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Abstract. The Generalized Mutual Assignment Problem (GMAP) is a
distributed combinatorial optimization problem in which, with no cen-
tralized control, multiple agents search for an optimal assignment of
goods that satisfies their individual knapsack constraints. Previously,
in the GMAP protocol, problem instances were assumed to be feasi-
ble, meaning that the total capacities of the agents were large enough
to assign the goods. However, this assumption may not be realistic in
some situations. In this paper, we present two methods for dealing with
such “over-constrained” GMAP instances. First, we introduce a disposal
agent who has an unlimited capacity and is in charge of the unassigned
goods. With this method, we can use any off-the-shelf GMAP proto-
col since the disposal agent can make the instances feasible. Second, we
formulate the GMAP instances as an Integer Programming (IP) prob-
lem, in which the assignment constraints are described with inequalities.
With this method, we need to devise a new protocol for such a formu-
lation. We experimentally compared these two methods on the variants
of Generalized Assignment Problem (GAP) benchmark instances. Our
results indicate that the first method finds a solution faster for fewer
over-constrained instances, and the second finds a better solution faster
for more over-constrained instances.

Keywords: generalized mutual assignment problem, distributed opti-
mization, Lagrangian relaxation.

1 Introduction

Obviously, in distributed AI, the distributed assignment, whose task is to assign
something in a distributed context, has been a fundamental problem for decades.
The contract net protocol [13] may be the oldest example that performs this
task. More recently, multi-robot task allocation [3] and distributed target tracking
[2] have attracted much attention as applications of this technology. For more
formal treatment, distributed constraint optimization [10] and distributed facility
location [4] seem popular as a basis for the reasoning or the optimization of
distributed assignments.
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To formally deal with complex assignment problems, Hirayama et al. pro-
posed the Generalized Mutual Assignment Problem (GMAP) and the Distributed
Lagrangian Relaxation Protocols (DisLRP) [6][7] [8]. GMAP is the distributed
version of the Generalized Assignment Problem (GAP), whose goal is to find the
most profitable assignment of goods to agents. In GMAP, the agents themselves
cooperatively search for such an assignment. We regard this problem as a set
partitioning problem by agents, each of whom has a resource constraint.

Here is an outline of agent behavior in DisLRP. First, the agents solve their
individual 0-1 knapsack problems and announce their assignments of goods to
their respective neighbors. Second, for all goods, the agents raise their price
(Lagrange multiplier) if it is chosen by two or more agents, and they reduce their
price if it is not chosen by any agent. Third, under the new prices, the agents
solve their individual new 0-1 knapsack problems again. The agents repeat this
procedure until all of the goods are chosen by exactly one agent, which means
we get a proper set partition for the entire set of goods.

Previously, we assumed that, in GMAP, the total capacity of agents is large
enough to assign the goods. However, we can easily imagine “over-constrained”
situations, where the agents don’t have enough resource capacities for the entire
set of goods. We develop two methods to deal with such an over-constrained sit-
uation and experimentally compare them using the variants of GAP benchmark
instances.

The basic idea of the first method is the introduction of an additional agent
without a knapsack constraint, or equivalently, one with infinite capacity. We
call this agent the disposal agent. The disposal agent assigns the goods that
have not been chosen by any agent. By this method, since we do not need to
change the existing GMAP formulation, we have an advantage because the off-
the-shelf DisLRP can be used without any modifications. On the other hand, a
basic idea of the second method is that we first formulate GMAP as an Integer
Programming (IP) problem in which the assignment constraints are described
with inequalities and relax them to decompose the problem. By this method, we
do not need to introduce a special agent like the disposal agent, but we do need
to adapt DisLRP to this new formulation.

The remainder of this paper is organized as follows. First, we define GMAP
in Section 2. In Section 3, we present our two methods for dealing with over-
constrained GMAP instances, each of which consists of the formulation of a
problem and a solution. Next, we show the results of experiments on the variants
of the GAP benchmark instances in Section 4 and conclude in Section 5.

