, for low concentrations Chl determined from fluorometric
methods sometimes suffers from contaminations by chlorophyll b and chlorophyll
c (Marrari et al. 2006; Dierssen 2010). Nevertheless, because of its wide avail-
ability, fluorometric Chl is often used to validate the satellite observations of Chl.

Chl data products derived from the various ocean color sensors have been
evaluated and validated extensively by the research community. To perform the
evaluation, caution must be taken to address the inherent difference in both time
and space between satellite and in situ measurements. Spatial and temporal
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constraints are required to obtain a satellite-in situ ‘‘matching’’ pair. For example,
a common practice is to restrict the time difference to ±3 h and the 3 9 3 pixel
coefficient of variation \0.15 (Bailey et al. 2000). The latter constraint is to ensure
that the ocean is relatively homogeneous so a satellite pixel (usually *1 km2) can
be represented by a point measurement in the field. Further, to avoid cloud-edge
pixels and other such problems, additional constraints such as wind speed, solar
zenith angle, and satellite viewing angle are also used to find the matching pairs.
Lastly, because Rrs(k) is a weighted measure of OSCs within the upper optical
depth with the weighting factor decreasing exponentially with increasing depth
(Zaneveld 1982; Gordon 1992), Chl collected at multiple depths, whenever
available, should be used to calculate a depth-weighted Chl in order to validate the
satellite observations (e.g., Cannizzaro et al. 2013).

Global validation efforts of the SeaWiFS Chl data product showed that for most
open ocean waters, the algorithm performed well, with RMS differences between
SeaWiFS and in situ Chl (after logarithmic transformation) of 0.2–0.3 without sig-
nificant bias (Gregg and Casey 2004; McClain et al. 2004; Bailey and Werdel 2006).
This translates to about 50–60 % RMS relative difference. Global validation of the
semi-analytical Chl (Maritorena et al. 2002, 2010) using merged data from SeaW-
iFS, MODISA, and MERIS showed slightly worse performance for Chl between
0.02 and 10.0 mg-3, possibly due to residual inconsistencies between sensors.

Online validation tools have been provided by NASA through the SeaBASS
online query (http://seabass.gsfc.nasa.gov/seabasscgi/validation_search.cgi) and
by ESA through the MERis Matchup In-situ Database (MERMAID, http://
hermes.acri.fr/mermaid/matchup/matchup.php), where the area of interest, tem-
poral window, and validation criteria can all be specified. Figure 7.6 and Table 7.2
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Fig. 7.6 Global Chl validation results using data from the SeaBASS data archive and online
query (http://seabass.gsfc.nasa.gov/seabasscgi/validation_search.cgi). a SeaWiFS (1997–2010);
b MODIS/Aqua (MODISA, 2002–2011). The default validation criteria have been applied
(Werdell et al. 2005). Validation statistics are listed in Table 7.2
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show the SeaWiFS and MODIS/Aqua validation results obtained from SeaBASS
data collected prior to April 2012. In general, satellite-based Chl agrees well with
in situ measurements, with R2 [ 0.82 and median ratio between satellite and
in situ Chl approaching 1.0 for [2 orders of magnitude. However, there is sub-
stantial data scatter for each Chl range, and the results varied among different
ocean basins because the same algorithm coefficients, determined from the global
dataset optimization, were applied universally while the proportions of CDOM
absorption and particulate backscattering (relative to Chl) may vary substantially
in different ocean basins (Gregg and Casey 2004; Dierssen et al. 2010; Szeto et al.
2011; Sauer et al. 2012). The variable performance of the global algorithm, when
applied to local waters, has been demonstrated in several regional studies (Stumpf
et al. 2000; D’Ortenzio et al. 2002; D’Sa et al. 2003; Hu et al. 2003; Melin et al.
2003; Darecki and Stramski 2004; Zhang et al. 2006; Antoine et al. 2008; Zibordi
et al. 2006, 2009; Hyde et al. 2007; Werdell et al. 2009), where algorithm tuning
may be required to account for different water types (e.g., Kahru and Mitchell
1999; McKee et al. 2007a; Mitchell and Kahru, 2009).

An example of algorithm performance for a local region, namely the west
Florida Shelf (WFS), is presented in Fig 7.7. Details of the methodology can be
found in Cannizzaro et al. (2013). For this shallow shelf, SeaWiFS Chl, based on
the OC4V6 algorithm, is very accurate (RMS difference *0.1 in log-transformed
Chl, equivalent to 25.9 %) for \0.5 mg m-3. For higher concentrations, SeaWiFS
Chl is biased high due to three effects: bottom reflectance (e.g., Cannizzaro and
Carder 2006), CDOM contamination (Hu et al. 2005), and suspended sediments
(Wynne et al. 2006). If all data are included for the range of 0.1 to 10 mg m-3

(N = 289), RMS difference is 0.274 in log-transformed Chl, equivalent to 87.9 %,
comparable to those found for global oceans (Gregg and Casey 2004). However,
algorithm performance in estuarine waters is generally worse because of signifi-
cant contributions of OSCs other than phytoplankton (e.g., Fig. 7.5a). Algorithms
avoiding the blue wavelengths show better performance than blue-green band ratio
algorithms (e.g., Fig. 7.5b), thus may be preferred for estuaries.

In short, the operational Chl product may be regarded as valid or at least
temporally consistent for most global ocean open waters. This is especially true for
waters where optical properties are either dominated by phytoplankton or co-
varying among the OSCs (the Case I water scenario). Consequently, the standard
Chl product can be used to address the global or regional ocean changes as a
whole. Known problems remain in coastal waters due to the optical complexity of

Table 7.2 Global validation results of SeaWiFS (1997–2010) and MODISA (2002–2011)
determined from the NASA SeaBASS archive

Sensor N Slope Intercept R2 Median ratio Abs % Diff RMSE

SeaWiFS 2009 0.9213 0.03539 0.82 1.03 35.1 0.29
MODISA 527 0.9269 0.0501 0.84 1.03 33.2 0.26

Median ratio and percentage difference were derived from the original data, while other statistical
measures were derived from log-transformed Chl (Fig. 7.6), because Chl distributions in nature
tend to be log normal (Campbell 1995)
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various OSCs typically found in coastal regions. For these waters, algorithm
tuning using local data or alternative algorithms may need to be developed to
address specific needs.

7.5 Major Findings

The validated Chl data products over the global ocean from the late 1990s to the
2010s led to numerous research findings on ocean changes over various temporal
and spatial scales. Such findings would have been impossible with traditional field
sampling efforts due to insufficient spatial and temporal coverage. Several review
articles (Yoder and Kennelly 2006; McClain et al. 2009), special volumes of
journals (Siegel et al. 2004a, b), and technical reports published by the Interna-
tional Ocean Colour Coordinating Group (IOCCG 2008, 2009) have provided
excellent summaries and references for major findings using satellite-based Chl
data products. Some of these findings as well as those from more recent studies are
briefly introduced here.

A major topic in Earth Science is the ocean’s response to climate variability,
where satellite ocean color observations play a key role in documenting ocean
changes at both global and regional scales. One example is the ocean’s response to
the El Niño–Southern Oscillation (ENSO) between 1997 and 2000. Behrenfeld
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Fig. 7.7 Comparison between near-concurrent (±3 h) SeaWiFS and in situ Chl for the west
Florida Shelf (1998–2009). SeaWiFS Chl was derived from the OC4V6 algorithm. In situ Chl
were collected from rigorously quality controlled bio-optical measurements. a Cruise stations;
b Data were partitioned into four seasons (Spring–March 21 to June 20; Summer–June 21 to
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coded for different bottom depths. Figure adapted from Cannizzaro et al. (2013). Reprinted from
the Journal of Coastal Research, Cannizzaro, J. P., C. Hu, K. L. Carder, C. R. Kelble, N. Melo, E.
M. Johns, G. A. Vargo, and C. A. Heil, On the accuracy of SeaWiFS ocean color data products on
the West Florida Shelf, Copyright (2013), with permission from The Coastal Education and
Research Foundation, Inc
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et al. (2001) used SeaWiFS data to show significant differences in the monthly
mean Chl over the global ocean between the El Niño and the subsequent La Niña
year due to altered ocean nutrient distributions. Low Chl levels during the El Niño
were followed by a 10 % increase between September 1997 and December 1998.
Moreover, such changes were not restricted to the equatorial Pacific but rather
spread in the global ocean. During the subsequent La Niña period of January
1999–August 2000, global mean Chl continued to increase but at a slower annual
rate of 2.2 %, and such increases primarily occurred in the Pacific Ocean.

The global ocean Chl response to ENSO was further detailed in Yoder and
Kennelly (2003), and the biological response to the 1997–1998 El Niño in the
equatorial Pacific Ocean was studied with SeaWiFS Chl (Chavez et al. 1999). The
surface ocean showed the lowest Chl biomass in 1997, followed by a dramatic
increase in mid-1998 corresponding to the recovery from El Niño. The spatial
extent of the phytoplankton bloom reached a record high for the equatorial Pacific.
Such responses to El Niño were linked to changes in the upwelling of nutrient-
enriched waters, and coincided with sea-surface height anomalies observed by the
U.S.–French TOPEX/Poseidon satellite (NRC 2008, Fig. 7.8).

