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Abstract. We propose a new algorithm that solves the Steiner tree
problem on graphs with vertex set V to optimality in O(B2

tw+2 · tw · |V |)
time, where tw is the graph’s treewidth and the Bell number Bk is the
number of partitions of a k-element set. This is a linear time algorithm
for graphs with fixed treewidth and a polynomial algorithm for tw =
O(log |V |/ log log |V |).

While being faster than the previously known algorithms, our thereby
used coloring scheme can be extended to give new, improved algorithms
for the prize-collecting Steiner tree as well as the k-cardinality tree
problems.

1 Introduction

In this paper we consider the well-known Steiner tree problem (STP), as well as
the related problems prize-collecting Steiner tree (PCST) and k-cardinality tree
(KCT), all defined on graphs. Our central results are new exact algorithms to
solve these problems in the case of graphs with bounded treewidth: the treewidth
tw of a graph (see below for a concise definition) can be seen as a measure of
how similar the given graph is to a tree.

Let G = (V, E) be a given edge-weighted graph and T ⊆ V a set of terminals.
The Steiner tree problem is to find a minimum-weight tree S in G which contains
all terminals T and possibly also some non-terminal (Steiner) vertices of V \ T .
Note that while often the edge weights are considered to be only positive, we do
not require any such restriction. The corresponding decision problem is strongly
NP-complete, even when restricted to edge weights 1 and 2 [23], or when G is
planar [18]. The traditional algorithm by Dreyfus and Wagner [17] solves the
STP exactly in O(3t · |V |) time—recently improved to O(2t · |V |) [8]—where
t := |T | is the number of terminals.

Regarding G’s treewidth tw, the oldest but yet strongest result is due to
Korach and Solel [20]; yet this technical report has never been officially published
and has been cited only rarely, e.g., in [7, 19, 22]. Their algorithm achieves a
runtime of O(tw4tw · |V |) but the paper’s description is very sketchy and leaves
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many details unclear; it does not contain a formal proof of either the running
time nor of its correctness. More recent publications, in particular those dealing
with PTASes (see next paragraph) where the STP on bounded-treewidth-graphs
arises as a subproblem, instead propose their own, yet weaker, results.

For the unweighted STP, i.e., the objective is to minimize the number of
edges of S, a very recent and surprising result by Cygan et al. [15] gives a
Monte Carlo algorithm for the decision problem with a one-sided error—false
negatives occur with probability of at most 1/2—requiring only O(3tw|V |O(1))
time. While the result is of course directly applicable to integer weighted STP
where the maximum edge weight is bounded by a constant, we cannot see how
to generalize the algorithm to arbitrary edge weights, and its derandomization
is considered an open problem.

Recently, the STP and related problems for graphs with bounded treewidth
achieved more attention due to their applicability to approximate network prob-
lems in planar graphs: In multiple papers [2,3,4,12,13,14], PTASes (polynomial
time approximation schemes) are proposed which transform the given planar
graph into a graph with bounded treewidth (via edge removals), solve the prob-
lem optimally (or within 1+ε) on this modified graph, and then use this solution
to construct a (1 + ε) solution to the original graph. Hence, the development of
faster algorithms for the problem on bounded treewidth directly leads to faster
PTASes for the corresponding problem on planar graphs.

For the STP, the approximation scheme of [13] uses an algorithm for solving
the problem on graphs with bounded carving-width (a relative of treewidth) as
a black box. Chekuri et al. [14] (later merged into [2]) give an algorithm for the
prize-collecting Steiner tree problem (cf. Section 3) with running time O(B3

k ·sk ·
|V |), where k := tw + 1, Bk is the number of partitions of a set with k elements
(k-th Bell number), and sk is the number of subgraphs of a k-vertex graph. Since
sk = O(2(k2)), this leads to a running time of O(2(tw2) · B3

tw+1 · |V |) for a graph
with treewidth tw. This algorithm then allows PTASes for PCST and prize-
collecting Steiner forest problems. Independently, Bateni et al. [4] (also later
merged into [2]) describe PTASes for prize-collecting network design problems
on planar graphs by using a similar approach. They investigate the PCST (the
solution is a tree), prize-collecting TSP (the solution is a cycle), and the prize-
collecting Stroll (the solution is a path). To this end they describe a (1 + ε)-
approximation for the PCST problem (that can be adapted to solve the other
two considered problems as well) with a running time of order O(twtw ·2tw · |V |).

