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Preface

Quantum Interaction (QI) based on Quantum Theory (QT) is being applied to
domains such as artificial intelligence, human language, cognition, information re-
trieval, biology, political science, economics, organizations and social interaction.

After the highly successful previous meetings (QI 2007 in Stanford, QI 2008
in Oxford, QI 2009 in Saarbriicken, QI 2010 in Washington DC), the Fifth In-
ternational Quantum Interaction Symposium (QI 2011) took place in Aberdeen,
UK from 26 to 29 June 2011. This symposium brought together researchers in-
terested in how QT interfaces with or solves problems in non-quantum domains
more efficiently. It also looked at how QT can address previously unsolved prob-
lems in other fields.

QI 2011 received 30 submissions. All contributions were reviewed by at least
three reviewers. The papers were ranked according to their relevance, originality,
quality, presentation, and citations in order to decide which submissions were
to be accepted as full papers, short papers, or posters. In total 11 full papers, 8
short papers and 6 posters were accepted for presentation at the conference.

These post-conference proceedings include the 23 accepted papers/posters
that were presented and revised based on the reviewers’ comments and the dis-
cussions at the symposium. They have been categorized into six main themes
(sessions): language; semantic spaces; economics, politics and decision; psychol-
ogy and cognition; information representation and retrieval; and computation
and information.

We would like to thank the Steering Committee, our invited speaker Christo-
pher Fuchs, the tutorial instructors, all the authors who submitted their work
for consideration, all the participants, and the student helpers for their support
and contribution; and the members of the Program Committee for their effort in
providing useful and timely reviews. Our grateful thanks are also due to Ibrahim
Adeyanju (local organization), Alvaro Francisco Huertas Rosero (graphical de-
sign), David Young (website design and maintenance), Steven Begg (finance),
Virginia Dawood (administration), and many other people who offered great
help. We also would like to acknowledge the financial support from the Scottish
Informatics and Computer Science Alliance (SICSA).

Finally, we hope everybody had a fruitful and enjoyable time in Aberdeen.

July 2011 Dawei Song
Massimo Melucci

Ingo Frommbholz

Peng Zhang

Lei Wang

Sachi Arafat
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Born’s Rule as an Empirical Addition to
Probabilistic Coherence

Christopher A. Fuchs

Perimeter Institute for Theoretical Physics
Waterloo, Ontario
Canada
cfuchs@perimeterinstitute.ca

Abstract. With the help of a certain mathematical structure in quan-
tum information theory, there is a particularly elegant way to rewrite
the quantum mechanical Born rule as an expression purely in terms of
probabilities.

In this way, one can in principle get rid of complex Hilbert spaces
and operators as fundamental entities in the theory. In the place of a
quantum state, the new expression uses a probability distribution, and
in the place of measurement operators, it uses conditional distributions.

The Born rule thus becomes a story of probabilities going in and
probabilities coming out. Going a step further: In the Bayesian spirit of
giving equal status to all probabilities — in this case, the ones on both the
right and left sides of the Born-rule equation — it indicates that the Born
rule should be viewed as a normative condition on probabilities above
and beyond Dutch-book coherence.

In opposition to Dutch book coherence, this new normative rule is
empirical, rather than purely logical in its origin (and by way of that
must encode some of the physical content of quantum theory), but there
may be other non-quantum situations that warrant the same or a similar
addition to Dutch-book coherence: I make no judgment one way or the
other, but I hope that this way of rewriting quantum theory may provide
a suggestive new language for some of the non-quantum topics of this
meeting.

D. Song et al. (Eds.): QI 2011, LNCS 7052, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011



Introducing Scalable Quantum Approaches in
Language Representation

Peter Wittek and Sandor Daréanyi

Swedish School of Library and Information Science
Goteborg University & University of Boras
Allégatan 1, 50190 Boras, Sweden
peterwittek@acm.org, sandor.daranyiChb.se

Abstract. High-performance computational resources and distributed
systems are crucial for the success of real-world language technology ap-
plications. The novel paradigm of general-purpose computing on graph-
ics processors (GPGPU) offers a feasible and economical alternative: it
has already become a common phenomenon in scientific computation,
with many algorithms adapted to the new paradigm. However, appli-
cations in language technology do not readily adapt to this approach.
Recent advances show the applicability of quantum metaphors in lan-
guage representation, and many algorithms in quantum mechanics have
already been adapted to GPGPU computing. SQUALAR aims to match
quantum algorithms with heterogeneous computing to develop new for-
malisms of information representation for natural language processing in
quantum environments.

1 Introduction

Quantum mechanics is a very successful scientific theory for making predictions
about systems with inherent ambiguity in them. That natural language bears
similarities with such a system is at least plausible. Recent advances in theory
and experimentation to apply quantum mechanics to non-quantum domains in-
clude the use of quantum algorithms to address, or to more efficiently solve,
problems in such domains (including contrasts between classical vs. quantum
methods), such as applications of artificial intelligence, information retrieval,
and language modelling.

The quantum metaphor promises improved methodologies to capture the sub-
tleties and ambiguities of human language, resulting in optimised algorithms for
text processing. The purpose of SQUALAR is to investigate methods borrowed
from the field of quantum mechanics in a wide range of large-scale language
technology applications by seeking a match between quantum algorithms and
heterogeneous computing.

To this end, a scalable environment is a must. Latest trends indicate the rise
of a heterogeneous platform in which multi-core central processing units (CPUs)
and graphics processing units (GPUs) work together in a distributed-memory
parallelism. CPU-based parallelism has been utilized for decades, and while not

D. Song et al. (Eds.): QI 2011, LNCS 7052, pp. 2-[[4, 2011.
© Springer-Verlag Berlin Heidelberg 2011



Introducing Scalable Quantum Approaches in Language Representation 3

without its own problems, it is a mature field and multicore CPUs enable de-
veloping faster algorithms with reasonable effort. In this paradigm, there is a
considerable overhead on dividing the problem, distributing the bits along a
small number of CPU cores, then collecting and merging results. This type of
parallelism is available in a wide range of programming languages, although the
source code needs to be modified to some extent. GPU-based parallelism is a
completely different approach. The overhead of splitting the work is minimal,
the number of cores is massive, but the kind of computations that can be split
is limited to a simple, single-pass operation. This heterogeneous computing en-
vironment has to be studied at different levels to find scalable implementations:
low-level linear algebra, numerical methods, kernel methods and manifold learn-
ing are candidates for testing, as well as higher level load distribution such as
MapReduce [1]. The constraints are as follows:

— Text processing is typically a data-intensive task, and several distributed
algorithms have been proposed to deal with large-scale collections on a grid or
in a cloud computing environment. MapReduceE was originally developed to
this end, and mature libraries, such as Cloud9, are readily available [2]. Other
libraries, such as Mahoutﬁ7 facilitate the development of complex language
technology applications.

— General-purpose computing on the GPU requires considerable effort from
developers. Initial results in text processing, however, indicate that the im-
provement in execution time can be considerable [3-7)].

— Quantum methods, on the other hand, rely on linear algebra and other nu-

merical libraries, many of which have already been optimized to utilize the
power of GPUs [8-11].

SQUALAR intends to bring the best of two worlds together. By bridging data-
intensive text processing with sophisticated quantum modelling of languages, we
expect to see major advances in language technology.

The challenges, however, are far from trivial. The major frameworks of
GPGPU programming, CUDA and OpenCL, require wrapping in Java, which
is the environment of Hadoop, the most mature open source MapReduce im-
plementation. This paper offers an insight on the initial stage of our ongoing
investigation.

This paper is organized as follows. Section 2] defines what we mean by het-
erogeneous computing: a distributed system of nodes which are equipped with
multicore CPUs and GPUs. Section [3] gives a very short overview of quantum
approaches in language processing, with a focus on methods that have the poten-
tial for acceleration. Section [4] discusses how we intend to bridge heterogeneous
computing and these quantum approaches, and finally Section [ concludes our

paper.

! http://hadoop.apache . org/mapreduce/
2 http://mahout . apache .org
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2 Heterogeneous Computing

Heterogeneous computing aims to combine the parallelism of traditional mul-
ticore CPUs and GPU accelerator cores to deliver unprecedented levels of per-
formance [12]. While the phrase typically refers to single node, a distributed
environment may be constructed from such heterogeneous nodes.

CPUs excel in running single-threaded processes, or in multithreaded appli-
cations in which a thread often consists of fairly complicated sequential code.
Graphics processors are ideally suited for computations that can be run on nu-
merous data elements simultaneously in parallel. This typically involves arith-
metic on large data sets (such as matrices) where the same operation can be
performed across thousands of elements at the same time. This is actually a
requirement for good performance: the software must use a large number of
threads. The overhead of creating new threads is minimal compared to CPUs
that typically take thousands of clock cycles to generate and schedule, and a
low number of threads will not perform well on GPU [13]. The decomposi-
tion and scheduling of computation among CPU cores and GPUs are not triv-
ial even on a single node [14-16], and the task is even more complicated for
clusters [17]. In order to issue work to several GPUs concurrently, a program
needs the same number of CPU threads, each with its own context. All inter-
GPU communication takes place via host nodes. Threads can be lightweight
(pthreads, OpenMP, etc. [18]) or heavyweight (MPI [19]). Any CPU multi-
threading or message-passing API or library can be used, as CPU thread manage-
ment is completely orthogonal to GPGPU programming. For example, one can
add GPU processing to an existing MPI application by porting the compute-
intensive portions of the code without changing the communication structure
[20]. However, the efficient utilisation of all CPU and GPU cores remains an open
question.

While research is being carried out to develop the formal foundations of ef-
ficient scheduling and decomposition in multiple heterogeneous nodes, GPU-
based clouds are becoming availableﬁ@, and initial investigations have been car-
ried out to develop an efficient MapReduce framework [21], 122]. Like OpenMP
and MPI, MapReduce provides an abstraction, a means to distribute compu-
tation without burdening the programmer with the details of distributed com-
puting; however, the level of granularity is different |2]. These frameworks are
mostly designed to deal with processor-intensive problems and have only rudi-
mentary support for dealing with very large amounts of input data. The strength
of MapReduce is data-intensive distributed parallel processing on a massive
scale [1]. The potential of combining a data-intensive cloud-based approach with
the compute-intensive GPGPU paradigm for sophisticated, large-scale natural
language processing is enormous.

