

Lecture Notes in Computer Science 7021
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Adenilso Simao Carroll Morgan (Eds.)

Formal Methods:
Foundations
and Applications

14th Brazilian Symposium, SBMF 2011
São Paulo, Brazil, September 26-30, 2011
Revised Selected Papers

13

Volume Editors

Adenilso Simao
University of São Paulo
Institute of Mathematics and Computer Science
Avenida Trabalhador, são-carlense, 400
Zip Code 13566-590, São Carlos, SP, Brazil
E-mail: adenilso@icmc.usp.br

Carroll Morgan
University of New South Wales
School of Computer Science and Engineering
Sydney, NSW 2052, Australia
E-mail: carrollm@cse.unsw.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25031-6 e-ISBN 978-3-642-25032-3
DOI 10.1007/978-3-642-25032-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011939535

CR Subject Classification (1998): D.2.4, D.2, F.3, D.3, D.1, K.6, F.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at SBMF 2011: the 14th Brazilian
Symposium on Formal Methods. The conference was held in the city of São
Paulo, Brazil, colocated with CBSoft 2011, the Second Brazilian Conference on
Software: Theory and Practice.

The conference program included two invited talks, given by Catuscia
Palamidessi (INRIA Saclay, France) and John Harrison (Intel Corporation, USA).

A total of 13 research papers were presented at the conference and are in-
cluded in this volume; they were selected from 37 submissions. The submis-
sions came from 12 countries: Algeria, Brazil, China, Finland, France, Germany,
India, Ireland, Malaysia, Portugal, Spain, the UK and the USA. There were also
sessions specially devoted to a track of short papers, and these are published
separately as a technical report including papers describing work in progress.

The deliberations of the Program Committee and the preparation of these
proceedings were handled by EasyChair, which indeed made our lives much
easier.

We are grateful to the Program Committee, and the additional reviewers, for
their hard work in evaluating submissions and suggesting improvements. SBMF
2011 was organized by Escola de Artes, Ciências e Humanidades da Universi-
dade de São Paulo (EACH/USP) and Faculdade de Computação e Informática
da Universidade Presbiteriana Mackenzie (FCI/Mackenzie) under the auspices
of the Brazilian Computer Society (SBC). We are very thankful to the or-
ganizers of this year’s conference, Fatima L.S. Nunes Marques (EACH/USP)
and Ana Cristina Vieira de Melo (IME/USP), and we are specially thank-
ful to CBSoft 2011’s organizers Marcelo Fantinato (EACH/USP) and Luciano
Silva (FCI/Mackenzie), who arranged everything and made the conference run
smoothly.

The conference was sponsored by the following organizations, which we thank
for their generous support:

– CNPq, the Brazilian Scientific and Technological Research Council
– CAPES, the Brazilian Higher Education Funding Council
– FAPESP, São Paulo Research Foundation
– Google Inc.
– Universidade de São Paulo
– Universidade Presbiteriana Mackenzie

August 2011 Adenilso Simao
Carroll Morgan

Conference Organization

Program Chairs

Adenilso Simao ICMC/USP, Brazil
Carroll Morgan UNSW, Australia

Steering Committee

Adenilso Simao ICMC-USP, Brazil
Carroll Morgan UNSW, Australia
David Naumann Stevens Institute of Technology, USA
Jim Davies University of Oxford, UK (Co-chair)
Jim Woodcock University of York, UK
Leila Silva UFS, Brazil
Marcel Oliveira UFRN, Brazil (Co-chair)
Patŕıcia Machado UFCG, Brazil
Rohit Gheyi UFCG, Brazil

Program Committee

Aline Andrade UFBA, Brazil
David Aspinall University of Edinburgh, UK
Luis Barbosa Universidade do Minho, Portugal
Michael Butler University of Southampton, UK
Andrew Butterfield Trinity College Dublin, Ireland
Ana Cavalcanti University of York, UK
Marcio Cornelio UFPE, Brazil
Andrea Corradini Università di Pisa, Italy
Jim Davies University of Oxford, UK
David Deharbe UFRN, Brazil
Ewen Denney RIACS/NASA, USA
Clare Dixon University of Liverpool, UK
Jorge Figueiredo UFCG, Brazil
Rohit Gheyi UFCG, Brazil
Rolf Hennicker Ludwig-Maximilians-Universität München,

Germany
Juliano Iyoda UFPE, Brazil
Gerald Luettgen University of Bamberg, Germany
Patŕıcia Machado UFCG, Brazil

VIII Conference Organization

Ana Melo USP, Brazil
Stephan Merz INRIA Lorraine, France
Anamaria Moreira UFRN, Brazil
Alvaro Moreira UFRGS, Brazil
Arnaldo Moura Unicamp, Brazil
Alexandre Mota UFPE, Brazil
David Naumann Stevens Institute of Technology, USA
Daltro Nunes UFRGS, Brazil
Jose Oliveira Universidade do Minho, Portugal
Marcel Oliveira UFRN, Brazil
Alberto Pardo Universidad de la Republica, Uruguay
Alexandre Petrenko CRIM, Canada
Leila Ribeiro UFRGS, Brazil
Augusto Sampaio UFPE, Brazil
Leila Silva UFSE, Brazil
Heike Wehrheim University of Paderborn, Germany
Jim Woodcock University of York, UK

External Reviewers

Ludwig Adam
Sebastian Bauer
Florent Bouchy
Flavio S Correa Da Silva
Alexander Ditter
Arnaud Dury
Andrew Edmunds
Christoph Gladisch
Alexander Knapp
Giovanny Lucero
Kenneth Mackenzie

Tiago Massoni
Iain Mcginniss
Jan Tobias Muehlberg
Ingrid Nunes
Stefan Rieger
Paulo Salem Da Silva
Luis Sierra
Renato Alexandre Silva
Colin Snook
Daniele Nantes Sobrinho
Dominik Steenken

Local Organization

Marcelo Fantinato EACH/USP (General Chair)
Luciano Silva FCI/Mackenzie (General Chair)
Fátima L.S. Nunes Marques EACH/USP
Ana Cristina Vieira de Melo IME/USP

Table of Contents

Model Transformation and Induced Instance Migration: A Universal
Framework . 1

Harald König, Michael Löwe, and Christoph Schulz

SPARKSkein: A Formal and Fast Reference Implementation of Skein . . . 16
Roderick Chapman, Eric Botcazou, and Angela Wallenburg

Full Abstraction at Package Boundaries of Object-Oriented
Languages . 28

Yannick Welsch and Arnd Poetzsch-Heffter

B to CSP Migration: Towards a Formal and Automated Model-Driven
Engineering of Hardware/Software Co-design . 44

Marcel Vinicius Medeiros Oliveira, David B.P. Déharbe, and
Lúıs C.D.S. Cruz

Simulation and Verification of Synchronous Set Relations in Rewriting
Logic . 60

Camilo Rocha and César Muñoz

PiStache: Implementing π-Calculus in Scala . 76
Pedro Matiello and Ana C.V. de Melo

Sound and Complete Abstract Graph Transformation 92
Dominik Steenken, Heike Wehrheim, and Daniel Wonisch

On the Specification, Verification and Implementation of Model
Transformations with Transformation Contracts . 108

Christiano Braga, Roberto Menezes, Thiago Comicio,
Cassio Santos, and Edson Landim

Modular Embedding of the Object Constraint Language into a
Programming Language . 124

Fabian Büttner and Martin Gogolla

Algebra of Monotonic Boolean Transformers . 140
Viorel Preoteasa

Behavioural Preservation in Fault Tolerant Patterns 156
Diego Machado Dias and Juliano Manabu Iyoda

X Table of Contents

A Formal Approach to Fixing Bugs . 172
Sara Kalvala and Richard Warburton

A Formal Treatment of Agents, Goals and Operations Using
Alternating-Time Temporal Logic . 188

Christophe Chareton, Julien Brunel, and David Chemouil

Author Index . 205

Model Transformation and Induced Instance

Migration: A Universal Framework

Harald König, Michael Löwe, and Christoph Schulz

University of Applied Sciences, FHDW Hannover,
Freundallee 15, 30173 Hannover, Deutschland

{harald.koenig,michael.loewe,christoph.schulz}@fhdw.de

Abstract. Software restructuring and refactoring facilitate the use of
models as primary artifacts. Model evolution becomes agile if consis-
tency between evolving models and depending artifacts is spontaneously
maintained. In this paper we study endogenous model transformations
at medium or fine granularity with impact on data structures and ob-
jects. We propose a formal framework in which transformation rules for
class models can be formulated, whose application induces automatic
migration of corresponding data structures. The main contribution is a
correctness criterion for rule-induced instance migration based on initial
semantics.

Keywords: Agility, Model Transformation, Refactoring, Data Migra-
tion, Initial Semantics.

1 Introduction

The taxonomy of software evolution [20] identifies exogenous and endogenous
model transformations, dependent on whether meta-models differ or not. The
proposed categorization distinguishes (amongst others) between temporal prop-
erties (when and how often changes are performed), object of change (the arti-
facts, their granularity, and the impact of change), and change support (degree
of automation and formality as well as the change type). The subject of this
paper are endogenous model transformations at medium or fine granularity, i.e.
changes at the level of class structures or attribute assignments. We abstract
from the temporal aspects, i.e. changes may occur e.g. during run-time or load-
time of a software. The dominant research aspect, however, is the change impact
on existing objects1 that are typed in changing models.

Models and instances are equally structured: A model M is a graph (a di-
agram where nodes are classes and edges are associations between them), an
instance I is also a graph which depicts object structures, e.g. business entities
probably distributed over several database tables, or object parts together with
their linking structure. From the theory of algebraic graph transformations [6]
we adapt the idea of specifying structural transformations with the help of graph
1 The terms class and object will always be used in the object-oriented jargon.

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 H. König, M. Löwe, and C. Schulz

homomorphisms. Moreover, we pick up the paradigma of using morphisms from
source to target model for adding objects and morphisms from target to source
model for deleting. Both types of morphisms are combined to form transforma-
tion rules, that appear as spans

M K
l�� r �� N (1)

where M is the source and N is the target model of the transformation. If l
and r are injective, the intermediate model K describes the preserved context
of the transformation. However, to enable true relations between source and
target, we allow the framework to utilize non-monic arrows l and r which serve
as specifications for unfolding and merging. Examples for unfolding and merging
are the patterns “Extract Class” and “Inline Class” in [9]. In this case, K will
transport structures that shall be moved in the altering model. This will be
demonstrated in the introductory example in Section 2.

We want to emphasize the differences of our approach to the use of graph
transformations for model transformations. Following [19], endogenous transfor-
mations are specified on the meta-model level (M2 in the meta-architecture of
MOF2) and can then be applied locally to affected parts of a data model or
class model (M1) using a double pushout (DPO) construction. Applied to mod-
els (M1) and data (M0), this would mean to adjust affected object structures
by matching class structures to it. This requires to carry out many local ap-
plications of a transformation rule. This “multi-matching” process can formally
be described by amalgamated graph transformations [26], but is still limited to
monomorphic transformation rules. Non-injective rule morphisms are admitted
in [3,16], but these approaches are not equipped with “multi-matching” methods.

Consequently, we propose a technique which automatically matches affected
instances all at once. This universal quantification is achieved by changing the
universe of discourse: Instead of considering a graph I of objects that are in-
dexed by types of the model3, we prefer to think in terms of typing morphisms

I
t �� M , i.e. fibres over the model4, such that the complete typing morphism

can become part of a single transformation procedure. It is well-known that in-
terrelations between models in the indexed view yield forgetful functors, and
that they get traded for pullbacks in the fibred view [8]. Thus, the forthcoming
approach involves pullbacks if a rule (1) is applied to an instance t, e.g. the
pullback of l and t.

The objectives of this paper are threefold:

– To present a method for automatic and freely generated migration of object
structures in fibered contexts due to adjustments of their class models;

– To put conditions in place that guarantee correct execution of this method;
– To define correctness based on an underlying mathematical formalism.

2 Meta Object Facility.
3 The classical viewpoint in the theory of algebraic specifications.
4 The practioner’s viewpoint in software engineering.

Model Transformation and Induced Instance Migration 3

The results shall serve as preparation for the development of suitable tools to
perform automatic migration of existing data if a system designer has completed
a model refactoring or even a semantic-changing model evolution. The work of
[25] is extended by stating a criterion which can tell a designer in advance if an
automatic migration is possible or whether semi-automatic actions have to be
considered. The decision depends on the way object structures are restricted due
to cardinalities or similar constraints. The second novelty of the present paper
is a functor-based underpinning of migration semantics in different categories.

The main definitions (Migration, Correctness) and the main theorem (The-
orem 2 on the Existence of unique correct migrations) are presented in Section
3. Section 4 defines a suitable category in which correctness of the construction
of the introductory example is verified and investigates a different scenery (with
a deviating category based on an implicational specification). Finally, we state
related work in Section 5 and sketch directions for future research in Section 6.

2 An Introductory Example

A typical class model refactoring action is the move of an attribute from class A
to class B. This is sometimes reasonable if A and B are related via inheritance,
aggregation, or some other tight relationship. Similar actions are discussed in [9]
(“Move Field”, “Pull up Field”). Suppose in a source model M , persons possess
several email addresses and each person may reference an object which contains
further contact information, cf. the left model in Figure 1. An email, however,

M N

Person E-Mail*

Contact
Info

0..1

Person E-Mail
*

Contact
Info

0..1

11
c

c

Fig. 1. Refactoring Rule ”Move Attribute”

is a contact information, so the designer of the application decides to correct
this defect by moving the source of attribute c from Person to Contact Info.
This yields a target model N . For objects of type Person to be migrated, one
requires that (1) sources of links to email addresses shall be shifted accordingly,
(2) object structure shall remain the same if there was no email address, and
(3) in the case where an email was the only contact, a new Contact Info-object
shall be created, cf. Figure 2. If we want to specify these instance migrations
with the help of graph transformations, we have to define several rules, negative
application conditions, and amalgamations. In contrast to that, our goal is to

4 H. König, M. Löwe, and C. Schulz

Fig. 2. Moving Links

settle the transformation with only one rule. For this, we interpret instances and
models as graphs G = (V, E, src, tgt : E → V). Moreover, we assume that in
these graphs, each node x is equipped with an “identity edge” idx (i.e. src(idx) =
x = tgt(idx)). This simulates “mapping of edges to nodes” by mapping edges to
identity edges.

M K
l�� r �� N

I

t1

��

(PB)

H
l′

��
r′

��

t

��

J

t2

��

Fig. 3. Instance Migration t1 �→ t2

The novelty of the presented approach is the transformation of complete typing

morphisms I
t1 �� M by means of a combination of pullback (PB) and quotient

construction, see Figure 3. I.e. we first construct the pullback of t1 and l. Then
the right hand square is constructed with the help of a surjective quotient map
r′, its kernel being a subrelation of the kernel of r ◦ t. We postpone the details of
this construction to Section 4. The resulting typing morphism t2 is the unique
arrow due to the homomorphism theorem. This yields two commuting squares
as in Figure 3.

We will demonstrate these two steps in the example introduced above: Let
M and N be source and target model as in Figure 1. In order to determine

a complete span M K
l�� r �� N , a thought-out definition of the guiding

intermediate model K has to be found. For this, let us abbreviate A := Person,
B := Contact Info, and C := E-Mail. In a typing morphism I �� M nodes
and edges of M will be called model elements, nodes and edges of I are called
instance elements.

Model Transformation and Induced Instance Migration 5

•A

� � � � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � � � � � �

c

���
�

�
�

b

��

M •A

� � � � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � � � � � �

a
��

K •A

� � � � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � � � � � �

a

��

N

•C •X
c �����

b
��

•C •C

•B •B •B

c
���

�
�

�

•:A

� � � � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�� � � � � � �

: c

���
�

�
�

:b

��

I •:A

� � � � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�� � � � � � �

:a
��

H •:A

� � � � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�� � � � � � �

:a

��

J

•:C •:X

:b
��

: c ����� •:C •:C

•:B •:B •:B

: c
���

�
�

�

l�� r ��

t1

��

t

��

t2

��

l′�� r′ ��

Fig. 4. Rule Application (identity edges are not shown)

For the definition of K, it is obvious that deletion of c (c ∈ M − l(K)) and
adding (another) c (c ∈ N − r(K)) as in a graph transformation rule is not
adequate anymore. The reason for this is that adding a model element need
not necessarily infer adding a correspondingly typed instance element5. Thus,
we need to have a preimage of c in K. But if this preimage has source A in
graph K, it is mapped to an edge in N with source r(A), which means that
its source is not moved. Moreover, if it has source B in K, it can only origin
from A in M if l(A) = l(B) which is not desired. Thus, the only solution is to
introduce an auxiliary node X in K. Then the rule can be specified as in the
upper part of Figure 4 in which l maps the elements according to their names
except l(X) = A and l(a) = idA (identity edges are not shown in the graphs).
This allows the attribute c to move ”half-way” down. The move is completed
in the right-hand side of the rule by means of the assignments r(X) = B and
r(b) = idB.

For reasons of clarity, we first demonstrate the application of the rule only
for a single object of type A: In the lower part of Figure 4, :A possesses contact
information (:B) and email address (:C). Pulling back the typed instance t1 along
l causes unfolding of :A, the result being :A and :X together with an a-typed link
between them. Additionally, the source of :c is moved to :X . Since r(X) = r(B),
in the second step, the artificial :X is merged with :B by the quotient map
r′, such that the link’s source moves on to :B. We obtain a migrated instance

5 A newly added class creates no objects of this class. Similarly, a newly added at-
tribute should not always create corresponding links.

6 H. König, M. Löwe, and C. Schulz

J
t2 �� N and a diagram with two commuting squares as desired. Figure 5

shows the result of a different application: In this example, :A does not possess
a B-object. Because no :B was present, the artificial :X is only retyped (i.e.
:B := r′(: X)). The overall effect, however, is the creation of a new contact
information which now contains the email address as required.6 In each case the
intermediate typing t served as container to store moving structures (links of
type c).

•:A

� � � � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�� � � � � � �

: c

���
�

�
� I •:A

� � � � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�� � � � � � �

:a
��

H •:A

� � � � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�� � � � � � �

:a
��

J

•:C •:X
: c ����� •:C •:B

: c ����� •:C
l′�� r′ ��

Fig. 5. Another Rule Application

In the following section, we show how to apply this technique to a whole set
of objects (like in Figure 2) all at once. A general quotient construction has to
take care of the interrelation of merged classes in the models: If objects of two
classes A and B are in a tight relationship (e.g. if there is an association from
A to B with cardinality constraints such that each A-object references at most
one B-object and vice versa), which is depicted by solid association arrows7 in
Figure 4, merging due to quotient maps is admissable. If there is only a loose
relationship (dashed arrows), merging may be forbidden. We formalise this issue
in the following sections.

3 Migration Framework

In the sequel we require basic knowledge in category theory. We will work with
categories C, that have all limits. ObC , MorC describe objects, morphisms of
C resp. and, more precisely, for some A, B ∈ ObC the set of all arrows from
A to B will be depicted by MorC(A, B). A subcategory U of C is called full if
for all A, B ∈ ObU the sets MorU (A, B) and MorC(A, B) are equal. Any full
subcategory is equipped with an inclusion functor I : U → C. For a fixed
M ∈ ObC , the comma category C↓M of arrows I �� M represents M -typed
instances. In the following, functors between categories are denoted by uppercase
script letters.
6 Moreover, this technique also migrates 2 :Person as required in Figure 2.
7 The meaning of the solid frames in the figures will be explained during the following

sections.

Model Transformation and Induced Instance Migration 7

We recall basic facts from category theory: For M, K ∈ ObC , a fixed l ∈

MorC(K, M), and any arrow I
i �� M , the pullback P

Pl i �� K , P
l′ �� I

of (l, i) is a functor Pl : C↓M → C↓K. If K, N ∈ ObC and r ∈ MorC(K, N)

the “composing-with”-functor, which maps an arrow j1
α �� j2 of C↓K to the

arrow r ◦ j1
α �� r ◦ j2 of C ↓M , is the left-adjoint of Pr : C ↓N → C ↓K,

written Fr � Pr.

Definition 1 (Migration Functor). Let M, N ∈ ObC. A functor

M : C↓M → C↓N

is called a migration functor from (source model) M to (target model) N .

Definition 2 (Transformation Rule). Let M, K, N ∈ ObC. A span

TR = M K
l�� r �� N

is called a transformation rule.

In the sequel, all examples of migration functors M are such that M = M2◦M1

where M1 : C↓M → C↓K and M2 : C↓K → C↓N . As demonstrated in Section 2,
M1 and M2 are required to represent pullback and quotient construction, resp.

For example, if ∅ is initial in C, we can define a functor M1 : C↓M → C↓K
by M1i = (∅ �� K), mapping each arrow to the identity id∅. It can easily
be checked that this yields commuting squares, but in general no pullbacks. In
practice, this part of the migration deletes all instance elements of the source
model. It will be considered incorrect, whereas M1 := Pl will be considered
correct (see Definition 3), because it deletes exactly those instance elements
whose class has been removed in the rule.

Examples for the second step are the composition-functor Fr, but also the

functor M2 mapping each t ∈ C ↓K to N �� id �� �� N in C ↓N taking r′ = r ◦
t. Again, we can ask for correctness: E.g. M2 transforms t to an instance of
model N , the result being just a copy of N . This behaviour should be marked
”incorrect” in general because it may not reflect the rule’s properties.

If M is governed by a transformation rule TR, we call M rule-induced. As
pointed out above, correctness in the first step of a rule-induced migration is
achieved if M1 is the pullback functor. The second step will be considered cor-
rect if no information is lost due to the merge of instance structures – except
if it is enforced by the transformation rule – (no confusion) and such that no
unnecessary instance elements are created (no junk). These are the typical re-
quirements of initial semantics. Following the semantics of parametrized data
types [7], it is reasonable to search for left-adjoints of Pr (the counterpart of
the forgetful functor along r in the indexed case).

If a model M imposes further restrictions (e.g. cardinalities or inheritance
structures) on an M -typed instance I, one has to distinguish between valid and

8 H. König, M. Löwe, and C. Schulz

invalid arrows I
type �� M (cf. Definition 4 in Section 4). To enable intelligent

migration functors which respect these restrictions, (proper) subcategories have
to be introduced. Together with the aforementioned initiality considerations, we
propose the following view on correctness:

Definition 3 (Correctness). Let

TR = M K
l�� r �� N

be a transformation rule, and UM , UN be full subcategories of C↓M , C↓N with
corresponding inclusion functors IM : UM → C↓M and IN : UN → C↓N .

A migration functor
M : UM → UN

is said to be correct w.r.t. TR, if M = M2 ◦M1 and

1. M1 = Pl ◦IM : UM → C↓K and
2. M2 � Pr ◦IN : UN → C↓K,

cf. Figure 3 with t = Plt1 and M t1 = M2t = t2.8

Condition 1 can always be fulfilled because C has all limits. But condition 2
might be violated for each choice of M2.

We aim at a very general setting in which a migration functor M is left-
adjoint (i.e. a free construction), because it is well-known that many important
properties are preserved by left-adjoint functors, see the remark on the preserva-
tion of co-limits in Section 6. Because typed instances not only occur in simple
graph structures, but also in more general settings (e.g. typed graphs, typed
attributed graphs [6] or generalized sketches [5]), we conclude that topoi9 are
the most general setting which serves our purposes. All investigated and above
mentioned examples are topoi.

Indeed, if the underlying category is a topos and if M can be extended to
C↓M10, we have

Theorem 1. In a topos C any correct M : C↓M → UN is left-adjoint.

Proof. By the well-known fundamental theorem of topos theory [10], C↓M and
C↓K are topoi, too. Moreover, the pullback functor has a right-adjoint in topoi.
Because left-adjoints compose, M is left-adjoint. �	

The remainder of this section is devoted to Theorem 2 which states sufficient
conditions for existence and uniqueness of correct migrations. It will be applied
in Section 4. The proof of the theorem is based on the following Proposition
8 Since these subcategories shall limit the degree of freedom of instance typings only,

we do not propose to restrict the transformation rule morphisms l, r.
9 Topoi are cartesian closed categories with a representable subobject functor. E.g.

algebraically specified categories with unary operation symbols only are topoi.
10 This is no serious restriction, see Section 2.

Model Transformation and Induced Instance Migration 9

1 (cf. [1], Corollary 16.9 and Proposition 12.5)11. Recall that a monomorphism

A �� f �� B is called extremal if f = m ◦ e with epimorphism e implies that e is
an isomorphism. In this case (A, f) is called an extremal subobject of B.
Proposition 1. Let D be a complete category and U be a full subcategory of D.
Then the inclusion functor I : U → D has a left-adjoint with epimorphic unit
iff U is closed under the formation of products and extremal subobjects. �	
Note that subcategories of algebraically specified categories are closed under
the formation of (extremal) subobjects and products if and only if they can be
specified in syntactic terms (i.e. by means of a set of implications with a possibly
infinite number of premises).

Theorem 2. Let TR = M K
l�� r �� N be a transformation rule in a

complete category C and UM ,UN be as in Definition 3. If UN is closed under
the formation of products and extremal subobjects then there exists a correct
migration functor w.r.t. TR. It is essentially unique12.

Proof. Let IM : UM → C ↓M and IN : UN → C ↓N be the participating
inclusion functors. We define

M1 := Pl ◦IM .

It is well-known that C↓N is complete, as well. Thus, by Propositon 1 applied
to D = C↓N , there is a functor FN : C↓N → UN such that FN � IN . Since
left-adjointness is closed under composition,

M2 := FN ◦Fr � Pr ◦IN : UN → C↓K
guarantees correctness. Moreover, the choice of left-adjoint functors and of pull-
backs is unique up to isomorphism, such that M2 ◦M1 is essentially unique. �	

4 Application of the Framework

This section presents two different examples for the underlying category from
Section 3. Both definitions are based on graphs with identity edges, i.e. the
category of all algebras specified by the signature Graph with sorts E and V
and operation symbols src, tgt : E → V , id : V → E.13 We write idx instead of
id(x). Let the specification Σ be equal to Graph together with the equations

∀x ∈ V : src(idx) = x and tgt(idx) = x.

The equationally specified category C := SET Σ of all these graphs with graph
homomorphisms between them is a full subcategory of SET Graph. Both are
complete (for the completeness of C use Birkhoff’s Variety Theorem). All models
and instances in the following considerations are graphs of C.
11 This result is applicable if the categories under considerations fulfil certain smallness

assumptions which are always guaranteed in practical settings.
12 I.e. unique up to natural isomorphism.
13 The identity edge may be thought of a special reference to the same object (e.g.

this-reference in Java).

10 H. König, M. Löwe, and C. Schulz

4.1 Models with Component Structure

We sketch the results of [17]: Since the first migration step of our transformations
is managed by the well-understood pullback construction, we focus on problems
and results that are concerned with the more difficult second step of the migra-
tion. As we have already seen in Section 2, the second step of the migration may
identify some elements of the intermediate instance H , cf. Figure 4. In general,
however, unconditional identification is impractical. For suppose a transforma-
tion rule specifies merging two classes A and B (i.e. r(A) = r(B)) that have
a multi-valued association between them. If an instance :A is linked to two B-
objects 1:B and 2:B, and the rule would enforce the merge of all connected
object pairs (:A, :B), one would observe merging of 1:B and 2:B as well, which
was not required.

Thus, we have to distinguish between “areas” in class models which permit
merging and areas which don’t. A good candidate for this is cardinality con-
straints: We will differentiate between tight and loose associations. Tight asso-
ciations are of type n:m, where n, m ∈ {0..1, 1}. Solid arrows depicted these
associations in Section 2. Dashed arrows depict loose (i.e not tight) associations.
Links are depicted correspondingly, depending on how they are typed.

Let G be any class model. We say that classes A and B are tightly associated
if there is a tight association in some direction between them. The reflexive and
transitive closure of this relation can be coded by a homomorphism g : G → G
via ker(g). For y a node in G, the union of the equivalence classes g−1({y}) and
g−1({idy}) is called a component of the model graph. A reasonable component
structure of areas which permit merging is generated if g maps connected tight
associations to idy for some node y ∈ G.

If C is such a component of model K and H
t �� K is a typed instance,

the set t−1(C) can be partitioned into disconnected14 parts of H . If this is done
for all components of K, the instance graph is partitioned as well. In Figure
4 components are solid frames (components with exactly one element have no
frame). Their preimages under the typing morphisms are framed in the same way.
In this way, typing morphisms respect the component structure. If graphs H and
K are equipped with component structures h : H → H and k : K → K, this
compatibility condition can be expressed by claiming that t is accompanied by
a “component morphism” t : H → K, s.th. (t, t) ∈ MorC2(h, k), i.e. t ◦ h = k ◦ t.
Thus, the arrow category C2 is a good choice for generalising graphs that are
equipped with a component structure.

We use the following conventions: Whenever a model graph or an instance
graph g is considered, we assume g to have domain G (the graph under consid-
eration) and codomain G (the components, i.e. the equivalence classes induced
by g). If both components of a morphism in the arrow category have to be dis-
tinguished, we write (t, t). Otherwise, we omit the second component and write
just t.

14 Not connected via links in either direction.

Model Transformation and Induced Instance Migration 11

The choice of subcategory (cf. Definition 3) is now driven by the fact that only
if a component C of H is mapped injectively by t, merging within the component
due to a given rule is unique:

Definition 4 (Subcategory of Valid Typings). Let n : N → N be a model

graph with component structure and j
t �� n be a typed instance15. We call t

a valid typing, if for all16 x, y ∈ J

j(x) = j(y) ∧ t(x) = t(y) =⇒ x = y (2)

The full subcategory U of all valid typings of C2 ↓ n is called the subcategory of
valid typings of n.

A tool can detect this behaviour by determining components C in H as discon-
nected t-preimages of components in K that depict a non-cyclic path of tightly
associated classes. In [13] we proved U to fulfil the prerequisites of Theorem 2.
Completeness of C implies completeness of C2 (by pointwise limit construction).
Since the pullback functor always acts on the whole comma category and C2 is
a topos [18], the prerequisites of Theorem 1 are also met:

Corollary 1. Let TR = m k
l�� r �� n be a transformation rule in the

category of graphs with a component structure and U be the subcategory of valid
typings of n. Then there exists a correct, essentially unique TR-induced migra-
tion functor, which is itself a left-adjoint. �	

K

r

������������������

K

r 		���������������

k

							

N

H ��
������

id
�� ��������

t

��

N

n

��

H

t

��

r′ 		���������������

h

							
J = H

r ◦ t

��

J

j
�����������

t2

��

Fig. 6. Second Migration Step

15 Recall that J is the domain of j in C.
16 For a graph J we write x ∈ J to depict a vertex or an edge x of graph J .

12 H. König, M. Löwe, and C. Schulz

We sketch how to construct the involved functors in Corollary 1 explicitly: In
the first migration step the pullback of two arrows t1 : i → m and l : k → m
in C2 is constructed “pointwise”. Assume that this yields an instance graph
(with component structure) h typed by the pair (t, t) in the model graph k. To
complete this situation with the additionally depicted arrows in Figure 6, one
defines the component structure of the resulting instance graph J to be equal to
the one of H , i.e. J := H . The main idea is to prevent identification of equally
typed instance elements in H by defining J as follows: For the family (Ny :=
r(t(h−1({y}))))y∈H of sets, define J :=
y∈HNy. Source and target relations as
well as identity edges in J can be defined in a natural way. Furthermore, for each
y ∈ H , let r′y : h−1({y}) → Ny be the restriction of r ◦ t and define r′ : H → J
by r′(x) := r′y(x) whenever h(x) = y. It is easy to see that r′ is a surjective
homomorphism with

ker(r′) ⊆ ker(h) ∩ ker(r ◦ t)

yielding unique arrows j and t2 such that (by the fundamental homomorphism
theorem) the bottom and front squares commute in Figure 6. Finally, an easy
calculation yields r ◦ t ◦ j ◦ r′ = n ◦ t2 ◦ r′, which shows that the right square
commutes. Furthermore, in [13] we proved that (r′, id) is the unit of the ad-
junction involving the inclusion functor I : U → C2 ↓ n. Thus, (t2, r ◦ t) is the
result of the correct migration functor. It can now easily be calculated that the
migration in the example in Section 2 reflects this construction: Components are
solid frames, J in Figure 4 consists of three disjoint sets ({:A,:B,:a}, {:c}, and
{:C}), and t2 is the migration result.

4.2 Data Models Axiomatically

In this section, we want to sketch a different example in order to demonstrate
the use of the framework in other settings. Tight associations of section 4.1 are
replaced by containment relations on the one hand and associations with target
cardinality 0..1 on the other hand. It can be shown that the effects of applying
our construction in this setting yield slightly different results. This may enable
tools to migrate data due to different merging modes. Examples can be found
in [24].

Let C = SET Σ be as before and assume that graphs G = (GV , GE , srcG, tgtG)
implement a distinguished containment relation c ⊆ GV × GV . Let Cc be the
extended category together with morphisms which respect containments. For a

typed instance graph I
type �� N ∈ Cc↓N , there are the following axiomatic

restrictions on the multiplicity and the aggregation level of associations:

∀e1, e2 ∈ IE : (srcI(e1) = srcI(e2) ∧ type(e1) = type(e2)) ⇒ e1 = e2 (3)

expresses restricted target cardinality and the axiom

∀v1, v2 ∈ IV : (c(v1, v2) ∧ type(v1) = type(v2)) ⇒ v1 = v2 (4)

Model Transformation and Induced Instance Migration 13

claims that an object contains no other statically equal typed object17. This
gives rise to the following definition of the subcategory UN of valid typings:

UN := { I
type �� N | (3) and (4) are valid in I}

[24] proves that UN meets the prerequisites of Theorem 2. Thus we obtain.

Corollary 2. Let TR = M K
l�� r �� N be a transformation rule in Cc

and UN be the subcategory of valid typings of N . Then there exists a correct,
essentially unique TR-induced migration functor. �	

5 Related Work

The idea to adapt models without invalidating existing instance landscapes is not
new. Our approach differs from schema evolution methods [11,15,21], because we
underpin our work with a categorical framework and invent a formal correctness
criterion.

In Part IV of [6] exogenous model transformations induced by cospan corre-
spondence between meta models are performed. See also [27] for a comparative
study. Triple graph grammars [14] is an approach for co-evolution based on
graph transfomations using joined meta-models. [12,23] present similar formal
approaches for model transformation which induce instance migrations based on
category theory. In some applications, the question arises how to guarantee that
the application of rules preserves certain subcategories [2].

The importance of pullback constructions that induce model transformations
from meta-model correspondences are stressed in [4]: Pullbacks of typed in-
stances (models in this case) along a map from target meta-model to some
derived artifact (having the source meta-model embedded) yield the migration
result. Again, the governing rule is a cospan and no span as in our approach.

[22] compares model migration tools for model adjustments due to evolving
meta-models. User-oriented migration strategies for automated correct migra-
tions are defined and the quality of the tools is determined. Correctness is based
on user requirements formulated in terms of strategies.

6 Conclusion and Outlook

With the framework presented above, we showed that automatic instance mi-
gration induced by model transformations is a functor M between categories
of typed instances. Moreover, we stated sufficient conditions for correctness and
uniqueness (Theorem 2). There are at least three directions for future research:

Model changes in more general categories: Model changes also occur in the con-
text of typed attributed graph transformations. Moreover, semantics of pred-

17 Containment of objects is allowed, if the same type may dynamically be assigned.

14 H. König, M. Löwe, and C. Schulz

icates in generalized sketches are defined via typed instances. It is a goal to
transfer the present results to these more general cases.

Combination of migrations: Composition of migration functors describes sequen-
tial application of several migration steps. It is important to investigate, under
which conditions these steps are sequentially independent [6]. Furthermore, an
analysis of parallel independence provides conditions to indicate situations in
which the steps are mutually exclusive, such that more modellers can work si-
multaneously. In addition to that, it is a goal to support rule definition by visual
languages and rule execution by transformation environments.

Migration of software: If models change, not only data has to be migrated, but
operations and methods have to be adjusted, too. If operation effects are specified
by graph rewriting rules, their induced transaction is a double-pushout diagram
d in the category C↓M of typed graphs. Then a transformation rule TR induces
an automatic transformation of d to a double-pushout-diagram d′ in the category
C↓N , because the left-adjoint M (by Theorem 1) preserves co-limits. It is a goal
to formulate this idea more precisely.

References

1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The
Joy of Cats. Free Software Foundation (2004)

2. Biermann, E., Ermel, C., Taentzer, G.: Lifting parallel graph transformation con-
cepts to model transformation based on the Eclipse modeling framework. Electronic
Communications of the EASST 26 (2010)

3. Corradini, A., Heindel, T.: und Barbara König, F.H.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006)

4. Diskin, Z., Dingel, J.: A metamodel independent framework for model transfor-
mation: Towards generic model management patterns in reverse engineering. In:
Proceedings of the 3rd International Workshop on Metamodels, Schemas, Gram-
mars and Ontologies for Reverse Engineering (ateM 2006). Johannes-Gutenberg-
Universität Mainz (2006)

5. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling.
Electronic Notes in Theoretical Computer Science 203(6), 19–41 (2008)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

7. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics. Springer, Heidelberg (1985)

8. Fiadeiro, J.L.: Categories for Software Engineering. Springer, Heidelberg (2005)

9. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(1999)

10. Freyd, P.: Aspects of topoi. Bulletin of the Australian Mathematical Society 7,
1–76 (1972)

11. Hainaut, J.L., Tonneau, C., Joris, M., Chandelon, M.: Transformation-based
database reverse engineering. In: Elmasri, R.A., Kouramajian, V., Thalheim, B.
(eds.) ER 1993. LNCS, vol. 823, pp. 364–375. Springer, Heidelberg (1994)

Model Transformation and Induced Instance Migration 15

12. Hermann, F., Ehrig, H., Ermel, C.: Transformation of type graphs with inheritance
for ensuring security in e-government networks. In: Chechik, M., Wirsing, M. (eds.)
FASE 2009. LNCS, vol. 5503, pp. 325–339. Springer, Heidelberg (2009)

13. König, H., Löwe, M., Schulz, C.: Functor semantics for refactoring-induced data mi-
gration. Tech. Rep. 02007/01, Fachhochschule für die Wirtschaft Hannover (2007)

14. Königs, A., Schürr, A.: Tool integration with triple graph grammars – A survey.
Electronic Notes in Theoretical Computer Science 148(1), 113–150 (2006)

15. Lee, S.-W., Ahn, J.-H., Kim, H.-J.: A schema version model for complex objects in
object-oriented databases. Journal of Systems Architecture 52(10), 563–577 (2006)

16. Löwe, M.: Graph rewriting in span-categories. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 218–233. Springer,
Heidelberg (2010)

17. Löwe, M., König, H., Schulz, C., Peters, M.: Refactoring information systems –
Handling partial composition. Electronic Communications of the EASST 3 (2006)

18. McLarty, C.: Elementary Categories, Elementary Toposes. Clarendon Press (1995)
19. Mens, T.: On the use of graph transformations for model refactoring. In: Lämmel,

R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 219–257.
Springer, Heidelberg (2006)

20. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electronic Notes in
Theoretical Computer Science 152, 125–142 (2006)

21. Roddick, J.F.: A survey of schema versioning issues for database systems. Infor-
mation and Software Technology 37(7), 383–393 (1995)

22. Rose, L.M., Herrmannsdoerfer, M., Williams, J.R., Kolovos, D.S., Garcés, K.,
Paige, R.F., Polack, F.A.C.: A comparison of model migration tools. In: Petriu,
D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 61–75. Springer, Heidelberg (2010)

23. Rutle, A., Wolter, U., Lamo, Y.: A diagrammatic approach to model transforma-
tions. In: Proceedings of the 2008 Euro American Conference on Telematics and
Information Systems (EATIS 2008), pp. 1–8. ACM (2008)

24. Schulz, C.: Transformation Objektorientierter Systeme basierend auf algebrais-
chen Graphtransformationen. Ph.D. thesis, Technische Universität Berlin, Berlin,
Deutschland (2010)

25. Schulz, C., Löwe, M., König, H.: A categorical framework for the transformation of
object-oriented systems: Models and data. Journal of Symbolic Computation 46(3),
316–337 (2011)

26. Taentzer, G., Beyer, M.: Amalgamated graph transformations and their use for
specifying AGG – An algebraic graph grammar system. In: Ehrig, H., Schneider, H.-
J. (eds.) Dagstuhl Seminar 1993. LNCS, vol. 776, pp. 380–394. Springer, Heidelberg
(1994)

27. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T.,
Prange, U., Varró, D., Varró-Gyapay, S.: Model transformation by graph transfor-
mation: A comparative study. In: Proceedings of the 8th International Conference
on Model Driven Engineering Languages and Systems, MoDELS 2005 (2005)

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 16–27, 2011.
© Springer-Verlag Berlin Heidelberg 2011

SPARKSkein: A Formal and Fast Reference
Implementation of Skein

Roderick Chapman1, Eric Botcazou2, and Angela Wallenburg1

1 Altran Praxis Limited, 20 Manvers Street,
Bath BA1 1PX, U.K.

2 AdaCore, 46 rue d’Amsterdam,
75009 Paris, France

{rod.chapman,angela.wallenburg}@altran-praxis.com,
botcazou@adacore.com

Abstract. This paper describes SPARKSkein – a new reference implementation
of the Skein cryptographic hash algorithm, written and verified using the
SPARK language and toolset. The new implementation is readable, completely
portable to a wide-variety of machines of differing word-sizes and endian-ness,
and “formal” in that it is subject to a proof of type safety. This proof also
identified a subtle bug in the original reference implementation which persists
in the C version of the code. Performance testing has been carried out using
three generations of the GCC compiler. With the latest compiler, the SPARK
code offers identical performance to the existing C reference implementation.
As a further result of this work, we have identified several opportunities to
improve both the SPARK tools and GCC.

Keywords: Skein, Hash, SHA-3, SPARK, Theorem Proving, GCC,
Optimization, Verification, Security.

1 Introduction

This paper describes SPARKSkein – a new reference implementation of the Skein
cryptographic hash algorithm [1], written and verified using the SPARK1 language
and toolset.

This work started out as an informal experiment to see if a hash algorithm like
Skein could be realistically implemented in SPARK. The goals of the implementation
were as follows:

• Readability. We aimed to strike a reasonable balance of readability and
performance. The code should be “obviously correct” to anyone familiar with the
Skein specification and/or the existing C reference implementation.

• Portability. SPARK has a truly unambiguous semantics, making it a very portable
language. Therefore, we aimed for a single code-base that was portable and correct
on all target machines of any word-size and endian-ness.

1

 The SPARK Programming Language is not sponsored by or affiliated with SPARC
International Inc and is not based on the SPARC® architecture.

 SPARKSkein: A Formal and Fast Reference Implementation of Skein 17

• Performance. We hoped that the performance of the SPARK code would be close
to or better than the existing C reference implementation. The conjecture here is
that code that is both correct and type-safe can also be fast. If we failed on the
performance front, then we hoped to at least understand why as a way of promoting
further work on compiler optimization for SPARK.

• Formality. The SPARK verification tools offer a full-blown implementation of
Hoare-Logic style verification, supported by both an automatic and an interactive
theorem prover. We aimed to prove at least type-safety (i.e. “no exceptions”) on
the SPARKSkein code. There seems to be a belief that “formal is slow” in
programming languages, thus justifying the continued use of low-level and type-
unsafe languages like C in anything that is thought to be in any way real-time or
performance critical. This work aims to provide evidence to refute this view.

• Empirical. We aimed to make the experiment empirical in that all the code, data,
and tools are freely available to the scientific community.

Could we do it? Could we produce code that is formal, provable, readable, portable
and fast?

2 Skein

Skein [1] is one of the candidate algorithms in the third and final round of the
competition to design the future standard hash algorithm that will become known as
SHA-3 [12]. Skein is designed for cryptographic strength, portability, and
performance, although it is particularly designed for efficiency on 64-bit little-endian
machines, such as x86_64, which dominate in desktop computing. Skein is fully
defined in [13] using an algorithmic specification accompanied by proofs of a number
of key security properties.

3 SPARK

This section provides a brief overview of SPARK and its capabilities. SPARK-aware
readers may skip ahead.

SPARK is a contractualized subset of Ada. The contracts embody data- and
information-flow, plus the classical notions of pre-condition, post-condition and
assertions in code. The language is designed to have a wholly unambiguous semantics
– there are no unspecified or undefined language features in SPARK – meaning that
static analysis can be both fast and sound. The contract language is designed for
wholly static verification through the generation of Verification Conditions (VCs) and
the use of theorem proving tools. SPARK is well-known in the development of
safety-critical systems, but is also being used in some high-grade secure applications,
where its properties and verification system have proven useful.

As a subset of Ada, SPARK can be compiled by any standard Ada compiler. The
contracts look like comments to an Ada compiler, but are an inherent part of the
language as far as the verification tools are concerned. The unambiguous semantics
also means that a SPARK program has the same meaning regardless of choice of
compiler or target machine – endian-ness, word-size, and so on just don’t matter at
all.

18 R. Chapman, E. Botcazou, and A. Wallenburg

There are four main tools. The Examiner is the main static analysis engine – it
enforces the language subset and static semantics, and then goes on to perform
information-flow analysis [2]. The Examiner includes a Verification Condition
Generator (VCG) – essentially an implementation of Hoare’s assignment axiom – that
produces VCs in a logic suitable for an automated theorem prover called the
Simplifier2. This is an heuristics-driven automated prover. For VCs that the Simplifier
can’t prove, we have the Checker – an interactive proof assistant based on the same
core inference engine. Finally, a tool called POGS collates and reports the status of
each VC for the entire program.

Further details about SPARK can be found in the SPARK textbook [3] and the
Tokeneer on-line tutorial [4]. The GPL edition of the SPARK toolset is freely
available under the terms of the GPL [5].

4 Implementing SPARKSkein

The current implementation delivers the main Skein hash algorithm with a 512-bit
block-size. For the purposes of this exercise, the other block-sizes and uses of Skein
were not relevant.

The coding was straightforward. The main challenge was in understanding the
Skein specification and the existing C implementation in sufficient detail to produce a
correct SPARK implementation.

One challenge arises in laying out the structure of the Skein “Tweak Words”
record. In the C implementation, these are just an array of two 64-bit words, but in
SPARK we chose to declare this as a record type with named fields for ease of
reading. This means that the layout of this record type has to be different on big-
endian and little-endian machines. To do this, a representation clause specifies the bit-
numbering required, but depends on the constant System.Default_Bit_Order to get the
correct order and layout for the target machine.

To illustrate the difference in coding style, consider the initialization of the hash
context in Skein_512_Init. In the C reference implementation, this looks like a
function call:

Skein_Start_New_Type(ctx,CFG_FINAL);

Closer inspection, though, reveals that this is actually a pre-processor macro:

#define Skein_Start_New_Type(ctxPtr,BLK_TYPE)
{ Skein_Set_T0_T1(ctxPtr,0,SKEIN_T1_FLAG_FIRST |
SKEIN_T1_BLK_TYPE_##BLK_TYPE); (ctxPtr)->h.bCnt=0; }

This, in turn, refers to the macro Skein_Set_T0_T1. The whole thing expands out
into:

2 Not to be confused with Greg Nelson’s better-known Simplify prover.

 SPARKSkein: A Formal and Fast Reference Implementation of Skein 19

{ { {(ctx)->h.T[0] = ((0));};
{(ctx)->h.T[1] = (((((u64b_t) 1) << ((126) - 64)) |
((((u64b_t) ((4))) << ((120) - 64)) | (((u64b_t) 1) <<
((127) - 64)))));}; };
(ctx)->h.bCnt=0;
};

which is actually 3 assignment statements, with the various shifting/masking
constants picked to get the correct endian-ness for the target machine.

In SPARK, this code becomes a procedure, which treats the Context as a record
object that can be assigned to. The whole thing comes out as two assignment
statements:

Ctx.Tweak_Words :=
 Tweak_Value'(Byte_Count_LSB => 0,
 Byte_Count_MSB => 0,
 Reserved => 0,
 Tree_Level => 0,
 Bit_Pad => False,
 Field_Type => Field_Type,
 First_Block => First_Block,
 Final_Block => Final_Block);
Ctx.Byte_Count := 0;

which we argue is more readable. All the complexity of the endian-ness and the
layout of the record are hidden in the representation clause, and the compiler takes
care of generating the required shifting and masking instructions to construct the
correct value.

SPARK naturally supports nesting of subprograms (as in all Pascal-family
languages) so this allows a natural top-down decomposition of the main operations
into local procedures. This decomposition aids readability, but has a negligible impact
on performance, assuming a compiler is able to inline the local procedures.

As far as possible, the implementation follows the structure of the reference C
implementation, so anyone familiar with that version should be able to read and
follow the SPARK code.

We also added a package Skein.Trace that produces debugging output in exactly
the same format as the functions in the C code’s skein_debug.c, so automatic
comparison of debug output would be possible. This proved very useful in testing the
output of the SPARK version side-by-side with the C.

5 Verification of SPARKSkein

We have verified SPARKSkein in various ways: using the SPARK static verification
tools, testing using the published reference test vectors, structural coverage analysis,

20 R. Chapman, E. Botcazou, and A. Wallenburg

testing for portability on as many differing machines that we could lay our hands on,
and performance testing. These sections summarize the results of these activities.

5.1 Static Verification and Proof

The SPARKSkein code passes all the analyses and verification implemented by the
Examiner with no errors. Additionally, we generated VCs for type-safety. This means
we prove that a program could never raise an exception at run-time through the failure
of a type-safety check, such as a buffer overflow, division-by-zero, numeric overflow
and so on. The proof of type-safety essentially proves that a program remains in a
well-defined state and would never raise exceptions for any possible input data that
meets the stated top-level pre-conditions. A benefit of type-safety proof is that it can
detect subtle corner cases such as this.

The implementation produces 367 verification conditions, of which 344 (93.7%)
are proven automatically by the Examiner or Simplifier. Of these 344, 6 require the
insertion of user-defined lemmas into the theorem-prover. Such user-defined lemmas
must be subject to careful review, or validation with the Checker, as they have the
potential to introduce unsoundness into the proof. The remaining 23 verification
conditions are proved using the Checker, requiring some human assistance.

Prover Says No – a Bug is Discovered
The subprogram Skein_512_Final caused some problems, and led to the discovery of
a subtle corner-case bug.

The finalization algorithm uses the number of bits of hash requested to compute
how many bytes of hash are required, and therefore how many blocks of data are
needed. A loop then iterates to generate the required number of blocks. This loop has
to iterate at least once, or else no output would result. This requirement was expressed
as a type-invariant in SPARK in that the number of output blocks has to be at least
one.

The offending fragment of code is:

Byte_Count := (Local_Ctx.H.Hash_Bit_Len + 7) / 8;

where the “+” operator is modulo 264.
The need to have at least one block comes out as a VC with conclusion:

((Local_Ctx.H.Hash_Bit_Len + 7) mod 264) / 8 > 0

which the theorem prover refused to prove for our first implementation – most
obviously because it’s not true!

The problem is that if the requested Hash_Bit_Len set by Skein_512_Init is
sufficiently large (i.e. near 264), then the “+ 7” overflows to be near zero which, when
divided by 8, is zero.

This bug is unlikely to happen in reality, based on the assumption that no-one
would ask for a hash nearly 264 bits long, but it does illustrate the theorem-prover’s
ability to sniff out such subtle corner cases that typically elude testing, review or other
forms of verification.

 SPARKSkein: A Formal and Fast Reference Implementation of Skein 21

The correction is simple enough – we simply limit the range of acceptable hash bit
lengths to a maximum of 264 – 8, so the overflow is avoided. This is encoded in
SPARK as a subtype called Hash_Bit_Length, declared in the package specification
and then used as the parameter for Skein_512_Init.

In the C reference implementation, this bug persists and the code produces no
blocks of output (returning a pointer to an undefined block of memory) for this case.

Reflections on the Proof
The 344 automatically discharged proofs were harder (and slower) than expected.
This owes to the prevalence of “modulo N” arithmetic in the VCs. Crypto algorithms
tend to do most things using “unsigned” or (in SPARK terminology) “modular” types,
which exhibit modular operators like “+” that wrap-round. In the world of proof, this
generates VCs that have “mod N” appended to the end of nearly every expression. We
also chose to index array types with modular integers, so even innocuous operations
like incrementing an array index variable resulted in a “mod N” appearing in the VC.
Theorem-provers are notoriously poor with such things - ours included – so the 93.7%
of VCs proved automatically is acceptable but offers some room for improvement.

The 23 VCs that remained undischarged by the Simplifier were difficult to prove in
the Proof Checker. The main problem is finding a sufficiently strong pre-condition or
loop-invariant for the offending code. These tend to have a Goldilocks-like tendency
– they mustn’t be too strong, mustn’t be too weak, but “just right.” When the
Simplifier fails to prove a VC, it is not always clear why. Perhaps there really is a bug
in the code, and the VC has a counter-example? Perhaps the VC really is true, but the
Simplifier is just not clever enough to find the proof? Perhaps the VC is unprovable
because a pre-condition or invariant is too weak? This last case is particularly
annoying – a long session with the Checker can result in merely finding that a VC
isn’t provable at all. It then isn’t always clear exactly what change to the invariant
might help. These weaknesses will be considered further in section 6.

A taste of SMT
In parallel with this work, Jackson [6] has produced ViCToR – a tool that translates
SPARK VCs into SMTLib so that they can be processed by contemporary SMT-
based solvers. Encouragingly, we have found that both Z3 [7] and Alt-Ergo [8] are
capable of proving all of the VCs arising from SPARKSkein automatically, with Z3
offering by far the better runtime performance at present. We are currently working
on integrating the SPARK tools with ViCToR to offer the option of using the
Simplifier, one or more SMT-based prover(s), or some combination of both.

5.2 Reference Test Vectors

The test case in the main program “spec_tests” runs the 3 reference test cases given in
version 1.2 of the Skein specification.

The first attempt to run this test case failed – the resulting hashes were wrong,
illustrating that type-safe code is not necessarily correct. This problem was traced to a
simple typing error in the value of the shifting constant R_512_6_3 which had the
incorrect value 34 instead of 43.

22 R. Chapman, E. Botcazou, and A. Wallenburg

With that correction in place, the results were as in the Skein specification. No
further defects were discovered.

5.3 Platform Testing

The “spec_tests” program has also been added to AdaCore’s regression test suite for
GCC. This suite is run nightly on all architectures (both big-endian and little-endian)
and operating systems supported by AdaCore.

Target architectures and operating systems include 32-bit x86 (Windows, Linux,
FreeBSD, and Solaris), x86_64 (Windows, Linux, Darwin), SPARC (32- and 64-bit
Solaris), HP-PA (HP Unix), MIPS (Irix), IA64 (HP Unix, Linux), PowerPC (AIX),
and Alpha (Tru64).

The test passes on all platforms.

5.4 Coverage Analysis

The main program “covertest” is designed to exercise boundary values and structural
coverage of the hash algorithm. In particular, these test cases are designed to exercise
the Skein_512_Update code with various combinations of data blocks of length less
than 1 block, exactly 1 block, between 1 and 2 blocks, exactly 2 blocks and more than
2 blocks. This case also tests various sequences of these blocks to cover the cases
where a short block results in data being “left over” in the hash context buffer.

This program can be compiled with GCC’s coverage analysis options switched on,
and analysed with gcov. The project file “covertest.gpr” builds the program with these
options enabled. A single run of “covertest”, followed by “gcov skein.adb” shows
99.7% statement coverage, with a single warning for exactly 1 uncovered line of
code. This line is a type declaration which has no object code associated with it, so
this must be a false-alarm from gcov.

5.5 Performance Testing

Achieving acceptable performance, but without sacrificing readability and portability,
was a major goal of this experiment. This section reports our findings, comparing the
performance of the SPARK code against the existing reference implementation in C.

There is a view that anything “formal” must be “slow.” Languages like Ada with
their run-time type checking are often criticized for being “slower than C” and
therefore not appropriate for time-critical code such as this. Is this really true?

One conjecture we sought to investigate is that type-safe SPARK code should also
be fast. SPARK has several properties that make it suitable for hard real-time
programming. Furthermore, SPARK code should be amenable to more aggressive
optimization than other imperative languages. In particular, in SPARK:

• Functions are always pure – they have no side-effects.
• There is absolutely no aliasing via pointers or names of variables.
• If type-safety has been proven statically (as in this case), then we can safely

compile with all runtime checking disabled and more optimistic assumptions about
data validity – hopefully making the generated code smaller, faster and simpler.

 SPARKSkein: A Formal and Fast Reference Implementation of Skein 23

These properties should be taken advantage of by a compiler – where, for example, an
optimization pass could make more optimistic assumptions about SPARK code than it
could for C. Is this really true? Can a current version of GCC actually find and exploit
these properties of SPARK?

Method
These tests were run on a standard PC with an Intel core i7 860 processor running at
2.8GHz. The machine was running 64-bit GNU/Linux (Debian 5.0.5). We chose a 64-
bit OS (and compiler) since Skein is designed to perform well on such machines.

The test case “perftest” was written to mimic the testing strategy and performance
measurement approach of the “skein_test” program that is supplied with the reference
implementation. In this way, we hoped to get results that were reasonably comparable
for the C and SPARK implementations.

We also chose to compile the C and the SPARK with the same compiler, in this
case GNAT Pro 6.3.2 – a stable derivative of GCC 4.3.5 that compiles both SPARK
and C through the same back-end. We compiled the C code at various levels of
optimization and took the results for Skein_512 hashing a block of 32768 bytes as our
base-line for comparison.

When compiling SPARK, GCC offers some additional options that we can take
advantage of, so we exercised these to see the effect. In particular, we used the
following Ada-specific options:

-gnato – this compiles with all the run-time type checking required by the Ada LRM,
including checks for arithmetic overflow. This typically generates the slowest code,
so was useful as a base-line for the SPARK code.
-gnatp – this option suppresses all run-time type checks in the generated code. This is
reasonable for us, since we had, of course, already proved that the code was type-safe
– effectively showing that run-time checks could never fail. This gives a run-time and
code-generation model close to that of C, so we expected comparable performance of
the SPARK and the C with –gnatp at the same level of optimization.
-gnatn – enables inlining of subprograms in the back-end of the compiler.

Results were measured in clocks (measured by the x86’s rdtsc instructions) per byte
hashed, as per the reference skein_test program. Lower numbers indicate better
performance:

GNAT Pro 6.3.2 (GCC 4.3.5)

Options SPARK C

-O0 -gnato 213.9 N/A

-O0 -gnatp 207.9 172.3

-O1 -gnatp 27.6 37.7

-O1 -gnatp -gnatn 26.8 37.7

-O2 -gnatp -gnatn 25.5 24.7

-O3 -gnatp -gnatn 20.4 20.1

24 R. Chapman, E. Botcazou, and A. Wallenburg

Going further – GNAT Pro 6.4.0w
We then re-ran the experiment with a GNAT Pro wavefront (6.4.0w – a derivative of
GCC 4.5.0 built on the 28th July 2010). GCC 4.5.0 includes significant improvements
across all phases of the back-end, so we expected to see improvement for both C and
SPARK. The results were:

GNAT Pro 6.4.0w

Options SPARK C

-O0 -gnato 71.1 N/A

-O0 -gnatp 69.9 96.5

-O1 -gnatp 22.2 37.0

-O1 -gnatp -gnatn 20.7 37.0

-O2 -gnatp -gnatn 20.2 19.7

-O3 -gnatp -gnatn 13.4 12.3

Analysis – GNAT Pro 6.3.2 vs GNAT Pro 6.4.0w
Coming from compilers based on back-ends separated by two complete cycles of
GCC development (roughly two years), these results are significantly different. It is,
however, possible to identify a few common patterns.

First of all, the results are uniformly better with the newer compiler and, at -O1 or
above, come from improved alias analysis and dead store elimination. The -O0 level
is peculiar: for years, the GCC back-end had been known for its totally unoptimized
code generation at this level; this was changed in GCC 4.5 and the effect is clearly
visible here. This also explains why SPARK gained so much at -O0: being a more
expressive language than C, its raw intermediate representation is more verbose and
used to be replicated almost verbatim in the generated code at -O0, thus masking the
actual merits of the code. To eliminate this old effect, we'll exclude the results at -O0
in the following comparison of SPARK and C.

SPARK is far ahead at -O1 because, even at these low optimization levels, the Ada
compiler generates single-instruction inline code for bitwise operators (e.g. shifts and
rotates) on scalars. Being rather conservative at these levels, the standard optimization
heuristics prevent such operators from being inlined in C.

The next optimization level, -O2, essentially bridges the inlining gap, with C
nudging slightly ahead of SPARK with both compilers.