More recent satellite observations have extended the above results (Fig. 7.9),
where the inter-annual changes in the global mean Chl are highly correlated with
the Multivariate ENSO Index (MEI). The global mean Chl showed clear season-
ality, with minima occurring between November and March and maxima occur-
ring between May and September. This is because phytoplankton blooms during
summer in the Northern Hemisphere exceeded those in the Southern Hemisphere
summer. Inter-annual changes at magnitudes similar to the 1997–2000 ENSO also
occurred, for example, between 2001–2003 and 2004–2006, for the same reasons
of altered nutrient distributions. In longer terms, decadal oscillations in phyto-
plankton biomass of major ocean basins, derived from combined CZCS and

Fig. 7.8 Chl anomaly in the Equatorial Pacific derived from SeaWiFS. a El Niño year (1997)
b La Niña year (1998). Blue shades indicate lower than normal Chl while yellow shades indicate
higher than normal Chl. Figure reprinted with permission from NRC (2008) by the National
Academy of Sciences, Courtesy of the National Academies Press, Washington, D.C
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SeaWiFS data, were found to be highly correlated with large-scale and long-term
climate variability (Martinez et al. 2009). Similarly, the correlations between Chl
and climate fluctuations have been reported by Behrenfeld et al. (2008) through
paired Chl and sea surface temperature (SST) observations.

Other physical variables such as wind and sea surface height have also been
used to study the global biological variability in the context of physical dynamics
(Wilson and Adamec 2002; Doney et al. 2003; Uz and Yoder 2004; Wilson and
Coles 2005). In particular, several studies documented the Rossby wave signatures
in the global Chl patterns (Cipollini et al. 2001; Uz et al. 2001; Charria et al. 2003;
Dandonneau et al. 2003; Killworth et al. 2004), although there has been some
debate on the exact mechanism leading to such patterns, either through upwelling-
induced biomass enhancement or wave-induced surface accumulation (Dandon-
neau et al. 2004; Killworth 2004). In a broader context, physical mechanisms
shaping Chl patterns associated with meso-scale eddies (both cyclonic and anti-
cyclonic) have been addressed using satellite and other observations (Brown et al.
1985; McGillicuddy et al. 2001, 2007). Increased Chl is found in cyclonic eddies, a
result of uplifts of the isopycnals and the nutricline. Further, McGillicuddy et al.
(2007) demonstrated that interactions between wind and eddies can retard
upwelling in cyclonic eddies.
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Fig. 7.9 a Multivariate ENSO Index (MEI) between 1997 and 2009 obtained from NOAA
(www.esrl.noaa.gov/psd/enso/mei/mei.html), with red for EI Niño phase and blue for La Niña
phase; b Monthly mean Chl derived from SeaWiFS and MODISA over the global open ocean
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transition from EI Niño to La Niña (Behrenfeld et al. 2001)
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Chl is only a measure of phytoplankton biomass. When combined with other
ocean variables such as chlorophyll fluorescence, CDOM, and particulate matter
distributions, wind, temperature, photosynthetic available radiation, nutrients, and
mixed layer depth, details can be revealed on ocean primary productivity (e.g.,
Behrenfeld et al. 2001, 2006), phytoplankton physiology (Behrenfeld et al. 2005,
2009), inter-relationship between various OSCs (Siegel et al. 2005; Loisel et al.
2002; Hu et al. 2006), and regional processes that lead to phytoplankton blooms
(e.g., the Sverdrup’s critical depth hypothesis, Siegel et al. 2002).

Satellite Chl has also been used in studies of basin-scale or regional ocean changes.
For example, using multi-year SeaWiFS Chl data, Polovina et al. (2008) showed that
several major ocean gyres (defined by SeaWiFS Chl B 0.07 mg m-3) had expanded
from 1998 to 2006, and gyre variability was revisited by Signorini et al. (2011). Arrigo
et al. (2008) found significant impacts of shrinking Arctic ice cover on local primary
productivity. Hamme et al. (2010) and Lin et al. (2011) showed how volcanic ashes
fuel the Gulf of Alaska and the oligotrophic Pacific Ocean, respectively, and stimulate
phytoplankton blooms. Likewise, numerous studies have shown enhanced Chl bio-
mass after tropical cyclones due to either deeper ocean mixing or upwelling (e.g., Lin
et al. 2003; Babin et al. 2004; Walker et al. 2005; Siswanto et al. 2007). On continental
shelves where terrestrial runoff plays a significant role in modulating the ocean’s
nutrient budget and biogeochemistry, Chl tends to follow local precipitation and river
runoff closely. The riverine influence of the Amazon River and Mississippi/At-
chafalaya Rivers on the downstream oceans has been well documented by several
studies (e.g., Salisbury et al. 2004, 2011). Figure 7.10 shows such an example, where
SeaWiFS Chl in a coastal region immediately downstream of a local river appeared to
be driven by river discharge. Similarly, coastal blooms off California were found to be
related to agricultural irrigation (Beman et al. 2005).
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Fig. 7.10 SeaWiFS monthly mean Chl (mg m-3) for a shallow area (depth \10 m) south of
Charlotte Harbor over the West Florida Shelf (Fig. 7.7a). Also plotted is the mean monthly river
flow rate (ft3 s-1) of a local river discharging into Charlotte Harbor between 1998 and 2004. The
two datasets showed a correlation coefficient of 0.45, which increased to 0.56 when the river flow
data were shifted 1 month forward (corresponding to a 1 month lag in a biological response to the
discharge)
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In addition to scientific research on global or regional biogeochemistry, satellite
Chl has been used widely for a variety of applications, from fishery and other
resource assessment to management decision support. For example, Polovina et al.
(2001) used SeaWiFS Chl in the North Pacific to define a critical habitat for fish
and turtles in the transition frontal zone at the boundary between the low Chl
subtropical gyres and high Chl subarctic gyres. Platt et al. (2003) found that the
timing of the spring algal bloom in the North Atlantic, as gauged by SeaWiFS Chl,
was closely related to larval fish survival. Soto et al. (2009) applied a 9 year
SeaWiFS Chl time series to establish a connectivity matrix for the Meso-American
Barrier Reef System. Kahru and Mitchell (2008) used global time-series data and
found statistically significant increasing trend in the annual maximal Chl in several
coastal regions between 1997 and 2007. Schaeffer et al. (2012) applied multi-year
SeaWiFS and MODIS/A Chl data over pre-defined coastal zones off Florida to
help monitor coastal bloom conditions in order to implement nutrient management
plans. Stumpf et al. (2003b) used Chl anomaly imagery to delineate potential
harmful algal blooms of Karenia brevis off Florida, where large uncertainties in
satellite Chl due to shallow bottom, CDOM, and suspended sediments are partially
compensated by the anomaly subtraction.

Due to the space limit, the scientific findings and applications enabled by
satellite Chl have only been mentioned briefly with the selected examples. Indeed,
a recent query of Web of Science using the keyword ‘‘ocean color’’ showed a
continuously increasing number of publications every year since the 1990s. The
review articles by Yoder and Kennelly (2006) and by McClain (2009) provide
excellent references for ocean color research. More recently, IOCCG published
two technical reports summarizing a variety of research and application topics
using remotely sensed Chl. These include a dedicated monograph on societal
benefits of using ocean color data (IOCCG 2008), and a volume focused on marine
fisheries, ecosystem and resource management (IOCCG 2009). With more ocean
color missions currently being planned and with the recommendations by the U.S.
National Research Council (2004) that Chl be considered a key environmental and
climate data record, one can foresee that the use of remotely sensed Chl to address
Earth Science questions will continue to increase in the future.

7.6 Future Research Directions

The biological and ecological response of the ocean to climate variability can only
been addressed through long-term and consistent ocean color observations, where
Chl plays a key role in assessing the standing stocks of algal biomass as well as
primary productivity and other biogeochemical and ecological processes. The
potential uses of validated satellite Chl data products have been well demonstrated
in the above examples and in the published literature. However, most satellite
missions have a 5 years designed mission life. Even though the majority of them
have functioned well beyond this planned duration (e.g., SeaWiFS lasted
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for [13 years, MERIS for 10 years, and MODISA for [10 years), data quality
may not be as robust during the extended mission as in the early years. Of these
sensors, only MODIS (both Terra and Aqua) is operational, with data quality
showing some degradation. Thus, it is critical to plan continuity missions for the
future to establish seamless time-series observations.

NASA, ESA, and several other international agencies have been actively
planning for future ocean color missions, among which are two identical Sentinel-
3 ESA satellites as part of the Global Monitoring for Environment and Security
(GMES) programme and three NASA missions recommended by the Decadal
Survey for Earth Science (NRC 2007). The OLCI (Ocean Land Colour Imager)
instrument on board Sentinel-3, to be launched in late 2014, will serve as a
continuity mission of MERIS with enhanced performance in spectral resolution
and revisit frequency. The three recommended NASA missions are: (1) Aerosol-
Clouds-Ecosystems (ACE); (2) Geostationary Coastal and Air Pollution Events
(GEO-CAPE, Fishman et al. 2012); and (3) Hyperspectral Infrared Imager (Hy-
spIRI). Each of these NASA missions has ocean color capability and a unique set
of science goals (NRC 2007). In particular, the hyperspectral sensors on these
missions will enable improved Chl retrievals in coastal waters (e.g., Hoogenboom
et al. 1998; Brando and Dekker 2003). Currently, the missions are under devel-
opment, with launch dates tentatively scheduled for 2020 and beyond. Under the
auspices of the climate initiative, NASA is also planning a Pre-ACE (PACE)
mission for a 2019 launch (NASA 2010). These ocean color continuity missions
require continued efforts in calibration and algorithm development to ensure cross-
sensor consistency. Such a consistency is extremely critical when studying dec-
adal-scale ocean changes, as demonstrated by two independent studies using
CZCS and SeaWiFS to study Chl changes between the 1970–1980s and
1990–2000s (Antoine et al. 2005; Gregg et al. 2005). More recently, multi-decadal
oscillations of phytoplankton abundance in the global ocean from the two ocean
color missions were found to be driven by climate variability (Martinez et al.
2009), even after allowing for different calibrations and algorithms used for the
two sensors. SeaWiFS and MODIS/A operated simultaneously for a period of
years (2002–2010), and though both were managed by NASA, there are discrep-
ancies between the Chl records. Recently, the CI algorithm has been shown to
yield more consistent Chl data records for the open ocean (Fig. 7.11, Hu et al.
2012b), where discrepancy between SeaWiFS and MODIS/A Chl records was
reduced by at least 50 % for most of the time period for global clear waters. Such
an improvement is expected to lead to reduced uncertainties in the globally merged
data products from multiple sensors (e.g., Maritorena et al. 2010).