Furthermore, Polzin and Daneshmand [22] introduced an algorithm with run-
ning time O(23b · |V |) where b (the size of a “border” obtained throughout the
algorithm) is a parameter similar to pathwidth. Yet note that even for simple
trees—with natural treewidth 1—the pathwidth is unbounded.

Note that all these exact algorithms (not the approximations) fall into the
category of FPT (fixed parameter tractable) algorithms w.r.t. the considered
parameters (e.g., treewidth). An introduction to this research field can be found
in [16, 21].
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Our Contribution. Herein, we propose a new algorithm to solve the Steiner
tree problem exactly in O(B2

tw+2 ·tw·|V |) time. The k-th Bell number Bk thereby
is the number of partitions of a set with k elements, and can be recursively defined
as B0 = 1, Bk+1 =

∑k
i=0

(
k
i

)
Bi. We can bound Bk < (0.792k/ ln(k + 1))k [5]

and in particular Bk < k! < kk for k ≥ 3. Our algorithm is hence linear for
graphs with fixed treewidth and requires O(|V |3 log |V |/ log log |V |) time for tw ∈
O(log |V |/ log log |V |). The algorithm guarantees a running time that is smaller
than the currently best proposed running times, including the works of [20].
This paper therefore also closes the unclear situation regarding the latter. We
will discuss our algorithm in Section 2.

To achieve this result, we use the well-known dynamic programming paradigm
over the decomposition tree (see next section), coupled with a special number-
ing and coloring scheme. Furthermore, our new coloring scheme shows to be
versatile enough to also allow new, faster algorithms to solve the prize-collecting
Steiner tree problem in the same time complexity, as well as the k-cardinality
tree problem in O(B2

tw+2 · (tw + k2) · |V |) time. We discuss these extensions in
Sections 3 and 4, respectively.

Preliminaries: Tree Decompositions. The concept of treewidth was intro-
duced by Robertson and Seymour [25] by the term tree decomposition. See [9,11]
for an in-depth introduction to this topic:

Let G = (V, E) be the given graph. Its tree decomposition (T ,X ) is a pair of
a tree T = (I, F ) and a collection X = {Xi}i∈I of vertex subsets (called bags)
with the following properties:

td/1: Every vertex v ∈ V is contained in at least one bag Xi, i ∈ I. For every
edge (u, v) ∈ E there is at least one bag Xi, i ∈ I, containing both vertices
u, v.

td/2: For every vertex v ∈ V , the nodes i with v ∈ Xi form a subtree of T .

To avoid confusion, we speak of vertices V in the graph G, and of nodes I in the
tree T . The width of a tree decomposition (T ,X ) is the size of the largest bag
in X minus 1. The treewidth of a graph is the smallest width over all possible
tree decompositions. Hence, the treewidth measures how similar the decomposed
graph is to a tree: trees have treewidth 1, (generalized) series-parallel graphs
have treewidth 2, etc. On the other side of the spectrum, complete graphs have
treewidth |V | − 1, by putting all vertices in one bag. Determining whether a
graph has treewidth k, for a given integer k, is NP-complete [1] but polynomial
(i.e., in FPT) for any constant k [10].

Most importantly, we note that the size of (T ,X ) is only linear, even when
considering nice tree decompositions. Such tree decompositions always exist even
for the optimal treewidth and have the following properties:

1. The tree T is considered to be rooted at some r ∈ I.
2. Each node is either a leaf (0 children), or has exactly 1 or 2 children.
3. Let i ∈ I be a leaf, then |Xi| = 1.
4. Let j ∈ I be the only child of a node i ∈ I, then either (a) Xj contains all

vertices of Xi except for one (Xj ⊂ Xi, |Xj |+1 = |Xi|), or (b) Xj contains all
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vertices of Xi plus one additional one (Xi ⊂ Xj , |Xi|+1 = |Xj |). Considering
the tree in a bottom-up fashion, the node i is then called an introduce or
forget node, respectively.