Level –O3 introduces automatic loop unrolling. This is responsible for the big
boost in both languages at -03. This leads to roughly equivalent performances with
6.3.2, but not quite so with 6.4.0w because other effects are exposed with the newer
compiler. Specifically, it appears that the improved partial redundancy elimination in
loops is more efficient on the C code. The SPARK code also suffers from slightly
inferior scalarization of composite types and from too limited store/copy propagation.

 SPARKSkein: A Formal and Fast Reference Implementation of Skein 25

Finally, it's worth noting that the big boost at -O3 can be partially retrofitted at
lower optimization levels in both languages by manually unrolling the single loop in
the procedure Inject_Key in the SPARK code. This loop includes an expensive “mod
9” operator, causing a pipeline stall when enclosed in a loop. Unrolling this loop “by
hand” in the source code improves the performance of the SPARK code from 20.2 to
13.3 clocks per byte using GNAT 6.4.0w at –O2, for example.

Improving GNAT Pro 6.4.1
As a result of this analysis, we designed a number of improvements to the Ada
middle-end, which translates the Ada front-end’s intermediate language into that
expected by the GCC back-end. In particular, these improvements generate GCC
intermediate-language that is more amenable to the optimization of partial
redundancies, scalarization of composite objects, and store/copy propagation.

These improvements are now included in the GNAT Pro 6.4.1 release of March
2011. With this new compiler, the results look like this:

GNAT Pro 6.4.1, March 2011

Options SPARK C

-O0 -gnato 70.6 N/A

-O0 -gnatp 69.7 96.4

-O1 -gnatp 22.2 37.0

-O1 -gnatp -gnatn 20.5 37.0

-O2 -gnatp -gnatn 20.0 19.7

-O3 -gnatp -gnatn 12.3 12.3

Analysis – GNAT Pro 6.4.1
The results are essentially identical to those obtained with the 28th July 2010
wavefront, except for the -03 level where SPARK is now on par with C. The original
analysis still holds. In particular, the effects of inlining and loop unrolling still
dominate here.

SPARK still lags a little behind C at -O2. This comes from a couple of missed
Partial Redundancy Elimination opportunities for the SPARK version, which can be
traced to an application of the “Unchecked_Conversion” function on a composite
object. The application of this function forces the Ada compiler to make worst-case
assumptions about the resulting value, preventing a couple of subsequent
optimizations from taking place. From this, we derive a simple coding rule for high-
performance Ada and SPARK code: don’t use Unchecked_Conversion on composite
objects.

The changes made to the compiler are not specifically tuned to the Skein code or
any other particular benchmarks, so they should benefit Ada programs in general.

26 R. Chapman, E. Botcazou, and A. Wallenburg

6 Further Work and Challenges

This section presents a few ideas that might warrant further work or form challenges
for other tools and research groups.

6.1 GCC

For the GNAT compiler, the results conform to the general trend observed over the
years: the aggressive optimizations implemented in the GCC back-end are initially
tuned to the C family of languages. A little more work is required in order to make
them as effective in SPARK or Ada, and the end result is almost always generated
code equally well optimized whatever the source language. Our improvements to
GCC resulting from this project will appear in a future release of GCC from the FSF.

6.2 The SPARK Tools

For the SPARK tools, several improvements have been identified as a result of this
work. Most notably, the procedure Skein_512_Update causes extremely poor
performance from the Simplifier – taking nearly an hour to simplify on the Core i7
machine used for testing. We hope to identify and correct this matter in a future
release of the SPARK Tools.

The proofs that require interaction with the Checker provide a rich source of
examples for further improvement of the Simplifier’s proof tactics, particularly in the
area of modular arithmetic.

As we noted above, the potential to exploit SMT-based solvers offers a notable
improvement in both performance and completeness of proof. We are currently
benchmarking these provers on substantially larger programs than SPARKSkein to
determine which prover (or combination of provers) offers the most benefit.

Finally, to improve the insight and feedback arising from failed proof attempts, we
are actively pursuing research on counter-example finding, initially focusing on the
use of answer-set programming [9] supported by SMT-based provers.

6.3 Comparison with Other Verification Tools

The Skein code could be used as a “Challenge Problem” for other verification tools.
Given the SPARK proofs of the code, it could be used as a test-case to measure the
performance and true false-alarm rate of other tools. In particular, we would like to
assess the ability of other tools to rediscover the pre-conditions and invariants that
proved troublesome to find by hand. Similarly, tools such as VeriFast [10] or
Microsoft’s VCC [11] could be used to recreate a proof of type safety for the C
reference implementation.

7 Conclusions

Returning to our original goals, it seems the project can be judged a success. An
algorithm like Skein can be written in a “formal” language like SPARK without
sacrificing readability and performance. Portability can only be judged a success – a

 SPARKSkein: A Formal and Fast Reference Implementation of Skein 27

single set of sources with no macros, “ifdefs” or pre-processing gives identical results
on every architecture and OS we could find. SPARK’s type-safe nature allowed us to
“turn up the dials” on the compiler’s optimizers with confidence. The SPARK code
did perform better than C at –O1, reflecting more aggressive inlining in the Ada front-
end at that level. At –O2 and –O3, C pulls ahead by a small margin using compilers
that were available in the middle of Summer 2010. As a result, we identified and
implemented improvements in more recent GCC releases that show the SPARK code
having essentially identical performance to the C.

Acknowledgements. The authors would like to thank Doug Whiting and Jesse
Walker of the Skein design team. Doug patiently answered questions about the C
implementation. Jesse offered valuable comments on an early draft of this paper.

Obtaining SPARKSkein. The SPARKSkein sources, test cases, and proofs are
available from the Skein website [1]. The GPL editions of the SPARK Toolset and
GNAT compilers are available from [5].

References

1. Skein project homepage, http://www.skein-hash.info/
2. Carré, B., Bergeretti, F.: Data- and Information-Flow Analysis of While Programs. ACM

Transactions on Programming Languages and Systems 7(1), 36–61 (1985)
3. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security.

Addison-Wesley (2003) (reprinted in 2007) ISBN 978-0-321-13616-0
4. Tokeneer Discovery: A SPARK Tutorial,

http://www.adacore.com/home/products/sparkpro/
tokeneer/discovery/

5. SPARK GPL Edition site, http://libre.adacore.com/
6. Jackson, P.B., Ellis, B.J., Sharp, K.: Using SMT Solvers to Verify High-Integrity

Programs. In: 2nd International Workshop on Automated Formal Methods, AFM 2007,
Atlanta, Georgia, USA (2007), http://homepages.inf.ed.ac.uk/pbj/

7. Z3: An efficient theorem prover. Microsoft Research,
http://research.microsoft.com/enus/um/redmond/projects/z3/

8. Alt-Ergo website, http://alt-ergo.lri.fr/
9. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, Cambridge (2003)
10. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW-520,

Department of Computer Science, Katholieke Universiteit Leuven, Belgium (August 2008)
11. VCC: A Verifier for Concurrent C,

http://research.microsoft.com/en-us/projects/vcc/
12. National Institute of Standards and Technology, Computer Security and Resource Center,

Cryptographic Hash Algorithm Competition,
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

13. The Skein Hash Function Family, Ferguson, N., et al.,
http://www.skein-hash.info/sites/default/files/skein1.1.pdf

Full Abstraction at Package Boundaries of
Object-Oriented Languages∗

Yannick Welsch and Arnd Poetzsch-Heffter

University of Kaiserslautern, Germany
{welsch,poetzsch}@cs.uni-kl.de

Abstract. We develop a fully abstract trace-based semantics for sets of classes
in object-oriented languages, in particular for Java-like sealed packages. Our ap-
proach enhances a standard operational semantics such that the change of control
between the package and the client context is made explicit in terms of interaction
labels. By using traces over these labels, we abstract from the data representation
in the heap, support class hiding, and provide fully abstract package denotations.
The soundness and completeness of our approach is proven using innovative sim-
ulation techniques.

1 Introduction

Systems, components, and libraries have to evolve over time to meet new requirements.
In an object-oriented setting, such evolution steps affect the classes used in the imple-
mentation. An important aspect for safe evolution is the ability to modularly check for
compatibility, i.e., whether a new version has the same behavior as the old one in all
program contexts in which the old version can be used. In particular, every refactoring
should guarantee compatibility. Mutual compatibility corresponds to the classical no-
tion of (contextual) equivalence: Two sets of classes are equivalent if they exhibit the
same operational behavior in every possible context. Proving compatibility or equiva-
lence is challenging because

(1) the number of possible contexts is infinite and contexts are complex
(2) the states and heaps can be significantly different between the versions.

To meet these challenges, we exploit denotational methods. A denotational semantics
for classes is called fully abstract [11,13] if classes that have the same denotation are
exactly those that are contextually equivalent. In particular, a fully abstract semantics
has to abstract from states and heaps to meet challenge (2) above. Proving that two sets
of classes are equivalent in the (fully abstract) denotational setting amounts to proving
that they have the same denotation.

The central contribution of this paper is the design of such a fully abstract semantics
for packages of a Java subset. Furthermore, the paper provides a detailed explanation
of the full abstraction proof. To explain our approach in more detail, we consider the
following two versions of package xutil:

∗ This research is funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Models.

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 28–43, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Full Abstraction at Package Boundaries of Object-Oriented Languages 29

package xutil; import java.util.∗;

public class Bag implements Collection {
private ArrayList mList;
public boolean addAll(Collection c){ BODY }
...

}

package xutil; import java.util.∗;
public interface IBag extends Collection {

public boolean addAll(Collection c);
... }

public class Bag implements IBag {
private MyList mList;
public boolean addAll(Collection c){ BODY2 }
... }

class MyList { IMPL }

The goal is to show that the version on the right-hand side has the same behavior as
the one on the left-hand side in all possible program contexts. In particular, we address
the following language-related challenges:

– change of implementation, e.g., BODY2 instead of BODY, MyList instead of ArrayList
– change of subtype hierarchy, e.g., interface IBag is added
– non-public, encapsulated classes, e.g., the new class MyList is package local
– use of imported types in signatures (e.g., interface Collection in signature of method

addAll) and in the implementation (e.g., ArrayList is imported)
– inheritance and casts (not illustrated).

Approach. In our approach, the denotation of a package (or set of classes and inter-
faces) is expressed by the interactions between code belonging to the package and code
belonging to the context. It is defined in two steps starting from a standard operational
semantics. In the first step, the operational semantics is augmented in a way that the in-
teractions can be made explicit. In the second step, traces of interaction labels are used
to semantically characterize the package behavior. A non-trivial aspect is the treatment
of inheritance, because with inheritance, some code parts of a class/object might belong
to the context and other parts to the package under investigation.

Using traces allows abstracting from the state and heap representation in the old and
new version. It solves challenge (2). To obtain a finite representation of all contexts and
solve challenge (1), we construct a nondeterministic most general context that exactly
exhibits the possible behavior of contexts. Using an operational semantics as a starting
point has the advantage that we can use simulation relations applied to standard con-
figurations (i.e., heap, stack) for the full abstraction proof. Furthermore, it provides a
direct formal relation to Hoare-like program logics and standard techniques for static
program analysis.

Related Work. Banerjee and Naumann [4] presented a method to reason about whole-
program equivalence in a Java subset. Under a notion of confinement for class tables,
they prove equivalence between different implementations of a class by relating their
(classical, fixpoint-based) denotations by simulations. Silva, Naumann, and Sampaio
[15] extend this work to prove several refactoring laws for whole hierarchies of classes.

Similar to our work, Jeffrey and Rathke [8] give a fully abstract trace semantics for
a Java subset with a package-like construct. However, they do not consider inheritance,

30 Y. Welsch and A. Poetzsch-Heffter

down-casting and cross-border instantiation. Using similar techniques, Ábrahám et al.
[2] give a fully abstract semantics for a concurrent class-based language (without inher-
itance and subtyping).

Whereas we use simulation techniques to prove full abstraction, other authors apply
(bi-)simulations to relate two program parts. This technique was first used by Hennessy
and Milner [7] to reason about concurrent programs. Sumii and Pierce used bisimula-
tions which are sound and complete with respect to contextual equivalence in a lan-
guage with dynamic sealing [16] and in a language with type abstraction and recursion
[17]. Koutavas and Wand, building on their earlier work [9] and the work of Sumii and
Pierce, used bisimulations to reason about the equivalence of single classes [10] in dif-
ferent Java subsets. The subset they considered includes inheritance and down-casting.
Their language, however, neither considers interfaces nor accessibility of types.

Outline. In the following, we illustrate our method to develop fully abstract deno-
tational semantics for Java-like packages. The remainder of this paper is structured
as follows. Section 2 introduces the formalized language LPJava and the notion of
source compatibility. Section 3 gives the operational and trace semantics of LPJava and
presents the full abstraction result. Section 4 shows how full abstraction can be proved
by simulation relations and Section 5 gives a general outline on how to prove two com-
ponents compatible. Section 6 presents directions for future work and concludes. For
proofs and further details on the formalization, we refer to the extended report [18].

Notations. We use the overbar notation x to denote a finite list and the hat notation
�x to denote a set. The empty list and set are denoted by • and the concatenation of
list x and y is denoted by x · y . Concatenation is sometimes implicit by writing terms
in juxtaposition. Single elements are implicitly treated as lists/sets when needed. The
function last(. . .) returns the last element of a list. The expression M[x �→ y] yields
the map M where the entry with key x is updated with the value y , or, if no such key
exists, the entry is added. The empty map is denoted by ∅ and dom(M) and rng(M)
denote the domain and range of the map M.

2 Formalization of LPJava and Source Compatibility

The language considered in the following is a sequential object-oriented language called
LPJava (see Fig. 1). It has interfaces, classes and subtyping. To consider the additional
challenge of inheritance and type hiding, it also has subclassing and a package system.
Classes can extend other classes, and can be declared either package-local or public.
Primitive data types (like int, etc.) are not considered as they do not provide additional
insight. For simplicity, all methods are assumed to be public and all fields to be private.
LPJava also allows explicit casting, which leads to more distinguishing power from
class contexts. The operator (p.t)E1 : E2 encodes both an instanceof and cast operator,
i.e., it yields the value of E2 if the value of E1 cannot be cast to p.t .

We assume that every class has a default constructor. Similar as for Java [5], the
default constructor has the same access modifier as its class. A package (denoted by
Q or R) has a name and consists of a sequence of type declarations. We assume that

Full Abstraction at Package Boundaries of Object-Oriented Languages 31

K , X , Y ::= Q
Q, R ::= package p ; D

D ::= [public] class c extds p.c impls p.i { F M }
| [public] interface i extds p.i { M }

F ::= private p.t f ;

M ::= public p.t m(p.t v)
�

; | { E }
�

E ::= x | null | new p.c() | (p.t)E : E | E. f | E. f = E
| let p.t x = E in E | E.m(E) | E == E ? E : E

t ::= c | i
c ∈ class names
i ∈ interface names

p, q ∈ package names
f ∈ field names

m ∈ method names
x ∈ variable names

Fig. 1. Abstract syntax of LPJava

packages are sealed (cf. [6], Sect. 2), meaning that once a package is defined no new
class and interface definitions can be added to the package. Types are fully qualified by
their package name.

A codebase, which consists of a list of packages, is denoted by K , X or Y . If it
satisfies all the well-formedness conditions of the language, i.e., well-formed type hi-
erarchy, well-typedness of all expressions, etc., we write � K (or � X , � Y) and call
such a codebase a component. Note that components are definition-complete. To join
two codebases into a larger codebase, we write them in juxtaposition (i.e., KX). If we
join a codebase K and a component X , we often call K a (class) context of X .

A prerequisite for two components to have the same behavior is that whenever the
first component can be joined with a context into a larger component, then the second
one can be joined as well using the same context. This property,1 focusing solely on
typing and not behavioral aspects, is called source compatibility [8]:

Definition 1 (Source compatibility). A component Y is source compatible with a com-
ponent X if for any codebase K: � KX implies � KY .

It is important to notice that this does not allow automatic checking that a component
Y is source compatible with X , because the definition quantifies over an infinite set of
contexts. However, a set of checkable conditions that are necessary and sufficient for Y
to be source compatible with X can be given. We describe them in the following.2 The
package names occurring in X must exactly be those occurring in Y . Every public type
defined in X must appear in Y . For public types of X , every method which is part of the
type (declared or inherited) in X must also have a method with the same signature (i.e.
same parameter and return type) in Y and vice versa. The subtype hierarchy between
public types of X must be maintained in Y .

Theorem 1. A component Y is source compatible with a component X if and only if
the checkable conditions between X and Y described above hold.

1 Note that the definition is not symmetric. This allows Y to be a more refined version of X .
2 As this paper focuses on behavioral aspects, we do not explain here why these conditions are

necessary and sufficient. However, explanations and proofs can be found in [18].

32 Y. Welsch and A. Poetzsch-Heffter

E ::= . . . | r extd. expressions
r ::= j | null reference
O ::= j �→ H heap
H ::= (V, L, p.c, r) heap entry
F ::= (E | E)L:p.t typed stack frame
V ::= internal | exposed exposure flag
L ::= ctxt | comp origin location
j ∈ object identifiers

Fig. 2. Semantic entities for LPJava

t ::= l trace
l ::= μ! | μ? | τ label
| error | halt

μ ::= call o.m(v) call message
| rtrn v return message

o ::= j:Tα abstracted object
v ::= o | null label value
Tα ::= 〈�p.c,�p.i, �m〉 abstracted type

Fig. 3. Syntax of traces

3 Trace Characterization of Component Behavior

In this section, we characterize the behavior of a component X in terms of its possible
interaction traces with program contexts. We first define the interaction traces of X with
a specific program context. Then, we introduce nondeterministic expressions that allow
for the definition of most general contexts which simulate all possible contexts. Finally,
we state the full abstraction result.

3.1 Enhanced Operational Semantics

We enrich a standard semantics in such a way that the interactions between a compo-
nent X and its program context K become explicit and call it the enhanced semantics. In
particular, we define the traces of interactions between X and K . The rules in Fig. 4 de-
scribe the (enhanced) small-step operational semantics of LPJava. Auxiliary functions
are defined in Fig. 5.

The operational rules for a component X in a context K are based on a labelled

small-step reduction judgement of the form ζ
l� ζ′ with configurations ζ = KX ,O,F .

The heap O is a map from object identifiers to heap entries and F is a list of typed
stack frames (see Fig. 2). The configurations are augmented with additional information.
However, this does not change the standard operational behavior. The flag L ranges over
{ctxt,comp} and indicates whether entities belong to the context K or to the component
X . It is used in stack frames to mark if the code (E or E) that is part of this stack frame
originates from X or K . It is also used in heap entries to denote whether the object has
been created by code of X or K . The flag V is used in heap entries to denote whether an
object created in the context has been exposed to the component or vice versa. Objects
are always created internally (see RI-NewObj) but can over time be exposed when they
are passed from (to) the component to (from) the context.

Stack frames are associated with either the component X or the context K . The top-
most stack frame contains an expression E and all other stack frames contain an eval-
uation context E . An evaluation context E (see [19]) is an expression with a hole []
somewhere inside the expression. We write E[E] to mean that the hole in E is replaced
by expression E. A hole in E can only appear at certain positions defined as follows:

Full Abstraction at Package Boundaries of Object-Oriented Languages 33

E ::= [] | E. f | E. f = E | r. f = E | let p.t x = E in E | (p.t)E : E | E.m(E)
| r.m(r,E, E) | E == E ? E : E | r == E ? E : E

We say that X controls execution if code of X is executed; otherwise K controls execu-
tion. The function currloc(ζ) from Fig. 5 is used to determine who controls execution.
An interaction is a change of control (see RI-Call-Boundary and RI-Return-Boundary).
Note that only interactions allocate or deallocate stack frames, i.e., calls within the
context or the component are not handled using the stack (see RI-Call-Intern). Labels
record changes of control. An interaction trace is a finite sequence of labels (Fig. 3).
Interaction is considered from the viewpoint of the component. Input labels (marked by
?) express a change of control from the context to the component; output labels (marked
by !) express a change from the component to the context. There are input and output
labels for method invocation and return, as well as labels for well-formed and abrupt
program termination. The labels for method invocation and return include the parameter
and result values together with their abstracted types (explained later).

A program context is a context that has a public class p.c with a main method
lang.Object main(), where the class p.c is called a startup class. It is executed by calling
main. In the following we assume that the startup class is always main.Main and is de-
fined in the context K . The initial configuration initζKX is then defined as KX ,O,F · •
where O def= 	[j �→ (internal,ctxt, main.Main,null)] and F def= E[j/this]ctxt:lang.Object,
if E is the body of the main method.

Traces. In the following, we consider the traces (i.e. finite lists of labels) which are
generated by steps of the operational semantics. To compare traces of different com-
ponents and with different contexts, we abstract from package local types and types
declared in the context. Package local types should not appear in the labels, because
different components might use different local types. Types in labels are abstracted
(see typeabsKX (p.c) in Fig. 5) to a representation which only preserves the information
(1) which public supertypes of p.c belong to the component (2) which of their methods
are not overridden by the context. The reason for (1) is that these are the types of X that
can be used in cast expressions in the context. Based on the label, it becomes thus clear
which cast expressions will succeed and which not. The reason for (2) is that, based
on the label, we know the methods that, if invoked with the object as receiver, lead to
changes of control. As X defines a finite set of types (denoted by TX), there are only a
finite set of abstracted types that can occur in traces with X . This set is denoted by T αX
and can be constructed from X .

To abstract from internal τ steps of a computation, we provide a large step version

of the enhanced semantics (denoted
t
=⇒) that is defined by:

ζ
•
=⇒ ζ

ζ
t
=⇒ ζ′ ζ′ τ�∗ ζ′′ ζ′′ l� ζ′′′ l �= τ

ζ
t·l
=⇒ ζ′′′

Every large step represents a finite number of τ steps (denoted by
τ�∗ , the reflexive,

transitive closure of
τ�) followed by a non-τ step. Note that τ does not appear in labels

34 Y. Welsch and A. Poetzsch-Heffter

RI-Internal-Step

O, E ���LKX O′, E′

KX ,O,E[E]L:p.t ·F τ� KX ,O′,E[E′]L:p.t ·F

RI-NewObj

j /∈ dom(O) H = (internal, L, p.c,null)

O,new p.c() ���LKX O[j �→ H], j

RI-Call-Intern
typeO(j) = p.c 〈m, _, E〉 ∈KX p.c mdeclKX (p.c, m) = L

O, j.m(r) ���LKX O, E[j/this, r/vp]

RI-Call-Boundary

typeO(j) = p.c 〈m, _, E〉 ∈KX p.c
mdeclKX (p.c, m) = ¬L l =mcallKX (j, m, r ,O, L) O′ = expose(jr,O)

KX ,O,E[j.m(r)]L:p.t ·F l� KX ,O′, E[j/this, r/vp]¬L:p′.t ′ · EL:p.t ·F
RI-Return-Boundary

l =mrtrnKX (r,O, L) O′ = expose(r,O)

KX ,O, rL:p
′.t ′ · E¬L:p.t ·F l� KX ,O′,E[r]¬L:p.t ·F

RI-Fail
E = null. fi ∨ E = null. fi = r ∨ E = null.m(v)

KX ,O,E[E]L:p.t ·F error� KX ,O,•
RI-Halt

KX ,O, rctxt:p.t
halt� KX ,O,•

Fig. 4. Transition rules for the enhanced small-step semantics, using the helper judgement ���LKX
for internal steps that are local to an evaluation context. The rules RI-Cast, RI-Let, RI-If, RI-
FieldSel and RI-FieldUp are not shown but can be found in [18].

of large steps. Large steps always jump to the state right after the next non-τ label has
been generated.

Termination (ζ↓) and divergence (ζ↑) are defined in the usual way. We write ζ↓
iff there exists a terminal configuration ζ f = KX ,O,• such that ζ

t
=⇒ ζ f . Note that

termination occurs if and only if the last label is either error or halt. We write ζ↑ iff the
execution diverges. As can be seen from the transition rules, evaluation is deterministic
(up to object naming).

In order to deal with the non-deterministic choice of fresh object identifiers, we in-
troduce (object) renamings. A renaming is a bijective relation on object identifiers. We
write ρ for such a relation. We can then consider traces equivalent (or related) if they
are equal modulo a renaming.

Definition 2 (Related traces). t1 ≡ρ t2 iff the object identifiers appearing at the same
positions in the traces are related under ρ and the types appearing at the same position
are equal. If we are not interested in a particular ρ, we omit it for brevity.

In the following, we use the straightforward generalization of this definition of equality
modulo a renaming (≡ρ) to arbitrary syntactic structures. The observable behavior of a
program run can then be reduced to the traces it exposes.

Full Abstraction at Package Boundaries of Object-Oriented Languages 35

expose(r,O) def=

�

O if r = null
O[j �→ (exposed, L, p.c, r)] if r = j ∧O(j) = (_, L, p.c, r)

mcallKX (j, m, r,O, L) def= call objectabsKX (j,O).m(objectabsKX (r,O)) fromdir(L)
mrtrnKX (r,O, L) def= rtrn objectabsKX (r,O) fromdir(L)

fromdir(L) def=

�

? if L= ctxt
! if L= comp

objectabsKX (r,O)
def=

�

null if r = null
j:typeabsKX (typeO(r)) if r = j

typeabsKX (p.c) def= 〈�p.c,�p.i, �m〉 where�p.c ∪ �p.i are the supertypes of p.c that are
in pubtypes(X) and
�m= {m | m ∈methodsX (�p.c ∪ �p.i)∧mdeclKX (p.c, m) = comp}

pubtypes(X) def= {p.t | p.t ∈ TX ∧ publicX (p.t)} (public types defined in X)

currloc(KX ,O,F) def= L if F = EL:p.t ·F ′ (location of top of stack)

typeO(r)
def=

�⊥ if r = null
p.c if O(r) = (_, _, p.c, _)

¬L
def= L′ where L �= L′ (similar for ¬V)

filter(O, V) def= { j ∈O |O(j) = (V, _, _, _)}
filter(O, L) def= { j ∈O |O(j) = (_, L, _, _)}
filter(O, V, L) def= filter(O, V)∩ filter(O, L)
visible(O, L) def= filter(O,exposed)∪ filter(O, internal, L)
absX (〈�p.c,�p.i, �m〉) def= 〈�p.c′,�p.i

′
, �m′〉 where (�p.c′ ∪�p.i

′
) = (�p.c ∪ �p.i)∩ pubtypes(X)

and �m′ = {m | m ∈ (�m∩methodsX (�p.c ∪�p.i))}

Fig. 5. Helper definitions, where mdeclKX (p.c, m) yields the location L where the method body
has been declared (searching from the class p.c upwards) and methodsX (p.t) yields the method
names of declared and inherited methods in p.t .

Definition 3 (Traces). The traces of a component X with a program context K are:

Traces(KX)
def
= {t | ∃ζ : initζKX

t
=⇒ ζ}

Note that Traces(KX) is closed w.r.t. renaming, i.e., if t ∈ Traces(KX) and t ′ ≡ t ,
then also t ′ ∈ Traces(KX). Furthermore, Traces(KX) is prefix-closed and only refers to
public types in X .

3.2 Most General Context

Although the traces abstract from the context, we still have to consider the traces of all
possible program contexts in order to describe the full behavior of a component. This
issue is addressed in this section by constructing a most general context κX that enables
all possible interactions that X can engage in. The context κX represents exactly all con-
texts that X can have. Compared to a concrete context, κX abstracts over types, objects,
and operational steps. To represent κX , we extend LPJava by nondeterministic expres-
sions (E ::= . . . | nde) and corresponding reduction rules (Fig. 6). Nondeterministic

36 Y. Welsch and A. Poetzsch-Heffter

MGC-Skip

O,nde ���ctxtKX O,nde

MGC-NewObj

j /∈ dom(O) p.c ∈ TKX publicKX (p.c)

O,nde ���ctxtKX O[j �→ (internal,ctxt, p.c,null)],nde

MGC-PrepareCall

j, ri ∈ visible(O,ctxt)∪ {null} typeO(j) = p.c
〈m, q.t � _, _〉 ∈KX p.c mdeclKX (p.c, m) = comp typeO(r)≤KX q.t x fresh

O,nde ���ctxtKX O, let lang.Object x = j.m(r) in nde

MGC-PrepareRtrn

r ∈ visible(O,ctxt)∪ {null} typeO(r)≤KX p.t

KX ,O,ndectxt:p.t ·F τ� KX ,O, rctxt:p.t ·F
MGC-Fail

KX ,O,ndectxt:p.t ·F error� KX ,O,•

Fig. 6. Transition rules for the most general context

expressions are only allowed in these most general contexts for LPJava components.
Reducing a non-deterministic expression can lead to the creation of new objects, a well-
formed cross-border method call / return using RI-Call-Boundary / RI-Return-Boundary)
or abrupt program termination.

In order to distinguish contexts of the previous section from most general contexts,
we call the previous ones deterministic contexts. Contexts then simply subsume both
deterministic and most general contexts.

Construction of κX . The most general context of X is denoted by κX . Let mgc be a
package name not occurring in X . For each abstracted type Tα = 〈�p.c,�q.i, �m〉 ∈ T αX , we
construct a class of the form:

package mgc; public class c extends q.d implements q.i { �M }

where (1) c is a class name that is unique for each abstracted type Tα, (2) q.d is the
smallest class in�p.c, (3) �M are the methods with signature from methodsX (�p.c ∪�q.i)
which do not have names in �m and with nde as body. The idea behind this construction is
that abstracting the type of the constructed class yields the abstracted type from which
the class was constructed (i.e. typeabsKX (mgc.c) = Tα). The context κX also has an
additional class Main, which is the startup class of κX X :

package main; public class Main { lang.Object main() { nde } }

Using this definition of most general context, we can give the denotation of a com-
ponent X as the set of traces generated by the most general context of X . Note that this
definition solely depends on X .

Definition 4 (Denotation of a component). The denotation of a component X is de-
fined as Traces(κX X).

Full Abstraction at Package Boundaries of Object-Oriented Languages 37

3.3 Full Abstractness

The standard notion of testing or contextual compatibility [12] states that every program
context which terminates with the first component must also terminate with the second
component.

Definition 5 (Testing compatibility). A component Y is testing compatible with X if Y
is source compatible with X and for any deterministic program context K of X : initζKX ↓
implies initζKY ↓.
The definition of testing compatibility quantifies over all possible program contexts and,
as outlined for the challenges in the introduction, cannot be used in general for proving
that two components are compatible. We therefore give an alternative definition that is
based on the aforementioned denotations of components.

Definition 6 (Behavioral compatibility). A component Y is behaviorally compatible
with X if Y is source compatible with X and Traces(κX X) ⊆ absX (Traces(κY Y)).

We can not simply state trace inclusion, as Y may have more public types than X (see
Def. 1). We must abstract from these additional types in the traces with the function
absX (Tα) defined in Fig. 5. Finally we can state our main theorem, namely that the
compatibility notions of Def. 5 and Def. 6 coincide.

Theorem 2 (Full abstraction). Consider two components X and Y . Then Y is behav-
iorally compatible with X iff Y is testing compatible with X .

The following lemmas are the main ones needed to prove full abstraction. Each of these
are proven using simulation relations (see Section 4). The first two lemmas show that
components and contexts compute the next label only based on the trace history, i.e.,
that the trace contains all relevant information.

Lemma 1 (Component independency). Consider two contexts K1 and K2 for X such
that t ∈ Traces(K1X) and t ∈ Traces(K2X) and last(t) = μ?. Then t · l ∈ Traces(K1X)
implies t · l ∈ Traces(K2X).

Lemma 2 (Context independency). Let Y be source compatible with X , K be a context
for X and Y , and t ∈ Traces(KX) and t ∈ absX (Traces(KY)) and t = • or last(t) = μ!.
Then, t · l ∈ Traces(KX) implies t · l ∈ absX (Traces(KY)).

The following two lemmas state that the most general context for a component X simu-
lates exactly all possible contexts for X .

Lemma 3 (Trace abstraction). Let K be a deterministic program context of compo-
nent X . Then, Traces(KX)⊆ Traces(κX X).

Lemma 4 (Trace concretization). Let X be a component and t ∈ Traces(κX X). Then,
there is a deterministic program context K of X with t ∈ Traces(KX).

38 Y. Welsch and A. Poetzsch-Heffter

4 Simulations

In this section, we show how the main lemmas from the previous section can be proven
using simulation relations on the runtime configurations. Before we can relate two con-
figurations, we define in Section 4.1 a few well-formedness properties that the con-
figurations must satisfy. We then define preorder relations over well-formed runtime
configurations in Section 4.2. We show in Section 4.3 how these preorder relations are
preserved by small operational steps. We also show that they are simulation relations on
the large-step semantics in Section 4.4. Finally we describe how the main (trace-based)
lemmas from the previous section can be proven using these simulation relations.

4.1 Well-Formed Runtime Configurations

Before giving the definition of well-formed runtime configuration, we first define a few
helper functions. The function stackabsL(F) yields all the L-tagged stack frames of F
and fieldrestrictL

KX (p.c, r) yields all field values of r that are defined in classes of L
that are superclasses of p.c or p.c itself. The function objectrefs(. . .) yields all object
identifiers contained in a syntactic element. We can then define well-formed runtime
configurations.

Definition 7 (Well-formed runtime configuration). A runtime configuration ζ =
KX ,O,F is well-formed (denoted by wf(ζ)) if

– ζ is well-typed (standard definition, not detailed further here)
– Top of stack F is an expression of the form E[E], the rest are contexts of the form E
– Stack frames in F are alternatively from comp and from ctxt and the lowest stack

frame is from ctxt
– Store consistency: objectrefs(rng(O))⊆ dom(O)
– Stack consistency and separation: ∀L : objectrefs(stackabsL(F))⊆ visible(O,L)
– Only L-visible objects can be accessed from L-visible objects: ∀ j ∈ visible(O,L)

withO(j) = (_, _, p.c, r)we have objectrefs(fieldrestrictL
KX (p.c, r))⊆ visible(O,L)

– Internal objects of X are of a type of X : ∀(_,comp, p.c, _) ∈ rng(O) : p.c ∈ TX
– Internal objects of K have their X fields untouched: ∀(internal,ctxt, p.c, r) ∈

rng(O) : fieldrestrictcomp
KX (p.c, r) = null

Initial program states are well-formed and well-formedness is preserved by small-step
operational steps.

4.2 Preorder Relations �ρL
The preorder relations�ρcomp and�ρctxt relate two well-formed runtime configurations if
their comp or ctxt part is similar. This allows us for example to relate runtime configu-
rations when configurations only differ in the context or component (see e.g. Lemmas 1
and 2). We give their definition in the following. Note that helper functions are given in
Fig. 5.

Full Abstraction at Package Boundaries of Object-Oriented Languages 39

Definition 8 (Preorder relation �ρL). Consider two well-formed configurations ζ1 =
K1X1,O1,F1 and ζ2 = K2X2,O2,F2 such that X2 is source compatible with X1. We
write ζ1 �

ρe
L ζ2 if ρe is a renaming from filter(O1,exposed) to filter(O2,exposed)

and there is a renaming ρi from filter(O1, internal,L) to filter(O2, internal,L) and ρ =
ρe ∪ρi such that

– if L= ctxt then K1 = K2 else X1 = X2
– currloc(ζ1) = currloc(ζ2)
– stackabsL(F1)≡ρ stackabsL(F2)
– If j1 ≡ρ j2 with O1(j1) = (V1,L1, p1.c1, r1) and O2(j2) = (V2,L2, p2.c2, r2), then
• V1 = V2• L1 = L2• fieldrestrictL

K1X1
(p1.c1, r1)≡ρ fieldrestrictL

K2X2
(p2.c2, r2)

• if L1=L then p1.c1=p2.c2 else typeabsK1X1
(p1.c1) = absX1

(typeabsK2X2
(p2.c2))

In the following, we explain the definition of �ρL . We first require that there is a renam-
ing from the exposed objects of the first to the exposed objects of the second configu-
ration. We also require that there is a renaming between the (internal) objects that are
created by L. We then require that for both configurations the execution is at the same
place (either in code of the component or the context). Furthermore, we require the
parts of the stack that consist of code from L to be equal under the object renaming. For
related objects, the heap entries must also match in the following way. The exposure
and location flags must be the same. The values of fields that are defined in L must be
equal under the object renaming. At last, the dynamic type of related objects must be
equal if they are created by L. Otherwise, they must have the same abstracted types.

The relations �ρL can be considered as simulation relations on the large-step seman-
tics. We illustrate this in the following. Initial states are in the relation.

Lemma 5 (Initial states are related under �comp). Consider two program contexts
K1 and K2 such that K1X and K2X are well-formed. Then initζK1X �comp initζK2X .

Lemma 6 (Initial states are related under �ctxt). Consider two components X1 and
X2 such that X2 is source compatible with X1 and KX1 and KX2 are well-formed. Then
initζKX1

�ctxt initζKX2
.

We first present how the relations �ρL are preserved by steps of the small-step opera-
tional semantics and later extend it to the large-step one.

4.3 Small-Step Semantics

We consider four different cases. We distinguish whether the steps are labelled by τ or
another label. We also distinguish whether the steps are initiated in the context or the
component.

Lemma 7 (τ-steps in ¬L preserve �L). Assume that ζ1 �ρL ζ2 and currloc(ζ1) = ¬L.

If ζ1
τ� ζ′1 then ζ′1 �

ρ
L ζ2. Similarly, if ζ2

τ� ζ′2 then ζ1 �ρL ζ′2.

40 Y. Welsch and A. Poetzsch-Heffter

Lemma 8 (�L simulates τ-steps in L). If ζ1 �ρL ζ2 and ζ1
τ� ζ′1 and currloc(ζ1) = L,

then ζ2
τ� ζ′2 and ζ′1 �

ρ
L ζ
′
2.

In the following lemmas, we use the notion of consistency between renamings. Two
renamings are consistent if the union of both relations yields a renaming again (i.e.,
they agree on the common value pairs).

Lemma 9 (Similar messages from ¬L preserve �L). If ζ1 �ρL ζ2 and ζ1
l1� ζ′1 and

currloc(ζ1) = ¬L and ζ2
l2� ζ′2 and l1 ≡ρl absX1

(l2) �= τ and ρl minimal and consistent

with ρ, then ζ′1 �
ρ∪ρl
L ζ′2.

Lemma 10 (�L simulates messages from L). If ζ1 �ρL ζ2 and ζ1
l1� ζ′1 and

currloc(ζ1) = L and l1 �= τ, then ζ2
l2� ζ′2 and l1 ≡ρl absX1

(l2) and ρl minimal and

consistent with ρ and ζ′1 �
ρ∪ρl
L ζ′2.

4.4 Large-Step Semantics

The four lemmas of the previous subsection can be extended to large steps and then to
many large steps (i.e. program runs). For single large steps, we only state the lemma
where a step is simulated.

Lemma 11 (�L simulates large step from L). If ζ1

l1
=⇒ ζ′1 and currloc(ζ1) = L and

ζ1 �ρL ζ2, then ζ2

l2
=⇒ ζ′2 and l1 ≡ρl absX1

(l2) and ρl minimal and consistent with ρ

and ζ′1 �
ρ∪ρl
L ζ′2.

We then relate many large steps. For deterministic contexts, we can state that if we
have a run starting from a state and another run starting from a related state which
emits a similar trace as the first run, then the end states are related. We generalize this
in the following lemma, where we also consider non-deterministic (i.e. most general)
contexts.

Lemma 12 (Multiple large steps preserve �L). If ζ1

t1
=⇒ ζ′1 and ζ2

t2
=⇒ ζ′2 and

ζ1 �ρL ζ2 and t1 ≡ρ12
t absX1

(t2) and ρ12
t minimal and consistent with ρ, then ∃ζ′3

such that ζ2

t3
=⇒ ζ′3 and t1 ≡ρ13

t absX1
(t3) and ρ13

t minimal and consistent with ρ and

ζ′1 �
ρ∪ρ13

t
L ζ′3 .

The states ζ′1 and ζ′2 might not be related, as during the runs ζ1

t1
=⇒ ζ′1 and ζ2

t2
=⇒

ζ′2, the same most general context might have chosen different executions as it is non-
deterministic. For example, it may create more objects that are internal to it in one
execution than in another, but still generate a similar trace. For deterministic contexts,
however, ζ′1 �L ζ

′
2.

We can finally prove Lemmas 1 and 2. We know that initial states are related and that
after the traces are executed, the states thereafter are still related (by Lemma 12). By

Full Abstraction at Package Boundaries of Object-Oriented Languages 41

Lemma 11, we then know that the second configuration can respond in a similar way to
the first one.

To prove Lemmas 3 and 4, however, we need stronger relations that not only relate
the comp part of the configurations, but also relate the most general context to the
deterministic context (which we denote by≪ρ for trace abstraction and≫ρ for trace
concretization). The proof then works in a similar way, where similar lemmas as before
have to be proven for the relations�ρcomp ∩≪ρ and �ρcomp ∩≫ρ.

5 Proving Compatibility

In this section, we give proof obligations that are needed in order to prove two com-
ponents compatible. We also describe why the proof method is complete and sketch
how the direct connection of the trace semantics to the operational semantics can be
exploited to prove compatibility.

In order to prove that a component Y is behaviorally compatible with X , the fol-
lowing steps are necessary. First, Y must be proven source compatible with X . This
can be directly done by the checks detailed in Section 2. The more difficult part is
to prove, as per Def. 6, that Traces(κX X) ⊆ absX (Traces(κY Y)). It is sufficient to
prove that Traces(κX X) ⊆ absX (Traces(κX Y)), which follows from the property that
Traces(κX Y) ⊆ Traces(κY Y).

The proof is done by induction on the length of the traces. The empty trace is trivially
in both sets. As induction step, assume t · l such that (1) t ∈ Traces(κX X), (2) t ∈
absX (Traces(κX Y)), and (3) t · l ∈ Traces(κX X). The proof goal is then to show that
t · l ∈ absX (Traces(κX Y)). We distinguish two cases, based on the form of the last label
in the trace t:

Case t = • or last(t) = μ!: The claim follows directly by Lemma 2.
Case last(t) = μ?: The initial configurations of κX X and κX Y are related by �ctxt due

to Lemma 6. By Lemma 12, the configurations right after the trace t are related
by �ctxt as well. It then suffices to prove that the second configuration can run and
generate a next label whenever the first configuration runs and generates this label.
There are different approaches for proving this. One possibility is to capture how
the comp part of both configurations are related. This relation, usually called cou-
pling invariant [3], only needs to relate the comp parts of the configuration. Note
that these parts remain untouched by the context during its steps. Another possi-
bility is to relate the runtime configurations to the traces, i.e., for each component
X establish a relation between the traces of Traces(κX X) and runtime configura-
tions of κX X (which we call a canonical representation invariant). We consider the
description of more detailed approaches as future work.

Completeness of the Proof Method. Although we do not consider in this paper how a
coupling invariant can be specified, we can show that such an invariant always exists if
two components are behaviorally compatible. This completeness result comes basically
for free from our full abstraction proof approach. If two components are behaviorally
compatible, then there always exists a coupling invariant (simulation relation)R which
can roughly be constructed as follows:

42 Y. Welsch and A. Poetzsch-Heffter

– (initζκX X , initζκX Y) ∈R.

– If initζκX X

t1
=⇒ ζ1 and initζκX Y

t2
=⇒ ζ2 and t1 ≡ t2, then (ζ1,ζ2) ∈R.

We know already that for each (ζ1,ζ2) ∈ R : ζ1 �ρctxt ζ2. We also know that the ctxt
part is left untouched when the component executes (and the execution is independent
of the context). Thus, a user-specified invariant only needs to talk about the comp part
of the configuration. If the invariant only talks about the comp part, then we also have
the guarantee that it remains untouched by the context, which allows us to disregard
steps in the (most general) context.

Weaker Compatibilites. Sometimes we are not interested in preserving the full behav-
ior of components in an evolution step. For example, we might be interested in checking
that the new version of a component has the same behavior as the old one with respect
to a subset of its interface methods. In this case, we can compare only those traces
including these methods. This is a typical evolution scenario. Similarly, the approach
can be adapted to prove that components behave the same in a restricted set of con-
texts. Weaker compatibilities can be considered for example by (1) providing a more
restrictive definition of the most general context (e.g. disallow the context to call a cer-
tain method) (2) giving an abstraction function on the traces or (3) specifying method
contracts that must be satisfied by contexts.

6 Conclusion and Future Work

We have presented a fully abstract trace-based semantics for packages of an object-
oriented class-based language. We have also the shown the relation of the trace-based
to the operational semantics and provided a proof outline of the full abstraction re-
sult where simulation relations are used. We see this as foundational work for relating
trace-based specifications to components (i.e. sets of classes), proving sets of classes
compatible or equivalent and proving refactoring transformations behavior preserving.

A particular reason for why the trace-based approach fits so well is that object-
oriented programming is based on message passing. We are not sure whether deriving
fully abstract semantics using the mixed trace-based/operational semantics approach fits
well for other non-OO settings, but plan on exploring this in the future. Furthermore, we
would like to work out a concrete proof technique which consists of providing a spec-
ification language for describing coupling relations, extending existing program logics
for OO programs [1,14] to our setting and automatically generating proof obligations
to be used by interactive or automatic theorem provers.

Acknowledgements. We thank Christoph Feller and Jean-Marie Gaillourdet for com-
mentating on earlier drafts of this paper. We also thank the anonymous reviewers of
SBMF 2011 for their valuable feedback.

References

1. Abadi, M., Leino, K.R.M.: A logic of object-oriented programs. In: Dershowitz, N. (ed.)
Verification: Theory and Practice. LNCS, vol. 2772, pp. 11–41. Springer, Heidelberg (2004)

Full Abstraction at Package Boundaries of Object-Oriented Languages 43

2. Ábrahám, E., Bonsangue, M.M., de Boer, F.S., Steffen, M.: Object connectivity and full
abstraction for a concurrent calculus of classes. In: Liu, Z., Araki, K. (eds.) ICTAC 2004.
LNCS, vol. 3407, pp. 37–51. Springer, Heidelberg (2005)

3. Back, R.J.J., Akademi, A., Wright, J.V.: Refinement Calculus: A Systematic Introduction.
Springer, Heidelberg (1998)

4. Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation independence
for object-oriented programs. Journal of the ACM 52(6), 894–960 (2005)

5. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd edn. The
Java Series. Addison-Wesley, Boston (2005)

6. Grothoff, C., Palsberg, J., Vitek, J.: Encapsulating objects with confined types. In: OOPSLA,
pp. 241–253 (2001)

7. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de Bakker,
J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309. Springer, Heidelberg
(1980)

8. Jeffrey, A., Rathke, J.: Java Jr.: Fully abstract trace semantics for a core Java language. In:
Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 423–438. Springer, Heidelberg (2005)

9. Koutavas, V., Wand, M.: Bisimulations for untyped imperative objects. In: Sestoft, P. (ed.)
ESOP 2006. LNCS, vol. 3924, pp. 146–161. Springer, Heidelberg (2006)

10. Koutavas, V., Wand, M.: Reasoning about class behavior. In: Informal Workshop Record of
FOOL 2007 (January 2007)

11. Milner, R.: Fully abstract models of typed lambda-calculi. Theor. Comput. Sci. 4(1), 1–22
(1977)

12. Morris, J.H.: Lambda-calculus models of programming languages. Tech. Rep. 57, MIT Lab-
oratory for Computer Science (1968)

13. Plotkin, G.D.: Lcf considered as a programming language. Theor. Comput. Sci. 5(3),
223–255 (1977)

14. Poetzsch-Heffter, A., Müller, P.: A programming logic for sequential java. In: Swierstra, S.D.
(ed.) ESOP 1999. LNCS, vol. 1576, pp. 162–176. Springer, Heidelberg (1999)

15. Silva, L., Naumann, D.A., Sampaio, A.: Refactoring and representation independence for
class hierarchies: Extended abstract. In: Proceedings of the 12th Workshop on Formal Tech-
niques for Java-Like Programs, FTFJP 2010, pp. 8:1–8:7. ACM, New York (2010)

16. Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. Theoretical Computer Sci-
ence 375 (2007)

17. Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. Journal of the
ACM 54 (2007)

18. Welsch, Y., Poetzsch-Heffter, A.: Full abstraction at package boundaries of object-oriented
languages. Tech. Rep. 384/11 (May 2011),
http://softech.cs.uni-kl.de/Homepage/
PublikationsDetail?id=157

19. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput. 115(1),
38–94 (1994)

http://softech.cs.uni-kl.de/Homepage/PublikationsDetail?id=157
http://softech.cs.uni-kl.de/Homepage/PublikationsDetail?id=157

B to CSP Migration: Towards a Formal and

Automated Model-Driven Engineering of
Hardware/Software Co-design

Marcel Vinicius Medeiros Oliveira, David B.P. Déharbe, and Lúıs C.D.S. Cruz
∗

Universidade Federal do Rio Grande do Norte – Brazil
marcel@dimap.ufrn.br, deharbe@gmail.com

Abstract. This paper presents a migration approach from a class of
hierarchical B models to CSP. The B models follow a so-called polling
pattern, suitable for reactive systems, and are automatically translated
into a set of communicating CSP processes with the same behaviour. The
structure of the CSP model matches that of the B model and may be for-
mally analysed using model checking. Selected CSP processes may then
be further refined and synthesised to hardware, while the remaining mod-
ules would be mapped to software using B refinements. The translation
proposed here paves the way for a model-based approach to hardware
and software co-design employing complementary formal methods.

Keywords: Model-driven engineering, co-design, B, CSP.

1 Introduction

Model-driven engineering is based on models where software and hardware are
built by designing, analysing, and transforming models [10]. Model-driven de-
velopment is performed in formalisms that support transformations between dif-
ferent levels of abstractions (e.g. refinement and code synthesis) or at the same
level of abstraction (e.g. refactoring and translation). In the case of embedded
systems, several interacting components may be either mapped to software (i.e.
running on a micro-controller) or to hardware (either a custom design or on a
programmable artifact such as a FPGA). Hence, model-based design of embed-
ded systems necessitates formalisms that can be mapped to either software or
to hardware and that support analysis to inspect properties about concurrency,
communication as well as data consistency and program termination.

Languages such as Z [17] and B [1] are specification languages suitable for
a model-based approach to specification. In these languages, modelling aspects
such as concurrency and communication is possible, but awkward and difficult as
they do not have specific language constructs for concurrency. Process algebras
such as CSP [8] and CCS [11] provide constructs to describe dynamic behaviour
∗

INES and CNPq partially supports the work of the authors: grants 573964/2008-4,
476836/2009-3, 560014/2010-4, and 306033/2009-7.

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 44–59, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

B to CSP Migration 45

but lack concise ways to describe complex data. So there has been many attempts
to combine these two kinds of formalism: Z with CCS [16], Z with CSP [14],
Object-Z with CSP [6], and Circus [12] are some examples.

One of our industrial partners uses the B method to develop reactive control
systems; changing formalism is out of question for strategic reasons. In order
to provide for a broader analysis, we propose a migration path from B to CSP,
supported by a translator that checks restrictions on the B model and generates a
CSP model using the transformation discussed herein. In [4], we define a pattern
to model reactive systems in B. By automatically translating these models to
CSP, we may check the safety requirements of the B model on the resulting CSP
model as well as absence of deadlock and livelock using tools such as FDR [7].

In [13], we present a translation from CSP to Handel-C, a high level pro-
gramming language which targets low-level hardware, most specifically FPGA
programming. So, in addition to a broader analysis of the system properties,
the proposed migration also permits targeting FPGAs. This work thus provides
the elements of a model-based approach that, starting from a unique formalism,
B, may be used to verify static and dynamic behavioural properties, as well as
building both software and hardware components.

Migration between formalisms is not new: some were motivated by the same
reasons as ours and others were used to give semantics of combinations of differ-
ent formalisms. Butler and Waldén present an embedding of action systems in
the B-method in [2], where they also compare the refinement notions of action
systems and B, and suggest extensions. Butler has used these results as an inspi-
ration for csp2b [3], a tool to translate a subset of CSP into B. In [14], Woodcock
et al. give an informal translation from Z to CSP by separating input and output
communications. Fischer generalises this result in his work with CSP-OZ [6], a
combination of Object-Z and CSP. Finally, [5] describes the notation CSP‖B
that allows to describe dynamic behaviour explicitly in a B-like model. As far
as we know, no previous work provides a migration of models from B to CSP.

This paper is organised as follows. In Section 2 we propose a methodology
for software-hardware co-design based on B, CSP and the translation strategy
proposed in this paper. Section 3 describes the case study that we use here to
illustrate the translation strategy presented in Section 4. Finally, we conclude
the paper with some further discussions on our results and future work.

2 Methodology

We propose a methodology (depicted in Figure 1) to model check and generate
code from B specifications that obey a so-called polling pattern. This pattern
provides a mean to model reactive systems in B. The B model has a single op-
eration that models the update to the outputs corresponding to a change to
the inputs. The state of the model includes the values of the inputs, outputs
and possibly some internal variables. Hence the state invariant may also specify
constraints on the system inputs and outputs. Following the B method, the ab-
stract B model is refined using tools such as Atelier B. We propose an automatic

46 M.V.M. Oliveira, D.B.P. Déharbe, and L.C.D.S. Cruz

Fig. 1. Methodology Overview

translation to CSP and the use of FDR to model check properties like absence
of deadlock and livelock in the system. Throughout this paper, we assume the
reader is familiarised B and CSP.

Specification modules may target either software or hardware. The former can
be automatically generated using existing code generators for B. The latter can
be generated using the translator presented in [13], which translates CSP into
Handel-C, a programming language similar to C, used to program FPGAs.

The transformation rules are based on a pattern of B specifications for reac-
tive systems, derived from [4], with a few syntactic adaptations to facilitate the
definitions of these rules. There are two patterns: one for unique machines (e.g.
the conduction mode definition component in Figure 2), and one for replicated
machines (e.g. the side door controller). The latter is similar to the former, but
takes into account that, when instantiating machines, their variable names are
changed by prefixing them with a unique name.

The unique machines access machines defining auxiliary constants and sets;
they have a number of inputs (inpi), outputs (outi) and internal variables (vari);
the invariant defines their types (type), assumptions about inputs from the envi-
ronment (env ass), and safety conditions (safety). In the pattern, every variable
of a machine PP is initialised with a given value and there exists a single opera-
tion, updt PP , that receives input values as arguments; its precondition specifies
the type of inputs and assumptions about the environment. This operation up-
dates, in parallel, the values of the input and output variables. The new values
of the output and internal variables are given by a transition function taking as
arguments the current values of the input and internal variables.

3 A Case Study

The automatic translation from (a subset of) B to CSP is the core of the method-
ology; it is illustrated on a subway control system responsible for managing the
opening and the closing of the car doors [4]. The full system is comprised of one
controller per door, one controller per car, and one controller for each pilot cabin
(there is one cabin at each end of the train). The case study is named general
door controller (GDC) and is the subsystem found in each pilot cabin.

B to CSP Migration 47

MACHINE PP
SEES M0, . . . ,Mj

VARIABLES inp0, . . . , out0, . . . , var0, . . .
INVARIANT
type(inp0) ∧ . . . type(out0) ∧ . . . type(var0) ∧ . . . ∧
env ass(inp0, . . .) ∧ safety(inp0, . . . , out0, . . . , var0, . . .)

INITIALISATION inp0 := i0 || . . . || out0 := o0 || . . . || var0 := v0

OPERATIONS
updt PP(i inp0, . . . , i inpn) =
PRE type(i inp0) ∧ . . . ∧ env ass(i inp0, . . .)
THEN inp0 := i inp0 || . . . || trans o0(i inp0, . . . , var0, . . .) || . . . ||

trans var0(i inp0, . . . , var0, . . .) || . . .
END

END

Fig. 2. Polling Pattern (unique)

The interface and internal structure of the GDC are schematised in Figure 3.
The GDC handles doors on both sides of the train. Replicated components (for
the left and right sides) are depicted once with bold lines. The GDC is responsible
for controlling four signals:

o traction , when false, interrupts the wheel traction. It is used for safety emer-
gencies, e.g. when doors are open.

o cmd commands the opening and closing of all the doors.
o visual commands a visual signal indicating a door is open.
o oslow commands a visual signal indicating the speed is low.

The GDC shall set its outputs only when its cabin is the train leader. Indeed,
there are two cabins, but only one of them may be the leader at a given time.
The GDC has an internal variable c cabin that records if the leader is its own
cabin, the opposite cabin, or none of them. Its value is updated by the component
leader definition, based on two inputs: i ldr and i opp.

The GDC has three conduction modes: manual, controlled, and off. The vari-
able c mode stores its current mode; its value is determined by the component
mode definition based on two inputs that are driven by a switch in the cabin.
The values of c cabin and c mode are combined by the component condition
into a value c cond used to determine whether the cabin shall control the doors.

There are two instances of the subsystem side door controller, for the left
and right sides respectively. They control the o cmd and o visual outputs, based
on the value of the inputs i open and i close, driven by a lever controlled by the
pilot, i sensor driven by a door sensor, and the internal signal c cond described
previously. The subsystems traction and slow drive the corresponding output
signals, based on inputs i sensor and i slow, respectively, which are themselves
driven by hardware sensors.

Due to space restrictions, only part of the B model is presented. The different
subsystems are modelled using a template for specifying reactive systems using

48 M.V.M. Oliveira, D.B.P. Déharbe, and L.C.D.S. Cruz

Fig. 3. General Door Controller

the B notation set forth in [4]. Figure 4 provides an instance of this pattern in the
subsystem mode definition. The model includes state variables to represent
system input, state and output and a single operation that has as parameters
the new values of the subsystem inputs and models an update. The variables
representing the inputs are updated with their new values. The body of the
operation is a parallel update of each model variable. The model for the full
system is composed of nine modules with a total number of 350 lines. Module
CONTEXT contains type and function definitions.

The full model has been verified using Atelier-B 1. Next, we present the trans-
formation rules to translate this machine (and the others) into a CSP specifi-
cation that can be verified using FDR, including additional properties such as
livelock and deadlock-freedom.

4 Transformation of B Specifications

Our translation from B to CSP allows an automatic re-check of safety require-
ments from the original B model; it yields a CSP model that contains: (1) generic
auxiliary processes; (2) CSP paragraphs (channel declarations, initial values,
alphabets, assumptions, safety specifications, auxiliary functions, and module
behaviour) that correspond to each B machine; and (3) a controller that syn-
chronizes all processes before inputs and outputs. Every produced CSP specifi-
cation contains the following CSP processes: RUN(A) always offers events from
set A; CHAOS(A) behaves similarly, but may deadlock at any time; DIV diverges.
All definitions can be found at http://is.gd/B2CSPall along with an implementation
of the translator.

Figure 3 depicts the dependencies of the GDC components. For instance,
component condition depends on mode definition and leader definition. Hence,
condition must be executed after mode definition and leader definition. Consider

1 http://www.atelierb.eu

B to CSP Migration 49

MACHINE CONTEXT
SETS COND = {MAN ,CTRL,COND OFF}... END

MACHINE CMODE DEF
SEES CONTEXT
VARIABLES i man, i ctrl , c mode
INVARIANT
i man ∈ BOOL ∧ i ctrl ∈ BOOL ∧ c mode ∈ COND
∧ ((i man = TRUE ∧ i ctrl = FALSE) ⇒ c mode = MAN)
∧ ((i man = FALSE ∧ i ctrl = TRUE) ⇒ c mode = CTRL)
∧ (((i man = FALSE ∧ i ctrl = FALSE) ∨ (i man = TRUE ∧ i ctrl = TRUE)) ⇒

c mode = COND OFF)
INITIALISATION i man := TRUE ‖ i ctrl := FALSE ‖ c mode := MAN
OPERATIONS
updt CMODE DEF (a man, a ctrl) =
PRE a man ∈ BOOL ∧ a ctrl ∈ BOOL THEN
i man := a man ‖ i ctrl := a ctrl ‖
c mode : (c mode : CONDUCTION ∧

(a man = TRUE ∧ a ctrl = TRUE ⇒ c mode = COND OFF) ∧
(a man = TRUE ∧ a ctrl = FALSE ⇒ c mode = MAN) ∧
(a man = FALSE ∧ a ctrl = TRUE ⇒ c mode = CTRL) ∧
(a man = FALSE ∧ a ctrl = FALSE ⇒ c mode = COND OFF))

END
END

Fig. 4. Definition of the conduction mode machine

the corresponding dependency graph. Since mutual dependencies are disallowed
it is a directed acyclic graph (DAG). The DAG determines the scheduling of the
components as follows. Each component is allocated to an execution frame cor-
responding to its level in the DAG. A process CONTROL coordinates the processes
representing B machines using channels read and write. It guarantees that the
execution order respects the dependencies. When all frames have been executed,
CONTROL signals the end of the cycle and recurses.

datatype FRAME = F0 | F1 | ...

