
On the Specification, Verification and Implementation of
Model Transformations with Transformation Contracts

Christiano Braga, Roberto Menezes, Thiago Comicio,
Cassio Santos, and Edson Landim

Instituto de Computação, Universidade Federal Fluminense, Brazil
{cbraga,rmenzes,tcomicio,cfernando,elandim}@ic.uff.br

Abstract. Model transformations are first-class artifacts in a model-driven de-
velopment process. As such, their verification and validation is an important task.
We have been developing a technique to specify, verify, validate and implement
model transformations. Our technique is based on the concept of transforma-
tion contracts, a specification that relates two modeling languages and declares
properties that must be fulfilled in such a relation. A transformation contract is
essentially a transformation model that allows for the verification and validation
of a model transformation using the same techniques one uses to verify and vali-
date any given model. This paper describes our technique, discusses consistency
of model transformations and reports on its application to a model transformation
from access control models to Java security.

1 Introduction

Model-driven development (MDD, e.g. [15]) is a software engineering discipline that
considers models as live artifacts in the development process. By live artifacts we mean
that models are not used for documentation purposes only but actually as input to soft-
ware tools that may operate on them and produce other artifacts. Such artifacts may be
compilable source-code or other models, in the same or different abstraction levels than
the source model. MDD aims at allowing for a generative software development process
in which applications are produced out of models possibly described at the application
domain level.

Model transformations are first-class artifacts in a model-driven development pro-
cess. As such, their specification, verification and validation are important tasks in an
MDD process. A transformation contract [10, 14, 7, 8, 12] is a specification of a model
transformation. Essentially, a transformation contract is comprised by relations between
the model elements of the modeling languages it relates and properties that such rela-
tions must fulfill. Therefore, a model transformation specification may be understood
as a metamodel. In this paper, we follow the terminology of [6] and call the metamodel
representing a model transformation a transformation metamodel. A particular applica-
tion of a model transformation is represented as an object model instance of the trans-
formation metamodel. A transformation contract is thus a transformation metamodel
and a set of properties over it. Under this perspective, model reasoning techniques may
be applied to reason about model transformations as well.

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 108–123, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Specification, Verification and Implementation of Model Transformations 109

More formally, we say that a model m is well-formed with respect to a metamodel
M , denoted by m ∈ M , if m is syntactically a proper instance of M , that is, essentially,
the objects in m are instances of metaclasses in M and links in m are instances of
associations in M . A model m is in conformance with M , denoted by m |= PM , if the
properties of the metamodel M hold in m. A transformation contract (see Section 4)
between two modeling languages M and M ′ related by a set of associations A, denoted
by M �A M ′, is a pair comprised by the transformation metamodel resulting from
the disjoint union of M , M ′ and A, and a set of properties over the transformation
metamodel. A model transformation is said correct with respect to a transformation
contract M �A M ′ iff m |= PM ⇒ ((m′ |= P ′

M)∧ ((m �l m′) |= PM�AM ′)) if m ∈
M, m′ ∈ M ′, l ∈ A, m �l m′ ∈ M �A M ′, where PM are the properties of the
metamodel M and m �l m′ is an instance of the transformation metamodel of M �A

M ′ with l a set of links well-formed with respect to A.
In [10, 14, 7, 8], the authors specify such properties as invariants in the Object Con-

straint Language representing typing rules of the different metamodels involved in a
model transformation. In this paper we move forward by generalizing previous work
by allowing the automatic verification of model transformation consistency understood
as satisfiability of an associated theory in Description Logic [2]. We also discuss the
implementation of transformation contracts as the application of a design pattern that
captures our way of designing transformation contracts in the context of a model trans-
formation from access control models to Java security. Space constraints prevent us
from discussing other applications of our approach. We refer the interested reader to
http://lse.ic.uff.br for a model transformation from UML class diagrams to
Enterprise Java Beans code and other tools.

This paper is organized as follows. Section 2 discusses related work. Section 3 de-
scribes our proposed model transformation process. Section 4 gives an algebraic defini-
tion of transformation contracts and exemplifies it in the context of our example model
transformation from access control models to Java security. Section 5 describes how
consistency verification may be added to our model transformation process and exem-
plifies its application. Section 6 reports on a design pattern for the implementation of
model transformations according to our proposed model transformation process and
exemplifies its application. We conclude this paper in Section 7 with our final remarks.