While all sensor characterization and calibration procedures as well as algo-
rithm development are mature for the open ocean, future emphasis will be on Chl
algorithm improvement for coastal waters. The effects of shallow bottom, CDOM,
and suspended sediments must be resolved either implicitly through empirical
regression or explicitly through semi-analytical inversion. Currently, there are
several approaches to use the red-NIR wavelengths to avoid the effect of CDOM,
and a preliminary approach to remove sediment effects empirically (Wynne et al.

192 C. Hu and J. Campbell



2006). These approaches need refinement with more field data to account for the
optical variability of all OSCs, and they also need regional tuning for the different
mixtures of OSCs found in coastal waters. In particular, there has been the lack of
a general approach to remove the bottom signal in optically shallow waters
(Cannizzaro and Carder 2006), and, in particular, this problem needs to be
addressed around coral reefs.

One difficulty in the past has been the lack of reliable in situ Chl data with
sufficient spatial and temporal coverage to validate satellite Chl under all possible
circumstances. Despite more than a decade of SIMBIOS effort, most ocean waters
are still under-sampled. This lack of data inherently hinders any effort for algo-
rithm coefficient tuning of both empirical and semi-analytical algorithms. Sys-
tematic measurements of Chl using autonomous platforms such as gliders, drifters,
or marine buoys, may help overcome this difficulty and eventually lead to
improved algorithms and better data products.

The benefits of ocean color measurements extend beyond Chl. Recent efforts
have used multi-band Rrs or optical models to classify major phytoplankton
functional types (PFTs) in the global ocean (Subramaniam et al. 1999; Alvain et al.
2005; Westberry and Siegel 2006; Nair et al. 2008; Mouw and Yoder 2010). This
is possible, in theory at least, because different PFTs have different pigment
composition, resulting in distinguishable pigment absorption and Rrs spectral
shapes. On regional scales, Sathyendranath et al. (2004) developed an optical
inversion model to separate diatom blooms from other blooms in the North
Atlantic. Cannizzaro et al. (2008) used backscattering/Chl ratios (or backscattering
efficiency) and Tomlinson et al. (2009) used Rrs spectral curvatures in the blue-
green to distinguish K. brevis blooms from other blooms on the West Florida
Shelf. Further efforts are required to characterize the optical properties (absorption
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Fig. 7.11 MODISA/SeaWiFS Chl ratio for the global open ocean (Chl B 0.25 mg m-3). Empty
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and scattering) of various PFTs, accompanied with HPLC pigment analysis or
microscopic taxonomy, so that PFTs can be better estimated from satellite imagery
not only in the open ocean, but also in coastal waters.

At the time of this writing, VIIRS has been in orbit since late 2011, and
preliminary data products are available online to the science community. Once
validated, the VIIRS Chl data product is expected to continue the SeaWiFS/
MODISA/MERIS observations of the global ocean and extend the legacy of these
missions to further strengthen our understanding of ocean carbon cycles, the ocean
response to climate variability and anthropogenic influence, and to help establish a
multi-decadal Chl Climate Data Record to address both science and management
needs.
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Chapter 8
Oceanic Net Primary Production

Toby K. Westberry and Michael J. Behrenfeld

Abstract Production of organic matter in the ocean is a fundamental process for
biogeochemical cycling of elements (carbon, nitrogen, etc.) as well as for pro-
viding the foundation of nearly all marine food webs. Satellite remote sensing
provides the only means of estimating this rate at basin and global scales. A variety
of satellite-based models for estimation of net primary production exist spanning a
wide range of complexity. Results from applying these models to the satellite
record have yielded valuable insight on the ocean’s role in the earth climate system
and the coupling of physics and biology. A vision for the next generation of NPP
models aimed at utilizing existing tools and anticipated improvements in future
satellite ocean color missions is also given.

8.1 Introduction

Nearly one third of annual anthropogenic CO2 introduced to the atmosphere each
year ends up in the ocean, with much of it mediated by biological uptake initiated
by photosynthetic conversion of CO2 to organic matter. Quantification of marine
photosynthesis has been the subject of study since prior to the twentieth century
(see review by Barber and Hilting 2002 on the history of plankton productivity
studies in the ocean). Photosynthetic primary production in the ocean relies on a
diverse community of planktonic algae (phytoplankton) distributed across a wide
range of oceanic habitats. The standing stock of phytoplankton at any time is small
(B1 Pg C), yet amazingly their cumulative rates of annual net primary production
(NPP) equal or even exceed those of terrestrial plants (Field et al. 1998; Behrenfeld
et al. 2001). NPP is defined as the fraction of total photosynthetic carbon fixation
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available for phytoplankton growth or consumption by the heterotrophic commu-
nity and is a rate (generally expressed in units of carbon production per unit time).
Variability in basin-scale marine NPP is clearly associated with climate fluctuations
that are expressed as interannual changes in the environment, periodic phenomena
such as El Niño/La Niña cycles, and glacial-interglacial transitions. However,
ocean NPP is not simply forced by climate, but also participates in complex
feedbacks governing climate (e.g., Falkowski et al. 1998a). Understanding the
distribution of NPP and its environmental dependencies is thus critical for evalu-
ating ocean biogeochemical cycles and climate change. In addition, NPP is the
foundation of nearly all marine food webs. Organic matter produced through
photosynthesis supports grazing by zooplankton and other herbivorous organisms
and ultimately all carnivorous invertebrates and vertebrate fish and mammals.
Although quantitative links between NPP and higher trophic levels have been
difficult to establish (Friedland et al. 2012), NPP is a critical input variable for many
types of fisheries models and is used as a constraint when evaluating harvestable
catches (Sherman et al. 2009; Chassot et al. 2010; Pauly and Christensen 1995).

Assessment of NPP rates has relied primarily on traditional shipboard sampling
which is costly, laborious, and provides coarse spatial and temporal resolution.
The only viable approach for basin or global scale assessments has been through
the use of airborne or satellite platforms. Radiometric measurements from early
aircraft efforts provided the seed for remotely detecting phytoplankton, with an
initial focus on assessing pigment (chlorophyll) concentration (Clarke et al. 1970).
A first-order correlation exists between chlorophyll concentration and NPP,
implying that successful remote sensing retrieval of the former property could
yield estimates of the latter rate. In 1978, the Coastal Zone Color Scanner (CZCS)
was launched and represented the first dedicated satellite ocean color sensor for
estimating pigment concentrations, and subsequently NPP (Gordon et al. 1980;
Hovis et al. 1980). The CZCS effort was very successful and its data are still used
in contemporary investigations for multi-decadal studies of ocean color (e.g.,
Martinez et al. 2009; Antoine et al. 2005). Linking a fundamental radiometric
quantity (satellite radiance) to a high-level rate process (NPP) has remained a key
justification for modern ocean color satellite missions (e.g., SeaWiFS, MODIS).
Pre-launch documents for these missions have explicitly identified NPP as a Level
4 product calculable from a combination of lower level products (Falkowski et al.
1998b; Esaias 1996). Even today, NPP remains a key ocean biological rate process
targeted by all active satellite ocean color missions.

Accurate assessment of global ocean NPP is a daunting task. Much of the
phytoplankton community contributing to production lies ‘hidden’ below the
shallow surface layer detected by satellite sensors. The conversion of detected
standing stocks to a rate processes remains a major challenge and is complicated
by a variety of phytoplankton physiological attributes. Nevertheless, significant
progress has been made since the launch of the CZCS with respect to evaluating
ocean NPP and detecting its dependency on climate forcings. In this review, we
begin with a general overview of the theoretical basis for remote sensing NPP
algorithms, describe contemporary approaches, and discuss the validation of
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derived products. We then review some of the major findings regarding global
ocean NPP and its variability and conclude with a discussion of new directions for
improving our retrieval and understanding of this critical ecosystem property.

8.2 Theoretical Basis

Field measurements of ocean primary production were made throughout the
twentieth century, but the modern measurement of NPP using radiolabeled carbon
(14C) can be traced to Steeman-Nielsen (1952). Following its introduction,
application of the 14C technique proliferated in oceanographic field studies, owing
to its ease of use, high sensitivity, and ability to yield production estimates fol-
lowing a relatively short sample incubation period. Early 14C studies provided
fundamental insights that were soon incorporated into NPP modeling efforts.
Simple empirical relationships between NPP and Chl or ambient light (PAR)
emerged as some of the first predictive expressions for aquatic NPP (Ryther and
Yentsch 1957; Talling 1957; Vollenweider 1966). Subsequent modeling efforts
have focused on a variety of additional factors, including detailed descriptions of
the underwater light field (Morel 1991; Smyth et al. 2005), improved character-
ization of physiology (Armstrong 2006; Westberry et al. 2008), and definition of
regionally-specific properties (Longhurst et al. 1995; Arrigo et al. 2008b).
Unfortunately, the increasing complexity of NPP models has often not translated
into improved predictive ability (see Sect. 8.4) and even the most complex satellite
NPP models remain necessarily crude representations of the photosynthetic vari-
ability revealed by genetic, biochemical, and physiological laboratory studies.

