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Abstract. Building commonsense knowledge bases is a challenging undertak-
ing. While we have witnessed the successful collection of large amounts of com-
monsense knowledge by either automatic text mining or games with a purpose
(GWAP), such data are of limited precision. Verifying data is typically done with
repetition, which works better for very large data sets. Our research proposes a
novel approach to data verification by coupling multiple data collection methods.
This paper presents ACTraversal, a graph traversal algorithm for ranking data
collected from GWAP and text mining. Experiments on aggregating data from
two GWAPs, i.e. Virtual Pets and Top10, with two text mining tools, i.e. SEAL
and Google Distance, showed significant improvements.

1 Introduction

Codifying several million pieces of commonsense knowledge into machine usable
forms has proved to be time-consuming and expensive. In 1984, a team of knowl-
edge engineers [6] started to craft the Cyc knowledge base using CycL, a logic-based
language. Extreme care was taken to ensure its correctness. In contrast, Open Mind
Common Sense (OMCS) [8] took the Web 2.0 approach by collecting voluntary contri-
butions of commonsense sentences from online users. In recent years, with the advances
in human computation, large amounts of data can be crowdsourced or mined from the
web efficiently. Despite improvements in the efficiency of knowledge acquisition, those
methods are limited in their precision.

Several methods have been developed to guarantee the precision of crowdsouced
knowledge. Frequency is the most used approach to filtering out noisy data in crowd-
sourcing, which takes advantage of the huge amount of user input for data verification.
Mechanism design is another approach to eliciting correct answers from players of
GWAPs. For example, Verbosity [1] uses sequential verification to verify answers, and
Virtual Pets [5] improves the quality of answers by punishinig malicious behaviours in
community interaction.

Unfortunately, these mechanisms may not work in practice. The data collected are
subject to pollution due to tricks by players. Speer et al. [9] found that half of the data
collected by Verbosity should be rejected by OMCS since they are only sound-alike
or look-alike clues used for guessing the answers. In their experiment, half of the data
were filtered, yet the remaining data were still had lower quality than the assertions in
OMCS. In a single GWAP, players may learn tricks from experiences, using the tricks
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to get game points but contribute little to the knowledge base. Even the mechanism is
well designed, the quantity and quality may be limited due to those tricks.

In order to improve the precision without modifying the original GWAP, one can
develop a separate game for data verification [3]. Meanwhile, text mining methods has
been proved it is useful to learning sentences from the web[2]. By coupling GWAP or
text mining methods, the precision may also be improved. Nevertheless, the existing
text mining depends on properly defined seeds as training examples and templates,
while GWAP tend to produce redundant data over time. As a result, aggregating both
GWAP and text mining are better than coupling only one type of methods for building
large commonsense knowledge bases.

This paper proposes an approach, ACTraversal, to improving the precision of com-
monsense knowledge collected by aggregating GWAP with text mining components.
The proposed ACTraversal is a universal graph traversal aggregation for ranking com-
mon sense assertions and certifications.The assertions and certifications of common-
sense knowledge are defined as below:

– Assertions: Sentences composited by subject-relation-object triples.
– Certifications: Evidences indicating partial-order of associated assertions confi-

dence level. Assertion with higher confidence level is associated with higher order
certification. Every assertion is associated with at least one certification.

In the following sections, we first compare the pros and cons of existing verification
methods of GWAP and text mining techniques, and introduce the proposed ACTraver-
sal. We then present our prototype implementation, followed by the experiments de-
signed to show that

– ACTraversal can improve quality of the partial order ranking produced by a single
component,

– ACTraversal can aggregate data from multiple components, and
– ACTraversal is efficient on large dataset.

2 Approaches to Knowledge Verification

This section presents an overview of approaches to knowledge verification and dis-
cusses their pros and cons to show the advantages in coupling the approaches.

Games with a Purpose. Games With A Purpose (GWAP) [10] utilizes computer games
to gather players and guides them to perform tasks. The quality of collected sentences
is guaranteed via the mechanism of the game. It has demonstrated its efficiency in
commonsense knowledge collection. For example, Verbosity [1] and Virtual Pets [5]
have collected over a million English and Chinese commonsense sentences respectively
within a year with acceptable precision.

Verbosity is a two-player game in which the Narrator gives clues to help the Guesser
figure out a secret word. The clues are collected as commonsense knowledge about
the corresponding secret word. Virtual Pets utilizes the interactions in communities to
collect knowledge via question-answering between online users. Players in Virtual Pets
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answer questions such as “Spoon is used for ?” in exchange for food for their pets.
Both games use frequency as filters to verify the assertions. This approach succeeded in
building useful knowledge bases within a relatively short time and with extremely low
costs.