2 Related Work

Our previous work in [7, 8, 12] agrees in spirit with [10, 14]. However, there are differ-
ences at the specification, verification and implementation levels. At the specification
level, we adopt a relational approach towards the specification of a model transforma-
tion, similar in essence to [1, 6] but different from [10, 14] where transformation con-
tracts are specified as OCL invariants from source to target model elements. In [1,6,14]
their approach is discussed informally while in Section 4 transformation contracts are
formalized as algebras. The specification of a relation between the model elements
of the metamodels related by a model transformation is essential to generalize from
OCL invariants and understand that different kinds of properties may be specified over
such relation. It is important to make explicit the relationship among the metamodels.

http://lse.ic.uff.br

110 C. Braga et al.

At the verification level, different kinds of properties may be reasoned upon despite
OCL invariants. One such property is model consistency understood as satisfiability of
the description logic theory (or knowledge base or TBox, in description logic termi-
nology) associated with a given model. Note that given the perspective that we apply
here, model transformations may also be checked for consistency, as it is also a meta-
model! At the implementation level, given our generalization, we are not confined to
OCL based languages such as OMG’s Query View Transformation [16] to specify our
transformation contracts. QVT is one possibility, that allows for the specification of the
relation among the metamodels related by the model transformation. However, it should
be clear that it is one particular implementation of the the transformation metamodel,
not the only one. Moreover, we also generalize the understanding of concrete and ab-
stract syntaxes discussed in [1, 14]. There, the authors understand that the concrete
syntax of a modeling language must be in bijection with the abstract syntax described
by the metamodel. This has the benefit for the model transformation designer to have
a parser for any given modeling language. However, this choice is cumbersome for the
user since one must create a quite detailed model so the machine may understand what
one wants. The idea of a domain-specific modeling language is precisely to allow de-
scriptions at the domain level and if possible concise ones. This is what UML profiles
are for. In the design pattern described in Section 6, we allow the model transforma-
tion designer (actually the modeling language designer) to define how a model must be
represented as an instance of a metamodel and its inverse, in the form of parsing and
pretty-printing functions.

QVT and Triple Graph Grammars [17] (TGG) are other possible specification frame-
works for a model transformation that requires specific theory and machinery to reason
and implement model transformations. The transformation contracts approach proposed
in this paper is not biased to any such specification languages and may be used with
them as well. Note, however, that QVT is bound to OCL as the specification language
for the properties of metamodels and there are properties best specified in other seman-
tic frameworks, such as consistency in DL as discussed in this paper. TGG may not have
QVT’s restriction on the specification language for metamodel properties but another
aspect of our approach is that we apply to model transformation specification design the
same specification languages and techniques one would to design a modeling language.
No additional framework, such as QVT or TGG, is necessary.

In [6] the authors discuss the idea of a transformation models to specify a model
transformation. We share the idea of transformation models but in this work is make
precise what we mean by transformation model and how it may be used to reason on
model transformations.

3 Model-Driven Development with Transformation Contracts

Model transformations relate languages. If one decides to work with the standards of
the Object Management Group (OMG) to take advantage of the interoperability gained
from using such standards, the abstract syntax of the languages related by a model
transformation may be described in the form of a UML class diagram. Such a model is
called a metamodel since it describes the syntax that models should follow.

On the Specification, Verification and Implementation of Model Transformations 111

A model that is a proper instance of a metamodel is called well-formed with respect
to the metamodel. The notion of well-formedness may be understood as the pertinence
of a program with respect to the programming language it is written in, that is, a model
must be well-formed with respect to its metamodel as a program written in a language
L must be well-formed with respect to L’s syntax. For example, UML has a meta-
model and any UML class diagram may be seen as an instance of the UML metamodel
that should be well-formed with respect to it. Figure 1 shows a simplified version of
the UML metamodel, slightly enhanced from [15] by considering inheritance between
classes through the association inherited-inheritsFrom. The metamodel essentially rep-
resents the notions of datatypes, classes, attributes, operations, interfaces, association
ends, their inter-relations and their typing relations.

Fig. 1. Simplified UML metamodel

UML is an extensible modeling language. Any given UML model element may be
tagged or stereotyped, using UML terminology, in order to denote a new entity named
after the tag’s name. This is “UML’s way” of defining domain specific modeling lan-
guages. We may now, once again, draw a relationship between model-driven concepts
and programming languages concepts. One may understand a UML profile, which is
essentially a UML extension consisting of a set of stereotypes and other extension el-
ements, as the concrete syntax of a modeling language M . The metamodel of M may
be understood as its abstract syntax. With that understanding in mind, the first step that
a model transformation should do when transforming an UML model m written using
an UML profile that represents a modeling language M is to map m into an instance of
M ’s metamodel. This step is similar to language parsing in a compiler.

112 C. Braga et al.

Up to this point, the model-driven development process we are describing in this
paper can be drawn as follows, where m, m′, n, n′ are models; S and T represent the
source and target metamodels related by a model transformation τ ; we write m ∈ M
to denote that the model m is well-formed with respect to M where M represents the
concrete syntax for a modeling language M and M represents the abstract syntax of
the modeling language M ; parse is the mapping that given a model m written in the
concrete syntax of a modeling language M (S and T in the diagram) generates an
abstract syntax version m′ of m where m′ is well-formed with respect to M; finally,
pretty print is the inverse mapping of parse , that is, it generates the concrete syntax of
the modeling language M given a model instance of M,

m ∈ S
parse �� m′ ∈ S τ �� n ∈ T

pretty print �� n′ ∈ T.