While remote sensing retrieval of NPP is challenging, its fundamental rela-
tionship is straight forward. By definition, NPP in a given water parcel is the
product of the extant phytoplankton biomass (expressed in the same currency as
NPP, carbon) and its specific growth rate (l),

NPP ¼ Cphyto X l ð8:1Þ

The two quantities, Cphyto x l, encapsulate dependencies on several aspects of
the phytoplankton growth environment. For example, biomass (Cphyto) reflects a
balance between growth and loss processes, such as grazing by zooplankton. By
contrast, l is largely a function of light and nutrient availability.

Equation 8.1 represents the fundamental relationship for NPP, but it is not the
basis for most remote sensing NPP algorithms because both Cphtyo and l are
grossly undersampled in the ocean, largely due to methodological difficulties. In
practice, chlorophyll concentration (Chl) has served as the central metric of
phytoplankton standing stock. Conversion of Chl into NPP thus requires a char-
acterization of assimilation efficiency (i.e., net primary production per unit chlo-
rophyll; Pb). Much of the current error in NPP estimates results from unconstrained
variability in this ‘photosynthetic efficiency’ term (Milutinovic and Bertino 2011;

8 Oceanic Net Primary Production 207



Behrenfeld and Falkowski 1997a). Pb is a function of incident photosynthetically
available radiation (PAR) and thus varies with time of day, depth in the water
column, season, and cloudiness. Fully resolved NPP models attempt to charac-
terize this variability in the dynamic underwater light field. However, many
simpler NPP algorithms employ time- and depth-integrated parameters and cal-
culate productivity as a function of incident daily PAR and a maximum daily

assimilation efficiency for the water column Pb
opt

� �
. Behrenfeld and Falkowski

(1997a) summarize and compare the various classes of models, distinguishing
between approaches by time, depth, and wavelength resolution.

A key derived property for many ecological applications is daily water-col-
umn–integrated NPP (

P
PP). In addition to subsurface light availability described

above, assessment of
P

PP requires assumptions regarding other depth-dependent
properties. In particular, surface mixed layer depth and vertically-varying nutrient
loads, grazing pressures, and light conditions give rise to variations in biomass and
phytoplankton physiological state (photoacclimation and growth rate). Numerous
approaches have been developed to account for these effects. Depth-integrated
models generally assume the water column is composed of two layers, one light
saturated and the other light limited. An empirical function then relates the fraction
of the water column that is light saturated to the incident irradiance. Behrenfeld
and Falkowski (1997a) demonstrate that this approach is sufficient to capture
[80 % of the variance in observed

P
PP when evaluated over a wide range of

trophic conditions. Depth-resolved NPP models may take many forms. In some
cases, vertical structure is prescribed using empirical relationships with surface
properties (e.g., characterizing the profile of chlorophyll from surface chlorophyll
concentration). More complex approaches incorporate information on mixing
depths to assign an upper layer of uniform biomass and physiology, and then
below this depth iteratively adjust chlorophyll stocks and physiological state based
on models of photoacclimation, attenuation, and a prescribed shift from nutrient
limitation to light limitation at depth (e.g., Westberry et al. 2008). As our
knowledge of vertical variability improves, it will be these depth-resolved models
that will provide the appropriate model scaffolding to incorporate this information
to achieve improved NPP assessments.

All chlorophyll-based models of NPP, from simple depth-integrated algorithms
to fully resolved time- and depth-dependent models, require a characterization of
assimilation efficiencies (Pb; Pb

opt , etc.). In most cases, this aspect of NPP models is
least mature. The most common approach is to relate assimilation efficiency to sea
surface temperature (SST), with a somewhat bewildering array of SST-dependent
models proposed (see Fig. 8.4 in Behrenfeld and Falkowski 1997a). One of the
most commonly employed functions expresses assimilation efficiency as an
increasing exponential function of temperature. The Q10 for this exponent was
based on a compilation of laboratory phytoplankton growth rates, where an
exponential relationship was fit to the maximum observed growth rates over a wide
range of temperatures (after Eppley 1972). There is no a priori reason to assume
that this growth-rate-based function has any direct physiological relevance to the
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calculation of mean assimilation efficiencies. Behrenfeld and Falkowski (1997b)
introduced an alternative temperature-dependent function that has also been
widely applied. In their relationship, assimilation efficiency increases approxi-
mately exponentially up to 20 �C and then decreases, with a Q10 for the lower
temperature range being similar to that of the ‘Eppley curve’. The Behrenfeld and
Falkowski relationship was empirically derived from field 14C data and the down-
turn in efficiencies at[20 �C was interpreted to reflect effects of nutrient stress. It
is now recognized that nutrient stress, in and of itself, is not synonymous with a
reduction in photosynthetic efficiency (Halsey et al. 2010; Parkhill et al. 2001).
Thus, there is also no clear physiological basis for the temperature-dependent
function of Behrenfeld and Falkowski (1997b).

Development of new approaches for characterizing spatial-temporal variability
in phytoplankton assimilation efficiencies is essential to advancing global ocean
NPP estimates if surface chlorophyll concentration continues to be the remotely
detected property of choice for phytoplankton biomass. Clearly, these advances
must be based on a fundamental understanding of physiological responses to
environmental growth conditions, rather than empirical relationships with SST.
Nevertheless, employment of simple SST functions has yielded NPP estimates that
exhibit reasonable relationships with field measured values. So, what is the basis of
this success? The most likely explanation is that SST can, at times, function as a
surrogate for an environmental factor directly governing variability in assimilation
efficiency: light. Phytoplankton acclimate to changes in light conditions on time
scales of days to a week or more. A decrease in incident light or an increase in
mixing depth results in an increase in cellular chlorophyll. This light-driven

Fig. 8.1 Demonstration of covariance between mixed layer growth irradiance (Ig) and sea
surface temperature (SST). a Panel on left shows classical relationship between SST and Pb

opt

(red line) derived from Eppley (1972). Also shown is the median Ig (blue line) within discrete
SST bins, calculated following Westberry et al. (2008). b Panel on right shows an idealized
photoacclimation response (Chl:C, red line), where the dependent variable, Ig, has been scaled to
match the range of SST. Blue line shows the same Chl:C as a function of SST. In both cases,
Chl:C is expressed relative to a high light value of 1 (units not important)
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increase in chlorophyll is not paralleled by an increase in carbon fixing capacity
and thus results in a lower apparent assimilation efficiency (i.e., NPP/Chl
decreases). In nature, regions of low incident light and/or deep mixing also tend to
have lower SST. Thus, lower SST is broadly associated with low growth irradiance
(Ig) and, thus, lower assimilation efficiencies. This tendency is illustrated in
Fig. 8.1a where mean mixed layer light levels (Ig) exhibit roughly an exponential
positive relationship with SST when evaluated over the global open ocean. The
increase in Ig with SST drives a physiological acclimation that yields increasing
assimilation efficiency with increasing SST. As a result, the implied change in
cellular chlorophyll content viewed as a function of SST exhibits a pattern
remarkably similar to expected changes as a function of Ig (Fig. 8.1b).

8.3 Methods

Satellite sensors provide a range of geophysical products relevant to NPP calcu-
lations, with three central properties being chlorophyll concentration, cloudiness-
corrected PAR, and sea surface temperature (SST). These 3 variables are sufficient
to initiate many NPP models (e.g., Behrenfeld and Falkowski 1997b), while other
models require additional inputs. For example, some models require information
on mixed layer depths (Howard and Yoder 1997; Westberry et al. 2008) or employ
precalculated lookup tables (Antoine et al. 1996; others). Some recent NPP models
have been developed that are based on inherent optical properties derived from
ocean color inversion algorithms, including phytoplankton absorption coefficients
(Lee et al. 1996) and/or particulate backscattering coefficients (bbp) (Westberry
et al. 2008). In many cases, NPP models can be viewed as modular in construct, in
the sense that alternative formulations can be readily substituted. For example, the
Vertically Generalized Production Model (VGPM) of Behrenfeld and Falkowski
(1997b) is often executed with different temperature functions for Pb

opt, most often
with exponential Eppley-type dependence.

While most global-scale NPP algorithms are based on chlorophyll as the index
of standing stock, a notable exception is the model of Westberry et al. (2008). In
their approach, phytoplankton carbon concentration is inferred from satellite bbp

data and used as the core biomass index. Simultaneous satellite retrievals of
chlorophyll and carbon concentrations are then used to directly infer information
on physiological status of phytoplankton within the surface mixed layer using
understanding of Chl:C variability from laboratory studies. The Westberry et al.
model is both depth and wavelength resolved, but is also unique in that it operates
iteratively through the water column. Specifically, the model assumes biomass and
physiological uniformity within the mixed layer, and then iteratively calculates
spectral irradiance at each subsequent depth horizon as a function of integrated
changes in biomass, pigment, and attenuation directly above. The resulting light
field, in turn, defines the photoacclimation state (i.e., cellular pigmentation) of the
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phytoplankton within the current depth horizon and their growth rate. Finally, in
regions of surface macronutrient depletion, the model allows for a switch from
nutrient-limitation to light-limitation at depths below the mixed layer. While
additional work is needed to validate various aspects of this ‘carbon-based
approach’, it does provide an excellent framework for incorporating more
sophisticated descriptions of physiological variability (see Sect. 8.6).

