
Hamilton Cycles in Restricted Rotator Graphs

Brett Stevens� and Aaron Williams

Carleton University, Canada
brett@math.carleton.ca,

haron@uvic.ca

Abstract. The rotator graph has vertices labeled by the permutations
of n in one line notation, and there is an arc from u to v if a prefix
of u’s label can be rotated to obtain v’s label. In other words, it is
the directed Cayley graph whose generators are σk := (1 2 · · · k) for
2 ≤ k ≤ n and these rotations are applied to the indices of a permutation.
In a restricted rotator graph the allowable rotations are restricted from
k ∈ {2, 3, . . . , n} to k ∈ G for some smaller (finite) set G ⊆ {2, 3, . . . , n}.
We construct Hamilton cycles for G = {n−1, n} and G = {2, 3, n}, and
provide efficient iterative algorithms for generating them. Our results
start with a Hamilton cycle in the rotator graph due to Corbett (IEEE
Transactions on Parallel and Distributed Systems 3 (1992) 622–626) and
are constructed entirely from two sequence operations we name ‘reusing’
and ‘recycling’.

1 Introduction

Let Πn denote the set of permutations of [n] := {1, 2, . . . , n} written in one-line
notation as strings. For example, Π3 = {1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1} and
we henceforth omit spaces between individual symbols when appropriate. The
operation σk is a prefix-rotation, or simply rotation, and it cyclically moves the
first k symbols one position to the left. In other words, σk applies the permutation
(1 2 · · · k) to the indices of a string. For example, 541362 σ4 = 413562 since 413
moves one position to the left and 5 “wraps around” into the fourth position.
The operation is also known as a prefix-shift of length k in the literature.

1.1 Rotator Graphs and Hamilton Cycles

The rotator graph Rn has nodes labeled with the strings in Πn, and arcs labeled
σk directed from α ∈ Πn to β ∈ Πn when β = α σk. In group-theoretic terms,
Rn is the directed Cayley graph

−−→
Cay({σ2, σ3, . . . , σn}, Sn) with generators σk

for 2 ≤ k ≤ n and where Sn is the symmetric group corresponding to Πn. A
restricted rotator graph for G ⊆ [n] is Rn(G) =

−−→
Cay(G, Sn) where the generators

are restricted to σk for k ∈ G. Figure 1 (a) illustrates R3.
A Hamilton cycle of Rn(G) can be described by a Hamilton sequence of in-

tegers S = s0, s1, · · · , sn!−1 where σsi is the label of the (i + 1)st arc in the
� Research supported in part by NSERC.

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 324–336, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Hamilton Cycles in Restricted Rotator Graphs 325

Fig. 1. (a) The rotator graph R3, and (b) a Hamilton cycle in R3

cycle and si ∈ G for each i ∈ {0, 1, . . . , n! − 1}. A Hamilton cycle of Rn(G) can
also be described by the order of node labels along the cycle. In combinatorial
generation, these orders are cyclic Gray codes since each string in Πn appears
exactly once, and successive strings differ by some σk for k ∈ G where ‘succes-
sive’ includes last to first. For example, Figure 1 (b) contains a Hamilton cycle
for R3 that can be described by

3, 3, 2, 3, 3, 2 or 321, 213, 132, 312, 123, 231. (1)

Restricted rotator graphs are vertex-transitive; our Hamilton cycles and their
associated Gray code orders for Rn(G) will all ‘start’ at n n−1 · · · 1. Orders of
strings that do not necessarily have the Gray code properties are called lists.

An explicit Hamilton cycle in Rn was first constructed by Corbett [2]. Hamil-
ton cycles were then constructed for different generalizations of Rn by Pon-
nuswamy and Chaudhary [11] and Williams [13]. Hamilton cycle constructions
for Rn({n − 1, n}) were proposed as an open problem by Knuth, and this was
answered by Ruskey and Williams [12]. Observe that σn must be included in
a restricted rotator graph in order to generate the entire symmetric group Sn.
Moreover, σn and σc are not sufficient for generating Sn if and only if c and n
are both odd (in these cases the parity of a permutation cannot be changed). A
well-known conjecture is that a Hamilton cycle exists in every connected undi-
rected Cayley graph, where undirected Cayley graphs include the inverse of each
generator. In particular, a Hamilton cycle was constructed for Cay({σ2, σn}, Sn)
by Compton and Williamson in a 50-page paper [1].

Corbett introduced the term “rotator graph” when considering point-to-point
multiprocessor networks, where Hamilton cycles establish indexing schemes for
sorting and for mapping rings and linear arrays [2] Applications of rotator graphs
include fault-tolerant file transmission by Hamada et al [5] and parallel sorting
by Corbett and Scherson [3]. Properties of rotator graphs have been examined
including minimum feedback sets by Kuo et al [9] and node-disjoint paths by
Yasuto, Ken’Ichi, and Mario [14]. Other variations of rotator graphs include
incomplete rotator graphs [11], the bi-rotator graph (see Lin and Hsu [10]),
and graphs where the labels can have repeated symbols [13]. The relationship
between Hamilton cycles of Rn(n− 1, n) and universal cycles of Πn is discussed
by Holroyd, Ruskey, and Williams along with applications [6,7].