EXEC_FRAME = <F0, F1, ...>

channel read, write:FRAME

channel end_cycle

A_CONTROL_ALL = Union({A_CONTROL(i) | i <- FRAME})

A_CONTROL(i) = {| read.i, write.i, end_cycle |}

CONTROL = (; i:EXEC_FRAME @ read.i -> write.i -> SKIP);

end_cycle -> CONTROL

In B, the machine CONTEXT defines the types used in the system:

MACHINE CONTEXT SETS S0 = {a0, . . .}, . . . END

50 M.V.M. Oliveira, D.B.P. Déharbe, and L.C.D.S. Cruz

Table 1. CSP Paragraphs for B Components

Type Description

Channels input and output channels corresponding to the machine input and
output variables

Initial Values initial values for input and local variables

Alphabet set of events used within the process

Assumptions predicate corresponding to the B environment assumption about
the input values

Safety process specifying the safety conditions

Functions functions computing and checking each output

Process processes representing the B machine

The translation of such enumerated set in CSP is:

datatype S_0 = a_0 | ... | a_n | S_0_DUMMY

The translation of some expressions may lead to an undetermined value. For
these cases we introduce a DUMMY value. However, the translation inserts asser-
tions that guarantee that such values never appear in the traces. In our example,
the translation yields the data type:

datatype COND = MAN | CTRL | COND_OFF | COND_DUMMY

For each B machine (except the machine that represents the whole system), the
translation yields the CSP paragraphs presented in Table 1. In addition to these
definitions, we have the specification of the overall system and CSP assertions
that are used in the verification process. In what follows, we describe each one of
these paragraphs and illustrate it with our example. Throughout the translation,
we assume that name clashes have been removed with a simple pre-processing
of the original B specification.

Channels that correspond to each input and output variable are declared
using the types given to variables in the machine invariant. We consider a func-
tion B2CSP that transforms B expressions into CSP expressions. The expressions
currently translated are type expressions (i.e integer and boolean), constants,
assignments, and arithmetic and boolean expressions. The definition of B2CSP is
relatively simple, but lengthy. For conciseness, it is omitted here.

channel i_inp_0 : B2CSP(type(inp_0)) ...

channel o_out_0 : B2CSP(type(out_0)) ...

Our example has two boolean inputs and one output of type COND.

channel i_man : Bool

channel i_ctrl : Bool

channel c_mode : COND

Initialisation of the B machines define the initial values of each variable.

I_inp_0 = B2CSP(i_n) ...

I_out_0 = B2CSP(o_0) ...

I_var_0 = B2CSP(v_0) ...

B to CSP Migration 51

Here, man, ctrl, and mode are initialised with TRUE, FALSE, and MAN, respectively.

I_man = true

I_ctrl = false

I_mode = MAN

The Alphabet of each process is the union of the controller’s alphabet with the
corresponding machine’s channels.

A_PP(frame) = union(A_CONTROL(frame),{|i_inp_0, ..., o_out_0, ...|})

In our case, we have the following alphabet.

A_CMODE_DEF(frame) = union(A_CONTROL(frame), {| i_man, i_ctrl, c_mode |})

Input assumption is a formula on inputs, it is handled with function B2CSP.

PP_inp_assump(inp_0, ...) = B2CSP(env_assump(i_inp_0, ...))

Since the example makes no explicit assumptions on the inputs, the function
CMODE_DEF_inp_assump yields true.

Safety conditions describe the relations between input, local, and output
variables. We assume they are as follows:

safety(inp0, . . . , out0, . . . , var0, . . .) = In00(inp0, . . . , var0, . . .) ⇒ Out00 (out0) ∧ . . .

For each output, a predicate gives the conditions under which it must be assigned
some expression. These predicates are composed in a conjunction. Such safety
conditions are translated to a process that reads the inputs and restricts the
outputs only if the input values satisfy the assumptions given in the pre-condition
of the B operation. In these cases, each conjunct in the safety condition yields a
choice in the process: the left-hand side guards the offer of the output of a value
described by the right-hand side. Finally, an extra choice that does not restrict
the output handles the case in which no left-hand side condition is satisfied.

PP_safe = i_inp_0?inp_0 -> ... -> i_inp_n?inp_n ->

(if (PP_inp_assump(inp_0, ...))

then ((B2CSP(In_0_0(inp_0, ..., var_0, ...)) &

o_out_0!B2CSP(Out_0_0(out_0)) -> SKIP) [] ...

[] (((not In_0_0(...)) and ...)) & o_out_0?out_0 -> SKIP)

else (o_out_0?out_0 -> SKIP)); PP_safe

The conduction mode is MAN if and only if inputs man and ctrl are TRUE and
FALSE; CTRL if they are FALSE and TRUE; COND_OFF if they are equal.

CMODE_DEF_safe =

i_man?man -> i_ctrl?ctrl ->

(if (CMODE_DEF_inp_assump(man, ctrl))

then (((man) and (not ctrl)) & c_mode!MAN -> SKIP

[]((not man) and (ctrl)) & c_mode!CTRL -> SKIP

[](((not man) and (not ctrl)) or ((man) and (ctrl))) &

c_mode!COND_OFF -> SKIP

[]((not((man) and (not ctrl))) and (not((not man) and (ctrl))) and

(not(((not man) and (not ctrl)) or ((man) and (ctrl))))) &

c_mode?mode -> SKIP)

else (c_mode?mode -> SKIP)); CMODE_DEF_safe

52 M.V.M. Oliveira, D.B.P. Déharbe, and L.C.D.S. Cruz

In this process, after reading the inputs, the output on c_mode is restricted only
if the input values satisfy the assumptions: if man is true and ctrl is false,
MAN is communicated, and similarly for the other output values. Finally, if no
condition is satisfied, any value is output.

Output functions calculate output values based on the values of the local
and input variables. The B model specifies the outputs as expressions on inputs
and state variables which are translated with function B2CSP. For each B output
out_i, the translation yields the following CSP function:

PP_trans_out_i(var_0, ..., inp_0, ...) =

B2CSP(trans_out_i(var_0, ..., inp_0, ...))

The example has a single output, mode, calculated by the following CSP function,
translated from the expression used in Figure 4.

CMODE_DEF_trans_mode(man, ctrl) =

if ((man) and (ctrl)) then COND_OFF else

if ((man) and (not ctrl)) then MAN else

if ((not man) and (ctrl)) then CTRL else

if ((not man) and (not ctrl)) then COND_OFF else COND_DUMMY

Similar functions are defined for the transition of the local variables. Our example
has no local variables (but the full specification does have local variables). Here,
we also have the definition of CMODE_DEF_safe_trans(man, ctrl), which checks
that no transitions produce a dummy value. We now turn to the production of
the processes that correspond to the machine itself.

Four CSP Processes are used to describe the behaviour of each system com-
ponent PP. Each of these processes corresponds to a stage in the machine life-
cycle: initialisation, input, internal communication, and output. Furthermore,
each machine (and its corresponding CSP processes) must be allocated into one
of the execution frames.

The initialisation process uses the initial values of the local variables to start
the process that reads the external inputs.

PP(frame) = PP_INPUT(frame, I_var_0, ...)

As the example has no local variables, there is no arguments other than that
used to indicate the component’s frame:

CMODE_DEF(frame) = CMODE_DEF_INPUT(frame)

The next process reads all the inputs that are given by the external environment.
Nevertheless, it must first synchronise with the other processes and the controller
on the read event to prevent it from reading inputs outside its execution frame.
The communicated values and the initial values of local variables are used to
instantiate the next process that reads internal communications.

PP_INPUT(frame, var_0, ..., var_k) =

read.frame -> i_inp_0?inp_0 -> ... PP_INTERNAL(var_0, ..., inp_0,...)

B to CSP Migration 53

The mode definition component reads two inputs:

CMODE_DEF_INPUT(frame) =

read.frame -> i_man?man -> i_ctrl?ctrl ->

CMODE_DEF_INTERNAL(frame, man, ctrl)

After reading the environment inputs, the process reads internal communications
that are input to the corresponding B machine. In our naming convention, these
are the components prefixed with c_ such as c_mode. This process synchronises
with the other processes on the write event before receiving values given by
other processes.

PP_INTERNAL(frame, var_0, ..., var_k, inp_0,...) =

write.frame -> c_inp_n?inp_n -> ...

if not(PP_inp_assump(inp_0,...) and PP_safe_trans(inp_0,...)) then DIV

else PP_OUTPUT(frame, var_0, ..., inp_0,...)

If the transition is safe (i.e. there are no dummy values), the process writes the
outputs; it diverges otherwise.

The example has a single output, c_mode. For this reason, at this stage we
have no further communication. The process CMODE_DEF_INTERNAL simply syn-
chronises on write and behaves like CMODE_DEF_OUTPUT described below.

CMODE_DEF_INTERNAL(frame, man, controlled) =

write.frame ->

if not(CMODE_DEF_safe_trans(man, ctrl))

then DIV else CMODE_DEF_OUTPUT(frame, man, ctrl)

The last process that describes the behaviour of the machine writes its outputs
using the transition functions. Finally, it waits for the end of the cycle and
transitions back to the input stage with the local variables updated according
to the transition function:

PP_OUTPUT(frame, var_0, ..., inp_0, ...) =

o_out_0!PP_trans_out_0(var_0, ..., inp_0, ...) -> ... -> end_cycle ->

PP_INPUT(frame, PP_trans_var_0(var_0, ..., inp_0, ...), ...)

The example has no local variables, the translation yields an output on c_mode,
using the transition function followed by input process CMODE_DEF_INPUT.

CMODE_DEF_OUTPUT(frame, man, ctrl) =

c_mode!CMODE_DEF_trans_mode(man, ctrl) -> end_cycle ->

CMODE_DEF_INPUT(frame)

This concludes the translation of component machines such as the conduction
mode. The translation of the leader definition module is very similar. The trans-
lation of the remaining components takes into consideration the replication of
one of the GDC’s components, the side door controller, using B instantiation.
In this case, we must apply syntactic changes, described below, to the result of
the translation presented so far.

54 M.V.M. Oliveira, D.B.P. Déharbe, and L.C.D.S. Cruz

4.1 Systems with Replicated Machines

Replicated machines are those that are replicated using B instantiation. For in-
stance, the machine modelling the general door controller includes two instances
of the side door controller named Left and Right (see Figure 5).

We consider an environment that stores the instances of each replicated ma-
chine, if any. For instance, if the main system includes the machines Inst_0.PP,
. . ., Inst_p.PP, we have the environment S =̂ {PP �→ {Inst0, . . . , Instp} }, and
the resulting CSP specification includes a data type that represents the possible
instances of a given machine:

datatype PP_symm = Inst_0 | ... | Inst_p

The following data type corresponds to the replication of the side door controller
in the GDC.

datatype S_DOOR_CTRL_symm = Left | Right

In the presence of replicated machines, syntactic changes are added to the trans-
lation presented so far. There are three kinds of changes: global changes, changes
for unique machines and changes for replicated machines.

Global Changes alter the declaration of the channels that correspond to compo-
nents of replicated machines. For every variable v declared in the VARIABLES
block of a replicated machine PP, the type PP_symm becomes the first type in
the channel declaration that corresponds to v. For instance, c_cond should be
declared simply as a boolean channel. However, since cond is an input of the
side door controller (see Figure 3), its corresponding channel is declared as:

channel c_cond: S_DOOR_CTRL_symm.Bool

The change in the channel type is reflected in the translation of all paragraphs
(see Table 1) of the translated machines.

Unique Machines For every variable v in the VARIABLES block of a replicated
machine PP, and labels Inst_i for its instances, variable names name_Inst_i
are substituted with name.Inst_i . For example, c_cond_Left is substituted by
c_cond.Left in the processes for machine CONDITION.

Replicated Machines are changed in a more elaborated fashion. First, regarding
the alphabet, all CSP paragraphs corresponding to these machines are altered
in order to include an argument, symm, as their first argument. For instance, the
alphabet and the process that correspond to the side door controller would have
the following signature:

A_S_DOOR_CTRL(symm) = ...

S_DOOR_CTRL(symm) = ...

B to CSP Migration 55

Furthermore, for every variable v declared in the VARIABLES block of a
replicated machine PP, we replace any reference to i_v, c_v, or o_v, by i_v.symm,
c_v.symm, or o_v.symm, respectively. For example, all references to c_cond in
the side door controller processes are replaced by c_cond.symm.

This concludes the syntactic changes to the result of the basic translation that
are needed in presence of replicated machines.

4.2 Synchronized Inputs and Execution Frames

When an input is used in different execution frames, simply synchronising the
corresponding machines would deadlock. Our solution is to extend the type of
the corresponding channels with the processes IDs. Our example contains two
such inputs (see Figure 5): i sensor and i slow . For example, the declaration
of channel i_sensor is:

channel i_sensor : PROCESSES_ID.SIDE_DOOR_CONTROLLER_symm.Bool

This changes is reflected to all references to these channels.
To guarantee that the values read in these channels are the same within the

same cycle, we create one controller process for each of these channels. It stores
the first value read and guarantees that further reads have the same value. The
definitions are omitted for conciseness. The final system is composed in parallel
with these controllers (defined in process IN_SYNC_CTRL) as discussed next.

4.3 Translating the Main System

We assume that the main B machine also follows a pattern, presented below,
where inpi and outj denote the system’s external inputs and outputs.

MACHINE S REFINES Sa

SEES p0.M0, . . . , pi .Mi

INCLUDES C0, . . . ,Cj

INVARIANT type(inp0, . . . , out0, . . .) ∧ safety(inp0, . . . , out0, . . .)
OPERATIONS
updt(i inp0, ..., i inpn) = PRE type(i inp0) ∧ . . . ∧ env ass(i inp0, ...)

THEN F0; . . . ; Fn

END

Each of the Fi of the update operation corresponds to a frame in which some ma-
chines are updated in parallel: Fi ≡ updt Cx (i x , . . .) || . . . || updt Cy(i y, . . .).

The main system might refine an abstract machine. It sees declaration ma-
chines such as CONTEXT and includes its components. The invariant states
type and safety conditions on the inputs and outputs. The main machine has a
single update operation, whose precondition specifies the types of the inputs and
the assumptions about the environment. Finally, its execution simply updates
each component machine using their corresponding inputs as arguments.

56 M.V.M. Oliveira, D.B.P. Déharbe, and L.C.D.S. Cruz

REFINEMENT GDC r REFINES GDC
SEES CONTEXT , ...
INCLUDES cmd .CMODE DEF , ..., Left .S DOOR CTRL,Right .S DOOR CTRL
OPERATIONS
updt GDC (i ldr , i opp, i man, i ctrl , i open Left , . . . , i open Right , . . .) =
PRE i man ∈ BOOL ∧ . . .THEN

BEGIN cmd .updt CMODE DEF (i man, i ctrl) ‖ . . .END ;
cc.updt COND(cmd .c mode, ld .c cabin);
BEGIN Left .updt S DOOR CTRL(i open Left , . . . , c cond Left) ‖ . . .END

END
END

Fig. 5. Sketch of the refined GDC

The pattern is slightly different if we have replicated machines. These changes
are very similar to those in the pattern of the component machines. It takes into
account that, when instantiating machines, their variable names are changed by
prefixing them with the name used in the instantiation.

In Figure 5, we present parts of the definition of the GDC r machine, which
refines the abstract GDC machine. In order to have access to the system types,
the GDC SEES the CONTEXT . Next, it INCLUDES all the system com-
ponents: the machine CMODE DEF discussed in this paper is one of them.
Furthermore, the GDC creates two replicated instances of the side door con-
troller (S DOOR CTRL), named Left and Right . The GDC update simply
receives all the inputs and executes each frame in sequence. Each frame is the
parallel composition of the update operations of the frame components.

The CSP for the main module declares one integer constant for the CONTROL
and for each component in the system. Multiple instances of replicated machines
are considered as different components.

ID_CONTROL = 0

ID_CMODE_DEF = 1

...

ID_SIDE_DOOR_CONTROLLER(Left) = 7

MIN_ID = 0

MAX_ID = length(PROCS)-1

The maximum and minimum identification values are used to access two arrays
that store the alphabets (ALPHAS) and processes (PROCS). They are related to
the processes identification described in Section 4.2.

ALPHAS = < A_CONTROL, A_CMODE_DEF, ..., A_S_DOOR_CTRL(Right)>

PROCS = < CONTROL, CMODE_DEF, ..., S_DOOR_CTRL(Right)>

We define the process corresponding to the main system as an indexed par-
allel composition; each component has its alphabet as interface. The internal

B to CSP Migration 57

Fig. 6. Verification in FDR

communications are hidden from the environment. The function get(i,S) re-
turns the i-th element of an array S.

GDC_I = (|| i:{MIN_ID..MAX_ID} @ [get(i,ALPHAS)] get(i,PROCS))

GDC_I_COMM = {| c_mode, c_cabin, c_cond |}

GDC = GDC_I \ GDC_I_COMM

Finally, the system is composed with the inputs synchronisation controller pre-
viously described. The control signals are also hidden from the environment.

GDC_CTRL_INPUT = (GDC [| A_IN_SYNC_CTRL |] IN_SYNC_CTRL) \ A_CTRL_ALL

The safety conditions of the main system are translated into a process that offers
a choice of inputs and outputs. For replicated machines, the syntactic changes
previously described are also applied to the safety process and the transition
functions. That includes a new argument, symm, as their first argument, and
replaces references to i_v, c_v, or o_v, by i_v.symm, c_v.symm, or o_v.symm,
respectively. In our example, we get:

GDC_safe_Symm(symm, mem, man, ctrl, ldr, opp, open,

close, sensor, slow, cmd, visual_open, traction, oslow) =

i_manual?n_manual -> ... [] ...

[] ((leader and ((man and (not ctrl))

or ((not man) and ctrl))

and (not slow)) &

o_cmd.symm!CMD_CLOSE -> GDC_safe_Symm(...)) [] ...

We are now in a position to present the verification of such systems.

4.4 Verification

As initially intended, the processes created can be model checked. We can, for
instance, verify that the main system satisfies the safety requirements of each
component separately. This is a safeguard against possible errors in the trans-
lation, since such properties have already been proved in the realm of the B

58 M.V.M. Oliveira, D.B.P. Déharbe, and L.C.D.S. Cruz

method. In each assertion, we hide the events in the alphabet of the relevant
component. For example, the assertions below guarantee that GDC_CTRL_INPUT
satisfies the safety requirements of the CMODE_DEF component and of one of the
side door controllers.

assert CMODE_DEF_safe \ GDC_I_COMM [T= GDC_CTRL_INPUT \ diff(A, A_CMODE_DEF)

assert S_DOOR_CTRL_safe(Right) \ GDC_I_COMM [T=

GDC_CTRL_INPUT \ diff(A, A_S_DOOR_CTRL(Right))

...

Finally, we assert that it satisfies its own safety requirements and that it is
deadlock-free and livelock-free.

assert GDC_safe(...) [T= GDC_CTRL_INPUT

assert GDC_CTRL_INPUT :[deadlock free [F]]

assert GDC_CTRL_INPUT :[livelock free]

The case study generates 830 lines of CSP code containing over 40 processes.
Its verification in FDR takes less than 30 seconds; all assertions held in FDR as
presented in Figure 6.

5 Conclusions

We presented a mapping from a subset of the B notation to CSP. Such trans-
lation allows checking of safety requirements both at the source and the result,
thus providing an a posteriori verification of the translation. A verification of
properties inherent to concurrent systems such as freedom of deadlock and live-
lock is possible using CSP tool support.

We have intentionally inserted errors in the B specification. Some are not
identified using B tools, but have caused a deadlock in the corresponding CSP
specification. For instance, we have removed the assignment mode in the up-
date operation of the CMODE DEF machine (Figure 4). In the B model, this
leaves the value of the variable unchanged and does not harm safety properties
nor yields a deadlock. However, the CSP model deadlocks: the process for the
CONDITION machine waits for an input on c mode that never happens since
the B variable is not updated. By tracing back from the CSP model to the B
model, it is simple to identify the cause of the deadlock and to fix the problem.

The translation lays the basis for a model-based approach to co-design. Given
a B model within the pattern, our methodology yields systems with modules
that may be implemented in either software from B, or in hardware from CSP.

There are, however, some issues that still need to be addressed. First, we
need to prove the translation correctness. For the moment, we rely on model
checking to justify that the properties proved on the B models also hold on the
generated CSP processes. In the future, we intend to use the Unifying Theories
of Programming [9] as a unifying framework of both languages. The semantics
of CSP in the UTP has already been presented in [9]; a formal semantics for B
in the UTP is the next step.

B to CSP Migration 59

It is not our goal a translation from any B model to a corresponding CSP
model. However, we will extend the pattern to accommodate further models.

Finally, we have implemented a translator that supports the translation pre-
sented in this paper and a translator from CSP to Handel-C [13]. In [15], Schnei-
der et al. present such translator from CSP‖B. Further work is needed to estab-
lish a comparison between our approach and theirs.

The full automation of our methodology requires the extension of the CSP
features that can be translated into Handel-C [13]: indexed operators, multi-
way synchronisation, and hiding are in this extension. All these extensions are
currently under development.

References

1. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Butler, M.J.: An approach to the design of distributed systems with B AMN. In:
Till, D., Bowen, J., Hinchey, M.G. (eds.) ZUM 1997. LNCS, vol. 1212, pp. 223–241.
Springer, Heidelberg (1997)

3. Butler, M.J.: csp2B: a practical approach to combining CSP and B. FACJ 12(3),
182–198 (2000)

4. Déharbe, D., Moreira, A.M., Muniz Silva, P., Russo Jr., A.: Modelling control
systems in b: an industrial case study. In: SBMF 2007, pp. 112–127 (2007)

5. Evans, N., Treharne, H.: Linking Semantic Models to Support CSP||B Consistency
Checking. Electr. Notes Theor. Comput. Sci. 145, 201–217 (2006)

6. Fischer, C.: CSP-OZ: A combination of Object-Z and CSP. In: FMOODS, vol. 2,
pp. 423–438. Chapman & Hall, Boca Raton (1997)

7. Formal Systems Ltd. FDR: User Manual and Tutorial, version 2.82 (2005)
8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
9. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall (1998)

10. Mens, T., Van Gorp, P.: A taxonomy of model transformation. ENTCS 152,
125–142 (2006)

11. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
12. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A UTP Semantics for

Circus. FACJ (2008)
13. Oliveira, M.V.M., Woodcock, J.C.P.: Automatic Generation of Verified Concurrent

Hardware. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM
2007. LNCS, vol. 4789, pp. 286–306. Springer, Heidelberg (2007)

14. Roscoe, A.W., Woodcock, J.C.P., Wulf, L.: Non-interference through Determin-
ism. In: Gollmann, D. (ed.) ESORICS 1994. LNCS, vol. 875, pp. 33–54. Springer,
Heidelberg (1994)

15. Schneider, S., Treharne, H., McEwan, A., Ifill, W.: Experiments in Translating
CSP||B to Handel-C. In: CPA - Communicating Process Architectures Conference.
Concurrent Systems Engineering Series, vol. 66, pp. 115–133. IOS Press (2008)

16. Taguchi, K., Araki, K.: The state-based CCS semantics for concurrent Z specifica-
tion. In: ICFEM, pp. 283–292. IEEE (1997)

17. Woodcock, J.C.P., Davies, J.: Using Z—Specification, Refinement, and Proof.
Prentice-Hall, Englewood Cliffs (1996)

Simulation and Verification of Synchronous Set

Relations in Rewriting Logic

Camilo Rocha1 and César Muñoz2

1 University of Illinois at Urbana-Champaign
2 NASA Langley Research Center

Abstract. This paper presents a mathematical foundation and a rewrit-
ing logic infrastructure for the execution and property verification of
synchronous set relations. The mathematical foundation is given in the
language of abstract set relations. The infrastructure consists of an order-
sorted rewrite theory in Maude, a rewriting logic system, that enables
the synchronous execution of a set relation provided by the user. By us-
ing the infrastructure, existing algorithm verification techniques already
available in Maude for traditional asynchronous rewriting, such as reach-
ability analysis and model checking, are automatically available to syn-
chronous set rewriting. The use of the infrastructure is illustrated with
an executable operational semantics of a simple synchronous language
and the verification of temporal properties of a synchronous system.

1 Introduction

Synchronous set relations provide a natural model for describing the operational
semantics of synchronous languages. Previous work by the authors [11] gives a
serialization procedure for simulating the execution of synchronous set relations
by asynchronous term rewriting. The synchronous execution of a set relation
is a parallel reduction, where the terms to be reduced in parallel are selected
according to some strategy. The serialization procedure has been used to pro-
vide the rewriting logic semantics of the Plan Execution Interchange Language
(PLEXIL) [5], a synchronous plan execution language developed by NASA to
support spacecraft automation [6].

Despite being generic, the serialization procedure proposed in [11] has to be
coded by the user for each synchronous language. This paper extends that work
in two ways. First, it generalizes the theoretical development of synchronous
set relations by extending the notion of strategy to enable a larger set of syn-
chronous transformations. Second, it introduces an infrastructure in Maude [4],
a high-performance reflective language and system supporting asynchronous set
rewriting, that implements on-the-fly a serialization procedure for a synchronous
language provided by the user. These contributions allow for simpler and more
succinct language specifications, and more general synchronous set relations.

Formally, a synchronous set relation is defined as the synchronous closure of
an atomic relation with a given strategy. Two sets are synchronously related if

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 60–75, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Simulation and Verification of Synchronous Set Relations in Rewriting Logic 61

the first set can be transformed into the second set by parallel atomic transfor-
mations. The selection of the redexes in the source set is done by the strategy.
Strategies can be defined using priorities, which solve conflicts arising from the
overlapping of atomic transitions. Section 2 presents, in an abstract setting,
definitions of synchronous set relations, strategies, and priorities.

The infrastructure presented in this paper uses the reflection capabilities of
Maude’s rewriting logic, which is succinctly described in Section 3.1. Maude sup-
ports set rewriting, i.e., rewriting modulo axioms such as associativity, commu-
tativity, and identity. These features are well-suited for object-based concurrent
systems. The infrastructure consists of a rewrite theory in Maude, defining a set
of generic sorts and terms, the algebraic properties of the datatypes, and a set of
functions and rewrite rules that support the synchronous execution of an atomic
set relation. The infrastructure is described in sections 3.2 and 3.3.

As a direct advantage of using this infrastructure, all commands in Maude for
rewrite theories such as its rewrite and search commands, and formal verification
tools such as Maude’s LTL Model Checker, are available for analyzing properties
of synchronous set relations. Section 4 illustrates the use of the infrastructure by
giving an executable semantics of a simple synchronous language with arithmetic
expressions. Section 5 illustrates the use of Maude’s LTL Model Checker for the
verification of temporal properties of a synchronous set relation.

The infrastructure in Maude and the examples presented in this paper are
available from http://shemesh.larc.nasa.gov/people/cam/PLEXIL.

2 Abstract Synchronous Set Relations

This section introduces the concepts of abstract set relations used in this paper.
Let U be a set whose elements are denoted A, B, . . . and let → be a binary

relation on U . An element A ∈ U is called a →-redex if there exists B ∈ U such
that the pair 〈A ; B〉 ∈ →. The expressions A → B and A �→ B denote 〈A ; B〉∈→
and 〈A ; B〉 /∈→, respectively. The identity relation and reflexive-transitive closure
of → are defined as usual and denoted →0 and →∗, respectively.

Henceforth, it is assumed that U is the family of all nonempty finite sets over
an abstract and possibly infinite set T , i.e., U ⊆ ℘(T) and ∅ /∈ U , and, therefore,
→ is a binary relation on finite sets of T . The elements of T will be denoted
by lowercase letters a, b, When it is clear from the context, curly brackets
are omitted from set notation, e.g., a, b → b denotes {a, b} → {b}. Because of
this abuse of notation, the symbol ‘,’ is overloaded to denote set union, e.g., if
A denotes the set {a, b}, B denotes the set {c, d}, and D denotes the set {d, e},
notation A, B → B, D denotes {a, b, c, d} → {c, d, e}.

The parallel relation →‖ of → is the relation defined as the parallel closure of
→, i.e., the set of pairs 〈A ; B〉 in U × U such that A →‖ B if and only if there
exist A1, . . . , An, (nonempty) pairwise disjoint subsets of A, and sets B1, . . . , Bn

such that Ai → Bi and B = (A \
⋃

1≤i≤n Ai) ∪
⋃

1≤i≤n Bi.
This paper focuses on synchronous set relations. The synchronous relation

of an abstract set relation → is defined as a subset of the parallel closure

http://shemesh.larc.nasa.gov/people/cam/PLEXIL

62 C. Rocha and C. Muñoz

of →, where a given strategy selects elements from →. Formally, a →-strategy is
a function s that maps an element A ∈ U into a set s(A) ⊆ ℘(→) such that if
{〈A1 ; B1〉, . . . , 〈An ; Bn〉} ∈ s(A), then Ai ⊆ A and Ai → Bi, for 1 ≤ i ≤ n, and
A1, . . . , An are pairwise disjoint.

Definition 1 (Synchronous Relation). Let s be a →-strategy. The relation
→s denotes the set of pairs 〈A ; B〉 in U × U such that A →s B if and only if
B = (A \

⋃
1≤i≤n An) ∪

⋃
1≤i≤n Bn, where {〈A1 ; B1〉, . . . , 〈An ; Bn〉} ∈ s(A).

Example 1. Let T be the set of distinct elements a, b, c, d, e, and the relation
→= {r1, r2, r3}, where r1 = 〈a, b ; b, d〉, r2 = 〈c ; d〉, and r3 = 〈a, c ; e〉. Let s1, s2,
and s3 be →-strategies defined for A = {a, b, c, d} as follows.

s1(A) = { {r2}, {r3} }, s2(A) = { {r1, r2} }, s3(A) = { {r1, r2}, {r3} }.

It holds that:

a, b, c, d→s1 a, b, d, a, b, c, d→s1 b, d, e, a, b, c, d→s2 b, d,

a, b, c, d→s3 b, d, a, b, c, d→s3 b, d, e.

Some strategies relevant to the operational semantics of synchronous languages
are those strategies defined based on a priority. A priority ≺ for a relation →
is a U-indexed set ≺= {≺A}A∈U with each ≺A a strict partial order on →
∩(℘(A) × U). Priorities can be used to decide between overlapping redexes.

Definition 2 (Saturation). A set {〈A1; B1〉, . . . , 〈An; Bn〉}⊆→ is ≺-saturated
for A ∈ U (or ≺A-saturated), with ≺ be a priority for →, if and only if

1. the sets A1, . . . , An are nonempty pairwise disjoint subsets of A,
2. each 〈Ai ; Bi〉 is such that for any A′ → B′ with A′ ⊆ A and A′ ∩ Ai �= ∅,
〈Ai ; Bi〉 �≺A 〈A′ ; B′〉, and

3. if there is A′ → B′ with 〈A′ ; B′〉 /∈ {〈A1 ; B1〉, . . . , 〈An ; Bn〉} and A′ ⊆ A,
then either
(i) there is 〈Aj ; Bj〉, for some 1 ≤ j ≤ n, such that Aj ∩A′ �= ∅ or
(ii) there is A′′ → B′′ with A′′ ⊆ A, A′′∩A′ �= ∅, and 〈A′ ; B′〉 ≺A 〈A′′ ; B′′〉.

A ≺A-saturated set is a complete collection of non-overlapping redexes in a term
A ∈ U , where any overlapping is resolved by keeping ≺-maximal redexes. Note
that the ≺-maximality tests in conditions (2) and (3) of Definition 2, are given
with respect to all pairs 〈A′ ; B′〉 in ≺A, and hence ≺A-saturation exclusively
depends on the ordering of the finitely many subsets of → ∩(℘(A)× U).

Example 2. Recall the relation →= {r1, r2, r3} and the set A = {a, b, c, d} from
Example 1. Let ≺1

A be such that r1 ≺1
A r3. It holds that the sets {r2} and

{r3} are ≺1
A-saturated. However, the set {r1, r2} is not ≺1

A-saturated because
r1 falsifies condition (2) in Definition 2 with witness r3. Let ≺2

A be such that
r3 ≺2

A r1. In this case, the only ≺2
A-saturated set is {r1, r2}. The set {r3} is not

≺2
A-saturated because r3 falsifies condition (2) in Definition 2 with witness r1.

For ≺3
A= ∅, the sets {r1, r2} and {r3} are the only ≺3

A-saturated sets.

Simulation and Verification of Synchronous Set Relations in Rewriting Logic 63

A maximal strategy defines the most general synchronous behavior of a relation,
which is given by all saturated sets.

Definition 3 (Maximal Strategies). Let ≺ be a priority for →. A→-strategy
s is ≺-maximal for A∈U (or ≺A-maximal) if and only if s(A) is the collection of
all ≺A-saturated sets. A→-strategy is ≺-maximal if and only if it is ≺A-maximal
for all A ∈ U .

Example 3. From examples 1 and 2,→-strategies s1, s2, and s3 are, respectively,
≺1

A-maximal, ≺2
A-maximal, and ≺3

A-maximal.

Algorithm 1 witnesses the existence of maximal strategies, which are unique for
a given relation → and a priority ≺ (for →).

Theorem 1. Let ≺ be a priority for →. Then a ≺-maximal →-strategy exists.
Therefore, from Definition 3, the ≺-maximal →-strategy is unique.

Proof. It is proved that the existence of a ≺-maximal →-strategy is witnessed
by Algorithm 1, for any A ∈ U and priority ≺ for →. First, the following are
important and easy to prove remarks about Algorithm 1:

– all three loops (lines 3, 6, and 12) repeat finitely many times and all quan-
tified conditions (lines 7 and 4) require finitely many comparisons because
A ∈ U has finitely many elements; also the complexity of γ decreases with
each iteration of the third loop, i.e., Algorithm 1 terminates,

– α =→ ∩(℘(A) × U) is finite and can be computed effectively,
– β = α\{〈A′ ; , B′〉 ∈ α | (∃〈A′′ ; B′′〉∈α)A′∩A′′ �= ∅∧〈A′ ; B′〉≺A 〈A′′ ; B′′〉},

i.e., β is the subset of α in which all conflicting pairs in α that are not
maximal elements in ≺A have been omitted,

– σ ⊆ ℘(β) is the collection of largest non-conflicting subsets of β, and
– if C ∈ σ, then for any nonempty C′ ⊆ (β \ C), C ∪ C′ /∈ σ.

Let D = {〈A1 ; B1〉, . . . , 〈An ; Bn〉}. It is enough to prove, for A ∈ U and priority
≺ for →, that D is ≺A-saturated if and only if D ∈ σ.

(=⇒) If D is ≺A-saturated, then D ⊆ α follows by definition. If D �⊆ β, then
there is 〈Ai ; Bi〉 ∈ D satisfying 〈Ai ; Bi〉 ≺A 〈A′ ; B′〉 for some 〈A′ ; B′〉 ∈
α with A′ ∩ Ai �= ∅. But then, for D, 〈Ai ; Bi〉 violates condition (2) in
Definition 2, a contradiction. Hence D ⊆ β. If D /∈ σ, since D ⊆ β and the
A1, . . . , An are pairwise disjoint by assumption, either there is a nonempty
set D′ ⊆ β \ D such that D ∪ D′ ∈ σ or there is nonempty set D′′ � D
such that D′′ ∈ σ. If D ∪ D′ ∈ σ and since D′ is nonempty, any pair
〈A′ ; B′〉 ∈ D′ violates condition (3.ii) in Definition 2, contradicting the ≺A-
maximality of D. If D′′ ∈ σ, then for any pair 〈A′′ ; B′′〉 ∈ D \D′′ the set
C = D′′ ∪ {〈A′′ ; B′′〉} falsifies the test in line 14 of Algorithm 1 and hence
C ∈ σ. Since D′′ ∈ σ and D′′ � C ∈ σ, this contradicts the last remark
aforementioned. Therefore, as desired, D ∈ σ.

64 C. Rocha and C. Muñoz

Input : A ∈ U and priority ≺ for →.
Output: s(A), with s the ≺A-maximal →-strategy.

begin1

α, β, γ, σ ← ∅, ∅, ∅, ∅;2

for Ai →-redex, Ai ⊆ A, and Bi such that Ai → Bi do3

add 〈Ai ; Bi〉 to α;4

end5

for 〈Ai ; Bi〉 ∈ α do6

if (∀〈A′ ; B′〉 ∈ α) (Ai ∩ A′) �= ∅ =⇒ 〈Ai ; Bi〉 �≺ 〈A′ ; B′〉 then7

add 〈Ai ; Bi〉 to β;8

end9

end10

γ ← {β};11

while γ �= ∅ do12

remove C from γ;13

if (∃〈Ai ; Bi〉, 〈Aj ; Bj〉 ∈ C) with i �= j and Ai ∩ Aj �= ∅14

then add C \ {〈Ai ; Bi〉} and C \ {〈Aj ; Bj〉} to γ;15

else add C to σ;16

end17

return σ;18

end19

Algorithm 1. The ≺-maximal →-strategy

(⇐=) If D ∈ σ ⊆ ℘(α), then A1, . . . , An are pairwise disjoint →-redexes, thus
subsets, of A. Thus, condition (1) in Definition 2 is satisfied. For condi-
tion (2), since D ∈ σ, it follows that D ⊆ β. Hence, any 〈Ai ; Bi〉 ∈ D satisfies
condition (2) in Definition 2. For condition (3), assume there is 〈A′ ; B′〉 ∈ α
with 〈A′ ; B′〉 /∈ D. Then, either 〈A′ ; B′〉 ∈ (β \D) or 〈A′ ; B′〉 ∈ (α \ β). If
〈A′ ; B′〉 ∈ (β \D), then D ∪ {〈A′ ; B′〉} /∈ σ, as previously stated. However,
〈A′ ; B′〉 ∈ β, so it must be the case that A′ ∩ Ai �= ∅ for some 1 ≤ i ≤ n.
If 〈A ; B′〉 ∈ (α \ β), then 〈A′ ; B′〉 ≺A 〈A′′ ; B′′〉 for some 〈A′′ ; B′′〉 ∈ α. In
either case, D satisfies condition (3) in Definition 2. Thus, D is≺A-saturated.

�	

The definitions of strategy and maximal strategy used in this paper are more
general than those in [11,

∮
2]. In that paper, the only possible nondeterminism

in →s arises from →. In the formalization presented in this paper, as illustrated
by strategies s1 and s3, the synchronous relation →s can be nondeterministic
even when the relation → is deterministic.

3 Synchronous Set Relations in Rewriting Logic

This section presents the infrastructure for specifying and executing in Maude
a synchronous relation defined from a language L.

Simulation and Verification of Synchronous Set Relations in Rewriting Logic 65

3.1 A Brief Overview of Rewriting Logic

An order-sorted signature [2] is a triple Σ = (S,≤, F), where (S,≤) is a finite
poset of sorts and F is a finite set of function symbols. Set X = {Xs}s∈S is
an S-sorted family of disjoint sets of variables with each Xs countably infinite.
The set of terms of sort s is denoted by TΣ(X)s and the set of ground terms of
sort s is denoted by TΣ,s. It is assumed that for each sort s, TΣ,s is nonempty.
Algebras TΣ(X) and TΣ denote the respective term algebras. The set of variables
of a term t is written vars(t) and is extended to sets of terms in the natural way.
A term t is called ground if vars(t) = ∅. A substitution θ is a sorted map from
a finite subset dom(θ)⊆X to ran(θ)⊆ TΣ(X) and extends homomorphically in
the natural way. Substitution θ is called ground if ran(θ) is ground. Expression
tθ denotes the application of θ to term t.

A Σ-equation is a sentence t = u if cond, where t = u is a Σ-equality with
t, u ∈ TΣ(X)s, for some sort s ∈ S, and the condition cond is a finite conjunction
of Σ-equalities. An equational theory is a pair (Σ, E) with order-sorted signature
Σ and finite set of Σ-equations E. For a Σ-equation ϕ, the judgement (Σ, E) � ϕ
states that ϕ can be derived from (Σ, E) by the deduction rules in [8]. In this
case, it holds that ϕ is valid in all models of (Σ, E). An equational theory (Σ, E)
induces the congruence relation =E on TΣ(X) defined for any t, u ∈ TΣ(X) by
t =E u if and only if (Σ, E) � (∀X) t = u. The Σ-algebras TΣ/E(X) and TΣ/E

denote the quotient algebras induced by =E over the algebras TΣ(X) and TΣ .
The algebra TΣ/E is called the initial algebra of (Σ, E).

A Σ-rule is a sentence � : t ⇒ u if cond, where � is its name, t ⇒ u is a
Σ-sequent with t, u ∈ TΣ(X)s, for some sort s ∈ S, and the condition cond is a
finite conjunction of Σ-equations. A rewrite theory is a tuple R = (Σ, E, R) with
equational theory ER = (Σ, E) and a finite set of Σ-rules R. For R = (Σ, E, R)
and � a Σ-rule, the judgement R � � states that � can be derived from R by the
deduction rules in [2]. In this case, it holds that � is valid in all models of R.
For � a Σ-equation, it can be proved that R � � if and only if ER � �. A rewrite
theory R = (Σ, E, R) induces the rewrite relation ⇒R on TΣ/E(X) defined for
every t, u ∈ TΣ(X) by [t]E ⇒R [u]E if and only if there is a one-step rewrite
proof R � (∀X) t ⇒ u. Relations ⇒R and ⇒∗

R respectively denote a one-step
rewrite and an arbitrary length (but finite) rewrite in R from t to u. Model
TR = (TΣ/E ,⇒∗

R) is the initial reachability model of R = (Σ, E, R) [2].
The following conditions on a rewrite theory R = (Σ, E, R) make rewriting

with equations E and with rules R modulo E computable, and are assumed
throughout this paper. First the set of equations E of R can be decomposed
into a disjoint union E′
 A, with A a collection of axioms (such as associativ-
ity, and/or commutativity, and/or identity) for which there exists a matching
algorithm modulo A producing a finite number of A-matching substitutions, or
failing otherwise. The second condition is that the equations E′ can be oriented
into a set of ground sort-decreasing, ground confluent, and ground terminating
rules

−→
E′ modulo A. The expression [canΣ,E′/A(t)]A ∈ TΣ/A,s will denote the

E′-canonical form of [t]A. The rules R in R are assumed to be ground coherent
relative to the equations E′ modulo A [14].

66 C. Rocha and C. Muñoz

3.2 The Synchronous Language L
Recall that definitions in Section 2 are given for an abstract set T , an abstract
relation →, and an abstract priority relation ≺. The language L is given by
the user as an order-sorted rewrite theory (ΣL, EL, RL) that enables the defi-
nition of concrete mathematical objects TΣL,Elem, →L, and ≺L that implement
T ,→, ≺, respectively. The rewrite theory (ΣL, EL, RL) extends the rewrite the-
ory (Σ, E, R), which provides an infrastructure with definitions of basic sorts
and data structures that are suitable for specifying set rewriting systems. This
rewrite theory exploits rewriting logic’s reflection capabilities available in Maude
to soundly and completely simulate the synchronous relation →s

L, where s is the
≺L-maximal strategy for →L.

The Set TΣL,Elem. The set of ground terms TΣL,Elem of the rewrite theory
(ΣL, EL, RL) implements the abstract set T of Section 2. The sort Elem rep-
resents elements in Σ having the form 〈m | a1 : e1, . . . , an : en〉, where m is an
identifier of sort Eid and a1 : e1, . . . , an : en is a map of sort Map. A map is a
collection of attributes. An attribute is a pair a :e where a is an attribute identi-
fier of sort Aid and e is an expression of sort Expr. Attributes are a flexible way
of defining the internal state of an element. Sorts Aid and Eid are declared as
subsorts of Expr. The set U of Section 2 corresponds to the set of ground terms
TΣL,Ctx, where the sort Ctx represents sets of elements of sort Elem. A context is
an element of sort Ctx. The sort Val is defined in Σ as a subsort of Expr and rep-
resents built-in values such as Boolean and numerical values. Function symbol
eval : Ctx× Expr −→ Val is defined in Σ without any equational definition.

The user is free to extend the signature Σ in ΣL with any syntax and sub-
sorts for element identifiers, attribute identifiers, and expressions. However, it is
assumed that attribute identifiers within a map and element identifiers within
a context are unique. It is also assumed that the theory (ΣL, EL) includes a
complete equational interpretation of eval for the set of expressions in ΣL.

The Relation →L. The synchronous relation in Definition 1 is given for an
abstract atomic relation →. In a concrete language, such as L, this relation
represents atomic computational steps that are synchronously executed. For that
reason, the concrete relation →L is called the atomic relation. As shown in [11],
the atomic relation is usually parametric with respect to a context that, in this
infrastructure, provides global information to the function eval. Henceforth, the
atomic relation with respect to a context Γ of sort Ctx will be denoted Γ→L.

The atomic relation →L is specified in RL through atomic rules.

Definition 4 (Atomic Rules). Let ΣL be an order-sorted signature extending
Σ. An atomic ΣL-rule is a ΣL-rule � : l ⇒ r if cond such that:

– rule name � has the form c–n, where c, the component of �, is an identifier,
and n, the rank of �, is a natural number;

– l does not contain attribute identifier variables, i.e., vars(l)∩XAid = ∅; and

Simulation and Verification of Synchronous Set Relations in Rewriting Logic 67

– attribute names appearing in an element term in r are named for that same
element term in l, i.e., if 〈i | m′〉 ∈ r and (a : e′) ∈ m′, then there is
〈i | m〉 ∈ l such that (a :e) ∈ m for some e ∈ TΣL(X)Expr.

An atomic ΣL-rule specifies transitions of contexts (possibly) constrained by a
condition that may involve expressions in the syntax of L. The component and
rank of ΣL-rules are used to define the priority relation ≺L. The restriction
on attribute identifier names and variables is to prevent the user from defining
an atomic relation →L for which computing a →L-reduction could be highly
inefficient or even incorrect.

Definition 5 (Atomic Relation →L). Let L = (ΣL, EL, RL) be a rewrite
theory with (ΣL, EL) extending (Σ, E) and RL a collection of atomic ΣL-rules
with different names. For a rule � : l ⇒ r if cond ∈ RL, the (parametric)
relation Γ→�, with parameter Γ ∈ TΣL,Ctx, denotes the set of pairs 〈A ; B〉 in
TΣL,Ctx × TΣL,Ctx such that there is a ground substitution θ : TΣL(X) −→ TΣL
satisfying condθ, A= lθ, and B = rθ in L, where any expression is evaluated in
Γ . The atomic relation →L is the indexed set { Γ→�}Γ∈TΣL,Ctx,�∈RL.

In Definition 5, A, B, and Γ are ground terms of sort Ctx. Furthermore, the term
B is a variant of A in which some expressions and attributes have been modified.
In particular, A and B have the same number of elements with the same element
and attribute identifiers. This means that the atomic relation does not delete
or create elements or attributes in A. This restriction simplifies the technical
development of (Σ, E, R). In any case, creation and deletion of elements and
attributes can be encoded by using additional attributes. Also observe that, due
to the syntactical restrictions of atomic rules in Definition 4, equational sentences
Cθ, A= lθ, and B =rθ can be checked in (ΣL, EL) because they are equational
expressions that, although may depend on context Γ , do not depend on RL.

In general, the atomic relation →L and the rewrite relation ⇒L induced by
the rewrite theory L do not coincide for ground context terms. In particular,→L
is defined as the top-most application of the atomic rules, while ⇒L is defined
as the congruence closure of those rules.

The Priority ≺L. For a given context Γ , the elements in Γ→L can be regarded
as tuples of the form (A, B, c, m)Γ as a shorthand for A

Γ→c–m B, with c–m ∈ RL.
The set ≺L= {≺L(Γ)}Γ∈TΣL,Ctx is defined automatically by the infrastructure:

(A′, B′, c′, m′)Γ ≺L(Γ) (A, B, c, m)Γ ≡ A ⊆ Γ ∧A′ ⊆ Γ ∧ c = c′ ∧m < m′,

where < is the usual order on natural numbers.

Lemma 1. The indexed set ≺L is a priority for →L.

Proof. It is enough to prove that ≺L(Γ) is a strict partial order, for any Γ ∈
TΣL,Ctx. Irreflexivity of ≺L(Γ) follows from the irreflexivity of <. Transitivity of
≺L(Γ) follows from the fact that if (A′′, B′′, c′′, m′′)Γ ≺L(Γ) (A′, B′, c′, m′)Γ and
(A′, B′, c′, m′)Γ ≺L(Γ) (A, B, c, m)Γ , then A′′ ⊆ Γ , A ⊆ Γ , c′′ = c′ = c, and
m < m′ < m′′. Therefore, (A′′, B′′, c′′, m′′)Γ ≺L(Γ) (A, B, c, m)Γ . �	

68 C. Rocha and C. Muñoz

The priority ≺L is an indexed collection of strict partial orders. In particular,
for each Γ ∈ TΣL,Ctx, priority ≺L(Γ) compares two elements of →L if they are
computed with the same context and they originate from atomic ΣL-rules having
the same component. It assigns a higher priority to elements with smaller rank.

Rewrite theory (Σ, E, R) includes a function max-strat that computes the
≺L-maximal Γ→L-strategy, where Γ ∈ TΣL,Ctx is the parameter of the relation
→L. That function implements Algorithm 1 of Section 2. It takes as input the
language L and ground context Γ and returns the collection s(Γ), where s is
the ≺L-maximal →L-strategy. The function max-strat is implemented in Maude
using the meta-level capabilities of the system. Henceforth, the strategy s will
denote the ≺L-maximal →L-strategy as computed by max-strat.

3.3 Simulation of →s
L

The set of Σ-rules R of the order-sorted rewrite theory (Σ, E, R) includes only
one rule: for l, r ∈ XCtx, T ∈ XTransition, and S ∈ XTransitionSet

sync : {l} ⇒ {r} if T, S := max-strat(L, l)
∧ r := update(l, T).

This rule, along with the rules RL provided by the user, implements the se-
rialization algorithm defined in [11], which has been adapted to the notion
of maximal strategy presented in this paper. Sort Transition denotes sets of
pairs in TΣL(X)Ctx and sort TransitionSet denotes collections of transitions.
Function update takes as inputs a ground context A and a ground transition
term C = {〈A1 ; B1〉, . . . , 〈An ; Bn〉}, and computes the ground context B =
(A \

⋃
1≤i≤n Ai) ∪

⋃
1≤i≤n Bi.

It is noted that the rule sync acts on contexts that are syntactically wrapped
by curly brackets, that is, terms of the form {A} with A a ground context term.
Those terms are of sort SState. The curly brackets operator prevents its context
A to be directly rewritten by the user defined atomic rules in RL. The actual
application of those rules is done by the function update.

Rule sync is nondeterministic because a ground substitution for l matching its
condition depends on the choice of T , i.e., on all possible transitions computed
by max-strat. However, there will be exactly one rewrite with sync for each
transition.

Theorem 2. Let L = (ΣL, EL, RL) be an extension of (Σ, E, R). For A, B ∈
TΣL,Ctx, the following equivalence holds:

L � {A} ⇒ {B} ≡ A →s
L B,

where s denotes the ≺L-maximal →L-strategy as computed by max-strat.

Proof. The key observation is that because max-strat computes the ≺L-maximal
→L-strategy s, the following equivalence holds:

C ∈ s(A) ≡ (∃C′ ∈ TΣL,TransitionSet)C, C′ =EL max-strat(L, A).

Simulation and Verification of Synchronous Set Relations in Rewriting Logic 69

(=⇒) Since {A} can be rewritten only by rule sync ∈ R, there is a ground
substitution θ : X −→ TΣL satisfying A =EL lθ, B =EL rθ, Tθ, Sθ =EL
max-strat(L, lθ), and rθ=EL update(lθ, T θ). By the observation above, Tθ ∈
s(A). Then, from the definition of update, it follows that A→s

L B.
(⇐=) If A→s

L B, there is C = {〈A1 ; B1〉, . . . , 〈An ; Bn〉} ∈ s(A) such that B =
(A\

⋃
1≤i≤n Ai)∪

⋃
1≤i≤n Bi. By the observation above and the definition of

update, there is C′ ∈ TΣL,TransitionSet such that C, C′ =EL max-strat(L, A)
and B =EL update(A, C). Then substitution θ satisfying A =EL lθ witnesses
L � {A} ⇒ {B}. �	

One key advantage of this approach is that, while it offers support for the exe-
cution of a synchronous relation →s

L, it does that by simulating →s
L using the

standard asynchronous semantics of Maude. Therefore, all commands available
in Maude for executing and verifying rewrite relations are directly available for
→s

L. Sections 4 and 5 illustrate these features with practical examples.

4 Executable Semantics of a Simple Synchronous
Language

Module SMAUDE implements in Maude the rewrite theory (Σ, E, R) presented
in Section 3. This section illustrates the use of SMAUDE by giving the small-step
semantics of a simple synchronous language with arithmetic expressions.

Consider a language that consists of two kinds of elements: memory elements
Mem(m, v) and assignment elements l:=e, where m, l denote memory names, v
denotes a numerical value, and e denotes an arithmetic expression. Arithmetic
expressions are recursively formed using memory names, numerical values, and
expressions of the form e1 + e2, where e1 and e2 are arithmetic expressions. In
this case, set T consists of all elements having the form Mem(m, v) or m:=v.

The small-step semantics of the language requires the definition of an evalu-
ation function eval that takes as inputs a context Γ , which is a set of elements
T , and an arithmetic expression e. It is inductively defined on expressions:

eval(Γ, e) =

⎧⎪⎨⎪⎩
v if e is the numerical value v,

v if e is the memory name m and Mem(m, v) ∈ Γ ,

v1 + v2 if e has the form e1 + e2, vi = eval(Γ, ei) for i ∈ {1, 2}.

The (parametric) atomic relation→ of the language is defined for a context Γ by
A

Γ→ B if and only if A ⊆ Γ , A = {Mem(m, v), l:=e}, B = {Mem(m, u), l:=e}, and
u = eval(A, e), for some memory name m, values v and u, and expression e. The

semantic relation of the language is the relation Γ→
s

, where s is the ≺-maximal
Γ→-strategy, Γ is a ground context, and ≺ is the empty priority.

Example 4. Let Γ = {Mem(x, 3), Mem(y, 4), x:=y, y:=x}. Then:

Mem(x, 3), Mem(y, 4), x:=y, y:=x
Γ→

s

Mem(x, 4), Mem(y, 3), x:=y, y:=x.

70 C. Rocha and C. Muñoz

This language is specified by the Maude module SIMPLE, which includes system
module SMAUDE:

a : Nat → Eid body : → Aid Nat ≤ Val
x : → Eid mem : → Aid + : Expr × Expr → Expr
y : → Eid to : → Aid

Memory ele-

ments use constructors x and y for element identifiers and have attribute mem
as their only attribute. Assignment elements use constructors a for element iden-
tifiers and have attributes body and to as their only attributes. In the syntax of
SIMPLE, memory element Mem(x, v) and an assignment element x:=e are rep-
resented, for instance, by elements 〈x | mem : v〉 and 〈a(1) | to : x, body : e〉,
respectively. Built-in natural numbers are values of the language. Evaluation of
expressions is given equationally following the definition of eval.

Atomic rule r–1 specifies the atomic relation of the language:

r–1 : 〈I | mem :N〉〈J | body :E, to :I〉 ⇒ 〈I | mem :eval(E)〉.

The specification of atomic rules is slightly different to the usual specification
of rules in rewriting logic. First, in the lefthand side of an atomic rule, it is
sufficient to only mention the attributes involved in the atomic transition. In
this case, SMAUDE will complete each lefthand side term by automatically
adding a variable of sort Map, unique for each element, before any matching is
performed. Second, in the righthand side of an atomic rule, it is sufficient to
only mention the elements and the attributes that can change in the atomic
step. In this case, SMAUDE updates in the current state only the attributes
of the elements occurring in the righthand side of the rule, while keeping the
other ones intact. So, in atomic rule r–1, the only attribute that can change is
attribute mem of the memory element. Note also that in the righthand side of
r–1 a unary version of function eval, without mention to any particular context,
is used; SMAUDE will automatically extend it to its binary counterpart, for the
given context, when computing function max-strat.

The context Γ in Example 4, written in the syntax of SIMPLE, is

〈x | mem :3〉〈y | mem :4〉〈a(1) | to :x, body :y〉〈a(2) | to :y, body :x〉.

Maude’s search command can be used to compute, for instance, the one-step
synchronous semantic relation of the language in Example 4 from context Γ :

Maude> search { Gamma } =>1 X:SState .
search in SIMPLE : { Gamma } =>1 X:SState .
Solution 1 (state 1)
states: 2 rewrites: 514 in 53ms cpu (54ms real) (9655 rewrites/second)
X:SState --> {< x | mem : 4 > < y | mem : 3 >

< a(1) | body : y, to : x > < a(2) | body : x, to : y > }
No more solutions.

Simulation and Verification of Synchronous Set Relations in Rewriting Logic 71

5 Verification of Synchronous Relations

This section illustrates the use of Maude’s LTL Model Checker for the verification
of properties of a synchronous relation.

Consider a system of clocks keeping track of hours and minutes. Each clock is
modeled in rewrite theory CLOCKS by two elements, one displaying hours and
the other displaying minutes:

h : Nat → Eid hour : → Aid min : Nat → Expr
m : Nat → Eid min : → Aid Nat ≤ Val

Hour elements use constructor h for element identifiers and have attribute hour
as its single attribute. Minute elements use constructor m for element identifiers
and have attribute min as its single attribute. Natural numbers are used as values
for the attributes. The n-th clock is represented by the hour element with element
identifier h(n) and the minute element with element identifier m(n). Attribute
min of a minute element m(n) can be accessed by evaluating expression min(n).
A clock displaying 9:15, written in the syntax of CLOCKS, is

〈h(1) | hour :9〉 〈m(1) | min :15〉.

The following clock transitions are of interest:

(i) if hour=11 and min=59, then set hour = 0 and min = 0;
(ii) if hour<11 and min=59, then increment hour in one unit and set min = 0;
(iii) if hour<11 and min<59, then increment min in one unit.

These transitions are intuitively coded via priorities in rewrite theory CLOCKS.
The behavior of the system is modeled by defining a priority such that redexes
of the form (i) have the highest priority and the ones of the form (iii) the lowest.
The following are the atomic rules of CLOCKS, for C, M, N ∈ XNat:

cl–1 : 〈h(C) | hour :11〉
〈m(C) | min :59〉 ⇒ 〈h(C) | hour :0〉〈m(C) | min :0〉

cl–2 : 〈h(C) | hour :N〉 ⇒ if eval(min(C)) == 59
then 〈h(C) | hour :s(N)〉
else 〈h(C) | hour :N〉 fi

cl–3 : 〈m(C) | min :N〉 ⇒ if N == 59
then 〈m(C) | min :0〉
else 〈m(C) | min :s(N)〉 fi

In CLOCKS, resetting a clock (i.e., rule cl–1) has higher priority than exclusively
increasing the hour (i.e., rule cl–2) or the minute (i.e., rule cl–3) of a clock.
Rule cl–1 uses matching for detecting when a clock needs to be reset. In the
righthand side of rule cl–2 the evaluation of expression min(C) will yield the
minute value of clock C, freeing the lefthand side of the rule from explicitly
mentioning the minutes element. Because of this, rules cl–2 and cl–3 can never

72 C. Rocha and C. Muñoz

overlap and therefore can be executed in parallel. As a final remark, observe that
the priorities of the last two rules can be switched without altering the behavior
of the system, since their lefthand sides can never overlap.

Two temporal properties that the synchronous relation of CLOCKS must
satisfy is that clocks are always synchronized and that each clock is reset infinitely
often. These two properties are specified by propositions Π = {sync, reset}.
Using the syntax of Maude’s LTL Model Checker and for variables C, C′, H, M ∈
XNat and Γ ∈ XCtx, the propositions Π are defined in the equational theory
CLOCKS-PREDS as follows:

sync : Nat × Nat → Prop reset : Nat → Prop SState ≤ State

{Γ} |= sync(C,C′) =

⎧⎨⎩
true if 〈h(C) | hour :H〉〈m(C) | min :M〉 ⊆ Γ

∧ 〈h(C′) | hour :H〉〈m(C′) | min :M〉 ⊆ Γ,
false otherwise.

{Γ} |= reset(C) =

{
true if 〈h(C) | hour :0〉〈m(C) | min :0〉 ⊆ Γ,
false otherwise.

The subsort declaration SState ≤ State tells Maude’s LTL Model Checker that
the semantics of propositions Π (each with sort Prop –provided by the model
checker) is to be defined on sort SState. Two clocks are synchronized if their hour
values and minute values are the same; otherwise they are not synchronized. A
clock is reset if its hour and minute values are 0.