8.4 Validation Efforts

Validation of satellite-based NPP estimates has largely been limited to matchup
comparisons with field 14C uptake measurements. While considerable ambiguity
remains regarding exactly what the 14C method measures, it is generally accepted
that reasonably long (i.e., [12 h) incubations yield carbon fixation rates that
approximate net primary production. The ‘ambiguity’ of the measurement includes
unconstrained artifacts of sample confinement in bottles, unnatural light conditions
during incubation (either on deck of the ship or in situ), and an incomplete
understanding of how respiratory and other metabolic pathways impact lifetimes
of newly formed carbon products. Alternative measures of photosynthetic primary
production (e.g., gross primary production) are less frequently used for validation
of satellite-based estimates. Both, 18O2 incubations and the more recently devel-
oped triple-oxygen isotope method (17DO2) provide a measure of gross primary
production. Importantly, the latter method does not require sample incubations
(Luz and Barkan 2009). However, empirical conversions are required to equate the
different oxygen and carbon measurements and to characterize losses between
gross and net photosynthetic production. Hence, we limit the following discussion
to comparisons with measurements of 14C uptake.

A series of blind, round-robin exercises were initiated by NASA in the mid-
1990’s in order to evaluate the performance of a wide variety of satellite NPP
models. This Primary Productivity Algorithm Round Robin (PPARR) exercise has
since evolved in its scope and expanded in the range of model types, numbers, and
field measurements represented (Campbell et al. 2002; Carr et al. 2006; Friedrichs
et al. 2009; Saba et al. 2010, 2011). Key findings of the PPARR activities have
been: (1) increasing model complexity does not equate to improved predictive
skill, (2) model skill varies regionally, and (3) reducing uncertainty in input
parameters to NPP models (e.g., PAR, Chl) can reduce average RMS errors by
[50 %. The first point above has been made on several occasions (Siegel et al.
2001; Behrenfeld and Falkowski 1997a), but is perhaps best demonstrated by Carr
et al. (2006). In their report, a cluster analysis was performed on the correlation
between NPP estimates for[30 models, spanning a wide range of complexity. The
analysis revealed that correlations between model NPP estimates were not grouped
according to model complexity, such that the simplest and most complex models
often showed the highest correlation. Instead, correlations between models were
largely determined by the underlying expression used to describe variability in
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assimilation efficiencies (e.g., models that used an ‘Eppley-type’ formulation
clustered together). The most comprehensive study demonstrating the second point
was made by Saba et al. (2011). Output from 21 satellite-based ocean color models
were analyzed against[1000 in situ 14C measurements from diverse ocean regions
spanning the Black Sea, Southern Ocean, high latitude North Atlantic, and sub-
tropical Pacific and Atlantic. Some of the results are reproduced in Fig. 8.2 which
show the ensemble average root mean square error (RMSE) in each region. Lower
RMSE results from better predictive ability of NPP models (no distinction between
models is made here).

The last finding listed above from the PPARR exercises underscores that a
model’s ability to accurately predict NPP is highly dependent upon the uncer-
tainties inherent in the input data (Fig. 8.2) (Saba et al. 2011). While this may seem
obvious, it is often difficult to propagate errors through complex analytical for-
mulations resulting in model NPP estimates being reported with no accompanying
error estimates. Saba et al. (2010) found that the majority of models were unable to
accurately reproduce the observed trends in NPP at open ocean sites in the North
Pacific (Station ALOHA near Hawaii) and the Atlantic (BATS near Bermuda).
However, holding all other properties the same, but employing in situ estimates of
Chl in the NPP models allowed many of the models to match the sign, and to a
lesser extent, the magnitude of the observed trends in NPP. Siegel et al. (2001) also
demonstrated the influence of using time-varying or site-averaged photosynthetic
parameters in NPP models at BATS and found the predictive ability dropped sig-
nificantly (r2 = 0.80 to r2 = 0.27) when mean values were used.

8.5 Major Findings

One of the fundamental realizations provided by remote sensing estimates of
marine NPP is that the ocean contribution to biospheric annual NPP is roughly
equivalent to that from terrestrial sources. Field et al. (1998) first synthesized

Fig. 8.2 Average root mean
square difference (RMSD) of
21 satellite NPP models
evaluated against field 14C
measurements for several
different locations. Error bars
represent 2x standard error.
Blue portions of each bar
represent maximum potential
reduction in RMSD if
uncertainties in model input
and field measurements are
accounted for. For details
regarding specific models and
field dataset used, see Saba
et al. (2011)

212 T. K. Westberry and M. J. Behrenfeld



global estimates of marine NPP from the VGPM and terrestrial NPP from the
CASA model (Potter et al. 1993). Although state-of-the-art at the time, the aver-
aging periods for land and oceans were significantly different, the spatial resolu-
tions were coarse, and quality for the ocean color data was well below today’s
standards. Nevertheless, the global picture that emerged indicated a marine NPP
contribution of *49 Pg C of the combined 105 Pg C for the biosphere. Compi-
lation of historical estimates of oceanic NPP based on 14C measurements yields a
mean value similar to the Field et al. (1998) satellite-based estimate, but uncer-
tainty in the field-based assessment is large enough to render the estimate mean-
ingless (see Barber and Hilting 2002 for a chronology of global NPP estimates).

Recalculation of biospheric NPP using more recent data than employed by
Field et al. (1998) yields values for a typical year (2004) of 54 and 50 Pg C year-1

for the oceans and land, respectively. Figure 8.3 shows the spatial distribution of
combined land and ocean NPP, where both estimates are based on MODIS remote
sensing data (Zhao et al. 2005; Behrenfeld and Falkowski 1997b). While maxi-
mum values of areal NPP rates can be substantially higher on land than in the
ocean, the much greater spatial extent of ocean area mitigates this difference in
zonally integrated values (Fig. 8.3). From the zonal profiles we find that tropical
NPP on land is approximately twice that of equatorial marine primary production.
Northern boreal forests (between 40�N and 60�N) are also a factor of 29 higher
than oceanic totals across the same latitude domain. Marine NPP dominates
southern hemisphere NPP south of 25�S.

Many of the major findings which remote sensing of NPP has enabled are related
to improving our understanding of the links between physical forcing (e.g., climate)
and biological response in the ocean. For example, the El Niño-Southern Oscilla-
tion (ENSO) phenomenon is a periodic climate perturbation that elicits significant
changes in a wide array of marine ecosystem properties. The first modern era ocean
color satellite (SeaWiFS) was launched during one of the largest ENSO events on

Fig. 8.3 a Average annual satellite NPP (gC m-2 yr-1) from a combination of terrestrial and
oceanic sources. b Right-hand panel shows zonally integrated NPP (Pg C yr-1) for land (green
line) and ocean (blue line) areas
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record. The first 3 years of the mission captured the peak of the El Niño event and
the following transition to an equally large La Niña (Behrenfeld et al. 2001). The
peak to peak change in ocean NPP across this transition (*6 Pg C) exceeds any
other anomaly since observed in the satellite ocean color record (Arndt et al. 2010;
Blunden et al. 2011). El Niño is accompanied by higher than normal SST
throughout much of the tropical Pacific Ocean and interrupts the normal upwelling
pattern which supports significantly elevated NPP in the eastern tropical Pacific.
Field studies have estimated reductions in nutrient supply and NPP of *80 %
during El Niño (Barber and Chavez 1983; Chavez et al. 2002). A similar rela-
tionship was reported by Behrenfeld et al. (2006a) over the entire stratified surface
ocean (*40�N to 40�S) based on remote sensing estimates of NPP.

A central objective underlying the development of a long-term, climate-quality
satellite ocean color data record is to improve understanding of climate-ocean
ecology interactions. It has been estimated that 50 or more years of continuous
satellite observations will be necessary in many ocean regions to clearly detect the
signature of anthropogenic impacts from natural variability (Henson et al. 2009).
Clearly, this is far too long to wait. However, over much shorter time scales,
natural forms of climate variation can provide critical insights on NPP and phy-
toplankton biomass variability. To this end, Behrenfeld et al. (2006a) showed that
over the first 10 years of SeaWiFS observations, anomalies in water column
integrated chlorophyll and modeled NPP (VGPM and CbPM) integrated over the
permanently stratified oceans (i.e., annual average SST [15 �C) were highly
correlated with variations in SST and surface mixing depths. Furthermore, the
spatial distribution of NPP anomalies mirrored those of SST anomalies.