It is not always true, however, that any well-formed model with respect to a given meta-
model is in conformance with it. For instance, a UML class model m with an inheri-
tance chain that has a cycle may be syntactically well-formed with respect to UML’s
metamodel but it is not in conformance with it. The reason is that there is an invariant
in the UML metamodel that specifies that there should be no cycles in any inheritance
chain. Since the invariant does not hold in m, the model m is not in conformance with
UML’s metamodel. The conformance relation between a model m and a metamodel M
is given by well-formedness of m with respect to M and validity of the invariants of M
in m, assuming M consistent, that is, assuming that M has instances. The conformance
relation between a metamodel and an instance of it is similar to the concept of type
checking in programming languages. A syntactically correct program p with respect to
a language L is ill-typed if the typing rules of L do not apply to p.

One way to specify such invariants is using the Object Constraint Language (OCL).
Essentially, OCL has several constructs for manipulating collections of typed model
elements in a model m, navigating through m’s relationships, defining operations and
invariants in M , where M is the metamodel of m. For example, the invariant noCy-
clesinClassHierarchy below checks for the presence of cycles in class hierarchies in a
model instance of the UML metamodel by verifying for each class c if c is not included
in the transitive closure of the inheritsFrom relationship that represents class inheritance
hierarchy. The invariant uses two operations, namely superPlus and superPlusOnSet, to
calculate the transitive closure. The operation superPlusOnSet does the actual calcula-
tion by a recursive call on each element of the collection yielded by the inheritsFrom
relation for each class c. Regarding OCL syntax, the keyword context defines the type
of objects that the invariant should be applied to. The keyword inv defines an invariant.
The informal meaning of the remaining OCL constructors in the example are as follows:
forAll iterates over the elements of a given collection checking for a given predicate;
excludes checks if a given collection does not contain a given element; collects creates a
collection of objects such that a given predicate holds; flatten receives a set which may
have other sets as elements and produces a flatten set of objects from its set elements;
asSet casts a collection into a set; and including includes a given element in a given col-
lection. The user-defined function emptySet constructs an empty set of objects of type
Class.

On the Specification, Verification and Implementation of Model Transformations 113

1 context Class inv noCyclesinClassHierarchy: self.inheritsFrom→forAll(r|r.superPlus()→excludes(self))
2 context Class::superPlus():Set(Class) body: self.superPlusOnSet(self.emptySet())
3 context Class::superPlusOnSet(rs:Set(Class)):Set(Class) body:
4 if self.inheritsFrom→notEmpty() and rs→excludes(self)
5 then self.inheritsFrom→collect(c : Class | c.superPlusOnSet(rs→including(self)))→flatten()→asSet()
6 else rs→including(self) endif

OCL can be used to automatically validate UML models. Considering an implemen-
tation of an OCL interpreter, such as [11], one may actually apply the invariants of a
metamodel M to a syntactically well-formed model m with respect to M to guarantee
m’s conformance with respect to M . Therefore, before applying a model transforma-
tion to a given model m, one must make sure that m is syntactically well-formed with
respect to M and all invariants in M (such as noCyclesinClassHierarchy) hold in m.
For example, a UML class diagram must be well-formed with respect to the metamodel
in Figure 1 and the invariant noCyclesinClassHierarchy should hold on it.

The MDD process adopted in this paper when invariants are considered may be
drawn as follows where IM are the invariants of the metamodel of the modeling lan-
guage M and m |= IM means that all the invariants in IM hold in the model m ∈ M,

m ∈ S
parse �� m′ ∈ S, m′ |= IS

τ �� n ∈ T , n |= IT
pretty print �� n′ ∈ T.

A transformation contract is a specification of what a model transformation should do.
It is written in the form of invariants that must hold in the transformation metamodel
of the source and target languages related by a set of associations. By transformation
metamodel we mean a metamodel K resulting from a model operation S �AK T on
two given metamodels S and T that extends the metamodels S and T by: (i) disjointly
uniting all the model elements of S and T ; (ii) declaring associations a ∈ AK that
relate classes in S with T and disjointly uniting AK with S and T ; and (iii) declaring
invariants IK over AK. The MDD process adopted in this paper when transformation
contracts are considered may be drawn as follows where K = S �AK T , k ∈ K,
l ∈ AK and k = (m �l n),

m ∈ S
parse �� m′∈S, m′ |= IS

τ �� n ∈ T , n |= IT , k |= IK
pretty print �� n′ ∈ T.

4 Specifying Transformation Contracts

In this section we formalize algebraically the concept of transformation contracts and
exemplify its specification. We begin with the formal definitions and then, for our ex-
ample, we represent metamodels as UML class diagrams constrained by expressions in
OCL. The equational interpretation of a class diagram means essentially to understand
it as an algebraic signature where a class declaration is formalized as a sort declaration
with an appropriate constructor operation and an association declaration is formalized
as an operation over the appropriate sorts representing the classes that the given associa-
tion relates. Cardinality constrains and OCL invariants are formalized as equations over
the signature defined from class and association declarations. For OCL in particular,

114 C. Braga et al.

there is a general theory for basic OCL operations which is extended (in a precise al-
gebraic sense) for each OCL constrained class diagram. (We refer the interested reader
to [13] for an algebraic formalization of OCL.) The formal definitions below are used
in the example, described later in this section, to make it precise.