3 http://www.hoopoe-cloud. com/
4http://aws.typepad.com/aws/2010/11/new-ec2-instance
-type-the-cluster-gpu-instance.html
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3 Quantum Approaches in Language Processing

Metaphors of quantum theory in linguistic applications arose over the last decade
[23-28]. The vector space model of information retrieval was first adopted largely
because it allowed for a naturally continuous ‘relevance score’ by using the cosine
dissimilarity, as opposed a mere binary decision between relevant and irrelevant
documents. In a similar fashion quantum mechanics yields a continuous prob-
ability that a particular event will be observed, a feature making it useful to
reflect on possible similarities with natural language [24]. Moreover, it appears
likely that quantum interaction would be of a type where the context of the
interaction itself must be incorporated into the model. For example, a measure-
ment in a quantum-scale system will have an impact on the result. If the system
is displaying contextual behaviour such as natural languages, then a quantum
approach often incorporates this behaviour very naturally [29].

Quantum phenomena in languages may be present at different levels. At sub-
word level, terms and documents can be regarded as linear combinations of their
semantic features [30], which can account for semantic priming [31].

At word level, a word in semantic space may be likened to a quantum particle.
In the absence of context it is in a superposed state, it is a collection of all the
possible meanings of the word: p = p1p1+. . .4 PmpPm, where p is the word in the
semantic space as a density matrix, and each 7 is a basis state representing one
of the m senses of the word and the probabilities p; sum to unity. Encountering
the word in context, however, gives rise to a ‘collapse’ of potential meanings onto
an actual one. The context is modelled a projection operator which is applied to
a given density matrix corresponding to the state of a word meaning resulting
in its ‘collapse’ [32].

Turning to combinations of words, at least two approaches offer solutions. One
uses the operator algebra of quantum theory to construct a ‘semantic calculus’
[26, [33]. The other approach encodes word order relying on random indexing
[34, 135], using either permutation [36, [37] or circular convolution [31], 137]. The
order can also be encoded by tensor product |25, [38].

Using different units of analysis, quantum approaches find their way to appli-
cations, most notably:

— Information retrieval: Vector space logic and quantum logic (Neumann al-
gebra) are very similar [26]. In particular, negation has been investigated in
depth in [24]. These models may allow new types of queries and also inference
[39].

— Memory models: Two schools of memory models are relevant to quantum
theory: matrix memory [40, 41, 132], and convolution-correlation memory
(holographic-like) [42, 43, 131]. Matrix models are not directly related to
QT, but there can be a connection through Heisenberg’s matrix mechanics,
which was the first complete and correct definition of quantum mechanics.
It is equivalent to the Schrédinger wave formulation of quantum mechanics,
and is the basis of Dirac’s bra-ket notation for the wave function. Matrix
models can incorporate hierarchical sentence and paragraph representation
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[44], bridging distributional and symbolic approaches [45], encode location
[46], or include sense in a term-space approach [47, |48]. The other approach,
convolution memory is particularly useful to encode syntactic information
149, 137].

— Semantic regions: Regions meant to solve the problem to be able to say
that apple is a kind of fruit (apple is part of the fruit region), as opposed
to modelling that apples and fruit have something to do with one another.
Separating hyperspaces may define a semantic region [33]. As an alternative,
[50] measures the distance between subspaces spanned by documents by
projecting them into one another.

— Spectral theory in mathematics is key to the success of as diverse applica-
tion domains as quantum mechanics and methods of latent semantic analysis
(LSA, [51]) for language processing. In other words, both quantum mechanics
and LSA rely on eigenvalue decomposition for the localization of their respec-
tive entities in observation space. This neglected fact, supported by a high
number of papers in different disciplines describing the dynamic behaviour
of documents and their index terms over time, points at some implicit “en-
ergy” inherent in them and in need of quantification. Prominently, theories
of word meaning (contextual |52, 53] and referential |54, 55]), currently used
in applications trying to capture and exploit semantic content, fall back on
quantities of qualities, but quite possibly miss the underlying framework.
LSA is just one spectral approach in language representation: [32] demon-
strate the quantum collapse of meaning using the hyperspace analogue to
language (HAL, [56]).

4 Methods and Planned Outcomes

With the above plethora of approaches available for testing, the fundamental task
of SQUALAR is bridging scalable linear algebra and numerical methods that
are widely used in scientific computing with the emerging theories in quantum
interaction to enable practical, real-world language technology applications.

The hardware and basic software infrastructure is what we described in
section [Z} a distributed system consisting of heterogeneous nodes which combine
multicore CPUs and GPUs (top part of Figure[l]). Since hardware virtualization
is already at consumer level, the distributed system can be either a privately
owned cluster or grid, or a high-performance computing cloud provided by a
third-party.

Without going into details, algorithms in linear algebra are the most obvious
candidates for acceleration on graphics hardware (middle part of Figure [T left).
Vector space models of semantics can be implemented by accelerated BLAS
libraries |8, |10], including operator algebra for semantic inference |24, 126]. Matrix
decompositions and dimension reduction that also play an important role in
understanding semantics are currently limited to matrices of limited sizes |11]].
Convolution, which plays an important part in encoding term positions [31,
31], can be mapped to the frequency domain by Fourier transformation, where
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General-purpose
computing on
graphics
processing units

Parallel Distributed
programming on systems: grids
multicore CPUs and clouds

Computing environment

Scalable and Low-level parallel
parallel environments
algorithms in (OpenMP, CUDA,
quantum theory etc.)

Existing language
processing
systems

Supporting Technologies

Novel language Scalable Further high-level
processing based language applications:
on quantum engineering in digital libraries,
theory clouds text mining, etc.

Applications

Fig. 1. An overview of the SQUALAR framework

the operation simplifies to a simple multiplication. Fast Fourier transformation
on GPUs is a classical area for acceleration ﬁ] More complex examples in
accelerated quantum methods @, @] and related visualization @] are awaiting
appropriate metaphors in language processing.

Approaching from existing language processing algorithms, if a sufficient
metaphor cannot be found or if the method does not lend itself easily to any
of the methods described above, lower level libraries can be used for developing
multithreaded, GPU-based implementations (middle part of Figure[I] right and
middle).

If we focus on a single computer, we will be able to perform operations several
folds faster, gaining new insights on language technology (bottom part of Figure
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@ left). By providing a high-level load balancing mechanism, the potential of
compute and data-intensive processing can be released in a distributed environ-
ment for web-scale applications (bottom part of Figure[Il middle). Some machine
learning algorithms, such as support vector machines, have already been adopted
to graphics hardware [61]. Combining these with the above, we gain powerful
text mining applications (bottom part of Figure[ll right). Since Information Re-
trieval has already began experimenting with a wide range of quantum theory
based metaphors, this field has the most to benefit.

5 Conclusion

Whether language to some extent shares a conceptual framework with quan-
tum mechanics, and if thereby some linguistic phenomena could be eventually
modelled on physical ones, is a research question of interest to SQUALAR. We
trust that by better mastering the match between quantum algorithms and GPU
computing, web-scale applications will become feasible.

The fundamental tasks and challenges of the project are the following:

— Rephrasing natural language processing and text mining algorithms in quan-
tum domain to use compute-intensive heterogeneous programming model;

— Data and compute-intensive distributed and cloud computing applications
with heterogeneous hardware;

— Performance evaluation of heterogeneous hardware for natural language
processing tasks;

— Trade-offs of using scalable quantum models in language engineering;

— Exploiting heterogeneous architectures to accelerate sophisticated language
processing.

Acknowledgement. We would like to thank Lance de Vine (Queensland Uni-
versity of Technology) for discussions related to ideas presented in this paper.
This work was also supported by Amazon Web Services.
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Abstract. Vector space based approaches to natural language process-
ing are contrasted with human similarity judgements to show the manner
in which human subjects fail to produce data which satisfies all require-
ments for a metric space. This result would constrains the validity and
applicability vector space based (and hence also quantum inspired) ap-
proaches to the modelling of cognitive processes. This paper proposes a
resolution to this problem, by arguing that pairs of words imply a context
which in turn induces a point of view, so allowing a subject to estimate
semantic similarity. Context is here introduced as a point of view vector
(POVV) and the expected similarity is derived as a measure over the
POVV’s. Different pairs of words will invoke different contexts and dif-
ferent POVV’s. We illustrate the proposal on a few triples of words and
outline further research.

Keywords: Similarity, Semantic Space, Triangle Inequality, Metric,
Context.

1 Introduction

Human language is frequently represented in a mental lexicon, which refers to
both the words in that language, and its structure, or the set of associative links
which bind this vocabulary together. Such links are acquired through experience,
and the vast and semi-random nature of this experience ensures that words
within this vocabulary are highly interconnected, both directly and indirectly
through other words. For example, the word planet can become associated with
earth, space, moon, and so on, and within this set, moon can become linked to
earth and star [1].

The complexity of the mental lexicon makes it challenging to construct ana-
lytical and computational models of both its structure and behavior. Yet even
relatively small steps towards achieving the automatic interpretation of human
language have given us search engines capable of converting our human made
queries into their mathematical equivalent, and identifying documents relevant
to that query among the huge corpus of the internet. Thus, these small steps
have transformed the way we use the internet today. It seems clear that having a
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better mathematical representation of human language will lead to an improved
use of the information content of the internet, however, the question of how to
best represent human language remains a theoretical challenge. In this paper
we shall consider one particular challenge, that of metricity. While vector space
based models of the human mental lexicon have proven successful in various
respects, the manner in which they quantize similarity is different from human
judgements of semantic similarity, which violate key properties required of a
metric[24]. We shall then propose a contextual resolution to this problem and
conclude by suggesting some potential future avenues of investigation. We begin
with a brief overview of current vector space models of the mental lexicon.