However, previous research found that the precision of answer is not perfect. The
precision can be further improved by coupling with a verification game [3]. For exam-
ple, Top10, a FamilyFeud-like verification game, can be used for verifying the concepts
of an assertion collected by Virtual Pets. The precision of assertions collected by Top10
and Virtual Pets is significantly higher than the assertions collected by only a single
game. This approach shows the opportunity to aggregate GWAP to gain precision.

Text Mining. Some types of general knowledge, such as categorical relations, can be
extracted automatically [7,4,2] from a corpus. The data quality is ensured via text min-
ing or machine learning techniques. Previous work has demonstrated that pattern-based
and list-based extraction methods can be combined to achieve significant improvements
in recall [4]. Never-Ending Language Learner (NELL) [2] also showed that it is possi-
ble to collect sentences with high precision and improve the learning process itself by
using coupled machine learning components. This approach shows the opportunity to
couple text mining to gain precision.

However, these coupled methods are limited to their constraints. While text mining
is restricted on certain knowledge domains, GWAP produces fewer assertions. By cou-
pling GWAP and text mining methods, the data can be further verified. In addition,
aggregation of the non-overlapping data can also improve the coverage of knowledge
base. With larger coverage, the aggregation approach can verify more assertions.

3 ACTraversal

To get the best of both worlds, we propose ACTraversal (ACT); a universal ranking
aggregation by graph traversal on assertions and certifications. By utilizing partial-order
of certifications, ACT ranks assertions from multiple components, constructing a total-
order of all assertions. This section introduces the data structure, graph, assumptions,
and the algorithms used in ACTraversal.

3.1 Data Structure

The proposed ACT uses assertions and their certifications from multiple components.

Assertions. Commonsense knowledge is comprised of assertions, which are defined as
“subject-relation-object” triples in this paper. For example, the corresponding assertion
for “dog is an animal” is “dog-IsA-animal”. Both subject and object of an assertion are
concepts, which are represented in plain text. For the sake of simplicity, we assume that
all the texts have only one sense since the concepts in the same text but different senses
can be stored as different instance in this system. The relation of an assertion comes
from a predefined relation set which can be incrementally enlarged. Also, the relations
are directed edges connecting two concepts. For example, “Subject-IsA-Object” and
“Object-IsA-Subject” are regard as different assertions. If every corresponding element
in two triples are the same, the system treats them as the same assertions.
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Certifications. Assertion with higher confidence level is associated with higher order
certification. Every assertion is associated with at least one certification. Certifications
are the evidences indicating partial-order of associated assertions confidence level. Each
assertion may associate with multiple certifications from different sources (i.e. GWAP
and text mining components.) For example, both “2 players answered dog-IsA-animal
in Verbosity” and “NELL learned dog-IsA-animal with 100.0% confidence” are valid
certifications for “dog-IsA-animal”. Since each component returns assertions with their
certifications, every assertion must associate with at least one certification. In addition,
an assertion can also associate with multiple certifications from a single source. For
example, “UserA vote for dog-IsA-animal on OMCS website” and “UserB vote for
dog-IsA-animal on OMCS website” are all valid certifications. Multiple certifications
in a single component can be aggregated into a single certification. For example, the
above certification can be aggregated as “2 users vote for dog-IsA-animal on OMCS
website’. By doing so, it reduces the computational complexity and hide personal in-
formation.

AC Graph. The graph of assertions and certifications (i.e. the AC graph) in ACT has
two types of nodes and two types of edges. The nodes are Assertion and Certification.
Each distinct assertion and certification corresponds to an Assertion node and Certifi-
cation node, respectively. The edge type between Assertion and Certification is Cross.
The edge type between Certifications is Order. The Cross edge is bidirectional, and
the Order edge is unidirectional. There is no edge between Assertion nodes. Each node
has a ranking score, and each edge has a weight. Weight of Cross edge is the confi-
dence score of its source component. For component with higher confidence score, its
associated certifications are more trustworthy. Weight of Order edge is set to a uniform
score since it only indicates the direction of traversal. Figure 1 shows a sample graph
containing 3 assertions and 3 certifications from 2 components.

Fig. 1. A sample AC graph

Assumptions. Two assumptions are made in using the assertions and certifications:

– The ranking scores of assertions are positively correlated to ranking score of asso-
ciated certifications.
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– The certifications of a single component are in a partial-order indicating the confi-
dence level of associated assertions.