326 B. Stevens and A. Williams

1.2 New Results

We construct a new Hamilton cycle in Rn({n−1, n}) and the first Hamilton cycle
in Rn({2, 3, n}). The chosen sets {n−1, n} and {2, 3, n} are natural since σn−1

is the “largest” rotation other than σn, whereas σ2 and σ3 are the “smallest”
pair of rotations given the previously mentioned difficulty of the Compton and
Williamson result for Cay({σ2, σn}, Sn) [1] and the trivial lack of connectivity in
Cay({σ3, σn}, Sn) when n is odd.

Our new constructions are intimately related to Corbett’s original Hamil-
ton cycle in Rn. In fact, the beauty of our results is that all three Hamilton
sequences can be described by two operations that we name ‘reusing’ and ‘re-
cycling’. We also provide an algorithm for constructing the Hamilton sequences.
The algorithm is loopless since successive values in the sequence are obtained in
worst-case O(1)-time (see Ehrlich [4] for the first use of this term).

Section 2 formally defines the ‘reuse’ and ‘recycle’ operations. Section 3 con-
structs the three Hamilton cycles and proves that two of the constructions are
correct. Section 4 gives a loopless algorithm that generates the Hamilton se-
quences. Section 5 extends Corbett’s recursive construction with an iterative
description that is instrumental to the final proof of correctness. Section 6 com-
pletes the final proof of correctness by proving that Corbett’s Hamilton sequence
of Rn can be ‘recycled’ into a Hamilton cycle of Rn+1({n, n+1}). Section 7 con-
cludes with open problems.

2 Sequence Building

This section defines two operations for building sequences of positive integers
and examines the lists they create when they are treated as rotation indices.

2.1 Reusing and Recycling

In this subsection we define the reusing and recycling sequence operations, and
describe how they are applied to create lists of strings. Given i and n satisfying
1 < i < n, the result of reusing and recycling i with respect to n is

reusen(i) =
n−1 copies
︷ ︸︸ ︷

n, . . . , n , n−i+1 and recyclen(i) = n, n,

i−1 copies
︷ ︸︸ ︷

n−1, . . . , n−1,

n−i−1 copies
︷ ︸︸ ︷

n, . . . , n

respectively. Notice that both operations create sequences of n symbols that are
each at least 2 and at most n. For example,

reuse6(3) = 6, 6, 6, 6, 6, 4 and recycle6(3) = 6, 6, 5, 5, 6, 6. (2)

We build longer sequences by applying these operations to each symbol in a
sequence. If S = s1, s2, . . . , st is a sequence with 1 < si < n for each i, then

reusen(S) = reusen(s1), reusen(s2), . . . , reusen(st) and
recyclen(S) = recyclen(s1), recyclen(s2), . . . , recyclen(st).

Hamilton Cycles in Restricted Rotator Graphs 327

We use sequences to create lists of strings by applying successive prefix-rotations.
If α ∈ Πn and S = s1, s2, . . . , st is a sequence with 1 < si ≤ n for each i, then

α ◦ S = β0, β1, . . . , βt where β0 = α and βi = βi−1 σsi for i = 1, 2, . . . , t.

For example, if α = 612345 then

α ◦ reuse6(3) = 612345, 123456, 234561, 345612, 456123, 561234, 612534 (3)
α ◦ recycle6(3) = 612345, 123456, 234561, 345621, 456231, 562314, 623145

since reuse6(3) = 6, 6, 6, 6, 6, 4 and recycle6(3) = 6, 6, 5, 5, 6, 6 by (2). In some
situations it is more convenient to leave off the last permutation in the list α◦S,
and we use α • S in these cases.

A symbol x is periodic in a list L of Πn if the position of x moves once to
the left (cyclically) between successive strings in L. For example, 6 is periodic
in both lists from (3). More generally, the first symbol x of α ∈ Πn is periodic
in any list of the form α ◦ reuse(S) or α ◦ recycle(S). This is because the first
rotation σn moves x from the first position to the last position, the next n−1
rotations move x one position to the left, and this pattern is repeated.