Definition 1 (Equational theory). An equational theoryM is a structure 〈Σ, E〉 where
Σ is the signature of M and E is a set of terminating and confluent equations over Σ.

Definition 2 (Metamodel). A metamodel M of a modeling language M is an equa-
tional theory M = 〈C ∪A, I〉 where C is the signature defining the metaclasses of M ,
A is the signature defining the associations of M , and I is a set of equations over C∪A
representing the invariants of M .

Definition 3 (Transformation contract). A transformation contract S �A T between
modeling languages S and T related by the associations in A is an equational theory
K = 〈(CS ∪ AS) � (CT ∪ AT) � AK, IS ∪ IT ∪ IK〉, where � is the disjoint union
operation over sets, S = 〈(CS ∪ AS), IS〉 is the metamodel of the modeling language
S, T = 〈(CT ∪AT), IT 〉 is the metamodel of the modeling language T , AK is a signa-
ture representing associations in A, and IK is a set of equations over AK representing
invariants over the associations between S and T .

We exemplify the specification of a transformation contract with an excerpt, due to
space constraints, of the model transformation from the platform independent mod-
eling language SecureUML+ComponentUML [4], for access control modeling, to a
platform specific modeling language we call JAAS that represents the Java Authenti-
cation and Authorization Service. This excerpt is part of the SecureUMLtoJAAS+AAC
model transformer that generates AspectJ code, an extension of the Java program-
ming language with aspect-oriented concepts, with JAAS support from access con-
trol models for Java-based applications. The tool is available for download from
http://lse.ic.uff.br. The complete description of the model transformation is
given in [12].

The modeling languages. SecureUML+ComponetUML is a language to model access
control. A SecureUML+ComponentUML model describes permissions that user roles
have in order to perform actions over entities. Examples of such actions are: (i) the ex-
ecution of a method, (ii) updating an entity’s state, or (iii) full access to an entity. The
first two actions are atomic actions and the last one a composite action. As opposed to
atomic actions, composite actions form a collection of actions which may be atomic or
composite. The EntityFullAccess composite action, for instance, allows for both read
and update access to all elements of an entity, that is, its attributes, methods and associ-
ation ends. It includes EntityRead and EntityUpdate which in turn include AtomicRead
and AtomicUpdate, respectively. SecureUML also allows for the modeling of user roles’
hierarchies. Role inheritance means that if role r1 inherits from role r2 than all permis-
sions of r2 also apply to r1. The metamodel of SecureUML+ComponentUML is given
in Figure 2.

We have defined a modeling language called JAAS, which is the acronym for the
Java Authorization and Authentication Service, to capture the access control subset of
the Java security framework. Its metamodel is depicted in the diagram in Figure 3.

http://lse.ic.uff.br

On the Specification, Verification and Implementation of Model Transformations 115

(a) SecureUML metamodel

(b) ComponentUML metamodel

Fig. 2. SecureUML+ComponentUML metamodel

In JAAS there are different authentication mechanisms such as LDAP or NIS. These
mechanisms are captured as instances of a protection domain. The metaclasses Prin-
cipal, JAASPermission and JAASAction are the counter parts of Role, Permission and
Action in SecureUML. We will focus on the transformation from Role, Permission and
Action to Principal, JAASPermission and JAASAction in this paper.

The transformation contract. The “raison d’être” of a transformation contract is to
guarantee that essential properties of the source model are preserved in the target model.
In our example, we want to guarantee that a user in a given SecureUML role is properly
represented as a principal, that is, a principal may enact the same actions, with the same
constraints, of its associated role, no more no less.

As opposed to SecureUML, JAAS does not have role hierarchies or composite action
hierarchies. The transformation contract from SecureUML+ComponentUML model to
JAAS models is the result of a composition of two contracts: (i) the flattening contractF ,
in which the role and action hierarchies are flattened in SecureUML and (ii) the mapping
contract M, in which flattened SecureUML and JAAS are related. With the composed
contract, a principal will be able to enact the actions associated with the permissions of
the role that the given principal is related with, since: (i) flattening the role hierarchy
associates with a given role all the permissions of the transitive closure of its inheritance
hierarchy and (ii) flattening the action hierarchy associates with a given role all the atomic
actions, and their constraints, for each composite action in a given permission.