The first assumption means a good assertion has a strong certification, and the strength
of certification depends on the assertion it attests to. The second assumption implies
that the confidence scores of assertions are comparable through certifications. For ex-
ample, “2 users vote for dog-IsA-animal on OMCS website’ has higher confidence
score than “1 users vote for dog-IsA-pet on OMCS website’. However, “2 users vote
for and 1 user votes against bird-CapableOf-fly on OMCS website’ is not compa-
rable with “1 users vote for bird-IsA-creature on OMCS website.’ These assumptions
hold for components that use frequency as filter to verify data. Therefore, GWAP that
use frequency of answers/votes and text mining components that output assertions with
probabilities/rankings can be formalized as components of ACTraversal.

3.2 ACTraversal Algorithm

ACTraversal (ACT) is a graph traversal algorithm to rank assertions and certifications
on a weighted directed graph. It takes the output assertions and certification of GWAP
or text mining components as input. The confidence score of each component is prede-
fined according to the result of previous study. The output of ACT is a ranking list of
assertions and certifications with the converged scores.

AC Graph Construction. ACT builds the graph according to the input pairs of asser-
tions and certifications. For each pair, the assertion and certification are connected by
Cross edges. After reading all the pairs from a component, ACT compares the certi-
fications and adds a Order edge from lower order (weak certification) to higher order
(strong certification). For example, if every element of a 2-ary certification is greater
than another 2-ary certification, its order must be higher. So, ACT adds an edge from
(2,1) to (2,3), but it does not build edge between (2,1) and (1,2). The time complexity
of building AC graph for a single component is O(|Cross | + |Certification |2).

Algorithm 1. ACGraph(Components)
Require: Components with output pairs of assertion and certification
{ACG is a weighted directed graph}

1: for all C ∈ Components do
2: for all assert , cert ∈ C .ACpairs() do
3: ACG .addNode(assert , cert)
4: ACG .addBidirectEdge(assert , cert , C.confScore)
5: end for
6: for all cert1 , cert2 ∈ ACG .Certs ,

s.t. cert1 < cert2 do
7: ACG .addUnidirectEdge(cert1 , cert2 )
8: end for
9: end for

10: return ACG
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Once constructing the AC graph, ACT assigns the weights to nodes and edges. All
nodes are assigned weight evenly; with sum of weight of all nodes is equal to 1. The
weight of edges are assigned as defined in AC graph. Algorithm 1 describes the details
of building AC graph.

AC Graph Traversal. The traversal algorithm proceed iteratively until the ranking score
of node converges. In each iteration, scores of nodes are updated while the weight of
edges remains the same. For each Assertion node, ACT assigns the weighted average of
the linked Certification nodes to it as the new score. The weight used here is weight of
Cross edge. For each Certification node, ACT collects two sources of scores, and then
assign the node by averaging scores from the two sources. One source is the score of
its associated Assertion nodes. ACT computes the weighted average scores of Assertion
nodes as the first source. The other source is the score of lower order Certification
nodes. ACT passes score of lower order Certification evenly to its linked higher order
neighbors through the Order edges. After updates of the scores, ACT redistributes a
small portion of scores to every node as random restart. In the end of each iteration,
ACT normalizes the scores to make their sum equal to 1. Algorithm 2 demonstrates the
details of ACTraveral. The time complexity of this algorithm is O(iteration×(N+E)).

Since the Assertion and Certification are positively correlated, they can be viewed as
the attributes of each other. Also, the partial order of Certification nodes are used for
estimating authority. The ACTraversal can be considered as a process to 1) average the
attributes and 2) compute the authority. With the two steps, we can estimate the rank
of Assertion and Certification at the same time. Figure 2 shows the interaction result of
Certification and Assertion in ACT.

Algorithm 2. ACTraversal(Components , λ)
Require: Components with output pairs of assertion and certification
{ACG is a weighted directed graph}

1: ACG ← ACGraph(Components)
2: repeat
3: for all Node ∈ ACG do
4: if Node is Assertion then
5: score ← weightedAvg(neighborCert (Node))
6: else if Node is Certification then
7: score ← weightedAvg(neighborAssert (Node))
8: for all cert ∈ predecessorCert (Node) do
9: score ← score + ( cert.score

cert.outDegree
)

10: end for
11: score ← score/2
12: end if
13: Node.score ← score
14: end for
15: ACG.RandomRestart (λ)
16: ACG.NormalizeScores()
17: until score is converged
18: return ACG.rankingScore
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Fig. 2. ACT on sample AC graph. The size is the result weight.