2 Vector Space Models of the Mental Lexicon

Computational representations of the mental lexicon have been investigated by
researchers from a range of disciplines, including mathematics, logic, philoso-
phy, artificial intelligence, computational linguistics, cognitive psychology, natu-
ral language processing and information retrieval [23]. The birth of vector space
based models (VSBM) for the purpose of information retrieval can be traced
back to the seminal paper of Salton et al. [20] who were searching for an ap-
propriate mathematical space to represent documents. Starting from a few basic
desiderata, they settled upon a vector in a high dimensional vector space as an
appropriate representation of a document. Within this framework, a query is
treated like a small (pseudo) document that is also converted to vector form.
The documents in the corpus are then ranked according to their distance to the
query; closer documents are considered more relevant than ones that are further
away. The way was now open to include Boolean operators on the returned re-
sults, and thus the first search engines were born. One of the main drawbacks of
this system was that it had trouble returning documents that would have been
highly relevant if one of the words in the query was replaced by a synonym,
and the next advance came from representing concepts latently in a so-called
semantic space where they are not formally represented or labelled. Semantic
spaces are instances of vector spaces, and represent words in a basis created from
other words, concepts, documents, or topics. They are generally built from the
observation of co-occurrences in large text corpora. In word spaces such as the
Hyperspace Analogue to Language (HAL) [21] the basis consists of every word
in the vocabulary. Thus, the vector for a given word W is calculated by summing
the number of occurrences of word W (i) in a given context window around each
occurrence of W and writing that number at the position i in the vector that
represents W. This number can be adjusted using the distance (defined in terms
of the number of words) or mutual information measures such as Point-Wise
Mutual Information, which allows for a weighting of the importance of the word
at that position. It is also possible to take word order into account [I2/19]. The
major evolution with respect to the original proposal of Salton et al., was to de-
rive a more fundamental semantic value through a reduction of the initial word
space using mathematical tools such as Singular Value Decomposition [13], Non
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Negative Matrix factorization [I4], or random projection [I8], all of which gen-
erate a new basis that is greatly reduced in the number of dimensions. This new
basis can under certain conditions be naturally related to topics, objects and
concepts [I4]. Because of the dimensional reduction, words with similar mean-
ing tend to cluster into single dimensions of the resulting reduced vector space,
greatly reducing the problems the old VSBM had with synonyms.

Once a semantic space has been created, we need to rank the results returned
by a query using a similarity measure. Several distance measures (such as cosine
similarity, Euclidean distance, and the City Block metric [§]) have been applied
to semantic analysis, all of which supposedly measure the similarity between
words in a given space. The most popular of these in semantic analysis is cosine
similarity, which gives the angle between two vectors in a semantic space. We
will later explain why this is generally considered a good choice. A number of
studies have shown that semantic spaces can be effective at performing tasks that
are human like. For example they have shown success at synonymy detection,
categorization tasks, information retrieval and query expansion [23]. They have
also been shown to perform well at mimicking human word association norms
[26]. This success has led a number of researchers to propose semantic spaces as
models of human cognition. In this paper we examine important issues related
to such a move. Semantic spaces are metric spaces and this poses problems that
must be resolved before they can become viable models of human cognition. We
shall begin with a discussion of metric spaces and in particular of the properties
that a set must satisfy before it can be identified as a metric space. We shall
then proceed to a discussion of the way in which human behavior violates these
conditions and propose a possible resolution to this problem in later sections.

2.1 Motivating the Angle as a Measure of Similarity

It is notoriously difficult to formally describe the notion of meaning. Yet this is
precisely what Natural Language Processing aims for. VSBM solve this issue via
the so-called distributional hypothesis, which claims that words which occur in
similar contexts tend to have similar meanings [I1T0/9). In VSBM, the entries
of the vectors are usually monotone functions of the frequency of co-occurrence.
Hence vectors that are “close” occur in similar contexts and, by the distribu-
tional hypothesis, ought to have similar meanings. Using the inner product or
cosine measure as a representation of similarity then seems like a very plausible
suggestion. There are good mathematical reasons as well. If the vectors that
correspond to a word are represented by unit vectors, the state space of words
becomes the unit sphere. The unit sphere is a simple example of a manifold and
geodesics on this manifold are well known to correspond to great circles. On
the unit circle, the length of a great circle between two points equals the angle
expressed in radians. Indeed, we have that the angle between two points on the
sphere is (up to constant scaling) the only unitarily invariant Riemann metric on
the sphere [27]. But what precisely are the mathematical criteria for a function
to be a bona fide distance function?
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2.2 Requirements for a Metric Space

In this section we shall briefly sketch the requirements for a metric space before
proceeding in the next section to a discussion of the manner in which semantic
data obtained from humans tends to violate these requirements.

Definition 1. The ordered couple (M,d) with M a non emtpy set and d : M x
M — R a function (called the distance or metric), is called a metric space if for
any i, j, k € M, the following hold:

1. Non-negativity: the distance between two points must be greater than or
equal to zero: d(i,j) > 0.

2. Identity of indiscernibles: if the distance between two points is equal to
zero then those two points are the same: d(i,j) =0 < i = j.

3. Symmetry: the distance between two points is equal, regardless of which
direction it is measured in: d(i,7) = d(j,1).

4. The Triangle Inequality: for three points in M, the distance from i to k
is less than the distance which goes via j: d(i,j) + d(j, k) > d(i, k).

Many authors prefer to list 1 and 2 in a single requirement. In fact, requirement
1 can be derived easily from 2, 3 and 4. It is straightforward to verify that the
angle «;; between vectors u; and u;:

—1 <u747u]> (1)

;5 = COS
Y A

satisfies all four requirements. The angle between two vectors seems to be in
accordance with the distributional hypothesis and satisfies all qualities of a
mathematical metric. Moreover, its use has been tested in a wide variety of
applications. As such we seem to have a very fundamental and valuable quan-
tity. But the most important question is perhaps how we humans judge semantic
similarity. This is a question that belongs to cognitive science so we shall now
turn to an examination of similarity in this field, contrasting its results with
those of VSBM.

3 Are Semantic Spaces Good Models of Human
Cognition?

Vector spaces have been at the heart of many models in cognitive science. One
of the more important examples for our purpose, is prototype theory. The basic
idea of prototype theory is that some members of a category are more ‘typical’
than others [I7]. For example, a cat is a more (prototypical) member of the
category pet, whereas a donkey is clearly more peripheral. This idea is called
‘graded categorization’ and was formalized by representing concepts as vectors
and categories as sets of vectors [15J22]. However, these vectors are not based
on co-occurrence, but on subjective numerical scores obtained by questioning
human subjects. In this section we shall draw attention to a range of human
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derived data which violates a number of the properties that must be satisfied by
a metric. We shall go through them in the order given in the previous section.
The first requirement listed above is non-negativity. This is probably the least
problematic of all requirements. Whether or not negative values of similarity
occur, is decided by the questionnaire’s scale on which human subjects are asked
to judge similarity. Humans can quite naturally associate a concept of distance
between two words as a measure of their similarity and this distance can be
straight-forwardly assumed to be non-negative. However, in this section we shall
show that every other requirement of a metric space can be quickly violated by
spatial representations of similarity data.

3.1 Homographs and the Non-identity of Indiscernible

The identity of indiscernibles property implies that different words should be
separated by some distance. While there are many examples of such a property
holding between different words, many languages contain words with multiple
meanings, multiple words for the same thing, ambiguous structures, etc. and
these properties give us reason to be cautious about its general validity.

For example, we can quickly see that synonyms (different words for the same
thing) appear to satisfy the identity of indescernibles property reasonably well;
while they lie close together semantically synonyms generally have slightly dif-
ferent connotations. Thus, while ‘student’ and ‘pupil’ both mean essentially the
same thing, there are slightly different senses to these two words, and hence they
tend to appear close together, but with some distance separating them in most
semantic spaces. In contrast, homographs create much more serious problems
for attempts to generate a metric space. Homographs are words that have the
same spelling and pronunciation but different meanings. For example, ‘bat’ is a
homograph, as it has at least two senses: (1) as a small furry flying mammal;
and (2) as a sporting implement.

Homographs pose a problem for the if and only if criterion in property 2. If
we generate a set that represents each word in English, then ‘bat’ should appear
only once in it (i = j); however, semantic spaces tend to correctly reveal the
different meanings behind this word by using a mixture of the representation of
both words. Thus, property 2 seems to pose a challenge for semantic space ap-
proaches, as discernible words (such as ‘bat’ for sports and ‘bat’ the animal) are
represented at exactly the same point in the space. We believe a finer resolution
of homographs in semantic space is possible by examining the set of documents
that contain the words. First a search in, for example, Wordnet will reveal if a
word has several meanings and if so, how many. Say a word has n possible mean-
ings. Then we ought to divide the set of all the words that substantially co-occur
with the query word, into n sets of words such that each set shows a degree of
cohesion in the words that co-occur with it. This may be implemented by an
appropriate algorithm that reduces to n the dimension of the matrix that has as
its rows the words that co-occur and as columns the documents in which they
occur. Interestingly, a very similar situation occurs in quantum mechanics in the
case of degenerate energy levels. An energy level of a quantum system is called
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degenerate if different states correspond to the same energy level. If we think of
the energy level of the system as ‘the name’ of the state that corresponds to that
energy level, we have an analogy with homographs. Application of a well chosen
perturbation to the Hamiltonian of the system allows us to separate the energy
levels, so each energy level corresponds in a unique way to an energy level. We
say that the perturbing field is ‘lifting the degeneracy’ and splits the energy level
into finer energetic detail. If we see a separation of the two meanings of a single
word in the semantic vector space, it seems we have provided enough context in
the semantic space to lift the degeneracy of meanings corresponding to a single
word. In an actual task of information retrieval, it is very valuable to be able
to identify which meaning is more probable for a given word in a given con-
text. For this we would have to judge to which of two statistical clusters a given
vector (word) in a given context belongs. Language is extremely flexible and is
perfectly able to shift perspective as we include more context, thereby changing
the meaning. Take as an example, the word ‘hits’. Without additional context,
its meaning is degenerate; it could mean many things. We are then given a piece
of context: ‘Michael hits Billy’. Most probably ‘hits’ denotes a physical act of
violence. We are then given an additional piece of context: ‘Michael Jackson hits
Billy Jean’. The meaning of ‘hits’ is now more likely to signify a musical hit.
We are given a last piece of context: ‘Michael Jackson number of Google hits for
Billy Jean’, the word ‘hits’ denotes the webpages Google relates to a query. In
the example above every new level of context only adds words to the previous
context; the previous context isn’t changed in form, only in meaning. We feel the
nature of language is simply too rich to allow for a strict separation, but VSBM
do seem capable of at least statistically approaching the problem of homographs.

3.2 Human Similarity Judgements Are Not Symmetric

It was shown by Tversky that human similarity judgements are asymmetric,
and so directly violate the symmetry requirement of metric spaces (i.e. d(a, b) #
d(b,a)) [25]. A classic example was first provided by Rosch in her theory of
prototypes [16], which shows that humans have a tendency to declare similarity
with respect to an archetype. For example, when asked to give an example of
the concept furniture, humans will much more frequently nominate a “chair”
than a “stool”, and this archetypical concept (“chair”) is the one that similarity
judgements are preferentially, and asymmetrically, assigned by. Thus, the simi-
larity of stool to chair is usually deemed to be greater than that of chair to stool,
the similarity of North Korea to China is judged greater than the similarity of
China to North Korea [24]25], and pink is deemed more similar to red, than red
is to pink. This seems to be a genuine linguistic phenomenon that one would
eventually like to model. Of course, these experiments are designed to test for
asymmetry; experiments that do not show asymmetry are equally easy to de-
sign. Suppose we produce a deck of cards with on each card nothing but the two
words “red” and “pink”. However, on half of the cards the word “red” is printed
above the word “pink”, on the other half, “pink” is printed above “red”. Each
test subject is given one card and asked to quantify the similarity of the two



Similarity Metrics within a Point of View 19

concepts printed on the card. The result will obviously be symmetrical, because
there was no distinguished order of words on the deck of cards. For our present
purpose, we will assume symmetrical data.