The Behrenfeld et al. (2006a) study has been followed by a series of similar
analyses. In Behrenfeld et al. (2008), the strong correlation between chlorophyll
and SST anomalies was also shown to occur at higher northern latitudes, but no
significant trends were found for the Southern Ocean. This latter conclusion was
repeated by Arrigo et al. (2008b) who reported no significant trend in Southern
Ocean NPP between 1998 and 2006. Annual totals for the domain south of 50�S
were *2 ± 0.07 Pg C year-1, nearly half of previous remote sensing based
estimates for this region. Martinez et al. (2009) significantly expanded the time
period of evaluation by combining SeaWiFS data with the earlier CZCS record.
Their study again reported significant inverse relationships between global ocean
SST and chlorophyll anomalies, both in regionally integrated data and spatially-
resolved fields. With this expanded data set, these authors were also able to clearly
identify impacts of the longer time-scale climate fluctuations associated with
ocean basin decadal oscillations. Additional analyses of temporal ocean color data
employing both SeaWiFS and MODIS measurements were provided in reports by
(Arndt et al. 2010; Blunden et al. 2011). Interestingly, several recent studies
addressing temporal changes using in situ measured NPP have reported conflicting
results from those found using satellite data (Dave and Lozier 2010; Lozier et al.
2011; Saba et al. 2010; Chavez et al. 2011). These differences highlight the dif-
ficulty in comparing quantities and trends derived from singular locations repre-
senting small spatial scales to integrated signals over entire ocean basins.
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An important question arising from the aforementioned studies was what the
underlying basis is for the inverse relationship between chlorophyll and SST
anomalies. The magnitude of the SST anomalies is far too small to be directly
responsible for the observed chlorophyll responses. Instead, and as suggested by
Behrenfeld et al. (2006a), changes in SST are likely functioning as a proxy for
altered surface mixing depths, where shallower mixing is accompanied by
decreasing chlorophyll. Two mechanisms likely contribute to the link between
surface chlorophyll concentrations to mixing depth: an impact on vertical nutrient
transport from depth and changes in the average light level experienced by surface
phytoplankton. To distinguish which of these two factors dominate, Behrenfeld
et al. (2008) separated chlorophyll variability in permanently stratified ocean into
that due to biomass changes and that due to intracellular chlorophyll (Chl:carbon)
changes. Their study showed that, over most of the SeaWiFS record, chlorophyll
variability was largely due to physiological changes in Chl:carbon and that most of
this variability was attributable to changes in the upper ocean light environment,
not nutrients. These findings imply that significant variations in chlorophyll
detected in the satellite record are likely not linked to parallel changes in NPP.
However, most contemporary NPP models are not equipped to make this dis-
tinction (see Sect. 8.6.1). More recently, Siegel et al. (2013) extended the analysis
of physiological variability to all global ocean regions and additionally showed
that apparent anomalies in chlorophyll may be, in part, traceable instead to vari-
ations in colored dissolved organic material. Taken together, these studies once
again emphasize that careful attention must be given to physiological attributes if
global ocean NPP and its temporal variability are to be accurate evaluated.

As global, synoptic estimates of NPP have advanced, opportunities have arisen for
investigating relationships between NPP and more derived, yet critical, carbon cycle
parameters. For example, the fraction of NPP delivered from the surface ocean to
depth is a critical quantity of interest when addressing the ocean’s role in carbon
sequestration. This export production is traditionally measured in the field using
sediment traps that collect and preserve sinking material, but these measurements
have longstanding caveats (Buesseler et al. 2007 and references therein) and are
extremely sparse in both space and time. Satellite observations of NPP, when com-
bined with ecosystem model results and field measurements have provided simple,
yet powerful empirical parameterizations that allow globally resolved fields of export
production (Laws et al. 2000; Dunne et al. 2005). Current estimates of export pro-
duction are*10 Pg C year-1 globally and its spatial distribution gives us insight into
ecosystem functioning. For example, Laws et al. (2000) showed that the Atlantic and
Pacific Oceans contribute equally to total export (*4.3 Pg year-1 each), despite their
two-fold differences in size (*75 9 106 km2 and *160 9 106 km2, respectively).
Recently, Westberry et al. (2012) applied satellite NPP estimates to field-derived
photosynthesis-respiration relationships to characterize global ocean respiration
rates and net community production. These net community production rates set an
upper constraint on export production for comparison with alternative approaches.
Validation of these advanced, satellite-based carbon cycle parameters has yet to be
carried out and should be an active research area in the future (see following section).
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8.6 Future Research Directions

As detailed herein, significant progress has been made in quantifying NPP from
global satellite data and applying these estimates to ecological questions, yet
opportunities abound for making major improvements. Such improvements may
take a variety of forms, including greater accuracy of NPP retrievals when com-
pared to field measurements, development of new field metrics for validation,
exploitation of advances in future satellite design capabilities, and more sophis-
ticated physiological formulations in NPP models. Some of these improvements
are relatively straightforward and may entail advances in engineering (e.g., higher
spectral/spatial resolution on future ocean color sensors), while others will be more
challenging (treatment of phytoplankton physiology). In this final section, we
attempt a forward-looking view at potential avenues for refining global NPP
assessments, particularly with respect to advancing characterization of physio-
logical attributes.

8.6.1 Photoacclimation

Global surface ocean chlorophyll concentrations vary by roughly 3 orders of
magnitude. Physiological changes in intracellular chlorophyll from varying light
and nutrient conditions can span over 1.5 orders of magnitude, with the light effect
alone (i.e., photoacclimation) contributing up to a factor of 10 variability (Fal-
kowski and Laroche 1991). While variability in chlorophyll concentration due to
changes in biomass or nutrient availability is positively correlated with changes in
NPP, changes in chlorophyll due to photoacclimation are inversely correlated with
NPP. In other words, all else being constant, an increase in daily light exposure
results in a decrease in chlorophyll and an increase in assimilation efficiency.
Given the magnitude of the photoacclimation response, it is somewhat surprising
therefore that this physiological property is routinely ignored in all but a few
marine NPP models. Even an imperfect assessment of photoacclimation could
significantly improve NPP predictions and does not require a highly sophisticated
model to effectuate. For example, the simple wavelength- and depth-integrated
VGPM could be applied to satellite chlorophyll fields that are first corrected for
photoacclimation. For this approach, global data on incident PAR, diffuse atten-
uation (Kd), and mixed layer depths (MLD) are needed to calculate Ig. Next, a
laboratory-based relationship between Ig and cellular chlorophyll content can be
employed to normalize satellite chlorophyll data to a uniform photoacclimation
state and then these data applied in the VGPM with a constant value for Pb

opt. In
essence, this strategy is equivalent to the approach of the Carbon-based Production
Model (CbPM) of Westberry et al. (2008). The CbPM distinguishes Chl variability
into that due to biomass changes and intracellular pigmentation. The latter
property is then divided into light- and nutrient-dependent terms, where the
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photoacclimation effect is determined from PAR, Kd, and MLD. The residual
Chl:C variability is due to nutrient effects and is linearly proportional to NPP
variability.

An important aspect of characterizing photoacclimation in the mixed layer (i.e.,
the portion of the water column sampled from space) is identifying the light level
to which a natural phytoplankton community is acclimated. The uppermost
reaches of the surface ocean are a turbulent, well mixed environment where a
given phytoplankton population may circulate through a typical mixed layer of
50 m thickness [10 times per day (D’Asaro 2003). Laboratory studies indicate
that the light-dependent signal for chlorophyll synthesis is keyed to the redox state
of the plastoquinone (PQ) pool between photosystem II and photosystem I (Es-
coubas et al. 1995). An oxidized PQ pool signals for chlorophyll synthesis, while a
reduced pool indicates that adequate chlorophyll (i.e., light harvesting capacity)
exists. PQ pool reduction occurs at all saturating light levels, thus regulation of
pigment synthesis is essentially an on–off switch (i.e., once light exceeds satura-
tion, the signal for chlorophyll synthesis is off and further increases have no
additional impact). Acclimation in such a system is thus best characterized as a
function of the median light level within the mixed layer, rather than the average
light level with is impacted by light levels in excess of saturation. The remaining
issue is spatially- and temporally characterizing global MLD. Unfortunately, MLD
is not a property directly retrieved by remote sensing. Consequently, we currently
must rely on model or model-data assimilation schemes to generate the necessary
MLD fields (e.g., Clancy and Sadler 1992). Notably, significant uncertainty
remains in these MLD products, particularly at high latitudes (e.g., Southern
Ocean), reducing this uncertainty will make a significant contribution toward
advancing NPP assessments.

An additional issue regarding characterization of phytoplankton photoaccli-
mation is distinction between the ‘physiological’ mixed layer depth from ‘physi-
cal’ mixed layer depth calculated from water column density or temperature
properties. For much of the year and many parts of the ocean, there may be little
difference between the ‘physiological’ and ‘physical’ mixed layers, but under
certain, important conditions significant differences may exist. For example, the
onset of winter-spring stratification in temperate and high-latitude seas can be
rapid and non-monotonic. During this period, photoacclimation of the phyto-
plankton community will be responding to changes in the mixed layer light
environment on timescales of order *1–2 weeks. Photoacclimation timescales are
also dependent on the direction the light changes, taking longer when Ig is
decreasing than when it is increasing. At timescales significantly \1 week, it is
likely that passage of brief mixing events (associated with meteorological fronts)
will not be registered by the phytoplankton, whereas the physical mixed layer
depth may be significantly perturbed for a day or so, then return to its previous
position. A practical approach to estimate a physiological MLD may exist through
the use of dissolved O2 profiles. Castro-Morales and Kaiser (2012) demonstrated
the utility of this approach over a limited geographic region and found significant
differences from traditional hydrographically determined mixed layers.
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8.6.2 Nutrient Effects

Short-term perturbations in macronutrient availability can result in a brief period of
unbalanced growth where phytoplankton assimilation efficiencies are reduced.
However, under the steady state conditions found across most of the ocean, phyto-
plankton are well acclimated to their nutrient environment. Under such conditions,
cellular chlorophyll levels are adjusted in direct proportion to nutrient availability
and apparent assimilation efficiencies can be as high as under nutrient replete growth.
Thus, the long-held assumption that nutrient stress is associated with inefficient
photosynthesis is largely incorrect. This conclusion is supported by laboratory work
demonstrating highly tuned photosynthetic light harvesting capacities optimized to
macronutrient-defined growth rates (Laws and Bannister 1980).