4 Implementation

We evaluated ACT in terms of its quality of aggregation results and efficiency. In the
following section, we will first describe the components in our implementation. Second,
we will show that ACT can rank assertions in components with partial order certifica-
tions to achieve higher precision. Then we will demonstrate the quality of ranked as-
sertions after aggregating the data from multiple components. Finally, we will compare
the running time of ACT in dataset of different sizes.

4.1 Components

In this experiment, we chose 2 GWAP and 2 AutoExtraction components that can out-
put pairs of assertion and certification. The components are VirtualPets (VP) [5], Top10
[3], SEAL [11], GoogleCount (GC)1. The components are chosen based on previous
studies[5,3,11]. The input, output, and the formalization of certification of each compo-
nent are described in the following paragraphs.

Virtual Pets. Virtual Pets (VP) is a game in which players teach common sense to their
own virtual pets. It outputs assertions with play logs, which are the frequency, good
rank, and bad rank. We formalized these logs as certifications in 3-ary tuple, (+fre-
quency, +good rank, -bad rank). The partial order of certifications is set if every element
in one certification is greater than or equal to another.

Top10. Top10 is a family-feud-like game in which players guess the top 10 concepts
of a given question to get high scores. The input of game is a list of assertions ranked
by their frequency. It outputs assertions with play logs, which are the frequency, good
votes, and bad votes. We formalized these logs as certification in 3-ary tuple, (+fre-
quency, +good votes, -bad votes). The partial order of certifications is set if every ele-
ment in one certification is greater than or equal to another.

1 Google search engine, http://www.google.com
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SEAL. Set Expander for Any Language(SEAL) is an algorithm that uses common wrap-
pers of a given set of seeds to auto extract instances from the web. For example, given
“tea” and “milk”, both are liquid, as input seeds of SEAL, it can extract “water”. It
extracts the wrapper around seeds from web pages, and then use wrapper the extract
new instances. A possible extracted wrapper of the example above is “drink X.</li>”,
where X is the extraction. It outputs the top 100 instances retrieved using a set of seeds
belonging to a given category. We formalized the assertions as “instance-IsA-category”
triples. Also, we defined the mutually exclusive relations between categories. If an in-
stance belongs to two mutually exclusive categiries, we add a flag on the assertion. The
certifications can then be formalized in 2-ary tuples, (-rank, -flag), which is in partial
order relationship.

GoogleCount. GoogleCount is an algorithm that computes the number of web pages
Google search engine returned for a given sentence. The input assertions are represented
as natural language sentences. The output of GoogleCount is the assertions with page
counts. We formalized the counts as certifications. One certification is in higher order
only if its associated count is strictly greater than others.

In our experiment, we evaluated the precision of top 800 instances ranked by 1) each
sigle component, 2) ACT on each single component, or 3) ACT on the four components,
with λ equals to 0.01. We recruited 46 graduate students to label the top 800 assertions
returned by each method as ground truth. Each label is contributed by at least 3 students.
A label is true only if over half of annotators vote true.

4.2 Single Component Ranking

In the single component ranking, we compare ACTraversal with the serializing heuris-
tic which sort results by frequency. This heuristic is previously used by the existing
component, so we apply ACTraversal to examine the improvement. Table 1 lists the
number of distinct assertions each component outputs. Figure 3 shows the precision of
top 800 instances ranked by ACT on single component with single component precision
as baseline. The improvement of precision in VP, Top10, and SEAL demonstrates the
re-ranked lists produced by ACT are better than their original ranking lists. Therefore,
ACT can be viewed as a ranking algorithm that turns partial order certifications into a
better total order ranking of assertions. The result of GC is omitted in figure 3 because
ACT does not produce new ranking list for a total order ranking.

Table 1. Number of assertions output by components

Component VP Top10 SEAL GC
Number 378k 378k 2011 49989

4.3 Multiple Components Aggregation

We first experimented on different confidence scores used by ACT to verify the impact
of parameters. Then, we tested on dataset of different sizes to evaluate the efficiency
of ACT.