3.3 Human Similarity Judgements Violate the Triangle Inequality

Finally, human similarity judgements do not appear to satisfy the triangle in-
equality, a result shown by Tversky & Gati [24]. Indeed, the contrast between
human similarity judgements and distance notions in geometric models of cog-
nition led them to conclude that ([24], p 153):

some basic properties of the geometric model (e.g., translation invari-
ance, segmental additivity, and the triangle inequality), which enhance
the interpretability and the appeal of spatial representations, cannot al-
ways be accepted as valid principles of psychological similarity.

even before Semantic Space approaches to the mental lexicon were invented.

If Tversky & Gati are correct then their criticism poses some very serious
problems for both semantic space, and hence their associated quantum inspired,
models of the human mental lexicon. To put things in perspective, semantic
spaces were developed and successfully put to use in spite of this problem, so
perhaps we need not worry too much. However, we would like to be able to
model subjective similarity, as it seems to be an important component of natural
language processing. What makes the triangle inequality problem more severe
than the three previous requirements we discussed, it that we cannot make it go
away by devising another experiment, at least not straightforwardly. If we want
symmetric or non-negative data we can always make sure that the experiment
will give us only positive values. For non-negativity we need only to constrain
the range of the possible answers; for the symmetry condition, we need only to
make sure every couple’s similarity is symmetric. Indeed, if d(a,b) = d(b, a) and
d(b,c) = d(c,b), then obviously d(a,c) = d(c¢,a). Can we design an experiment
in such a way that it always satisfies the triangle inequality? We could give
concepts in triples to subjects and ask them to draw a triangle with the three
words on the vertices of the triangle and express the relative similarities by the
relative lengths of the sides of the triangle. The triangle inequality would be
trivially satisfied for this triple. However, if we have several triples that satisfy
the triangle inequality, then there is no guarantee whatsoever, that from these
triples we cannot pick words to form new triples that will violate the triangle
inequality. Another proposal would be to abandon metric spaces, or geometric
models for the representation of cognitive entities such as concepts and sentences.
If we take into consideration the huge success this class of models has enjoyed
then this seems like a rather radical step to take. An alternative answer to
Tversky & Gati might be found through an adoption of the notion of context,
and in what follows we shall start to develop an approach within a metric space
that can recover the non-metric behavior of human similarity judgements.
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4 The Point of View Model

In vector space based accounts of cognition (such as quantum theory inspired
approaches [I2IBI56l[7]) concepts are very often represented by unit vectors in
a Hilbert space. Take three unit vectors uy, us and us that represent three con-
cepts. Calling 6;; the angle between u; and u;, we find that

cosb;; = (u;, uj). (2)

Because Hilbert space is a metric space, this has consequences for the possible
range of values the angles between the vectors can assume:

105 — Ojx| < Oir < 10i5 + O] (3)

The point of view model assumes that each time a subject is asked to quantify
the similarity between two concepts they must take a stance, or a point of view,
from which to judge their similarity. On an absolute scale we may argue that all
concepts are very similar (they are, after all, just concepts), or we may argue
no two concepts are alike. But if we are asked what the similarity is between
Moon and Ball, we will not easily judge their similarity on an absolute scale. We
rather inadvertently look for a proper context to judge their similarity. If our
perspective is “Shape” then we will think of Moon and Ball as being somewhat
similar. If the perspective would have been “Play”, the two concepts would be
judged rather dissimilar. So it is the two words, together with the state of the
subject, that determine the point of view from where similarity will be judged.
We model a point of view by assuming that for each pair of vectors u; and u;
and a given subject S that is asked to judge their similarity, there is a point of
view vector (POVYV) ufj The cosine of the angle this observer sees between u;
and u;, is:

cos (i = ufﬁ W Uisjj>
1,
T Nur = u) g — uf)
_ cos0;; — (u%uﬁ - <Ui,ufj> + |quj| (4)

(s — udj)||(u; — uj)l

In psychological experiments, the similarity is an average over many trials.
The expected similarity is then derived as a measure over the POVV’s. In what
follows, we may assume that ufj is already an averaged point of view in the
sense that «a;; coincides with the average subjective similarity. To determine
which regions for ufj lead to increased values of ;; and which lead to decreased

values, we first look at the set of ufj that leaves o;; invariant.

Lemma 1. Let 0,u; and u; be three non-collinear vectors and let Cy; be the

circle that contains 0,u; and wj. Then for any ufj € Cy with ufj # u; and

S , o g
uy; # uj we have cos a;j=cos ;.
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Proof. The span u; and u; defines a two dimensional linear subspace containing
the null vector. Let C;; be the unique circle within this linear subspace that
contains 0, u; and wu;. By the inscribed angle theorem —which states that an
angle inscribed in a circle is half of the central angle that subtends the same arc
on the circle-, the angle 6;; inscribed in this circle does not change as its apex
ufj is moved to different positions on Cj;, hence oy; = 6;;. O
Now that we have fixed the region for which the observed similarity remains
invariant, we will look at the interval of values the similarity can take.

Lemma 2. Given two concepts c; and c;, represented by two vectors u; and uj,
there exists a point of view vector such that the observed angle a;; can take values
in the interval [} arccos(u;, u;), 7).

To see this is indeed the case, call D;; the open disk that is the interior of Cj;. It
is easy to see a POVV inside D;; yields an observed angle a;; that is greater than
0;5. The disk D;; is an open convex set, so any open convex combination of 0, u;
and u; is an element of D;;. The maximal angle is reached for ufj = é(ul +uj ),
which clearly lies inside D;;. The observed angle in this case is

v (= (g ), ug — g (ui + uy)
ot — Lo Wy — e+ )] )

=cos }(—1) = . (6)

Qi = COS™

So it is always possible to pick a POVV in D;; that yields the minimal similarity.
(This result makes sense geometrically: if your point of view is in the middle of
the two concepts, then, to you, they couldn’t be further apart from each other.)
For an intermediate situation, there are many possibilities. A particularly nice
choice is to consider the d—parameter POVV that lies precisely between u; and
u; and has length d : ufj(d) = Iuiiujl (u; + uj;). If we consider the triangle
which has as vertices uf»(d),o and u;, the sine rule immediately tells us that
sin(m — «;5/2)/1 = sin((ay; — 055)/2)/d, hence the relation between «;;, 6;; and

d is given by
d = Sln((.aij - 91])/2) ) (7)
sin(a;;/2)
We can get minimal similarity and intermediate values. It turns out the POVV
constrains the maximum similarities (minimal angle). To see this, take
Ui + Uj
ufj = — Z ] . (8)
|ui + uy
This unit vector points in the direction opposite of é(ui + u;). We have again
(using the inscribed angle theorem) that the observed angle «; is exactly 6;;/2.
This is obviously the minimal value for o;; that the point of view model can
attain; it is reached if ufj lies on the great arc of the unit circle between u; and
uj. So we have demonstrated that there exist POVV such that the observed
angle a;; can be as high as 6;;/2 = } arccos(u;, u;).
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4.1 The Evocation Data Set

Let us provide a brief illustration of the model using data from the Evocation
data set [4], collected by crowd sourcing using Amazon Mechanical Turk (which
allows for the quick collection of large amounts of data). The data was cleaned to
the highest level of correlation with a smaller data set collected under controlled
conditions. Users were asked how much a sense of a word brings the sense of
another to mind (on a scale of 0 to 100), using the words as well as a definition
for disambiguation. The data for a pair of words are usually not symmetric,
however for the purposes of this paper we have averaged the two similarities
so that the resulting data is symmetric. In essence then, this data set contains
human judgements of symmetrized semantic relatedness between pairs of words.
For example, ‘key’ and ‘car’ were judged at 73% of similarity, ‘car’ and ‘light’
at 79,4% of semantic similarity, while ‘key’ and ‘light’ only at 14.3%. Other
examples of triples that violate the triangle inequality from this data set include:

1. night /day: 86.3%, day/year: 62.8%, night/ year: 11.6%;
2. school/university: 83.7%, university/court: 73.2%, school/court: 7.6%;
3. food/oil: 81.5%, oil/gold: 62.8%, food/gold: 2.7%.

Let us take the first example and label three vectors with an index that refers
to the concepts: u, is the vector that corresponds to night, and likewise we
denote uq for the concept day and w, for the concept year. We first convert
the given similarities to angles using cosf;; = (u;, u;). Then 6,4 = 0.53;04, =
0.89 and 6,, = 1.45. Clearly this triple violates the triangle inequality, e.g.
|0ny — Oay| = 11.45 — 0.89] = 0.56 > 6,4 = 0.53. Because the triangle inequality
is violated, there do not exist three vectors with the prescribed angles. However,
from the d—parametrized POVV for 6,,, ufj(d) = Iuniuyl (un + uy), we obtain:
[un + uy| = 2cos(0,y/2) ~ 1.5. The value of 6,, was 1.45; if it would have
been 1.42, no violation would have occurred. Hence we choose d = sin((1.42 —
1.45)/2)/sin(1.42/2) = —.023. So the POVV ufj(d) = 4o (un + uy) restores the
triangle inequality for this triple. It is easy to see we could also have taken a
triple of vectors that respect the inequality (e.g., the “restored” vectors above)
and, when one of the angles is viewed upon from a suitably chosen POVV (e.g.,
the opposite vector of ufj(d) in the example above), the resulting angles will
violate the inequality.