5. Let j, j′ ∈ I be the two children of a node i ∈ I, then all three corresponding
bags are identical (Xj = Xj′ = Xi), and i is called a join node.

Overall, given any tree decomposition, we can easily transform it into a nice
tree decomposition where we pick the root r such that its bag Xr contains at
least one terminal vertex. While the latter property is not ultimately necessary,
it allows us to give a simpler description of our algorithm. We will discuss this
in more detail at the end of Section 2.2.

2 Steiner Tree Algorithm

Our algorithm follows the classical bottom-up approach for algorithms based
on tree decompositions: Starting from the leaves of a nice tree decomposition
(T = (I, F ),X ), we enumerate a sufficient number of possible sub-solutions per
tree node i ∈ I, using only the information previously computed for the children
of i. Such information is stored in a table tabi, for the node i ∈ I. The final
optimal solution of the original problem can then be read from the table tabr of
T ’s root node r.

Since the tree traversal requires only O(|V |) time, the algorithm’s time com-
plexity is mainly dependent on the amount of information to be stored per node
(i.e., the size of tabi which can be estimated by the number of sub-solutions
times the size per sub-solution), as well as on the necessary effort to establish
the sub-solutions at a node, based on its children’s data.

In Section 2.1, we will concentrate on the first question, i.e., how to represent
the necessary solutions efficiently. In fact, this modeling (based on coloring) is
the main result of this paper, which subsequently allows us to obtain stronger
memory and runtime bounds than the previous approaches. Section 2.2 then
describes how to efficiently combine our coloring with the bottom-up traversal
to solve the Steiner tree problem. Finally, Section 2.3 formally establishes the
correctness and running time of our approach.

2.1 Representing Sub-solutions

The general idea of using the (rooted) tree decomposition is the following:
Let i be any node in T with the corresponding bag Xi. We define X+

i to be
the set of all vertices in Xj for all nodes j ∈ I that are either i itself or any of
its descendants. Then, let Gi (G+

i ) describe the subgraph of G induced by the
vertices Xi (X+

i , respectively). Let Ti (T +
i ) be the set of terminals in Xi (X+

i ,
respectively).

When we consider any node i ∈ I, we observe, based on property td/2 of a
tree decomposition, that no vertex of X+

i \Xi will appear in any other bag than
the ones descending from node i. For our bottom-up approach this means that
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these vertices are not considered in other parts of the algorithm and will never
be considered again. Hence, the sub-solutions at node i have to ensure that all
terminals T +

i \ Ti are properly connected with other vertices to allow a feasible
solution in the end. Consider the optimal Steiner tree S in G. The subgraph of
S in G+

i then forms a forest, with the property that any terminal T +
i \ Ti is

connected to some vertex in Xi.
Our table tabi hence stores multiple rows, each row representing a solution.

Observe that we do not have to consider all possible subgraphs of a bag Xi but
can use the fact that a forest in Gi contains at most |Xi| − 1 edges. It remains
how to uniquely, succinctly, and compactly describe these forests (and allow
for fast merging operations within the bottom-up approach). We show that it
(coarsely) is sufficient to consider all possible partitions of the (at most tw + 1
many) vertices Xi by assigning colors to them. Each color then indicates the set
of vertices that lie in a connected component (tree, in fact) in G+

i . We will see
that by careful enumeration we only require a table with at most Btw+2 different
partitions, instead of the straight-forward O((tw + 1)tw+1).