Recall from Definition 3 that a contract is a structure K = 〈(CS∪AS)�(CT ∪AT)�
AK, IS ∪ IT ∪ IK〉. For the flattening contract F , CS and AS are the metaclasses
and associations from the SecureUML+ComponentUML metamodel. The invariants

116 C. Braga et al.

Fig. 3. JAAS metamodel

IS will not be discussed here as they are not relevant to our example. (For the sake of
exemplification, one such invariant is the need of a default role that every role must
inherit from and that has a default permission over resources, in any given SecureUML
model.) The set CT includes metaclasses FRole and FAction, for flattened role and flat-
tened action, respectively. The set AT includes1: (i) a one-to-one association role-frole
between metaclasses Role in SecureUML and FRole in flattened SecureUML, (ii) a
one-to-one association atomicaction-faction between AtomicAction in SecureUML and
FAction in flattened SecureUML, (iii) a one-to-many association frole-permission be-
tween FRole in flattened SecureUML and Permission in SecureUML, and finally, (iv) a
one-to-many association faction-permission between FAction in flattened SecureUML
and Permission in SecureUML. The set IT is empty since F is an endogenous trans-
formation in SecureUML that substitutes the role and action hierarchies for equivalent
ones without inheritance. Therefore, there are no invariants in the target of F since the
contract is only about flattening.

The set IK is the interesting one as it specifies the flattening process. The first in-
variant in IK, roleFlattening, specifies that an FRole “mirror” instance of a Role in
SecureUML model has the same permissions of the reflexive-transitive closure of the
superrole relation of the given Role. The operation allPermissions is defined in [3] and
calculates all the Permissions of the transitive closure of the superrole relation between
instances of Role in SecureUML.

1 context FRole inv roleFlattening:
2 self.frole-permission→includesAll(self.role-frole→allPermissions())
3 context Role::allPermissions():Set(Permission) body: self.superrolePlus().haspermission→asSet()
4 context Role::superrolePlus():Set(Role) body: self.superrolePlusOnSet(self.superrole)
5 context Role::superrolePlusOnSet(rs:Set(Role)):Set(Role) body:
6 if rs.superrole→exists(r|rs→excludes(r))
7 then self.superrolePlusOnSet(rs→union(rs.superrole)→asSet())
8 else rs→including(self) endif

1 There could be associations between a class in the source metamodel and different classes
in the target metamodel. This example is functional but it should be clear that AT denotes a
relation.

On the Specification, Verification and Implementation of Model Transformations 117

The invariant actionFlattening specifies that every FAction instance has the same
permissions as its AtomicAction counterpart which means gathering the permissions of
all CompositeAction that the given AtomicAction is part of together with the permissions
attached to the AtomicAction itself. The operation allPermissions for AtomicAction is
calculated in a way similar to Role but using the transitive closure of the compositeac-
tions relation.

1 context FAction inv actionFlattening:
2 self.faction-permissions→includesAll(self.atomicaction-faction→allPermissions())

Once the hierarchies are flattened, the mapping contract M from flattened
SecureUML to JAAS, with respect to FRole, Permission, FAction, PrincipalRole and
JAASAction, is trivial. The signatures in M are given by the metaclasses and associ-
ations of flattened SecureUML and JAAS. The set IK of M essentially establishes a
bijection between FRole and PrincipalRole and a bijection between FAction and JAAS-
Action: for every FRole there must exist a PrincipalRole such that the PrincipalRole’s
associated instances of JAASAction are those related with the instances of Permission
of the given FRole. There are other aspects of model transformation that are handled by
M but are out of the scope of this paper.

5 Verifying and Validating Transformation Contracts

5.1 Model Consistency Reasoning and Description Logic

In Section 3 we have outlined our model-driven development process with transforma-
tion contracts. We defined that a model m is in conformance with its metamodel M if
m |= IM, that is, if IM, the invariants of M, hold in m. This definition is sound under
the assumption that both M and m are consistent, that is, that they may be instantiated.
An example of inconsistency is as follows: assume that inheritance is a complete and
disjoint relation, that is, if classes B and C inherit from A then A is completely defined
by the union of B and C and that B and C are disjoint sets. Now consider that, per-
haps after a refactoring operation in a model, B also inherits from C. Clearly, this is an
inconsistent model as B can not be included in C and disjoint with C at the same time.

Description logic [2] is a family of logics defined to be efficiently decidable. Each
fragment of the logic was carefully studied on its expressiveness and efficiency of rea-
soning. Consistency reasoning is a decision procedure commonly associated with DL
reasoning. DL consistency reasoning may be applied to class diagrams when a proper
encoding is defined between class diagrams and DL theories (or knowledge bases, in
DL terminology). Such a mapping has been defined in [5], proven correct and the com-
plexity of DL reasoning on class diagrams has been calculated. The encoding of class
diagrams in DL essentially relates classes with DL concepts, which denote sets, and
associations with DL roles, which are binary relations. Class diagrams are encoded in
the logic ALCQI which is a DL that allows for the specification of: (i) cardinality
constraints over roles, denoted by axioms of the general form ≥ n R.C where n is a
natural number, R is a role and C is a concept, that constrain the number of individuals
(or instances) of C to be at least n in the relation R, (ii) concept negation, denoted by

118 C. Braga et al.

formulas of the form ¬C where C is a concept, specifying the set of individuals that
do not belong to the set denoted by C, (iii) concept conjunction, denoted by formulas
of the form C1
 C2 where C1 and C2 are concepts, which specifies union of the sets
denoted by C1 and C2 and (iv) definition of inverse of roles, denoted by formulas of the
form R− where R is a role, specifying the inverse relation of R.