5 Concluding Remarks

The question we addressed in this paper is whether it is possible for a semantic
space to be a metric space and at the same time be able to capture the non-metric
behavior of human similarity judgements. Another strongly related and perhaps
even more interesting question is whether it is possible to derive a vector space
using subjective similarity instead of co-occurrence. We presented a model that
gives an affirmative answer, in principle. Although the model we offered here was
derived in an essentially ad hoc way, the model is falsifiable and we feel the case
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for this model could be made stronger if it can be shown a POVV can be derived
from the semantic space itself. In order to sketch out a viable avenue for further
work, we shall refer to one of our above examples. It is not peculiar that day and
year are considered close, as they are both important measures of time. Neither
is it strange that day and night are judged to be close, as they are in a certain
sense opposite to one another. Note that someone who is being asked how close
day and night are, will think of day in the sense of daytime, which is not the
same meaning the word has when we compare day and year. The last couple in
our triple is then night and year, which are not so obviously connected, hence
the lower similarity rating. We see that when we are asked to weigh the words
for similarity, we unconsciously look for a minimal context that contains the
two concepts, and depending on the words, this will be a different context. This
is what the POVV model attempts to capture. However, for the POVV model
to be convincing, we need to show there is a connection between the POVV
and the concepts we are dealing with. In particular, the vectors that correspond
to the words and their semantically associated vectors should determine the
POVV. In a sense, the POVV is a “centre of gravity of meaning”: if all concepts
contribute to the centre of gravity, then the POVV will approximately be the
zero of the vector space and the triangle inequality will hold; if not, deviations
will arise. An important observation is that the model as it is right now, does
not specify a unique POVV, so how will we know an eventual linkage between
pairs of words and POVV’s is viable? A valid confirmation would require a
statistically significant test that uses only a semantic network and no human
similarity measures, and which can predict human violations of the triangle
inequality for triples of words. Whether this avenue will prove fruitful is left for
future research.
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Abstract. The quantum inspired State Context Property (SCOP) theory of con-
cepts is unique amongst theories of concepts in offering a means of incorporating
that for each concept in each different context there are an unlimited number of
exemplars, or states, of varying degrees of typicality. Working with data from a
study in which participants were asked to rate the typicality of exemplars of a con-
cept for different contexts, and introducing a state-transition threshold, we built
a SCOP model of how states of a concept arise differently in associative versus
analytic (or divergent and convergent) modes of thought. Introducing measures
of expected typicality for both states and contexts, we show that by varying the
threshold, the expected typicality of different contexts changes, and seemingly
atypical states can become typical. The formalism provides a pivotal step toward
a formal explanation of creative thought processes.

Keywords: Associative thought, concepts, context dependence, contextual focus,
creativity, divergent thinking, dual processing, SCOP.

1 Introduction

This paper unites two well-established psychological phenomena using a quantum-
inspired mathematical theory of concepts, the State-COntext-Property (SCOP) theory
of concepts. The first phenomenon is that the meaning of concepts shifts, sometimes
radically, depending on the context in which they appear [19,[13,9]. It is this phe-
nomenon that SCOP was developed to account for [3,!4,15]. Here we use SCOP to
model a different though related psychological phenomenon. This second psycholog-
ical phenomenon was hinted at in the writings of a number of the pioneers of psy-
chology, including Freud [[17]], Piaget [[10], and William James [20]. They and others
have suggested that all humans possess two distinct ways of thinking. The first, some-
times referred to as divergent or associative thought, is thought to be automatic, intu-
itive, diffuse, unconstrained, and conducive to unearthing remote or subtle associations
between items that share features, or that are correlated but not necessarily causally
related. This may yield a promising idea or solution though perhaps in a vague, un-
polished form. There is evidence that associative thinking involves controlled access
to, and integration of, affect-laden material, or what Freud referred to as “primary pro-
cess” content [[17[18]]. Associative thought is contrasted with a more controlled, logical,
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rule-based, convergent, or analytic mode of thought that is conducive to analyzing re-
lationships of cause and effect between items already believed to be related. Analytic
thought is believed to be related to what Freud termed “secondary process” material.
A growing body of experimental and theoretical evidence for these two modes of
thought, associative and analytic, led to hypothesis that thought varies along a contin-
uum between these two extremes depending on the situation we are in [7,[15[17,13L[11}
13,[141120]. The capacity to shift between the two modes is sometimes referred to as
contextual focus, since a change from one mode of thought to the other is is brought
about by the context, through the focusing or defocusing of attention [[11,[12]. Contex-
tual focus is closely related to the dual-process theory of human cognition, the idea that
human thought employs both implicit and explicit ways of learning and processing in-
formation [16,/8]]. It is not just the existence of two modes of thought but the cognitive
consequences of shifting between them, that we use SCOP to model in this paper.

2 The SCOP Theory of Concepts

The SCOP formalism is an operational approach in the foundations of quantum me-
chanics in which a physical system is determined by the mathematical structure of its
set of states, set of properties, the possible (measurement) contexts which can be ap-
plied to this entity, and the relations between these sets. The SCOP formalism is part of
a longstanding effort to develop an operational approach to quantum mechanics known
as the Geneva-Brussels approach [[1]. If a suitable set of quantum axioms is satisfied
by the set of properties, one recovers via the Piron-Solér representation theorem the
standard description of quantum mechanics in Hilbert space [[1]. The SCOP formalism
permits one to describe not only physical entities, but also potential entities [2], which
means that SCOP aims at a very general description of how the interaction between con-
text and the state of an entity plays a fundamental role in its evolution. In this work we
make use of the SCOP formalism to model concepts, continuing the research reported
in [4,15013L6].

Formally a conceptual SCOP entity consists of three sets X, M, and L: the set of
states, the set of contexts and the set of properties, and two additional functions y and v.
The function yu is a probability function that describes how state p under the influence
of context e changes to state g. Mathematically, this means that u is a function from the
set £ x M x X to the interval [0, 1], where (g, e, p) is the probability that state p under
the influence of context e changes to state g. We write

UZXMxE—[0,1]
(g,e,p) — u(q,e,p) (1)

The function v describes the weight, which is the renormalization of the applicability,
of a certain property given a specific state. This means that v is a function from the set
X x L to the interval [0, 1], where V(p,a) is the weight of property a for the concept in
state p. We write

v:Ex L —[0,1]
(p,a) = v(p,a) )
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Thus the SCOP is defined by the five elements (X, M, £, u,Vv). States of a concept are
denoted by means of the letters p,q,r,... or pi,pa,..., and contexts by means of the
letters e, f,g,... orey,ez,.... When a concept is not influenced by any context, we say is
in its ground state, and we denote the ground state by p. The unit context, denoted 1, is
the absence of a specific context. Hence context 1 leaves the ground state p unchanged.
Exemplars of a concept are states of this concept in the SCOP formalism.

Note that in SCOP, concepts exist in what we refer to as a state of potentiality until
they are evoked or actualized by some context. To avoid misunderstanding we mention
that u(p, e, q) is not a conditional probability of transitioning from state p to g given that
the context is e. Contexts in SCOP are not just conditions, but active elements that alter
the state of the concept, analogous to the observer phenomenon of quantum physics,
where measurements affect the state of the observed entity. Indeed, a SCOP concept
can be represented in a complex Hilbert space . Each state p is modelled as a unitary
vector (pure state) |p) € #, or a trace-one density operator (density state) p,. A context
e is generally represented by a linear operator of the Hilbert space #, that provokes a
probabilistic collapse by a set of orthogonal projections {Pf}. A property a is always
represented by an orthogonal projector P, in # respectively. The contextual influence
of a context on a concept is modelled by the application of the context operator on the
concept’s state. A more detailed explanation can be found in [4}5].

3 The Study

Our application of SCOP made use of data obtained in a psychological study of the
effect of context on the typicality of exemplars of a concept. We now describe the study.

3.1 Participants and Method

Ninety-eight University of British Columbia undergraduates who were taking a first-
year psychology course participated in the experiment. They received credit for their
participation.

The study was carried out in a classroom setting. The participants were given ques-
tionnaires that listed eight exemplars (states) of the concept HAT. The exemplars are:
state p;: ‘Cowboy hat’, state p,: ‘Baseball cap’, state p3: ‘Helmet’, state p4: “Top hat’,
state ps5: ‘Coonskincap’, state pg: ‘Toque’, state p7: ‘Pylon’, and state ps: ‘Medicine
Hat’. They were also given five different contexts. The contexts are: the default or unit
context e: The hat, context ey: Worn to be funny, context ez: Worn for protection, con-
text eq: Worn in the south, and context es: Not worn by a person.

The participants were asked to rate the typicality of each exemplar on a 7-point Likert
scale, where 0 points represents “not at all typical” and 7 points represents “extremely
typical”. Note that all the contexts except e; make reference to the verb “wear”, which
is relevant to the concept HAT. The context e; is included to measure the typicality
of the concept in a context that simulates the pure meaning of a HAT, i.e. having no
contextual influence, hence what in SCOP is meant by “the unit context”.

3.2 Results

A summary of the participants’ ratings of the typicality of each exemplar of the concept
HAT for each context is presented in Table 1. The contexts are shown across the top, and
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Table 1. Summary of the participants’ ratings of the typicality of the different exemplars of the
concept HAT for different contexts. See text for detailed explanation.

Exp. Data el e e3 eq es
p1 Cowboy hat  (5.44;0.18) (3.57;0.14) (3.06;0.13) (6.24;0.28) (0.69;0.05)
p2 Baseball cap (6.32;0.21) (1.67;0.06) (3.16;0.13) (4.83;0.21) (0.64;0.04)

p3 Helmet (3.45;0.11) (2.19;0.08) (6.85;0.28) (2.85;0.13) (0.86;0.06)
p4 Top hat (5.12;0.17) (4.52;0.17) (2.00;0.08) (2.81;0.12) (0.92;0.06)
ps Coonskincap (3.55;0.11) (5.10;0.19) (2.57;0.10) (2.70;0.12) (1.38;0.1)
pe Toque (4.96;0.16) (2.31;0.09) (4.11;0.17) (1.52;0.07) (0.77;0.05)
p7 Pylon (0.56;0.02) (5.46;0.21) (1.36;0.05) (0.68;0.03) (3.95;0.29)
pg Medicine Hat (0.86;0.02) (1.14;0.04) (0.67;0.03) (0.56;0.02) (4.25;0.31)
N(e) 30.30 25.98 23.80 22.22 13.51

exemplars are given in the left-most column. For each state and context in the table there
is a pair of numbers (a;b). a represents the averaged sum of the Likert points across all
participants (average typicality). b is the context dependent state-transition probability.
The bottom row gives the normalization constant of each transition probability function.
Grey boxes have transition probability below the threshold oo = 0.16.

4 Analysis of Experimental Data and Application to the Model

In this section we use SCOP to analyze the data collected in the experiment, and apply
it to the development of a tentative formal model of how concepts are used differently
in analytic and associative thought.

4.1 Assumptions and Goals

We model the concept HAT by the SCOP (X, M, £,u,v) where £ = {py,...,ps} and
M ={ey,...,es} are the sets of exemplars and contexts considered in the experiment
(see table [I)). We did not consider properties of the concept HAT, and hence £ and v
are not specified. This is a small and idealized SCOP model, since only one experiment
with a fairly limited number of states and contexts is considered, but it turned out to
be sufficient to carry out the qualitative analysis we now present. Moreover, it will be
clear that the approach can be extended in a straightforward way to the construction of
more extended SCOP models that include the applicabilities of properties. Note also
that the Hilbert space model of this SCOP can be constructed following the procedure
explained in [3].