To obtain such a description scheme, we first consider some arbitrary but
fixed total numbering Φ : V

1:1−−→ {1, . . . , |V |} of all vertices of the given graph.
Based thereon, we assign—locally for each bag Xi—the unique secondary index
ϕi : Xi

1:1−−→ {1, . . . , |Xi|} which satisfies Φ(v) < Φ(w) ⇔ ϕi(v) < ϕi(w) for all
v, w ∈ Xi. We now introduce a coloring function γi : Xi → {0, . . . , |Xi|}; thereby
any vertex v ∈ Xi may only be colored by a color at most as large as its local
index, i.e., γi(v) ≤ φi(v). Our interpretation is that all vertices of color 0 are
not contained in the represented sub-solution. All vertices with a common color
> 0 are connected in the graph G+

i . Note that these connections do not have to
exist in Gi. Finally, in order to be a feasible coloring, we require all terminals Ti

in Xi to be colored > 0.
Note that, by the above coloring properties, the color of a connected compo-

nent C of the sub-solution is exactly the smallest secondary index of all vertices
contained in C. We observe that a vertex v with ϕi(v) = z has z+1 possible col-
ors. Hence the number of possible colorings for a bag Xi (and therefore of rows
in tabi) can trivially be bounded by

∏|Xi|
z=1(z + 1) = (|Xi| + 1)! = O((tw + 2)!).

This would already allow better overall bounds for the algorithm than previously
known. Yet, we can observe that when we conceptually add an additional “ghost”
element to an |Xi|-element set, and consider all possible partitions thereof, we
can interpret these resulting partitions as all possible colorings: The partition
that contains the “ghost” element is considered to be the partition with color 0.
All other partitions get the color of the smallest secondary index among its
elements. It is straight-forward to efficiently enumerate all B|Xi|+1 possible par-
titions (hence rows in tabi) of a |Xi| + 1-element set.

In each row, we store the unique corresponding coloring of the solution, i.e., a
color index for each vertex of Xi, which we can trivially compute in O(tw) time.
Additionally, we will store a solution value for each row, see below. Hence, the
size of any table tabi can be bounded by O(Btw+2 · tw).
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2.2 Processing the Decomposition Tree

Having our coloring concept at hand, we can now describe how to ensure its prop-
erties when computing the actual sub-solution tables in a bottom-up fashion.
Our recursion can be described by distinguishing between the different currently
considered nodes of T . Recall that for each row, representing some coloring γ,
we store the cost val(γ) of the represented sub-solution.

Leaf Node. Let i ∈ I be a leaf, and hence a (trivial) base case for our algorithm.
The table tabi contains only two rows corresponding to the two possible colors 0
and 1, respectively, for the only vertex v ∈ Xi. If v ∈ T but is colored 0, the
sub-solution’s cost is +∞; in all other cases the cost is 0.

Introduce Node. Let i ∈ I be an introduce node, and j ∈ I its only child. We
have Xj ⊂ Xi, |Xj | + 1 = |Xi|, and let v be the additional vertex.

As a preprocessing, we initialize tabi and modify tabj as follows: We generate
all B|Xi|+1 possible rows of tabi and set their value entries to +∞. In tabj we
add an additional column for v (which remains uncolored, say color −1) and
modify the other color numbers to match the coloring scheme of i, instead of
j: By the fact that both secondary indices stem from a common primary index
Φ, this means that precisely all colors ≥ φi(v) have to be increased by one. We
observe that this preprocessing takes only O(Btw+2 · tw) time.

The cost for any coloring γi of Xi with γi(v) = 0 is straight-forward: Let γj

be the unique coloring in tabj that agrees with γi on all vertices except for v. If
v ∈ T , i.e., v is a terminal vertex, val(γi) = +∞, otherwise val(γi) = val(γj).

Now, we consider all compatible combinations of rows of tabj and tabi with
the intuition that several connected components of a solution at j may become
connected via the newly inserted, > 0-colored vertex v. Therefore, a coloring γj

of Xj is compatible with a coloring γi of bag Xi with γi(v) 
= 0 if and only if
the color partitions agree for all colors except for the color to which v belongs.
More formally, let c be the color of v in γi, then any vertex partition induced by
some color in γj is either also a vertex partition with the same color in γi, or a
(proper) subset of the vertex partition of color c in γi. Intuitively, the vertex v
connects with some formerly separated color partitions, coloring them all with
a common color.