2 Generalized Mutual Assignment Problem

GAP has been studied for many years in operations research. Since it is a NP-
hard problem, many exact algorithms [11] and heuristic approaches [14] have
been proposed in centralized contexts. GMAP is a distributed version of GAP.
In the entire system, agents on GMAP solve the following IP problem, denoted
as GAP :
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GAP (decide xkj , ∀k ∈ A, ∀j ∈ J) :

max.
∑

k∈A

∑

j∈J

pkjxkj

s. t.
∑

k∈A

xkj = 1, ∀j ∈ J, (1)

∑

j∈J

wkjxkj ≤ ck, ∀k ∈ A, (2)

xkj ∈ {0, 1}, ∀k ∈ A, ∀j ∈ J,

where A = {1, ..., m} is a set of agents, J = {1, ..., n} is a set of goods, and pkj

and wkj are the profit and the amount of resources required when agent k selects
goods j. ck is the capacity, i.e., the amount of available resources, of agent k.
xkj is a decision variable whose value is set to 1 when agent k selects goods
j and 0 otherwise. The goal of the problem is to maximize the summation of
profits under the assignment constraints (1), which means each good is assigned
to exactly one agent and the knapsack constraints (2), which means no agent
can use more resources than its capacity.

To solve this problem by using a distributed method, we have to divide the
problem while keeping its structure. The Lagrangian decomposition [5] provides
such decomposition of the problem. The Lagrangian relaxation problem is ob-
tained by dualizing the assignment constraints (1) of GAP as follows:

L(μ) = max.
∑

k∈A

∑

j∈J

pkjxkj

+
∑

j∈J

μj

(
1−

∑

k∈A

xkj

)

s. t.
∑

j∈J

wkjxkj ≤ ck, ∀k ∈ A,

xkj ∈ {0, 1}, ∀k ∈ A, ∀j ∈ J,

where μj is a real-valued parameter called a Lagrange multiplier for goods j and
vector μ = (μ1, μ2, ..., μn) is called a Lagrange multiplier vector. For any value
of μ, L(μ) provides an upper bound on the optimal value of GAP [1].

Since an upper bound should be the lowest, we have another minimization
problem on μ:

min. L(μ).

We usually call this the Lagrangian dual problem. In L(μ), the objective function
is additive over the agents and the constraints are separable over them; this
maximization can be achieved by solving the following subproblems: for each
agent k,

Lk(μ) = max.
∑

j∈J

(pkj − μj)xkj
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s. t.
∑

j∈J

wkjxkj ≤ ck,

xkj ∈ {0, 1}, ∀j ∈ J,

and for the remaining terms,

Lconst(μ) =
∑

j∈J

μj ,

We can thus describe the Lagrangian dual problem as follows:

min.
∑

k∈A

Lk(μ) + Lconst(μ),

Our distributed solution method solves this problem using only local communi-
cations among agents.

3 Solutions for the Over-constrained Problem

Basically, GAP and GMAP are supposed to be feasible, meaning a proper set
partition of the goods exists that does not violate the knapsack constraints.
However, in reality, we may face over-constrained situations, where the agents
do not have enough capacity for the entire set of goods. In this paper, we present
two methods for dealing with such over-constrained situations.

3.1 DisLRP with a Disposal Agent

The first method introduces an additional agent, called a disposal agent, who
has no knapsack constraint or is equivalently equipped with infinite capacity.
The disposal agent does not get any profit even if he has some goods. Among
the regular agents and the disposal agent, all goods must be assigned to exactly
one agent.

Formulation. We can formulate GMAP including the disposal agent, denoted
by d /∈ A, as follows:

GAP ′ (decide xkj , ∀k ∈ A ∪ {d}, ∀j ∈ J) :

max.
∑

k∈A

∑

j∈J

pkjxkj

s. t.
∑

k∈A∪{d}
xkj = 1, ∀j ∈ J,

∑

j∈J

wkjxkj ≤ ck, ∀k ∈ A,

xkj ∈ {0, 1}, ∀k ∈ A ∪ {d}, ∀j ∈ J.
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For GAP ′, the Lagrangian relaxation problem that dualizes the assignment
constraints is described as follows:

L′(μ) = max.
∑

k∈A

∑

j∈J

pkjxkj

+
∑

j∈J

μj

⎛

⎝1−
∑

k∈A∪{d}
xkj

⎞

⎠

s. t.
∑

j∈J

wkjxkj ≤ ck, ∀k ∈ A, (3)

xkj ∈ {0, 1}, ∀k ∈ A ∪ {d}, ∀j ∈ J,

For any value of μ, L′(μ) provides an upper bound on the optimal value of GAP ′.
Since an upper bound should be the lowest, we have another minimization

problem on μ:

min. L′(μ).