2.2 Rotation Identities

In this subsection we give two identities involving rotations. In addition to σi =
(1 2 · · · i) for prefix-rotations, let ςi = (n n−1 · · · n−i+1) denote the suffix-
rotation operation, and σ′

i = (2 3 · · · i+1) denote a modified prefix-rotation that
begins at the second symbol. We also let σj

i denote j successive copies of σi, and
successive rotations are applied from left-to-right. Using these conventions we
have the following simple identities

σn−1
n σn−i+1 = ςi and σ2

nσi−1
n−1σ

n−i−1
n = σ′

i

“reuse equality” “recycle equality”.
(4)

The “reusing equality” on the left follows from (n n−1 · · · 1)(1 2 · · · n−i+1) =
(n−i+1 n−i+2 · · · n), while the “recycling equality” on the right is the second
equality of Lemma 2 in [7]. The equalities allow the last string obtained by
applying reusen(i) and recyclen(i) to be computed directly. For example, when
i = 3 and n = 6 we obtain the final strings in (3) as follows

612345σ5
6σ4 = 612345ς3 612345σ2

6σ
2
5σ2

6 = 612345σ′
3 (5)

= 612534 = 623145.

2.3 List Quotients

In Section 2.1 we saw that every nth string in n n−1 · · · 1 ◦ S begins with n,
whenever S is obtained by reusing or recycling. Furthermore, Section 2.2 gave
identities for these strings. This subsection examines these strings in more detail.

The quotient of a list L of Πn with a symbol x ∈ [n] is the list obtained from
L by (1) removing the strings that do not begin with x, and (2) removing x from

328 B. Stevens and A. Williams

the strings that begin with x. We denote this operation by x/L. Our first lemma
uses recycling and is illustrated by the next example. If S = 3, 3, 2, 3, 3, 2 then

321 • S = 321, 213, 132, 312, 123, 231 and (6)

4321 • recycle(S) = 4321, 3214, 2143, 1423, 4213, 2134, 1342, 3412, 4132, 1324, 3241, 2431,

4312, 3124, 1243, 2413, 4123, 1234, 2341, 3421, 4231, 2314, 3142, 1432.

Notice the quotient of the second list with 4 equals the first list (as underlined).
That is, 4/(4321 • recycle(S)) = 321 • S. Lemma 1 proves this is true for any S.

Lemma 1. If sequence S has values in {2, . . . , n−1} and αi = i i−1 · · · 1, then

n/(αn • recyclen(S)) = αn−1 • S.

Proof. The first string in both lists is αn−1 since n/αn = αn−1. Since n is
periodic in αn◦recyclen(S), every nth string begins with n. Therefore, successive
strings in n/(αn◦recyclen(S)) are obtained by successive σsi for S = s1, . . . , st by
the “recycling identity” in (4). Therefore, the two lists are equal. ��
Our second lemma instead uses reusing and is illustrated by the next example

321 • S = 321, 213, 132, 312, 123, 231 and (7)

4321 • reuse(S) = 4321, 3214, 2143, 1432, 4132, 1324, 3241, 2413, 4213, 2134, 1342, 3421,

4231, 2314, 3142, 1423, 4123, 1234, 2341, 3412, 4312, 3124, 1243, 2431.

In this case the quotient of the second list with 4 equals the “double-reverse” of
the first list. Given a string a1a2 · · ·an ∈ Πn the double-reverse is

a1a2 · · · aR
n = (n−an+1) · · · (n−a2+1) (n−a1+1).

In a double-reverse the relative order of symbols is changed from a1a2 · · · an

to an · · ·a2a1 and relative values are reversed from x to n−x+1. Given a list
L = α1, . . . , αm the double-reversal of L is LR = αR

1 , . . . , αR
m. For example,

(321, 132, 213, 231, 123, 312)R = 321R, 132R, 213R, 231R, 123R, 321R

= 321, 213, 132, 312, 123, 231.

This equation illustrates the relationship 4/(4321 • reuse(S)) = (321 •S)R in (7)
(as underlined). Lemma 2 proves this is true for any S.

Lemma 2. If sequence S has values in {2, . . . , n−1} and αi = i i−1 · · · 1, then

n/(αn ◦ reusen(S)) = (αn−1 ◦ S)R.

Proof. The first string in both lists is αn−1 since n/αn = αn−1 and αR
n−1 =

αn−1. Since n is periodic in αn ◦ reusen(S), every nth string begins with n.
Therefore, successive strings in n/(αn ◦ reusen(S)) are obtained by successive ςsi

for S = s1, . . . , st by the “reusing identity” in (4). Notice that suffix-rotations
in a double-reversed string are ‘equivalent’ to prefix-rotations in the original
string. That is, if α = βR, then α σi = β ςR

i . Therefore, the two lists are
equal. ��

Hamilton Cycles in Restricted Rotator Graphs 329

3 Three Hamilton Sequences

This section constructs Hamilton sequences for Rn, Rn({n − 1, n}), and
Rn({2, 3, n}) through reusing and recycling. Two of the three main theorems
are proven in this section, and the third is proven in Sections 5 and 6.