We can compute the cost val(γi) for this solution at the introduce node i by
adding the costs of these new connections to the precomputed cost val(γj) of γj .
For the former, we simply have to find, for each formerly separate color partition
W , the cheapest edge in Gi connecting v with any vertex in W , and sum over
these costs. If no such edge exists, the corresponding connection cost is +∞.
If the so computed cost of γi is smaller than the current val(γi) entry for this
coloring in tabi, we update val(γi) accordingly. Hence, processing an introduce
node takes O(B2

tw+2 · tw) time.

Forget Node. Let i ∈ I be a forget node, and j ∈ I its only child. We have
Xi ⊂ Xj , |Xi|+1 = |Xj |, and let v be the additional (discarded, in fact) vertex.

As a preprocessing, we generate all rows of tabi and set their solution costs to
+∞. We then look at the rows of tabj one by one; let γj be the corresponding
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coloring, and c := γj(v). We say γj induces a coloring γi of the vertices Xi, by
simply dropping the vertex v and shifting the color index by −1 for all colors
> φj(v); the vertices colored with color φj(v) in γj obtain the color matching
the smallest secondary index φi(.) among themselves. Note that we can look up
the row of the induced coloring in tabi in O(tw) by exploiting the enumeration
scheme.

If c > 0 but there is no other vertex with color c, we cannot easily remove
this vertex from the solution, as it represents a component (containing, in gen-
eral, terminals) that has to be connected to the final Steiner tree S (recall that
we can safely assume that the decomposition tree’s root node contains a ter-
minal). Hence we cannot use this sub-solution to improve the solution value of
the induced coloring of Xi. Otherwise, we can safely drop the vertex and set
val(γi) := val(γj) if the current value of val(γi) is not already smaller.

Join Node. Let i ∈ I be a join node, and j, j′ ∈ I its two children. We have
Xj = Xj′ = Xi.

Again, we first construct all rows of tabi and set the solution values to +∞.
Then we consider all possible combinations of solutions from Xj and Xj′ . Let γj

and γj′ be colorings (rows) of tabj and tabj′ , respectively. We want to construct a
merged solution γi that resembles the combined connectivities of both solutions,
i.e., two vertices vs, vt ∈ Xi should be in the same color partition if and only
if there is a vertex sequence 〈vs := v1, v2, . . . , vβ := vt〉 in Xi such that, for all
1 ≤ α < β, the vertices vα, vα+1 have the same color in γj or γj′ .

Note that, a priori, such a merge might lead to cycles in the solution: assume
two vertices v1, v2 are colored with identical color cj in γj . Furthermore, they
have a (probably different but) common color cj′ in γj′ . Hence the vertices
are connected in both sub-solutions, but the connection paths do not need to
coincide. Even if the paths do coincide, we would have to identify them to not
count their cost twice for the combined solution. Hence, we only want to combine
solutions with the property that any pair of vertices has a common color > 0 in
at most one of the two colorings γj , γj′ . Then, the value of the combined solution
can be given as val(γi) := val(γj)+ val(γj′ ), which we can store into tabi (unless
the stored value for this solution is already smaller). Again, observe that we can
identify the row index in tabi of any given solution γi in O(tw) by exploiting the
enumeration scheme.

It would be trivial to perform the check whether to merge, as well as the actual
merge, in O(tw2) time, for any given pair of sub-solutions. Yet, we can do better
and perform the merge operation, including the check of the precondition, in
linear time O(tw): Consider a helper array recol : {1, . . . , |Xi|} → {1, . . . , |Xi|}
and construct a graph C with a vertex cr per possible color r. Then, for each
v ∈ Xi, add an edge (cγj(v), cγj′ (v)). Clearly, the graph has only O(tw) vertices
and edges. Remove the vertex c0 together with its incident edges, and mark all
other vertices in C as unvisited. Then, for increasing r ∈ {1, . . . , |Xi|}, start a
depth-first search (DFS) in C at any unvisited cr: set recol(cr′) := r for any
vertex cr′ visited in this DFS run. Hence, in the end, recol gives the new color
for any color in either γj or γj′ . Whenever a DFS run revisits an already visited
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vertex (within the same run), we identified a cycle (including the special case
of multiple edges), and the merge operation should be aborted. If no cycles
are detected, we can finally again consider each v ∈ Xi and set γi(v) := 0 if
γj(v) = γj′ (v) = 0, and γi(v) := recol(max{γj(v), γj′ (v)}) otherwise.