While the aforementioned considerations suggest that assessing nutrient status
may not be as critical once thought for assessing global ocean NPP, this conclusion
may not be valid for conditions of iron stress. Iron concentrations are vanishingly
low over much of the open ocean, and phytoplankton have evolved a variety of
strategies for optimizing iron economy (Behrenfeld and Milligan 2013). These
adjustments, however, can have a significant impact on apparent assimilation
efficiencies, particularly under conditions where macronutrients are replete. Greater
than one-third of the ocean surface area has conditions of low iron and high ma-
cronutrients (the so-called High-Nutrient, Low-Chlorophyll (HNLC) regions).
Ironically, recent studies have shown that phytoplankton under HNLC conditions
actually over-express chlorophyll synthesis relative to growth (Behrenfeld and
Milligan 2013; Schrader et al. 2011; Behrenfeld et al. 2006b). This excess Chl does
not contribute to photosynthesis (it is functionally ‘‘decoupled’’ from the photo-
systems), but is registered in satellite Chl retrievals. The pool of ‘dysfunctional’ Chl
may account for[40 % of the total Chl in HNLC waters (Behrenfeld et al. 2006b;
Schrader et al. 2011) and must be accounted for when assessing assimilation effi-
ciencies. Behrenfeld et al. (2006b) estimated the magnitude of error in satellite NPP
introduced by this bias in Chl over the Equatorial Pacific Ocean. The authors
exploited field measurements of fluorescence signatures linked to functional and
dysfunctional Chl and concluded that annual NPP for the region (using the VGPM
and CbPM) may need to be revised downward by *15 %.

Recent advances in our understanding of solar-stimulated chlorophyll fluores-
cence measured from satellite (i.e., MODIS, MERIS) may provide an avenue for
correcting satellite Chl and NPP fields for Fe-stress effects globally. Similar to the
field diagnostics of Fe-stress employed by Behrenfeld et al. (2006b), satellite Chl
fluorescence registers the imprint of Fe-stress (Behrenfeld et al. 2009; Westberry
et al. 2013). Due to the pool of dysfunctional Chl described above and to shifts in
photosystem stoichiometry occurring under iron stress (Behrenfeld and Milligan
2013), higher intrinsic fluorescence yields are observed in iron-stressed ocean region
under the high light conditions of satellite fluorescence measurements. As a dem-
onstration of this link between Fe-stress and satellite Chl fluorescence, Westberry
et al. (2013) showed that purposeful addition of Fe to natural phytoplankton
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communities resulted in a marked decrease in satellite-based chlorophyll fluores-
cence efficiency. Further evidence was given by Behrenfeld et al. (2009) who
highlighted the tight correspondence between regions of elevated MODIS fluores-
cence quantum yields and modeled regions of Fe-limitation and low dust deposition
(the primary mechanism for Fe input to the open ocean). These findings imply that
satellite-detected regions of elevated Chl fluorescence yields may provide an avenue
for time-resolved assessments of phytoplankton assimilation efficiencies that can
account for the unique physiological consequences iron stress. Furthermore, such an
approach could account for the highly dynamic nature of iron supply, which can be
linked to episodic upwelling or atmospheric deposition events.

8.6.3 Phytoplankton Community Composition

It has long been recognized that ocean NPP exhibits strong regional variability and
that some of this variability is tied to community taxonomic structure. Regionally
specific NPP algorithms have been employed to indirectly account for taxonomic
variability. For example, several studies have partitioned the ocean into distinct
‘biogeographical provinces’ that are empirically assigned unique photosynthetic
parameters (Longhurst et al. 1995; Sathyendranath et al. 1995). This approach
draws upon extensive field data sets of 14C uptake data and avoids any necessity
for explicit predictive relationships. Alternatively, empirical predictive relation-
ships may be derived for specific broad ocean regions, such as the Arctic or
Southern Ocean (Arrigo et al. 2008a, b).

In addition to influencing regional variability, taxonomic contributions to NPP
have relevance to understanding ecosystem carbon flow, export efficiency, and
fisheries production (Ryther 1969), for example. A variety of satellite ocean-color
based studies have aimed to directly decompose bulk emergent bio-optical signals
into contributions from different phytoplankton groups. While few models have
been successful at resolving species-level differences in satellite ocean color data
(Westberry and Siegel 2006; Balch et al. 2005; Alvain et al. 2008; Bracher et al.
2009), algorithms do exist for identifying broad phytoplankton size classes (Ciotti
et al. 2002; Devred et al. 2006; Uitz et al. 2006; Hirata et al. 2008). These tech-
niques rely on the first order relationship between cell size and ecosystem function
(after Sieburth et al. 1978). However, the end-point of most of these studies has
been to assess different phytoplankton size-class contributions to pigment biomass
(Chl) only, rather than their contributions to NPP. For example, Uitz et al. (2006)
used a large in situ dataset of Chl and other diagnostic pigment markers to generate
empirical parameterizations between surface [satellite] Chl and relative dominance
of three size classes of phytoplankton; pico-, nano-, and micro-phytoplankton. The
link between size-fractionated Chl estimates and NPP was made in subsequent
work by Uitz and co-workers who associated class-specific photophysiological
variables with pigment-based size classes in field datasets (Uitz et al. 2008), then
applied these relationships to satellite data (Uitz et al. 2010).
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The approaches described above all suffer from their reliance on satellite Chl as
an indicator of biomass. As a result, they interpret higher Chl as more biomass, and
by inference, a greater contribution from larger size classes of phytoplankton. One
solution to this problem in the context of remote sensing is to build on the body of
work which employs satellite estimates of particulate backscattering (bbp) to
quantify phytoplankton carbon directly (Behrenfeld et al. 2005; Westberry et al.
2008; Kostadinov et al. 2009). The global relationship of Westberry et al. (2008)
relating particulate backscattering to Cphyto can be improved through (1) routine
field measurements of Cphyto (currently there are none) to better constrain the
relationship, (2) improvements in bio-optical inversion schemes that estimate bbp

from satellite radiance, and (3) algorithm development that accounts for anomalous
sources of bbp biasing estimates of Cphyto (e.g., coccolithophores). Kostadinov et al.
(2009, 2010) recently introduced a remote sensing method for characterizing par-
ticle size distributions (PSD) based on spectral bbp retrievals. Resultant PSDs can be
expressed as a continuous function of size and related to specific phytoplankton size
ranges, such as pico-, nano-, and micro-phytoplankton. Given biovolume-specific
carbon concentrations, which are available from laboratory studies, this method
could yield class-specific carbon biomass explicitly. Perhaps an even more com-
pelling avenue would be to combine the approaches of Uitz et al. (2006) and
Kostadinov et al. (2009) to partition both Chl and Cphyto individually to characterize
size-class specific Chl:Cphyto ratios. Any existing NPP model that accounts for
Chl:Cphyto variability would surely benefit from this added information.

Another means of incorporating taxonomic information is through the use of
phytoplankton absorption, aph, rather than Chl concentration. NPP models
employing Chl implicitly assume a fixed Chl-specific absorption capacity, a�ph,
despite order of magnitude variability that exists in a�ph (Bricaud et al. 1995, 1998).
Much of this variability can be related to the size distribution of extant phyto-
plankton and presumably taxonomic composition (Bricaud et al. 2004). Lee et al.
(1996) provide a NPP model amenable to remote sensing which is cast in terms of
aph, rather than Chl. For the dataset these authors investigated, aph-based NPP
models were far superior to Chl-based analogs. In addition to the conceptual
advantages of using aph over Chl for estimating NPP, retrieval of aph from satellite
reflectance has also been suggested to be preferable to direct estimation of bio-
geochemical quantities such as Chl (Lee et al. 2002).

8.6.4 New Tools

The various avenues discussed above for improving global assessments of ocean
NPP are largely focused on advances that can be made with currently available
observational and model-derived data sets. Major future advancements, however,
may also be realized through engineering developments, both in the ocean and in
space. Autonomously collected data by free-drifting and profiling floats and gliders
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is already returning unprecedented measurements of physical, optical, nutrient, and
oxygen properties. Already, these data have been used to track the seasonal evo-
lution of phytoplankton blooms (Boss and Behrenfeld 2010) and constrain the
upwelling supply of nutrients available for photosynthesis (Johnson et al. 2010), to
name just a few applications. Following the success of the Argo program (Roem-
mich and Owens 2000), the Bio-Argo program strongly supports development and
deployment of floats equipped with sensors for measuring key biogeochemical
properties, such as Chl fluorescence and particulate backscattering. Similar efforts
are in place to make routine O2 measurements on profiling float platforms (Gruber
et al. 2007). Inclusion of these capabilities represents the first precursors to NPP-
enabled floats. Indeed, prototype floats capable of the aforementioned measure-
ments and more (e.g., radiometers) already exist and should enable a single plat-
form to yield a complete suite of data suitable for initial NPP calculations.