For the purposes of this paper, it suffices to explain the encoding for classes, inher-
itance and binary associations. In [5, Section 7.1] they are described as follows: (i) A
class C is represented by an atomic concept C; (ii) A generalization between a class
C and its child class C1 can be represented using the inclusion assertion C1 � C. A
class hierarchy can be represented by the assertions C1 � C, . . . , Cn � C when Ci in-
herits from C. A disjointness constraint among classes C1, . . . , Cn can be modeled as
Ci �

�n
j=i+1 ¬Cj , with 1 ≤ i ≤ n−1, while a covering constraint can be expressed as

C �
⊔n

i=1 Ci; (iii) Each binary association (or aggregation) A between a class C1 and a
class C2, with multiplicities ml..mu and nl..nu on each end, respectively, is represented
by the atomic role A, together with the inclusion assertion � ∀A.C2
∀A−.C1. The
multiplicities are formalized by the assertions C1 � (≥ nl A.)
 (≤ nu A.) and
C2 � (≥ mlA

−.)
 (≤ muA−.), where denotes the largest concept (top) that
includes all concepts and ∀R.C is just syntactic sugar for ≤ 0 R.¬C.

5.2 Model Consistency Verification in Model Transformations with
Transformation Contracts

We have incorporated consistency reasoning into our MDD process with transforma-
tion contracts. The idea is essentially to check for model consistency before validat-
ing the appropriate invariants as it only makes sense to check for invariants of models
that are consistent. Concept inconsistency is denoted by C � ⊥, where C is a con-
cept and ⊥ denotes the empty (bottom) concept. A model m is consistent iff ∀C ∈
classesOf (m).¬(C � ⊥) where classesOf (m) denotes the set of concepts that encode
classes of a model m. When model consistency is considered, our model transforma-
tion process may be drawn as follows, where K = S � T , k ∈ K, and k = (m � n).
Note that checking for consistency of models n and k is necessary as the new relations
introduced in k may turn classes both in m′ and in n inconsistent.

m ∈ S
parse �� m′ ∈ S, m′ |= IS ,

(∀C ∈ classesOf (m′).¬(C � ⊥))
τ

���������������������

n ∈ T , n |= IT , k |= IK,
(∀C ∈ classesOf (n).¬(C � ⊥)),
(∀C ∈ classesOf (k).¬(C � ⊥))

pretty print �� n′ ∈ T

To verify the consistency of a model m ∈ M it is necessary, of course, to define an
encoding of M in an description logic, such as the authors did for UML class diagrams
into ALCQI in [5]. The encoding will depend on the reasoning procedure that will be
used. There are two types of reasoning procedures in DL. The so-called ABox reasoning
means to check that the axioms of a knowledge base (also called TBox) hold on a
particular set of individuals (or instances) of concepts and roles. The so-called TBox

On the Specification, Verification and Implementation of Model Transformations 119

analysis means to perform a general symbolic reasoning process over a given TBox that
verifies if the axioms of a TBox are generally satisfiable (and not only for a particular
set of individuals).

The ABox analysis of a model m instance of a metamodel M requires the represen-
tation of the metamodel M as a TBox and m as an ABox, that is, a set of individuals.
The ABox analysis process consists of checking that the axioms of the TBox represen-
tation of M hold in the ABox representation of m. The TBox analysis of a model m
requires an extension of the TBox that represents the metamodel M of m with con-
cepts and roles representing the classes and associations of M, following the encoding
defined in 5.1. Essentially, the axioms representing m are defined as follows, assuming
m well-formed with respect to M: (i) the concepts that represent metaclasses in M
are subsumed by concepts representing objects, of the appropriate class, in m, (ii) roles
representing associations in M are subsumed by roles representing links, of the appro-
priate associations, between objects in m, and (iii) include axioms to constrain roles
representing links in m, following the encoding in Section 5.1. We have chosen TBox
analysis since it is more general than ABox analysis.

As a concluding remark for this section, let us discuss a bit on the combination of
consistency verification in DL and invariant validation in OCL. It is out of the scope of
this paper, however, a detailed discussion on this subject as the objective of this paper
is to discuss how model transformations may be developed rigorously with transforma-
tion contracts. It should be clear that consistency verification in DL is general. Using
DL one may check for: (i) metamodel consistency, in other words, answer the question
“Does this modeling language admit models?”, and therefore reason about the consis-
tency of a modeling language, and (ii) model consistency, in other words, answer the
question “Does this model admit scenarios?” and therefore reason about the possibility
of the instantiation of a particular, that is, the existence of scenarios for a given model.
Note that to answer these questions in general we need TBox reasoning. OCL validation
executes of OCL invariants on a particular scenario or metamodel instance. It does not
allow any reasoning at the modeling language level. However, both techniques allow
for reasoning of models. At this point one may wonder why OCL validation is neces-
sary at all if DL reasoning is considered. The answer is that they are complementary
techniques, as pointed out in [9], in the sense that OCL validation, that is, the execution
of OCL invariants over models, identifies errors that DL reasoning may miss. DL has
the so-called open world assumption which means that a missing link between objects,
for instance, is not considered an error, as opposed to the so-called closed world as-
sumption, where the absence of information, such as a missing link between objects for
example, is an error. Therefore, if DL reasoning does not identify a problem because
there is missing information in a model then the execution of OCL invariants would.
This is the reason why these techniques should be applied sequentially starting with
DL reasoning.