Remark. Note that if the given graph G has only positive edge weights, we do
not need to actively identify cycles or multiedges: the merged solution’s objec-
tive value will be greater than the alternative cycle/multiedge-free combination,
which will, at some point, also be considered. Since we store only the best so-
lution for any coloring in tabi, the stored solutions will always be cycle- and
multiedge-free.

Extracting the Solution at the Root Node. From the described construc-
tion process it is clear that each solution of a bag Xi describes the (minimum)
costs of a forest where all terminals from X+

i are (probably indirectly) connected
to some vertex of Xi. Also recall that it can be safely assumed that at least one
terminal is contained in the root bag Xr of T . Hence the optimum solution value
for the whole graph can be found in the root bag Xr of T , identifying a cheapest
solution where all vertices with color 
= 0 are contained in the same connected
component (i.e., have the same color).

Computing the optimum solution, i.e., the set of edges, is possible by back-
tracking or by storing the set of edges for each row and each bag. The latter
increases the required memory but has no negative impact on the running time
since these sets are simple linked lists that can be concatenated in O(1).

Remark. We can—with the same time complexity—also run the algorithm on
a tree decomposition where the root node does not contain any terminal vertex.
In this case, whenever we process a tree node i where T ⊆ X+

i (i.e., all terminals
are within the subtree induced by i), we check for the best solution where all
vertices with color 
= 0 belong to the same color partition, and store a reference
to it. After processing the root node, this reference gives the optimal solution.

2.3 Analysis

In the following, we will discuss the algorithm’s running time and prove that it
correctly computes an optimal solution.

Lemma 1. The above algorithm requires O(B2
tw+2 · tw · |V |) time.

Proof. The running time mainly depends on the size of the tables and the com-
bination of tables during the bottom-up traversal of the decomposition tree. We
already established that each table tabi at some tree node i stores O(Btw+2)
rows and requires overall O(Btw+2 · tw) storage.

During the bottom-up traversal of T we consider all possible row combina-
tions for two tables in the case of the introduce and the join node. For each
such combination, we perform a merge operation in O(tw), and we hence re-
quire overall O(B2

tw+2 · tw) time. This bound dominates the time required for
the other tree node types (forget and leaf nodes), as well as all other extra
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effort—feasibility tests, shifting of indices, etc.—which is only linearly dependent
on the treewidth. Due to the linear size of T , we can deduce the overall running
time. �
Lemma 2. The above algorithm correctly computes an optimal solution to the
given Steiner tree problem.

Proof. The algorithm’s correctness can be shown by a straight-forward inductive
proof on the decomposition tree. Let Γ c

i := {v ∈ Xi | γi(v) = c} be the vertices
colored c in a coloring γi. Our induction hypothesis (IH) states that, for each
processed bag Xi, the cost of each solution γi corresponds to a minimum forest
Fi ⊆ G+

i with the properties
– Fi consists of (pairwise disconnected) trees F c

i , one for each color c > 0 with
Γ c

i 
= ∅, with Γ c
i ⊆ V (F c

i ), and Γ c′
i ∩ V (F c

i ) = 0 for all c′ 
= c. I.e., each tree
connects only vertices of the same color partition.

– Fi contains all terminals of G+
i , i.e., T +

i ⊆ V (Fi).
The base cases are leaf nodes where the hypothesis clearly holds. Now, let the
induction hypothesis be true for all descendants of a bag Xi.

Forget node. Each coloring of a forget bag Xi is induced by |Xi| + 1 many
colorings in the child table—one for each possible color of the forget vertex. Our
algorithm picks the minimal among them that remains feasible after the removal
of the forget vertex, and does not change its solution value.

Assume the minimum solution γi at Xi would be smaller then this identified
sub-solution. Then we could add the forget vertex to the solution γi of Xi,
coloring it as required by Fi. This is a feasible coloring for the child node,
and stays feasible after removing the forget vertex. Hence, it would have been
considered by our algorithm (without modifying its solution value).