Consider the following state init in the signature of CLOCKS

{〈h(1) | hour :0〉〈m(1) | min :0〉〈h(2) | hour :0〉〈m(2) | min :0〉},

with two clocks, both displaying 0:00. The two temporal properties aforemen-
tioned that the synchronous relation of CLOCKS must satisfy, are formally spec-
ified for state init as follows:

KΠ
CLOCKS, init |= �sync(1, 2),

KΠ
CLOCKS, init |= �♦reset(1) ∧ �♦reset(2),

where KΠ
CLOCKS = (TΣ/E,SState,⇒CLOCKS, LΠ) is the Kripke structure associ-

ated to the initial reachability model TCLOCKS, with topsort SState, and predi-
cates Π (see [4] for details on how KΠ

CLOCKS is associated to TCLOCKS).
First observe that the set of clock states reachable from init is finite and,

therefore, each property specification problem is decidable. The first property
specification asserts that clocks 1 and 2 are always synchronized, and the second
property specification asserts that each clock is reset infinitely often.

By using Maude’s LTL Model Checker, the following results are obtained:
Maude> red modelCheck(init, [] sync(1,2)) .
reduce in CLOCKS-PREDS : modelCheck(init, []sync(1, 2)) .
rewrites: 124946 in 6023ms cpu (6023ms real) (20744 rewrites/second)
result Bool: true

Maude> red modelCheck(init, ([] <> reset(1)) /\ ([] <> reset(2))) .
reduce in CLOCKS-PREDS : modelCheck(init, []<> reset(1) /\ []<> reset(2)) .
rewrites: 125514 in 6810ms cpu (6812ms real) (18428 rewrites/second)
result Bool: true

Simulation and Verification of Synchronous Set Relations in Rewriting Logic 73

6 Conclusion

Rewriting logic has been used previously as a test bed for specifying and animat-
ing synchronous rewrite relations. M. AlTurki and J. Meseguer [1] have studied
the rewriting logic semantics of the language Orc, which includes a synchronous
reduction relation. T. Serbanuta et al. [13] and C. Chira et al. [3] define the
execution of P -systems with structured data with continuations. The focus of
the former is to use rewriting logic to study the (mainly) non-deterministic be-
havior of Orc programs, while the focus of the latter is to study the relationship
between P -systems and the existing continuation framework for enriching each
with the strong features of the other. D. Lucanu [7] studies the problem of the
interleaving semantics of concurrency in rewriting logic for synchronous systems
from the perspective of P -systems. More recently, T. Serbanuta [12] advances
the rewriting-based framework K with resource sharing semantics that enables
some kind of synchronous rewriting. J. Meseguer and P. Ölveczky [9] present
a formal specification of the physically asynchronous logically synchronous ar-
chitectural pattern as a formal model transformation that maps a synchronous
design, together with performance bounds on the underlying infrastructure, to a
formal distributed real-time specification that is semantically equivalent to the
synchronous design.

The work presented in this paper is closely related to those works in that it
presents techniques for specifying and executing synchronous rewrite relations.
However, the work presented here is a first milestone towards the development of
symbolic techniques for the analysis of synchronous set relations. In particular,
the authors strongly believe that the infrastructure presented in Section 3 can
be extended with rewriting and narrowing based techniques, in the style of [10],
to obtain a deductive approach for verifying symbolic safety properties, such as
invariance or race conditions, of synchronous set relations. Another feature that
distinguishes this work from related work is the idea of priorities as an instrument
to control nondeterminism of synchronous relations. Of course, in some cases
priorities can be encoded in the condition of rewrite rules, but the treatment
here seems more convenient and simpler for the end-user. One interesting exercise
would be to study how best to implement this feature in the framework K and
for real-time specifications in rewriting logic.

The contribution of this paper to rewriting logic research is the implementa-
tion of general synchronous set relations via asynchronous set rewrite systems.
This work extends previous work reported in [11] by giving an on-the-fly im-
plementation of the serialization procedure for rewrite theories that supports
execution and verification of more general synchronous set relations. The frame-
work exploits rewriting logic’s reflective capabilities, and its implementation in
Maude, to soundly and completely simulate the synchronous relation associated
to an atomic relation and a maximal strategy specified by atomic rules. This
work also generalizes the concept of priority, so that more general synchronous
set relations are supported both theoretically and in the Maude infrastructure.
A priority, as treated in this work, allows for nondeterministic synchronous re-
lations even when the atomic relation is deterministic. In [11], the only possible

74 C. Rocha and C. Muñoz

nondeterminism in a synchronous relations arises from its atomic relation. A
direct benefit to the user from using the infrastructure presented in this paper,
is the wealth of Maude’s ground analysis tools for rewrite theories such as its
rewrite and search commands, and its LTL Model Checker.

Although the framework is illustrated with simple examples, it is currently
being used to specify an executable semantics in Maude of the Plan Execu-
tion Interchange Language (PLEXIL) [5], an open source synchronous language
developed by NASA to support autonomous spacecraft operations. This spec-
ification enables the application of formal verification techniques available in
Maude, such as model-checking and reachability analysis, to PLEXIL programs.

The Maude infrastructure presented in this work is a first prototype of the
theoretical developments. Future work includes the development of a wider range
of case studies stressing the infrastructure’s capabilities; it is also important
to streamline the algorithms and data structures in the infrastructure. Future
work in the area of deductive analysis will study symbolic reachability analysis
techniques in rewriting logic for synchronous set relations. More specifically,
adapting the rewriting and narrowing based techniques developed in [10], seems
promising for the analysis of safety properties of synchronous set relations.

Acknowledgments. The authors would like to thank the anonymous referees
for their comments, which helped to improve the paper. This work is supported
by NASA’s Autonomous Systems and Avionics Project, Software Verification
Algorithms. The first author has been partially supported by NSF grant CCF
09-05584 and by the National Aeronautics and Space Administration at Lang-
ley Research Center under Research Cooperative Agreement No. NNL09AA00A
awarded to the National Institute of Aerospace.

References

1. AlTurki, M., Meseguer, J.: Reduction semantics and formal analysis of Orc pro-
grams. Electronic Notes in Theoretical Computer Science 200(3), 25–41 (2008);
Proceedings of the 3rd International Workshop on Automated Specification and
Verification of Web Systems (WWV 2007)

2. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 360(1-3), 386–414 (2006)

3. Chira, C., Serbanuta, T.F., Stefanescu, G.: P systems with control nuclei: The con-
cept. Journal of Logic and Algebraic Programming 79(6), 326–333 (2010); Mem-
brane computing and programming

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350,
p. 797. Springer, Heidelberg (2007)

5. Dowek, G., Muñoz, C., Rocha, C.: Rewriting logic semantics of a plan execution
language. Electronic Proceedings in Theoretical Computer Science 18, 77–91 (2010)

6. Estlin, T., Jónsson, A., Păsăreanu, C., Simmons, R., Tso, K., Verna, V.: Plan
Execution Interchange Language (PLEXIL). Technical Memorandum TM-2006-
213483, NASA (2006)

Simulation and Verification of Synchronous Set Relations in Rewriting Logic 75

7. Lucanu, D.: Strategy-based rewrite semantics for membrane systems preserves
maximal concurrency of evolution rule actions. Electronic Notes in Theoretical
Computer Science 237, 107–125 (2009); Proceedings of the 8th International Work-
shop on Reduction Strategies in Rewriting and Programming (WRS 2008)

8. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

9. Meseguer, J., Ölveczky, P.: Formalization and correctness of the pals architectural
pattern for distributed real-time systems. In: Dong, J.S., Zhu, H. (eds.) ICFEM
2010. LNCS, vol. 6447, pp. 303–320. Springer, Heidelberg (2010)

10. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. Technical
report, University of Illinois at Urbana-Champaign (2010),
http://dx.doi.org/10.1007/978-3-642-22944-2_22

11. Rocha, C., Muñoz, C., Dowek, G.: A formal library of set relations and its applica-
tion to synchronous languages. Theoretical Computer Science 412(37), 4853–4866
(2011)

12. Serbanuta, T.: A Rewriting Approach to Concurrent Programming Language De-
sign and Semantics. PhD thesis, University of Illinois at Urbana-Champaign (De-
cember 2010), http://hdl.handle.net/2142/18252

13. Serbanuta, T., Stefanescu, G., Rosu, G.: Defining and executing p systems with
structured data in k. In: Corne, D., Frisco, P., Paun, G., Rozenberg, G., Salomaa,
A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 374–393. Springer, Heidelberg (2009)

14. Viry, P.: Equational rules for rewriting logic. Theoretical Computer Science 285(2),
487–517 (2002)

http://dx.doi.org/10.1007/978-3-642-22944-2_22
http://hdl.handle.net/2142/18252

PiStache: Implementing π-Calculus in Scala

Pedro Matiello and Ana C.V. de Melo�

Department of Computer Science, University of São Paulo,
São Paulo, Brazil

pmatiello@gmail.com, acvm@ime.usp.br

Abstract. π-calculus is a pioneer theory for concurrent and recon-
figurable agent systems. It has been widely used as foundation (se-
mantics) for other theories and languages aiming at representing the
computational phenomenon of changing systems’ behaviour at runtime.
In services-oriented applications for example, reconfiguration is highly
required due to the needs of configuring systems accordingly to local
contexts. Today, a set of researches are devoted to extending π-calculus
features to reconcile concepts behind web-services applications. How-
ever, a problem still remains: how to simulate π-agents to have insights
on the real behaviour of the specified system? The reconfiguration fea-
tures embedded in π-calculus enrich its expressiveness but impose a more
elaborate semantics, making its implementation a challenging task. The
current work presents an implementation of all π-calculus core elements
with which one can define agents and simulate them. Such implementa-
tion is given as a Domain Specific Language (DSL) in Scala.

Keywords: Pi-calculus, Scala, reconfiguration.

1 Introduction

Dynamic reconfiguration of processes is one of the key-points for many of recent
applications based on Web-services, cloud, grid and autonomic computing. Com-
putations in all these scenarios require systems to be reconfigured depending on
local contexts. Despite promoting features for global computation, reconfigura-
tion brings challenging issues regarding complexity of systems design: how to
predict systems behaviours if they can be reconfigured dynamically.

Formal analysis is employed to predict undesired systems behaviours via
formal verification or simulation and can, for instance, be used to analyse be-
haviours of reconfigurable systems. π-calculus is a pioneer theory for reconfig-
urable concurrent computation by the means of formal modeling. It provides
a simple, yet expressive, foundation for describing process interaction and re-
configuration uniquely through communication, in the form of message passing.
Due to its power, it has inspired many other calculi and languages to represent
� This project has been co-funded by the National Council for Scientific and Tech-

nological Development (CNPq - Brazil) and the Ministry of Education Research
Agency (CAPES - Brazil).

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 76–91, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

PiStache: Implementing π-Calculus in Scala 77

scenarios on various application domains, including Web-services [2,1] and grid
services [15] computing.

Analysing the actual systems behaviours described in π-calculus requires im-
plementation of the calculus. Its reconfiguration features, focused on message
passing, improve expressiveness but need an intricate semantics, making its
implementation a non-trivial task. For instance, implementation of nondeter-
ministic composition and choice operators under reconfiguration may explode
the system behaviour into many threads. Then, a number of thread explosion
mechanisms must be implemented together with the possible communication
synchronisations, and facilities (or difficulties) to provide these sophisticated
mechanisms depends on the chosen programming language. Scala [7] is a general
purpose programming language that compile to Java bytecodes. It integrates
features from both object-oriented and functional programming. Also, it pro-
vides a sophisticated static type system, but still manages to conciliate this with
a flexible and concise syntax, and is used in the current project to implement
π-calculus core elements.

Being such a simple and expressive language for expressing concurrency and
runtime reconfiguration, a set of concrete implementations of π-calculus have
already been proposed. They implement different fragments of the calculus and
target different uses. PiLib [3] is an implementation of π-calculus in Scala in-
troduced by Vincent Cremet and Martin Odersky. It is part of Scala’s standard
library and provides a monadic, synchronous and typed version of the calculus
with guarded sums. Different from PiLib, Pict [11,12] is a programming lan-
guage based on the π-calculus computation model. In this implementation, the
calculus is polyadic, asynchronous, typed and without summation. It provides a
syntax similar to the original calculus and some predefined processes and links
for convenience. Kroc (Kent Retargetable occam-pi Compiler) [14] is an occam-
pi compiler for Intel 386 and compatible processors. The occam-pi language
itself is a variation of the original occam language built on the top of π-calculus,
instead of the Communicating Sequential Processes (CSP) [4]. occam-pi imple-
ments a typed, synchronous and monadic (including data structures) variant of
the calculus. Guarded sums and process mobility (between different machines)
are supported.

This paper presents PiStache1 (Pi-calculus/Scala tache): an implementation
of π-calculus as a Domain Specific Language (DSL)2 hosted in Scala.

2 Background

2.1 π-Calculus

π-calculus, introduced by Milner, Parrow and Walker in [6], is a process calculus
for concurrent computation with dynamic reconfiguration. Agents (also called
1 http://code.google.com/p/pistache/
2 A Domain Specific Language is a programming language designed to a specific pur-

pose. A DSL is said to be internal (or embedded) when it is built within a host
language (usually as a library or framework).

http://code.google.com/p/pistache/

78 P. Matiello and A.C.V. de Melo

processes) communicate by the exchange of names through channels (links).
Since channels are treated as names, systems interconnections may change as
channel names are passed and shared. This section is a brief introduction to a
monadic version of π-calculus. For a more detailed description, one should refer
to [6], [9] and [5].

Given a set of names {x, y, z, ...}, a set of agent identifiers {A, B, C, ...} and
a set of agents {P, Q, R, ...}, the syntax of agents is defined as follows:

Definitions: A(x1, ..., xn)
def
= P

Prefixes: α ::= ȳx Output
y(x) Input

τ Silent

Agents: P ::= 0 Nil
α.P Prefixing
P + P Summation
P |P Composition
(νx)P Restriction
[x = y].P Match
[x 	= y].P Mismatch

The operational semantics of process algebras are given by labelled transition
systems. Transitions are of kind P

α−→ Q, for agents ranging over {P, Q, ...} and
transitions ranging over {α, ...}. In P

α−→ Q, P is subject to a labelled transition
α leading to Q, and transition rules are:

Prefix
α.P

α−→P
Restriction P

α−→P ′,x �∈α

(νx).P α−→(νx).P ′

Summation P
α−→P ′

P+Q
α−→P ′ Summation Q

α−→Q′
P+Q

α−→Q′

Match α.P
α−→P

[x=x].P α−→P
Mismatch α.P

α−→P,x �=y

[x �=y].P α−→P

Parallel P
α−→P ′,bn(α)∩fn(Q)=∅

P |Q α−→P ′|Q
Parallel Q

α−→Q′,bn(α)∩fn(P)=∅
P |Q α−→P |Q′

Communication P
α(x)−→ P ′,Q ᾱu−→Q′

P |Q τ−→P ′{u/x}|Q′

Example: The following example, inspired by [9], shall illustrate the calculus.
Let C, P and S be agents for a client, a printer and a print server, respectively.
The print server and the client share a communication channel a, and the print
server and the printer share another communication channel b. The intended
interaction is to have S sharing access to P with C, and then have C sending
a message to P . Also, after performing their tasks, agents P and S should re-
turn to their starting state and the agent C should stop. The agents can be
defined as:

C = a(p).p̄x
P = b(y).P
S = āb.S

And the entire systems is given by parallel composition of these three agents:

C|P |S

PiStache: Implementing π-Calculus in Scala 79

2.2 Scala

Scala3 is a general purpose programming language designed to integrate fea-
tures of object-oriented and functional programming, and compile to Java byte-
codes. Although it is a statically typed language (i.e. values types are known and
checked at compile time), it offers some mechanisms to bring as much as possi-
ble the conveniences of dynamically typed languages without sacrificing safety
features provided by static typing. Here we briefly introduce the main elements
of this language used in the present work. Readers are referred to [7] for an
extensive guide and those familiar to Java might also find [13] useful.

Variable declaration: Scala supports two types of variables: vals, which can
be assigned only once, and vars, which can be reassigned. For example:
val string :String = "Not reassignable"
var string :String = " Reassignable"

In most cases, the compiler can infer variables types and the example above
can alternatively be written as:
val string = "Not reassignable"
var string = "Reassignable"

Method definition: Methods are defined with def keyword.
def max(x:Int , y:Int):Int = {

�� (x > y) x ���� y
}

And, in many cases, the return type can also be inferred by the compiler:
def max(x:Int , y:Int) = �� (x > y) x ���� y

Class definition: Classes, defined by class keyword, can be used to wrap vari-
ables and methods.
����� SpecialInt(��	:Int) {

def isPositive = ��	 >= 0
def isNegative = ��	 <= 0

}

Arguments in the first line belong to the class constructor and are visible to
contained methods. Instances of classes are built using the keyword new:
val number = ��
 SpecialInt(10)

Inheritance and Traits: Scala provides two inheritance mechanisms:

1. subclasses:
����� VerySpecialInt(��	:Int) ��	���� SpecialInt(��	:Int) {

def isZero = ��	 == 0
}

2. construct trait: similar to Java interface, supporting method imple-
mentations.

3 http://www.scala-lang.org/

http://www.scala-lang.org/

80 P. Matiello and A.C.V. de Melo

trait Person {
def sleep { Thread sleep 1000 }
def talk:Unit

}

����� NicePerson ��	���� Person {
def talk { println ("Hello") }

}

NicePerson class is forced by compilers to provide an implementation to
method talk. Implementation of method sleep is, in turn, optional.

Implicit Conversions: If an expression E of type T is expected to be of type
S, and T does not extend S, Scala compiler will try to implicitly convert E
to type S by using a predefined conversion rule.

The simplest case is converting a value to an expected type on method calls:
implicit def Int2String(��	:Int) = ��	.toString

def len(str:String) = str.size

With the conversion above in scope, method len can be called with an integer
argument (and will return the length of its decimal representation).

This mechanism can also be used to new methods to existing classes:
����� SpecialInt(��	:Int) {

def isPositive = ��	 >= 0
def isNegative = ��	 <= 0

}

implicit def Int2SpecialInt(��	:Int) = ��
 SpecialInt(��)

When the conversion above is in scope, code like 3.isPositive will compile as
it were in Int class.

Pattern Matching: Scala supports case classes construct. If a class has a case
modifier, all its constructor parameters become public class attributes and
allow for recursive decomposition combined with pattern matching, another
feature of the language. Pattern matching affects programs control-flows: it
permits multiple type matches and can execute different branches of code,
depending on the type of the matched object and of values enclosed by
it. The following example illustrates the use of pattern matching on case
classes:
trait Human
���� ����� Man(name:String, age:Int) ��	���� Human
���� ����� Woman(name:String, age:Int) ��	���� Human

def whoIs(human:Human) {
human match {

���� Man(name , age) => println ("His name is " + name)
���� Woman(name , age) => println ("Her name is " + name)

}
}

3 PiStache: An Application Programming Interface (API)

PiStache provides an internal domain-specific language for writing π-calculus
programs in Scala. The fragment of π-calculus supported is the typed monadic
and synchronous version:

PiStache: Implementing π-Calculus in Scala 81

Prefixes: ȳx y(x) τ

Agents: 0 α.P y(x).P + z(x).Q P |Q (νx)P [x = y].P [x 	= y].P

Definitions: A(x1, ..., xn)
def
= P

All π-calculus operators are implemented but a restriction is imposed to sum-
mation: guarded agent summation. First, agents definitions and the core elements
are defined (names, actions and channels (links)), followed by the operators.

PiObject

Prefix Agent

Concatenation Composition Summation

SummationAgent

Guard

ActionPrefix ConcatenationPrefix LinkPrefix

ConcatenationAgent GuardedAgent CompositionAgent MatchAgent NilAgent RestrictedAgent

Fig. 1. Pistache architecture

3.1 Core Elements

Agent Definition: The common idiom for defining agents is:
val agent = Agent (...)

Self-referential agents, used to implement recursive behaviour, require some
boilerplate code. In order to satisfy Scala’s type checker in compile time, the
Agent type can not be omitted. Also, to avoid runtime errors due to references
to an still non-instantiated object, lazy evaluation4 must be used.
lazy val recursiveAgent:Agent = Agent (...)

Agents with arguments can be defined as below:
def agentWithArgs(arg1:Type1 , ..., argN:TypeN):Agent =

Agent {
...

}

Note that recursive agents substitute for replication operator...
The nil agent is represented by a class named NilAgent.

Names: Names can be used as references to objects. For instance:
val name = Name(some_object)

4 Lazy evaluation can be defined by two main traits: ”First, the evaluation of a given
expression is delayed, or suspended, until its result is needed. Second, the first time
a suspended expression is evaluated, the result is memorized (i.e., cached) so that,
if it is ever needed again, it can be looked up rather than recomputed.” [8].

82 P. Matiello and A.C.V. de Melo

The referred object then can be set or changed:
name := other_object

And retrieved:
referred_object = name.value

Changing names on referred objects provides reconfiguration of agents when
names represent channels: the capability of communicating with other agents
changes. This feature, together with the composition operator, makes agents
that receive a channel name as input to reconfigure their communication
capability from that point on.

Channels (Links): Channels are provided to address communication between
agents (processes). Although it is not standard in π-calculus, channels in PiS-
tache are typed (so the values transmitted must be instances of the specified
type). Link represents channels and can be instantiated:
val link = Link[Type]

The syntax for sending a name through a channel is:
link~name

The sent reference can then be received and bound to another name on
another agent:
link(another_name)

Actions: Output and input actions are implemented, respectively, as typed
channels sending (link~name) and receiving (link(another name)) information. On
the other hand, silent actions (τ) do not communicate with the environment,
they are performed within the context of a process. These actions are ordi-
nary closures, with no arguments nor returning type, wrapped as an agent
by calling Action:
val silentTransition = Action { ... }

An agent may contain a single silent transition:
val silent = Action{ doSomething() }
val agent = Agent(silent)

3.2 Operators

Sequence: On the ground level, agents can be made of a sequence the prefixes:
val sequentialAgent = Agent(prefix1 *...* prefixN)

Since silent actions are ordinary prefixes, they can also be concatenated:
val silent1 = Action{ doSomething() }
val silent2 = Action{ doSomethingElse() }
val agent = Agent(silent1 *silent2)

Apart from agents being defined as sequences of prefixes, they can also be
defined as prefixed agents. Agents can be guarded by any of the defined
prefixes: input, output or silent actions. Although in π-calculus the ordinary
concatenation operator is used to guard an agent, PiStache requires the use
of a semantically equivalent guard operator.

PiStache: Implementing π-Calculus in Scala 83

val guardedAgent = Agent { guardPrefix :: Agent }

Recursive agents can also be defined along the same lines, enhancing expres-
siveness to represent infinite behaviours lazyly evaluated:
lazy val recursiveAgent:Agent = Agent(prefix1 *...* prefixN * recursiveAgent)

Guarded Summation: π-calculus summation is a binary operator defined over
any two agents. Its semantics is given by a choice of all the first prefixes
within agents. Due to efficiency reasons, implementation of summation here
is given over guarded instead of ordinary agents. In this particular case, when
a summation is executed, only one of its terms will be selected and executed.
val summation = Agent {

val t = Action { ... }
(y~(x) :: P1) + (y(x) :: P2) + (t :: P3)

}

This operation is implemented naively: a list of guarded agents is formed and
randomized. Then, the algorithm polls each of the guard actions, attempting
to execute it. If it succeeds, the corresponding agent is selected for execution,
while the others are discarded. If it fails, the algorithm moves to the next
guarded agent until it reaches the end of the list. At this point, it starts
over from the beginning. This process is performed until a guard action is
executed.

Composition: An agent can also have its behaviour defined as a composition
of two other agents running in parallel:
val composedAgent = Agent(agent1 | ... | agentN)

The late semantics for composition has been implemented here. This means
that ”handshaking” is provided in communication with the actual names
and reconfiguration is realised afterwards.

Having more than one agent running makes communication possible:
val square = Link[Link[Int]]

val C = Agent {
val link = Link[Int]
val reply = Name[Int]
val print = Action { println (reply.value) }
square ~link*link~5*link(reply)*print

}

val S = Agent {
val l1 = Name[Link[Int]]
val number = Name[Int]
val calculate = Action {

number := number.value * number.value
}
square (l1)*l1(number)* calculate*l1~number

}

When C | S is executed, C sends the link channel name to S through channel
square. Due to reconfiguration, in agent S, link will be referred to by identifier
l1. Then, C sends through link an integer value (5). Finally, S uses the same
link to send back to C the square of the integer sent.

84 P. Matiello and A.C.V. de Melo

Restriction: To constrain scope of π-calculus agents, the restriction operator
must be applied. It is a unary operator whose semantics constrains the use of
restricted names to a certain scope. This means that such names cannot be
used outside the given scope – they become invalid names. Scope restriction
operator is also implemented in PiStache:
val agentWithRestrictedName = Agent {

val restrictedName = Name (...)
...

}

When restriction is applied, names in restrictedName are no longer available
outside the scope of agent agentWithRestrictedName.

Match: In order to direct the execution flow of programs, If match structure is
provided. The accepted syntax in PiStache is:
val agent = Agent(If (condition) {thenAgent})

When executed, if condition evaluates to true, agent thenAgent is to be exe-
cuted. Otherwise, agent halts. Mismatch operator corresponds to match with
a negated condition. Then, composition operator can be used together with
If when both branches of execution are required: either when condition eval-
uates to true or false:
If (condition) {P} | If (! condition) {Q}

3.3 Internal Representation

PiStache types are crafted to enforce π-calculus’ syntactic rules. Therefore, code
written in the syntax presented above is checked at compile time for type errors.
It is provided by Scala compiler and refuses meaningless code:
val agent = Agent(p1*45.3)

For this code, the compiler outputs: type mismatch; found : Double(45.3) required:

pistache.picalculus.Agent. Avoiding type errors like this is the duty of type systems5,
but this can only be done properly by having types representing domain models
as close as possible. Therefore, in order to provide both π-calculus’ restrictions
and flexibilities, a number of types were implemented:

Type Name Description

PiObject A trait for tagging all π-calculus’ objects. It provides no behaviour.
Concatenation A trait providing the prefix concatenation operation.
Composition A trait providing the parallel composition operation.
Summation A trait providing the summation operation.
Guard A trait providing the guard operation.
Prefix A trait for all π-calculus’ prefixes.
Agent A trait for all π-calculus’ agents.

5 ”A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they com-
pute.” [10].

PiStache: Implementing π-Calculus in Scala 85

trait PiObject

trait Concatenation{ def *(other: => Prefix): ConcatenationPrefix
def *(other: => Agent): ConcatenationAgent }

trait Composition { def |(other: => Agent): CompositionAgent }

trait Summation { def +(other: => GuardedAgent):SummationAgent }

trait Guard { def ::(other: => Prefix): GuardedAgent }

trait Prefix ��	���� PiObject with Concatenation

trait Agent ��	���� PiObject with Composition with Guard

The prefixes are provided by the following case classes:

Type Name Description

ActionPrefix A case class representing silent transitions.
ConcatenationPrefix A case class representing the concatenation of two prefixes.
LinkPrefix A case class representing the an action (input or output) through a link.

���� ����� ActionPrefix(val procedure: () => Unit) ��	���� Prefix
���� ����� ConcatenationPrefix(val left: () => Prefix , val right: () =>

Prefix) ��	���� Prefix
���� ����� LinkPrefix[T](val link:Link[T], val action :ActionType , val name:

Name[T]) ��	���� Prefix

And agents are provided by the following case classes:

Type Name Description

ConcatenationAgent A case class representing the concatenation of a prefix and an agent.
GuardedAgent A case class representing an agent guarded by a prefix.
CompositionAgent A case class representing the parallel composition of two agents.
SummationAgent A case class representing the summation of two agents.
MatchAgent A case class representing an agent conditioned by a match.
NilAgent A case class representing the null agent.
RestrictedAgent A case class representing agents with support for restricted names.

���� ����� ConcatenationAgent(val left: () => Prefix , val right: () => Agent)
��	���� Agent

���� ����� GuardedAgent(val left: () => Prefix , val right: () => Agent)
��	���� Agent with Summation

���� ����� CompositionAgent(val left: () => Agent , val right: () => Agent)
��	���� Agent

���� ����� SummationAgent(val left: () => Agent , val right: () => Agent)
��	���� Agent with Summation

���� ����� MatchAgent(val condition: () => Boolean , val then: () => Agent)
��	���� Agent

���� ����� NilAgent () ��	���� Agent

���� ����� RestrictedAgent(val agent: () => Agent) ��	���� Agent

Assuming that the programmer made no syntax mistakes, the compiler should
be satisfied. Then, at runtime, full π-calculus agents will be built from their
atomic parts, as specified by programmers. The following examples illustrate
how agents and prefixes are built from concatenation:

86 P. Matiello and A.C.V. de Melo

// suppose agent Q and prefixes p1 , p2 , p3 are already defined
val P = Agent(p1*p2*p3*Q)

It corresponds to agent P = p1.p2.p3.Q written as PiStache object. Since method
* is in an infix form, evaluation of expressions involving it first evaluates the left
and then the right-hand sides. It first checks if there is a prefix on its left-hand
side and then takes as argument the prefix on its right-hand side and returns
a specific type of prefix: ConcatenationPrefix if it is a prefix; or ConcatenationAgent if
it is an agent. So, the first invocation of * has p1 on the left-hand side, p2 on
the right-hand side, and produces ConcatenationPrefix(p1, p2) as a result. The second
invocation has ConcatenationPrefix(p1, p2) on the left-hand side, p3 on the right-hand
side, and produces ConcatenationPrefix(ConcatenationPrefix(p1, p2), p3) as result.

Agents containing composition operator have a similar evaluation. The only
difference is that the type wrapping agents on the left and on the right are
CompositionAgent instead. So, the parallel agent Agent(P | Q | R) is built as Composition-

Agent(CompositionAgent(P, Q), R).
Now, a last case must be considered:

// suppose prefixes p1 , p2 , p3 and agent Q are already defined
val P = Agent(p1*p2*p3 | Q)

As seen before, p1*p2*p3 is of type ConcatenationPrefix, which does not provide a
| method for parallel composition. The whole assignment accounts for agent
P = p1.p2.p3|Q in pen-and-paper π-calculus. At a first glance, it is a valid
expression (as abbreviation of P = p1.p2.p3.0|Q) and one would expect that
the code above would compile fine. In order to do so, PiStache uses an implicit
conversion to produce an agent from concatenated prefixes. More precisely: from
p1*...*pN it will produce ConcatenationAgent(p1*...*pN, NilAgent) which accounts for the
explicitly terminated agent p1...pn0 in π-calculus.

3.4 Execution Model

Since agent objects are simple data structures, devoid of any behaviour, an ex-
ternal mechanism is needed to turn all these objects into an actual program. This
task is performed by a specification runner, which takes an agent as argument,
interprets its structure and executes the appropriate actions. This approach, im-
plemented in PiStache, provides some flexibility, allowing for implementations
of different runners, tailored for different execution environments or π-calculus
variants.

The thread-based runner, namely ThreadedRunner in PiStache, uses ordinary
system threads to execute π-calculus agents concurrently (basically, each agent
has its own thread, and agents execution can be carried by as many cores are
available in the machine). Communication between agents is synchronous and
it is prepared to handle any expression accepted by the API (i.e. any compil-
able expression). In order to understand this implementation, both the general
execution and message passing mechanisms must be observed.

Two operations are possible on channels, output and input, and agents com-
munication is performed through exchanging information between complemen-
tary channels in a synchronous manner (message passing). Agents attempting

PiStache: Implementing π-Calculus in Scala 87

to send a message are blocked until a message is actually received by some other
agent, and agents attempting to receive a message are blocked until a message
is actually sent.

In a parallel composition, for each channel, both the output and input sides
share a lock for mutual exclusion in order to keep at most one thread active
at a time. When a thread is set to wait, its execution will pause until it is
awaken by a signal. Different channels use different lock objects in order to
avoid interference. For agents in a summation, however, at most one term of a
summation is to be executed, the execution of guard prefixes must be attempted
sequentially (and not concurrently) until one of them succeeds. Then, a variation
of mutual exclusion with guard input/output prefixes has been implemented to
enforce that the appropriate preconditions are satisfied before calling the basic
input or output algorithms. The guarded variants report their success status as
return value, as this information is required by the runner in order to determine
the execution flow.

Producing threads is an expensive process. Although this cost is negligible in
long-lived agents, it takes a quite significant share of the lifetime of processes
that exist for only a few hundred milliseconds. If too many of these short-lived
agents are spawned in a short amount of time, the runner’s performance may be
severely harmed. The costs of new agents, still, can be minimized by the reuse
of threads. Java platform provides a cached thread pool6, which can be used to
start threads. When a new thread is requested, the pool will reuse one of the
cached threads, if one is available; otherwise it will produce a new one. Finished
threads are cached and, if not used within 60 seconds, discarded (so memory can
be released). This resource has also been implemented in PiStache.

4 API Usage

For the purpose of demonstrating the viability of PiStache as a platform for
developing concurrent applications, some small programs were written.

Client-Server example: This is an implementation of client-server [9], in which
three agents (C, S and P) communicate in order to print a message. The π-
calculus version is:

C = (νp)(νx)a(p).p̄x S = āb.S P = (νy)b(y).P

The PiStache version below presents the same semantics. Server (agent S) sends
a link name to Client (agent C) that identifies communication with Printer (agent
P). Client will then send a message to Printer, which will display it on the screen.
object Printserver {

def main (args:Array[String]) {

val sl = Link[Link[String]]
val pl = Link[String]
val Client = Agent {

6 http://download.oracle.com/javase/6/docs/api/java/util/

concurrent/Executors.html

http://download.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html

88 P. Matiello and A.C.V. de Melo

val l = Name[Link[String]]
sl(l) * l~"Hello , world!"

}
lazy val Server:Agent = Agent {

sl~pl*Server
}
lazy val Printer :Agent = Agent {

val msg = Name[String]
val act = Action { println (msg.value) }
pl(msg) * act * Printer

}
��
 ThreadedRunner(Client | Server | Printer) start

}
}

It is worth to note the explicit declaration and typing of names (including the
communication links), which is not required in pure π-calculus.

HTTP Server example: A tiny HTTP Server, capable of serving files in the
execution directory, was written and is presented here in a simplified form. First,
this application needs to perform communication through TCP sockets. The
class below takes, as constructor arguments, a socket and two π-calculus chan-
nels. It has a method returning an agent that behaves like an interface between
application and sockets.
����� PiSocket (socket:Socket, send:Link[String], recv:Link[String]) {

����	� val wBuf = Name[String]

����	� val rBuf = Name[String]

����	� val writeToSocket = Action { send value of wBuf through socket }

����	� val readFromSocket = Action { receive a line from socket and

store on rBuf }

����	� val closeSocket = Action { close socket }
def agent () = Agent {

lazy val writer:Agent = send(wBuf) * (If (wBuf != ����) {
writeToSocket * writer} | If (wBuf == ����) {closeSocket})

lazy val reader:Agent = readFromSocket * recv~rBuf * reader
writer | reader

}
}

Given a socket and two channels (e.g. send and recv), the call bellow will return
the desired agent:
��
 PiSocket (socket , send , recv).agent

This agent can read a message from channel send, and send this message through
the socket if it is not null (otherwise, the socket will be closed). Similarly, it will
receive a message from the socket and send it through recv. Therefore, a second
agent can send and receive a message through the socket (by sending it through
send and receiving through recv). Now, having this class, the actual server can be
presented. It is composed of agents:

serverAgent Accepts incoming connections and spawns other agents to handle them
handlerAgent Spawns an agent for interfacing with the socket and an agent to receive the

HTTP request
loop Receives the request and, depending on its validity, continues as one of the

agents below
okAgent Sends a header reporting success followed by the requested file
errAgent Sends a header reporting failure

PiStache: Implementing π-Calculus in Scala 89

def main(args:Array[String]) {

val serverSocket = ��
 ServerSocket(8080)
lazy val serverAgent:Agent = Agent {

var requestSocket:Socket = ����

val accept = Action { requestSocket = serverSocket.accept }
accept * (serverAgent | handlerAgent(requestSocket))

}
def handlerAgent(socket:Socket) = {

val send = Link[String]
val recv = Link[String]
var fileData :String = ����

val requestSocketAgent = ��
 PiSocket (socket , send , recv).agent

lazy val loop:Agent = Agent {
val buffer = Name[String]
val parse = Action {

parse request and fill the contents of the requested file in
fileData

}
recv(buffer) * parse * (

If (buffer.value != ����) {loop} |
If (buffer.value == "" && fileData != ����) {okAgent (send ,

fileData)} |
If (buffer.value == "" && fileData == ����) {errAgent (send)})

}
requestSocketAgent | loop

}
def okAgent (send:Link[String], extension:String, data:String) = Agent {

send~HEADER_OK * send~data * send~����
}
def errAgent (send:Link[String]) = Agent {

send~HEADER_ERR * send~����
}
��
 ThreadedRunner(serverAgent).start

}

Of course, the code above is lacking many details, including error handling and
the relevant imports. The full code is available online7.

5 Conclusions

Process calculi were developed to express and reason about sets of indepen-
dent processes and their interactions through mechanisms of message passing.
π-calculus is the pioneer member of this family that improve the previous calculi
with reconfiguration degree. Although originally developed as a foundation for
specification, a number of implementations were created (a few of them being
presented earlier in this document). These implementations have demonstrated
the feasibility of π-calculus reconfigurable concurrency model, not only as a for-
mal specification tool, but also in actual software programming.

PiStache is a π-calculus implementation similar to PiLib, being written as
a domain specific language hosted in the general-purpose language Scala. Still,
both implementations play different roles. PiLib offers a more fluid and comfort-
able interface for Scala programmers, since π-calculus is part of Scala standard
implementation. On the other hand, π-calculus elements are not clearly distin-
guished from Scala itself in PiLib implementation. In PiStache, these interface
7 http://bitbucket.org/pmatiello/pihttpd

http://bitbucket.org/pmatiello/pihttpd

90 P. Matiello and A.C.V. de Melo

conveniences are sacrificed to keep it syntactically closer to the pen-and-paper
calculus, in which every single element of the calculus can be assessed. This com-
promise is made both to allow for a more direct translation from specifications
into actual programs, covering an educational expectation, and for research in-
terest in the implementations of π-calculus verification techniques. Besides that,
the execution mechanisms differ in both implementations, with PiStache work-
ing atop an explicit abstract syntax tree. This structure can be easily exploited
by alternative execution mechanisms implementing different variants of the cal-
culus or even by tools focused on the verification of certain properties in the
specifications.

Regarding Kroc and Pict, programming languages developed on the top of
π-calculus semantics, there are differences beyond the programming interface.
PiStache is hosted in Scala and, in consequence, it exists within the Java ecosys-
tem. This is a very broad and rich environment, and allows for the luxury of
integrating with a number of other libraries.

The small HTTP Server presented as proof of concept application upholds the
stated perception that π-calculus can contribute to the development of real pro-
grams. The simple and expressive mechanics of the calculus, arguably, made the
task easier by providing adequate abstractions for reasoning about the problems
in question. Also, the treatment of formal expressions as executable code nar-
rows the gap between specifications and implementations, and does so without
the use of automatic code generation tools.

The realm of sequential programs has been positively and significantly im-
pacted by the introduction of several abstractions, often packed in paradigms
such as structured and object-oriented programming, and in collections of data
types. These abstractions facilitated the reasoning on these types of programs
by encapsulating low-level details behind more understandable symbols and op-
erations. A similar breakthrough is yet to happen for concurrent programs. Still,
this project has been developed under the understanding that the π-calculus
might contribute to this goal.

References

1. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for
mobile processes with nominal data and logic. Logical Methods in Computer Sci-
ence 7(1) (2011)

2. Carbone, M., Honda, K., Yoshida, N., Milner, R.: Structured communication-
centred programming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS,
vol. 4421, pp. 2–17. Springer, Heidelberg (2007)

3. Cremet, V., Odersky, M.: Pilib: A hosted language for pi-calculus style concurrency.
In: Lengauer, C., Batory, D.S., Consel, C., Odersky, M. (eds.) Domain-Specific
Program Generation. LNCS, vol. 3016, pp. 180–195. Springer, Heidelberg (2004)

4. Hoare, C.A.R.: Communicating Sequential Processes. Communications of the ACM
(1978)

5. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge
University Press (1999)

PiStache: Implementing π-Calculus in Scala 91

6. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I. I and
II. Information and Computation 100 (1989)

7. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive
Step-by-step Guide. Artima Incorporation (2008)

8. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press
(1998)

9. Parrow, J.: An Introduction to the pi-Calculus. In: Handbook of Process Algebra,
pp. 479–543. Elsevier (2001)

10. Pierce, B.: Types and Programming Languages. MIT Press (2002)
11. Pierce, B.C., Turner, D.N.: Pict: A Programming Language Based on the Pi-

Calculus. In: Proof, Language and Interaction: Essays in Honour of Robin Milner.
MIT Press (1997)

12. Pierce, B.C., Turner, D.N.: Pict: a programming language based on the Pi-Calculus,
pp. 455–494. MIT Press, Cambridge (2000),
http://portal.acm.org/citation.cfm?id=345868.345924

13. Schinz, M., Haller, P.: A Scala Tutorial for Java Programmers (2009),
http://www.scala-lang.org/node/198

14. Welch, P., Barnes, F.: Communicating Mobile Processes: introducing occam-pi. In:
25 Years of CSP. Springer, Heidelberg (2005)

15. Zhou, J., Zeng, G.: Describing and reasoning on the composition of grid services
using pi-calculus. In: International Conference on Computer and Information Tech-
nology, p. 48 (2006)

http://portal.acm.org/citation.cfm?id=345868.345924
http://www.scala-lang.org/node/198

Sound and Complete Abstract Graph

Transformation

Dominik Steenken, Heike Wehrheim, and Daniel Wonisch

Universität Paderborn,
Institut für Informatik,

33098 Paderborn, Germany
{dominik,wehrheim,dwonisch}@mail.upb.de

Abstract. Graph transformation systems (GTS) are a widely used tech-
nique for the formal modeling of structures and structure changes of sys-
tems. To verify properties of GTS, model checking techniques have been
developed, and to cope with the inherent infinity arising in GTS state
spaces, abstraction techniques are employed.

In this paper, we introduce a novel representation for abstract graphs
(which are shape graphs together with shape constraints) and define
transformations (execution steps) on abstract graphs. We show that these
abstract transformations are sound and complete in the sense that they
capture exactly the transformations on the concrete graph level. Further-
more, abstract transformation can be carried out fully automatically. We
thus obtain an effectively computable “best transformer” for abstract
graphs which can be employed in an abstraction-based verification tech-
nique for GTS.

1 Introduction

Today, graphs and graphs transformations are an established formal modeling
technique applied in lots of different areas (e.g. business processes [8], refac-
torings [5] or model transformations [11]). On the one hand, graphs naturally
come into play in a model driven software design (since metamodel instances are
graphs); on the other hand, graphs are clearly the adequate formalism to describe
structural relationships between system components (e.g. the system architec-
ture). In these approaches graph transformation rules (describing modification
of graphs) model system steps or changes of the system structure.

As with all formal models, verification is also an issue for graph transfor-
mation systems (GTSs). We might for instance be interested in proving that
certain erroneous structures never arise or that finally specific stable structures
are reached. Model checking techniques for GTSs generally follow the idea of
generating the whole state space of a GTS, i.e., the set of all graphs reachable
from some initial graphs via the application of transformation rules (see e.g.
Groove [14]). However, the state space easily gets infinite, for instance, once
we have a rule generating new nodes of the graph1. Therefore, a number of
1 If this rule is infinitely often applicable.

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 92–107, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Sound and Complete Abstract Graph Transformation 93

approaches for the verification of GTSs try to avoid the construction of the
complete set of reachable graphs (e.g., [1,4,20]). Among these are in particular
abstraction techniques ([3,4,15]); a principle, which our own approach follows as
well ([21]). Abstractions for GTSs work on abstract graphs instead of concrete
representations. In abstract graphs, nodes are not exactly represented but may
be summarized. A set of nodes can be summarized into one when all nodes are
similar; similarity being defined in different ways, e.g. by node types or by a
node’s neighborhood. Our approach to summarization is inspired by shape anal-
ysis techniques for programs ([19]) and thus abstract graphs are also called shape
graphs. In addition, so called instrumentation predicates on shape graphs help
to keep further information about concrete graphs. Instrumentation predicates
are an important concept for the abstraction technique as they can tune the
verification process towards specific properties.

Fig. 1. Soundness and completeness of abstract graph transformation

Every shape graph represents a (potentially infinite) number of concrete graphs
(via an embedding). For this technique we thus also need to lift concrete graph
transformation rules to abstract graphs, in order to obtain a notion of abstract
(or shape) graph transformation. There are basically two (sometimes contra-
dictory) requirements on this definition: on the one hand abstract transfor-
mation should be as precise as possible, on the other hand we have to make
an (over)approximation of the concrete transformations as to get only finitely
many different abstract graphs. In this paper, we solely look at the first issue,
i.e., we develop a notion of abstract graph transformations which precisely re-
flect concrete transformations. By precise reflection we understand the following
two properties (see Figure 1): (1) whenever a concrete graph Fj is reached by
applying transformation rule P to a concrete graph Gi , then application of P
on an abstraction S of Gi should give us a shape graph S ′ which represents Fj

(soundness), and – vice versa – (2) whenever we have a concrete graph Fj repre-
sented by S ′ and S ′ is reached by applying rule P to S , then we find a graph Gi

represented by S such that Fj is reached from Gi by P (completeness). When
abstract graph transformations are sound, safety properties proven on abstract
GTS hold on the concrete GTS as well. Furthermore, completeness guarantees

94 D. Steenken, H. Wehrheim, and D. Wonisch

that whenever an error is found in the abstract GTS, the counter example need
not be checked for validity on the concretization anymore2: every abstract path
to an error has a valid concretization.

The search for the “best” abstract transition relation (or abstract transformer
[7]) is also an issue for other abstraction techniques [18], like for instance pred-
icate abstraction for software verification. The best abstract transformer often
does not immediately give rise to a practical verification method as the set of
reachable abstract states might still be infinite in this case. Thus, the best trans-
former is the ideal which we strive to achieve.

In this paper, we propose a sound and complete definition of abstract graph
transformation which defines this ideal, best transformer on shape graphs. In our
approach, shape graphs still contain tunable predicates alike instrumentation
predicates, here called shape constraints. This is mandatory for the verification
process as it enables us to keep specific information about concrete graphs in
the abstraction. In contrast to instrumentation predicates, shape constraints
can however be fully automatically updated during abstract transformations.
The abstract transformer thus can (and has been) implemented, and there is
no further manual definition from users necessary. We have integrated this new
approach into our GTS verification tool (which has been using instrumentation
predicates with manually specified update formulas before). An evaluation has
shown that the new approach can significantly improve the precision of the
analysis. However, when using this ideal abstract transformer the verification
procedure does not always terminate. Further work has to show how to find a
good compromise between precision and the need for a terminating verification
technique. In this paper, we concentrate on the theoretical concept of a sound
and complete, and thus best abstract transformation.

2 Background

We start with a brief introduction to graphs, graph transformation rules and
shape graphs. In general, a graph consists of a set of nodes and edges between
nodes, edges potentially being labeled. Nodes represent entities of the modeled
system and edges some relationships between these entities. The labeling serves
as a way of naming relationships. In Figure 2a we see a graph consisting of a
scheduler, a CPU and two tasks. In our framework, we represent graphs as logical
structures.

Definition 1. A graph G is a logical structure over the logic I = {0, 1}, i.e.
G = (U ,P , ι) consisting of a set of nodes (or individuals) U , a set of labels
(or predicates) P with different arity, and an interpretation function (defining
edges) ι : Pk → (U k → I). Here, Pk is the set of k-ary predicates.

As we see here, the definition of edges via interpretations for predicates (label
names) gives us the possibility of also having unary (or even n-ary) edges besides
2 Unless one is interested in reachability from a particular initial state, not a set of

initial states.

Sound and Complete Abstract Graph Transformation 95

(a)

U = {s, c, t1, t2}
P = {for , next task , waiting ,S ,CPU ,Task}

ι waiting S CPU Task for s c t1 t2 nt s c t1 t2

s 0 1 0 0 0 1 0 0 0 0 1 1

c 0 0 1 0 0 0 0 0 0 0 0 0

t1 1 0 0 1 0 0 0 0 0 0 0 0

t2 1 0 0 1 0 0 0 0 0 0 0 0

(b)

Fig. 2. Graph describing a situation in a scheduling system and its formal representa-
tion as logical structure

(a) Shape graph (b) Graph transformation rule

Fig. 3. Start shape graph representing the graph of Figure 2a and a graph transfor-
mation rule Execute Task that assigns a tasks marked as next task to the CPU

normal ones. Figure 2b gives the logical structure for the graph G from Figure 2a.
Here, we see that for instance the types of nodes (task, scheduler etc.) appear
as unary predicates.

Graphs are logical structures over boolean logic; an edge is either existing
or not existing. In the abstraction we collapse sets of nodes into so-called sum-
mary nodes and thus lose information about the precise location of edges. This
uncertainty about edges is represented by a third truth value, denoted 1

2 . It de-
notes a kind of “don’t know” or “maybe” value. Formally, we use the (strong)
three-valued Kleene logic K (see [9]) for this purpose. A shape graph is thus
simply a logical structure over K. One particular predicate called sm is in the
set of predicates P1 of all shape graphs. It is used for marking summary nodes.
Summary nodes are drawn as dashed circles; maybe edges as dashed lines. The
shape graph in Figure 3a thus represents an abstraction of the concrete graph in
Figure 2a. Here, all task nodes are summarized by node t . This representation
relation is formally defined by embedding relations between logical structures.

Definition 2. A graph G = (U G ,P , ιG) is embedded in a shape graph S =
(U S ,P , ιS) wrt. to the embedding function f : U G → U S , denoted by G �f S,
if

96 D. Steenken, H. Wehrheim, and D. Wonisch

Table 1. Truth tables for ∧, ∨, and ¬ in Kleene logic

∧ 0 1
2

1

0 0 0 0
1
2

0 1
2

1
2

1 0 1
2

1

∨ 0 1
2

1

0 0 1
2

1
1
2

1
2

1
2

1

1 1 1 1

¬

0 1
1
2

1
2

1 0

– for each predicate p ∈ P and individuals u1, u2 ∈ U G we have ιG(p)(u1, u2) �
ιS (p)(f (u1), f (u2))3, and

– for each v ∈ U S such that there are two individuals u1, u2 ∈ U G with f (u1) =
f (u2) = v we have ιS (sm)(v) = 1

2 ,

where l1 � l2 holds for logical literals l1, l2 if l2 is more abstract than l14.

Intuitively, the embedding function tells us which concrete node is represented
by which abstract node.

Next, we are interested in modifications of graphs, i.e. graph transformation
rules. These rules express the possible steps of our system and tell us how the
structure evolves. A graph transformation rule P = 〈L,R〉 consists of a left
hand side L and a right hand side R. Both are ordinary graphs, i.e. two-valued
structures. Figure 3b shows a rule which assigns one of the tasks marked as next
task to the CPU. A graph transformation rule P can be applied to a graph G
if the left hand side can be found in G. Its application replaces the left hand
side L by the right hand side R. Formally, we have to find an injective function
m : U L → U G , called matching, such that for every binary predicate p ∈ P and
every u1, u2 ∈ U L we have ιG(p)(m(u1),m(u2)) = 1 if ιL(p)(u1, u2) = 1, where
L = (U L,P , ιL). This application condition for rules can also be expressed as a
first-order predicate logic formula:

ϕP =
∧

u1,u2∈UL

ιL(p)(u1,u2)=1

p(u1, u2)

︸ ︷︷ ︸
edges

∧
∧

u1,u2∈UL

u1 	=u2

¬(u1 = u2)

︸ ︷︷ ︸
injectivity

The matching m gives us an assignment of the U L nodes to nodes of the graph
G. From the point of view of the graph G, the elements from U L play the role of
free variables in the formula ϕP . Thus a matching m determines an assignment
to the free variables such that evaluation of the formula in the logical structure
of G yields true, which is denoted as �ϕP �Gm = 1.

For a graph transformation rule P = 〈L,R〉 and a graph G (to which P can
be applied), we define the result of applying P to G as the graph G ′ we get
by replacing the left hand side L in G with the right hand side R. Formally,
3 For simplicity we restrict ourselves to binary predicates in our definitions.
4 That is, 0 � 0, 1 � 1, 0 � 1

2
, 1 � 1

2
, and 1

2
� 1

2
.

Sound and Complete Abstract Graph Transformation 97

(a) Resulting graph (b) Resulting shape graph
(t kept)

(c) Resulting shape graph
(t removed)

Fig. 4. Results of applying Execute Task to the graph of Figure 2a and the shape graph
of Figure 3a, respectively

let E− = {(u1, p, u2) | u1, u2 ∈ U L ∧ ιL(p)(u1, u2) = 1 ∧ ((u1, u2 ∈ U R ∧
ιR(p)(u1, u2) = 0) ∨ u1 �∈ U R ∨ u2 �∈ U R)} denote the set of edges that are
removed by P and E+ = {(u1, p, u2) | u1, u2 ∈ U R∧ιR(p)(u1, u2) = 1∧((u1, u2 ∈
U L ∧ ιL(p)(u1, u2) = 0) ∨ u1 �∈ U L ∨ u2 �∈ U L)} the set of edges that are added
by P . Furthermore, we extend matchings m : U L → U G to m̂ : U L∪U R → U G

be letting m̂(u) = u for u ∈ U R. Then the result of applying P = 〈L,R〉 to
G = (U G ,P , ιG) wrt. some matching m is a graph G ′ = (U G′

,P , ιG
′
), where

U G′
= (U G \m(U L))∪ m̂(U R) and for each (binary) predicate p and each pair

of individuals u1, u2 ∈ U G′
:5

ιG
′
(p)(u1, u2) =

⎧⎪⎨⎪⎩
0 if (u1, p, u2) ∈ m(E−)
1 if (u1, p, u2) ∈ m̂(E+)
ιG(p)(u1, u2) otherwise.

We write G −P ,m−−→ G ′ if G ′ is the result of applying P to G wrt. the matching
m, and G −P−→ G ′ if there is some matching m such that G −P ,m−−→ G ′. Figure 4a
shows the result of applying rule Execute Task to the graph of Figure 2a using
matching {s �→ s , c �→ c, t ′ �→ t2}.

For our abstraction technique, we need to lift transformation rules to the level
of shape graphs. To this end, we first of all lift the application formula ϕP to
shape graphs. For this, we simply add one new conjunction which formalizes
the fact that the matching should not map left hand side nodes to summarized
nodes:

∧
u∈UL ¬sm(u). We let ϕP denote this formula as well6 (see Table 1 for

the truth tables of ∧, ∨, and ¬ in Kleene logic). If �ϕP �Sm = 0, we cannot apply
P to S , if it is 1 we can. However, with shape graph we now also have the case
that �ϕP �Sm = 1

2 . Intuitively, in this case, P can be applied to some (but possi-
bly not all) of the graphs represented by S . Obviously, we only want to apply
P to those graphs on which P can be actually applied. We thus materialize shape

5 Here, m is extended to edge sets via m(u1, p, u1) = (m(u1), p,m(u2)).
6 This conjunct could have already been added to ϕP assuming that in an ordinary

graph G all nodes are not summarized.

98 D. Steenken, H. Wehrheim, and D. Wonisch

(a) Materialized shape graph
(t kept)

(b) Materialized shape graph
(t removed)

Fig. 5. Materializations of the shape graph of Figure 3a with respect to Execute Task

graphs Sm � S out of S such that these shape graphs Sm represent exactly those
graphs that are represented by S and allow the application of P wrt. m.

We construct the set of materializations matPm(S) for a shape graph S =
(U S ,P , ιS), a transformation rule P = 〈L,R〉, and a matching m : U L → U S

such that �ϕP �Sm = 1
2 as follows. First, we have to consider those summary

nodes in S that occur on the left hand side of P , i.e., we consider Γ (m) :=
m(U L) ∩ U S

sum , where U S
sum ⊆ U S denotes the summary nodes in S . Out of

every such node u we have to materialize as many concrete nodes as get mapped
to u, such that P can be concretely applied on them. The relationship of these
materialized node to other nodes of the shape graph are inherited from the
original shape graph. In addition, we have to decide for each summary node in
Γ (m) whether to keep the node or to remove it. This represents the idea that
summary nodes can stand for any number of concrete nodes. Thus we get several
materializations of one shape graph, one for every set I ⊆ Γ (m), I being those
summary nodes which we keep in the materialization.

Definition 3. Let S = (U S ,P , ιS) be some shape graph, P = 〈L,R〉 be a trans-
formation rule, and m : U L → U S some matching such that �ϕP�Sm = 1

2 . Let
Γ (m) := m(U L)∩U S

sum . Then, for each I ⊆ Γ (m) the materialization of S wrt.
rule P , matching m, and according to I is defined as matPm(S , I) = (U ′,P , ι′),
with7

U ′ = U S \ (m(U L) \ I) ∪U L

and for each (binary) predicate p, letting m̂ = m ∪ idUS :

ι′(p)(u1, u2) =

{
1 if u1, u2 ∈ U L ∧ ιL(p)(u1, u2) = 1
ι(p)(m̂(u1), m̂(u2)) otherwise.

ι′(sm)(u) =

{
0 if u ∈ U L

ι(sm)(m̂(u)) otherwise.

7 W.l.o.g. we assume U S ∩ U L = ∅.

Sound and Complete Abstract Graph Transformation 99

The collection of all such shape graphs is then defined as the materialization of
S wrt. rule P and matching m:

matPm(S) = {matPm(S , I) | I ⊆ Γ (m)}

Note that the size of matPm can be exponential in the number of nodes in the
left hand side of the rule, but is finite. For more details, please refer to [21].
After materialization, we apply the rule like for ordinary graphs. Again, we
write S −P ,m−−→ S ′ if S ′ is the result of applying P to S wrt. the matching m, and
S −P−→ S ′ if there is some matching m such that S −P ,m−−→ S ′.

In Figure 5 we see the materializations of the shape graph S shown in Figure 3a
wrt. Execute Task and m := {s �→ s , c �→ c, t ′ �→ t}. In this case we have
Γ (m) = {s , c, t}∩ {t} = {t}. Thus, we get two materializations, one for I = {t}
(Figure 5a) and one for I = {} (Figure 5b). The former materialization Sm,1

reflects the case that the summary node t in S represented more or equal to
two tasks, where the latter materialization Sm,2 reflects the case in which t
represented exactly one task. On both materializations we can now apply Execute
Task , leading to the shape graphs shown in Figure 4b and Figure 4c, respectively.

3 Shape Constraints

As we see in Figure 3a the abstraction loses information about the precise number
of nodes and edges in the concrete graph. Our verification might however rely on
some (but not all) of this information. To this end, we attach further information
about the represented concrete graphs to the shape graph. This information
comes in the form of logical constraints on the represented graphs and in its basic
idea (but not its actual usage) follows the idea of instrumentation predicates in
shape analysis ([19]). For our example, we might for instance be interested in
showing that the CPU never serves more than two tasks at a time. Hence the
number of tasks present in concrete graphs is - to a certain extent - of interest.
We thus augment the shape graph in Figure 3a with a shape constraint called
task leq 2 and attach this constraint to node s . Formally, constraint task leq 2
is defined by the following meaning formula

α(v) := ¬∃ t1, t2, t3 : (t1 �= t2) ∧ (t1 �= t3) ∧ (t2 �= t3) ∧
next task(v , t1) ∧ next task(v , t2) ∧ next task(v , t3).

We attach this shape constraint to a particular node by means of a binding of
the free variables of the constraint to nodes in the shape graph, here v to s . In
general, we thus have the following definition of shape constraints.

Definition 4. Let S = (U ,P , ι) be a shape graph. A tuple (c, a) is called a
shape constraint for S if

– c is a first order predicate logic formula over S and
– a is an assignment that maps the free variables of c, free(c), to individuals

u ∈ U .

100 D. Steenken, H. Wehrheim, and D. Wonisch

S fulfills a set of shape constraints ΛS , denoted by S |= ΛS , iff �c�Sa �= 0 for
every (c, a) ∈ ΛS .

A shape constraint can thus be fulfilled in a shape graph or not fulfilled. Fur-
thermore, a set of shape constraints attached to a shape graph restricts the set
of represented concrete graphs.

Definition 5. Let S be a shape graph, G an ordinary graph and ΛS a set of
shape constraints for S such that S |= ΛS .

The graph G is embedded in (S , ΛS), denoted by G � (S , ΛS), iff G �f S for
some embedding function f and G |= concr(ΛS , f) for concr(ΛS , f) := {(c, a′) |
(c, a) ∈ ΛS , a′ : free(c) → U G , f ◦ a′ = a}. We let concr(S , ΛS) denote the set
of concrete graphs embedded in (S , ΛS).

Intuitively, whenever a shape constraint is true for a particular node in the
abstraction it should also hold for all represented nodes in the concretization.