We usually call this the Lagrangian dual problem. Since, in L′(μ), the objective
function is additive over the agents and the constraints (3) are separable over the
agents, this maximization can be achieved by solving the following subproblems:
for each regular agent k,

L′
k(μ) = max.

∑

j∈J

(pkj − μj)xkj

s. t.
∑

j∈J

wkjxkj ≤ ck,

xkj ∈ {0, 1}, ∀j ∈ J,

for disposal agent d,

L′
d(μ) = max.

∑

j∈J

(−μj)xdj

s. t. xdj ∈ {0, 1}, ∀j ∈ J,

and for the remaining terms,

L′
const(μ) =

∑

j∈J

μj .

We can thus describe the Lagrangian dual problem as follows:

min.
∑

k∈A

L′
k(μ) + L′

d(μ) + L′
const(μ).

Our distributed solution method solves this problem using only local communi-
cations among agents including the disposal agent.
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Virtualization of the Disposal Agent. Since we added the disposal agent
in this method, communication costs would increase because the total number
of agents increases by one. To avoid this scenario, we can virtualize the disposal
agent in our real implementation. Looking at the subproblem of the disposal
agent L′

d(μ), we realize that the disposal agent assigns goods j if μj becomes
lower than zero. Therefore, the regular agents should know what goods are as-
signed to the disposal agent by using Lagrange multiplier μ. Consequently, we
need not to add the real disposal agent. Instead, the regular agents can simulate
the behavior of the disposal agent. We will describe this method more concretely
below.

Solution. The basic procedure of this protocol is as follows:

(Step 1) All agents initialize their Lagrange multiplier vectors as 0.
(Step 2) Under a current value of μ, each agent k solves his knapsack problem

to compute L′
k(μ). Then the agents send those results to their respective

neighbors. At the same time, each agent treats every good j whose μj is
lower than zero as if it is assigned to the disposal agent.

(Step 3) If all assignment constraints of the original problem are satisfied, the
agents can quit the procedure to provide an optimal solution.

(Step 4) Each agent k finds an upper bound and a lower bound. Agent k
also finds the smallest upper bound, BestUB, and the largest lower bound,
BestLB, among those found so far. If both BestUB and BestLB have the
same value, the agents can quit the procedure to provide an optimal
solution.

(Step 5) Each agent k updates the Lagrange multiplier vector from μ(t) to
μ(t+1) by the subgradient method [1] and returns to Step 2.

After initialization at Step 1, this procedure iterates Steps 2 through 5. We refer
to one iteration as a round.

Note that the global information of the entire system is required for computing
in Steps 3, 4, and 5. In this work, we use a spanning tree to collect this global
information, as proposed in [8].

In Step 4, we need to compute both an upper and a lower bound. The upper
bound can be computed, at each round, as the total sum of the optimal values of
agents (including the disposal agent) plus the total sum of the elements of μ. On
the other hand, the lower bound can be computed, at each round, by building a
feasible solution for GAP ′ out of a solution for L′(μ). More specifically, a feasible
solution is built as follows:

– If a good is assigned to exactly one agent, it will be assigned to the agent.
– If a good is assigned to two or more agents, it will be assigned to the agent

among those agents having the largest profit.
– If a good is assigned to no agent, it will be assigned to the disposal agent.
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In Step 5, we use the subgradient method to update Lagrange multiplier μj . In
this method, agent k computes subgradient g

(t)
j for all goods j by

g
(t)
j ← 1−

∑

i∈A∪{d}
xij

and updates Lagrange multiplier μj as follows:

μ
(t+1)
j ← μ

(t)
j −

π(t)(BestUB(t) − BestLB(t))g(t)
j

∑
j∈J (g(t)

j )2
.

In this rule, agent k needs to know BestUB and BestLB at this point, but
they are obviously global information. As we mentioned before, we use the same
spanning tree as [8] to collect such global information. π is a control parameter,
whose initial value is two, that halves itself if neither BestUB nor BestLB is
updated through 30 consecutive rounds.

3.2 DisLRP with Inequality-Based Formulation

The second method describes assignment constraints with inequalities instead
of equalities.