Introduce node. For an introduce node i, the solution table contains a copy of
its child table, when coloring the new vertex either 0 or with its own secondary
index. Furthermore, the new vertex allows the connection of several components.

Assume some optimal solution at an introduce bag Xi would be smaller than
the one obtained by the algorithm. If the introduced vertex v is colored 0 or
has a unique color, the otherwise identical coloring (up to index shifting) was
stored in the child table (IH). As the algorithm would not have changed the
solution value, we arrive at a contradiction. Now assume v belongs to some color
class Γ c

i with more than one element, and let F c
i be the corresponding solution

tree. When we remove v from F c
i , it decomposes into several components. Our

algorithm considered all possible such components in the child table, including
their optimal costs (IH), and attached them to v via the minimal edges. That
means that our algorithm considered this solution and would have computed its
costs correctly.

Join node. Similar to above, assume that we would have a solution γi at a
join node i which is strictly smaller than the one computed by our algorithm,
and consider the forest Fi. Observe that the vertex set Xi of i is identical to
those of its children j, j′. We can partition Fi into two sub-forests: Let F 1

i be
the forest restricted to the edges of G+

j , and let F 2
i be the forest restricted to

the edges E(G+
j′ ) \ E(Gj′ ), i.e., it does not contain any edges already contained
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in F 1
i . Observe that F 1

i induces a feasible coloring solution at node j, and F 2
i a

feasible coloring solution at node j, and that both are disjoint. Hence, by (IH),
our algorithm would have considered to merge the corresponding optimal sub-
solutions to obtain γi, with the correct objective value based on summing the
costs of F 1

i and F 2
i . �

Finally, the following theorem summarizes the above lemmas.

Theorem 1. Given a graph with vertex set V and a tree decomposition with
treewidth tw, the Steiner tree problem can be solved to optimality in O(B2

tw+2 ·
tw · |V |) time.

3 Prize-Collecting Steiner Tree

The prize-collecting Steiner tree problem (PCSTP) is an extension of the STP.
Thereby, instead of being required to connect all terminals, we get a (vertex-
specific) prize for each vertex we connect. We are hence given a function p :
V → R>0 and want to find a tree S = (VS , ES) that minimizes

∑
e∈ES c(e) −

∑
v∈S p(v), where c is the edge-cost function.1

Our algorithm for the STP can be adapted by introducing the profits into
the cost calculations (at the introduce nodes) and removing the necessity that
terminals are assigned a color 
= 0. Because terminals may be omitted, the opti-
mum solution need not necessarily be captured by the table at the decomposition
tree’s root node. Hence, during the bottom-up traversal each row of each table
is a potential global solution if the corresponding coloring induces a feasible
tree. The remaining part of the algorithm remains identical and after the pre-
vious discussion on the running time and optimality we conclude the following
theorem.

Theorem 2. Given a graph with vertex set V and a tree decomposition with
treewidth tw, the prize-collecting Steiner tree problem can be solved to optimality
in O(B2

tw+2 · tw · |V |) time.

4 k-Cardinality Tree

The k-cardinality tree (KCT) problem is defined on an edge-weighted, undi-
rected graph and asks for a minimum-cost tree containing exactly k edges. Bet-
zler [7] introduced an FPT algorithm with parameter k and time complexity
O(2O(k)k · |E| · log |V |). Ravi et al. [24] sketched a general FPT strategy for
any decomposable graph [6] (including graphs with bounded treewidth) with
time complexity O(f(tw) · k2 · |V |). As their general description considers any

1 Sometimes, the objective function is also described as min
∑

v �∈VS p(v)+
∑

e∈ES c(e).
From the point of view of optimal solutions, both problems are equivalent as∑

v∈V p(v) is a constant. We prefer the former definition to be able to locally evaluate
the objective function at each node of the decomposition tree.
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dependence on the decomposition’s parameter (e.g., treewidth) a constant, there
are no more details on the non-polynomial function f(tw). In the following, we
describe how to extend our previous algorithm for the STP to obtain an exact
algorithm for the KCT problem with a running time that increases by less than
a factor of k2, compared to the STP. In fact, our extension follows the concept
of [24], although in a less abstract way. Our obtained runtime bound is equiva-
lent to their result, and, to our knowledge, constitutes the first published bound
for f(tw).