In the following, abstract states are always given as pairs of shape graph
together with a set of shape constraints, (S , ΛS). This gives us additional infor-
mation in the abstraction. However, now the question arises how this additional
information is updated when rules are applied. Our intention is to achieve a rule
update for shape constraints which on the one hand is fully automatic (this is in
contrast to instrumentation predicates for which manual update formula need
to be given), and on the other hand is sound and complete. The latter property
means that – given a shape graph with constraints (S , ΛS) and a rule P – we
want to construct some (S ′, Λ′

S) such that

∀G ∈ concr(S , ΛS)∃F ∈ concr(S ′, ΛS ′) s.t. G −P−→ F (Soundness)
∀F ∈ concr(S ′, ΛS ′)∃G ∈ concr(S , ΛS) s.t. G −P−→ F (Completeness)

The basic idea how to guarantee soundness and completeness when updating
shape constraints is to alter the set of shape constraints such that no informa-
tion is lost by the application of a given rule. To get some feeling about how
the information contained in the shape constraints can be maintained, consider
an update mechanism that just leaves the shape constraints unchanged when
applying graph transformation rules. That is, we say (S , ΛS) −P−→ (S ′, ΛS ′) if
S −P−→ S ′ and ΛS ′ = ΛS . This update mechanism is unsound. For example, if S
is the shape graph of Figure 3a we could safely (without changing the described
set of graphs) add a shape constraint (c, a) to S expressing that the CPU does
not execute any task. However, if we then apply Execute Task to S and leave
the shape constraints unchanged, leading to (S ′, ΛS ′), we effectively describe an
empty set of graphs with (S ′, ΛS ′) (S ′ enforces an edge from c to t ′, while the
shape constraints forbid any outgoing edges for c). The problem here is that the
shape constraint (c, a) describes a fact that is true in S but not in S ′.

On the other extreme, we could construct an update mechanism which drops
all shape constraints with each rule application. Such an update mechanism is
sound, but obviously incomplete, as we lose all information contained in the
shape constraints with each rule application.

Sound and Complete Abstract Graph Transformation 101

In conclusion, a sound and complete update mechanism should be somewhere
in between “keep all constraints unchanged” and “completely remove all con-
straints”. In fact, our solution works as follows: we iterate over each shape con-
straint (c, a) ∈ ΛS and check for each atomic subformula ϕ in c whether ϕ refers
to an outdated information (outdated because the shape graph changed with the
rule application). If the information is not outdated, i.e. still valid, we leave the
subformula unchanged. Otherwise, we replace it by a literal which describes the
former value of ϕ in S (i.e., we effectively remove the outdated part from the
shape constraint).

As an example, reconsider the shape graph Sm,1 shown in Figure 5a together
the shape constraint (αtask leq 2(v), [v �→ s]), where αtask leq 2 denotes the mean-
ing formula of task leq 2. Moreover, for simplicity, assume for now that we re-
move the quantifiers in the shape constraint by explicitly naming candidates for
t1, t2, t3, namely, we get the formula

¬(next task(v , t1) ∧ next task(v , t2) ∧ next task(v , t3))

together with the assignment

[v �→ s , t1 �→ t , t2 �→ t , t3 �→ t ′]

as simplified shape constraint. Applying Execute Task to Sm we see that the
rule changes the interpretation of next task for the individuals s and t ′ (from
1 to 0). Taking our assignment into consideration, we thus have to replace the
subformula next task(v , t3) by the literal 1, thereby at least maintaining the
information that t represents at most one task that is marked as next task.

Things get a little more complicated if we take quantifiers into account. In that
case variables occurring in predicate formulae like p(u, v) may be bound. This
makes it impossible to statically deduce whether p(u, v) changes (i.e., refers to
an outdated information) or not. Nevertheless, our solution for this is to simply
encode the decision whether to replace the predicate formula by a literal or not
directly inside the formulae, leading to e.g.

(((u =w1)∧(v = w2))→ ιS (p)(w1,w2)) ∧ (((u �= w1) ∨ (v �= w2))→ p(u, v)),

for some predicate formula p(u, v) whose interpretation changes for individuals
w1,w2 when some rule P is applied.

In our example, we transform the shape constraints (αtask leq 2(v), [v �→ s]) ∈
ΛSm into the shape constraint (c′, a′) when applying Execute Task , where

c′ := ¬∃ t1, t2, t3 : (t1 �= t2) ∧ (t1 �= t3) ∧ (t2 �= t3) ∧
((((v = s) ∧ (t1 = t ′)) → 1) ∧ (((v �= s) ∨ (t1 �= t ′))→ next task(v , t1)))∧
((((v = s) ∧ (t2 = t ′)) → 1) ∧ (((v �= s) ∨ (t2 �= t ′))→ next task(v , t2)))∧
((((v = s) ∧ (t3 = t ′)) → 1) ∧ (((v �= s) ∨ (t3 �= t ′))→ next task(v , t3)))

and a′ := [v �→ s , s �→ s , t ′ �→ t ′]. The untransformed shape constraint enforces
a maximum number of two tasks that are marked as next tasks by the sched-
uler. The transformed shape constraint, on the other hand, effectively enforces

102 D. Steenken, H. Wehrheim, and D. Wonisch

a maximum number of one task that is marked as next task, which meets the
intuition, as the rule removed exactly one marked task.

Summing up our idea, we provide the following formal definition for the au-
tomatic transformation of shape constraints.

Definition 6. Let S and S ′ be shape graphs and P = 〈L,R〉 a graph trans-
formation rule that does not add or remove any individuals. Let ΛS be a set
of shape constraints for S and ΛS ′ a set of shape constraints for S ′. For some
matching m : U L → U S , we denote (S , ΛS) −P ,m−−→ (S ′, ΛS ′) iff S −P ,m−−→ S ′ and
ΛS ′ = {(transform(c), a∪idUS′) | (c, a) ∈ ΛS}, where transform(·) is inductively
defined as follows:

Atomic. For l ∈ {0, 1
2 , 1}: transform(l) = l .

For some binary predicate p ∈ P and variables v1, v2: Let

H := {(w1,w2) | wi ∈ (U S ∩U S ′
) ∧ ιS (p)(w1,w2) �= ιS

′
(p)(w1,w2)}

denote the set of combinations of individuals for which the interpretation of
p changes when the rule is applied. We define:

transform(p(v1, v2)) =

⎛⎝ ∧
(w1,w2)∈H

(
((v1 = w1) ∧ (v2 = w2)) → ιS (p)(w1, w2)

)⎞⎠∧

⎛⎝⎛⎝ ∧
(w1,w2)∈H

¬ ((v1 = w1) ∧ (v2 = w2))

⎞⎠ → p(v1, v2)

⎞⎠
For an atomic formula (v1 = v2) (and variables v1, v2):

transform((v1 = v2)) = (v1 = v2)

Logical Connectives. For some formulae ϕ1 and ϕ2:

transform(ϕ1 ∧ ϕ2) = transform(ϕ1) ∧ transform(ϕ2)
transform(ϕ1 ∨ ϕ2) = transform(ϕ1) ∨ transform(ϕ2)

transform(¬ϕ1) = ¬transform(ϕ1)

Quantifiers. For some formula ϕ:

transform(∃ v : ϕ) = ∃ v : transform(ϕ)
transform(∀ v : ϕ) = ∀ v : transform(ϕ)

To simplify the definition we assumed that the given transformation rule does
not add and remove any individuals. This is – however – not mandatory. If we
allow the graph transformation rule to add and remove individuals, we have
to alter e.g. the transformation for existential quantifiers such that we exclude

Sound and Complete Abstract Graph Transformation 103

newly added individuals and include removed individuals in the quantification.
That is, we get:

transform(∃ v : ϕ(v)) =

⎛⎝∃ v :

⎛⎝ ∧
w∈US′\US

¬(v = w)

⎞⎠ ∧ transform(ϕ(v))

⎞⎠∨

⎛⎝ ∨
w∈US\US′

transform(ϕ(w))

⎞⎠
A full definition that takes all sort of rules into account can be found in [22].

4 Soundness and Completeness

Now that we have seen how abstract transformation rules can be defined for
shape constraints, we can state our main result about soundness and complete-
ness8.

Theorem 1. Let (S , ΛS), (S ′, ΛS ′) be shape graphs with shape constraints and
let P = 〈L,R〉 be a graph transformation rule such that (S , ΛS) −P−→ (S ′, ΛS ′).
Then the following holds true.

– Soundness: ∀G ∈ concr(S , ΛS)∃G ′ ∈ concr(S ′, ΛS ′) s.t. G −P−→ G ′, and
– Completeness: ∀G ′ ∈ concr(S ′, ΛS ′)∃G ∈ concr(S , ΛS) s.t. G −P−→ G ′.

A central proposition needed for the proof is that the shape constraints ΛS of a
given shape graph S get transformed by a rule application such that the shape
constraints ΛS are fulfilled in S if and only if the transformed shape constraints
are fulfilled in the transformed shape graph.

Lemma 1. Let S be a shape graph. Let ΛS be a set of shape constraints for
S . Let P be a graph transformation rule. Let (S , ΛS) −P−→ (S ′, ΛS ′). We have
S |= ΛS if and only if S ′ |= ΛS ′ .

Proof. By induction over the structure of shape constraints in ΛS . �

We can now sketch the proof of Theorem 1.

Proof of Theorem 1. We start by sketching the proof of completeness. To this
end, we pick some G ′ ∈ concr(S ′, ΛS ′). Let G ′ �f ′ S ′ and ΛG′ := concr(ΛS ′ , f ′)
(G ′ |= ΛG′). We have to show that there is some G ∈ concr(S , ΛS) such that
G −P−→ G ′. To find such a graph G, we simply backwards apply P to G ′ to get an
unique graph G �f S in our DPO approach. Afterwards, we are left to show that
G |= ΛG holds for ΛG := concr(ΛS , f). To show this, we apply P onto (G, ΛG) to
8 For the theorem we actually assume a DPO-like (double-pushout, [13]) approach for

the application of transformation rules rather than the SPO-like (single-pushout)
approach as suggested in Section 2.

104 D. Steenken, H. Wehrheim, and D. Wonisch

get (G ′, ΛG′
aux

). While in general ΛG′ �= ΛG′
aux

, we can find for each (c,m) ∈ ΛG′
aux

a (c′,m ′) ∈ ΛG′ (and vice versa) such that c only syntacticly differs from c′ in the
free variables introduced with the rule application. Furthermore, each such free
variable u in c gets assigned to same individual u ∈ U G′

by m (m(u) = id(u) =
u) as the corresponding free variable u ′ in c′ by m ′ (m ′(u ′) = f ′−1(u ′) = u 9).
We thus can conclude from G ′ |= ΛG′ that G ′ |= ΛG′

aux
also holds. By Lemma 1

it follows that G |= ΛG .
For the soundness we start with a graph G ∈ concr(S , ΛS) and show that

for G ′ with G −P−→ G ′ we have G ′ ∈ concr(S ′, ΛS ′). Let G �f S and ΛG :=
concr(ΛS , f). We apply P onto G and get (G, ΛG) −P−→ (G ′, ΛG′

aux
) with G ′ �f ′

S ′. By Lemma 1 we can conclude with G |= ΛG that G ′ |= ΛG′
aux

. Again, in
general, ΛG′

aux
�= ΛG′ for ΛG′ := concr(ΛS ′ , f ′). But similar as above, one can

show that G |= ΛG′ follows from G ′ |= ΛG′
aux

. �

For our verification technique, we now get the following property from Theo-
rem 1. We start the construction of the abstract state space with a shape graph
together with shape constraints which represent all possible initial graphs, i.e.
graphs representing initial states of our system. The state space is then con-
structed using the abstract transformations. Whenever we reach an abstract
state invalidating our (safety) property, we directly get a valid counter example,
i.e. by Theorem 1 we know that there is a sequence of concrete steps starting
from one of the initial graphs reaching an erroneous concrete graph.

We have integrated shape constraints and their updates into our graph trans-
formation tool which is built on-top of the 3-valued logic engine TVLA [6]. An
evaluation shows that the overhead of using shape constraints is almost negligible
(for terminating analyses) and that the length and amount of shape constraints
usually stay at a manageable size.

5 Conclusion

In this paper we introduced a novel approach for the representation of abstract
graphs that relies on shape graphs and shape constraints. We furthermore showed
how to fully-automatically apply graph transformation rules to our abstract
graphs such that no additional information is lost. That is, we can efficiently
compute the best abstract transformer in our abstract domain and the abstract
domain is expressive enough such that an exploration of the abstract state space
based on the best abstract transformer is both sound and complete. In conse-
quence every counterexample in the abstract state space we find is guaranteed
to have a concrete counterpart.

Related Work. Several approaches for the construction of abstract transform-
ers can be found in literature. Graf and Säıdi showed in [10] how to construct
best abstract transforms for Cartesian predicate abstractions using a theorem
9 The inverse of the embedding function f ′−1 is well-defined for these individuals as

they are non-summarizing (which is guaranteed by the materialization).

Sound and Complete Abstract Graph Transformation 105

prover. In [2] the abstract domain of [10] is generalized to boolean predicate
abstraction and several abstract transformers differing in its precision and effi-
ciency are suggested. [17] further generalizes these results in that an approach for
the computation of best abstract transforms for arbitrary finite-height abstract
domains (lattices) is introduced.

More closely to graph transformation systems, in [4], a method for automatic
abstraction of graphs is introduced. Intuitively speaking, nodes are identified if
their neighborhood of radius k ∈ N is the same. Following this approach, the
authors describe a fully automatic method for the verification of GTSs. In the
approach, the transformation of abstract graphs is performed in three stages.
First, the abstract graphs are materialized such that the left hand side of a
given rule is concretely present in the materialization. Then, second, the rule is
applied the concrete subgraph and third the resulting graph is normalized using
neighborhood abstraction.

In [19] a shape analysis of programs is proposed. The abstract domain used
in this approach is the same as ours except that they use instrumentation pred-
icates instead of shape constraints. Similar as in the work above and similar
to our approach, materialization is utilized to improve the precision of abstract
transformations. However, to yield precise abstract transformers, the approach
based on instrumentation predicates requires for hand-written update formu-
lae for each instrumentation predicate and each transformation rule. In [16] the
authors improve these results by using finite differencing to automatically de-
termine update formulae for the instrumentation predicates, which yet might
be less precise than hand-written ones. Another, more recent approach for the
computation of best abstract transformers in the domain is presented in [23].
There, the idea is to characterize shape graphs by first-order logic formulae [24]
and then use decisions procedures, similar to [17], to compute the best abstract
transformer.

Future Work. In the future, we want to look at finite subsets of our abstract
domain that allow us to guarantee the termination of the abstract exploration.
When doing so, on the one hand, the precision of the finite subsets should be
still tunable such that, in principle, a future CEGAR (counter-example guided
abstraction refinement, [12]) approach can be employed. On the other hand, the
finite subsets should be defined such that the best abstract transformer is still
efficiently computable.

References

1. Baldan, P., Corradini, A., König, B.: A framework for the verification of infinite-
state graph transformation systems. Information and Computation 206(7), 869–907
(2008)

2. Ball, T., Podelski, A., Rajamani, S.: Boolean and cartesian abstraction for model
checking c programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 268–283. Springer, Heidelberg (2001)

106 D. Steenken, H. Wehrheim, and D. Wonisch

3. Bauer, J., Wilhelm, R.: Static analysis of dynamic communication systems by
partner abstraction. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634,
pp. 249–264. Springer, Heidelberg (2007)

4. Bauer, J., Boneva, I., Kurbán, M., Rensink, A.: A modal-logic based graph ab-
straction. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008.
LNCS, vol. 5214, pp. 321–335. Springer, Heidelberg (2008)

5. Bisztray, D., Heckel, R., Ehrig, H.: Verification of architectural refactorings by rule
extraction. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961,
pp. 347–361. Springer, Heidelberg (2008)

6. Bogudlov, I., Lev-Ami, T., Reps, T., Sagiv, M.: Revamping TVLA: making para-
metric shape analysis competitive. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 221–225. Springer, Heidelberg (2007)

7. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 1979, pp. 269–282. ACM, New York (1979)

8. Engels, G., Güldali, B., Soltenborn, C., Wehrheim, H.: Assuring consistency of
business process models and web services using visual contracts. In: Schürr, A.,
Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 17–31. Springer,
Heidelberg (2008)

9. Fitting, M.: Kleene’s three valued logics and their children. FI 20, 113–131 (1994)
10. Graf, S., Saidi, H.: Construction of abstract state graphs with pvs. In: Grumberg,

O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
11. Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim,

H.: Showing full semantics preservation in model transformation - a comparison of
techniques. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 183–198.
Springer, Heidelberg (2010)

12. Jha, S., Lu, Y., Grumberg, O., Clarke, E., Veith, H.: Counterexample-guided Ab-
straction Refinement. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 152–165. Springer, Heidelberg (2006)

13. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science 109(1-2), 181–224 (1993)

14. Rensink, A.: The GROOVE simulator: A tool for state space generation. Applica-
tions of Graph Transformations with Industrial Relevance, 479–485 (2004)

15. Rensink, A., Distefano, D.: Abstract graph transformation. Electr. Notes Theor.
Comput. Sci. 157(1), 39–59 (2006)

16. Reps, T., Sagiv, M., Loginov, A.: Finite differencing of logical formulas for static
analysis. ACM Trans. Program. Lang. Syst. 32, 24:1–24:55 (2010)

17. Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.
In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 3–25. Springer,
Heidelberg (2004)

18. Reps, T.W., Sagiv, S., Yorsh, G.: Symbolic implementation of the best trans-
former. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266.
Springer, Heidelberg (2004)

19. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

20. Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification
of ad hoc routing protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 18–32. Springer, Heidelberg (2008)

Sound and Complete Abstract Graph Transformation 107

21. Steenken, D., Wehrheim, H., Wonisch, D.: Towards a shape analysis for graph
transformation systems. In: Proceedings of the 22nd Nordic Workshop on Pro-
gramming Theory (2010), Technical Report,
http://www.cs.uni-paderborn.de/fileadmin/Informatik/AG-Wehrheim/

Personen/Dominik Steenken/ShapeAnalysis2010TR.pdf

22. Wonisch, D.: Increasing the preciseness of shape analysis for graph transformation
systems. Master’s thesis, University of Paderborn (August 2010)

23. Yorsh, G., Reps, T., Sagiv, M.: Symbolically computing most-precise abstract op-
erations for shape analysis. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 530–545. Springer, Heidelberg (2004)

24. Yorsh, G., Reps, T., Sagiv, M., Wilhelm, R.: Logical characterizations of heap
abstractions. ACM Trans. Comput. Logic 8 (January 2007)

http://www.cs.uni-paderborn.de/fileadmin/Informatik/AG-Wehrheim/Personen/Dominik_Steenken/ShapeAnalysis2010TR.pdf
http://www.cs.uni-paderborn.de/fileadmin/Informatik/AG-Wehrheim/Personen/Dominik_Steenken/ShapeAnalysis2010TR.pdf

On the Specification, Verification and Implementation of
Model Transformations with Transformation Contracts

Christiano Braga, Roberto Menezes, Thiago Comicio,
Cassio Santos, and Edson Landim

Instituto de Computação, Universidade Federal Fluminense, Brazil
{cbraga,rmenzes,tcomicio,cfernando,elandim}@ic.uff.br

Abstract. Model transformations are first-class artifacts in a model-driven de-
velopment process. As such, their verification and validation is an important task.
We have been developing a technique to specify, verify, validate and implement
model transformations. Our technique is based on the concept of transforma-
tion contracts, a specification that relates two modeling languages and declares
properties that must be fulfilled in such a relation. A transformation contract is
essentially a transformation model that allows for the verification and validation
of a model transformation using the same techniques one uses to verify and vali-
date any given model. This paper describes our technique, discusses consistency
of model transformations and reports on its application to a model transformation
from access control models to Java security.

1 Introduction

Model-driven development (MDD, e.g. [15]) is a software engineering discipline that
considers models as live artifacts in the development process. By live artifacts we mean
that models are not used for documentation purposes only but actually as input to soft-
ware tools that may operate on them and produce other artifacts. Such artifacts may be
compilable source-code or other models, in the same or different abstraction levels than
the source model. MDD aims at allowing for a generative software development process
in which applications are produced out of models possibly described at the application
domain level.

Model transformations are first-class artifacts in a model-driven development pro-
cess. As such, their specification, verification and validation are important tasks in an
MDD process. A transformation contract [10, 14, 7, 8, 12] is a specification of a model
transformation. Essentially, a transformation contract is comprised by relations between
the model elements of the modeling languages it relates and properties that such rela-
tions must fulfill. Therefore, a model transformation specification may be understood
as a metamodel. In this paper, we follow the terminology of [6] and call the metamodel
representing a model transformation a transformation metamodel. A particular applica-
tion of a model transformation is represented as an object model instance of the trans-
formation metamodel. A transformation contract is thus a transformation metamodel
and a set of properties over it. Under this perspective, model reasoning techniques may
be applied to reason about model transformations as well.

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 108–123, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Specification, Verification and Implementation of Model Transformations 109

More formally, we say that a model m is well-formed with respect to a metamodel
M , denoted by m ∈ M , if m is syntactically a proper instance of M , that is, essentially,
the objects in m are instances of metaclasses in M and links in m are instances of
associations in M . A model m is in conformance with M , denoted by m |= PM , if the
properties of the metamodel M hold in m. A transformation contract (see Section 4)
between two modeling languages M and M ′ related by a set of associations A, denoted
by M �A M ′, is a pair comprised by the transformation metamodel resulting from
the disjoint union of M , M ′ and A, and a set of properties over the transformation
metamodel. A model transformation is said correct with respect to a transformation
contract M �A M ′ iff m |= PM ⇒ ((m′ |= P ′

M)∧ ((m �l m′) |= PM�AM ′)) if m ∈
M, m′ ∈ M ′, l ∈ A, m �l m′ ∈ M �A M ′, where PM are the properties of the
metamodel M and m �l m′ is an instance of the transformation metamodel of M �A

M ′ with l a set of links well-formed with respect to A.
In [10, 14, 7, 8], the authors specify such properties as invariants in the Object Con-

straint Language representing typing rules of the different metamodels involved in a
model transformation. In this paper we move forward by generalizing previous work
by allowing the automatic verification of model transformation consistency understood
as satisfiability of an associated theory in Description Logic [2]. We also discuss the
implementation of transformation contracts as the application of a design pattern that
captures our way of designing transformation contracts in the context of a model trans-
formation from access control models to Java security. Space constraints prevent us
from discussing other applications of our approach. We refer the interested reader to
http://lse.ic.uff.br for a model transformation from UML class diagrams to
Enterprise Java Beans code and other tools.

This paper is organized as follows. Section 2 discusses related work. Section 3 de-
scribes our proposed model transformation process. Section 4 gives an algebraic defini-
tion of transformation contracts and exemplifies it in the context of our example model
transformation from access control models to Java security. Section 5 describes how
consistency verification may be added to our model transformation process and exem-
plifies its application. Section 6 reports on a design pattern for the implementation of
model transformations according to our proposed model transformation process and
exemplifies its application. We conclude this paper in Section 7 with our final remarks.

2 Related Work

Our previous work in [7, 8, 12] agrees in spirit with [10, 14]. However, there are differ-
ences at the specification, verification and implementation levels. At the specification
level, we adopt a relational approach towards the specification of a model transforma-
tion, similar in essence to [1, 6] but different from [10, 14] where transformation con-
tracts are specified as OCL invariants from source to target model elements. In [1,6,14]
their approach is discussed informally while in Section 4 transformation contracts are
formalized as algebras. The specification of a relation between the model elements
of the metamodels related by a model transformation is essential to generalize from
OCL invariants and understand that different kinds of properties may be specified over
such relation. It is important to make explicit the relationship among the metamodels.

http://lse.ic.uff.br

110 C. Braga et al.

At the verification level, different kinds of properties may be reasoned upon despite
OCL invariants. One such property is model consistency understood as satisfiability of
the description logic theory (or knowledge base or TBox, in description logic termi-
nology) associated with a given model. Note that given the perspective that we apply
here, model transformations may also be checked for consistency, as it is also a meta-
model! At the implementation level, given our generalization, we are not confined to
OCL based languages such as OMG’s Query View Transformation [16] to specify our
transformation contracts. QVT is one possibility, that allows for the specification of the
relation among the metamodels related by the model transformation. However, it should
be clear that it is one particular implementation of the the transformation metamodel,
not the only one. Moreover, we also generalize the understanding of concrete and ab-
stract syntaxes discussed in [1, 14]. There, the authors understand that the concrete
syntax of a modeling language must be in bijection with the abstract syntax described
by the metamodel. This has the benefit for the model transformation designer to have
a parser for any given modeling language. However, this choice is cumbersome for the
user since one must create a quite detailed model so the machine may understand what
one wants. The idea of a domain-specific modeling language is precisely to allow de-
scriptions at the domain level and if possible concise ones. This is what UML profiles
are for. In the design pattern described in Section 6, we allow the model transforma-
tion designer (actually the modeling language designer) to define how a model must be
represented as an instance of a metamodel and its inverse, in the form of parsing and
pretty-printing functions.

QVT and Triple Graph Grammars [17] (TGG) are other possible specification frame-
works for a model transformation that requires specific theory and machinery to reason
and implement model transformations. The transformation contracts approach proposed
in this paper is not biased to any such specification languages and may be used with
them as well. Note, however, that QVT is bound to OCL as the specification language
for the properties of metamodels and there are properties best specified in other seman-
tic frameworks, such as consistency in DL as discussed in this paper. TGG may not have
QVT’s restriction on the specification language for metamodel properties but another
aspect of our approach is that we apply to model transformation specification design the
same specification languages and techniques one would to design a modeling language.
No additional framework, such as QVT or TGG, is necessary.

In [6] the authors discuss the idea of a transformation models to specify a model
transformation. We share the idea of transformation models but in this work is make
precise what we mean by transformation model and how it may be used to reason on
model transformations.

3 Model-Driven Development with Transformation Contracts

Model transformations relate languages. If one decides to work with the standards of
the Object Management Group (OMG) to take advantage of the interoperability gained
from using such standards, the abstract syntax of the languages related by a model
transformation may be described in the form of a UML class diagram. Such a model is
called a metamodel since it describes the syntax that models should follow.

On the Specification, Verification and Implementation of Model Transformations 111

A model that is a proper instance of a metamodel is called well-formed with respect
to the metamodel. The notion of well-formedness may be understood as the pertinence
of a program with respect to the programming language it is written in, that is, a model
must be well-formed with respect to its metamodel as a program written in a language
L must be well-formed with respect to L’s syntax. For example, UML has a meta-
model and any UML class diagram may be seen as an instance of the UML metamodel
that should be well-formed with respect to it. Figure 1 shows a simplified version of
the UML metamodel, slightly enhanced from [15] by considering inheritance between
classes through the association inherited-inheritsFrom. The metamodel essentially rep-
resents the notions of datatypes, classes, attributes, operations, interfaces, association
ends, their inter-relations and their typing relations.

Fig. 1. Simplified UML metamodel

UML is an extensible modeling language. Any given UML model element may be
tagged or stereotyped, using UML terminology, in order to denote a new entity named
after the tag’s name. This is “UML’s way” of defining domain specific modeling lan-
guages. We may now, once again, draw a relationship between model-driven concepts
and programming languages concepts. One may understand a UML profile, which is
essentially a UML extension consisting of a set of stereotypes and other extension el-
ements, as the concrete syntax of a modeling language M . The metamodel of M may
be understood as its abstract syntax. With that understanding in mind, the first step that
a model transformation should do when transforming an UML model m written using
an UML profile that represents a modeling language M is to map m into an instance of
M ’s metamodel. This step is similar to language parsing in a compiler.

112 C. Braga et al.

Up to this point, the model-driven development process we are describing in this
paper can be drawn as follows, where m, m′, n, n′ are models; S and T represent the
source and target metamodels related by a model transformation τ ; we write m ∈ M
to denote that the model m is well-formed with respect to M where M represents the
concrete syntax for a modeling language M and M represents the abstract syntax of
the modeling language M ; parse is the mapping that given a model m written in the
concrete syntax of a modeling language M (S and T in the diagram) generates an
abstract syntax version m′ of m where m′ is well-formed with respect to M; finally,
pretty print is the inverse mapping of parse , that is, it generates the concrete syntax of
the modeling language M given a model instance ofM,

m ∈ S
parse �� m′ ∈ S τ �� n ∈ T

pretty print �� n′ ∈ T.

It is not always true, however, that any well-formed model with respect to a given meta-
model is in conformance with it. For instance, a UML class model m with an inheri-
tance chain that has a cycle may be syntactically well-formed with respect to UML’s
metamodel but it is not in conformance with it. The reason is that there is an invariant
in the UML metamodel that specifies that there should be no cycles in any inheritance
chain. Since the invariant does not hold in m, the model m is not in conformance with
UML’s metamodel. The conformance relation between a model m and a metamodel M
is given by well-formedness of m with respect to M and validity of the invariants of M
in m, assuming M consistent, that is, assuming that M has instances. The conformance
relation between a metamodel and an instance of it is similar to the concept of type
checking in programming languages. A syntactically correct program p with respect to
a language L is ill-typed if the typing rules of L do not apply to p.

One way to specify such invariants is using the Object Constraint Language (OCL).
Essentially, OCL has several constructs for manipulating collections of typed model
elements in a model m, navigating through m’s relationships, defining operations and
invariants in M , where M is the metamodel of m. For example, the invariant noCy-
clesinClassHierarchy below checks for the presence of cycles in class hierarchies in a
model instance of the UML metamodel by verifying for each class c if c is not included
in the transitive closure of the inheritsFrom relationship that represents class inheritance
hierarchy. The invariant uses two operations, namely superPlus and superPlusOnSet, to
calculate the transitive closure. The operation superPlusOnSet does the actual calcula-
tion by a recursive call on each element of the collection yielded by the inheritsFrom
relation for each class c. Regarding OCL syntax, the keyword context defines the type
of objects that the invariant should be applied to. The keyword inv defines an invariant.
The informal meaning of the remaining OCL constructors in the example are as follows:
forAll iterates over the elements of a given collection checking for a given predicate;
excludes checks if a given collection does not contain a given element; collects creates a
collection of objects such that a given predicate holds; flatten receives a set which may
have other sets as elements and produces a flatten set of objects from its set elements;
asSet casts a collection into a set; and including includes a given element in a given col-
lection. The user-defined function emptySet constructs an empty set of objects of type
Class.

On the Specification, Verification and Implementation of Model Transformations 113

1 context Class inv noCyclesinClassHierarchy: self.inheritsFrom→forAll(r|r.superPlus()→excludes(self))
2 context Class::superPlus():Set(Class) body: self.superPlusOnSet(self.emptySet())
3 context Class::superPlusOnSet(rs:Set(Class)):Set(Class) body:
4 if self.inheritsFrom→notEmpty() and rs→excludes(self)
5 then self.inheritsFrom→collect(c : Class | c.superPlusOnSet(rs→including(self)))→flatten()→asSet()
6 else rs→including(self) endif

OCL can be used to automatically validate UML models. Considering an implemen-
tation of an OCL interpreter, such as [11], one may actually apply the invariants of a
metamodel M to a syntactically well-formed model m with respect to M to guarantee
m’s conformance with respect to M . Therefore, before applying a model transforma-
tion to a given model m, one must make sure that m is syntactically well-formed with
respect to M and all invariants in M (such as noCyclesinClassHierarchy) hold in m.
For example, a UML class diagram must be well-formed with respect to the metamodel
in Figure 1 and the invariant noCyclesinClassHierarchy should hold on it.

The MDD process adopted in this paper when invariants are considered may be
drawn as follows where IM are the invariants of the metamodel of the modeling lan-
guage M and m |= IM means that all the invariants in IM hold in the model m ∈ M,

m ∈ S
parse �� m′ ∈ S, m′ |= IS

τ �� n ∈ T , n |= IT
pretty print �� n′ ∈ T.

A transformation contract is a specification of what a model transformation should do.
It is written in the form of invariants that must hold in the transformation metamodel
of the source and target languages related by a set of associations. By transformation
metamodel we mean a metamodel K resulting from a model operation S �AK T on
two given metamodels S and T that extends the metamodels S and T by: (i) disjointly
uniting all the model elements of S and T ; (ii) declaring associations a ∈ AK that
relate classes in S with T and disjointly uniting AK with S and T ; and (iii) declaring
invariants IK over AK. The MDD process adopted in this paper when transformation
contracts are considered may be drawn as follows where K = S �AK T , k ∈ K,
l ∈ AK and k = (m �l n),

m ∈ S
parse �� m′∈S, m′ |= IS

τ �� n ∈ T , n |= IT , k |= IK
pretty print �� n′ ∈ T.

4 Specifying Transformation Contracts

In this section we formalize algebraically the concept of transformation contracts and
exemplify its specification. We begin with the formal definitions and then, for our ex-
ample, we represent metamodels as UML class diagrams constrained by expressions in
OCL. The equational interpretation of a class diagram means essentially to understand
it as an algebraic signature where a class declaration is formalized as a sort declaration
with an appropriate constructor operation and an association declaration is formalized
as an operation over the appropriate sorts representing the classes that the given associa-
tion relates. Cardinality constrains and OCL invariants are formalized as equations over
the signature defined from class and association declarations. For OCL in particular,

114 C. Braga et al.

there is a general theory for basic OCL operations which is extended (in a precise al-
gebraic sense) for each OCL constrained class diagram. (We refer the interested reader
to [13] for an algebraic formalization of OCL.) The formal definitions below are used
in the example, described later in this section, to make it precise.

Definition 1 (Equational theory). An equational theoryM is a structure 〈Σ, E〉where
Σ is the signature ofM and E is a set of terminating and confluent equations over Σ.

Definition 2 (Metamodel). A metamodel M of a modeling language M is an equa-
tional theoryM = 〈C ∪A, I〉 where C is the signature defining the metaclasses of M ,
A is the signature defining the associations of M , and I is a set of equations over C∪A
representing the invariants of M .

Definition 3 (Transformation contract). A transformation contract S �A T between
modeling languages S and T related by the associations in A is an equational theory
K = 〈(CS ∪ AS)
 (CT ∪ AT)
 AK, IS ∪ IT ∪ IK〉, where
 is the disjoint union
operation over sets, S = 〈(CS ∪ AS), IS〉 is the metamodel of the modeling language
S, T = 〈(CT ∪AT), IT 〉 is the metamodel of the modeling language T , AK is a signa-
ture representing associations in A, and IK is a set of equations over AK representing
invariants over the associations between S and T .

We exemplify the specification of a transformation contract with an excerpt, due to
space constraints, of the model transformation from the platform independent mod-
eling language SecureUML+ComponentUML [4], for access control modeling, to a
platform specific modeling language we call JAAS that represents the Java Authenti-
cation and Authorization Service. This excerpt is part of the SecureUMLtoJAAS+AAC
model transformer that generates AspectJ code, an extension of the Java program-
ming language with aspect-oriented concepts, with JAAS support from access con-
trol models for Java-based applications. The tool is available for download from
http://lse.ic.uff.br. The complete description of the model transformation is
given in [12].

The modeling languages. SecureUML+ComponetUML is a language to model access
control. A SecureUML+ComponentUML model describes permissions that user roles
have in order to perform actions over entities. Examples of such actions are: (i) the ex-
ecution of a method, (ii) updating an entity’s state, or (iii) full access to an entity. The
first two actions are atomic actions and the last one a composite action. As opposed to
atomic actions, composite actions form a collection of actions which may be atomic or
composite. The EntityFullAccess composite action, for instance, allows for both read
and update access to all elements of an entity, that is, its attributes, methods and associ-
ation ends. It includes EntityRead and EntityUpdate which in turn include AtomicRead
and AtomicUpdate, respectively. SecureUML also allows for the modeling of user roles’
hierarchies. Role inheritance means that if role r1 inherits from role r2 than all permis-
sions of r2 also apply to r1. The metamodel of SecureUML+ComponentUML is given
in Figure 2.

We have defined a modeling language called JAAS, which is the acronym for the
Java Authorization and Authentication Service, to capture the access control subset of
the Java security framework. Its metamodel is depicted in the diagram in Figure 3.

http://lse.ic.uff.br

On the Specification, Verification and Implementation of Model Transformations 115

(a) SecureUML metamodel

(b) ComponentUML metamodel

Fig. 2. SecureUML+ComponentUML metamodel

In JAAS there are different authentication mechanisms such as LDAP or NIS. These
mechanisms are captured as instances of a protection domain. The metaclasses Prin-
cipal, JAASPermission and JAASAction are the counter parts of Role, Permission and
Action in SecureUML. We will focus on the transformation from Role, Permission and
Action to Principal, JAASPermission and JAASAction in this paper.

The transformation contract. The “raison d’être” of a transformation contract is to
guarantee that essential properties of the source model are preserved in the target model.
In our example, we want to guarantee that a user in a given SecureUML role is properly
represented as a principal, that is, a principal may enact the same actions, with the same
constraints, of its associated role, no more no less.

As opposed to SecureUML, JAAS does not have role hierarchies or composite action
hierarchies. The transformation contract from SecureUML+ComponentUML model to
JAAS models is the result of a composition of two contracts: (i) the flattening contractF ,
in which the role and action hierarchies are flattened in SecureUML and (ii) the mapping
contractM, in which flattened SecureUML and JAAS are related. With the composed
contract, a principal will be able to enact the actions associated with the permissions of
the role that the given principal is related with, since: (i) flattening the role hierarchy
associates with a given role all the permissions of the transitive closure of its inheritance
hierarchy and (ii) flattening the action hierarchy associates with a given role all the atomic
actions, and their constraints, for each composite action in a given permission.

Recall from Definition 3 that a contract is a structureK = 〈(CS∪AS)
(CT ∪AT)

AK, IS ∪ IT ∪ IK〉. For the flattening contract F , CS and AS are the metaclasses
and associations from the SecureUML+ComponentUML metamodel. The invariants

116 C. Braga et al.

Fig. 3. JAAS metamodel

IS will not be discussed here as they are not relevant to our example. (For the sake of
exemplification, one such invariant is the need of a default role that every role must
inherit from and that has a default permission over resources, in any given SecureUML
model.) The set CT includes metaclasses FRole and FAction, for flattened role and flat-
tened action, respectively. The set AT includes1: (i) a one-to-one association role-frole
between metaclasses Role in SecureUML and FRole in flattened SecureUML, (ii) a
one-to-one association atomicaction-faction between AtomicAction in SecureUML and
FAction in flattened SecureUML, (iii) a one-to-many association frole-permission be-
tween FRole in flattened SecureUML and Permission in SecureUML, and finally, (iv) a
one-to-many association faction-permission between FAction in flattened SecureUML
and Permission in SecureUML. The set IT is empty since F is an endogenous trans-
formation in SecureUML that substitutes the role and action hierarchies for equivalent
ones without inheritance. Therefore, there are no invariants in the target of F since the
contract is only about flattening.

The set IK is the interesting one as it specifies the flattening process. The first in-
variant in IK, roleFlattening, specifies that an FRole “mirror” instance of a Role in
SecureUML model has the same permissions of the reflexive-transitive closure of the
superrole relation of the given Role. The operation allPermissions is defined in [3] and
calculates all the Permissions of the transitive closure of the superrole relation between
instances of Role in SecureUML.

1 context FRole inv roleFlattening:
2 self.frole-permission→includesAll(self.role-frole→allPermissions())
3 context Role::allPermissions():Set(Permission) body: self.superrolePlus().haspermission→asSet()
4 context Role::superrolePlus():Set(Role) body: self.superrolePlusOnSet(self.superrole)
5 context Role::superrolePlusOnSet(rs:Set(Role)):Set(Role) body:
6 if rs.superrole→exists(r|rs→excludes(r))
7 then self.superrolePlusOnSet(rs→union(rs.superrole)→asSet())
8 else rs→including(self) endif

1 There could be associations between a class in the source metamodel and different classes
in the target metamodel. This example is functional but it should be clear that AT denotes a
relation.

On the Specification, Verification and Implementation of Model Transformations 117

The invariant actionFlattening specifies that every FAction instance has the same
permissions as its AtomicAction counterpart which means gathering the permissions of
all CompositeAction that the given AtomicAction is part of together with the permissions
attached to the AtomicAction itself. The operation allPermissions for AtomicAction is
calculated in a way similar to Role but using the transitive closure of the compositeac-
tions relation.

1 context FAction inv actionFlattening:
2 self.faction-permissions→includesAll(self.atomicaction-faction→allPermissions())

Once the hierarchies are flattened, the mapping contract M from flattened
SecureUML to JAAS, with respect to FRole, Permission, FAction, PrincipalRole and
JAASAction, is trivial. The signatures in M are given by the metaclasses and associ-
ations of flattened SecureUML and JAAS. The set IK of M essentially establishes a
bijection between FRole and PrincipalRole and a bijection between FAction and JAAS-
Action: for every FRole there must exist a PrincipalRole such that the PrincipalRole’s
associated instances of JAASAction are those related with the instances of Permission
of the given FRole. There are other aspects of model transformation that are handled by
M but are out of the scope of this paper.

5 Verifying and Validating Transformation Contracts

5.1 Model Consistency Reasoning and Description Logic

In Section 3 we have outlined our model-driven development process with transforma-
tion contracts. We defined that a model m is in conformance with its metamodelM if
m |= IM, that is, if IM, the invariants ofM, hold in m. This definition is sound under
the assumption that bothM and m are consistent, that is, that they may be instantiated.
An example of inconsistency is as follows: assume that inheritance is a complete and
disjoint relation, that is, if classes B and C inherit from A then A is completely defined
by the union of B and C and that B and C are disjoint sets. Now consider that, per-
haps after a refactoring operation in a model, B also inherits from C. Clearly, this is an
inconsistent model as B can not be included in C and disjoint with C at the same time.

Description logic [2] is a family of logics defined to be efficiently decidable. Each
fragment of the logic was carefully studied on its expressiveness and efficiency of rea-
soning. Consistency reasoning is a decision procedure commonly associated with DL
reasoning. DL consistency reasoning may be applied to class diagrams when a proper
encoding is defined between class diagrams and DL theories (or knowledge bases, in
DL terminology). Such a mapping has been defined in [5], proven correct and the com-
plexity of DL reasoning on class diagrams has been calculated. The encoding of class
diagrams in DL essentially relates classes with DL concepts, which denote sets, and
associations with DL roles, which are binary relations. Class diagrams are encoded in
the logic ALCQI which is a DL that allows for the specification of: (i) cardinality
constraints over roles, denoted by axioms of the general form ≥ n R.C where n is a
natural number, R is a role and C is a concept, that constrain the number of individuals
(or instances) of C to be at least n in the relation R, (ii) concept negation, denoted by

118 C. Braga et al.

formulas of the form ¬C where C is a concept, specifying the set of individuals that
do not belong to the set denoted by C, (iii) concept conjunction, denoted by formulas
of the form C1 � C2 where C1 and C2 are concepts, which specifies union of the sets
denoted by C1 and C2 and (iv) definition of inverse of roles, denoted by formulas of the
form R− where R is a role, specifying the inverse relation of R.

For the purposes of this paper, it suffices to explain the encoding for classes, inher-
itance and binary associations. In [5, Section 7.1] they are described as follows: (i) A
class C is represented by an atomic concept C; (ii) A generalization between a class
C and its child class C1 can be represented using the inclusion assertion C1 � C. A
class hierarchy can be represented by the assertions C1 � C, . . . , Cn � C when Ci in-
herits from C. A disjointness constraint among classes C1, . . . , Cn can be modeled as
Ci �

�n
j=i+1 ¬Cj , with 1 ≤ i ≤ n−1, while a covering constraint can be expressed as

C �
⊔n

i=1 Ci; (iii) Each binary association (or aggregation) A between a class C1 and a
class C2, with multiplicities ml..mu and nl..nu on each end, respectively, is represented
by the atomic role A, together with the inclusion assertion � ∀A.C2 �∀A−.C1. The
multiplicities are formalized by the assertions C1 � (≥ nl A.) � (≤ nu A.) and
C2 � (≥ mlA

−.) � (≤ muA−.), where denotes the largest concept (top) that
includes all concepts and ∀R.C is just syntactic sugar for≤ 0 R.¬C.

5.2 Model Consistency Verification in Model Transformations with
Transformation Contracts

We have incorporated consistency reasoning into our MDD process with transforma-
tion contracts. The idea is essentially to check for model consistency before validat-
ing the appropriate invariants as it only makes sense to check for invariants of models
that are consistent. Concept inconsistency is denoted by C � ⊥, where C is a con-
cept and ⊥ denotes the empty (bottom) concept. A model m is consistent iff ∀C ∈
classesOf (m).¬(C � ⊥) where classesOf (m) denotes the set of concepts that encode
classes of a model m. When model consistency is considered, our model transforma-
tion process may be drawn as follows, where K = S � T , k ∈ K, and k = (m � n).
Note that checking for consistency of models n and k is necessary as the new relations
introduced in k may turn classes both in m′ and in n inconsistent.

m ∈ S
parse �� m′ ∈ S, m′ |= IS ,

(∀C ∈ classesOf (m′).¬(C � ⊥))
τ

���������������������

n ∈ T , n |= IT , k |= IK,
(∀C ∈ classesOf (n).¬(C � ⊥)),
(∀C ∈ classesOf (k).¬(C � ⊥))

pretty print �� n′ ∈ T

To verify the consistency of a model m ∈ M it is necessary, of course, to define an
encoding ofM in an description logic, such as the authors did for UML class diagrams
into ALCQI in [5]. The encoding will depend on the reasoning procedure that will be
used. There are two types of reasoning procedures in DL. The so-called ABox reasoning
means to check that the axioms of a knowledge base (also called TBox) hold on a
particular set of individuals (or instances) of concepts and roles. The so-called TBox

On the Specification, Verification and Implementation of Model Transformations 119

analysis means to perform a general symbolic reasoning process over a given TBox that
verifies if the axioms of a TBox are generally satisfiable (and not only for a particular
set of individuals).

The ABox analysis of a model m instance of a metamodelM requires the represen-
tation of the metamodelM as a TBox and m as an ABox, that is, a set of individuals.
The ABox analysis process consists of checking that the axioms of the TBox represen-
tation of M hold in the ABox representation of m. The TBox analysis of a model m
requires an extension of the TBox that represents the metamodel M of m with con-
cepts and roles representing the classes and associations ofM, following the encoding
defined in 5.1. Essentially, the axioms representing m are defined as follows, assuming
m well-formed with respect to M: (i) the concepts that represent metaclasses in M
are subsumed by concepts representing objects, of the appropriate class, in m, (ii) roles
representing associations inM are subsumed by roles representing links, of the appro-
priate associations, between objects in m, and (iii) include axioms to constrain roles
representing links in m, following the encoding in Section 5.1. We have chosen TBox
analysis since it is more general than ABox analysis.

As a concluding remark for this section, let us discuss a bit on the combination of
consistency verification in DL and invariant validation in OCL. It is out of the scope of
this paper, however, a detailed discussion on this subject as the objective of this paper
is to discuss how model transformations may be developed rigorously with transforma-
tion contracts. It should be clear that consistency verification in DL is general. Using
DL one may check for: (i) metamodel consistency, in other words, answer the question
“Does this modeling language admit models?”, and therefore reason about the consis-
tency of a modeling language, and (ii) model consistency, in other words, answer the
question “Does this model admit scenarios?” and therefore reason about the possibility
of the instantiation of a particular, that is, the existence of scenarios for a given model.
Note that to answer these questions in general we need TBox reasoning. OCL validation
executes of OCL invariants on a particular scenario or metamodel instance. It does not
allow any reasoning at the modeling language level. However, both techniques allow
for reasoning of models. At this point one may wonder why OCL validation is neces-
sary at all if DL reasoning is considered. The answer is that they are complementary
techniques, as pointed out in [9], in the sense that OCL validation, that is, the execution
of OCL invariants over models, identifies errors that DL reasoning may miss. DL has
the so-called open world assumption which means that a missing link between objects,
for instance, is not considered an error, as opposed to the so-called closed world as-
sumption, where the absence of information, such as a missing link between objects for
example, is an error. Therefore, if DL reasoning does not identify a problem because
there is missing information in a model then the execution of OCL invariants would.
This is the reason why these techniques should be applied sequentially starting with
DL reasoning.

5.3 Verifying and Validating Access Control Models

As an illustrative example, let us consider the consistency analysis of access control
models in SecureUML+ComponentUML. We discuss two scenarios: (i) DL reasoning

120 C. Braga et al.

identifies a problem, and (ii) DL reasoning does not identify a problem due to the open
world assumption but OCL validation does.

For the first scenario, let us consider a model m, instance of the SecureUML+Com-
ponentUML in Figure 2, that contains an authorization constraint a associated with two
permissions p1 and p2 through its ConstraintAssignment association. The knowledge
base of m extends the knowledge base that represents the metamodel of SecureUML-
+ComponentUML with axioms representing objects and links using the metamodel and
model representations required by TBox analysis, described in Section 5.2. An excerpt
of the knowledge base, for model elements a, p1 and p2 and the concepts they extend, is
as follows: (i) from the knowledge base for SecureUML+ComponentUML metamodel,

 � ∀ConstraintAssignment−.Permission � (1)

∀ConstraintAssignment .AuthorizationConstraint
AuthorizationConstraint � (≡ 1 ConstraintAssignment .), (2)

where(≡ 1C.R) is syntactic sugar for

≥ 1C.R � ≤ 1C.R, C is a concept and R is a role. (3)

Permission � (≥ 0 ConstraintAssignment−.) � (4)

(≤ 1ConstraintAssignment−.)

(ii) for authorization constraint a in m, a � AuthorizationConstraint , where a and
AuthorizationConstraint are concepts representing the classes with the same names;
(iii) for permissions p1 and p2, p1 � Permission and p2 � Permission ; (iv) for the
associations between a and permissions pi, i ∈ {1, 2}:

ConstraintAssignment -a-pi � ConstraintAssignment ,
 � ∀ConstraintAssignment -a-pi .a � ∀ConstraintAssignment -a-pi

−.pi,
a � (≡ 1 ConstraintAssignment -a-pi .pi),
pi � (≥ 0 ConstraintAssignment -a-pi

−.) �
(≤ 1ConstraintAssignment -a-pi

−.).

The knowledge base described above is inconsistent because axioms 1 to 4 constrain
role ConstraintAssignment to exactly one Permission for each AuthorizationConstraint.
This may not be the case if there are individuals from both concepts p1 and p2 related
to an individual of a.

For the second scenario, let us consider a model m containing an instance of Action.
According to SecureUML+Component metamodel, there must exist a one-to-one asso-
ciation between a given Action and a Resource, which is not the case in our scenario.
Due to the open world assumption, DL reasoning would not identify this violation. As
we mentioned before, the open world assumption allows us to identify inconsistencies
on given information. Nothing can be said if the information is not there. This is where
OCL validation comes into place. The application of the invariant that constrains the
cardinality on the association between Action and Resource would fail for m as the
collection returned by navigating through the association between Action and Resource
from a would produce an empty collection when it should be of size 1.

It should be straightforward to see that the verification and validation illustrated in
this section applies to the model transformation context with transformation contracts

On the Specification, Verification and Implementation of Model Transformations 121

described in Section 5.2 as the model one wants to verify and validate is the model
resulting from the join of the source and target models. Therefore, the same techniques
that one uses to verify and validate a model as an instance of a metamodel can be used to
verify and validate a model transformation when specified by a transformation contract
since it is a transformation model given by the joined model of the source and target
models of a transformation.

6 A Design Pattern for the Implementation of Model
Transformations with Transformation Contracts

We have defined a design pattern that captures the general process of model transforma-
tions with transformation contracts described in Section 3. The design pattern enforces
the verification and validation at the different points that they must occur in a model
transformation, that is, the analysis of: (i) the source model before the model transfor-
mation is applied, (ii) the target model after the transformation is applied and (iii) both
source and target models and the associations between them also after the application of
the model transformation. By analysis we mean both verification and validation, apply-
ing DL reasoning and OCL validation as described in Section 5. As a matter of fact, the
design pattern, as well as the model transformation process it implements, is general
enough to incorporate new analysis techniques and not only DL reasoning and OCL
validation for different modeling languages when the proper encodings are defined, of
course.

Figure 4 presents a class diagram of our proposed design pattern. In the pattern, a
Domain represents a modeling language which interacts with a ModelManager, respon-
sible for model persistency, and validators responsible for model analysis. Each Domain
has a parser from the XMI standard representation, that is, the Domain’s concrete syn-
tax, to its metamodel, which is the Domain’s abstract syntax. The joined metamodel of a
transformation contract is represented by class JoinedDomain which references the two
instances of Domain it relates, named source and target. The class TransformationCon-
tract declares a static method transform that executes the model transformation process
that we have explained in Section 5. It is static because it is always the same behavior,
independently of the actual domains that a particular model transformation relates. The
instances of Domain will perform the “real” work since parsing, pretty printing and the
encodings to the different formalisms are either implemented in methods within classes
that inherit from Domain or that a Domain delegates to its instances.

Figure 5 depicts the application of the design pattern for model transformations with
transformation contracts to the model transformation from SecureUML+Component-
UML to JAAS. (As mentioned before, the model transformation also uses aspect-
oriented model elements, which are out of the scope of this paper, but this is
the reason why the acronym AAC appears in the model.) SecureUML and Se-
cureUML+ComponentUML are coded as different domain classes. The latter extends
the former with metaclasses and associations making the action and resource hierarchies
more concrete, as explained in Section 4. Moreover, each domain has its own valida-
tor class that implements the encoding to the proper reasoner. For DL reasoning, we use

122 C. Braga et al.

Fig. 4. A design pattern for model transformations with transformation contracts

Fig. 5. Applying the design pattern to the SecureUML to JAAS model transformation

the Pellet2 reasoner and for OCL execution we use EOS3, which is also used to manage
model persistence. Implementing a model transformation as an application of our pro-
posed design pattern enforces the implementation of a rigorous model transformation
as different verification and validation techniques can be applied.

7 Final Remarks

We are developing and applying a general technique for the rigorous specification, veri-
fication and implementation of model transformations using the concept of transforma-
tion contracts. A transformation contract is essentially a transformation metamodel that
relates metamodels and a set of properties over the transformation metamodel. Imple-
mentations of model transformations are realized as an application of a design pattern
that enforces our proposed model transformation process. In this paper we have used the
standardized metalanguages of UML class diagrams, OCL for the specification of meta-
models and invariants over them and Description Logic to verify consistency. However,
our approach is not coupled with any particular choice of metalanguages and different

2 http://clarkparsia.com/pellet/
3 http://www.bm1software.com/eos/

http://clarkparsia.com/pellet/
http://www.bm1software.com/eos/

On the Specification, Verification and Implementation of Model Transformations 123

metanotations and reasoners may be employed in the development of a model trans-
formation. We plan to continue our work by integrating different automated analysis
techniques to our model transformation process and to apply our approach to industrial
case studies.

References

1. Akehurst, D.H., Kent, S.: A relational approach to defining transformations in a metamodel.
In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 243–
258. Springer, Heidelberg (2002)

2. Baader, F., Diego Calvanese, D.M., Nardi, D., Patel-Schneider, P.: The Description Logic
Handbook. Cambridge University Press (2003)

3. Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design models.
Inf. Softw. Technol. 51(5), 815–831 (2009)

4. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From uml models to access
control infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1), 39–91 (2006)

5. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on UML class diagrams. Artif. Intel-
lig. 168, 70–118 (2005)

6. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model Transforma-
tions? Transformation Models! In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoD-
ELS 2006. LNCS, vol. 4199, pp. 440–453. Springer, Heidelberg (2006)

7. Braga, C.: From access control policies to an aspect-based infrastructure: A metamodel-
based approach. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421, pp. 243–256.
Springer, Heidelberg (2009)

8. Braga, C.: A transformation contract to generate aspects from access control policies. J. of
Software and Systems Modeling (2010), doi:10.1007/s10270-010-0156-x

9. Braga, C., Hæusler, E.H.: Lightweight analysis of access control models with description
logic. Innov. in Systems and Soft. Eng. 6, 115–123 (2010)

10. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of model trans-
formation contracts. In: Proc. of OCL and Model Driven Eng. Work., pp. 69–83 (2004)

11. Clavel, M., Egea, M., de Dios Miguel Angel, G.: Building an efficient component for OCL
evaluation. ECEASST 15 (2008)

12. Comicio, T.: A transformation contract approach for model-driven security. Master’s thesis,
Universidade Federal Fluminense (2011)

13. Egea, M.: An Executable Formal Semantics for OCL with Applications to Model Analysis
and Validation. PhD thesis, Universidad Complutense de Madrid (2008)

14. Gorp, P.V., Janssens, D.: Cavit: a consistency maintenance framework based on transfor-
mation contracts. In: Transformation Techniques in Soft. Eng., Dagstuhl Seminar Proc.,
vol. 05161 (2006)

15. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained. Addison-Wesley, Reading (2003)
16. OMG. MOF QVT final adopted specification, omg adopted specification ptc/05-11-01 (2005)
17. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W.,

Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidel-
berg (1995)

Modular Embedding of the Object Constraint Language
into a Programming Language

Fabian Büttner and Martin Gogolla

University of Bremen, Computer Science Department,
Database Systems Group

{green,gogolla}@tzi.de

Abstract. The Object Constraint Language (OCL) is a well-accepted ingredi-
ent in model-driven engineering and accompanying modeling languages like
UML (Unified Modeling Language) or EMF (Eclipse Modeling Framework)
which support object-oriented software development. Among various possibil-
ities, OCL offers the formulation of state invariants and operation contracts in
form of pre- and postconditions. With OCL, side effect free query operations can
be implemented. However, for operations changing the system state an implemen-
tation cannot be given within OCL. In order to fill this gap, this paper proposes
the language SOIL (Simple OCL-like Imperative Language). The expression sub-
language of SOIL is identical to OCL. SOIL adds well-known, traditional imper-
ative constructs. Thus by employing OCL and SOIL, it is possible to describe
any operation in a declarative way and in an operational way on the modeling
level without going into the details of a conventional programming language. In
contrast to other similar approaches, the embedding of OCL into SOIL is done
in a new, careful way so that elementary properties in OCL are preserved (for
example, commutativity of logical conjunction). The paper discusses the major
criteria of a conservative embedding of OCL into SOIL. SOIL has a sound for-
mal semantics and is implemented in the UML and OCL tool USE (UML-based
Specification Environment).

1 Introduction

Modeling languages like UML (Unified Modeling Language) or EMF (Eclipse Mod-
eling Framework) play a central role in object-oriented software development and rely
on a model-centric approach for development in contrast to traditional code-centric ap-
proaches. One main idea when using models is to find and to formulate central structural
and behavioral properties of the system under development in an abstract, implementa-
tion independent way. Visual modeling notations are typically enriched by the textual
Object Constraint Language (OCL) [31,8] which combines elements of first order pred-
icate logic with object navigation. OCL allows the developer to formulate properties of
a model that cannot be expressed in the visual notation. Typical applications of OCL
are the formulation of class invariants (to express structural properties) and pre- and
postconditions for operations as well as guards for state charts (to express behavioral
properties).

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 124–139, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Modular Embedding of the Object Constraint Language into a Programming Language 125

While there are several visual possibilities like state charts or activity diagrams for
modeling behavior, there is no way which allows the developer to express imperative
algorithms in textual form. However, there are two important areas that require such a
complementary textual notation for models, because they involve a considerable num-
ber of imperative algorithms even on the modeling level: executable models and model
transformations. Both areas typically combine a visual notation like state charts and
graph transformations with imperative formulations of algorithms.

– The Executable UML approach [23,22] describes UML models that can be actually
executed. This is achieved by providing Moore state charts for all operations of the
model. Furthermore, a textual action language is used to describe the effects of the
states in the state machines.

– A second application of textual imperative languages within modeling is found in
the Model-Driven Architecture (MDA) [26]. The OMG Query, Views, Transforma-
tion (QVT) specification [28] describes several layers to transform abstract models
into more specific models. At its core, it offers a textual imperative language, Im-
perativeOCL, which is based on OCL.

– Apart from the two former approaches, imperative descriptions within models can
also be important as part of a general refinement process, to provide precise opera-
tional semantics to selected aspects of a model. Executable UML can be regarded
as a special case of this.

Thus, one the one hand side, there is OCL, which has already proven to be a valuable
expression language with broad support of tools. On the other hand, there are several
areas that require an imperative language for and within models. Since imperative state-
ments like assignments or conditionals require expressions, the idea to use OCL as an
expression language within an imperative programming language naturally comes up.