3.1 Hamilton Sequence for Rn

This subsection proves that a Hamilton sequence for Rn can be obtained entirely
with the reuse operation. The Corbett sequence is defined recursively as follows

C(n) =

{

2, 2 if n = 2
reusen(C(n−1)) if n > 2.

(8)

Corbett proved that C(n) is a Hamilton sequence for the rotator graph Rn [2].
Let ΠC(n) = n n−1 · · · 1 ◦ C(n) denote this Corbett Gray code of Πn. Table 1
gives C(n) and ΠC(n) for n = 3, 4.

Table 1. (a)-(b) Corbett sequence for n = 3, 4, and (c)-(d) Corbett Gray code for
n = 3, 4. Prefix-rotations in (c) and suffix-rotations of every fourth string in (d) are
underlined according to (a) by the “reusing equality” in (4).

C(3) C(4) = reuse4(C(3)) ΠC(3) ΠC(4) = 4321 ◦ C(4)

3, 4, 4, 4, 2, 321, 4321, 3214, 2143, 1432,
3, 4, 4, 4, 2, 213, 4132, 1324, 3241, 2413,
2, 4, 4, 4, 3, 132, 4213, 2134, 1342, 3421,
3, 4, 4, 4, 2, 312, 4231, 2314, 3142, 1423,
3, 4, 4, 4, 2, 123, 4123, 1234, 2341, 3412,
2 4, 4, 4, 3 231 4312 3124, 1243, 2431

(a) (b) (c) (d)

Theorem 1 extends Corbett’s result by proving that any Hamilton sequence
for Rn−1 can be ‘reused’ into a Hamilton sequence for Rn. Furthermore, we
explicitly state the values used in the resulting sequence. (A simple induction
proves that Corbett’s ‘canonical’ sequence C(n) uses each value in {2, 3, . . . , n}.)
Theorem 1. [2] If S is a Hamilton sequence in Rn−1(G), then reusen(S) is a
Hamilton sequence in Rn(H), where i ∈ H if and only if i = n or n− i+1 ∈ G.

Proof. Let α = n n−1 · · · 1. By Lemma 2 the nth strings in α ◦ reusen(S)
form a Gray code for the strings in Πn that begin with n. Each of these strings
is followed by n−1 applications of σn by the definition of reusen(i). Therefore,
α◦reusen(S) contains every string in Πn and so reusen(S) is a Hamilton sequence.
Finally, the values in H follow immediately from the definition of reusing. ��

330 B. Stevens and A. Williams

3.2 Hamilton Sequence for Rn({n−1, n})

This subsection states that a Hamilton sequence for Rn(n−1, n) can be obtained
by recycling Corbett’s Hamilton sequence. In other words, a Hamilton sequence
for Rn(n−1, n) can be obtained by repeated reusing following by a single recycle.
Let D(n) = recyclen(C(n−1)) denote this sequence and ΠD(n) = n n−1 · · · 1 ◦
D(n) denote its Gray code. Table 2 gives D(n) and ΠD(n) for n = 4.

Table 2. (a)-(b) Recycling the Corbett sequence and (c)-(d) the Corbett Gray code
from n = 3 to n = 4. Prefix-rotations in (c) and modified prefix-rotations of every
fourth string in (d) are underlined according to (a) by the “recycling equality” in (4).

C(3) D(4) = recycle4(C(3)) ΠC(3) ΠD(4) = 4321 ◦D(4)

3, 4, 4, 3, 3, 321, 4321, 3214, 2143, 1423,
3, 4, 4, 3, 3, 213, 4213, 2134, 1342, 3412,
2, 4, 4, 3, 4, 132, 4132, 1324, 3241, 2431,
3, 4, 4, 3, 3, 312, 4312, 3124, 1243, 2413,
3, 4, 4, 3, 3, 123, 4123, 1234, 2341, 3421,
2 4, 4, 3, 4 231 4231 2314, 3142, 1432

(a) (b) (c) (d)

Theorem 2. If S = C(n−1) is the Corbett sequence for Rn−1, then recyclen(S)
is a Hamilton sequence in Rn({n−1, n}).
To illustrate the difficulty of Theorem 2, we point out that arbitrary Hamilton
sequences for Rn−1 cannot be recycled into Hamilton sequences for Rn. For
example, consider the following Hamilton sequence for R4 and its associated
Gray code for Π4

S = 4, 3, 3, 2, 3, 4, 2, 3, 4, 2, 3, 3, 4, 4, 2, 3, 3, 2, 3, 4, 4, 4, 3, 4 (9)
4321 ◦ S = 4321, 3214, 2134, 1324, 3124, 1234, 2341, 3241, 2431, 4312, 3412, 4132,

1342, 3421, 4213, 2413, 4123, 1243, 2143, 1423, 4231, 2314, 3142, 1432.