Formulation. We can formulate the entire problem as the following IP problem:

GAP ′′ (decide xkj , ∀k ∈ A, ∀j ∈ J) :

max.
∑

k∈A

∑

j∈J

pkjxkj

s. t.
∑

k∈A

xkj ≤ 1, ∀j ∈ J, (4)

∑

j∈J

wkjxkj ≤ ck, ∀k ∈ A,

xkj ∈ {0, 1}, ∀k ∈ A, ∀j ∈ J.

The difference between GAP and GAP ′′ is that assignment constraints are de-
scribed with equalities in GAP and inequalities in GAP ′′. Clearly, with this
“relaxation,” we allow all goods to be assigned to no more than one agent.

The Lagrangian relaxation problem is obtained by dualizing the assignment
constraints (4) of GAP ′′ as follows:

L′′(μ) = max.
∑

k∈A

∑

j∈J

pkjxkj

+
∑

j∈J

μj

(
1−

∑

k∈A

xkj

)
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s. t.
∑

j∈J

wkjxkj ≤ ck, ∀k ∈ A,

xkj ∈ {0, 1}, ∀k ∈ A, ∀j ∈ J,

μj ≥ 0, ∀j ∈ J.

Note that in the above Lagrange multiplier vector μj has a nonnegative con-
straint, since the assignment constraint on all goods j is described with inequal-
ity. Similar to the previous section, the Lagrangian dual problem is the following
minimization problem on non-negative real vector space and gives an upper
bound on the optimal value of GAP ′′,

min. L′′(μ) s. t. μj ≥ 0, ∀j ∈ J.

In L′′(μ), the objective function is additive over the agents and the constraints
are separable over them; this maximization can be achieved by solving the fol-
lowing subproblems: for each agent k,

L′′
k(μ) = max.

∑

j∈J

(pkj − μj)xkj

s. t.
∑

j∈J

wkjxkj ≤ ck,

xkj ∈ {0, 1}, ∀j ∈ J,

and for the remaining terms,

L′′
const(μ) =

∑

j∈J

μj .

We can thus describe the Lagrangian dual problem as follows:

min.
∑

k∈A

L′′
k(μ) + L′′

const(μ)

s. t. μj ≥ 0, ∀j ∈ J.

Our distributed solution method solves this problem by using only local com-
munications among agents.

Solution. The basic procedure of this protocol is as follows:

(Step 1) All agents initialize their Lagrange multiplier vectors as 0.
(Step 2) Under a current value of μ, each agent k solves his knapsack problem

to compute L′′
k(μ). Then the agents send these results to their respective

neighbors.
(Step 3) If all assignment constraints of the original problem are satisfied, and

on any good j,

μj(1−
∑

k∈A

xkj) = 0 (5)

holds, then the agents can quit the procedure to provide an optimal solution.
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(Step 4) Each agent k finds an upper bound and a lower bound. Agent k also
finds the smallest upper bound, BestUB, and the largest lower bound, BestLB,
among those found so far. If both BestUB and BestLB have the same value,
the agents can quit the procedure to provide an optimal solution.

(Step 5) Each agent k updates the Lagrange multiplier vector from μ(t) to
μ(t+1) by the subgradient method [1] while keeping μj ≥ 0 and goes back to
Step 2.

In this procedure, note that the following differences are derived from relaxing
inequalities instead of equalities.

First, in Step 3, the termination condition of this protocol becomes more
difficult than that of the previous one. Second, in Step 4, to build a feasible
solution, we can simply ignore the goods that have not been chosen by any
agent. Third, in Step 5, we need to replace the updating rule for a Lagrange
multiplier by the following rule:

g
(t)
j ← 1−

∑

i∈A

xij

temp ← μ
(t)
j −

π(t)(BestUB(t) − BestLB(t))g(t)
j

∑
j∈J (g(t)

j )2
,

μ
(t+1)
j ← max{temp, 0}.

Clearly, by this rule, a Lagrange multiplier never gets lower than zero.
Obviously, both GAP ′ and GAP ′′ provide the same optimal value for the

over- constrained GMAP because GAP ′′ turns into GAP ′ by introducing slack
variables for the inequality constraints. It must be pointed out that the difference
between GAP ′ and GAP ′′ may be slight, but their Lagrangian duals, which our
methods try to solve, differs significantly in that

– The Lagrangian dual of GAP ′ has the problem of the disposal agent while
that of GAP ′′ does not.