Indeed, there is a number of imperative languages that reuse OCL as an expression
language. However, if one looks at the reuse of OCL in these approaches in depth, there
are different understandings of reuse. ImperativeOCL is an example for a kind of weak
OCL reuse that prohibits the direct reuse of OCL tools and it is also an example for a
language that introduces semantic problems for OCL expressions [5]. As an alternative,
we developed the language SOIL (Simple OCL-based Imperative Language) [3]. SOIL
has a sound formal semantics and is type safe. SOIL is implemented in the UML-based
Specification Environment (USE) [11].

It has to be stressed here that none of the approaches listed above proposes an im-
perative language for UML as an appropriate general purpose programming language,
and nor do we propose this for UML plus SOIL. Instead, the imperative language com-
plements the other modeling paradigms for specific purposes.

In the present paper, we will use SOIL as a showcase to illustrate the major criteria for
reusing OCL in an imperative programming language. The rest of the paper is structured
as follows. We first motivate why OCL could be reused in an imperative programming
language in Sect. 2. In Sect. 3, we give an example of how SOIL is applied to specify the
semantics for operations in models. In Sect. 4 we discuss general criteria for the reuse

126 F. Büttner and M. Gogolla

of OCL in an imperative programming language. When necessary, we refer to SOIL

to illustrate a modular kind of reuse. Section 5 shortly highlights the consequences of
a modular embedding in terms of language expressiveness. We conclude our paper in
Sect. 6.

2 Motivation for Reusing OCL

In the context of model-driven engineering and model-transformation, there are several
reasons to reuse OCL. Formal approaches such as Executable UML and MOF QVT
require precise operational descriptions that cannot always be expressed reasonably us-
ing only visual notation. Textual imperative languages are required to fill this gap. The
official OMG language ImperativeOCL extends OCL by so-called imperative expres-
sions to suit this need. Other approaches combining OCL or an OCL-like language with
imperative programming include ATL [15], EOL [17] and OCL4X [14].

There are several reasons to build these languages on top of OCL. First of all, we can
assume OCL to be already known in context where these languages are used. Develop-
ers familiar with modeling languages typically know OCL already. Thus, learning the
respective imperative language becomes easier when the expression language is already
known. This is true in particular as these languages are typically rather lightweight.
They do not aim to compete against general purpose languages such as Java or C#.

Another reason for reusing OCL is the possibility to reuse existing OCL tools: The
implementation of a programming language based on OCL can be simplified if one
can avoid to deal with expressions again. The infrastructure for UML and EMF mod-
els and OCL expressions is already available in several tools. The long list of publicly
available OCL tools includes the Dresden OCL toolkit [13], the OCL Environment
(OCLE) [7], the Eclipse Model Development Tools (MDT) Eclipse MDT OCL [21],
KMF [1], the Octopus tool [16], RoclET [30], and the UML-based Specification Envi-
ronment (USE) [11].

Furthermore, the scientific community has developed a number of formal approaches
that deal with OCL expressions and OCL-annotated models. These approaches include
expression transformation (e. g., in [20,6,4]), expression analysis (e. g., in [9]), reason-
ing (e. g., in [2]), and model checking (e. g., in [10,19]). These results can be employed
further, if OCL is used as an expression language within an imperative programming
language.

For these reasons, we think that there are strong arguments for reusing OCL in im-
perative programming. However, as we will point out in Sect. 4, we have to be careful
in the definition of an OCL-based imperative language. OCL has to be embedded in a
modular way when one wants to take advantage of the mentioned profits.

3 SOIL by Example

In this section we give a concrete example for using an imperative programming lan-
guage for UML models: The language SOIL as part of the UML-based Specification
Environment (USE). USE supports the modeler in two ways: (1) prototypical model
states for OCL-annotated UML models can be validated against structural constraints

Modular Embedding of the Object Constraint Language into a Programming Language 127

(including OCL invariants), and (2) prototypical model executions can be validated
against dynamic constraints (i. e., OCL pre- and postconditions). Previously, there was
no universal means to specify imperative programs for OCL-annotated models employ-
ing general loops, operation calls and recursion. This gap was filled by SOIL. Using
SOIL, imperative definitions can be given for the operations of a model, and the imper-
ative definitions can be validated against the structural and dynamic constraints of the
model.

The extended USE tool now enables stepwise refinement from a declarative model
(pre- and postconditions) towards an operational model (operation implementation) in
an integrated model-based environment. The following short example shows how SOIL

is used to perform this refinement step. Consider the class diagram in Fig. 1. In this
project world, companies employ workers and carry out projects. Workers bring certain
qualifications (e.g., programming) and projects require certain qualifications. In order
for a project to become active, it must have members for all required qualifications. In
this class diagram, we have only one non-query operation, schedule(), to assign work-
ers to projects. A good implementation of schedule() will ensure a good use of the
company’s human resources (ideally, carry out as many projects as possible).

Company

«enumeration»

active
inactive

ProjectStatus

projects {ordered}

1

0..*

CarriesOut Qualification

projects*

members1..*

Members

0..1 Employs 1..*

employees busy() : Boolean {query}

qualifications

requiredQualifications

Qualifications

Requires

Worker

missingQualifications() : Set(Qualification) {query}

status : ProjectStatus

Project

0..*

0..*

1..*

1..*

schedule()

Fig. 1. Project World

Some properties of this operation are further specified in a declarative way by OCL
postconditions as shown in Listing 1.1: After scheduling projects, it has to be ensured
that no active project lacks any qualifications and no employee is working in two active
projects at the same time. The listing also shows the definition of the two query oper-
ations missingQualifications() and busy(). These side effect free operations are defined
straightforward by OCL expressions.

Obviously, several implementations of schedule() will full the above pre- and post-
conditions. The USE tool allows us define schedule() using SOIL statements. Giving
an initial state, all SOIL defined operations can be invoked. Recursive invocation is
supported, as well. During the animation of the model, all structural and dynamic con-
straints are checked. In our example, the execution of the schedule() operation is vali-
dated against the above postconditions. We can compare this functionality to program-
ming languages that support design-by-contract (such as Eiffel [24]). However, in our
case we are still in the context of the UML object model. In particular, OCL expressions
can be used within our imperative definition.

128 F. Büttner and M. Gogolla

context Project def: missingQualifications() :
Set(Qualification) =

self.requiredQualifications -
self.members.qualifications->asSet

context Worker def: busy() : Boolean =
self.projects->exists(p | p.status = #active)

context Company::schedule()
post activeProjectsHaveRequiredQualifications:

self.projects->forAll(p | p.status = #active implies
p.missingQualifications()->isEmpty)

post employeesNotOverloaded:
self.employees->forAll(w | w.projects->select(p |

p.status = #active)->size <= 1)

Listing 1.1. Declarative specification of Company::schedule

Listing 1.2 shows a very simple imperative version of schedule(). We can see that
the SOIL provides typical flow control constructs (for-loop, if -statement). Within these
statements, OCL expressions are used to describe the parameters (e.g., the range for the
iteration and the condition for the if -statement. Statements to manipulate the system
state are available (in the above example: link insertion and attribute assignment). The
semantics of these statements is straightforward.

context Company def: schedule() =
for w in self.employees do

for p in self.projects do
if p.missingQualifications()

->intersection(w.qualifications)->notEmpty then
insert (p, w) into Members;
if p.missingQualifications()->isEmpty and not

w.busy() then
p.status := #active

end
end

end
end

Listing 1.2. Operational specification of Company::schedule

USE processes all aspects of the project world model, as defined in this paper: The
static structures can be instantiated (i.e., objects and links can be created). This can hap-
pen either manually, using the USE Generator (see below), or using SOIL statements.
Then, the instantiated system state can be validated against all structural constraints of
the model. Regarding the dynamic aspects of a model, any manually provided flow of
actions (i.e., a particular sequence of state changes) as well as any execution of a SOIL-
defined operation can be validated against the dynamic constraints of the model (i.e.,
against the pre- and postconditions).

The tool can be employed to validate that our very simple implementation of sched-
ule() conforms to the postconditions as follows. For given initial system state, USE can
check if a particular execution of schedule() conforms to its two postconditions. A suf-
ficient coverage of test cases can be provided by means of a surrounding SOIL program,

Modular Embedding of the Object Constraint Language into a Programming Language 129

or by employing the Generator language [11] of USE (the Generator implements a
backtracking search to yield valid instances of the model). This kind of validation can
be seen as systematic testing, in contrast to a formal verification of correctness.

While the above schedule() conforms the postconditions, it is not an optimal im-
plementation, since it will not result in a maximum number of projects being active.
We can construct a more sophisticated version that schedules and reschedules project
members to achieve an optimal number of active projects. However, such an implemen-
tation is much more complex and, therefore, error prone. The integrated descriptive and
operational specification in USE with OCL and SOIL allows a smooth and step-wise
refinement process from the descriptive model to an actual imperative model, guiding
the developer by validating the models through animation against the constraints.

4 Embedding of OCL into SOIL

In the previous section, we gave an example for an imperative programming language
for UML models. As several other related languages such as ImperativeOCL, it reuses
OCL for expressions. However, not all of these languages realize the benefits we gave
as reasons for reusing OCL in Sect. 2.

In this section, we now discuss several concepts of imperative programming lan-
guages from the perspective of reusing OCL. We start with a short recapitulation of
the formalization of OCL expressions, then we inspect the amalgamation of statements,
local variables, operation invocation, and state manipulation. As we will see, the major
pitfalls in a successful modular reuse of OCL lurk in the amalgamation of statements
and expressions and in an indeterminate treatment of operations with side effects and
query operations.

For each of the mentioned concept we provide the corresponding piece of SOIL to
illustrate a safe and modular reuse. A complete guide to SOIL, including a formal defi-
nition of the language as well as proofs for the type soundness can be found in [3].

4.1 Formal Representation of OCL Expressions

We shortly sketch the formal definitions for UML static structure models and OCL
expressions. These definitions have been originally provided in [29] and are now con-
tained in the OCL specification [27]. For the objective of this paper, a complete depic-
tion of the formalization is not necessary as we only need the general concepts in the
following.

The object model

M = (CLASS, ATTc, OPc, ASSOC, associates, roles, multiplicities,≺)

is the formal representation of the major concepts UML provides for static structure
modeling (say class diagrams). It contains all classes along with their attributes, opera-
tion signatures, associations, and generalization relationships. The set μ denotes the set
of all instances of M. Thus, a system state σ ∈ μ describes a set of objects, links, and
attribute values.

130 F. Büttner and M. Gogolla

For the formalization of OCL expressions, we require a data signature overMwhich
is a structure

ΣM = (TM,≤, ΩM)

where TM is the set of all types over M. This includes primitive types, user types (in
particular, classes), and all collection types can be constructed by the OCL collection
type constructors. The relation ≤ is the type hierarchy over TM. The set ΩM contains
the set of all query operations (operations without side effects), and thus corresponds to
a subset of OPc.

The semantics of ΣM is as follows. I(TM) assigns each type t ∈ TM an interpre-
tation I(t) (the domain of t). I(≤) implies for all types t′, t ∈ TM that I(t′) ⊆ I(t) if
t′ ≤ t. I(ΩM) assigns each operation ω : t1 × · · · × tn → t ∈ ΩM a total function
I(ω) : σ × I(t1)× · · · × I(tn) → I(t).

Given the data signature ΣM, we can formalize the set Expr of all OCL expressions
that exists over ΣM. For each expression e ∈ Expr, the function free : Expr → Var
determines the free variables of e (Var being the set of all typed variables).

The interpretation of an expression e ∈ Expr is given by a function I[[e]] which as-
signs a value to each pair τ = (σ, β) of a system state σ ofM and a variable assignment
β : Var → I(t).

4.2 Statements

Imperative programming languages typically refer to their smallest standalone elements
as statements. The effect of such a statement is determined by its effect on the process
environment (the state). For imperative languages that work on object models, the state
at least contains the available objects, links, and attribute values, as well as a represen-
tation of the variable assignments.

If we want to describe the semantics of an imperative language in a similar fash-
ion as for OCL, then we have to describe the interpretation for each statement s of
that language by an interpretation function. A minimalistic interpretation function for
statements is a function I[[s]] which assigns each pair (σ, β) of a system state σ and a
variable assignment β a new pair (σ′, β′). If we furthermore want a statement to have a
value in a functional sense, we require an interpretation that assigns each pair (σ, β) a
triple (σ′, β′, y) where y is the functional value of statement s.

Statements having a functional value may also occur where an expression is ex-
pected. Several statements in common programming languages have this kind of se-
mantics, for example the assignment statement b = a in Java which (1) leads to a new
environment (with b having a new value) and (2) has a functional value (the value of a).
It can be used as an expression as well, therefore a statement like c = (b = a) is valid
in several programming languages.

However, for a modular reuse of OCL, it is important to keep statements and OCL
expressions clearly separated. We will use the language ImperativeOCL to illustrate the
problems that result from an amalgamation of statements and OCL expressions.

ImperativeOCL defines several new kinds of OCL expressions. These new expres-
sions are called imperative expressions and have a combined functional resp. impera-
tive semantics as explained above. In the ImperativeOCL metamodel, the imperative

Modular Embedding of the Object Constraint Language into a Programming Language 131

expressions are introduced as subclasses of OclExpression (and therefore, imperative
expressions extend the set of OCL expressions).

In particular, the compute expression can be used to capture the result of a sequence
of imperative statements as a functional value. In ImperativeOCL, the following expres-
sion has the value 6 (1 + 2 + 3):

1 + compute(b : Integer) { a := 1; b := a + 1 } + 3

The compute expression declares a local variable and contains a sequence of imperative
expressions. The value 2 of the above compute expression is determined by the final
value of b after executing the statements of the body. If we assume the second variable
a to be declared somewhere before, the compute expression also has an effect that is
visible outside the compute expression, as a (possibly) new value (1) will be assigned
to a after the evaluation of the compute expression.

Now we use a more complex example. Assume true has been assigned to the vari-
ables a and b before, and notice that the imperative assignment expression x := y of
ImperativeOCL has the same value semantics as discussed above:

compute(c:Boolean) {
if ((a:=false) and (b:=false)) { ... }; c := a }

The value of this compute expression is false (it returns the value of c at the end of
the block). The interpretation, however, becomes less obvious if we change the last
assignment:

compute(c:Boolean) {
if ((a:=false) and (b:=false)) { ... }; c := b }

The interpretation of this compute expression depends on how we define the imperative
semantics of the logical connectives. Given Boolean expressions e1 and e2, we have at
least two choices to define I[[e1 and e2]](σ, β):

1. Lazy evaluation semantics like in Java or C (returns true for the above example):

I[[e1 and e2]](σ, β) =

{
I[[e2]](σ′, β′) if y = true

(σ′, β′, y) otherwise

where (σ′, β′, y) = I[[e1]](σ, β). Under this semantics (also called short-circuit
evaluation) the right-hand side of the and operator is not evaluated unless the left-
hand side evaluates to true. Therefore, b stays true.

2. Strict evaluation semantics (returns false for the above example):

I[[e1 and e2]](σ, β) =

{
(σ′′, β′′, true) if y1 = true ∧ y2 = true

(σ′′, β′′, false) otherwise

where (σ′, β′, y1) = I[[e1]](σ, β) and (σ′′, β′′, y2) = I[[e2]](σ′, β′). Under this
semantics, both sides of the and operator are always evaluated. Therefore, false is
assigned to b.

There is no rule on short-circuit evaluation in OCL. OCL, which can be regarded as
a kind of first order predicate logic, does not need such a rule. An optimizing OCL

132 F. Büttner and M. Gogolla

compiler might even decide to short-circuit evaluate the second operand first if this
seems reasonable.

However, in order to have a clear semantics, ImperativeOCL implicitly requires a
decision on this question. Similar issues regard the commutativity of operators etc. Of
course these decisions can be made for ImperativeOCL, but they may be inappropriate
for other applications of OCL. And, existing OCL tools may have differing implemen-
tations and may be therefore unusable to implement ImperativeOCL.

A more general argument against the amalgamation of statements and expressions is
that OCL expressions are no longer side effect free by introducing ImperativeExpres-
sion as a subclass of OclExpression. In our understanding, this breaks a fundamental
property of the OclExpression class. Therefore the ImperativeOCL metamodel breaks
the subtype substitution principle. The direct result is that formal approaches such as
expression transformations, expression analysis, reasoning, and model checking cannot
longer be applied to OCL expressions in the context of the ImperativeOCL extension.

Therefore, we require a strict distinction of statements and OCL expressions for a
modular reuse of OCL. Fig. 2 depicts this requirement on the level of the language meta-
models. Notice that, from the perspective of modular reuse, an imperative programming
language might add further kinds of expressions which are not OCL. However, these
expressions must not occur as OCL expressions.

package

imperative language
metamodel package

OclExpression
(OCL)

(ImperativeLanguage)
Non−OCL Expression

OclExpression
(OCL)

(ImperativeLanguage)
Statement

<<imports>>

OCL metamodel

Fig. 2. Modular Embedding

A similar argumentation for composition and modularity of domain specific lan-
guages can be found in [18] and [12]. It is also aligned with [25] in the sense that side
effected non-modular extensions of OCL should be avoided.

SOIL Example. For the reasons given, statements are clearly separated from OCL
expressions in SOIL. To illustrate the formalization of statements in SOIL, we show how
the syntax and semantics of the imperative if-then-else are defined.

The syntax is defined as follows (typing rules omitted, as explained below): If e ∈
ExprBoolean and s1, s2 ∈ Stmt then

if e then s1 else s2 end ∈ Stmt.

We can see that this kind of statement contains an expression. But despite syntactic sim-
ilarities to the functional if-then-else of OCL, the imperative if-then-else is a completely
different entity: The definitions of Expr and I[[e]] are not changed or extended by SOIL.
The imperative language defines a new set of statements Stmt, which is disjoint with
Expr.

Modular Embedding of the Object Constraint Language into a Programming Language 133

The meaning of each statement s ∈ Stmt is given by an interpretation function I[[s]]
which assigns each pair (σ, ζ) of a system state and a variable assignment a new pair
(σ′, ζ′). Notice that, for technical reasons, we distinguish the imperative variable as-
signments ζ (which actually are a stack structure) and the variable assignments β (used
to evaluate OCL expressions).

The semantics of the if statement is defined as follows.

I[[if e then s1 else s2 end]](σ, ζ) :=

{
I[[s1]](σ, ζ) if I[[e]]

(
σ, binding(ζ)

)
= true

I[[s2]](σ, ζ) otherwise

Corresponding to the syntactic containment of OCL expressions as part of statements,
the interpretation function for OCL expressions occurs within the above definition of
the interpretation function for the if statement. The condition expression e is evaluated
in the same context (state, variables) as the statement. To pass the variable assignments
from I[[s]] to I[[e]] we require a transformation binding to map between the different
notions of variable assignments in SOIL and OCL (see next subsection).

All kinds of statements in SOIL are defined in this manner.

On Typing Rules. We omitted the typing rules of SOIL in this paper for the reasons
of space and simplicity, as they are not relevant for the discussion of modularity. We
shortly sketch their structure in this subsection. To define the set of statements Stmt, the
complete formal definition of the syntax of SOIL assigns three sets to each statement s
in Stmt: free(s) is the set of typed variables which must be present in a variable binding
in order to execute the statement s, assigned(s) is the set of all variables that might be
assigned by s, and bound(s) is the set of all variables that definitely have a value of a
certain type after executing s. Using these three sets, we proved in [3] by induction over
the structure of statements that the interpretation I[[s]](σ, ζ) is total and well-defined
given that ζ is a variable stack over σ and ζ containing properly typed values for all
free variables of s. As for the syntax in general, the typing rules of SOIL do not affect
the typing rules of OCL. The type system of SOIL, however, guarantees that no invalid
expressions (such as 'a' + 1) can occur as part of a statement.

4.3 Local Variables

Variable assignment is a core concept available in all imperative programming lan-
guage. When statements contain OCL expressions, the assignments of previous state-
ments will be visible for the evaluation of OCL expressions in subsequent statements.
Consider the imperative program:

a := 1; b := a + 1.

The OCL expression in the second statement has one free variable a. A value for a will
be available after the execution of the first statement (as a furthermore has the right type,
the above concatenation of statements is even type sound). This relationship is depicted
in Fig. 3. In SOIL the mapping from the imperative variable environment (which is a
stack) to the variable assignment (which is a flat mapping) required for the evaluation
of OCL expressions is realized by the binding operation which already occurred above.

134 F. Büttner and M. Gogolla

eval context
for expressions

eval context
for expressions

and Variables
Initial System State

and Variables
New System State

and Variables
New System State

statement 2statement 1 ...

Fig. 3. Evaluation Chain for Statements and Expressions

Technically, binding makes the assignments in the top-most stack frame in ζ available
as a flat mapping from typed variables to values.

There are no particular obstacles regarding local variables w.r.t. modularity of OCL.
However, if we want static type checking, it is important to ensure that correctly typed
values are available for all free variables in the OCL expressions that are part of our
statements (we provide such a type system in SOIL).

4.4 Operations with Side Effects

The application of operations with side effects within OCL expressions constitutes a
similar problem as the amalgamation of statements and OCL expressions. While the
interpretation of a query operation is a value (see Sect. 4.1), the interpretation of an
operation with side effects yields a new state (and possibly a value). For a modular
reuse of OCL we cannot allow the second one to occur in OCL expressions.

In order not to stretch short-circuit evaluation or commutativity of relational oper-
ations for the explanation, again, we take a look on the let expression in OCL. This
expression substitutes an expression for a variable. As for predicate logic, the following
important equivalence rule holds for OCL:

I[[let v : T = e1 in e2]](σ, β) = I[[e2{v/e1}]]
(
σ, β).

However, this rule is broken if we allow operations with side effects within OCL ex-
pressions. Assume a class Person with attributes firstName and lastName. Consider an
operation newPerson():

def: newPerson(firstName : String, lastName : String):Person =
w := new Worker;
w.firstName := firstName;
w.lastName := lastName;
return w

Obviously, the interpretation of

let w : Worker = newWorker('Bob', 'Builder') in
w.lastName.concat(', ').concat(w.firstName)

is different from the interpretation of

newWorker('Bob', 'Builder').lastName.concat(', ').concat(
newWorker('Bob', 'Builder').firstName)

which will create two Worker objects.

Modular Embedding of the Object Constraint Language into a Programming Language 135

As mentioned above, these problems can be constructed in several ways if we allow
operations with side effects in OCL expressions. Therefore, we require a distinction
between query operations and operations with side effects. Within OCL expressions,
only query operations must be used. Otherwise, we run into the same problems men-
tioned in Sect. 4.2. Consequently, an imperative language must include a dedicated
means to invoke operations with side effects.

SOIL Example. The language provides specific statements to invoke operations with
side effects. Here, we show the form which invokes an operation that has a return value
(another statement is available to invoke operations without return value). Its syntax is
as follows: If e1 ∈ Exprt1 , . . . , en ∈ Exprtn

, v ∈ Varname, and ω : (v1 : t1, . . . , vn :
tn → t) ∈ ΩM then

v := ω(e1, . . . , en) ∈ Stmt.

The most important point here is that the operation to be invoked has to be in the set of
the operations with side effects ΩM, whereas query operations (which can be occur in
OCL expressions) are in ΩM (c.f. Sect. 4.1).

Given Z being the set of all variable assignments ζ, the semantics of each ω : t1 ×
· · · × tn in ΩM is a total function

I(ω) : μ× Z × I(t1)× · · · × I(tn)→ μ× Z

that assigns to the current system state, variable assignments, and parameters a new
system state and a new variable assignment.

The semantics of s is then given as follows. Let x1, . . . , xn =
I[[e1]]

(
σ, binding(ζ)

)
, . . . , I[[en]]

(
σ, binding(ζ)

)
, then

I[[v := ω(e1, . . . , en)]](σ, ζ) := (σ′, ζ′{v/z})

where (σ′, ζ′, z) = I(ω)(σ, ζ, x1, . . . , xn).

4.5 State Manipulation Statements

Imperative languages that operates on UML models typically at least provide the fol-
lowing capabilities: object creation and destruction (unless a garbage collection ap-
proach is applied), link manipulation, and attribute assignment. Most of these kinds
of statements have parameters (e.g., to determine the elements of a link) which can
be given by OCL expressions. If the modularity aspects highlighted so far are obeyed,
there are no further obstacles w.r.t to a modular reuse of OCL. As for local variables,
state manipulations in a previous statement have to be visible in OCL expressions as
part of a subsequent statement.

5 Consequences of a Modular Embedding

In the previous sections we discussed several pitfalls for a modular embedding of OCL.
If we avoid these pitfalls, we can achieve benefits stated in Sect. 2. Apart from the

136 F. Büttner and M. Gogolla

syntactical differences, languages that reuse OCL in a modular way (such as SOIL) can
express programs in a similar way as languages that do not reuse OCL that way, like
ImperativeOCL. Comparing SOIL and ImperativeOCL, both languages provide the full
power of OCL for expressions.

There are, however, kinds of statements that cannot be translated one-to-one from
ImperativeOCL to SOIL or to any language that obeys the rules given in the previous
section. Specifically, these statements are statements that contain expressions that con-
tain statements. Constructions such as

mySeq := Sequence{1,2,3}->collect(x |
compute(y:Integer) {
y := 0; Sequence{1..x}->forEach(z){ y := y + z }})

are not possible in SOIL and have to be decomposed into several steps in SOIL:

mySeq := Sequence(Integer){};
for x in Sequence{1,2,3} do

y := 0; for z in Sequence{1..x} do y := y + z end;
mySeq := mySeq->append(y)

end

Such amalgamation of expressions and statements have to be resolved in several steps in
a modular embedding of OCL. Notice that this includes invocations of non-query (i.e.,
side effected) operations from OCL expressions: Assuming f and g to be operations
with side effects that furthermore yield integer values, the following ImperativeOCL
expression

result := f() + g() + 1

has to be rewritten in SOIL to

fVal := f(); gVal := g(); result := fVal + gVal + 1.

Of course a imperative language might allow the upper syntax as a shortcut for the lower
syntax, but it is important to see that this effectively introduces a new set of non-OCL
expressions as part of that imperative language (as depicted in the middle part of Fig. 2
on the metamodel level). While the syntax might look the same as OCL, existing OCL
compilers (or interpreters) cannot be used to implement it, nor can we reuse other formal
approaches for OCL expressions, for the reasons given in Sect. 3. Of course, one might
believe this redundant approach to be viable for simple arithmetic expressions as above.
However, we cannot see where to draw the line here: If we want to allow operations with
side effects anywhere in a right-hand side expression of an assignment statement (for
example), we have to re-implement the whole OCL syntax for this custom expression
language (i. e., we don’t anymore reuse OCL in the sense of Sect. 2). If we only allow
certain (say, simple) expressions such as arithmetic expressions, it will probably appear
inconsistent and confusing to the modeler, as operations with side-effects are allowed
in some expressions only.

For these reasons, we believe that such a redundant approach should be avoided com-
pletely. The resulting general restrictions are the price we have to pay for a language
that reuses OCL in a modular and comprehensive way. In the scope of program-
ming (with) models, we think that the benefits by far outweigh this price. This holds in

Modular Embedding of the Object Constraint Language into a Programming Language 137

particular if we consider that we already have the full power of OCL expressions as
part of the imperative language and therefore a lot of programming can be done in a
functional manner.

6 Conclusion

In this paper we presented our understanding of a modular reuse of OCL in an im-
perative language. If languages embed OCL this way, the reuse of existing tools and
libraries, of knowledge that developer already gained for OCL, and of formal methods
for OCL expressions, is possible. Several OCL-based, or OCL-inspired languages fail
to fulfill this requirements, in particular ImperativeOCL.

Based on this observation we developed the language SOIL. SOIL is a simple and
unspectacular but complete imperative language that can be used to operationally spec-
ify UML models (i. e., to program (with) UML models). We used SOIL to illustrate the
major drawbacks in the design of OCL-based imperative languages.

The intrinsic drawbacks of SOIL (and any other language that is based on OCL in
a modular way) w. r. t. to monolithic languages such as ImperativeOCL regard amal-
gamation of expressions and statements. These constructs have to be decomposed in
SOIL, which, in general, leads to larger programs. We believe, however, that for most
of the (rather restricted) scenarios of programming with models, the benefits of reusing
the well-known and established language OCL outweigh these extra efforts.

A number of topics will be addressed in future work. SOIL has already been em-
ployed in smaller case studies, but larger case studies must give feedback on the usabil-
ity of the language. Further imperative constructs like more convenient loops and error
handling should be addressed. SOIL is compliant with the UML Actions metamodel.
Therefore, it could be used, in the Executable UML approach, in conjunction with state
machines in order to create fully executable descriptions of a system.

References

1. Akehurst, D., Patrascoiu, O.: KMF (Kent Modeling Framework) OCL Library. website
(2011), http://www.cs.kent.ac.uk/projects/ocl/tools.html (last visited
February 10, 2011)

2. Brucker, A.D., Wolff, B.: HOL-OCL: A Formal Proof Environment for UML/OCL. In: Fi-
adeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 97–100. Springer, Heidel-
berg (2008)

3. Büttner, F.: Reusing OCL in the Definition of Imperative Languages. PhD thesis, Universität
Bremen, Fachbereich Mathematik und Informatik, Logos Verlag, Berlin (2011)

4. Büttner, F.: Transformation-Based Structure Model Evolution. In: Bruel, J.-M. (ed.) MoD-
ELS 2005. LNCS, vol. 3844, pp. 339–340. Springer, Heidelberg (2006)

5. Büttner, F., Kuhlmann, M.: Shortcomings of the Embedding of OCL into QVT Imper-
ativeOCL. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421, pp. 263–272.
Springer, Heidelberg (2009)

http://www.cs.kent.ac.uk/projects/ocl/tools.html

138 F. Büttner and M. Gogolla

6. Cabot, J., Teniente, E.: Transformation techniques for OCL constraints. Science of Computer
Programming 68(3), 179–195 (2007)

7. Chiorean, D., Pasca, M., Cârcu, A., Botiza, C., Moldovan, S.: Ensuring UML Models Consis-
tency Using the OCL Environment. Electronic Notes in Theorethical Computer Science 102,
99–110 (2004)

8. Clark, A., Warmer, J. (eds.): Object Modeling with the OCL: The Rationale behind the Object
Constraint Language. LNCS, vol. 2263, pp. 4–20. Springer, Heidelberg (2002)

9. Cuadrado, J.S., Jouault, F., Molina, J.G., Bézivin, J.: Deriving OCL Optimization Patterns
from Benchmarks. ECEASST 15 (2008)

10. Distefano, D.S., Katoen, J.P., Rensink, A.: Towards model checking OCL. In: ECOOP 2000:
Defining Precise Semantics for UML, Sophia Antipolis, France (June 2000)

11. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environment for
Validating UML and OCL. Science of Computer Programming 69, 27–34 (2007)

12. Hudak, P.: Modular Domain Specific Languages and Tools. In: Proceedings of the Fifth In-
ternational Conference on Software Reuse, pp. 134–142. IEEE Computer Society Press, Los
Alamitos (1998)

13. Hußmann, H., Demuth, B., Finger, F.: Modular architecture for a toolset supporting OCL.
Science of Computer Programming 44(1), 51–69 (2002)

14. Jiang, K., Zhang, L., Miyake, S.: Using OCL in Executable UML. ECEASST 9 (2008)
15. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science of

Computer Programming 72(1-2), 31–39 (2008)
16. Klasse Objecten. The Klasse Objecten OCL Checker Octopus. website,

www.klasse.nl/english/research/octopus-intro.html, Klasse Objecten
(2005)

17. Kolovos, D.S., Paige, R.F., Polack, F.: The Epsilon Object Language (EOL). In: Rensink, A.,
Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142. Springer, Heidelberg
(2006)

18. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: Modular Development of Textual Domain
Specific Languages. In: Paige, R.F., Meyer, B. (eds.) TOOLS (46). LNBIP, vol. 11, pp. 297–
315. Springer, Heidelberg (2008)

19. Krieger, M.P., Knapp, A.: Executing Underspecified OCL Operation Contracts with a SAT
Solver. ECEASST 15 (2008)

20. Markovic, S., Baar, T.: Refactoring OCL annotated UML class diagrams. Software and Sys-
tem Modeling 7(1), 25–47 (2008)

21. Eclipse model development tools (MDT) project page. Website,
http://www.eclipse.org/modeling/mdt/ (last visited February 10, 2011)

22. Mellor, S.J.: Executable UML: A Foundation for Model-Driven Architecture. Addison-
Wesley (2002)

23. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven Ar-
chitecture. Addison-Wesley, Boston (2004)

24. Meyer, B.: Eiffel: The Language. Prentice-Hall, Englewood Cliffs (1992)
25. Siikarla, J.P.M., Selonen, P.: Combining OCL and Programming Languages for UML Model

Processing. In: Schmitt, P.H. (ed.) Proceedings of the Workshop, OCL 2.0 – Industry Stan-
dard or Scientific Playground, vol. 102. Elsevier (2004)

26. OMG. MDA Guide Version 1.0.1. Object Management Group, Inc., Framingham, Mass,
Internet (June 2003), http://www.omg.org

27. OMG. Object Constraint Language Specification, version 2.0 (Document formal/2006-05-
01) (June 2006)

www.klasse.nl/english/research/octopus-intro.html
http://www.eclipse.org/modeling/mdt/
http://www.omg.org

Modular Embedding of the Object Constraint Language into a Programming Language 139

28. OMG. Meta Object Facility (MOF) 2.0 Query/Views/Transformation Specification (Doc-
ument formal/08-04-03). Object Management Group, Inc., Framingham, Mass, Internet
(2008), http://www.omg.org

29. Richters, M.: A Precise Approach to Validating UML Models and OCL Constraints. PhD
thesis, Universität Bremen, Fachbereich Mathematik und Informatik, Logos Verlag, Berlin,
BISS Monographs, No. 14 (2002)

30. RoclET-Team. Welcome to RoclET. Website, http://www.roclet.org/ (last visited
February 10, 2011)

31. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA. Object Technology Series. Addison-Wesley, Reading (2003)

http://www.omg.org
http://www.roclet.org/

Algebra of Monotonic Boolean Transformers

Viorel Preoteasa

Åbo Akademi University,
Department of Information Technologies,

Joukahaisenkatu 3-5 A, 20520 Turku, Finland

Abstract. Algebras of imperative programming languages have been
successful in reasoning about programs. In general an algebra of
programs is an algebraic structure with programs as elements and with
program compositions (sequential composition, choice, skip) as alge-
bra operations. Various versions of these algebras were introduced to
model partial correctness, total correctness, refinement, demonic choice,
and other aspects. We introduce here an algebra which can be used to
model total correctness, refinement, demonic and angelic choice. The ba-
sic model of our algebra are monotonic Boolean transformers (monotonic
functions from a Boolean algebra to itself).

1 Introduction

Abstract algebra is a useful tool in mathematics. Rather than working with spe-
cific models like natural numbers and algebra of truth values, one could reason
in a more abstract setting and obtain results which are more general and appli-
cable in different models. Algebras of logics are very important tools in studying
various aspects of logical systems. Algebras of programming theories have also a
significant contribution to the simplification of reasoning about programs. Pro-
grams are elements of an algebra and program compositions and program con-
stants (sequential composition, choice, iteration, skip, fail) are the operations of
the algebra. These operations satisfy a number of relations which are used for
reasoning about programs. Kleene algebra with tests (KAT) [12] is an extension
of Kleene algebra and it is suitable for reasoning about programs in a partial cor-
rectness framework. Various versions of Kleene algebras have been introduced,
ranging from Kleene algebra with domain [8] and concurrent Kleene algebra [10]
to an algebra for separation logic [7].

Refinement Calculus [1,2,6,15] is a calculus based on (monotonic) predicate
transformers suitable for program development in a total correctness framework.
Within this calculus various aspects of imperative programming languages can be
formalized. These include total correctness, partial correctness, demonic choice,
and angelic choice. Demonic refinement algebra (DRA) was introduced in [21,22]
as a variation of KAT to allow also reasoning about total correctness. The in-
tended model of DRA is the set of conjunctive predicate transformers and this
algebra cannot represent angelic choice. General refinement algebra (GRA) was
also introduced in [22], but few results were proved and they were mostly re-
lated to iteration. Although the intended model for GRA is the set of monotonic

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 140–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Algebra of Monotonic Boolean Transformers 141

predicate transformers, GRA does not include the angelic choice operator. GRA
has been further extended in [20] with enabledness and termination operators,
and it was extended for probabilistic programs in [14].

The contribution of this paper is a different extension of GRA with a dual
operator [9,4,5,6]. The intended model for our algebra is the set of monotonic
Boolean transformers (monotonic functions from a Boolean algebra to itself). In
GRA assertions (assumptions) are introduced as disjunctive (conjunctive) ele-
ments which have complement. Using the dual operator we characterize these
assertion (assumptions) using a conjunction of (in)equations which is simpler
than the usual definition from GRA and KAT. We prove that the assertions (as-
sumptions) form a Boolean algebra. Moreover, we also prove that the assertions
defined in the algebra are exactly the program assertions in the model of mono-
tonic Boolean transformers. Having the dual operator and the demonic choice
operator we automatically obtain also the angelic choice operator. In [20,14] the
enabledness and termination operators are introduced using axioms for DRA
and GRA respectively. These operators can be defined in our algebra, and their
axioms can be proved as theorems.

In DRA [22], a pre-post specification statement is introduced and it is used to
prove that a program refines a pre-post specification statement if and only if the
program is correct with respect to the pre and post conditions. The proof of this
fact requires the assumption that all programs are conjunctive, fact which does
not hold for arbitrary monotonic predicate transformers. We have introduced
another specification statement, and we proved a similar result in the absence
of the conjunctivity property.

The paper is structured as follows. Section 2 introduces the monotonic Boolean
transformers that are the model of our algebra. Section 3 introduces the mono-
tonic Boolean transformers algebra and some of its properties. Section 4 in-
troduces the assertions and the assumptions. Some of their properties are also
introduced, and proofs that they form Boolean algebras are given. In Section 5,
we define the weakest precondition, the guard of a program, Hoare triples [11]
for total correctness, data refinement of programs, and we prove some properties
of these constructs. The weakest precondition of top satisfies all axioms set for
the termination operator in [20,14], and dually the guard of a program satisfies
all axioms set for the enabledness operator in [20,14].

All our results were mechanically verified in the Isabelle [16] theorem prover.

2 Monotonic Boolean Transformers

In this section we introduce the concept of monotonic Boolean transformers
which is more general than monotonic predicate transformers. For a set of
states X , monotonic predicate transformers over X are monotonic functions from
Pred.X to Pred.X where Pred.X = X → Bool and Bool is the complete Boolean
algebra with two elements, true and false. Monotonic predicate transformers are
used for modeling imperative programs. A program is modeled by a predicate
transformer S, where if q ∈ Pred.X is a predicate (set) of final states, then S.q

142 V. Preoteasa

are the initial states from which the program terminates and if it terminates in
a state s, then s is from q.

In this context we only need the assumption that we work with a complete
Boolean algebra instead of Pred.X . This generalization is mainly used here be-
cause it is sufficient for expressing and proving the properties from this paper.
However, we can also apply these results directly to Boolean algebras of the
form X → Y → Bool, which were used in [3,17,18] for modeling procedures with
parameters. Let 〈B,∧,∨,≤,¬, ,⊥〉 be a complete Boolean algebra. We denote
by Mtran.B the set of all monotonic functions from B to B.

Mtran.B = {S : B → B | ∀p, q : p ≤ q ⇒ S.p ≤ S.q)}

The elements of Mtran.B are called monotonic Boolean transformers, or just
monotonic transformers, or programs.

We point-wise extend all operations except the negation from B to Mtran.B:

(S � T).p = S.p ∧ T.p magic.p = S � T = (∀p : S.p ≤ T.p)
(S 	 T).p = S.p ∨ T.p fail.p = ⊥

The extended constants magic and fail are monotonic Boolean transformers and,
if S and T are monotonic Boolean transformers, then S�T , and S	T are mono-
tonic Boolean transformers. We could extend the negation similarly, however the
negation applied to a monotonic function is not monotonic.

The program S�T models the demonic choice between executing S or T . The
choice is demonic because the user does not control it. In order for this choice
to be correct, both S and T must be correct. The program S 	 T models the
angelic choice. Here the choice is angelic because the user can decide between
executing S or T . This choice is correct if one of the programs S and T is
correct. The relation � is the refinement relation. A program S is refined by a
program T if we can replace S by T . The program magic is always correct, but
it cannot be implemented. The program fail never terminates. fail is equivalent
to while true do skip.

If S, T ∈ Mtran, p, q ∈ Bool, then we introduce the transformers S ◦ T , {p},
[p], skip, So, Sω, ||p|| ∈ Mtran, the sequential composition of S and T , the assert
statement of p, the assume statement of p, the skip statement, the dual of S,
the iteration of S, and the post-condition statement of p, respectively. These are
given by the following definitions:

(S ◦ T).p = S.(T.p) (sequential composition)
{p}.q = p ∧ q (assert statement)
[p].q = ¬p ∨ q (assume statement)
skip.p = p (skip statement)
So.p = ¬S.(¬p) (dual of a program)
Sω = μ X : S ◦X � skip (iteration)

||p||.q
{
 if p ≤ q

⊥ otherwise
(postcondition statement)

Algebra of Monotonic Boolean Transformers 143

The functional composition of monotonic transformers corresponds to the se-
quential composition of programs. The assert statement {p} executed from a
state in which the predicate p is true behaves as skip, otherwise fails. The as-
sume statement [p] executed from a state in which the predicate p is true behaves
as skip, otherwise behaves as magic. The statement skip does not change the state
of computation. The dual was used in [9,4,5,6] for predicate transformers. The
term conjugate has also been used to name the dual operator. We will use the
dual to define the negation of an assertion in the algebra of monotonic predicate
transformers. The iteration is used to define the while program:

while b do S = ([b] ◦ S)ω ◦ [¬b]

The conditional program can be introduced using the assert statement and the
angelic choice or using the assume statement and the demonic choice:

if b then S else T = {b} ◦ S 	 {¬b} ◦ T = [b] ◦ S � [¬b] ◦ T

If S ∈ Mtran and p, q ∈ B, then a Hoare triple p {|S|} q is true if p ≤ S.q.
The post-condition statement ||p|| has been used in [17,18] to connect total

correctness Hoare triples to refinement statements. The following relation is true

p {|S|} q ⇔ {p} ◦ ||q|| � S (1)

and it is a consequence of the following theorem.

Theorem 1. If p ∈ B then

1. ||p|| ∈ Mtran (||p|| is monotonic)
2. ||p||.p =
3. {S.p} ◦ ||p|| � S

Definition 1. A monotonic transformer S is disjunctive if for all p, q ∈ B,
S.(p ∨ q) = S.p ∨ S.q, which is equivalent to

(∀U, V ∈ Mtran : S ◦ (U 	 V) = (S ◦ U) 	 (S ◦ V))

A monotonic transformer S is conjunctive if for all p, q ∈ B, S.(p∧q) = S.p∧S.q,
which is equivalent to

(∀U, V ∈ Mtran : S ◦ (U � V) = (S ◦ U) � (S ◦ V))

Next theorem gives a characterization of assertion statements.

Theorem 2. A monotonic transformer S is an assertion if and only if S � skip
and S is disjunctive.

Proof. If S is an assertion it is easy to prove that S � skip and S is disjunctive.
Conversely, assume that S � skip and S is disjunctive. We prove that S = {S. }.

144 V. Preoteasa

• {S. }.q
= {Boolean algebra property}

{S.(q ∨ ¬q)}.q
= {S is disjunctive}

{S.q ∨ S.(¬q)}.q
= {Definition of assert and distributivity}

(S.q ∧ q) ∨ (S.(¬q) ∧ q)
= {S ≤ skip impliesS.q ≤ q}

S.q ∨ (S.(¬q) ∧ q)
= {Prove S.(¬q) ∧ q = ⊥}

• S.(¬q) ∧ q = ⊥
⇔ {⊥ is the least element}

S.(¬q) ∧ q ≤ ⊥
⇐ {S ≤ skip impliesS.(¬q) ≤ ¬q}

¬q ∧ q ≤ ⊥
⇔ {Boolean algebra properties}

true
S.q ∨ ⊥

= {Boolean algebra properties}
S.q �

Theorem 3. A monotonic transformer S is an assumption if and only if S ≥
skip and S is conjunctive.

3 Algebra of Monotonic Boolean Transformers

We introduce in this section an algebraic structure which has as a model the
monotonic Boolean transformers.

Definition 2. An algebra of monotonic Boolean transformers (abbreviated MBT)
is an algebra A = 〈A,�,	, ◦,_o,_ω, 1,⊥, 〉 where �, 	, and ◦ are binary op-
erations, _o, _ω are unary operation and 1, ⊥, and are constants, which
satisfies the following axioms:

(A1) 〈A,�,	,⊥, 〉 is a bounded distributive lattice
(A2) 〈A, ◦, 1〉 is a monoid

(A3) (x�y)◦z = (x◦z)� (y ◦z)
(A4) x ≤ y ⇒ z ◦ x ≤ z ◦ y
(A5) ◦ x =
(A6) x ≤ y ⇔ yo ≤ xo

(A7) xoo = x

(A8) (x ◦ y)o = xo ◦ yo

(A9) (x ◦) � (xo ◦ ⊥) = ⊥
(A10) xω = x ◦ xω � 1
(A11) x ◦ z � y ≤ z ⇒ xω ◦ y ≤ z

The algebra of monotonic Boolean transformers includes all operators and ax-
ioms of the general refinement algebra introduced in [22], except the weak iter-
ation operator (_∗) and its axioms. Additionally it includes the angelic choice
and the dual operator and their corresponding axioms. We also assume that the

Algebra of Monotonic Boolean Transformers 145

lattice of the choice operations is distributive. The iteration operator (ω) is in-
troduced here only for completion. It will not be used further in this paper. All
properties proved in [22] for ω in the general refinement algebra hold also for
MBT algebra.

The dual operator behaves like a negation operator: it is anti-monotonic,
it is an involution (xoo = x), and the conjunction of x ◦ and xo ◦ ⊥ is ⊥.
However, the dual operator applied to a monotonic Boolean transformer is also
monotonic. This operator will be used to define the negation for assert and
assume statements of MBT algebra.

Alternatively we could introduce only �, ◦, _o, _ω, 1, and as primitive
operations, and then define 	 and ⊥ in terms of �, _o, and .

Theorem 4. If the constants 1, ⊥, and from MBT are interpreted as skip,
fail, and magic, then the monotonic Boolean transformers are a model for the
axioms of MBT.

Proof. All properties (A1) to (A11) from Definition 2 are easy to verify.
In [13], multirelations are used to model angelic and demonic nondeterminism,

and they are shown to be equivalent to monotonic predicate transformers. This
work would enable showing that the multirelations are also a model for MBT
algebra.

Next theorem lists a number of properties that are true in a MBT algebra.
The properties are direct consequences of the axioms of MBT algebra.

Theorem 5. In MBT the following properties hold:

1. o = ⊥ and ⊥o =
2. 1o = 1
3. (x � y)o = xo 	 yo

4. (x 	 y)o = xo � yo

5. x = y ⇔ xo = yo

6. (x 	 y) ◦ z = (x ◦ z) 	 (y ◦ z)
7. x ◦ (y � z) ≤ (x ◦ y) � (x ◦ z)
8. x ◦ (y 	 z) ≥ (x ◦ y) 	 (x ◦ z)
9. ⊥ ◦ x = ⊥

10. x ≤ y ⇒ x ◦ z ≤ y ◦ z
11. x ≤ y ∧ u ≤ v ⇒ x ◦ u ≤ y ◦ v
12. 1 ≤ x ⇒ y ≤ x ◦ y
13. 1 ≤ x ⇒ y ≤ y ◦ x
14. x ≤ 1 ⇒ x ◦ y ≤ y
15. x ≤ 1 ⇒ y ◦ x ≤ y
16. x ≤ x ◦ and x ◦ ⊥ ≤ x
17. (x ◦) 	 (xo ◦ ⊥) =
18. (x ◦ ⊥) 	 (xo ◦) =

Definition 3. An element x is conjunctive if it satisfies

(∀y, z : x ◦ (y � z) = (x ◦ y) � (x ◦ z))

and dually x is disjunctive if it satisfies

(∀y, z : x ◦ (y 	 z) = (x ◦ y) 	 (x ◦ z))

The set of conjunctive and disjunctive elements are denoted by Conj and Disj,
respectively.

As pointed out in Section 2, these definitions are equivalent to the definitions
of conjunctive and disjunctive functions in the model of monotonic Boolean
transformers.

146 V. Preoteasa

Lemma 1. For x ∈ MBT the following properties hold

1. x ∈ Conj⇒ xo ∈ Disj
2. x ∈ Disj⇒ xo ∈ Conj

4 Assertions and Assumptions

This section introduces the set of assertions and assumptions of a MBT alge-
bra. In a Kleene algebra with tests [12], the tests (which are the equivalent to
assumptions) are postulated. The tests are elements of a subset of a Kleene al-
gebra and they form a Boolean algebra. In a demonic refinement algebra [22],
guards (which are equivalent to assumptions) are the elements that have a com-
plement with respect to �, ◦,1, and . Because our algebra contains the dual
operator we are able to introduce the assertions using a conjunction of an in-
equality and an equality which is logically simpler than the definition from [22].
We prove that the assertions and also the assumptions are Boolean algebras, and
moreover, we prove that the assertions and the assumptions from our algebra
correspond exactly to the assertions and the assumptions from the monotonic
Boolean transformers model.

Definition 4. In a MBT algebra the set of assertions is defined by

Assertion = {p : p ≤ 1 ∧ p = (p ◦) � po}

Lemma 2. Let p ∈ Assertion then

1. po = (po ◦ ⊥) 	 p
2. p = (p ◦) � 1 and po = (po ◦ ⊥) 	 1
3. p, po ∈ Conj and p, po ∈ Disj

Proof. We prove only the last property. First we prove p ∈ Conj, i.e. for all
x, y ∈ MBT, p ◦ (x � y) = (p ◦ x) � (p ◦ y):

• p ◦ (x � y)
= {property 2. of this theorem}

((p ◦) � 1) ◦ (x � y)
= {axioms of MBT}

(p ◦ ◦ (x � y)) � x � y
= {axioms of MBT}

(p ◦) � x � y
= {lattice properties}

((p ◦) � x) � ((p ◦) � y)
= {axioms of MBT}

(((p ◦) � 1) ◦ x) 	 (((p ◦) � 1) ◦ y)
= {property 2. of this theorem}

(p ◦ x) � (p ◦ y)

Algebra of Monotonic Boolean Transformers 147

The property p ∈ Disj can be proved similarly, but we also need to use the
distributivity of � over 	.

Finally po ∈ Conj and po ∈ Disj follow using Lemma 1. �
The definition of assertions corresponds to assertions in the model of Boolean
transformers.

Theorem 6. In Mtran the set Assertion is the set of all assertions, {p}, for
p ∈ Bool.

Proof. We prove that Assertion = {{p} | p ∈ Bool} in Mtran. First if p ∈ Bool, it is
easy to show that {p} ∈ Assertion. Conversely if x ∈ Assertion, then by Lemma 5
x ∈ Disj, and using Theorem 2, it follows that x ∈ {{p} | p ∈ Bool}. �

Lemma 3. If p, q ∈ Assertion, then p ◦ q = p � q.

Proof. The inequality p ◦ q ≤ p � q follows directly from the axioms of MBT.
The second inequality follows from:

• p � q
= {Assertion definition}

p ◦ � po � q ◦ � qo

≤ {sub-derivation}
• po ≤ po ◦ qo ∧ qo ≤ po ◦ qo

= {Theorem 5}
true

• q ≤ po ◦ q ◦
⇐ {transitivity of ≤}

q ≤ po ◦ q ∧ po ◦ q ≤ po ◦ q ◦
= {Theorem 5}

true

p ◦ � po ◦ q ◦ � po ◦ qo

= {po ∈ Conj}
p ◦ � po ◦ (q ◦ � qo)

= {q ∈ Assertion}
p ◦ � po ◦ q

= {MBT axioms}
(p ◦ � po) ◦ q

= {p ∈ Assertion}
po ◦ qo

This concludes the theorem. �

Definition 5. For an assertion p ∈ Assertion the negation of p, denoted ¬p is
defined by

¬p = (po ◦ ⊥) � 1

Theorem 7. The assertions are closed under �, 	, ¬, 1, and ⊥.

148 V. Preoteasa

Proof. We prove only that p � q ∈ Assertion. It is true that p � q ≤ 1. We prove
also that p � q = (p � q) ◦ � (p � q)o:

• p � q
= {Lemma 3}

p ◦ q
= {p, q ∈ Assertion}

(p ◦ � po) ◦ (q ◦ � qo)
= {axioms of MBT}

p ◦ � po ◦ (q ◦ � qo)
= {po ∈ Conj by Lemma 2}

p ◦ � po ◦ q ◦ � po ◦ qo

= {MBT axioms}
(p ◦ � po) ◦ q ◦ � po ◦ qo

= {p ∈ Assertion}
p ◦ q ◦ � po ◦ qo

= {MBT axioms}
p ◦ q ◦ � (p ◦ q)o

= {Lemma 3}
(p � q) ◦ � (p � q)o. �

Theorem 8. The structure (Assertion,�,	,¬,⊥, 1) is a Boolean algebra.

Proof. The structure (Assertion,�,	,⊥, 1) is a bounded distributive lattice by
Theorem 7 and by the fact that MBT is a distributive lattice. We need to show
also that ¬ satisfies the negation axioms: p � ¬p = ⊥ and p 	 ¬p = 1. We only
show here p 	 ¬p = 1.

• p 	 ¬p
= {Definition of ¬}

p 	 (po ◦ ⊥ � 1)
= {lattice distributivity}

(p 	 po ◦ ⊥) � (p 	 1)
= {p ∈ Assertion}

(p 	 po ◦ ⊥) � 1
= {Theorem 5 and MBT axioms}

(po � p ◦)o � 1
= {p ∈ Assertion}

po � 1
= {p ≤ 1 ⇔ 1 ≤ po by MBT axioms}

1 �

Next lemma introduces some additional properties for assertions.

Lemma 4. If p ∈ Assertion and x, y ∈ MBT, then

1. p ◦ p = p and po ◦ po = po

2. p ◦ po = p and po ◦ p = po

Algebra of Monotonic Boolean Transformers 149

3. po ◦ x 	 (¬p) ◦ = po ◦ x
4. p ◦ x 	 (¬p) ◦ y = po ◦ x � (¬p)o ◦ y

Proof. We prove only the last property:

• p ◦ x 	 (¬p) ◦ y
= {p,¬p ∈ Assertion}

(p ◦ � po) ◦ x 	 ((¬p) ◦ � (¬p)o) ◦ y
= {MBT axioms}

(p ◦ � po ◦ x) 	 ((¬p) ◦ � (¬p)o ◦ y)
= {lattice distributivity}

((p ◦ � po ◦ x) 	 (¬p) ◦) � ((p ◦ � po ◦ x) 	 (¬p)o ◦ y)
= {lattice distributivity}

(p◦ 	(¬p)◦)�(po ◦x	(¬p)◦)�(p◦ 	(¬p)o ◦y)�(po ◦x	(¬p)o ◦y)
= {MBT axioms}

(p	 (¬p)) ◦ � (po ◦ x	 (¬p) ◦)� (p ◦ 	 (¬p)o ◦ y)� (po ◦ x	 (¬p)o ◦ y)
= {Assertion is a Boolean algebra}

(po ◦ x 	 (¬p) ◦) � (p ◦ 	 (¬p)o ◦ y) � (po ◦ x 	 (¬p)o ◦ y
= {Property 3: po ◦ x 	 (¬p) ◦ = po ◦ x}

po ◦ x � (¬p)o ◦ y � (po ◦ x 	 (¬p)o ◦ y)
= {lattice properties}

po ◦ x � (¬p)o ◦ y �

The property 3. from Lemma 4 shows that the two ways of defining the condi-
tional program are also equivalent in MBT. In MBT the conditional program is
defined by

if b then x else y = b ◦ x 	 ¬b ◦ y = bo ◦ x � (¬b)o ◦ y

The assumptions of MBT are defined similarly to assertions, but using the duals
of the properties for assertions.

Definition 6. The assumptions of MBT, denoted by Assumption ⊆ MBT, are
defined by

Assumption = {g : 1 ≤ g ∧ g = (g ◦ ⊥) 	 go}

Lemma 5. Let g ∈ Assumption then

1. g ∈ Assumption⇔ go ∈ Assertion
2. go = (go ◦) � g
3. g = (g ◦ ⊥) 	 1 and go = (go ◦) � 1
4. g, go ∈ Conj and g, go ∈ Disj

Proof. These properties can be proved similarly to those for assertion, but using
the dual properties. �

Theorem 9. In Mtran the Assumption is the set of all assumptions, [p], for
p ∈ B.

150 V. Preoteasa

Proof. This fact can be proved similarly to Theorem 6, using Theorem 3. This
theorem can also be proved using Lemma 5.1, and the fact that in Mtran {p}o =
[p]. �
The negation of an assumption can be defined using the negation of an assertion.

Definition 7. The negation of an assumption g ∈ Assumption, denoted ¬g ∈
Assumption, is given by

¬q = (¬go)o

Theorem 10. The assumptions are closed to the operations �, 	, ¬, 1, and ,
and the structure (Assumption,�,	,¬, 1,) is a Boolean algebra.

5 Weakest Precondition, Guards, Hoare Triples, and
Data Refinement

This sections introduces the weakest precondition for elements of a MBT algebra,
and using it introduces valid Hoare triples. Various results connecting valid Hoare
triples, refinement, and data refinement are also proved.

Definition 8. The weakest precondition of a program x and , denoted wpt.x ∈
MBT, is given by

wpt.x = (x ◦) � 1.

This definition is justified by the fact that in the monotonic Boolean transformer
model wpt.S is equal to {S. } and wpt.(S ◦ {p}) is equal to {S.p}. The operator
wpt satisfies all axioms set for the termination operator in [20,14]. These axioms
are listed among the conclusions of the next theorem.

Theorem 11. The following properties are true for wpt.

1. wpt.x ∈ Assertion
2. (wpt.x) ◦ x = x
3. p ∈ Assertion ⇒ wpt.p = p
4. p ∈ Assertion ∧ p ◦ x = x ⇒ wpt.x ≤ p
5. p ∈ Assertion ⇒ wpt.(po) = 1
6. p, q ∈ Assertion ⇒ wpt.(po ◦ q) = ¬p 	 q
7. x ≤ y ⇒ wpt.x ≤ wpt.y
8. wpt.(x ◦ y) = wpt.(x ◦ wpt.y)
9. p ∈ Assertion ∧ x ∈ Conj⇒ x ◦ p = wpt.(x ◦ p) ◦ x (moving assertions)

10. (wpt.x) ◦ = x ◦

Proof. We only show here the proof of property 6.

• wpt.(po ◦ q)
= {Definition}

(po ◦ q ◦) � 1

Algebra of Monotonic Boolean Transformers 151

= {Lemma 2}
(((po ◦ ⊥) 	 1) ◦ q) � 1

= {MBT axioms}
((po ◦ ⊥) 	 q) � 1

= {lattice distributivity}
((po ◦ ⊥) � 1) 	 (q � 1)

= {q ∈ Assertion}
((po ◦ ⊥) � 1) 	 q

= {definition of ¬}
¬p ∪ q �

In Mtran the guard of a program is defined as the set of all states from which the
program is guaranteed to terminate. Formally in Mtran the guard of a program
S is the predicate ¬S.⊥. In MBT we can also define the guard of a program as
an assumption.

Definition 9. The guard of an element x ∈ MBT, denoted grd.x, is given by

grd.x = x ◦ ⊥ 	 1.

In Mtran the guard of a program S corresponds to [¬S.⊥]: grd.S = [¬S.⊥]
The operator grd satisfies all axioms set for the termination operator in [20,14].

These axioms are listed among the conclusions of the next theorem.

Theorem 12. If x ∈ MBT, and p ∈ Assertion, then

1. grd.x ∈ Assumption
2. grd.x ◦ x = x
3. grd.x = (¬wpt.(x ◦ ⊥))o

4. g ∈ Assumption⇒ g ≤ grd.(g ◦ x)
5. grd.(x ◦ y) = grd.(x ◦ grd.y)
6. (grd.x) ◦ ⊥ = x ◦ ⊥

Proof. We prove only the property 3 here:

• (¬wpt.(x ◦ ⊥))o

= {definition of ¬}
((wpt.(x ◦ ⊥))o ◦ ⊥ � 1)o

= {Theorem 5 and MBT axioms}
(wpt.(x ◦ ⊥)) ◦ 	 1

= {definition of wpt}
(x ◦ ⊥ ◦ � 1) ◦ 	 1

= {Theorem 5 and MBT axioms}
x ◦ ⊥ 	 1

= {definition of grd}
grd.x. �

Definition 10. For p, q, x ∈ MBT, the Hoare total correctness triple p {|x|} q ∈
Bool is defined by

(p {|x|} q) := p ≤ wpt.(x ◦ q).