5.3 Verifying and Validating Access Control Models

As an illustrative example, let us consider the consistency analysis of access control
models in SecureUML+ComponentUML. We discuss two scenarios: (i) DL reasoning

120 C. Braga et al.

identifies a problem, and (ii) DL reasoning does not identify a problem due to the open
world assumption but OCL validation does.

For the first scenario, let us consider a model m, instance of the SecureUML+Com-
ponentUML in Figure 2, that contains an authorization constraint a associated with two
permissions p1 and p2 through its ConstraintAssignment association. The knowledge
base of m extends the knowledge base that represents the metamodel of SecureUML-
+ComponentUML with axioms representing objects and links using the metamodel and
model representations required by TBox analysis, described in Section 5.2. An excerpt
of the knowledge base, for model elements a, p1 and p2 and the concepts they extend, is
as follows: (i) from the knowledge base for SecureUML+ComponentUML metamodel,

 � ∀ConstraintAssignment−.Permission
 (1)

∀ConstraintAssignment .AuthorizationConstraint
AuthorizationConstraint � (≡ 1 ConstraintAssignment .), (2)

where(≡ 1C.R) is syntactic sugar for

≥ 1C.R
 ≤ 1C.R, C is a concept and R is a role. (3)

Permission � (≥ 0 ConstraintAssignment−.)
 (4)

(≤ 1ConstraintAssignment−.)

(ii) for authorization constraint a in m, a � AuthorizationConstraint , where a and
AuthorizationConstraint are concepts representing the classes with the same names;
(iii) for permissions p1 and p2, p1 � Permission and p2 � Permission ; (iv) for the
associations between a and permissions pi, i ∈ {1, 2}:

ConstraintAssignment -a-pi � ConstraintAssignment ,
 � ∀ConstraintAssignment -a-pi .a
 ∀ConstraintAssignment -a-pi

−.pi,
a � (≡ 1 ConstraintAssignment -a-pi .pi),
pi � (≥ 0 ConstraintAssignment -a-pi

−.)

(≤ 1ConstraintAssignment -a-pi

−.).

The knowledge base described above is inconsistent because axioms 1 to 4 constrain
role ConstraintAssignment to exactly one Permission for each AuthorizationConstraint.
This may not be the case if there are individuals from both concepts p1 and p2 related
to an individual of a.

For the second scenario, let us consider a model m containing an instance of Action.
According to SecureUML+Component metamodel, there must exist a one-to-one asso-
ciation between a given Action and a Resource, which is not the case in our scenario.
Due to the open world assumption, DL reasoning would not identify this violation. As
we mentioned before, the open world assumption allows us to identify inconsistencies
on given information. Nothing can be said if the information is not there. This is where
OCL validation comes into place. The application of the invariant that constrains the
cardinality on the association between Action and Resource would fail for m as the
collection returned by navigating through the association between Action and Resource
from a would produce an empty collection when it should be of size 1.

It should be straightforward to see that the verification and validation illustrated in
this section applies to the model transformation context with transformation contracts

On the Specification, Verification and Implementation of Model Transformations 121

described in Section 5.2 as the model one wants to verify and validate is the model
resulting from the join of the source and target models. Therefore, the same techniques
that one uses to verify and validate a model as an instance of a metamodel can be used to
verify and validate a model transformation when specified by a transformation contract
since it is a transformation model given by the joined model of the source and target
models of a transformation.

6 A Design Pattern for the Implementation of Model
Transformations with Transformation Contracts

We have defined a design pattern that captures the general process of model transforma-
tions with transformation contracts described in Section 3. The design pattern enforces
the verification and validation at the different points that they must occur in a model
transformation, that is, the analysis of: (i) the source model before the model transfor-
mation is applied, (ii) the target model after the transformation is applied and (iii) both
source and target models and the associations between them also after the application of
the model transformation. By analysis we mean both verification and validation, apply-
ing DL reasoning and OCL validation as described in Section 5. As a matter of fact, the
design pattern, as well as the model transformation process it implements, is general
enough to incorporate new analysis techniques and not only DL reasoning and OCL
validation for different modeling languages when the proper encodings are defined, of
course.

Figure 4 presents a class diagram of our proposed design pattern. In the pattern, a
Domain represents a modeling language which interacts with a ModelManager, respon-
sible for model persistency, and validators responsible for model analysis. Each Domain
has a parser from the XMI standard representation, that is, the Domain’s concrete syn-
tax, to its metamodel, which is the Domain’s abstract syntax. The joined metamodel of a
transformation contract is represented by class JoinedDomain which references the two
instances of Domain it relates, named source and target. The class TransformationCon-
tract declares a static method transform that executes the model transformation process
that we have explained in Section 5. It is static because it is always the same behavior,
independently of the actual domains that a particular model transformation relates. The
instances of Domain will perform the “real” work since parsing, pretty printing and the
encodings to the different formalisms are either implemented in methods within classes
that inherit from Domain or that a Domain delegates to its instances.