242 T.-H. Chang, Y.-L. Kuo, and J.Y.-j. Hsu

(a) Precision of ACT on VP

(b) Precision of ACT on Top10

(c) Precision of ACT on SEAL

Fig. 3. Precision improvement by ranking single component with ACT
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Confidence Score. We examined three possible settings of aggregation weighting pa-
rameters. The first setting uses uniform weight for all components. The other two set-
tings are based on the precision of each component. The precision used for calculat-
ing the confidence score is the precision of top 200 assertions returned by ACT on
each single component. One parameter setting uses the precision as the weight. The
other parameter setting comes from the following formula, which is inverted logistic
function:

confScore = − ln(
1

precision
− 1) (1)

The weights are then scaled to [0,1] by dividing the maximum weight. Table 2 lists
the precision and weights used in this experiment. Figure 4 shows the precision of
the three parameter settings for multiple components aggregation and ACT on each
component. Compared to the uniform and precision weighted setting, inverted logis-
tic weight has comparable high precision in aggregating both noisy and high quality
components.

Table 2. Confidence Score in experiment

Component VP Top10 SEAL GC
Uniform 1 1 1 1
Precision 0.99 0.935 0.525 0.745

Inverted Logistic 1.000 0.580 0.022 0.233

Table 3. Experiment on each size setting

Questions Assertions Certifications Precision Building Time Traverse Time Iterations
1250 138398 2007 0.94 34s 2m26s 56
2500 183628 2103 0.9525 1m2s 4m6s 58
5000 258997 2204 0.96375 1m54s 8m54s 62

10000 395612 2294 0.9725 3m10s 11m18s 64
20000 626077 2328 0.98125 6m39s 23m43s 64

Size of Dataset. We used different number of questions (i.e. the concept-relation pair
used in VP and Top10) to generate dataset of different sizes. Table 3 lists the number
of questions, number of the corresponding assertions returned by the four components,
and the precision of top 800 assertions returned by ACT on dataset of different sizes.
We observed that the precision was increased as the size of total assertions. Table 3
also gives the time in building graph and time in traversing graph of different sizes.
Using linear regression to predict the execution time, the traversal time is y = 4E −
05x − 2.8577, R2 = 0.9739 each iteration, and the graph construction time is y =
0.0007x− 78.865, R2 = 0.9894. Both of them are nearly linear time.
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Fig. 4. Precision of ACT on each component and aggregation

5 Discussion

– GWAP v.s. Text Mining In previous study, text mining components are more pro-
ductive in quantity[3,11]. While GWAP like Virtual Pets produces one thousand
assertion-certification pairs a day, text mining components can produce the same
quantity in few minutes. On the other hand, GWAP have higher precision than text
mining components in our experiments. Meanwhile, text mining component is lim-
ited to certain domains, such as IsA relation, but GWAP can be used to collect
variant assertions. From these observations, we know that the two types of com-
ponents are good complement to each other. By aggregating the data from both
components, we can take advantage of the two approaches.

– Non-overlapping Data The ACT can rank data from multiple sources without re-
quirement of overlaps. ACTraversal ranks non-overlapping data by utilizing partial
order from overlapping data. This property implies that we can infer a total ranking
of confidence level of assertions. We believe the ranking result can be a guidance to
bootstrap text mining component to collect more data. We can feed the assertions
with high ranking score as the input of text mining components to collect more
data. For the assertions with middle ranking scores, we can feed them as input of
GWAP for verification. The assertions with low ranking score can then be filtered
out. With this kind of coupling after aggregation of ACT, it is possible to get the
data with higher quality and quantity.
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– Quantity of Assertions In the experiment, we observed the quantity of assertions
is positively correlated with the quality of top assertions. It implies that our two
assumptions hold in our crowdsourced data. If good assertions are collected, they
would be ranked in higher order. However, we also noticed the aggregation result
is slightly less precise than the component with the best precision, i.e. ACT on VP.
This slightly lower precision shows that ACT is not noise-proof. If stronger certifi-
cation is not associated with better assertion, it would promote the bad assertion to
the top. In our experiment, some noisy assertions were reported with high rank by
GC component. Due to Google is a keyword based search engine, it cannot detect
incorrect template filling. In this case, the count of Google retrieved data was high,
but many of the results were not in the same meaning of our assertion. This errors
can disturb the ranking order and bring up noises into results. Therefore, we sug-
gest that components put in ACT should be verified to ensure that it 1) holds the
assumptions and 2) has acceptable precision.

6 Conclusion

This paper presents the ACTraversal (ACT); a graph traversal algorithm to rank crowd-
sourced assertions and certifications. The partial order certifications are used for re-
constructing the total order ranking of assertions. Our experiments of ACT on Virtual
Pets, Top10, SEAL and GoogleCount shows that ACT successfully improve the preci-
sion of single component and construct total ranking of assertions from multiple com-
ponents in nearly linear time.
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