Recall how the participants estimated the typicality of a particular exemplar p;, i €
{1,...,8} under a specified context e, j € {1,...,5} by rating this typicality from 0 to
7 on a Likert scale. Since these ratings play a key role in the analysis, we introduce the
Likert function L:

L:=x M —[0,7] 3)
(p,e) — L(p;e) “
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where L(p, e) is the Likert score averaged over all subjects given to state p under context
e.

We also introduce the total Likert function N which gives the total Likert score for a
given context:

N: M — [0,56]
e N(e)= Y L(p.e), &)

peEX

The Likert score L(p, e) is not directly connected to the transition probability u(p, e, p)
from the ground state of a concept to the state p under context e. However, the renor-
malized value of L(p,e) to the interval [0, 1]

provides a reasonable estimate of the transition probability u(p, e, p). Hence we in-
troduce the hypothesis that the renormalized Likert scores correspond to the transition
probabilities from the ground state, or

L(p,e)

NG ©6)

u(p,e, p) =
This is an idealization since the transition probabilities are independent although corre-
lated to this renormalized Likert scores. In future work we plan experiments to directly
measure the transition probabilities.

Let us pause briefly to explain why these functions have been introduced. If we
consider the unit context, it would be natural to link the typicality to just the Likert
number. For example, for the unit context, exemplar p;: ‘Cowboy hat’ is more typical
than pg: “Toque’ because L(pg,e1) < L(p1,e1) (see table[I). If one examines more than
one context, however, such a conclusion cannot easily be drawn. For example, consider
the exemplar p7: ‘Pylon’, under both the context e;:Worn to be funny and context es:
Not worn by a person, we have that L(p7,es5) < L(p7,e2), but p7 is more typical under
context e5 than under e. This is because N(es5) < N(ez), i.e. the number of Likert points
given in total for context e, is much higher than the number of Likert points given in
total for the context es. This is primarily due to the fact that Likert points have been
attributed by participant per context.

Note that Ngf) is the average typicality of exemplars under context e, and the aver-
age transition probability (renormalized typicality) is u* = é for all the contexts. We
want to identify the internal structure of state transitions of a concept making use of the
typicality data. Therefore we define a transition probability threshold o € [0, 1]. We say
that p € X is improbable for context e € M if and only if u(p,e, p) < o, meaning that
it is improbable that a transition will happen under this context to states with transition
probability lower than the threshold. By means of this transition threshold we can also
express the idea that for a given concept, there are only a limited number of possible
transitions from the ground state to other states. We express this mathematically by
introducing a new collection of transition probabilities, such that for this new collec-
tion the transition probability is equal to zero when it is below this threshold, thereby
prohibiting transitions from a specific context to states that we called improbable for
this context for the original collection of transition probabilities we started with. Since
the sum of all transition probabilities over all possible states that can be transitioned
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to needs to be equal to 1 for any set of transition probabilities corresponding to an
experimental situation, next to equaling to zero the transition probabilities below the
threshold, we need to renormalize the remaining transition probabilities. Hence, if we
denote 1, the new collection of transition probabilities, we have

,Uoc(Pvevﬁ) =0 if :u( pA) < oc,else (7)
_ upe.p) ®)
Zpe):,oKy(p,e,ﬁ) (paeap)

Thus, after imposing a threshold, a concept becomes a more constrained structure. At
first glance this may appear to be an artificial bias in our analysis. However, we do
not introduce the threshold to arbitrarily eliminate some exemplars, but to study the
evolution of this biased structure as the threshold changes. This leads to the next step,
which is to model what happens to the exemplars and contexts when there is a shift
between associative and analytic thought modes of thought.

For each exemplar p and context e such that u(p, e, p) > oo we have that uy(p, e, p) >
u(p,e, p). The new collection of transition probabilities induced by o corresponds to
the fact that in an associative mode we gain access to remote meanings while in an
analytic mode of thought we lose them. Hence, the transition probability to an unusual
exemplar p, which is zero for a high setting of transition probabilities (and thus con-
sidered a strange exemplar for the concept within this setting) could rise above zero
for the new o-induced setting of transition probabilities. This occurs when the strange
exemplar p is typical compared to other exemplars under context e, i.e. u(p,e,p) is
high enough. Thus, one shifts to a more associative mode of thought by decreasing the
threshold, thereby enabling unusual exemplars to come into play. We propose that this
is the mechanism that underlies contextual focus [3,[11,[12].

5 Analysis of the States and Contexts

5.1 Expected Context Typicality

Since the SCOP model is a probabilistic model, the typicalities estimated by the partici-
pants in the experiment by numbers on the Likert scale are not the expected typicalities,
because the transition probabilities must also be taken into account. This expresses the
potentiality (and corresponding probability), which is fundamental to the SCOP ap-
proach. Indeed, it makes only sense to speak of the “potential typicality” of a certain
exemplar, and this potentiality is expressed by the value of the transition probability
to this exemplar, which means that this “potential typicality” is the “expected typi-
cality” which equals to the product of the Likert value with the transition probability,
i.e. L(p,e) - uo(p,e, p). This provides now also a means of introducing a genuine mea-
sure of context typicality, using the state transition probability model, and the mode of
thought determined by the threshold o. For a given context e and a given threshold o
the “expected typicality T (e, o) of this context e” is given by

Zva ‘Mo pve p) (9)
peEX
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For example, consider the context es: Not worn by a person and the unit context e;:
The hat. We have 2.87 = T (es,0) < T(e;,0) = 4.82. But most of the contributions
to T(es,0) come from the exemplars p7: ‘“Toque’ and pg: ‘Medicine Hat’. Indeed,
L(p7,es)u(p7,es,p) + L(ps,es)u(ps,es, p) = 2.46. On the other hand, e; is the most
typical context at zero threshold because many exemplars have a high Likert score.
Thus, the values of its transitions probabilities u(-,e;,p) are spread more homoge-
neously among the exemplars, leading to a flatter distribution with smaller probabil-
ity values than the more typical exemplars of the es distribution (see figure [T). If the
threshold o is sufficiently high (o0 > 0.21 in this case), (-, e1,p) becomes the zero
function because all the states in context e; are improbable for the threshold o, but
context es maintain their most probable states (p7: ‘“Toque’ and pg: ‘Medicine Hat’),
because the transition probabilities of the states p;7 and pg are higher than o. Further-
more, the transition probabilities are amplified in the renormalized transition function
Ua(-,es,p) because pi,..., ps are improbable in context es for the threshold o = 0.21.
This observation makes it possible to explain how we can use the transition threshold
to gain a clearer picture of what is going on here.
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These results reveal a dependency relationship between the threshold and the ex-
pected context typicality 7. Figure 2l shows the function T'(e, o) for different values of
a for each context. What actually comes to mind depends both on alpha and on the
context you are in, and Figure 2 expresses both of these. The top bar of each graph
shows the relevance of the context for the corresponding value of alpha. The differ-
ent coloured bars indicate which exemplars are available to transition to for the given
value of the threshold a.. We posit that the more different coloured bars there are, the
greater the potential for entanglement of the different exemplars. The area of the filled
box for a particular exemplar represents the transition probability with respect to the
total size of the bar for the corresponding alpha. We considered the values of o €
{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35} to show how different exemplars remain able to
be activated for different contexts, and how the probability distribution is affected by
the renormalization. First, note that the expected typicality is an increasing function
with respect to o until it reaches a maximal value that deactivates all exemplars. This is
because the threshold is imposed to deactivate exemplars for which the transition proba-
bility is not sufficiently high, thus the remaining exemplars after imposing the threshold
are those with higher transition probabilities. This implies that these remaining exem-
plars have comparatively higher typicality. Thus for the renormalized probability distri-
bution, their expected typicality increases. Secondly, note that contexts {e},e2,e3,e4}
are qualitatively similar for small values of o, i.e. all the exemplars can be activated with
small probability values. However, the differences among the contexts are amplified as
the threshold increases. This implies that in our model, an associative mode of thought
permits activation of more exemplars at the cost of losing the meaningful specificity of
the context. In contrast, in an analytic mode of thought, fewer exemplars are activated
and they have higher transition probabilities due to the amplification of their probability
values induced by the renormalization uy. Thus one is able to clearly differentiate the
meaning of each context, at the cost of having less exemplars available for transition to.

Note that the threshold that makes no transition possible (all exemplars deactivated)
varies with the context. The value required to deactivate all exemplars reflects the flat-
ness of the probability distribution at oo = 0. The flatter the distribution, the smaller the
value of o required to deactivate all exemplars. Indeed, in our model, context e; =The
hat requires the smallest threshold. This is because as e; gets flatter, the transition prob-
abilities at oo = 0 have values close to the average probability u* = é. For context es,
the qualitative behavior with respect to @, i.e. the deactivation of certain exemplars as
the threshold o increases, is the same as in the other contexts. However, context es
differs from other contexts in two important respects. First, es is the only context that
remains activated for exemplar pg :‘Medicine Hat’ for oo > 0, and is the only context
that deactivates the exemplars p; :‘Cowboy hat’ and p; :‘Baseball cap’ for small val-
ues of a.. Secondly, es is the context that requires the largest threshold to deactivate
all its exemplars. This is because e5 has the most rugged distribution at oo = 0. Indeed,
most of the transition probability at oo = 0 is concentrated on exemplars p7 : ‘Pylon’ and
ps :‘Medicine Hat’. These differences between es and the rest of the contexts reflect
the semantic opposition that context es=Not worn by a person has with the other con-
texts that state circumstances in which the concept HAT is elicited in a common-sense
meaningful way.



Shifting Relationship between Concepts and Contexts 33

Table 2. Types of contexts and the type of exemplars they have

T(e) #typical Context relevance Type of
exemplars ato=0 exemplar
Large Large High Very Representative
Medium  Large Medium Poorly representative
Medium  Small Low Unexpected
Small Small Low Non-representative

6 Discussion and Future Directions

This paper builds on previous work that uses, SCOP, a quantum-inspired theory of con-
cepts, and psychological data, to model conceptual structure, and specifically semantic
relations between the different contexts that can influence a concept. Here we focus on
how these contexts come into play in analytic versus associative thought. It is suggested
that the notion of a transition threshold that shifts depending on the mode of thought,
as well as newly defined notions of state and context expected typicality, are building
blocks of a formal theory of creative thinking based on state transition probabilities in
concepts. We posit that the more exemplars come to mind given a particular context and
mode of thought, the greater the potential for entanglement of the different exemplars.
The model is consistent with the occasional finding of unexpected meanings or interpre-
tations of concepts. We propose that these new associations occur when a new context
creates an unlikely set of new exemplars, which may potentially they exert quantum-
like effects on one another. The paper also strengthens previous evidence that in order
to account for the multiple meanings and flexible properties that concepts can assume,
it is necessary to incorporate context into the concept definition.