Another exciting yet unexploited tool for ocean ecological studies is space-
based lidar (Light Dectection And Ranging) systems. Lidar technology is widely
used in terrestrial and atmospheric disciplines, but ocean applications have been
limited to targeted near-shore and coastal studies using aircraft or ship-based
systems (e.g., Churnside and Wilson 2001). Nevertheless, space-borne LIDAR
assets are available for investigating their application to subsurface ocean retri-
evals. For example, the CALIOP lidar on the CALIPSO satellite conducts routine
vertical profiling measurements at 532 and 1064 nm. The latter wavelength is too
long to penetrate the ocean surface, but the former should effectively sample near
surface plankton populations. CALIPSO’s stated science objectives are aimed
atmospheric aerosol and cloud science applications. Nevertheless, preliminary
analyses suggest subsurface scattering signals can be detected from the ocean
surface. CALIOP was not designed for ocean applications, but these early results
suggest that a more capable ocean-penetrating space lidar could provide critical
independent constraints on ocean particle pools and perhaps even assessments of
vertical structure in plankton distributions with links to mixed layer depths.

Significant opportunities also exist for realizing major advances in ocean
ecosystem characterization from upcoming passive ocean color sensors designed
with capabilities far exceeding those of our heritage sensors. Technological
developments since the conception of CZCS, SeaWiFS, and MODIS now enable
major improvements in spatial, temporal, and spectral resolution, although not
necessarily all within a single instrument. Increased spectral resolution and
expansion into the near-ultraviolet wavebands (350–400 nm) will allow further
discrimination of different phytoplankton groups and separation of phytoplankton
from other optical constituents (sediments, detritus, dissolved organics). Improved
atmospheric corrections may also be realized by flying an advanced ocean color
sensor with a profiling lidar and multi-angle spectral polarimeter. A satellite
constellation of this sort will not only improve atmospheric corrections for more
accurate water leaving radiance retrievals, but would also provide simultaneous
lidar subsurface retrievals described above and a capacity for discriminating
organic and inorganic particles through the polarimeter measurements (Loisel
et al. 2008).
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8.6.5 Vision for Future Remote Sensing of NPP

The preceding subsections outlined various avenues for advancing space-based
NPP models. Here, an example is given which employs some of these pieces and
allows a glimpse of how the distribution of NPP and our understanding may differ
when taken into consideration. This new approach is termed the Carbon,
Absorption, and Fluorescence Euphotic-resolving (CAFE) NPP model. For this
exercise, the VGPM is used as a prototypical satellite NPP model, and its annual
average NPP rate is shown in Fig. 8.4. In contrast, the CAFE NPP model
assimilates new satellite-derived information into its estimation of NPP rates. First,
the model employs satellite-derived estimates of particulate backscattering that are
used to estimate phytoplankton carbon biomass (C) directly. This parameter also
allows estimation of Chl:C which provides physiological information (i.e.,
photoacclimation) and a link to the phytoplankton growth rate, l (Laws and
Bannister 1980). Thus, we can estimate NPP directly using Eq. 8.1. Using this
approach, the model is able to distinguish physiological changes in cellular pig-
mentation from changes in biomass. The result is that many high Chl regions (i.e.,
North Atlantic) have reduced NPP as some fraction of the bulk Chl is attributed to
photoacclimation. In contrast, many low Chl regions (i.e., North Pacific Sub-
tropical Gyre) exhibit increased NPP relative to the VGPM as their biomass (and
Chl) may be low, but their growth rates can still be high. Second, chlorophyll
fluorescence from satellite has been shown to register the unique imprint of iron
stress over much of the ocean (Behrenfeld et al. 2009; Westberry et al. 2013). The
reason for this, in part, results from chlorophyll present in phytoplankton and
reflected in satellite-based Chl retrievals, but which is dissociated from photo-
synthetic electron transport (Behrenfeld and Milligan 2013). Therefore, NPP
models which employ Chl as a biomass indicator will tend to overestimate NPP
where phytoplankton are iron stressed. Satellite estimates of chlorophyll fluores-
cence efficiency (uf, Behrenfeld et al. 2009) can be used to correct for this effect
(Fig. 8.4). Here, a simple linear correction is applied that assumes the strength of
iron limitation is directly proportional to uf above some threshold value that marks
the onset of iron limitation. The effects are largely irrelevant outside the equatorial
oceans, but can reduce NPP by up to 40 % in some places. This is consistent with
the observation that up to 40 % of the total Chl content in iron stressed cells can be
in a ‘dissociated’ state (Moseley et al. 2002). In the example given, this correction
alone decreases global annual, marine NPP by[3 Pg year-1, nearly all of which is
in the tropics between 20�N and 20�S. Third, the CbPM can be recast in terms of
phytoplankton absorption (aph) per unit carbon rather than Chl:C. This approach
has the benefit of accounting for all accessory pigments which can play an
important role in light absorption and photosynthesis. Absorption-based NPP
modeling has shown superior predictive ability in some field datasets (Lee et al.
1996). In addition, this approach should also reduce uncertainties arising from
empirical retrievals of Chl, as phytoplankton absorption is more closely tied to the
fundamental satellite measurements of radiance.

222 T. K. Westberry and M. J. Behrenfeld



Taking another step forward, CAFE NPP can be partitioned amongst various
phytoplankton groups. This step can be achieved in many ways (e.g., Uitz et al.
2010). Here, the model of Kostadinov et al. (2009, 2010) has been used which
links satellite-derived particulate backscattering to the particle size distribution. In
this example, the fraction of total particle biovolume in each of three size-based
phytoplankton groups (pico-, nano-, micro-) has been estimated and directly
assigned to the fraction of NPP in each group. Ideally, this partitioning of particle
volume (a proxy for biomass) would occur first and NPP would then be calculated
in parallel for each group. Further, Chl could be partitioned in a similar manner
(e.g., Uitz et al. 2006) and allow group specific Chl:C for use in the CAFE model.
Nevertheless, this proof of concept allows us to visualize the contribution to total
NPP from different phytoplankton groups (Fig. 8.4). The patterns largely confirm
many years’ worth of expeditionary field measurements and demonstrate the
predominance of small phytoplankton in the open ocean and the overwhelming
contribution of large phytoplankton in nutrient rich areas. This annual composite
likely masks many seasonal and small scale bloom features. Last, the newly

Fig. 8.4 Illustration of current and next generation satellite-based marine NPP models. a VGPM
represents prototypical current NPP model. b New CAFE NPP model for same time period.
c Additional satellite-derived inputs to CAFE characterizing photoacclimation (Chl:C), iron stress
(uf), and phytoplankton absorption (aph). d Further, NPP can be resolved into coarse, size-based
taxonomic groups (pico, nano, micro), yielding group-specific NPP
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revised CAFE NPP rates can be used in conjunction with recent laboratory find-
ings that show remarkable consistency between rates of gross primary production
(GPP) and its use by phytoplankton for cellular growth and maintenance. Halsey
et al. (2010) showed that constant fractions of Chl-normalized GPP were allocated
to light-dependent respiration (15 %), nitrogen and sulfur reduction (10 %), syn-
thesis of short-lived carbon products not reflected in NPP measurements (45 %),
and NPP (30 %). These relationships were valid across the entire range of growth
rates experienced by the phytoplankton (from 0.1 to 1.2 d-1). Thus, oceanic
estimates of GPP may be in the range 150–170 Pg C year-1, of which *70 Pg is
fixed carbon, but which is not measured or estimated as NPP. These realizations, if
true at the global scale, require careful reconsideration of energy and matter flow
through marine ecosystems.

8.6.6 Beyond NPP

While NPP is an essential attribute of all surface ocean ecosystems, fully under-
standing ocean ecological interactions, biogeochemistry, and change necessitates
assessments of many additional properties. Gross primary production, autotrophic
and community respiration, net community production, export production and
other intermediate rate measurements each convey different information about an
ecosystem. Currently, it is unclear what governs the relationships between these
rates or whether universal relationships exist between properties. Halsey et al.
(2010) recently reported remarkable stability in the ratio of Chl-specific gross and
net primary production rates. Similar results are not generally observed in the field,
although the contribution of field methodological issues to this observed variability
is not well constrained. The comparable global values of NPP reported for ocean
and terrestrial systems (e.g., Field et al. 1998; Behrenfeld et al. 2001; Friend et al.
2009) certainly do not exist at the level of GPP, as terrestrial plants have a much
lower ratio of photosynthetic to respiratory tissue. However, the extent of this
difference will not be clear until ocean GPP assessments can be made. Currently, a
wide range of ratios between gross and net primary production have been reported
in the literature (Luz and Barkan 2009; Quay et al. 2010; Marra 2009).

Additional work is also needed in understanding ecosystem balances between
phytoplankton growth and loss rates. In this case, satellite data may be extremely
useful. Currently approaches allow for the calculation of phytoplankton NPP and
assessment of Cphyto. As indicated by equation (8.1), the ratio of NPP: Cphyto yields
an estimate of l. Continuous time series of Cphyto also allow direct assessment of
net population growth rates (r) through calculation of the rate of change in Cphyto

between any two observational time points. As r = l – l, it is now possible to
investigate regional relationships between phytoplankton growth and loss
dynamics and relate these interactions to environmental forcings. An example of
this type of analysis is provided by Behrenfeld (2010), where controls on North
Atlantic vernal phytoplankton blooms were investigated and related to mixed layer
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dynamics. Application of this approach to other major ocean systems will inevi-
tably result in significant new insights ecosystem dynamics. This satellite-based
assessment of phytoplankton loss rates (l), unfortunately does not distinguish
grazing losses from other losses, such as carbon export. For processes such as
export that are multiple levels removed from remotely sensed properties, we have
to continue relying heavily on the integration of satellite data with mechanistic
ocean ecosystems models.
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