Observe that 1324 is followed by 1324 σ2 = 3124, and that 2314 is followed by
2314 σ4 = 3142 in 4321 ◦ S. Therefore, Lemma 1 implies that 51324 is followed
by 51324 • recycle5(2), and 52314 followed by 52314 • recycle5(4) in the recycled
list 54321 • recycle5(S). These two sublists appear below

51324 • recycle5(2) 52314 • recycle5(4) (10)
= 51324 • 5, 5, 4, 5, 5 = 52314 • 5, 5, 4, 4, 4
= 51324, 13245, 32451, 24531, 45312 = 52314, 23145, 31452, 14532, 45312.

Since both sublists contain 45312, the list 54321 • recycle5(S) is not a Gray
code. Furthermore, the reader can verify that recycle6(reuse5(S)) is also not a
Hamilton sequence. In other words, an arbitrary Hamilton sequence S cannot be
recycled into a Hamilton sequence, even when S is the result of reusing a previous
Hamilton sequence. We prove Theorem 2 by developing results in Sections 5-6.

Hamilton Cycles in Restricted Rotator Graphs 331

3.3 Hamilton Sequence for Rn({2, 3, n})

This subsection proves that a Hamilton sequence for Rn({2, 3, n}) can be ob-
tained by recycling and then reusing Corbett’s Hamilton sequence. In other
words, a Hamilton sequence for Rn(2, 3, n) can be obtained by repeated reusing
followed by a single recycle and then a single reuse. Let E(n) = reusen(D(n−1))
denote this sequence and ΠE(n) = n n−1 · · · 1 ◦ E(n) denote its Gray code.
More generally, Theorem 3 proves that a Hamilton sequence for Rn({2, 3, n})
can be obtained by reusing any Hamilton sequence for Rn−1({n−2, n−1}).
Theorem 3. If S is a Hamilton sequence in Rn−1({n−2, n−1}), then reusen(S)
is a Hamilton sequence in Rn({2, 3, n}).
Proof. By the statement of the theorem, S is a Hamilton sequence for Rn−1(G)
for G = {n−2, n−1}. By theorem 1, reusen(S) is a Hamilton sequence in Rn(H)
where H = {n−(n−2)+1, n−(n−1)+1, n} = {2, 3, n}. ��

4 Loopless Algorithm

In this section we show how to generate each symbol of Corbett’s Hamilton
sequence C(n) for the rotator graph Rn in worst-case O(1)-time. Furthermore,
our CorbettLoopless(n) algorithm is significant because
1. It adapts a well-known algorithm for generating multi-radix numbers, and
2. A modification generates Hamilton sequences in Rn({n−1, n}) or

Rn({2, 3, n}).
4.1 Staircase Sequence

The staircase sequence S(n) is obtained from repeated applications of the step
sequence operation as defined below

stepn(i) =
n−1 copies
︷ ︸︸ ︷

n, . . . , n , i and S(n) =

{

2 if n = 1
stepn(S(n−1)) if n > 1.

(11)

The step operation is identical to the reuse operation except the final symbol
i has replaced n−i+1. Lemma 3 specifies each value of Corbett’s sequence in
terms of the staircase sequence and gives a simple condition for the occurrence
of each value.
Lemma 3. If the staircase sequence is S(n) = s1, s2, . . . , sn! and the Corbett
sequence is C(n) = c1, c2, . . . , cn! and n ≥ 2, then for each i satisfying 1 ≤ i ≤ n!,
we have si = j if n(n − 1) · · · (j + 1) divides i but n(n − 1) · · · (j + 1)j does not
divide i, and

ci =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

n if si = n

2 if si = n−1

n−1 if si = n−2

3 if si = n−3

n−2 if si = n−4

.

�n+1
2
� if si = 2.

332 B. Stevens and A. Williams

Proof. The result is true for n = 2 since S(2) = C(2) = 2, 2. Assume the result
is true for S(k) = s′1, . . . , s

′
k! and C(k) = c′0, . . . , c

′
k! for k ≥ 2. When n = k+1,

S(n) = step(S(n−1)) =
n−1 copies
︷ ︸︸ ︷

n, . . . , n , s′1, . . . ,

n−1 copies
︷ ︸︸ ︷

n, . . . , n , s′n−1!