– The Lagrangian dual of GAP ′′ has non-negativity constraints on variables
while that of GAP ′ does not.

Furthermore, as mentioned before, the method for solving the Lagrangian dual
of GAP ′′ has a more complex termination condition.

4 Experiments

We experimentally compared the performance of the two methods on the variants
of GAP benchmark instances from the OR-Library[12]. Clearly, the instances in
our experiments should be over-constrained, but none of the GAP benchmark
instances have that property; in other words, in each benchmark instance, the
total capacities of the agents are large enough for the goods to be assigned.
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Table 1. DisLRP with disposal agent
on c1040-1

x Round BestUB BestLB Quality

0.1 1 0.0000 0 -
0.2 190 244.0000 244 1.0000
0.3 2115 456.0000 455 1.0000
0.4 1002 601.0000 601 1.0000
0.5 10000 705.7143 692 0.9806
0.6 819 828.0000 828 1.0000
0.7 10000 900.4581 887 0.9851
0.8 10000 934.9447 933 0.9979
0.9 10000 950.0000 948 0.9979

Table 2. DisLRP with inequality-based
formulation on c1040-1

x Round BestUB BestLB Quality

0.1 1 0.0000 0 -
0.2 2 244.0000 244 1.0000
0.3 1189 455.0000 455 1.0000
0.4 1264 601.0000 601 1.0000
0.5 10000 705.7146 690 0.9777
0.6 491 828.0000 828 1.0000
0.7 10000 900.4357 887 0.9851
0.8 10000 935.0000 933 0.9979
0.9 10000 950.0000 931 0.9800

Thus, to make an instance over-constrained, we simply reduce the capacity of
each agent by a constant factor. More specifically, we multiplied capacity ck of
each agent k by x ∈ {0.1, 0.2, . . . , 0.9}. Consequently, we generated 540 instances
in total, most of which can be expected to be over-constrained. We call this x a
capacity coefficient.

We conducted our experiments on a simulator written in JAVA and used
lp solve 5.5.2.0[9] for each agent to solve a local knapsack problem. Lp solve
is a freely available Linear/Integer programming solver with many easy-to-use
application program interfaces (APIs).

Tables 1 and 2 show the results for the DisLRP with the disposal agent and
the DisLRP with the inequality-based formulation, respectively, on a benchmark
instance called c1040-1 that consists of 40 goods to be assigned to 10 agents.
Tables 3 and 4 also show the results on a benchmark instance called c1060-1
that consists of 60 goods to be assigned to 10 agents. In these tables, x is the
capacity coefficient, Round is the number of rounds spent until a procedure is
terminated, BestUB is the lowest upper bound, and BestLB is the highest lower
bound. Also, Quality, which means the ratio of BestLB on BestUB, denotes the
quality lower bound of the obtained feasible solutions. Obviously, the closer this
quality lower bound is to one, the better the performance. In our experiments
we stopped a run at 10000 rounds if the procedure failed to find an optimal
solution. In that case, BestUB and BestLB do not reach the same value.

To see whether the differences on Round and Quality are statistically signifi-
cant, we applied the Wilcoxon signed-rank test to series of data obtained by our
two methods. The results are summarized in Table 5. The null hypothesis on
Quality is not rejected, which means that our two methods may not be different
in terms of Quality. On the other hand, the null hypothesis on Round is rejected,
which suggests that our two methods are different in terms of Round.

We further analyzed by dividing the instances into two groups: one was com-
prised of instances whose capacity coefficients ranged from 0.2 to 0.5 and the
other was comprised of instances whose capacity coefficients ranged from 0.6
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Table 3. DisLRP with disposal agent
on c1060-1

x Round BestUB BestLB Quality

0.1 1 239.0000 239 1.0000
0.2 23 474.0000 474 1.0000
0.3 301 784.0000 784 1.0000
0.4 181 1010.0000 1010 1.0000
0.5 10000 1167.4033 1159 0.9928
0.6 10000 1316.7786 1295 0.9835
0.7 10000 1397.3609 1373 0.9826
0.8 10000 1426.0116 1406 0.9860
0.9 10000 1442.0958 1419 0.9840