Figure 5 depicts the application of the design pattern for model transformations with
transformation contracts to the model transformation from SecureUML+Component-
UML to JAAS. (As mentioned before, the model transformation also uses aspect-
oriented model elements, which are out of the scope of this paper, but this is
the reason why the acronym AAC appears in the model.) SecureUML and Se-
cureUML+ComponentUML are coded as different domain classes. The latter extends
the former with metaclasses and associations making the action and resource hierarchies
more concrete, as explained in Section 4. Moreover, each domain has its own valida-
tor class that implements the encoding to the proper reasoner. For DL reasoning, we use

122 C. Braga et al.

Fig. 4. A design pattern for model transformations with transformation contracts

Fig. 5. Applying the design pattern to the SecureUML to JAAS model transformation

the Pellet2 reasoner and for OCL execution we use EOS3, which is also used to manage
model persistence. Implementing a model transformation as an application of our pro-
posed design pattern enforces the implementation of a rigorous model transformation
as different verification and validation techniques can be applied.

7 Final Remarks

We are developing and applying a general technique for the rigorous specification, veri-
fication and implementation of model transformations using the concept of transforma-
tion contracts. A transformation contract is essentially a transformation metamodel that
relates metamodels and a set of properties over the transformation metamodel. Imple-
mentations of model transformations are realized as an application of a design pattern
that enforces our proposed model transformation process. In this paper we have used the
standardized metalanguages of UML class diagrams, OCL for the specification of meta-
models and invariants over them and Description Logic to verify consistency. However,
our approach is not coupled with any particular choice of metalanguages and different

2 http://clarkparsia.com/pellet/
3 http://www.bm1software.com/eos/

http://clarkparsia.com/pellet/
http://www.bm1software.com/eos/

On the Specification, Verification and Implementation of Model Transformations 123

metanotations and reasoners may be employed in the development of a model trans-
formation. We plan to continue our work by integrating different automated analysis
techniques to our model transformation process and to apply our approach to industrial
case studies.

References

1. Akehurst, D.H., Kent, S.: A relational approach to defining transformations in a metamodel.
In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 243–
258. Springer, Heidelberg (2002)

2. Baader, F., Diego Calvanese, D.M., Nardi, D., Patel-Schneider, P.: The Description Logic
Handbook. Cambridge University Press (2003)

3. Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design models.
Inf. Softw. Technol. 51(5), 815–831 (2009)

4. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From uml models to access
control infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1), 39–91 (2006)

5. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on UML class diagrams. Artif. Intel-
lig. 168, 70–118 (2005)

6. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model Transforma-
tions? Transformation Models! In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoD-
ELS 2006. LNCS, vol. 4199, pp. 440–453. Springer, Heidelberg (2006)

7. Braga, C.: From access control policies to an aspect-based infrastructure: A metamodel-
based approach. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421, pp. 243–256.
Springer, Heidelberg (2009)

8. Braga, C.: A transformation contract to generate aspects from access control policies. J. of
Software and Systems Modeling (2010), doi:10.1007/s10270-010-0156-x

9. Braga, C., Hæusler, E.H.: Lightweight analysis of access control models with description
logic. Innov. in Systems and Soft. Eng. 6, 115–123 (2010)

10. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of model trans-
formation contracts. In: Proc. of OCL and Model Driven Eng. Work., pp. 69–83 (2004)

11. Clavel, M., Egea, M., de Dios Miguel Angel, G.: Building an efficient component for OCL
evaluation. ECEASST 15 (2008)

12. Comicio, T.: A transformation contract approach for model-driven security. Master’s thesis,
Universidade Federal Fluminense (2011)

13. Egea, M.: An Executable Formal Semantics for OCL with Applications to Model Analysis
and Validation. PhD thesis, Universidad Complutense de Madrid (2008)

14. Gorp, P.V., Janssens, D.: Cavit: a consistency maintenance framework based on transfor-
mation contracts. In: Transformation Techniques in Soft. Eng., Dagstuhl Seminar Proc.,
vol. 05161 (2006)

15. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained. Addison-Wesley, Reading (2003)
16. OMG. MOF QVT final adopted specification, omg adopted specification ptc/05-11-01 (2005)
17. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W.,

Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidel-
berg (1995)

	On the Specification, Verification and Implementation of Model Transformations with Transformation Contracts
	Introduction
	Related Work
	Model-Driven Development with Transformation Contracts
	Specifying Transformation Contracts
	Verifying and Validating Transformation Contracts
	Model Consistency Reasoning and Description Logic
	Model Consistency Verification in Model Transformations with Transformation Contracts
	Verifying and Validating Access Control Models

	A Design Pattern for the Implementation of Model Transformations with Transformation Contracts
	Final Remarks
	References