C(n) = reuse(C(n−1)) = n, . . . , n
︸ ︷︷ ︸

n−1 copies

, n−c′1+1, . . . , n, . . . , n
︸ ︷︷ ︸

n−1 copies

, n−c′n−1!+1

so the result follows by induction by (11) and (8), respectively. ��

Algorithm 1. Generate the staircase sequence S(n) by StaircaseLoopless(n) and
Corbett’s Hamilton sequence C(n) for rotator graph Rn by CorbettLoopless(n).
Note: The final symbol output by StaircaseLoopless(n) is 1 instead of 2 by (11).
Require: StaircaseLoopless(n)
1:
2: a1 · · · an ← 0 · · · 0
3: f1 · · · fn ← 1 · · ·n
4: loop
5: j ← f1

6: output(n−j+1)
7: if j = n then
8: return
9: end if

10: f1 ← 1
11: aj ← aj + 1
12: if aj = n−j then
13: aj ← 0
14: fj ← fj+1

15: fj+1 ← j + 1
16: end if
17: end loop

Require: CorbettLoopless(n)
1: r1 · · · rn ← n 2 n−1 3 · · · �n+1

2
� �n+1

2
�

2: a1 · · · an ← 0 · · · 0
3: f1 · · · fn ← 1 · · ·n
4: loop
5: j ← f1

6: output(rj)
7: if j = n then
8: return
9: end if

10: f1 ← 1
11: aj ← aj + 1
12: if aj = n−j then
13: aj ← 0
14: fj ← fj+1

15: fj+1 ← j + 1
16: end if
17: end loop

4.2 Staircase Strings

Staircase sequences arise naturally in combinatorial generation. A string α =
a1a2 · · · an is a staircase string if its symbols satisfy 1 ≤ ai ≤ i for all 1 ≤ i ≤ n.
In other words, staircase strings are multi-radix numbers with radices mi = i for
1 ≤ i ≤ n. Loopless Algorithm H in The Art of Computer Programming gener-
ates multi-radix numbers in reflected Gray code order, meaning that successive
strings differ by ±1 in a single symbol (see Knuth [8] pg. 20). In the special
case of staircase strings, Algorithm H generates the ± indices according to the
staircase sequence. For example, the Gray code appears below for n = 3

111, 112, 113, 123, 122, 121,

Hamilton Cycles in Restricted Rotator Graphs 333

where the ± indices follow S(3) = 3, 3, 2, 3, 3, 2 (cyclically). StaircaseLoopless(n)
in Algorithm 1 gives our presentation of Algorithm H, which is simplified by
removing references to the multi-radix number, the ± direction array d, and by
“hard-coding” the radices mi = i for 1 ≤ i ≤ n. As in Knuth’s presentation,
array f stores focus pointers. To generate C(n), we introduce an auxiliary array
of constants

r1, r2, r3, r4, · · · , rn−1, rn = n, 2, n−1, 3, · · · ,
⌈n

2

⌉

,
⌈n

2

⌉

whose values are explained by Lemma 3. Finally, CorbettLoopless(n) in Algorithm
1 is obtained by replacing output(n−j+1) on line 6 by output(rj).

Theorem 4. CorbettLoopless(n) is a loopless algorithm that generates Corbett’s
sequence C(n).

By Theorem 2 algorithm CorbettLoopless(n) can instead generate the Hamilton
sequence D(n) for Rn+1({n, n+1}) via recycling by replacing line 6 with

output(n+1, n+1, n, . . . , n
︸ ︷︷ ︸

rj−1 copies

, n+1, . . . , n+1
︸ ︷︷ ︸

n−rj copies

).

Similarly, by Theorem 1 the algorithm can generate the Hamilton sequence E(n)
for Rn+2({2, 3, n+2}) via recycling and reusing by replacing line 6 with

output(

n+1 copies
︷ ︸︸ ︷

n+2, ..., n+2, 2,

n+1 copies
︷ ︸︸ ︷

n+2, ..., n+2, 2,

n+1 copies
︷ ︸︸ ︷

n+2, ..., n+2, 3, ...,

n+1 copies
︷ ︸︸ ︷

n+2, ..., n+2, 3
︸ ︷︷ ︸

rj−1 copies

,

n+1 copies
︷ ︸︸ ︷

n+2, ..., n+2, 2, ...,

n+1 copies
︷ ︸︸ ︷

n+2, ..., n+2, 2
︸ ︷︷ ︸

n−rj copies

).

5 Corbett’s Successor Rule

In Section 4 we showed how to generate Corbett’s sequence C(n) one symbol at
a time, with Algorithm CorbettLoopless(n) creating the entire sequence and re-
quiring two auxiliary arrays. Theorem 5 gives a successor rule that describes how
each string in Corbett’s Gray code ΠC(n) can be computed from the previous
string without additional state. The theorem is illustrated after its proof.