As for the (PC)STP, we enumerate all possible partitions of the vertices of
each bag by assigning colors, and propagate optimal solutions to the root bag in
a bottom-up traversal of T . Yet, in contrast to the (PC)STP, holding a single
solution per partition and choosing minima is not sufficient as we have to take
the overall number of chosen edges into account.

Therefore the algorithm maintains, for each possible coloring at node i, a
solution value of a minimal forest with exactly k′ edges—establishing the color-
induced partition—for each possible 0 ≤ k′ ≤ k. All vertices of such a k′-forest
are either from Xi or are (indirectly) connected to vertices in Xi; all vertices
of a tree of such a forest are colored identically. Clearly, for solutions with 

non-0-colored vertices and c different colors > 0, the solution value for k′ < 
− c
is +∞, as any feasible forest requires more edges. The main observation is that
these k′-forests are always disjoint from any solution considered at any node not
in the subtree rooted at i, except for the vertices and edges in Gi. Overall, the
size of each row at any table tabi is O(tw + k).

Trivially, both possible colorings at a leaf node have cost 0 for the 0-forest
and +∞ otherwise. For a forget node the component of the forget vertex v has
to be considered: if v is the only vertex with color > 0 in the child table tabj , the
attached size-k forest (tree, in fact) might be the optimum k-cardinality tree;
hence, we compare and update the global optimum (similar as for the PCSTP). If
v is the only vertex with color γj but there are also other vertices colored > 0, we
cannot deduce a feasible solution and obtain forest values +∞. Otherwise (i.e.,
v does not define its own color class, or is colored 0), v can be simply discarded
without changing the costs of the k′-forests. Analogously to the STP—and in
the following also for the cases of the other inner nodes—we always store the
smallest solution value for each k′ that is achievable by a reduction from any
compatible coloring of the child bag.

The new vertex v in an introduce node might connect several connected com-
ponents, say c many. Similar to the STP, the cheapest edges connecting v with
each component are chosen; the cost of a k′-forest at the child node, together
with the cost-sum of the new edges, gives the cost of a (k′+c)-forest for the con-
sidered coloring at node i. As we consider all compatible colorings at the child
node and store the minimum per k′′, we will, in the end, know the minimally
achievable k′′-forest for any possible cardinality 1 ≤ k′′ ≤ k at i.

For a join node observe that k′-forests from two combined solutions are pair-
wise disjoint, as long as their coloring does not induce cycles or multiedges, as we
discussed for the STP. Hence, as for the STP, we combine only two solutions with
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this property, reusing our DFS sub-algorithm. To compute the new minimal k′-
forest, for each k′, we consider all combinations of a k1-forest of the first, and a
k2-forest of the second solution with k1+k2 = k′. These are O(k2) computations.

After processing the root node, we may update the globally stored optimum
by the k-forests (trees, in fact) arising from colorings with a single non-0 color.

Analyzing the running time, we again require tables with O(Btw+2) rows, each
row of size O(tw + k). In case of a join and an introduce node, two tables are
combined by considering all possible O(B2

tw+2) combinations; the largest effort
of O(k2 + tw) per combination arises at a join node. Due to space restrictions
and obvious analogies to the STP we omit the correctness proof and close the
discussion on the KCT problem with the following theorem.

Theorem 3. Given a graph with vertex set V and a tree decomposition with
treewidth tw, the k-cardinality tree problem can be solved optimally in O(B2

tw+2 ·
(tw + k2) · |V |) time.

5 Conclusions

We showed new, currently fastest treewidth-based exact algorithms for the STP,
the PCSTP, and the KCT problem. For the former two problems, these al-
gorithms also directly speed-up current PTASes for planar STP and PCSTP,
as those use algorithms for bounded treewidth as their most time-consuming
subroutines.
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