152 V. Preoteasa

This definition also corresponds to the classical definition of Hoare total correct-
ness triples in the monotonic Boolean transformers lattice. If p, q ∈ Bool and
S ∈ Mtran, then {p} {|S|} {q} is equivalent to p ≤ S.q.

In [22] the total correctness triple of a program x with respect to a precondition
p and a post-condition q is defined by po ◦ x ◦ (−q)o = . Next theorems shows
that this definition is equivalent to our definition.

Theorem 13. If p ∈ Assertion then

p {|x|} q ⇔ po ◦ x ◦ (¬q)o =

Proof. First assume p {|x|} q, which implies p◦ ≤ x◦q◦ . Show po◦x◦(¬q)o = .

•
= {Theorem 5}

(x ◦ q)o ◦ ⊥ 	 x ◦ q ◦
≤ {the assumption implies p ◦ ≤ x ◦ q ◦ }

po ◦ ⊥ 	 x ◦ q ◦
= {Theorem 5}

(po ◦ ⊥ 	 1) ◦ x ◦ q ◦
= {Lemma 2}

po ◦ x ◦ q ◦
≤ {MBT axioms}

po ◦ x ◦ (q ◦ 	 1)
= {Theorem 5}

po ◦ x ◦ (qo ◦ ⊥ � 1)o

= {definition of ¬}
po ◦ x ◦ (¬q)o

For the second implication assume po ◦ x ◦ (¬q)o = , which is equivalent to
po ◦x◦ (q ◦ 	1) = . To show p {|x|} q it is enough to show p ≤ x◦ q ◦ , which
follows from p ≤ p ◦ = p ◦ x ◦ q ◦ ≤ x ◦ q ◦ .

• p ◦
= {MBT axioms}

p ◦ ◦ ⊥
= {assumption}

p ◦ po ◦ x ◦ (q ◦ 	 1) ◦ ⊥
= {Lemma 4}

p ◦ x ◦ (q ◦ 	 1) ◦ ⊥
= {Theorem 5}

p ◦ x ◦ q ◦ �

Definition 11. For x, y, u, v ∈ MBT, the program x is data refined by the pro-
gram y via the programs u and v, denoted x �u,v y, if

u ◦ x ≤ y ◦ v.

Algebra of Monotonic Boolean Transformers 153

This definition for data refinement was used in [19] for constructing invariant
based programs using data refinement. Next theorem allows to conclude a cor-
rectness statement for a program y which data refines a program x, knowing
that x is correct.

Theorem 14. If p, x, y, q, u, v ∈ MBT, then

1. p {|x|} q ∧ x �u,v y ⇒ wpt.(u ◦ p) {|y|}wpt.(v ◦ q)
2. p ∈ Assertion ∧ p {|x|} q ∧ p ◦ x �u,v y ⇒ wpt.(u ◦ p) {|y|}wpt.(w ◦ q)

Proof. We prove only the second property. The first one has a similar proof.
Assume p {|x|} q (⇔ p ≤ wpt.(x ◦ q)) and p ◦ x �u,v y (⇔ u ◦ p ◦ x ≤ y ◦ v).

• wpt.(u ◦ p) {|y|}wpt.(v ◦ q)
= {definition of Hoare triple}

wpt.(u ◦ p) ≤ wpt.(y ◦ wpt.(v ◦ q))
= {Theorem 11}

wpt.(u ◦ p) ≤ wpt.(y ◦ v ◦ q)
⇐ {assumption and wpt monotonic}

wpt.(u ◦ p) ≤ wpt.(u ◦ p ◦ x ◦ q)
= {Theorem 11}

wpt.(u ◦ p) ≤ wpt.(u ◦ p ◦ wpt.(x ◦ q))
⇐ {assumption and wpt monotonic}

wpt.(u ◦ p) ≤ wpt.(u ◦ p ◦ p)
= {Lemma 4}

wpt.(u ◦ p) ≤ wpt.(u ◦ p)
= {≤ is reflexive}

true �

The second property of Theorem 14 is preferable to the first one because the data
refinement p ◦ x �u,v y is easier to prove compared to x �u,v y. In p ◦ x �u,v y
the properties from p can be used as assumption in the proof.

In [22], von Wright uses a statement called havoc to introduce a pre-post-
condition specification statement. von Wright proves that the specification state-
ment is refined by another program x if and only if x is totally correct with
respect to the pre and post conditions. However the proof from [22] uses the
property that all programs are conjunctive, which does not hold in our set-
ting. We introduce another concept that can be used to define the specification
statement and we can prove the equivalence between the refinement of the spec-
ification statement into x and the correctness statement of x. As in case of [22],
this concept cannot be defined and we use two axioms for introducing it. We as-
sume that we have a function |_| : Assertion → MBT that satisfies the additional
axioms:

(P1) |p| ◦ p ◦ = (P2) x ◦ p ◦ � |p| ≤ x

In the model of monotonic Boolean transformers, if we define |{p}| = ||p||, then
the axioms (P1) and (P2) are satisfied.

Theorem 15. If p, q ∈ Assertion and x ∈ MBT, then p {|x|} q ⇔ p ◦ |q| ≤ x.

154 V. Preoteasa

Proof. Assume p {|x|} q which is equivalent to p ≤ x ◦ q ◦ .

• p ◦ |q|
= {Lemma 2}

(p ◦ � 1) ◦ |q|
= {MBT axioms}

p ◦ � |q|
≤ {assumption}

x ◦ q ◦ � |q|
≤ {axiom (P2)}

x

Conversely assume p ◦ |q| ≤ x and show p ≤ x ◦ q ◦ which is equivalent to
p {|x|} q when p ∈ Assertion

• p
= {Lemma 2}

(p ◦ � 1)
= {axiom (P1)}

p ◦ |q| ◦ q ◦ � 1
≤ {lattice properties}

p ◦ |q| ◦ q ◦
≤ {assumption}

x ◦ q ◦ �

6 Conclusions

We have introduced a new algebra for reasoning about imperative programming
languages which supports total correctness, refinement, data refinement, demonic
choice, and angelic choice. Compared to earlier versions of program algebras, this
approach uses the dual of a program as a primitive operation, and the assertion
statements are defined using weaker properties than how they were defined in
previous work.

We proved a number of results about assertions and assumptions. We have
also proved two main theorems. One theorem states a result which can be used
to prove the correctness of a concrete program y, by proving that y data refines
a program x and x is correct. The other theorem shows the equivalence between
the refinement of a specification statement and a Hoare total correctness triple.

All results presented in this paper were mechanically verified in the Isabelle
theorem prover.

References

1. Back, R.-J.: On the correctness of refinement in program development. PhD thesis,
Department of Computer Science, University of Helsinki (1978)

Algebra of Monotonic Boolean Transformers 155

2. Back, R.-J.: Correctness preserving program refinements: proof theory and applica-
tions. Mathematical Centre Tracts, vol. 131. Mathematisch Centrum, Amsterdam
(1980)

3. Back, R.-J., Preoteasa, V.: An algebraic treatment of procedure refinement to
support mechanical verification. Formal Aspects of Computing 17, 69–90 (2005)

4. Back, R.-J., von Wright, J.: A lattice-theoretical basis for a specification language.
In: van de Snepscheut, J.L.A. (ed.) MPC 1989. LNCS, vol. 375, pp. 139–156.
Springer, Heidelberg (1989)

5. Back, R.-J., von Wright, J.: Duality in specification languages: a lattice-theoretical
approach. Acta Inf. 27, 583–625 (1990)

6. Back, R.-J., von Wright, J.: Refinement Calculus. A systematic Introduction.
Springer, Heidelberg (1998)

7. Dang, H.-H., Höfner, P., Möller, B.: Algebraic separation logic. Journal of Logic
and Algebraic Programming 80(6), 221–247 (2011); Relations and Kleene Algebras
in Computer Science

8. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans.
Comput. Logic 7, 798–833 (2006)

9. Guerreiro, P.: Another characterization of weakest preconditions. In:
Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 164–177. Springer, Heidelberg (1982), doi:10.1007/3-540-11494-7_12

10. Hoare, C.A., Möller, B., Struth, G., Wehrman, I.: Concurrent kleene algebra. In:
Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–414.
Springer, Heidelberg (2009)

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

12. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19,
427–443 (1997)

13. Martin, C.E., Curtis, S.A., Rewitzky, I.: Modelling angelic and demonic nonde-
terminism with multirelations. Science of Computer Programming 65(2), 140–158
(2007); Special Issue dedicated to selected papers from the conference of program
construction 2004 (MPC 2004)

14. Meinicke, L., Solin, K.: Refinement algebra for probabilistic programs. Formal As-
pects of Computing 22, 3–31 (2010), doi:10.1007/s00165-009-0111-1

15. Morgan, C.: Programming from specifications. Prentice-Hall, Inc., Englewood Cliffs
(1990)

16. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

17. Preoteasa, V.: Program Variables – The Core of Mechanical Reasoning about Im-
perative Programs. PhD thesis, Turku Centre for Computer Science (November
2006)

18. Preoteasa, V.: Frame rule for mutually recursive procedures manipulating pointers.
Theoretical Computer Science 410(42), 4216–4233 (2009)

19. Preoteasa, V., Back, R.-J.: Data refinement of invariant based programs. Electronic
Notes in Theoretical Computer Science 259, 143–163 (2009); Proceedings of the
14th BCS-FACS Refinement Workshop (REFINE 2009)

20. Solin, K., von Wright, J.: Enabledness and termination in refinement algebra. Sci.
Comput. Program. 74, 654–668 (2009)

21. von Wright, J.: From kleene algebra to refinement algebra. In: Boiten, E.A., Möller,
B. (eds.) MPC 2002. LNCS, vol. 2386, pp. 233–262. Springer, Heidelberg (2002)

22. von Wright, J.: Towards a refinement algebra. Sci. Comput. Program. 51, 23–45
(2004)

Behavioural Preservation in Fault Tolerant

Patterns

Diego Machado Dias and Juliano Manabu Iyoda

Centro de Informática,
Universidade Federal de Pernambuco,
Recife - PE, Brazil, CEP 50740-560

{dmd,jmi}@cin.ufpe.br

Abstract. In the development of critical systems it is common practice
to make use of redundancy in order to achieve higher levels of reliability.
There are well established design patterns that introduce redundancy
and that are widely documented and adopted by the industry. However
there have been few attempts to formally verify some of them. In this
work we modelled three fault tolerant patterns (homogeneous redun-
dancy, heterogeneous redundancy and triple modular redundancy) using
the HOL4 theorem prover in order to prove that the application of these
patterns preserves the behaviour of the original system. Our model takes
into account that the original system (without redundancy) computes a
certain function with some delay and is amenable to random failure. We
illustrate our approach with a case study that verifies in HOL4 that a
fault tolerant design applied to a simplified avionic elevator system does
not introduce functional errors. This work has been done in collaboration
with the Brazilian aircraft manufacturer Embraer.

Keywords: Redundancy management, fault tolerance, behavioural
preservation, theorem proving, HOL.

1 Introduction

Critical systems are developed in such a way that safety is addressed explicitly
and under severe regulations. For instance, catastrophic failure of digital flight
control systems must be extremely improbable to occur: the failure rate must
be lower than 10−9 per hour [13]. In order to achieve such restriction, critical
systems are replicated in different ways in order to guarantee that a failure on
one component is covered by another replica of it [8]. Therefore fault tolerance
is mostly based on redundancy.

Redundancy is implemented in different ways. We can replicate a system with
an identical copy of it (and add a monitor to check which one is working); or we
can make copies of a system that have different design and implementation, but
that computes the same function; or we can ask for a voter to output an average
value of the output of the replicas; and so on. These design solutions, which we
call here fault tolerant patterns, are widely used in industry.

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 156–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Behavioural Preservation in Fault Tolerant Patterns 157

Fault tolerant patterns are de facto standards in industry. Unfortunately,
there has been few attempts to formally verify this catalogue of design patterns.
Moreover, the application of them in practice usually results in minor variations
of the patterns. In this paper, we model in HOL4 [9] three fault tolerant patterns
used in industry and prove that the application of these patterns preserves the
behaviour of the original system. Our correctness theorems are compositional,
allowing us to prove the correctness of a composition of fault tolerant patterns.
Currently, the proofs still need be user-guided, but it is not difficult to fully auto-
mate that. This work is the first step towards a general framework for engineers
to design and prove the correctness of their variations of the patterns.

Pioneering work on the verification of fault tolerant patterns was done in the
nineties [4,16,18]. These works proved the correctness of fault tolerant patterns
by hand [4], by using theorems provers [16], and with model checkers [18]. More
recently, Dajani-Brown et al. [7] used SCADE’s [1] model checker to verify the
correctness of a triple redundant system. Our work differs from previous works
on the compositionality of the theorems and on the separation of concerns: the
failure rate and the functional behaviour of the system are separate entities.
We do not assume any specific failure rate of the system in order to prove the
behavioural preservation (contrary to previous works).

This work is concerned with the non introduction of design error by redun-
dancy. We are not concerned with the benefits of redundancy with respect to
failure rate improvements. There are others studies [2][14] that show the quan-
titative benefits of using redundancy and discuss aspects as cost increase and
modifiability analysis.

We illustrate our approach with a case study in which we apply a triple
modular redundancy pattern to a highly simplified model of an avionics elevator.
We show that it is easy to prove that the addition of the redundancy did not
introduce more bugs to the original (non-replicated) system. This work has been
done in collaboration with the Brazilian aircraft manufacturer Embraer.

This paper is organised as follows. Section 2 briefly introduces higher order
logic in HOL4. Section 3 describes how we model the fault tolerant patterns in
HOL4 and show their correctness theorems. Section 4 illustrates our approach
in a case study. Section 5 presents the related work in more details and Section 6
concludes.

2 Overview of HOL

This section briefly introduces the HOL logic and one of its mechanisation, the
HOL4 system [11]. HOL is a predicate calculus with typed λ-calculus terms. The
predicate calculus of HOL allows variables to range over functions and predicates.
For example, Peano’s Mathematical Induction postulate is naturally formalised
in HOL.

� ∀P. (P 0) ∧ (∀n. P n ⇒ P (SUC n)) ⇒ (∀n. P n)

158 D.M. Dias and J.M. Iyoda

The variable P ranges over predicates. If P holds for 0 and if whenever it
holds for a number n, it also holds for its successor (SUC n), then P holds for
all natural numbers.

Function applications in HOL have the form (M N). Functions can take
functions as arguments and return functions as results and can also be partially
applied to an argument. For example, the function (add n m = n+m) takes an
argument n = 3 and returns a function that takes a number m and adds 3 to it.

HOL is a typed logic. The version of higher-order logic presented here ex-
tends Church’s simple type theory [6] with polymorphic types. For example, the
equality operator = is a higher-order function of type α→ (α→bool). The type
of its arguments is not defined a priori . The type variables σ (and α, β, etc.)
denote ‘any type’. The type σ1→σ2 denotes the set of all total functions from
values of σ1 to values of σ2. In the Peano’s Mathematical Induction postulate
presented above, the predicate P is of type num→bool, where num is the type
of natural numbers. We can write P :num→ bool to explicitly declare its type.
In particular, the HOL4 system provides the option type operator in order to
‘lift’ a type α to a new type containing all values of α plus a special value called
NONE . For example, the type num option contains all natural numbers and
NONE . In order to distinguish num values from NONE , numbers are built with
the constructor SOME : (SOME 0), (SOME 1), (SOME 2), etc. Values from the
original type can be recovered by using the function THE : α option→α. For
instance, THE (SOME 3) = 3 . We use option types to model input and output
signals that may come from a (temporarily) broken machine, i.e. a machine that
occasionally communicates an invalid value or no value at all.

The system we use in this work is the HOL4 [11]. The HOL4 system is the
latest version of a series of implementations first released in 1988. The HOL4
system was the first mechanisation of higher-order logic and was originally de-
veloped for hardware verification [9].

3 Fault Tolerant Patterns

Developing a fault tolerant system is an exercise in exploiting and managing
redundancy, that is the property of having more of a resource than is minimally
necessary to perform the job [14]. The objective for using fault tolerance is to
increase the reliability of a system, which is achieved by maintaining some form
of correctness despite the presence of faults.

Fault tolerance addresses different classes of failures like systematic failures
and random failures depending on the type of redundancy applied. A systematic
failure is a flaw on the design of the system (i.e. a bug, in the software engineer-
ing terminology). A random failure is a failure caused by wear, deterioration,
fatigue, etc.

Redundancy comes in different flavours. We can duplicate a system, triplicate
it, decide which replica is the “winner” (or is correct) by voting, install the
replicas on top of a reliable architecture, duplicate a system by another that is
slightly different from the original one (it may implement a different algorithm

Behavioural Preservation in Fault Tolerant Patterns 159

or use a different technology), and so on. There are plenty of such solutions that
we refer to here as fault tolerant patterns .

We call the original system (the target of our replication) a channel . A channel
is an end-to-end system that goes all the way from acquisition of relevant data
(the input) to the generation of the output based on that data [8].

Before introducing the fault tolerant patterns used in this work, we introduce
the formal model of the specification and the formal model of the components
that make up the implementation. Later on we formally define 3 patterns: homo-
geneous redundancy, heterogeneous redundancy and triple modular redundancy.
These patterns were chosen to give us a proof of concept of our framework, since
they are the most basic patterns.

3.1 Specification

We specify a channel as a black-box called SYSTEM with inputs and outputs.
Every SYSTEM computes a function f with a certain initialisation delay d.
Occasionally, the SYSTEM may ‘break’ as a consequence of random failures.
We model a random error of a SYSTEM as a function e from time to boolean.
We assume that the time is discrete with a common time reference. Whenever
e(t) is true, it means that the SYSTEM presents a random failure at time t. We
call e a fail function.

SYSTEM d e f (inp, out) =
∀t. out (t + d) = if (IS NONE(inp t) ∨ e(t)) then

NONE
else SOME(f t (THE (inp t)))

Signals are modelled as functions from time (natural numbers) to α option . Note
that we do not restrict data types of the input. A signal whose value is NONE
at time t means that the signal in time t comes with an error; and a signal whose
value is SOME(v) means that the signal has no errors and carries the value v at
time t. There are two conditions that make the output signal of a SYSTEM to
be NONE . Either the input comes with an error (IS NONE (inp t)), in which
case it is impossible to compute anything from NONE , or the SYSTEM itself
breaks (e(t)). If none of these conditions happen, then SYSTEM outputs the
result of the computation of f applied to THE (inp t). The computation f takes
as input the time t and THE (inp t).

3.2 Implementation

This section introduces the components that are used to describe the implemen-
tation of the fault tolerant patterns.

A DEL is a polymorphic delay component that introduces a delay d in an
input signal.

DEL d (inp, out) = ∀t. out (t + d) = (inp t)

160 D.M. Dias and J.M. Iyoda

The output out at time t + d is equal to the value of inp at time t. The delay
refers to the initialisation time of the system.

An ERROR component introduces a random error in a signal at time t based
on the fail function e.

ERROR e (inp, out) = ∀t. out t = if e(t) then NONE else (inp t)

The ERROR component outputs NONE whenever e(t) decides that an error
should be introduced at time t.

The combinatorial component COMB applies a function f : num → α → β
to the input at each instant in time.

COMB f (inp, out) = ∀t. out t = if IS NONE(inp t) then
NONE

else SOME(f t (THE (inp t)))

If the input signal at time t comes with an error (i.e. the input is NONE), then
the broken signal is propagated, otherwise f is applied to the input. The function
IS NONE is part of the HOL4 option type library. It tests if its argument is a
NONE . Similarly, there is the function IS SOME that tests if its argument is
SOME(v).

The BUS combines two signals inp1 and inp2 into one signal.

BUS (inp1 , inp2 , out) =
∀t. out t = if IS NONE (inp1 t) ∧ IS NONE (inp2 t) then

NONE
else SOME(inp1 t , inp2 t)

If, at time t, both signals (inp1 : num → α option) and (inp2 : num → β option)
areNONE , thenBUS outputsNONE .Otherwise it outputsSOME (inp1 t, inp2 t).
The output is a pair of optionswhose type is (αoption× β option) option. Note that
theBUS outputsNONE ,SOME(NONE ,SOME(v)),SOME(SOME(v),NONE),
orSOME(SOME(v1),SOME(v2)). But it never outputs SOME(NONE ,NONE),
which is equivalent to NONE, in order to avoid a component that takes it as input
to regard it as a valid data.

TBUS is an extension of BUS for three input signals.

TBUS (inp1, inp2, inp3, out) =
∀t. out t= if IS NONE (inp1 t) ∧ IS NONE (inp2 t) ∧ IS NONE (inp3 t) then

NONE
else SOME(inp1 t , inp2 t , inp3 t)

The MUX component separates a combined signal of type (α option×β option)
breakoption into two signals. When inp t is NONE , it outputs (NONE , NONE).
Otherwise, the input at time t has the form SOME(x, y) and the outputs are
out1 t = x and out2 t = y.

Behavioural Preservation in Fault Tolerant Patterns 161

MUX (inp, (out1 , out2)) =
∀t. (out1 t, out2 t) =

(if IS NONE (inp t) then NONE
else FST (THE (inp t)),
if IS NONE(inp t) then NONE
else SND(THE (inp t)))

The MUX component undoes what the BUS component does. The BUS takes
as input two signals and outputs one signal (made of a pair of values), while the
MUX takes one signal made of a pair of values and outputs two signals.

TMUX is an extension of MUX for three output signals.

TMUX (inp, (out1, out2, out3)) =
∀t. (out1 t, out2 t, out3 t) =

(if IS NONE (inp t) then NONE
else (FST (THE (inp t))),
if IS NONE(inp t) then NONE
else (SND(FST (THE (inp t)))),
if IS NONE(inp t) then NONE
else (SND(SND(THE (inp t)))))

Now we illustrate how we can compose the components shown above to build a
more elaborate system. A BLOCK is a system that has a certain delay d, may
break according to the fail function e, and computes f . A BLOCK is constructed
as a sequential composition of ERROR, COMB and DEL (see Figure 1).

BLOCK d e f (inp out) =
∀t. out (t + d) = ∃out1 out2 . ERROR e (inp, out1) ∧

COMB f (out1, out2) ∧
DEL d (out2, out)

Internal signals out1 and out2 are existentially quantified. This quantification
hides from the user of BLOCK the values of these signals, exposing only its exter-
nal interface. Signals with the same name connect two components. For instance,
out1 is the output of ERROR and the input of COMB . This style of modelling
block diagrams is fairly standard in the hardware verification domain [19].

Fig. 1. The diagram of BLOCK

162 D.M. Dias and J.M. Iyoda

The theorem below shows that a (BLOCK d e f (inp, out)) implements a
(SYSTEM d e f (inp, out)).

� ∀d e f inp out . BLOCK d e f (inp, out)⇒ SYSTEM d e f (inp, out)

The proof of this theorem in HOL4 is done by expanding all definitions, then
eliminating the existential and universal quantifiers (see Camilleri et al. [5] for
more details on how to do this in HOL4). After that, the proof is subdivided in
cases and simplification tacticals are conveniently applied to finish the proof. All
theorems in this work have been proved mechanically in HOL4. We omit further
information on the proofs from now on.

In what follows we describe how we build fault tolerant patterns using the
components described above.

3.3 Homogeneous Redundancy

This pattern is possibly the simplest existing fault tolerant pattern. The origi-
nal channel is simply duplicated in order to improve reliability. The replicated
channels operate in parallel, producing outputs at same time. The channels take
input data from different sources. This pattern is called homogeneous because
the replicas are exactly the same (same implementation, same technology, etc.).
A monitor is used to implement a switch-to-backup policy in case an error occurs
in the primary channel. This policy specifies that when the output produced by
the primary channel is NONE , then the backup channel is used.

A homogeneous redundant system HR connects two systems S1 and S2 to a
BLOCK with delay dm, fail function em, and functionality equals to the function
MONITOR (described below). The input inp is split by MUX into two signals:
inpsys1 and inpsys2 . These signals are the inputs of S1 and S2 , respectively.
The output of both S1 and S2 is combined by BUS and sent to a monitor
BLOCK , which decides which system is used.

HR dm em S1 S2 (inp : num → (α option × α option) option , out) =
∀t. out (t + d) = ∃inpsys1 inpsys2 outsys1 outsys2 outbus.

MUX (inp, (inpsys1, inpsys2)) ∧
S1 (inpsys1 , outsys1) ∧
S2 (inpsys2 , outsys2) ∧
BUS ((outsys1 , outsys2), outbus) ∧
BLOCK dm em MONITOR (outbus , out)

Note that the definition of HR does not force S1 and S2 to be duplicates of the
same system. This will be done in the correctness theorem of HR in which we
instantiate S1 and S2 .

The function MONITOR takes as input the current time and a pair of type
α option × α option and decides which output to choose: the one from S1 or the
one from S2 .

MONITOR t inp = if (IS SOME(FST (inp))) then
THE (FST (inp))

else THE(SND(inp))

Behavioural Preservation in Fault Tolerant Patterns 163

If the output from S1 is valid (IS SOME(FST (inp))) then MONITOR returns
the first element. Otherwise, it returns the second element. Note that MONITOR
is not a component. It instantiates the function f of a BLOCK .

The correctness theorem for HR is shown below. We assume that I1 and I2
are two implementations of a SYSTEM that has delay d and computes the func-
tion f . I1 and I2 differ only in their fail functions e1 and e2 , i.e. they do not
necessarily synchronise on their random failures.1 Given these two implementa-
tions of a SYSTEM that computes f , the theorem states that if we plug them
into the HR , the resulting system also implements a SYSTEM . Moreover, such
SYSTEM has a delay d+dm, a fail function (E e1 e2 em d inp) and computes
the function (FHR f e1). The definitions of E and FHR are given below.

� ∀I1 I2 d e1 e2 f dm em inp out .
(∀inp out. I1 (inp, out) ⇒ SYSTEM d e1 f (inp, out)) ∧
(∀inp out. I2 (inp, out) ⇒ SYSTEM d e2 f (inp, out))
⇒ (HR dm em I1 I2 (inp, out)

⇒ SYSTEM (d + dm) (E e1 e2 em d inp) (FHR f e1) (inp, out))

The fail function of an HR that comprises two channels I1 and I2 with fail
functions e1 and e2 , respectively, is given below.

E e1 e2 em d inp t =
em(t + d) ∨
(e1 (t) ∧ e2 (t)) ∨
(e1 (t) ∧ IS NONE(SND(THE (inp t)))) ∨
(e2 (t) ∧ IS NONE(FST (THE (inp t)))) ∨
(IS NONE(SND(THE (inp t))) ∧ IS NONE(FST (THE (inp t))))

The HR can fail under five different conditions: (i) the monitor block fails; or
(ii) both duplicated channels I1 and I2 fail simultaneously; or (iii) I1 fails and
the input for S2 is NONE ; or (iv) I2 fails and the input for I1 is NONE ; or (v)
the input for both I1 and I2 are NONE simultaneously.

The HR functionality is described by the function (FHR f e1), where f is the
functionality of both I1 and I2 , e1 is the fail function of primary channel (I1)
and t is the current time.

FHR f e1 t (inp : (α option × α option)) =
if IS NONE (FST (inp)) ∨ e1 (t)
then (f t (THE (SND(inp))))
else (f t (THE (FST (inp))))

If the input for I1 is NONE or I1 fails at time t, then HR behaves like I2 (it
applies f to the input of I2). Otherwise, it behaves like I1 by applying f to the
input of I1 . As we need to check if there is a failure of I1 at time t, we take
both the time and the fail function e1 as argument. Notice that in both cases,
HR preserves the functionality of I1 and I2 : the same function f is applied in
both branches of the if -then-else.
1 This assumption is in accordance to real duplicate systems: they do the same thing

and they have the same fail rates, but they do not necessarily fail together.

164 D.M. Dias and J.M. Iyoda

3.4 Heterogeneous Redundancy

This pattern improves reliability by offering channels with dissimilar design or
implementation, i.e. different design or implementation for systems that do the
same thing. Dissimilarity channels are particularly useful to reduce the chances
of replicating two systems with the same systematic failures (bugs).

The heterogeneous redundant system HetR specification is quite similar to
HR, except that the inputs have different types as the replicated systems have
different implementations. Their outputs, however, have the same types as they
must compute the same thing. As in HR, the HetR connects two systems S1
and S2 to a BLOCK with delay dm, fail function em and that implements the
function MONITOR. The monitor function is the same of HR.

HetR dm em S1 S2 (inp : num → (α option × β option) option , out) =
∀t. out (t + d) = ∃inpsys1 inpsys2 outsys1 outsys2 outbus

MUX (inp, (inpsys1 , inpsys2)) ∧
S1 (inpsys1 , outsys1) ∧
S2 (inpsys2 , outsys2) ∧
BUS ((outsys1 , outsys2), outbus) ∧
BLOCK dm em MONITOR (outbus, out)

Note that the input is now of type num→(α option×β option) option . For HR,
the input is of type num→(α option ×α option). This is what captures hetero-
geneity in our model. As the difference between homogeneous and heterogeneous
depends only on the type of input, perhaps HetR could cover both. We present
both HR and HetR here as they are standard patterns for fault tolerance [8].

The correctness theorem is also very similar to the HR. If I1 and I2 are correct
implementations of a SYSTEM , then an HetR system that contains I1 and I2
is also an implementation of a SYSTEM . Such SYSTEM , however, computes
the function FHetR (shown below).

� ∀I1 I2 d e1 e2 f1 f2 dm em inp out .
(∀inp out.I1 (inp, out)⇒ SYSTEM d e1 f1 (inp, out)) ∧
(∀inp out.I2 (inp, out)⇒ SYSTEM d e2 f2 (inp, out))
⇒ (HetR dm em I1 I2 (inp, out)
⇒ SYSTEM (d + dm) (E e1 e2 em d inp) (FHetR f1 f2 e1) (inp, out))

The function FHetR chooses between the functionalities provided by the replicas.

FHetR f1 f2 e1 t (inp : (α option × β option)) =
if IS NONE (FST (inp)) ∨ e1 (t)
then (f2 t THE (SND(inp)))
else (f1 t THE (FST (inp)))

If the input for I1 is NONE or if I1 breaks at time t, then the function f2 of I2
is used. Otherwise, f1 is computed.

Behavioural Preservation in Fault Tolerant Patterns 165

3.5 Triple Modular Redundancy

The triple modular redundancy is a variation of the homogeneous redundancy
that consists of three identical channels that operate in parallel, and a voter
that compares and averages the outputs of the channels. As in HR, only random
faults can be addressed by this pattern, but it differs from HR by allowing the
system to provide a valid output in the presence of up to two simultaneous
random failures.

The voter plays a main role in this pattern by applying a voting policy that
takes into account the majority of the valid outputs from the replicas [2]. We
assume that the channel’s outputs can diverge slightly, i.e. two SOME outputs
do not need be exactly the same. This assumption reflects the fact that every
channel receives its input from independent sources (typically, distinct sensors),
and that these sources can produce slightly different values even using same
technology. This happens specially when the sources output values of type real.

The VOTER shown below is a function that averages the valid outputs from
the channels in order to minimise deviations. We assume that the type of the
function computed by the channels is num→α→real as real arithmetic is needed
in order to compute the average. For simplicity, the input inp is subdivided in
three components: in1 , in2 and in3 , these components refer to the input of
three channel replicas. If all signals are valid, the VOTER outputs the arithmetic
average of all them; in case of just one signal is invalid, this signal is disregarded
and the average of other two is given as result. Finally, if just one signal is valid,
this signal is the output itself.

VOTER t inp =
let in1 = FST (inp) in
let in2 = FST (SND(inp)) in
let in3 = SND(SND(inp)) in

if IS SOME (in1) ∧ IS SOME(in2) ∧ IS SOME(in3) then
(1/3) ∗ (THE (in1) + THE (in2) + THE (in3))

else if IS SOME(in1) ∧ IS SOME (in2) then
(1/2) ∗ (THE (in1) + THE (in2))

else if IS SOME(in1) ∧ IS SOME (in3) then
(1/2) ∗ (THE (in1) + THE (in3))

else if IS SOME(in2) ∧ IS SOME (in3) then
(1/2) ∗ (THE (in2) + THE (in3))

else if IS SOME(in1) then THE (in1)
else if IS SOME(in2) then THE (in2)
else THE (in3)

The TMR pattern connects three systems S1 , S2 and S3 to a BLOCK with
delay dv, fail function ev and that implements the function VOTER. Notice
that TBUS and TMUX play the role of BUS and MUX used with HR and

166 D.M. Dias and J.M. Iyoda

HetR. As the channel replicas are homogeneous, the input is of type num →
(α option × α option × α option) option .

TMR dv ev S1 S2 S3 (inp, out) =
∀t. out (t + dv) = ∃inpsys1 inpsys2 inpsys3 outsys1 outsys2 outsys3 outbus.

TMUX (inp, (inpsys1 , inpsys2 , inpsys3)) ∧
S1 (inpsys1 , outsys1) ∧
S2 (inpsys2 , outsys2) ∧
S3 (inpsys3 , outsys3) ∧
TBUS (outsys1 , outsys2 , outsys3 , outbus) ∧
BLOCK dv ev VOTER (outbus, out)

The correctness theorem states if I1 , I2 and I3 are correct implementations
of a SYSTEM , then a TMR system that contains I1 , I2 and I3 is also an
implementation of a SYSTEM . Such SYSTEM , has a delay d+dv, a fail function
(ETMR e1 e2 e3 ev d inp) and computes the function (FTMR e1 e2 e3 f).
The definitions of ETMR and FTMR are explained below.

� ∀I1 I2 I3 dv ev d e1e2 e3 f inp out .
(∀inp out.I1 (inp, out)⇒ SYSTEM d e1 f (inp, out)) ∧
(∀inp out.I2 (inp, out)⇒ SYSTEM d e2 f (inp, out)) ∧
(∀inp out.I3 (inp, out)⇒ SYSTEM d e3 f (inp, out))
⇒ (TMR dv ev I1 I2 I3 (inp, out)

⇒ SYSTEM (d + dv) (ETMR e1 e2 e3 ev d inp)
(FTMR e1 e2 e3 f) (inp, out))

The TMR can fail in one of these cases: either i) all channels present a random
failure simultaneously; or ii) the voter presents a random failure; or iii) there is
a combination of NONE inputs and channel failures that involves all channel
replicas; or iv) all inputs are NONE .

ETMR e1 e2 e3 ev dv inp t =
let in1 = FST (THE(inp)) in
let in2 = FST (SND(inp)) in
let in3 = SND(SND(inp)) in

(e1 (t) ∧ e2 (t) ∧ e3 (t)) ∨
(ev(t + dv)) ∨
(IS NONE (in1) ∧ e2 (t) ∧ e3 (t)) ∨
(IS NONE (in2) ∧ e1 (t) ∧ e3 (t)) ∨
(IS NONE (in3) ∧ e1 (t) ∧ e2 (t)) ∨
(IS NONE (in1) ∧ IS NONE (in2) ∧ e3 (t)) ∨
(IS NONE (in1) ∧ IS NONE (in3) ∧ e2 (t)) ∨
(IS NONE (in2) ∧ IS NONE (in3) ∧ e1 (t)) ∨
(IS NONE (in1) ∧ IS NONE (in2) ∧ IS NONE(in3))

Behavioural Preservation in Fault Tolerant Patterns 167

The function FMTR takes 6 arguments: the fail function of each replica, the
computing function of the replicas (which is the same function for all replicas),
the input, and the current time. Based on the input and the fail functions, FMTR
dismisses NONE outputs of each channel and outputs the average of the valid
outputs. This function assumes the input inp has at least one valid signal. This
assumption is always satisfied as inp comes from TMUX .

FTMR e1 e2 e3 f (t : num) inp =
let in1 = FST (inp) in
let in2 = FST (SND(inp)) in
let in3 = SND(SND(inp)) in

if IS SOME(in1) ∧ IS SOME(in2) ∧ IS SOME(in3) ∧
¬e1 (t) ∧ ¬e2 (t) ∧ ¬e3 (t)

then (1/3) ∗ (f t (THE in1) + f t (THE in2) + f t (THE in3))
else if IS SOME(in1) ∧ IS SOME(in2) ∧ ¬e1 (t) ∧ ¬e2 (t)

then (1/2) ∗ (f t (THE in1) + f t (THE in2))
else if IS SOME(in1) ∧ IS SOME(in3) ∧ ¬e1 (t) ∧ ¬e3 (t)

then (1/2) ∗ (f t (THE in1) + f t (THE in3))
else if IS SOME(in2) ∧ IS SOME(in3) ∧ ¬e2 (t) ∧ ¬e3 (t)

then (1/2) ∗ (f t (THE in2) + f t (THE in3))
else if IS SOME(in1) ∧ ¬e1 (t) then (f t (THE in1))
else if IS SOME(in2) ∧ ¬e2 (t) then (f t (THE in2))
else (f t (THE in3))

Differently from HR and HetR, it is hard to see that triple modular redundancy
preserves the essence of behaviour of the channels. The behaviour of TMR is
the average of the behaviour of the parts. The only cases where the behaviour
is preserved completely are those in which there is only one valid channel (see
the last 3 if branches above). It is easy to define further variations on the voter
by changing the definition of the VOTER.

4 Case Study

In this section we show a (very) simplified model of an aircraft elevator control
system (ECS) translated from a Simulink diagram to a HOL4 function. Elevator
surfaces control the aircraft’s orientation by changing the up-and-down move-
ment of the aircraft’s nose (this movement is called pitch). For conciseness, we
abstracted away several low level details of the ECS and assume the translation
is correct. This assumption does not compromise our case study as our verifi-
cation concerns the redundancy of the ECS instead of verifying the ECS itself.
We show how the ECS function can be viewed as a block that is subsequently
applied to the TMR pattern. The correctness theorem for the TMR is easily
derived from the theorems shown in Section 3.

The elevator controller takes as input values from several sensors and outputs
the command to the elevator.

168 D.M. Dias and J.M. Iyoda

elevator t (PitchRate ,Flap,WOW ,LongSideStick ,PitchRate Voted) =
let out lpf = low pass filter(1 ,PitchRate) in
let out cpt = compensator(1/2 , 1/4 , out lpf) in
let out gfe = Gain(−150 , out cpt) in
let out gfc = Gain(−67 , out cpt) in
let out sth = SwitchThreshold(1/2 ,Flap, out gfe, out gfc) in
let out not = NOT (WOW) in
let out and = AND(out not ,PitchRate Voted) in
. . .
let out str = ElevSaturation(−25 , 25 , out sum)
in out str

The elevator controller takes as input the angular momentum of the airplane
(PitchRate), the flap position (Flap), the weight on wheels (WOW), the longi-
tudinal side-stick deflection (LongSideStick) and a signal that validates the pitch
rate (PitchRate Voted). The low pass filter filters low-frequency signals and re-
duces the amplitude of signals with frequencies higher than a certain cutoff
frequency. The compensator increases the stability of the system response. The
Gain amplifies the input by a certain amount given by the first argument. The
switchThreshold allows one to choose between two inputs (out gfe and out gfc).
The decision is made according to the value of a threshold (1/2) and the switch
input (Flap). The functions NOT and AND represent boolean negation and
boolean conjunction, respectively. The ElevSaturation imposes upper and lower
bounds on a value. When the input value PitchRate Voted is within the range
−25 and 25, the output signal is equal to the input signal. Otherwise, it restricts
the signal to the upper and lower bounds.

It is easy to prove that a BLOCK that implements the elevator is a SYSTEM .

� ∀d e inp out. BLOCK d e elevator(inp, out)
⇒ SYSTEM d e elevator(inp, out)

The proof of this theorem is a simple instantiation of the function f of the
theorem shown at the end of Section 3.2.

In a similar way, we can instantiate the correctness theorem for the Triple
Modular Redundancy in order to prove that the redundant system implements
an FTMR that averages computation of the elevator .

� ∀d e1 e2 e3 ev dv inp out .
TMR dv ev (BLOCK d e1 elevator) (BLOCK d e2 elevator)

(BLOCK d e3 elevator) (inp, out)
⇒ SYSTEM (d + dv) (ETMR e1 e2 e3 ev d inp)

(FTMR e1 e2 e3 elevator) (inp, out)

The proofs for these theorems are trivial. We only have to instantiate the function
to be elevator . The proof effort was entirely on the proof of the theorems of
Section 3. It is possible to make such proofs completely automatic, although we
have not implemented it yet.

Behavioural Preservation in Fault Tolerant Patterns 169

Note we do not need to instantiate the fail functions in the theorem above.
It occurs due to the fact that the correctness theorem for TMR (and another
patterns) universally quantify the fail function. This is an advantage of our
model, since our theorem can be applied for systems with any fail function.

Thanks to the compositionality of our theorems, we can continue to apply
more fault redundant patterns if we wish. For instance, we could replicate the
entire TMR system and plug the replicas into an HR. As the TMR also im-
plements a SYSTEM , the entire replication with HR could be easily proved to
implement a SYSTEM too.

5 Related Work

This section presents related work on the formal verification of fault tolerant
patterns. Pioneering work on the verification of fault tolerant patterns were
done by Owre et al. [16], Butler et al. [4] and Sokolsky et al. [18] in the nineties.
They verified a model for a fault tolerant architecture for distributed processors
called the Reliable Computing Platform (RCP) and a redundancy management
system (RMS) for a Space Launch Vehicle.

The formalisation of Owre et al. was done in EHDM [15]. Their verification
proved that a replicated synchronous system using majority voting presents the
same behaviour of a single system with no failures [16]. Their proof assumes
that only transient failures happen and that damages to a data caused by one
subsystem do not propagate to cause another working subsystem to failure.

A more ambitious and detailed verification was carried out by Butler et al. [4].
Their verification of the RCP is divided into 5 levels of specifications. The top-
most level is the equivalent one to Owre’s single ideal system. The levels below it
describe the system as a synchronous replicated system, distributed replicated sys-
tem (whose communication takes time), distributed asynchronous replicated sys-
tem, and local executive (which takes into account details of the operating system
memory management, task management, and inter-processor communication).

Sokolsky et al. verified a redundancy management system (RMS) for a Space
Launch Vehicle [18]. The RMS verified is a modular architecture that separates
two concerns: the redundancy management system is developed independently
from the application. The verification was carried out in the process algebra
ACSR [3]. The requirements were formalised and its properties were subsequently
verified in the PARAGON toolset [17]. The verification was carried out by the
PARAGON model checker. For every property to be verified, an observer pro-
cess was created to run in parallel with the system. If an illegal behaviour was
observed, the observer induced a deadlock in order to stop the checker.

More recently, Dajani-Brown et al. applied SCADE [1] (a commercial lan-
guage and tool similar to Lustre [10]) to verify a triple modular redundancy
with SCADE’s model checker [7]. Errors are modelled in a similar way we do:
an external signal indicates whether there must be a failure or not. Their model

170 D.M. Dias and J.M. Iyoda

is more specific with respect to the timing of the failure. The model is configured
to have failures not occurring simultaneously and with a well-defined duration.
Similar to our model, noise is not formalised. Unlike ours, there is no failure on
the voter itself.

The related works differ from ours mainly on the compositionality of the
theorems, and on the model of errors. Owre et al. [16] and Butler et al. [4]
assume that the original channel cannot fail and that, under certain conditions
of the fail function, the replicated system behaves like a perfect original channel.
We also capture the situation where a simultaneous failure occurs, differently
from Dajani-Brown et al. [7].

6 Conclusion

We developed a model in HOL4 for fault tolerant patterns. Our model describes
the original non-replicated channel as a system capable of: computing a certain
function; subject to failure; and having an initialisation delay. The fault tolerant
patterns also compute a certain function (which is essentially the computation
done by the original system), are also subject to failure (according to a fail
function that depends on the failure of its replicated channels), and have an
initialisation delay.

The fail function for both the original channel and the fault tolerant pattern
is the novel feature of our model. Previous works have assumed that the original
channel and the fault tolerant patterns are perfect. We proved that the fault
tolerant patterns preserve the essence of the original behaviour whenever the
fail function evaluates to false. Moreover, the process of proving the correctness
theorems also reveals us the fail logic: it is by proving the correctness theorem
that we found out under which conditions the patterns can fail (i.e. the final
definitions of the functions E and ETMR were discovered during the process of
proving). In addition, the compositionality of the theorems allows the user to
compose fault tolerant patterns over and over in a correct way without any extra
proof effort.

As future work, we intend to verify the correctness of fault tolerant patterns
used in real projects in the industry. In particular, designs used by our partner
Embraer, a Brazilian aircraft manufacturer. In addition, we plan to investigate to
what extent our model applies to more general systems like block diagrams [12].
We also plan to verify variations of the patterns presented here.

Acknowledgement. We thank the National Institute of Science and Technol-
ogy for Software Engineering (INES2), funded by CNPq and FACEPE, grants
573964/2008-4 and APQ-1037-1.03/08. We also thank Embraer for the technical
support and Robson Silva for review this paper.

2 http://www.ines.org.br

Behavioural Preservation in Fault Tolerant Patterns 171

References

1. The SCADE suite,
http://www.esterel-technologies.com/products/scade-suite

2. Armoush, A.: Design Patterns for Safety-Critical Embedded Systems. Dissertation,
Embedded Software Laboratory - RWTH Aachen University (June 2010)

3. Bremond-Gregoire, P., Lee, I., Gerber, R.: ACSR: An algebra of communicating
shared resources with dense time and priorities. In: Best, E. (ed.) CONCUR 1993.
LNCS, vol. 715, pp. 417–431. Springer, Heidelberg (1993)

4. Butler, R.W., Di Vito, B.L., Holloway, C.M.: Formal design and verification of
a reliable computing platform for real-time control (phase 3 results). Technical
memorandum 109140 (1994)

5. Camilleri, A., Gordon, M., Melham, T.: Hardware verification using higher-order
logic. In: Borrione, D. (ed.) Proceedings of the IFIP WG 10.2 Working Conference
on From HDL Descriptions to Guaranteed Correct Circuit Designs, pp. 43–67.
North-Holland (1987)

6. Church, A.: A simple theory of types. Journal of Symbolic Logic 5, 56–68 (1940)
7. Dajani-Brown, S., Cofer, D.D., Bouali, A.: Formal Verification of an Avionics Sen-

sor Voter Using SCADE. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003.
LNCS, vol. 2791, pp. 5–20. Springer, Heidelberg (2004)

8. Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-
Time Systems. Addison-Wesley Professional (2002)

9. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press (1993)

10. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language Lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991)

11. The HOL4 System. SourceForge website, http://hol.sourceforge.net
12. International Electrotechnical Commission. IEC 61131-3 Ed. 1.0 en:1993: Pro-

grammable controllers — Part 3: Programming languages
13. Keith, L.: Advisory Circular - System Design and Analysis, 25.1309-1A (June 1988)
14. Koren, I., Krishna, C.M.: Fault Tolerant Systems. Morgan Kaufmann Publishers

Inc., San Francisco (2007)
15. Melliar-Smith, P.M., Rushby, J.: The Enhanced HDM system for specification and

verification. In: VerkShop III, Watsonville, CA, pp. 41–43 (1985)
16. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification of fault-

tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering 21(2), 107–125 (1995)

17. Sokolsky, O., Lee, I., Ben-Abdallah, H.: Specification and analysis of real-time
systems with PARAGON (1999)

18. Sokolsky, O., Younis, M.F., Lee, I., Kwak, H.-H., Zhou, J.X.: Verification of the
redundancy management system for space launch vehicle: A case study. In: IEEE
Real Time Technology and Applications Symposium, pp. 220–229 (1998)

19. Melham, T.F.: Abstraction mechanisms for hardware verification. In: Birtwistle,
G., Subrahmanyam, P.A. (eds.) VLSI Specification, Verification, and Synthesis,
pp. 129–157. Kluwer Academic Publishers, Boston (1988)

http://www.esterel-technologies.com/products/scade-suite
http://hol.sourceforge.net

A Formal Approach to Fixing Bugs�

Sara Kalvala and Richard Warburton

Department of Computer Science, University of Warwick, UK
{Sara.Kalvala,R.L.M.Warburton}@warwick.ac.uk

Abstract. Bugs within programs typically arise within well-known mo-
tifs, such as complex language features or misunderstood programming
interfaces. Some software development tools often detect some of these
situations, and some integrated development environments suggest auto-
mated fixes for some of the simple cases. However, it is usually difficult
to hand-craft and integrate more complex bug-fixing into these environ-
ments. We present a language for specifying program transformations
which is paired with a novel methodology for identifying and fixing bug
patterns within Java source code. We propose a combination of source
code and bytecode analyses: this allows for using the control flow in the
bytecode to help identify the bugs while generating corrected source code.
The specification language uses a combination of syntactic rewrite rules
and dataflow analysis generated from temporal logic based conditions.
We demonstrate the approach with a prototype implementation.

1 Introduction

Debugging existing programs while maintaining the intent of the programmer is
an unavoidable but difficult task, which can take significant effort in the software
development lifecycle. Some existing tools, such as FindBugs [8], can detect
some of the commonly repeated bugs in particular programming languages, and
some extensions to integrated development environments (IDEs), such as the
UCDetector plugin [18], may attempt to suggest automated fixes for some of
the simple cases. However, as far as we are aware, there is no general tool for
specifying unusual or domain-specific bug detection mechanisms that also offers
suggested fixes based on the specifications.

In this paper we propose a temporal-logic based language that offers a solution
for this difficult problem of finding and fixing subtle bugs. Traditional applica-
tion of abstract interpretation and static analysis is focused around checking a
specified property of a specified program. In this work we seek to find bugs in
large families of programs by facilitating the coding of common bug patterns and
then detecting instances of those bug patterns. Each instance of a bug pattern is
a potential bug and each pattern has one or more resolutions associated with it,
that can be instantiated for a given potential bug. We use Java as our example
platform, though our methodology is applicable to many imperative languages.
� This work was supported by the EPSRC under grant EP/DO32466/1 “Verification

of the optimising phase of a compiler”.

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 172–187, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Formal Approach to Fixing Bugs 173

An important issue in writing static analysis systems is the representation over
which the analysis is performed, notably whether at source code level, object
code level or some intermediate representation. In order to bug-fix the programs
themselves (rather than a low-level representation) it is necessary to perform the
transformation at the source code level. There are many advantages, however, to
performing analysis at a lower level: for example, it is easier to extract the control
flow graph from a language whose control flow is represented by conditional goto
statements, rather than loops. Therefore, many existing systems for detecting
bugs perform analysis at the bytecode level, but then have difficulty incorporating
fixes to source programs. We attempt to blend the best of both worlds with our
approach to analysis: we perform syntactic analysis against the source code of
the program, whilst performing semantic analysis on a bytecode representation.
We use the standard debugging information from the Java Bytecode format in
order to correlate the results from the source and Bytecode analyses.

The two characteristics of our work are therefore to support extensibility
by allowing specification of new bug patterns, and correction of the original
high-level programs. In this paper we show how to codify common bug patterns
within a formally defined language based on temporal logic. We also simplify the
construction of tools for static analysis of bug patterns, through model checking
and rewriting.

In Section 2 we describe the kind of bugs which we consider and also the
approach to software development for which our approach is particularly suited.
We then describe, in Section 3, the language TRANSfix which can be used for
both identifying bugs and implementing the transformations which correct the
bugs. The prototype implementation FixBugs which applies bug fixes written in
TRANSfix to Java programs is described in Section 4.

2 Methodology and Application

2.1 Example Bug Patterns and Categories

We use as a starting point the classification of common Java bugs due to Hove-
meyer and Pugh [8], used in the description of the FindBugs tool which detects
most of them. Many of the bugs identified by Hovemeyer and Pugh are simple
and their identification requires merely a syntactic pattern matching system.
Some of them, however, don’t have obvious fixes. We especially consider some
concurrency bugs, since they require more than simple syntactic pattern match-
ing to be identified yet are amenable to temporal analysis.

Because of space limitations, in this paper we consider only three examples:

Method does not release lock on all paths. This bug arises in a situation
where a method acquires a lock, but there exists a path through the method
where the lock isn’t released. The java.util.concurrent lock, as specified
in JSR-166, is considered by the authors of FindBugs. Fig. 1 illustrates the
standard solution to this bug.

174 S. Kalvala and R. Warburton

Lock l = . . . ;
l . l ock () ;
try {

// do something
} f ina l ly { l . unlock () ; }

Fig. 1. Pattern for correct locking

BufferedReader in = null ;
try {

in = new BufferedReader (
new Fi leReader (‘ ‘ foo ’ ’)) ;

S t r ing s ;
while ((s=in . readLine ()) != null) {

System . out . p r i n t l n (s) ; }
// (1) c l o s e mi s taken l y p l aced

in . c l o s e () ;
} catch (Exception e) {

e . pr intStackTrace () ;
} f ina l ly {

// (2) the c l o s e shou l d be p l aced wi th guard by a nu l l check
i f (in != null) {

try { in . c l o s e () ;
} catch (IOException e) {

e . pr intStackTrace () ; } } }

Fig. 2. Possibly Unclosed File Handle

Method may fail to close stream. This bug occurs when a method creates
an IO stream object but does not assign it to any fields, pass it to other
methods that might close it, or return it, and does not appear to close the
stream on all paths out of the method. This may result in a file descriptor
leak. Good programming discipline requires the use of a finally block to
ensure that streams are closed. Fig. 2 shows an example of (1) where not to
place a close and (2) where to place it correctly.

Failed database transactions may not be rolled back. The JDBC library
for database connections models the beginning, committing and ending of
transactions through explicit calls to methods. A common bug pattern is a
failure to check whether a transaction needs to be rolled back if its commit
fails. The correct pattern is illustrated in Fig. 3. Another common problem
is the failure to ensure that all paths end in either a commit or a rollback.

2.2 Placing Debugging within Software Development

In general, a good approach to process the fixing of bugs is to not entirely
automate the application of transformations to the users’ programs, since fixes
may not always be semantics preserving. But if an automated tool is not designed

A Formal Approach to Fixing Bugs 175

try {
conn . setAutoCommit(fa l se) :
. . . .
conn . commit () ;

} catch (java . s q l . SQLException e) {
i f (conn != null) {

try {
conn . r o l l b a ck () ;

} catch (java . s q l . SQLException e) {
e . pr intStackTrace () ; } } }

Fig. 3. JDBC Commit and Rollback Pattern

to consider the specification of the program, there is the risk of introducing new
bugs into a currently working system. Bug patterns usually identify scenarios
that are likely to be buggy, rather than being guaranteed to be so. In this context,
the conservative approach, which we adopt, is to not alter the program, but
simply suggest bug fixes to the user.

Our implementation, described in Section 4 and which we call FixBugs, uses
the Eclipse toolkit’s intermediate representation to perform program transfor-
mation. This enables the production of source code that is formatted according
to users’ preferred style guidelines and integrates into the context in which pro-
grams are being developed.

While we have incorporated a few common bugs into FixBugs, the aim is to
provide a framework in which more bugs can be accounted for. The designing of
new transformations is easier than in traditional static analysis systems since the
programmer does not have to implement new detailed analysis and transforma-
tion steps. Since the program transformations themselves are merely syntactic
substitutions, it should be relatively natural for any experienced programmer to
tailor the system to common bugs in their application area. The temporal logic
side conditions may be considered a difficult notation to grasp, but we believe it
is a simpler and more intuitive way of formulating dataflow analysis, than hand
writing the code directly.

The FixBugs approach is not intended to subsume traditional debugging tech-
niques such as testing, or traditional formal analysis techniques such as static
analysis and model checking. Its integration into existing tools and techniques
should complement their usage, allowing automated FixBugs sweeps of the code
to be made in order to offer potential improvements to the code base. Bugs can
be found as early as possible through these automated tools, rather than be-
ing identified later through failing test cases, often at a much higher cost. The
inclusion within the development cycle of phases dedicated to improving code
quality, such as the refactoring phases promoted by some agile methodologies,
provides bug fixing program transformations with a suitable hook on which to
integrate themselves into current practice.

176 S. Kalvala and R. Warburton

3 A Language for Detecting and Fixing Bugs

3.1 Basis: The TRANS Language

In previous work concerned with the application of formally specified optimiza-
tions on Bytecode programs [20], we developed and extended Lacey’s TRANS
language [11,9]. In TRANS, compiler optimisations are represented through two
components: a rewrite rule and a side condition which indicates the situations
in which the rewrite can be applied safely.

Side conditions are expressed in an extension of CTL [4], a path-based tempo-
ral logic which can capture many properties while still being efficient to model-
check. Temporal logics traditionally describe properties of a system relative to a
point in time, but in TRANS the points of interest are nodes (or program points)
in a control flow graph (or CFG) representing a program. The variant of CTL
used includes past temporal operators (

←−
E and

←−
A), the final operators EF and

AF , and the henceforth operators EG and AG. The next state operators are
extended with information on the kind of edge they operate over: for example,
EXseq and AXbranch stand for “there exists a next state via a seq edge” and “for
all next states reached via a branch edge” respectively.

A logical judgement of the form: φ @ n states that the formula φ is satisfied
at node n of the control flow graph. Two types of these basic predicates can be
used to obtain information about a node in the control flow graph. The formula
node(x) holds at a node n in a valuation that maps n to x. The formula stmt(s)
holds at a node n where the valuation makes the pattern s match the statement
at node n. As well as judgements about states, the language can make “global”
judgements. For example, the formula φ @ n ∧ conlit(c) states that φ holds at
n and c is a constant literal throughout the program.

User defined predicates can be incorporated via a simple macro system. These
can be used in the same way as core language predicates, and are defined by an
equality between a named binding and the temporal logic side condition that
the predicate should be ’expanded’ into.

3.2 From TRANS to TRANSfix

We describe a variant of the TRANS language, called TRANSfix, suitable for
specifying the transformation of Java source code with the aim of correcting
bugs that may appear within programs. In contrast to TRANS, where the goal
is to produce optimized low-level code, TRANSfix is used to produce source code,
since the goal of debugging is usually to maintain reusable and readable source
code, for the developers of the software to continue working on. So rather than
operating on the low-level code which is used as input for the temporal logic side
conditions, rewrite rules must operate on the source program itself.

TRANSfix specifications consist of actions and side conditions: if the side con-
dition holds then the action is applied. Many actions consist of replacing state-
ments with other statements, although they can also include adding new methods
to classes. Actions are applied if side conditions hold.

A Formal Approach to Fixing Bugs 177

A BNF for the TRANSfix pattern matching language is provided in Fig. 4.
Interesting aspects of TRANSfix are its use of metavariables, the new actions and
strategies, and the type system. The core syntax of the rewrite rules is based on
standard programming constructs (assignment statements, while statements, if
statements, etc) which we assume are well understood. The syntax is expanded
with constructs to support meta-variables, representing either syntactic frag-
ments of the program or nodes of the CFG.

The language for transformations contains a Java statement grammar, ex-
tended with metavariables that can bind to different program structures. For
example, the pattern for matching an assignment of a variable by an addition
expression, that is later followed by re-assignment to that variable, is shown in
Fig. 5(a). The code snippet shown in Fig. 5(b) matches that pattern, via the
bindings shown in Fig. 5(c).

TRANSfix also contains a wildcard operator “....” that matches against any
statement or (possibly empty) sequence of statements. Since a wildcard state-
ment is a normal pattern matching statement, it can also be bound using a label,
allowing the matching of arbitrary blocks of code in strategic locations. In or-
der to facilitate the writing of specifications that are intuitive to programmers,
we also allow wildcards to be used in the reconstruction of statements. This is
syntactic sugar for binding the wildcard statements to metavariables using la-
bels, and then substituting in metavariable references within the reconstruction
pattern. Wildcard substitutions are indexed: the nth wildcard block in pattern
matching is substituted into the nth wildcard position in the reconstruction pat-
tern.

A consequence of the desire to produce source code is the necessity of incor-
porating scoping; while scoping doesn’t exist within methods at a bytecode level,
it is a necessary part of the transformation language of TRANSfix. Support of
scoping allows us to match programming language constructs such as try and
catch blocks.

Java types are also supported in the pattern matching. The pattern :: m binds
any type to the metavariable m. One can explicitly refer to primitive types (such
as int) or object types (such as java.util.Vector). One can also match arrays.
The two new calls within the expressions grammar specifically allow pattern
matching array initialisers.

3.3 Actions

Simple rewriting merely replaces code fragments with new code, but many trans-
formations must actually change the structure of the class or apply rewrites at
multiple places. These structural changes are supported by additional actions.

The ADD METHOD action takes the return type of the method, its name, argu-
ments and a statement to act as the body. This code is then added to a class,
specified through a metavar. This is our primary method of transforming classes.

The COMPOSE action performs sequential composition on the two actions passed
as arguments and forms a new atomic action. (This is not to be confused with
the THEN transformation (see below) for composing two transformations.)