Theorem 5. Suppose α = a1a2 · · · an ∈ Πn. Let x and y be the lengths of the
longest prefix of the form n n−1 n−2 · · · and the longest suffix of the form
· · · 3 2 1 in a2a3 · · · an, respectively. The string that follows α in ΠC(n) is

β =
{

σy+2(α) if x > y (12a)
σn−x(α) otherwise (x ≤ y). (12b)

Proof. Suppose Corbett’s sequence is C(n) = c1, c2, . . . , cn!, Corbett’s Gray code
is ΠC(n) = α1, α2, . . . , αn!, and n ≥ 2. Consider an arbitrary αi = a1a2 · · · an in
the Gray code. By using Lemma 2 and 3 the following conditions can be proven
by induction on n

334 B. Stevens and A. Williams

a2 = n ⇐⇒ ci �= n, and

an = 1 and a2 = n ⇐⇒ ci /∈ {n, 2}, and

a3 = n−1 and an = 1 and a2 = n ⇐⇒ ci /∈ {n, 2, n−1}, and

an−1 = 2 and a3 = n−1 and an = 1 and a2 = n ⇐⇒ ci /∈ {n, 2, n−1, 3}, and

. . . ⇐⇒ . . .

α = a1 n n−1 · · · p+2 p+1 aq+1 p−2 p−3 · · · 2 1 ⇐⇒ ci = p.

where p =
⌈

n+1
2

⌉

and q =
⌊

n+1
2

⌋

. The rule follows from these conditions. ��
For example, if α = 48756231 then x = 2 and y = 1 due to the underlined
prefix and overlined suffix of 8756231, respectively. Therefore, the string after α
in ΠC(8) is α σ3 = 48756231 σ3 = 87456231 by (12a) since x > y and y = 2.

Theorem 5 also allows the lookup table of size n! to be avoided in Corbett’s
original application involving point-to-point multiprocessor networks [2].

6 Recycling Corbett’s Sequence

In this section we prove a restatement of Theorem 2: If S = C(n) is the Corbett
sequence for Rn, then recyclen+1(S) is a Hamilton sequence in Rn+1({n, n+1}).
Proof. We prove an arbitrary string in Πn+1 appears in n+1 n · · · 1◦ recycle(S)
where S = C(n). Let this arbitrary string equal ai ai+1 · · · an n+1 b1 b2 · · · bi−1

for some i satisfying 1 ≤ i ≤ n+1. We choose this expression for our arbitrary
string since we will find α and β such that the following criteria hold

1. α has suffix ai ai+1 · · · an, and
2. β has prefix b1 b2 · · · bi−2, and
3. α is followed by β in ΠC(n) by applying σr, and
4. α◦ recycle(r) contains the arbitrary string ai ai+1 · · · an n+1 b1 b2 · · · bi−1.

The result is trivial when n+1 is in the first, last, or second-last position of the
arbitrary string. In the remaining cases we define the following

– γ := g1 g2 ...gn := b1 b2 ... bi−1 ai ai+1 ... an and p =
n
2 �−1 and q = �n

2 −1,
– xb is the length of the longest n n−1 n−2 · · · prefix in g1 g2 · · · gi−2,
– ya is the length of the longest · · · 3 2 1 suffix in gi gi+1 · · · gn,
– x′ is the length of the longest n n−1 n−2 · · · prefix in g1 g2 · · · gp, and
– y′ is the length of the longest · · · 3 2 1 suffix in gn−q+1 gn−q+2 · · · gn.

One difference between (xb, ya) and (x′, y′) is that the former considers
b1 b2 · · · bi−2 and ai ai+1 · · · an separately, whereas the latter considers γ
as a whole. Choose

α :=

⎧

⎪
⎨

⎪
⎩

bi−1 b1 b2 ... bi−2 ai ai+1 ... an if xb≤ya (13a)

gy′+2 g1 g2 ... gy′+1 gy′+3 gy′+4 ...gn if xb>ya and x′ > y′(13b)

gn−x′ g1 g2 ... gn−x′−1 gn−x′+1 gn−x′+2 ...gn if xb>ya and x′ ≤ y′.(13c)

Hamilton Cycles in Restricted Rotator Graphs 335

In each case, we prove the first criterion holds for the choice of α. For (13a) this
result is obvious. For (13b) there are two cases two consider. If xb ≥ x′, then

y′ + 3 ≤ x′ + 2 ≤ xb + 2 ≤ i

where the inequalities follow from x′ > y′, xb ≥ x′, and xb ≤ i − 2, respectively.
On the other hand, if xb < x′ then it must be that ya = y′ and so

y′ + 3 = ya + 3 ≤ xb + 2 ≤ i

where the equalities and inequalities follow from y′ = ya, xb > ya, and xb ≤ i−2,
respectively. In both cases, α has the suffix stated in the first criterion. For (13c)
it must be that i = n − ya + 1 and xb = x′. Therefore,

n − x′ + 1 = n − xb + 1 ≤ n − ya = i − 1

where the equalities and inequalities follow from xb = x′, xb < ya, and i =
n − ya + 1, respectively. Therefore, α has the suffix stated in the first criterion.
To complete the proof, use the successor rule from Theorem 5 to verify the
remaining criteria. ��
Theorem 2 also affirms Conjecture 1 in [7]. That paper uses an equivalent no-
tion of ‘recycling’ that acts on rotation Gray codes of Πn instead of Hamilton
sequences of Rn. The conjecture is that Corbett’s Gray code is ‘recyclable’ and
Theorem 2 equivalently proves that Corbett’s Hamilton sequence is ‘recyclable’.