The model developed here is small and idealized. In future research we plan to ex-
tend and generalize it. An interesting parameter that we have not yet explored is the sum
of the expected typicality of a single exemplar with respect to the set of contexts. We be-
lieve that this can be interpreted as a measure of the exemplar representativeness given
in Table[2l Much as the expected typicality of any given context is subject to change, un-
expected exemplars could become more or less representative if the transition threshold
changes. Further analysis could provide a richer description of this. Another interest-
ing development is to study the structure of the transition probabilities when applying
successive renormalizations induced by sequences of thresholds imposed to the concept
structure. We could establish, straight from the data, a threshold-dependent hierarchy of
pairs (p,e), that gives an account of the context-dependent semantic distance between
exemplars. This could be used to model the characteristic, revealing, and sometimes
surprising ways in which people make associations.

Acknowledgments. We are grateful for funding to Liane Gabora from the Social Sci-
ences and Humanities Research Council of Canada and the Concerted Research Pro-
gram of the Flemish Government of Belgium.
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Abstract. We provide an overview of the hybrid compositional distribu-
tional model of meaning, developed in [6], which is based on the categor-
ical methods also applied to the analysis of information flow in quantum
protocols. The mathematical setting stipulates that the meaning of a
sentence is a linear function of the tensor products of the meanings of its
words. We provide concrete constructions for this definition and present
techniques to build vector spaces for meaning vectors of words, as well as
that of sentences. The applicability of these methods is demonstrated via
a toy vector space as well as real data from the British National Corpus
and two disambiguation experiments.

Keywords: Logic, Natural Language, Vector Spaces, Tensor Product,
Composition, Distribution, Compact Categories, Pregroups.

1 Introduction

Words are the building blocks of sentences, yet the meaning of a sentence goes
well beyond the meanings of its words. Indeed, while we do have dictionaries for
words, we don’t seem to need them to infer meanings of sentences. But where
human beings seem comfortable doing this, machines fail to deliver. Automated
search engines that perform well when queried by single words, fail to shine when
it comes to search for meanings of phrases and sentences. Discovering the process
of meaning assignment in natural language is among the most challenging as
well as foundational questions of linguistics and computer science. The findings
thereof will increase our understanding of cognition and intelligence and will also
assist in applications to automating language-related tasks such as document
search.

To date, the compositional type-logical [I7JI3] and the distributional vector
space models [21I8] have provided two complementary partial solutions to the
question. The logical approach is based on classic ideas from mathematical logic,
mainly Frege’s principle that meaning of a sentence can be derived from the
relations of the words in it. The distributional model is more recent, it can be
related to Wittgenstein’s philosophy of ‘meaning as use’, whereby meanings of
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words can be determined from their context. The logical models have been the
champions of the theory side, but in practice their distributional rivals have
provided the best predictions.

In a cross-disciplinary approach, [6] used techniques from logic, category the-
ory, and quantum information to develop a compositional distributional seman-
tics that brought the above two models together. They developed a hybrid cat-
egorical model which paired contextual meaning with grammatical form and
defined meaning of a string of words to be a function of the tensor product
of the meanings of its words. As a result, meanings of sentences became vec-
tors which lived in the same vector space and it became possible to measure
their synonymity the same way lexical synonymity was measured in the distri-
butional models. This sentence space was taken to be an abstract space and it
was only shown how to instantiate it for the truth-functional meaning. Later [9]
introduced a concrete construction using structured vector spaces and exempli-
fied the application of logical methods, albeit only a toy vector space. In this
paper we report on this and on a second construction which uses plain vector
spaces. We also review results on implementing and evaluating the setting on
real large scale data from the British National Corpus and two disambiguation
experiments [10].

2 Sketching the Problem and a Hybrid Solution

To compute the meaning of a sentence consisting of n words, meanings of these
words must interact with one another. In the logical models of meaning, this
further interaction is represented in a function computed from the grammatical
structure of the sentence, but meanings of words are empty entities. The gram-
matical structure is usually depicted as a parse-tree, for instance the parse-tree
of the transitive sentence ‘dogs chase cats’ is as follows:

chase(dogs, cats)

dogs  Az.chase(z, |cats)

cats  Ayx.chase(z,y)

The function corresponding to this tree is based on a relational reading of the
meaning of the verb ‘chase’, which makes the subject and the object interact with
each other via the relation of chasing. This methodology is used to translate
sentences of natural language into logical formulae, then use computer-aided
automation tools to reason about them [2]. The major drawback is that the
result can only deal with truth or falsity as the meaning of a sentence and does
poorly on lexical semantics, hence do not perform well on language tasks such
as search.

The vector space model, on the other hand, dismisses the further interaction
and is solely based on lexical semantics. These are obtained in an operational
way, best described by a frequently cited quotation due to Firth [§] that “You
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shall know a word by the company it keeps.”. For instance, beer and sherry are
both drinks, alcoholic, and often make you drunk. These facts are reflected in
the text: words ‘beer’ and ‘sherry’ occur close to ‘drink’, ‘alcoholic’ and ‘drunk’.
Hence meanings of words can be encoded as vectors in a highly dimensional
space of context words. The raw weight in each base is related to the num-
ber of times the word has appeared close (in an n-word window) to that base.
This setting offers geometric means to reason about meaning similarity, e.g. via
the cosine of the angle between the vectors. Computational models along these
lines have been built using large vector spaces (tens of thousands of basis vec-
tors) and large bodies of text (up to a billion words) [7]. These models have
responded well to language processing tasks such as word sense discrimination,
thesaurus construction, and document retrieval [ITJ2I]. Their major drawback
is their non-compositional nature: they ignore the grammatical structure and
logical words, hence cannot compute (in the same efficient way that they do for
words) meanings of phrases and sentences.

The key idea behind the approach of [] is to import the compositional el-
ement of the logical approaches into the vector space models by making the
grammar of the sentence act on, hence relate, its word vectors. The trouble is
that it does not make so much sense to ‘make a parse tree act on vectors’. Some
higher order mathematics, in this case category theory, is needed to encode the
grammar of a sentence into a morphism compatible with vector spaces@. These
morphisms turn out to be the grammatical reductions of a type-logic called a
Lambek pregroup [I3]. Pregroups and vector spaces both have a compact cate-
gorical structural. The grammatical morphism of a pregroup can be transformed
into a linear map that acts on vectors. Meanings of sentences become vectors
whose angles reflect similarity. Hence, at least theoretically, one should be able
to build sentence vectors and compare their synonymity, in exactly the same
way as measuring synonymity for words.

The pragmatic interpretation of this abstract idea is as follows. In the vector

e T J—

space models, one has a meaning vector for each word, dogs, chase, cats. The
logical recipe tells us to apply the meaning of verb to the meanings of subject
and object. But how can a vector apply to other vectors? If we strip the vectors
off the extra information provided in their basis and look at them as mere sets
of weights, then we can apply them to each other by taking their point-wise
sum or product. But these operations are commutative, whereas meaning is not.
Hence this will equalize meaning of any combination of words, even with the
non-grammatical combinations such as ‘dogs cats chase’. The proposed solution
above implies that one needs to have different levels of meaning for words with
different functionalities. This is similar to the logical models whereby verbs are
relations and nouns are atomic sets. So verb vectors should be built differently
from noun vectors, for instance as matrices that relate and act on the atomic
noun vectors. The general information, as to which words should be matrices
and which atomic vectors, is in fact encoded in the type-logical representation of

1 A similar passage had to be made in other type-logics to turn the parse-trees into
lambda terms, compatible with sets and relations.
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the grammar. That is why the grammatical structure of the sentence is a good
candidate for the process that relates its word vectors.

In a nutshell, pregroup types are either atomic or compound. Atomic types can
be simple (e.g. n for noun phrases, s for statements) or left /right superscripted—
referred to as adjoint types (e.g. n” and n'). An example of a compound type is
that of a verb n”sn!. The superscripted types express that the verb is a relation
with two arguments of type n, which have to occur to the right and to the left
of it, and that it outputs an argument of the type s. A transitive sentence is
typed as shown below.

dogs chase cats.

n n"sn n

|\
Here, the verb interacts with the subject and object via the underlying wire
cups, then produces a sentence via the outgoing line. These interactions happen
in real time. The type-logical analysis assigns type n to ‘dogs’ and ‘cats’, for a
noun phrase, and the type n"sn! to ‘chase’ for a verb, the superscripted types n”
and n! express the fact that the verb is a function with two arguments of type
n, which have to occur to the right and left of it. The reduction computation
is nn"sn! < 1s1 = s, each type n cancels out with its right adjoint n” from the
right, i.e. nn” < 1 and its left adjoint n! from the left, i.e. n'n < 1, and 1 is the
unit of concatenation 1n = nl = n. The algebra advocates a linear method of
parsing: a sentence is analyzed as it is heard, i.e. word by word, rather than by
first buffering the entire string then re-adjusting it as necessary on a tree. It’s
been argued that the brain works in this one-dimensional linear (rather than
two-dimensional tree) manner [13].

According to [6] and based on a general completeness theorem between com-
pact categories, wire diagrams, and vector spaces, meaning of sentences can be

canonically reduced to linear algebraic formulae, for example the following is the
meaning vector of our transitive sentence:

B — —_— — —
dogs chase cats = (f) (dogs ® chase ® cats)

Here f is the linear map that encodes the grammatical structure. The categorical
morphism corresponding to it is denoted by the tensor product of 3 components:
ey ® 1g ® ey, where V and W are subject and object spaces, S is the sentence
space, the €’s are the cups, and 1g is the straight line in the diagram. The
cups stand for taking inner products, which when done with the basis vectors
imitate substitution. The straight line stands for the identity map that does
nothing. By the rules of the category, the above equation reduces to the following
linear algebraic formula with lower dimensions, hence the dimensional explosion
problem for tensor products is avoided:

3 Cghee(dogs | T) 5 () | cats) € S

itj
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In the above equation, v;, LT; are basis vectors of V' and W. The meaning of the
verb becomes a superposition, represented as a linear map. The inner product

s e

(dogs|v;) substitutes the weights of dogs into the first argument place of the
verb (similarly for object and second argument place) and results in producing a
vector for the meaning of the sentence. These vectors live in sentence spaces S,
for which 5; is a base vector. The degree of synonymity of sentences is obtained
by taking the cosine measure of their vectors. S is an abstract space, it needs
to be instantiated to provide concrete meanings and synonymity measures. For
instance, a truth-theoretic model is obtained by taking the sentence space S to
be the 2-dimensional space with basis vector true |1) and false |0). This is done
by using the weighting factor Cft};-ase to define a model-theoretic meaning for the
verb as follows:

itj

Cehase? _ [1) chase(v;,w;) = true,
[0) o.w.