178 S. Kalvala and R. Warburton

type ::= :: metavar | primitive-type | object-type | type []

expr-pattern ::= metavar (expression, expression ...)?
| expression op expression | unop expression
| (type) expression | expression instanceof type
| new type expression | new type []

statement ::= metavar: statement | ‘ metavar ‘ | | { statement* }
| type metavar = expression
| if expression statement statement
| while expression statement
| try expression catch statement finally statement
| expression ; | return expression ; | throw expression ;
| synchronized (expression) { statement }
| for (expression*, expression, expression*) { statement }
| switch (expression) { statement* }
| case expression: statement ; | default ;
| assert expression ; | continue metavar ; | break metavar? ;
| this (expression, expression ...);
| super (expression, expression ...); | ;

node-condition ::= μ condition-var. node-condition
| ν condition-var. node-condition
| node-condition ∨ node-condition
| node-condition ∧ node-condition
| ¬ node-condition
| ∃ metavar . node-condition | node(metavar)

| [EX | AX | ←−−EX | ←−−AX][metavar] (node-condition)
| [EF | AF | EG | AG] node-condition

| [E | A | ←−E | ←−A] (node-condition U node-condition)

side-condition ::= side-condition ∨ side-condition
| side-condition ∧ side-condition
| ¬ side-condition
| node-condition @ metavar
| pred (metavar1,. . . ,metavarn)

action ::= REPLACE statement* WITH statement*
| COMPOSE action WITH action
| CHOOSE action OR action
| ADD METHOD type metavar(

type metavar, ...) statement TO metavar

transform ::= action WHERE side-condition
| MATCH side-condition IN transform
| APPLY ALL transform
| transform � transform
| transform THEN transform

Fig. 4. BNF for TRANSfix

A Formal Approach to Fixing Bugs 179

n : int x = l + r ;
. . . .

m: x = e ;

(a) the pattern

int z = y + 5 ;
System . out . p r i n t l n (x) ;
z = z + 1 ;

(b) matching code

x z

l y

r 5

e z + 1

(c) bindings

Fig. 5. TRANSfix Pattern Matching

Combining uses of actions has many applications, for example one could
rewrite a block of code into a method, and replace it with a call to this method,
by using a REPLACE composed with an ADD METHOD.

A non-deterministic choice action, called CHOOSE ... OR, is used when the
same analysis might suggest more than one possible fix. This fits in with the
methodology of debugging we propose since the user must confirm the applica-
tion of a transformation, and can be given several choices.

Transformationss are operators for combining different actions. The MATCH

φ IN T transformation restricts the domain of information in the transformation
T by the condition φ. The T1 THEN T2 transformation applies the sequential
composition of T1 and T2. When actions are applied normally, ambiguity with
respect to what node actions and rewrites are applied to are automatically re-
solved. In other words, if there are several bindings that have the same value
for a node attribute that is being used in a rewrite rule then only one of them
is non-deterministically selected. The APPLY ALL T transformation uses all of
the valuations within transformation T , without this restriction.

3.4 Type System

TRANSfix has a simple type system to ensure that programs transformed by a
TRANSfix specification are syntactically valid Java programs. For example, any-
thing nested at an expression level is an expression. In order to differentiate types
of meta-variables being used in transformations from the types of Java variables,
we refer to the former types as kinds. There are three types of kinds: Type Kind
for metavariables that bind to Java types, Expression Kind for metavariables
used for Java expressions, and Statement Kind for statements and blocks. The
kind system guarantees two important properties:

1. that no metavariable may bind to, or substitute into a position that requires
more than one Kind, and

2. that no metavariable may be used in a substitution, if it is not bound be-
forehand.

A relatively simple algorithm is used to check these properties. The syntactic
replacement rules and side conditions are examined, keeping note of what context

180 S. Kalvala and R. Warburton

REPLACE
l : m. lock ()
. . . .
u : m. unlock ()

WITH
try {

m. lock ()
. . . .

} f ina l ly { m. unlock () }
WHERE

EF (node(u)) ∧ ¬AF (node(u)) @ l

Fig. 6. Transformation to ensure lock released on all paths

a metavariable is used in. If a metavariable is used in a context that implies it
would need to be of more than one Kind, then kind-checking fails. If there are
metavariables referred to in the substitution part of a replacement that aren’t
bound by either the pattern matching or the side condition then also the kind-
checking fails.

3.5 Specification Examples

We re-visit the common bugs explained in Subsection 2.1 and show how typical
fixes can be expressed in TRANSfix.

Method does not release lock on all paths. The full specification is shown
in Fig. 6. Position l within the program matches the point at which the lock
is locked, and u at the position where it is unlocked. The side condition holds
where you can sometimes unlock if you have locked, but not on every path.
The replacement rule moves the unlock statement within a finally clause,
ensuring that the lock gets executed on all paths through the method.

Method may fail to close stream. Fig. 7 gives a specification for rearrang-
ing the closing mechanism for file handles. It matches the type of the stream
object into the metavariable streamtype and ensures this is a stream in the
side condition. The other component of the side condition ensures that the
close method throws an exception. Wildcard matching is used to keep the
body of the try block in place, while moving the close call at the end of
the method within a finally block—therefore ensuring that there is a path
where the close method throws an exception.

Failed database transactions may not be rolled back. A specification for
ensuring that transactions are surrounded by the correct catch pattern for
SQLException instances is shown in Fig. 8. The pattern matching of a call
to the setAutoCommit method matches the beginning of the transaction.
The wildcard binds to anything between that and the commit call, i.e. a
whole transaction. This block of code is then replaced with another block,

A Formal Approach to Fixing Bugs 181

REPLACE
: : streamtype stream = null ;
try {

. . . .
thro : stream . c l o s e () ;

} catch (ex e) {
c : }

WITH
: : streamtype stream = null ;
try {

. . . .
} catch (ex e) {

. . . .
} f ina l ly {

i f (stream != null) {
try {

stream . c l o s e () ;
} catch (’ IOException ’ e) {

e . pr intStackTrace () ; } } }
WHERE

subtype(streamtype,’java.io.OutputStream’) ∧
EF (node(c)) @ thro

Fig. 7. Closing File Handles

surrounded by a catch statement. The catch statement rolls back the trans-
action in case of a database failure. The side condition checks to ensure that
the commit call can never be followed by a rollback. It also ensures that
conn is of the correct type.

4 Prototype Implementation

The approach proposed in this paper has been prototyped in the implementation
we call FixBugs. This implementation takes a Java program in both source and
Bytecode form and applies transformations to the source, outputting a series of
programs representing possible bug-fixed variants of the program.

As shown in Fig. 9, the FixBugs system comprises several components. The
Pattern Matcher produces bindings to metavariables from source code and a
pattern, the Model Checker produces bindings to metavariables that satisfy the
side condition formulae, and the Generator alters the program itself, given bound
metavariables, according to the actions.

The Java programs source code is parsed using the Eclipse [5] project’s Java
developer tools, which provide a standardised intermediate representation for the
programs. This representation is also manipulated by the Generator to produce
bug-fixed programs in concrete syntax.The Model Checker relies on the ASM byte-
code library [2] in order to generate the control flow graph of the program. ASM
allows the manipulation of Bytecode at a programmer-friendly level of abstraction.

182 S. Kalvala and R. Warburton

REPLACE
conn . setAutoCommit(fa l se) :
. . . .

commit : conn . commit () ;
WITH

try {
conn . setAutoCommit(fa l se) :
. . . .
conn . commit () ;

} catch (java . s q l . SQLException e) {
i f (conn != null) {

try {
conn . r o l l b a ck () ;

} catch (java . s q l . SQLException e) {
e . pr intStackTrace () ; } } }

WHERE

type(conn,’java.sql.Connection’) ∧¬EF(stmt(conn.rollback();))@ commit

Fig. 8. Correction for JDBC Commit and Rollback Pattern

4.1 Silhouettes

One line of Java source code is typically compiled into several lines of Java
Bytecode. Consequently there is a mismatch in the level of detail when using
the debugging information to bridge the analysis results of these two represen-
tational levels. We unify these levels within FixBugs through the concept of a
silhouette. The silhouette of a statement of source code is the corresponding set
of commands of its bytecode. The control flow graph silhouette of a source code
line is the subgraph within the control flow graph that corresponds to that source
code line. Every edge within the control flow graph of the program’s source code
has a corresponding edge within the bytecode control flow graph (but the inverse
relation does not hold).

Silhouettes consequently partition the Bytecode control flow graph into sev-
eral overlapping subgraphs. The edges between these subgraphs fall into two
categories. An edge (from,to) is inbound with respect to some silhouette S if the
to node, but not the from node, is a member of S, it is outbound if the from
node is a member of S, but not to. If both from and to are within S we say that
the edge is contained within S. The relation between source code and bytecode
CFGs is illustrated in Fig. 10.

We can obtain the Java control flow graph from the Bytecode representation
very simply with the following steps:

1. extract Bytecode control flow graph (G) using ASM.
2. compute line numbering function (L) using ASM.
3. coalesce (G) to form (G′).

A Formal Approach to Fixing Bugs 183

Java Source

�
Eclipse IR

�
Bytecode

�
ASM IR

�

�

Pattern Matcher

��
Model Checker�Bindings

� Bindings

TRANSfix Source

�

Patterns � �
Generator

� {Java programs}

Fig. 9. FixBugs Architecture

Within FixBugs we represent the successor function of G as a map from integers
onto sets of integers, and L as an array of integers. In order to calculate G′

we therefore replace every edge (from,to) in G with an edge (L(from),L(to)).
This ensures all inbound and outbound edges are replaced accordingly. We then
remove all edges whose from and to nodes are identical, since they represent
contained edges that don’t exist within the source code control flow graph G′.

The use of the ASM Bytecode analysis library makes it easier to extract and
coalesce the control flow graph than by writing a custom source code analysis. It
also allows us to integrate other information more easily extracted at a Bytecode
level, and then relabel it onto the Java control flow graph accordingly.

4.2 Implementation Details

FixBugs is coded primarily in Scala [15], chosen because of its support for a
functional style of programming, combined with the plentiful libraries that are
available on the Java platform. Specification files are parsed using the parser
combinators in Scala’s standard library. Disjoint union datatypes, modelled using
case classes, provide an intermediate representation for TRANSfix specifications.
Scala’s pattern matching can then be used in order to bind TRANSfix metavari-
ables to elements of Java source code, represented using Eclipse’s Intermediate
Representation. This development approach is described in Fig. 11.

Being a prototype, the current implementation doesn’t provide support for all
the features of the TRANSfix language, such as strategies and class-level actions.
The gist of the approach, however, should map directly to these concepts, albeit
with some programming effort.

184 S. Kalvala and R. Warburton

if (x > 0)

iconst 0
�

�

�

�
�

iload 1
�

�

�

�
�

if icmpge
�

�

�

�

�

�

x = x + 1

iload 1
�

�

�

�
�

iconst 1
�

�

�

�
�

iadd
�

�

�

�
�

istore 1
�

�

�

�

. . . println(x)

getstatic
�

�

�

�
�

iload 1
�

�

�

�
�

invokevirtual
�

�

�

�

Fig. 10. Relating Java statements with the control flow graph

5 Analysis

We have introduced an approach that allows one to specify static analyses that
can be applied to programs, and transformations that can be used to debug the
programs. We describe a tool that allows the automated application of these
transformations to programs and how its use can be integrated into existing de-
velopment methodologies. Our implementation uses a novel technique for com-
bining source code and object code analysis through silhouettes—a technique for
unifying information annotated onto a control flow graph. This exploits the same
underlying model as the TRANSfix specification language for transformations.

While we are satisfied with the performance of this prototype implementation
in practice (applying the bug fixing transformations usually takes in the order
of seconds) we have yet to complete an analysis of its computational complexity.
CTL is polynomial time checkable in the size of the system times the length of
the formula [3]. These correspond to the number of statements in the program
being transformed, and the side condition of the transformational specification.
Our pattern matching and reconstruction implementations are both linear in the
size of the pattern plus the size of the method.

Before releasing the software to potential users, we intend to complete the
following tasks:

1. Improve performance by making use of some existing symbolic model checker
or boolean satisfiability solver.

2. Complete the implementation of language features, for example schematic
variables and strategies, and extend to consider inter-procedural analysis.

3. Integrate into IDEs, in order to be able to use the tool effectively.

A Formal Approach to Fixing Bugs 185

TRANSfix

[Scala] Scala→ Bytecode

[Bytecode]

TRANSfix

[Bytecode]

�

�

�

�

	
Program

[Java] Java→ Java

[TRANSfix]

�

�

�

	
Program

[Java]

TRANSfix

[Bytecode]

�� ��
JVM

Fig. 11. Transformational Diagram for FixBugs

5.1 Related Work

In Section 2 we mentioned FindBugs, a system for detecting bugs within Java
programs [8]. Bug patterns are defined as common constructs within programs
that often causes errors. FindBugs detects these patterns through static analysis,
but does not attempt to fix them. Its bug detection mechanisms are hand written
in Java. UCDetector [18] is a plugin for the Eclipse IDE that finds unecessary
code within a project. Its detection mechanism is a custom dead code static
analysis. It can also detect when the visibility of a method can be restricted, for
example from public to private. It can automatically fix the dead code issues
that it detects, but only performs limited program analysis.

The use of predicates to identify program repair points is the basis of the work
of Samanta et al [16]. Their approach relies on the use of standard pre- and post-
conditions for a Boolean program and using propagation based on Hoare logic.
This approach allows them to repair concurrent and recursive programs, and to
reason about correctness. However, they haven’t yet illustrated the approach on
a full programming language, and do not show how language designers could
extend the approach themselves by specifying new bug patterns.

Dataflow analysis has long been employed within the compiler optimisation
community to iteratively compute the nodes within a program at which opti-
misations can be soundly applied [1,14]. Schmidt and Steffen explain the strong
link between dataflow analysis and model checking, and show how equations
for dataflow analyses can be expressed in modal μ-calculus [17]. Steffen also
shows how dataflow analysis algorithms can be generated from modal logics
[19]. Rewrite rules with temporal conditions have also been used in the Cobalt
system [12] which focuses on automated provability and also provides executable
specifications, achieved through temporal conditions common to many dataflow
analysis approaches. The specific nature of Cobalt’s temporal conditions is

186 S. Kalvala and R. Warburton

limited compared to the flexibility provided in TRANSfix from supporting CTL
side conditions, even if this may require more expensive model checking. Rhodium
is another domain specific language for developing compiler optimisations [13].
Rhodium consists of local rules that manipulate dataflow facts. This is a signifi-
cant departure in approach from TRANS, since it uses more traditional, dataflow
analysis based specifications rather than temporal side conditions. The Tempo-
ral Transformation Logic (TTL) [10] also uses CTL, but emphasizes verification
of the soundness of the transformations themselves, i.e. that they are semantics
preserving.

5.2 Correctness Issues

Unlike compiler optimisations, transformations applied to fix bugs are not se-
mantics preserving. The very aim of the transformation is to alter the program
semantics in order to remove a bug. Consequently one is assuming that the pro-
gram itself is incorrect according to some specification, but can be corrected to
match this specification. It is possible that the program itself might be correct,
and accordingly the transformations should not be applied automatically. Ad-
ditionally the bug finding patterns that we focus on correspond to behaviours
that are generally considered bugs within a program, for example deadlocks.

We plan to extend our methodology to identify transformations that can be
applied soundly, rather than simply leaving the choice of whether to apply these
transformations to the user of the tool. The required soundness properties could
be annotated onto the program. For example our specification for ensuring that
locks are released on all paths is sound iff the user of the system wishes a lock
to be in a released state as a post-condition of the method. Information of this
nature can already be added to Java programs using the existing annotations
framework, recently extended by [6]. There are already tools for invariant detec-
tion in partially annotated Java programs, [7] infers properties about nullness
of variables. Another element of such an extension would be the ability to auto-
matically infer the soundness of transformations with respect to given pre and
post conditions.

However, we recall that bug-repairing transformations often have to change
the semantics of a program, and the goal of a formal tool should be seen primarily
to facilitate the development of correct programs, rather than be constrained by
existing specifications. This is the approach supported by the FixBugs tool.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools. Pearson Education, London (2007)

2. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a code manipulation tool to imple-
ment adaptable systems. In: Adaptable and Extensible Component Systems (2002)

3. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems 8, 244–263 (1996)

A Formal Approach to Fixing Bugs 187

4. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logic of Programs, Workshop, pp. 52–71.
Springer, London (1982)

5. Eclipse Foundation. Eclipse website (2009), http://www.eclipse.org
6. Ernst, M.D.: Type Annotations Specification (JSR 308),

http://types.cs.washington.edu/jsr308/ (October 5, 2009)
7. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,

Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming 69(1-3), 35–45 (2007)

8. Hovemeyer, D., Pugh, W.: Finding bugs is easy. ACM SIGPLAN Notices 39(12),
92–106 (2004)

9. Kalvala, S., Warburton, R., Lacey, D.: Program transformations using temporal
logic side conditions. ACM Transactions on Programming Languages and Systems
(TOPLAS) 31(4) (2009)

10. Kanade, A., Sanyal, A., Khedker, U.: A PVS based framework for validating com-
piler optimizations. In: SEFM 2006: Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods. IEEE Computer Soci-
ety, Washington, DC (2006)

11. Lacey, D.: Program Transformation using Temporal Logic Specifications. PhD the-
sis, Oxford University Computing Laboratory (2003)

12. Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of
compiler optimizations. In: Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation. ACM Press, New York
(2003)

13. Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness proofs for
dataflow analyses and transformations via local rules. In: POPL 2005: Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 364–377. ACM Press, New York (2005)

14. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann,
San Francisco (1997)

15. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, 2nd edn. Artima Press
(2010)

16. Samanta, R., Deshmukh, J.V., Emerson, E.A.: Automatic generation of local re-
pairs for boolean programs. In: FMCAD (2008)

17. Schmidt, D.A., Steffen, B.: Data-flow analysis as model checking of abstract in-
terpretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503. Springer, Heidelberg
(1998)

18. Spieler, J.: UCDetector: the Unnecessary Code Detector website (2007),
http://www.ucdetector.org

19. Steffen, B.: Generating data flow analysis algorithms from modal specifications.
Science of Computer Programming 21, 115–139 (1993)

20. Warburton, R., Kalvala, S.: From specification to optimisation: An architecture
for optimisation of Java bytecode. In: de Moor, O., Schwartzbach, M.I. (eds.) CC
2009. LNCS, vol. 5501, pp. 17–31. Springer, Heidelberg (2009)

http://www.eclipse.org
http://types.cs.washington.edu/jsr308/
http://www.ucdetector.org

A Formal Treatment of
Agents, Goals and Operations

Using Alternating-Time Temporal Logic

Christophe Chareton, Julien Brunel, and David Chemouil

Onera – The French Aerospace Lab,
F-31055 Toulouse, France

firstname.lastname@onera.fr

Abstract. The aim of this paper is to provide a formal framework
for Requirements Engineering modelling languages featuring agents, be-
havioural goals and operations as main concepts. To do so, we define
Khi, a core modelling language, as well as its formal semantics in terms
of a fragment of the multi-agent temporal logic ATL*, called ATLKhi.
Agents in the sense of concrete and provided entities, called actors, are
defined by their capabilities. They also pursue behavioural goals that are
realised by operations, which are themselves gathered into abstract, re-
quired, agents, that we call roles. Then a notion of assignment, between
(coalitions of) actors and roles is defined. Verifying the correctness of a
given assignment then reduces to the validity of an ATLKhi formula that
confronts the capabilities of (coalitions of) actors with the operations in
roles played by the said actors. The approach is illustrated through a toy
example featuring an online shopping marketplace.

1 Introduction

Requirements Engineering (RE) is that part of software or systems engineering
concerned with describing the problem domain and determining requirements
for a system to be developed [10]. An important part of the RE discipline is
concerned with isolating concepts for RE modelling. In this setting, the aim
of this paper is to contribute to the formalisation of RE modelling languages
featuring agents, behavioural goals and operations as main concepts.

Goals are a central concept of RE modelling languages. They are characterised
as prescriptive statements over a system under study. Most of the time, goals are
expressed in natural language. However, some approaches propose a framework
to describe classes of goals formally. In particular, Kaos defines behavioural goals
[10, 12, 13] in terms of a variant of Linear Temporal Logic (LTL) [15].

A goal may be refined into a combination of several sub-goals and, possibly,
domain properties which are descriptive statements about the domain environ-
ment. Alternative refinements for a given goal can also be expressed.

In Kaos, the process of refining high-level goals into more precise ones ends
with the production of two different kinds of goals: requirements and expecta-
tions. Requirements (resp. expectations) are under responsibility of agents in the

A. Simao and C. Morgan (Eds.): SBMF 2011, LNCS 7021, pp. 188–203, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Formal Treatment of Agents, Goals and Operations 189

software (resp. the environment). Requirements corresponding to behavioural
goals are then realised by operations. In other approaches, the concepts of com-
mitments [6] or tasks [18] play an analogous role.

In Kaos, an operation is defined by descriptive domain pre- and post-condi-
tions that characterise its effects. Furthermore, the execution of an operation is
constrained by prescriptive required pre-, post- and trigger conditions (trigger
conditions are sufficient conditions for the execution of an operation, while pre-
conditions are necessary conditions). The three types of required conditions are
inherited from the requirements realised by the said operation [10–13].

Now, the concept of agent stands for an active component in the system
(software or environment). Agents may be related to goals in two ways. A first
relation is between goals and the agents that are responsible for them. This
relation is present in languages such as Kaos, tropos [3], i* [18], Albert and
Albert II [8, 9]. Furthermore, Tropos and i* add a second relation between
goals and the agents aiming for them. This consideration helps at determining
why each goal appears in a model.

The concept of agent itself has given rise to different characterisations. First
comes a description of the agents that are “provided”. In this article, we call actor
such an agent. Actors have capabilities, i.e., ways to influence the evolution of the
system. Capabilities are commonly considered in the literature, even in methods
that do not distinguish several characterisations of agents, such as Kaos. Actors
also pursue their own relative goals. This relation between actors and goals raises
a social dimension: actors are described as having intentions and interactions
with each others. These relations, sometimes dubbed distributed intentionality,
are at the core of i* [17, 18] and are also present in Tropos [3].

The second characterisation emphasises “required” agents, identified with the
set of operations they perform. A relation of assignment between roles and actors
makes the latter, through the roles they play, responsible for the operations in
these roles. For instance, agents in Kaos enjoy a responsibility relation w.r.t.
goals, and they also come with capabilities (in the form of monitored and con-
trolled variables). The responsibilities of agents are also central in Albert [8]
and Albert II [9]. The latter characterises them with a set of constrained be-
havioural goals they are responsible for. Tropos and affiliated literature propose
a concept of role for agents seen as sets of actions executed along the run of the
system[3, 16].

So, actors aim for goals. But they are also responsible for goals, through the
roles they play. And then a question arises, which we call the assignment problem:
are the actors in charge of a role able to fulfill it?

Several techniques have been proposed to solve this question, notably through
the introduction of commitments between agents [5–7, 14]. In this setting, actors
commit themselves to other actors for realising certain actions. The question is
whether each actor is able to support its role, which is identified with a set
of commitments. It is tackled by formalising agents capabilities and commit-
ments in a propositional language. We feel this use of a propositional language

190 C. Chareton, J. Brunel, and D. Chemouil

is limiting in the purpose of formalising the relations between roles and actors’
capabilities. Indeed, it does not treat either the precedence relations between
operations in the system, which determine the interactions between actors, nor
the very existence of these actors and their effective actions upon the system.
Actors are only taken into account and described in the informal part of this
language.

Thus, some methods in RE offer means for describing precedence among op-
erations in the system and others for describing interacting, social actors. We
think that there is a strong interest in combining both approaches in a single
language with a semantics including the succession between operations, actors’
capabilities and their interactions.

In this paper, we define Khi, a core modelling language, to deal with the
assignment problem while retaining the behavioural semantics present in many
propositions, especially in Kaos. The formal semantics of Khi is expressed in
terms of a multi-agent temporal logic ATLKhi, a fragment of the decidable logic
ATL*. Verifying the correctness of a given assignment then reduces to the sat-
isfaction of an ATLKhi formula.

To the best of our knowledge, this is the first proposition that reconciles goal-
and agent- oriented RE languages in a formal framework with precedence and
multi-agent expression.

This paper is organised as follows. In Sect. 2, we present the metamodel of
the Khi language, illustrated with a toy example featuring an online shopping
marketplace. In Sect. 3, the semantics of Khi is given in terms of ATLKhi formu-
las. In particular, the assignment problem is formalised. In Sect. 4, we discuss
our framework and elaborate on our future work in Sect. 5.

2 The Khi Language

This section gives and comments the different elements and relations in
language Khi.

2.1 The Metamodel

We first give a brief overview of the metamodel for language Khi (see Fig. 1)
before illustrating its concepts in more details on our toy example.

Actors are available agents. They aim for goals that are structured through re-
finements. Goals may not all be described formally but this work only considers
those goals that are formalisable using LTL. Leaf goals of this sort are then re-
alised into operations. Operations are identified with their effect, described using
domain pre- and post-conditions. Their scope of application is also constrained
by required pre-, post- and trigger conditions. Then, operations are gathered
into roles that may be seen as specifications of “required” agents.

Actors also have capabilities. Each capability is described with a pre-condition
and a window characterising the action it enables (and explained in Sect. 2.3).

Finally, actors can be gathered into coalitions, which are then assigned roles.
The effective ability of a coalition to play the roles it is assigned is determined by

A Formal Treatment of Agents, Goals and Operations 191

Actor

Coalition

Role ConditionOperation

Capability

Goal

1 1 1

1

1..*allies

assignedTo

*

1..* 1..* realises

*

1..*

1..*

1..*

1..*

1..*

*

*
refines windowenabCond

*

*

*
*
*

**

*

reqPre *
*
*

reqPost

reqTrig

isAbleTo

aimsFor

provides

domPre

domPost

Fig. 1. Metamodel of language Khi

the capabilities of actors it gathers. Considering coalitions enables to consider
agents interactions and to express that many actors may cooperate to play a
role.

Note that we do not deal with domain properties or OR-refinements in this
paper as it is not needed for the presentation of our formal framework. This
could be added later and would be dealt with in a similar way as it is in Kaos.

2.2 Actors and Goals

We give in Fig. 2 the goal model in language Khi for our case study. It concerns
an online shopping website and actors interacting with it. As in Tropos, actors
are represented as dashed ellipses labelled in circles. An ellipse contains the set
of goals the enclosing actor aims for. Goals are represented by trapezoids. They
are progressively refined into sub-goals. The graphical representation for goals
and their refinements is the same as in Kaos.

For instance, the goal efficientSeelingProcess for the website is refined into
sub-goals meetSupplyAndDemand and simplicityOfTransaction.

Table 1. Specifications of operations in role seller

commitToDeliverGood domPre := � (“true”)
domPost := cD < 25
reqTrig for instantPayment:= s.o = b.o
reqPost for thriftyDeliveryDelay := cD < 12
reqPost for impatientDeliveryDelay := cD < 7

publishAd domPre := �
domPost := s.o < 30
reqTrig for thriftyInterestingPrices:= �
reqPost for thriftyInterestingPrices:= s.o < 12
reqPost for impatientInterestingPrices:= s.o < 20

192 C. Chareton, J. Brunel, and D. Chemouil

rentability

inQuantity ...

...

simple
Transaction

Process

sellAtBestPrice

inform
Potential
Buyers

access
GreatOffer

diversity
OfOffer

instantPayment

efficientSellingProcess

meetSupplyAndDemand simplicityOf
Transaction

secondHandfirstHand

instant
Information

reduceCosts

reduce
SellingCosts

sell"WarAndPeace"

find
PotentialBuyers

reduceSelling
Costs

simplicityOfTransaction

sale

access
GreatOffer

diversity
OfOffer

instantPayment

simplicityOfTransaction

buy"WarAndPeace"

buy"WarAndPeace"

Bookshop

Online
Shopping
Website

Thrifty

Impatient Second
Hand
Seller

connect
FHSellers

connect
FHBuyers

connect
SHSellers

connect
SHBuyers

findNumerous
Buyers

sHS
Interesting

Prices

bookshop
InterestingPrices

reduce
TransactionCosts

thrifty
Delivery
Delay

thrifty
Interesting

Prices

impatient
Interesting

Prices

impatient
Delivery
Delay

Fig. 2. Actors and goals for the online shopping marketplace

dwellAds informSellersinformBuyers attractBuyers
concludeTransactionanswerAds payment

seller machine
buyer

impatient thrifty
bookshop

second
Hand
Seller

online
Shopping
Website

thrifty
Interesting

Prices

impatient
Delivery
Delay

impatient
Interesting

Prices

connect
FHSellers

connect
SHSellers

connect
FHBuyers

connect
SHBuyers

instant
Information

reduce
Transaction

Costs

sHS
Interesting

Prices

bookshop
Interesting

Prices

commitTo
DeliverGood

publishAd
attractSellers

instant
Payment

thrifty
Delivery
Delay

Fig. 3. Leaf goals, operations, roles and assignments for the online shopping market-
place

A Formal Treatment of Agents, Goals and Operations 193

Table 2. Capabilities of the bookshop and the second hand seller

bookshop proposePrice enabCond := �
window := s.o ∈ [15, 30]

expedition enabCond := s.o = b.o
window := cD ∈ [4, 25]

secondHandSeller proposePrice enabCond := �
window := s.o ∈ [9, 20])

expedition enabCond := s.o = b.o
window := cD ∈ [11, 25]

There are two potential buyers, a thrifty one and an impatient one. Each of
them holds its own goal model. They both want to buy the novel War and Peace.
Their goal models only differ by the specifications issued from their respective
goals deliveryDelay and interestingPrices, given in Table 1. The impatient wants
the novels to be delivered within 7 days but may pay for it up to 20 ¤; while
thrifty accepts to wait up to 12 days but is unwilling to pay more than 12 ¤ for
it. Two different sellers, a bookshop and a second hand seller, having their own
goals to satisfy, propose their goods.

The leaf goals in a model are realised by operations to perform. Operations
appear in hexagons in Fig. 3. The concept of operations used in Khi follows the
definition given for operations in Kaos: they are identified each by a domPre and
a domPost condition. And their executions are constrained by reqPre, reqPost
and reqTrig conditions. Thus, as appears in Table 1, committedDelay<12 is a
reqPost for goal thriftyDeliveryDelay and committedDelay<7 is a reqPost for
goal impatientDeliveryDelay. The action of giving such specifications of opera-
tions in order to realise goals is called operationalisation.

2.3 Actors and Capabilities

As will be seen in Sect. 3.1, conditions are formalised as formulas in a simple
language featuring variables. An actor having capability (enabCond , window),
when enabCond holds, can give to variables appearing in window any value
satisfying window . The declaration of the capabilities should be exhaustive: any
action an agent is able to perform upon the system is encoded in its table of
capabilities. This notion has two main particularities:

1. The capability of an actor is conditioned by the state of the system, i.e. by
its enabling condition. For instance, a buyer can engage a transaction with
a seller provided the price for the concerned good is in a certain range of
values.

2. Then it is possible to model an actor that does not control a variable in
its full range. The actor can only give this variable a certain set of values
bounded by the window. It is then possible to distinguish the performances
of different actors. For instance, a seller controls the delay he can ensure
for the delivery to a potential client, but only within a certain window. In

194 C. Chareton, J. Brunel, and D. Chemouil

our example, the second hand seller can ensure the delivery in every term
between 11 and 25 days, whereas the bookshop can ensure it in every term
between 4 and 25 days.

For instance, let us consider operation commitToDeliverGood and actor book-
shop. The conditions of the operation are given by Table 1 and the capabilities
of bookshop are in Table 2. In these tables and in the following we use the follow-
ing abbreviations to designate the variables: s .o, b.o and cD stand respectively
for seller .offer , buyer .offer and committedDelay . The window cD ∈ [4, 25] en-
ables the bookshop to satisfy the post condition for impatientDeliveryDelay:
cD < 7. But if window was interpreted as a classical post-condition, its validity
would not ensure the satisfaction of cD < 7. Indeed, the post-condition would
still be satisfied if, say, cD = 12.

Notice that the case where two actors have capabilities with overlapping en-
abling conditions and (at least) one common variable in their windows leads to
a potential deadlock. We call such situation a case of competing capabilities. As
we are dealing with potential choices and not effective ones, treating effective
deadlocks is out of the scope of this paper.

2.4 Assignment of Roles to Coalitions

Operations appear as hexagons in Fig. 3 under leaf goals, and are gathered into
roles (plain ellipses labelled by underlined circles). Notice that the methodolog-
ical question of how this gathering is made by engineers is out of the scope of
this paper.

Roles draw a notion of required agents, emerging from the goals specifications.
And they are finally assigned to coalitions of actors.

Several coalitions can also be assigned the same role, as is the case for role
buyer and actors impatient and thrifty . Note there are two different ways to
compose actors:

1. They may play the role together. In our example, bookshop and secondHand-
Seller (sHS) do not have capabilities to play autonomously the role seller .
But they can play it together as a coalition. Considering the specifications of
role seller (Table 1) on the one hand, and the capabilities of actors bookshop
and sHS on the other hand, we deduce that neither actor is able to play fully
role seller. Indeed, the bookshop cannot put its offer under 15 ¤ and then
cannot satisfy the reqPost condition for thriftyInterestingPrice: s.o < 12.
And sHS cannot commit to deliver the good under a delay of 11 days and
thus cannot satisfy the impatient condition for being delivered within 7 days.
But they gather together all the required capabilities for playing the role
buyer, which is presented with further details in Sect.3.3.

2. And each of them may play the whole role, just as impatient and thrifty
independently are able to play the role buyer on their own. In this case,
both thrifty and impatient are unary coalitions and, as such, are separately
assigned the role.

A Formal Treatment of Agents, Goals and Operations 195

Obviously, a major criterion for the correctness of a model is what we call the
assignment problem, that is the question of whether coalitions can play the roles
they are assigned.

The verification procedure for the assignment problem enables the require-
ment engineer to identify the potential lack of capable actors. A role (or parts
of roles) that is not assignable to any pre-existing actor identifies one or more
fresh actors that should be introduced in the system to satisfy all goals.

3 Semantics

In this section, we give the semantics of language Khi in a logic we call ATLKhi.
To do so, we need the presentation of the following formal background.

3.1 Formal Background: Temporal and Multi-agent Logics

ATLKhi is built by integrating temporal and choice operators with propositional
logic. It is a fragment of the better known ATL* [2] and thus inherits its decid-
ability.

– A language CondKhi, expressing boolean combinations of variable constraints
for the description of conditions: dom and req conditions for operations as
well as enabCond and window conditions for the actors’ capabilities.

– The Linear Temporal Logic (LTLKhi) with atoms in CondKhi for goal ex-
pression and operationalisation.

– A multi-agent logic for the mention of actors and the relation of assignment:
Alternating-time Temporal Logic for Khi (ATLKhi). Notably, it will enable
us to express the property of a coalition of actors to support a given role.

The expression of conditions, CondKhi. Every condition in Khi is described
in the language CondKhi, a propositional logic which atoms are comparisons of
values between variables and natural numbers.

Definition 1. Given a set of variables U , the language of CondKhi over U is
given by the following syntax:

ϕ ::= x ∼ n | x− y ∼ n | ϕ ∧ ϕ | ϕ ∨ ϕ |¬ϕ

where x, y ∈ U , n ∈ N, and ∼ ∈ {<, >, =,≤,≥}.

The definition of a window uses a fragment of CondKhi, denoted by Condwin
Khi, in

which variables are explicitly bounded.

Definition 2 (Condwin
Khi). Condwin

Khi is given by the following grammar:

ϕ ::= a ≤ x ∧ x ≤ b | ϕ ∧ ϕ | ϕ ∨ ϕ

where x ∈ U and a, b ∈ N.

196 C. Chareton, J. Brunel, and D. Chemouil

The simulation of time, LTL [15]. LTL is a temporal logic in which we
reason about discrete flow of time. The temporal operators used in LTL are ◦
and U. Their intuitive meaning is as follows:

– ◦ϕ expresses that condition ϕ holds in the next state from the current one.
– ϕ1Uϕ2 expresses that the condition ϕ1 holds in the current state and remains

true until condition ϕ2 holds.

Definition 3. The language of LTL is defined by the following syntax:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ◦ϕ | ϕUϕ

where p ranges over a countable set P of atomic propositions. In the frame of
this article the set of atomic propositions is the set of formulas in the language
CondKhi and we call LTLKhi that instance of LTL.

It is interpreted in (N, V) where N is the set of natural numbers and V : N →
2P is a function associating each n in N with a subset of P . For each n ∈ N,
V(n) is the set of atomic propositions that hold in n.

The relation of satisfaction for LTL is as follows:

Definition 4 (Semantical satisfaction for LTL). Given an interpretation
function V : N → 2P and an integer i ∈ N, we define the satisfaction relation by
induction on the formulas:

– V, i |=LTL p, for all p ∈ P , iff p ∈ V(i).
– V, i |=LTL ¬ϕ iff V, i � ϕ (iff it is not the case that V, i |=LTL ϕ).
– V, i |=LTL ϕ1 ∧ ϕ2 iff V, i |=LTL ϕ1 and V, i |=LTL ϕ2.
– V, i |=LTL ◦ϕ iff V, i + 1 |=LTL ϕ.
– V, i |=LTL ϕ1Uϕ2 iff ∃j ∈ V (V, i+j |=LTL ϕ2 and ∀k < j(V, i+k |=LTL ϕ1)).

We use the symbol � as an abbreviation meaning that the formula in its scope
holds at any time during the execution: �ϕ := ¬(U¬ϕ)

Introducing agents in the system, ATLKhi. The semantics of LTL is
based on a linear structure, that represents a well-determined evolution of time.
In multi-agent logics we consider different possible evolutions of time. At any
point in the execution, several potential evolutions are taken into account so that
time has a tree-like structure. An important issue when formalising Khi is the
expression of the ability of actors to ensure the satisfaction of a given LTLKhi
formula ψ. In other words, we need to express the ability of actors to restrict the
set of potential executions so that each execution satisfies ψ. This is represented
by the introduction of the operator 〈〈a〉〉, where 〈〈a〉〉ψ intuitively means that the
agent or coalition (i.e., set) of agents a can ensure the satisfaction of ψ. This
formal operation gives the language ATLKhi.

ATLKhi is a fragment of the larger ATL*1. It is decidable for the model-
cheking and validity problems.
1 Note that a dual operator �a� is often presented in the grammar of ATL*. It is

translatable by: �a�ϕ iff ¬〈〈a〉〉¬ϕ. We do not need it in our article and keep the
notation �� for the expression of the semantics.

A Formal Treatment of Agents, Goals and Operations 197

Definition 5. The set of ATLKhi formulas is given by the following grammar:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | 〈〈a〉〉ψ

where p is an atomic proposition (cf Definition 3), a is a (coalition of) actor(s)
and ψ is a formula in LTLKhi

The operator 〈〈a〉〉 acts as a complex quantifier over the set of executions: 〈〈a〉〉ϕ is
true if and only if there are choices for a such that ϕ is true in all the executions
that are compatible with these choices.

The semantics for ATLKhi is given in so-called Concurrent Game Structures
(CGS).

– Each state has up to countably many different successors.
– In each state, each agent has a set of available choices.
– There is a transition function: f : S × Ch → S where S is the set of states

and Ch is the set of possible choices for the different agents. It determines
the transitions from each state to its successor.

– An interpretation function V associates each state with a set of atomic
propositions.

Definition 6. Given a CGS M and an actor a in it, we call a strategy for a a
function that maps every finite sequence of states in M ending by state s to a
choice available for a in s.

Thus a strategy for an actor gives it a choice for every situation occurring in the
execution. Let us now define the satisfaction relation.

Definition 7 (Semantical satisfaction for ATLKhi). Let M be a CGS, s a
state in it, a a coalition of actors, ψ a formula in LTLKhi and ϕ1, ϕ2 formulas
in ATLKhi. Then:

– M, s |=ATLKhi p iff p ∈ V (s)
– M, s |=ATLKhi ¬ϕ iff it is not the case that M, s |=ATLKhi ϕ
– M, s |=ATLKhi ϕ1 ∧ ϕ2 iff M, s |=ATLKhi ϕ1 and M, s |=ATLKhi ϕ2

– M, s |=ATLKhi 〈〈a〉〉ψ iff there is a set of strategies Fa , one for each agent
in a, such that any execution σ = s0, s1, . . . starting from s (s0 = s) and
compatible with Fa satisfies ψ (σ, s0 |=LTL ψ)2.

3.2 Semantics of Khi in ATLKhi

We can now give the semantics of Khi in terms of LTLKhi and ATLKhi formulas3.
First, a goal g is expressed by a formula in LTLKhi: �g� ∈ LTLKhi.

2 ψ is an LTLKhi formula, and is therefore interpreted on an execution, at a certain
state of the execution.

3 ATLKhi is not comparable with ATL, the well-known fragment of ATL*, because
the first contains formulas for semantics of role assignment of type 〈〈a〉〉�ϕ, where
ϕ is conjunction of formulas for req conditions, which are not expressible into ATL.
On the other hand, ATL allows chains of nested choice operators, which are not
expressible in ATLKhi.

198 C. Chareton, J. Brunel, and D. Chemouil

Definition 8 (Semantics of refines). The refines relation is such that the
satisfaction of the set of refining goals ensures the satisfaction of the refined
goals. Let g be a goal4, then {�g.refines−1 �} |=LTLKhi �g�.
We follow Kaos for the formal semantics of operations and their specifications
(recall that domain conditions describe the effects of an operation while required
conditions are derived from the goals implemented by the operation).

Definition 9 (Semantics of operation). An operation op is defined by an
occurrence of op.domPre immediately followed by an occurrence of op.domPost .

�op� := op.domPre ∧ ◦op.domPost

Definition 10 (Semantics of required conditions). Let op be an operation,
then:

�op.reqPre� := �(�op� → op.reqPre)
�op.reqPost� := �(�op� → ◦op.reqPost)
�op.reqTrig� := �((op.domPre ∧ op.reqTrig)→ �op�)

Definition 11 (Semantics of realises). The realises relation is such that the
satisfaction, at every state, of all the specifications of the realising operations,
ensures the satisfaction of the realised goal. Let g be a goal, then:

{�g.realises−1 .req�} |=LTLKhi �g�
where g.realises−1 .req stands for every conditions in g.realise−1 .reqPre,
g.realises−1 .reqPost or g.realises−1 .reqTrig .

We now come to the proper elements in language Khi, which concerns the char-
acterisation of both concepts of agents and the relation of support that links
them together.

First come the definitions of our concepts of agents. They differ by their status
in the translation. A role is an abstract entity. Its semantics is defined in terms
of the operations it provides.

Definition 12 (Semantics of role). The semantics of a role rl is the con-
junction of all the semantics of conditions for the operations it provides.

�rl� := �
∧

r∈rl.provides.req

(�r�)

where rl .provides .req stands for every condition in rl .provides .reqPre ,
rl .provides .reqPost or rl .provides .reqTrig .
4 Henceforth in this article,

– we note R−1 for the converse of the relation R
– Γ |=LTLKhi ϕ means that ϕ is a semantic consequence of Γ , ie. Γ |=LTLKhi ϕ iff any

structure satisfying the formulas in Γ also satisfies ϕ.

A Formal Treatment of Agents, Goals and Operations 199

For instance, the specifications for operations provided by the role seller are
derived in LTLKhi in Table 3, from their description in Table 1.

Actors are given by ATLKhi agents and coalitions by ATLKhi coalitions.
Let us give the semantics of isAbleTo. It is quite different from a view in

which the enabCond would simply enable the corresponding actor to satisfy the
corresponding window . In our formalism, an actor holding (enabCond , window)
as a capability not only can force window to hold if enabCond does, but in this
condition he fully controls the value for some variables within the window .

Definition 13 (Semantics of isAbleTo). Let a be an actor. We give the
semantics of one of its capabilities c ∈ a.isableTo, and then of the whole set
a.isableTo. At any state where c.enabCond holds, a is able to give to the vari-
ables in c.window any value satisfying it. Formally, let (x1, . . . xk) be the vari-
ables in c.window . We call c the set of vectors (a1, . . . ak) ∈ Nk such that
x1 = a1, . . . , xk = ak |=ATLKhi c.window . Then

�c� :=
∧

(a1,...ak)∈c

(〈〈a〉〉(�(c.enabCond → ◦(x1 = a1 ∧ . . . ∧ xk = ak))))

�a.isableTo� :=
∧

c∈a.isableTo

�c�

Let us now give the semantics of the relation assignedTo.

Definition 14 (Semantics of assignedTo). Let r be a role and c ∈
r .assignedTo a coalition r is assigned to. Then, given the capabilities of coalition
c, c is able to play role r, i.e.,

{�a.isAbleTo� | a ∈ c.allies} |=ATLKhi 〈〈c.allies〉〉�r�

3.3 Application to Our Toy Example

Let us illustrate the definitions and the treatment of the assignment problem with
our example. In the following we focus on the two different ways, mentioned in
Sect.2.4, to compose actors in the assignment: either by gatering them into a
coalition or by assigning them the same role.

– A coalition gathers actors together so that they are assigned a role in soli-
darity. This is represented by the circle in Fig. 3 between the actors bookshop
and sHS and the role seller . Here we sketch the proof of the correction of
role seller being assigned to coalition {bookshop, sHS}: bookshop and sHS
can jointly play this role. It consists in providing a diverse offer of goods,
with both cheap and quickly deliverable items. Let us also stress that neither

Table 3. Semantics of role seller

commitToDeliverGood ((s.o = b.o) → ◦(cD < 7))
publishAd ∧(� → ◦(s.o < 12))

200 C. Chareton, J. Brunel, and D. Chemouil

bookshop nor sHS is able to play the role by himself. Role seller is given, as
mentioned in Table 3, by the formula

�(((s .o = b.o) → ◦(cD < 7)) ∧ (→ (◦(s.o < 12))))

Table 2 shows that the bookshop is not able to propose a price under 15 ¤:
�bookshop.isAbleTo� � 〈〈bookshop〉〉�(◦(s.o < 12)). Thus:

�bookshop.isAbleTo� �ATLKhi 〈〈bookshop〉〉�seller �

In a similar way, sHS cannot commit to deliver its good under 12 days so

�sHS.isAbleTo� �ATLKhi 〈〈sHS 〉〉�seller�

So neither bookshop nor sHS is able to play role seller : they both fail on
supporting one of the conditions. But since each of them is able to support
the condition the other fails on, they together can ensure the satisfaction of
the whole role. Indeed, bookshop can ensure the condition for the delay and
sHS the condition for the price, i.e. we have the following situation:

�bookshop.isAbleTo� |=ATLKhi 〈〈bookshop〉〉�((s .o = b.o) → ◦(cD < 7))
�sHS.isAbleTo� |=ATLKhi 〈〈sHS 〉〉�(→ ◦(s.o < 12))

Then we have:

�{bookshop, sHS}.isAbleTo� |=ATLKhi

〈〈bookshop〉〉�(((s .o = b.o)→ ◦(cD < 7)) ∧ (〈〈sHS 〉〉�(◦(s.o < 12))))

which entails �{bookshop, sHS}.isAbleTo� |=ATLKhi 〈〈bookshop, sHS 〉〉��seller �.
– And several coalitions may be assigned the same role. This is the case in

our example, where both unary coalitions impatient and thrifty are as-
signed role buyer . Here we only formulate the assignment problem relative
to role buyer . To solve it one must prove that �impatient .isAbleTo� |=ATLKhi

〈〈impatient〉〉�buyer� and that �thrifty .isAbleTo� |=ATLKhi 〈〈thrifty〉〉�buyer�.

4 Related Work

Khi gives a proposition of language for treating both the behavioural description
of goal satisfaction and the mention of social agents, taken into account with their
goals, capabilities and interactions.

Both items have been previously studied, but not in a coherent, semantically-
rich, formal framework. Kaos proposes a semantic picture based upon temporal
traces: behavioural goals are described as LTL formulas and operations as pre-
and post-conditions. The notion of intentional agents is at the core of the i*
methodology. Then, the ability of agents to play roles has recently been analysed,
notably in terms of commitments they make [5–7, 14].

A Formal Treatment of Agents, Goals and Operations 201

Our work aims at unifying these achievements into a single language and
enrich the semantics for RE with a temporal multi-agent language.

Furthermore, our present work enables to enrich the semantics for RE with
the expression of the assignment problem, i.e. the very availability the actors
have to support their assigned responsibilities in the description of the system.
This gives two distinct perspectives for RE.

The role support itself concerns a common problem in RE which is the at-
tribution of specifications each actor should ensure. In Kaos, it appears as the
assignment of goals to agents. Nevertheless Kaos does not give any means for
discussing or appreciating this question of the actual ability of the agents to
ensure their assigned responsibilities.

Once the goals are refined and gathered into roles or agent types in Tro-
pos also they are assigned to actors [3]. Some extensions of Tropos tackle
the question of checking the assignment of such roles to actors [5–7]. But this
checking is formalised in propositional logic. Therefore it ignores the precedence
of operations as well as the mention of agents, which is made in an informal
meta-language. Precedence nevertheless appears as an essential element in the
formalisation of actors’ actions and interactions. Actor a1 may, for instance, be
able to realise an operation o provided that a condition c is ensured. In case the
said condition c is ensurable by an other actor a2 then a1 and a2 are together
able to satisfy c, provided that they coordinate their actions upon the system:
a2 should ensure c before a1 performs o. Identifying synergies between actors
and interdependencies thus calls for this expression of precedence.

5 Conclusion

In this paper, we have proposed a formally-rich language for RE that conciliates:

– A classical description of behavioural goals and of operations in terms of
temporal logic.

– Two concepts of agents: actors as required agents and roles as prescribed
agents. Actors are characterised by the goals they aim for and by capabilities
and roles are characterised by operations they provide.

– A multi-agent semantics integrating both the behavioural dimension of goal
satisfaction and the ability of actors to support their assigned roles in a
model.

Tackling the assignment problem then gives a correctness criterion for an RE
model.

Furthermore, identifying the role support can be used for giving further preci-
sions about the specifications for the software to be introduced in a multi-agent
system. Khi brings tools to identify the specified operations to be ensured and,
within this set, to sort the readily ensurable ones and the ones to be provided
by the software. The lasts are the very specifications of the software itself. This
difference at the level of specified operations is similar to a distinction made in
Kaos between leaf goals assigned to agents in the environement (expectations)

202 C. Chareton, J. Brunel, and D. Chemouil

and to agents in the software (requirements). Treating this distinction at the level
of operations, Khi offers tools for distinguishing expected and required opera-
tions. Fig.3, eg, shows that our case study identifies an unique lacking role, called
machine and gathering the five operations dwellAds, financeAds, attractBuyers,
informBuyers and informSellers.

Concerning our future work, we first plan to develop fully the support for
verification of Khi models. Indeed, to the best of our knowledge, there are algo-
rithms but no available tools5 to check the validity and perform model-checking
of ATLKhi formulas. This will come with the further study of ATLKhi itself. It
will in particular enable us to assess our approach concerning the assignment
problem and potential deadlocks due to competing capabilities.

In this paper, we presented the semantics of Khi through a translation into
ATLKhi formulas. In the future, we will directly describe the semantic model of
actors and their capabilities in terms of (a fragment of) CGS. A first reason for
this is to help build a more intuitive semantic picture of Khi concepts. More
technically, some of the verification problems associated to an instance of Khi
will then reduce to a model-checking problem (instead of the current semantic
consequence problem).

Now, since the assignment problem has been successfully stated (thanks to
the formal verification proposed in this paper), it is known whether all roles can
be played by some available actors. But let us stress that they still might make
other choices invalidating their assigned roles.

A natural question is then: how to distinguish between the ability of an actor
to play a role and the fact that he will actually play it? A solution to this
problem may be to reify actors’ strategies [4] and so distinguish between an
effective behaviour as a so reified strategy and a capability. A formalism with
strategy would indeed enable to check the coherence between the behaviour of
an actor and its assigned role. It would also enable the expression of coherence
between two behaviours and then to express solutions for avoiding an effective
deadlock in the case of a potential one.

References

1. Alur, R., Henzinger, T., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.: MOCHA:
Modularity in model checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427,
pp. 521–525. Springer, Heidelberg (1998)

2. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. J. ACM,
672–713 (2002)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems, 203–236 (2004)

4. Brihaye, T., Da Costa, A., Laroussinie, F., Markey, N.: ATL with strategy contexts
and bounded memory. Logical Foundations of Computer Science, 92–106 (2009)

5 The Mocha tool [1] offers facilities for the verification of ATL formulas, but not
ATLKhi ones.

A Formal Treatment of Agents, Goals and Operations 203

5. Chopra, A., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Modeling and reasoning
about service-oriented applications via goals and commitments. In: Pernici, B.
(ed.) CAiSE 2010. LNCS, vol. 6051, pp. 113–128. Springer, Heidelberg (2010)

6. Chopra, A., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Reasoning about agents and
protocols via goals and commitments. In: Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 457–464
(2010); International Foundation for Autonomous Agents and Multiagent Systems

7. Chopra, A., Singh, M.: Multiagent commitment alignment. In: Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems,
vol. 2, pp. 937–944 (2009); International Foundation for Autonomous Agents and
Multiagent Systems

8. Du Bois, P.: The Albert II reference manual. Tech. rep., University of Namur,
Belgium (1997)

9. Dubois, E., Du Bois, P., Petit, M.: ALBERT: an agent-oriented language for build-
ing and eliciting requirements for real-time systems. In: Proceedings of the Twenty-
Seventh Hawaii International Conference on System Sciences. Information Systems:
Collaboration Technology Organizational Systems and Technology, vol. 4, pp. 713–
722. IEEE (1994)

10. van Lamsweerde, A.: Requirements engineering, From System Goals to UML Mod-
els to Software Specifications. Wiley (2009)

11. Letier, E., van Lamsweerde, A.: Agent-based tactics for goal-oriented requirements
elaboration. In: Proceedings of the 24rd International Conference on Software En-
gineering, ICSE 2002, pp. 83–93 (May 2002)

12. Letier, E., Van Lamsweerde, A.: Deriving operational software specifications from
system goals. In: Proceedings of the 10th ACM SIGSOFT Symposium on Founda-
tions of Software Engineering, p. 128. ACM, New York (2002)

13. Letier, E.: Reasoning about Agents in Goal-Oriented Requirements Engineering.
Ph.D. thesis, Universite Catholique de Louvain (November 05, 2002)

14. Mallya, A., Singh, M.: Incorporating commitment protocols into Tropos. In: Müller,
J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 69–80. Springer,
Heidelberg (2006)

15. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Compouter Science, pp. 46–57 (1977)

16. Silva, C., Castro, J., Tedesco, P., Araújo, J., Moreira, A., Mylopoulos, J.: Improving
the architectural design of multi-agent systems: the tropos case. In: Proceedings of
the 2006 International Workshop on Software Engineering for Large-Scale Multi-
Agent Systems, pp. 107–113. ACM (2006)

17. Yu, E.: Agent-oriented modelling: software versus the world. In: Wooldridge, M.J.,
Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 206–225. Springer,
Heidelberg (2002)

18. Yu, E.: Social modelling and i*. In: Conceptual Modelling: Foundations and Ap-
plications (2009)

Author Index

Botcazou, Eric 16
Braga, Christiano 108
Brunel, Julien 188
Büttner, Fabian 124

Chapman, Roderick 16
Chareton, Christophe 188
Chemouil, David 188
Comicio, Thiago 108
Cruz, Lúıs C.D.S. 44

Déharbe, David B.P. 44
de Melo, Ana C.V. 76
Dias, Diego Machado 156

Gogolla, Martin 124

Iyoda, Juliano Manabu 156

Kalvala, Sara 172
König, Harald 1

Landim, Edson 108
Löwe, Michael 1

Matiello, Pedro 76
Menezes, Roberto 108
Muñoz, César 60

Oliveira, Marcel Vinicius Medeiros 44

Poetzsch-Heffter, Arnd 28
Preoteasa, Viorel 140

Rocha, Camilo 60

Santos, Cassio 108
Schulz, Christoph 1
Steenken, Dominik 92

Wallenburg, Angela 16
Warburton, Richard 172
Wehrheim, Heike 92
Welsch, Yannick 28
Wonisch, Daniel 92

	Title

	Preface
	Organization
	Table of Contents
	Model Transformation and Induced Instance
Migration: A Universal Framework
	Introduction
	An Introductory Example
	Migration Framework
	Application of the Framework
	Models with Component Structure
	Data Models Axiomatically

	Related Work
	Conclusion and Outlook
	References

	SPARKSkein: A Formal and Fast Reference
Implementation of Skein
	Introduction
	Skein
	SPARK
	Implementing SPARKSkein
	Verification of SPARKSkein
	Static Verification and Proof
	Reference Test Vectors
	Platform Testing
	Coverage Analysis
	Performance Testing

	Further Work and Challenges
	GCC
	The SPARK Tools
	Comparison with Other Verification Tools

	Conclusions
	References

	Full Abstraction at Package Boundaries of
Object-Oriented Languages
	Introduction
	Formalization of LPJava and Source Compatibility
	Trace Characterization of Component Behavior
	Enhanced Operational Semantics
	Most General Context
	Full Abstractness

	Simulations
	Well-Formed Runtime Configurations
	Preorder Relations $\cpre{\rho}{\cmpctxt}$

	Small-Step Semantics
	Large-Step Semantics

	Proving Compatibility
	Conclusion and Future Work
	References

	B to CSP Migration: Towards a Formal and
Automated Model-Driven Engineering of Hardware/Software Co-design
	Introduction
	Methodology
	A Case Study
	Transformation of B Specifications
	Systems with Replicated Machines
	Synchronized Inputs and Execution Frames
	Translating the Main System
	Verification

	Conclusions
	References

	Simulation and Verification of Synchronous Set
Relations in Rewriting Logic
	Introduction
	Abstract Synchronous Set Relations
	Synchronous Set Relations in Rewriting Logic
	A Brief Overview of Rewriting Logic
	The Synchronous Language L
	Simulation of sL

	Executable Semantics of a Simple Synchronous Language
	Verification of Synchronous Relations
	Conclusion
	References

	PiStache: Implementing π-Calculus in Scala

	Introduction
	Background
	-Calculus
	Scala

	PiStache: An Application Programming Interface (API)
	Core Elements
	Operators
	Internal Representation
	Execution Model

	API Usage
	Conclusions
	References

	Sound and Complete Abstract Graph
Transformation
	Introduction
	Background
	Shape Constraints
	Soundness and Completeness
	Conclusion
	References

	On the Specification, Verification and Implementation of
Model Transformations with Transformation Contracts
	Introduction
	Related Work
	Model-Driven Development with Transformation Contracts
	Specifying Transformation Contracts
	Verifying and Validating Transformation Contracts
	Model Consistency Reasoning and Description Logic
	Model Consistency Verification in Model Transformations with Transformation Contracts
	Verifying and Validating Access Control Models

	A Design Pattern for the Implementation of Model Transformations with Transformation Contracts
	Final Remarks
	References

	Modular Embedding of the Object Constraint Language
into a Programming Language
	Introduction
	Motivation for Reusing OCL
	soil by Example
	Embedding of OCL into SOIL
	Formal Representation of OCL Expressions
	Statements
	Local Variables
	Operations with Side Effects
	State Manipulation Statements

	Consequences of a Modular Embedding
	Conclusion
	References

	Algebra of Monotonic Boolean Transformers

	Introduction
	Monotonic Boolean Transformers
	Algebra of Monotonic Boolean Transformers
	Assertions and Assumptions
	Weakest Precondition, Guards, Hoare Triples, and Data Refinement
	Conclusions
	References

	Behavioural Preservation in Fault Tolerant
Patterns
	Introduction
	Overview of HOL
	Fault Tolerant Patterns
	Specification
	Implementation
	Homogeneous Redundancy
	Heterogeneous Redundancy
	Triple Modular Redundancy

	Case Study
	Related Work
	Conclusion
	References

	A Formal Approach to Fixing Bugs

	Introduction
	Methodology and Application
	Example Bug Patterns and Categories
	Placing Debugging within Software Development

	A Language for Detecting and Fixing Bugs
	Basis: The TRANS Language
	From TRANS to TRANSfix
	Actions
	Type System
	Specification Examples

	Prototype Implementation
	Silhouettes
	Implementation Details

	Analysis
	Related Work
	Correctness Issues

	References

	A Formal Treatment of
Agents, Goals and Operations Using Alternating-Time Temporal Logic
	Introduction
	The Khi Language
	The Metamodel
	Actors and Goals
	Actors and Capabilities
	Assignment of Roles to Coalitions

	Semantics
	Formal Background: Temporal and Multi-agent Logics
	Semantics of Khi in ATLKhi
	Application to Our Toy Example

	Related Work
	Conclusion
	References

	Author Index