Table 4. DisLRP with inequality-based
formulation on 1060-1

x Round BestUB BestLB Quality

0.1 1 239.0000 239 1.0000
0.2 13 474.0000 474 1.0000
0.3 53 784.0000 784 1.0000
0.4 198 1010.0000 1010 1.0000
0.5 10000 1167.4036 1159 0.9928
0.6 10000 1316.7501 1310 0.9949
0.7 10000 1397.3601 1378 0.9861
0.8 10000 1426.0126 1406 0.9860
0.9 10000 1442.0978 1419 0.9840

Table 5. Wilcoxon signed-rank test for all instances

Quality Round

Hypothesis No difference between two data series.
Test statistic T 67704.5 15658.5

|Z|-value 0.3087 3.2182
Conclusion Not rejected at significance level 5% Rejected at significance level 1%

Median
(disposal) 0.9998 285

(inequality) 0.9990 174

to 0.91. For each of these two groups, we also applied the Wilcoxon signed-rank
test again to see whether the differences on Round and Quality are statistically
significant. The results are summarized in Tables 6 and 7. According to Table 6,
both null hypotheses on Round and Quality are rejected, which means that our
two methods have different performances. Looking at their medians, DisLRP
with inequality-based formulation seems to find a better solution faster for more
over-constrained instances. On the other hand, according to Table 7, only the
null hypothesis on Round is rejected. Looking at its median, DisLRP with the
disposal agent can find a solution faster for fewer over-constrained instances.

To summarize, we found that

1. DisLRP with an inequality-based formulation finds a better solution faster
for more over-constrained instances,

2. DisLRP with the use of a disposal agent finds a solution faster for fewer
over-constrained instances.

We are a bit surprised by the first finding in our experiments. For more over-
constrained instances, we sometimes observed that the agents in the DisLRP
with inequality-based formulation are likely to select the sets of goods that are

1 We ignored the instances whose capacity coefficients are 0.1 since most have zero as
their optimal values.
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Table 6. Wilcoxon signed-rank test for instances whose capacity coefficients range
from 0.2 to 0.5

Quality Round

Hypothesis No difference between two data series.
Test statistic T 250 3122

|Z|-value 3.17479 7.3127
Conclusion Rejected at significance level 1% Rejected at significance level 1%

Median
(disposal) 0.9980 171.5

(inequality) 1.0000 64

Table 7. Wilcoxon signed-rank test for instances whose capacity coefficients range
from 0.6 to 0.9

Quality Round

Hypothesis No difference between two data series.
Test statistic T 2937 980

|Z|-value 1.9490 2.6479
Conclusion Not rejected at significance level 5% Rejected at significance level 1%

Median
(disposal) 0.9859 455

(inequality) 0.9831 1220

mutually exclusive in the very early rounds and, as a result, seem to have many
chances to satisfy the termination condition (5). This suggests that such in-
stances may be solved (nearly) optimally even with local knapsack optimization.
On the other hand, in the DisLRP with the disposal agent, who has poor knowl-
edge about the system, especially in the very early rounds, the states of the
system may be disturbed in those early rounds. We expect this explains our first
finding. For less over-constrained instances, both methods require much effort to
coordinate the selection of goods among the agents. The DisLRP with inequality-
based formulation requires more rounds to coordinate since its Lagrangian dual
problem is more restrictive.

5 Conclusion

We presented two methods for over-constrained GMAP instances. The first is
DisLRP with a disposal agent, which performs better for fewer over-constrained
instances. The second is DisLRP with inequality-based formulation, which per-
forms better for more over-constrained instances.

It is important to keep in mind that these two methods are designed for over-
constrained GMAP instances, where the total capacities of agents are not suffi-
cient for the goods. On the other hand, for an under-constrained instance with
sufficient overall capacities, these methods may yield the optimal value that is
different from the one obtained by the conventional DisLRP with equality-based
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formulation. This is obvious because, by relaxing assignment constraints for an
under-constrained instance, a feasible region gets larger and as a result the op-
timal value may change. Currently, it seems reasonable to suggest that the pro-
posed methods be used for over-constrained instances while the previous DisLRP
with equality-based formulation be used for under-constrained instances. In our
future work, we would like to develop an unified framework for handling both
under- and over-constrained GMAP instances.
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