7 Open Problems

The following open problems are related to this research:

1. Efficiently generate an explicit Hamilton cycle in Rn({2, n}).
2. Necessary and sufficient conditions for recyclable Hamilton sequences of Rn.
3. A loopless algorithm for generating a recyclable order of Πn in an array.
4. The diameter of Rn(G) for G = {n−1, n} and G = {2, 3, n} and others.

For the fourth problem, we mention that Corbett showed the diameter of Rn is
small [2] and discussed applications of this fact. For the third problem, we men-
tion that there are many loopless algorithms that generate successive permuta-
tions in an array, but none are known to be ‘recyclable’ using the terminology
from [7]. In fact, the known recyclable orders using rotations by Corbett [2] and
Williams [13] cannot be generated by a loopless array-based algorithm since σn

cannot be implemented in constant time.

Acknowledgement. The authors wish to thank all three referees for helpful
comments. In particular, we wish to thank one referee who made several correc-
tions and the observation that the direction array d could be removed from our
initial presentation of Algorithm 1.

336 B. Stevens and A. Williams

References

1. Compton, R.C., Williamson, S.G.: Doubly Adjacent Gray Codes for the Symmetric
Group. Linear and Multilinear Algebra 35(3), 237–293 (1993)

2. Corbett, P.F.: Rotator Graphs: An Efficient Topology for Point-to-Point Multi-
processor Networks. IEEE Transactions on Parallel and Distributed Systems 3,
622–626 (1992)

3. Corbett, P.F., Scherson, I.D.: Sorting in Mesh Connected Multiprocessors. IEEE
Transactions on Parallel and Distributed Systems 3, 626–632 (1992)

4. Ehrlich, G.: Loopless Algorithms for Generating Permutations, Combinations and
Other Combinatorial Configurations. IEEE Transactions on Parallel and Dis-
tributed Systems 3, 626–632 (1992); Journal of the ACM 20(3), 500–513 (1973)

5. Hamada, Y., Bao, F., Mei, A., Igarashi, Y.: Nonadaptive Fault-Tolerant File Trans-
mission in Rotator Graphs. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E79-A 4, 477–482 (1996)

6. Holroyd, A., Ruskey, F., Williams, A.: Faster Generation of Shorthand Universal
Cycles for Permutations. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS,
vol. 6196, pp. 298–307. Springer, Heidelberg (2010)

7. Holroyd, A., Ruskey, F., Williams, A.: Shorthand Universal Cycles for Permuta-
tions. Algorithmica (to appear)

8. Knuth, D.E.: The Art of Computer Programming. Generating All Tuples and Per-
mutations, Fascicle 2, vol. 4. Addison-Wesley (2005)

9. Kuo, C.-J., Hsu, C.-C., Lin, H.-R., Lin, K.-K.: An Efficient Algorithm for Minimum
Feedback Vertex Sets in Rotator Graphs. Information Processing Letters 109(9),
450–453 (2009)

10. Lin, H.-R., Hsu, C.-C.: Topological Properties of Bi-Rotator Graphs. IEICE Trans-
actions on Information and Systems E86-D(10), 2172–2178 (2003)

11. Ponnuswamy, S., Chaudhary, V.: Embedding of Cycles in Rotator and Incomplete
Rotator Graphs. In: Proceedings of the Sixth IEEE Symposium on Parallel and
Distributed Processing, October 26-29, pp. 603–610 (1994)

12. Ruskey, F., Williams, A.: An Explicit Universal Cycle for the (n−1)-Permutations
of an n-set. ACM Transactions on Algorithms 6(3), article 45 (2010)

13. Williams, A.: Loopless Generation of Multiset Permutations Using a Constant
Number of Variables by Prefix Shifts. In: Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY,
USA, January 4-6, pp. 987–996 (2009)

14. Yasuto, S., Ken’Ichi, K., Mario, N.: Node-Disjoint Paths Problem in a Rotator
Graph. Joho Shori Gakkai Shinpojiumu Ronbunshu 14, 93–100 (2003)

	Hamilton Cycles in Restricted Rotator Graphs
	Introduction
	Rotator Graphs and Hamilton Cycles
	New Results

	Sequence Building
	Reusing and Recycling
	Rotation Identities
	List Quotients

	Three Hamilton Sequences
	Hamilton Sequence for R_n
	Hamilton Sequence for R_n [n]{n -1,n}
	Hamilton Sequence for R_n [n]{2,3,n}

	Loopless Algorithm
	Staircase Sequence
	Staircase Strings

	Corbett's Successor Rule
	Recycling Corbett's Sequence
	Open Problems
	References