The definition of our meaning map ensures that this value propagates to the
meaning of the whole sentence. So chase(dogs, cats) becomes true whenever ‘dogs
chase cats’ is true and false otherwise.

3 Two Concrete Constructions for Sentence Spaces

The abovcicgnstruction is based on the assumptions that (Fgé is a base of V
and that cats is a base of W. In other words, we assume that V is the vector
space spanned by the set of all men and W is the vector space spanned by the
set of all women. This is not the usual construction in the distributional models.
In what follows we present two concrete constructions for these, which will then
yield a construction for the sentence space. In both of these approaches V' and
W will be the same vector space, which we will denote by N.

3.1 Structured Vector Spaces and a Toy Corpus

We take N to be a structured vector space, as in [11]. The bases of N are anno-
tated by ‘properties’ obtained by combining dependency relations with nouns,
verbs and adjectives. For example, basis vectors might be associated with prop-
erties such as “arg-fluffy”, denoting the argument of the adjective fluffy, “subj-
chase” denoting the subject of the verb chase, “obj-buy” denoting the object of
the verb buy, and so on. We construct the vector for a noun by counting how
many times in the corpus a word has been the argument of ‘fluffy’, the subject
of ‘chase’, the object of ‘buy’, and so on.

For transitive sentences, we take the sentence space S to be N ® N, so its
bases are of the form s; = (n;,7;). The intuition is that, for a transitive verb,
the meaning of a sentence is determined by the meaning of the verb together
with its subject and object. The verb vectors CZ-Vt‘j»rb (n7, TT]) ) are built by counting
how many times a word that is n; (e.g. has the property of being fluffy) has
been subject of the verb and a word that is n; (e.g. has the property that it’s
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bought) has been its object, where the counts are moderated by the extent
to which the subject and object exemplify each property (e.g. how fluffy the
subject is). To give a rough paraphrase of the intuition behind this approach,
the meaning of “dog chases cat” is given by: the extent to which a dog is fluffy and
a cat is something that is bought (for the N ® N property pair “arg-fluffy” and
“obj-buy”), and the extent to which fluffy things chase things that are bought
(accounting for the meaning of the verb for this particular property pair); plus
the extent to which a dog is something that runs and a cat is something that is
cute (for the N ® N pair “subj-run” and “arg-cute”), and the extent to which
things that run chase things that are cute (accounting for the meaning of the
verb for this particular property pair); and so on for all noun property pairs.

For sentences with intransitive verbs, the sentence space suffices to be just
N. To compare the meaning of a transitive sentence with an intransitive one,
we embed the meaning of the latter from N into the former N ® N, by taking
&, (the ‘object’ of an intransitive verb) to be Y, n;, i.e. the superposition of all
basis vectors of N. A similar method is used while dealing with sentences with
ditransitive verbs, where the sentence space will be N® N ® N, since these verbs
have three arguments. Transitive and intransitive sentences are then embedded
in this bigger space, using the same embedding described above.

Adjectives are dealt with in a similar way. We give them the syntactic type nn
and build their vectors in N ® N. The syntactic reduction nn'n — n associated
with applying an adjective to a noun gives us the map 1y ® ey by which we
semantically compose an adjective with a noun, as follows:

l

- .
adjective noun = (1y ® en)(adj ® noun) = Z C’thn—)ﬂﬁ} | noun)

j

We can view the C’Z—dj counts as determining what sorts of properties the argu-
ments of a particular adjective typically have (e.g. arg-red, arg-colourful for the
adjective “red”).

As an example, consider a hypothetical vector space with bases ‘arg-fluffy’,
‘arg-ferocious’, ‘obj-buys’, ‘arg-shrewd’, ‘arg-valuable’, with vectors for ‘bankers’,
‘cats’, ‘dogs’, ‘stock’, and ‘kittens’.

bankers cats dogs stock kittens

1 arg-fluffy 0 7T 3 0 2
2 arg-ferocious 4 1 6 0 0
3 obj-buys 0 4 2 7 0
4 arg-shrewd 6 3 1 0 1
5 arg-valuable 0 1 2 8 0

Since in the method proposed above, C;’t‘}rb =0if 5 # (n;, 77; ), we can simplify
the weight matrices for transitive verbs to two dimensional Ci‘frb matrices as
shown below, where Cl-vfrb corresponds to the number of times the verb has
a subject with attribute n; and an object with attribute n;. For example, the

matrix below encodes the fact that something ferocious (i = 2) chases something
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fluffy (j = 1) seven times in the hypothetical corpus from which we might have
obtained these distributions.

10000
71231
chase — 100000
20101
10000

Once we have built matrices for verbs, we are able to follow the categorical
procedure and automatically build vectors for sentences, then perform sentence
comparisons. The comparison is done in the same way as for lexical semantics,
i.e. by taking the inner product of the vectors of two sentences and normalizing it
by the product of their lengths. For example the following shows a high similarity

dogs chase cats|d sue kittens
cos(dogs chase cats, dogs pursue kittens) = {dogs chase cats|dogs pursue kittens) =

| dogs chase cats|x|dogs pursue kittens |

(S, oty (dogs | 1) i () | cas) )| (X0, Ol (dogs | )i (] | Kittens)) )

| dogs chase cats | x | dogs pursue kittens |

e City= Oy (dogs | ;) (dogs | ) () | cats) (7, | kittens) 0.979
| dogs chase cats | x | dogs pursue kittens | .

A similar computation will provide us with the following, demonstrating a low
similarity

cos((dogs chase cats | bankers sell stock)) = 0.042

The construction for adjective matrices are similar: we stipulate the C’Z—dj
matrices by hand and eliminate all cases where i # j since C;; = 0, hence these
become one dimensional matrices. Here is an example

oy — 193422

Vectors for ‘adjective noun’ clauses are computed similarly and are used to com-
pute the following similarity measures:

cosine(flufly dog,shrewd banker) = 0.389
cosine(fluffy cat, valuable stock) = 0.184

These calculations carry over to sentences which contain the ‘adjective noun’
clauses. For instance, we obtain an even lower similarity measure between the
following sentences:

cosine(fluffy dogs chase fluffy cats, shrewd bankers sell valuable stock) = 0.016

Other constructs such as prepositional phrases and adverbs are treated similarly,
see [9].
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3.2 Plain Vector Spaces and the BNC

The above concrete example is fine grained, but involves complex constructions
which are time and space costly when implemented. To be able to evaluate the set-
ting against real large scale data, we simplified it by taking N to be a plain vector
spaces whose bases are words, without annotations. The weighting factor C;’jerb
is determined in the same as above, but this time by just counting co-occurence
rather than being arguments of syntactic roles. More precisely, this weight is de-
termined by the number of times the subjects of the verb have co-occured with
the base ;. In the previous construction we went beyond co-occurence and re-
quired that the subject (similarly for the object) should be in a certain relation
with the verb, for instance if 7; was ‘arg-fluffly’, the subject had to be an argu-
ment of fluffy, where as here we instead have 7'; = ‘fluffy’, and the subject has to
co-occure with ‘fluffy’ rather than being directly modified by it.

The procedure for computing these weights for the case of transitive sentences
is as follows: first browse the corpus to find all occurrences of the verb in question,
suppose it has occurred as a transitive verb in k sentences. For each sentence
determine the subject and the object of the verb. Build vectors for each of these
using the usual distributional method. Multiply their weights on all permutations
of their coordinates and then take the sum of each such multiplication across
each of the k sentences. Linear algebraically, this is just the sum of the Kronecker
products of the vectors of subjects and objects:

—_— —_ —_
b= (sub @ obj)
ver zk: sub ® ob] .

Recall that given a vector space A with basis {n; };, the Kronecker product of
two vectors v =Y, c¢n; and W =Y, ¢!y is defined as follows:

— o — b — o —
U W= g cicj (ni @nj)
j

As an example, we worked with the British National Corpus (BNC) which
has about 6 million sentences. We built noun vectors and computed matrices
for intransitive verbs, transitive verbs, and adjectives. For instance, consider
N to be the space with four basis vectors ‘far’, ‘room’, ‘scientific’, and ‘elect’;
the (TF/IDF) values for vectors of the four nouns ‘table’, ‘map’, ‘result’, and
‘location’ are shown below.

A section of the matrix of the transitive verb ‘show’ is represented below.

As a sample computation, suppose the verb ‘show’ only appears in two sentences
in the corpuse: ‘the map showed the location’ and ‘the table showed the result’.
The weight c12 for the base i.e. (fa—r>7 fgl)") is computed by multiplying weights of
‘table’ and ‘result’ on fa.r>, i.e. 6.6 x 7, multiplying weights of ‘map’ and ‘location’
on fgr), i.e. 5.6 X 5.9 then adding these 46.2+33.04 and obtaining the total weight
79.24.

The computations for building vectors for sentences and other phrases are the
same as in the case for structured vector spaces. The matrix of a transitive verb has
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Table 1. Sample noun vectors from the BNC

i n;  table map result location
1 far 6.6 56 7 5.9
2 room 27 7.4 0.99 7.3
3 scientific 0 5.4 13 6.1
4 elect 0 0 4.2 0

Table 2. Sample verb matix from the BNC

far room scientific elect

far 79.24 47.41 119.96 27.72

room 232.66 80.75 396.14 113.2
scientific 32.94 31.86 32.94 0
elect 0 0 0 0

2 dimensions since it takes as input two arguments. The same method is applied to
build matrices for ditransitive verbs, which will have 3 dimensions, and intransitive
verbs, as well as adjectives and adverbs, which will be of 1 dimension each.

4 Evaluation and Experiments

We evaluated our second concrete method on a disambiguation task and per-
formed two experiments [I0]. The general idea behind this disambiguation task
is that some verbs have different meanings and the context in which they appear
is used to disambiguate them. For instance the verb ‘show’ can mean ‘express’
in the context ‘the table showed the result’ or it can mean 'picture’, in the con-
text ‘the map showed the location’. Hence if we build meaning vectors for these
sentences compositionally, the degrees of synonymity of the sentences can be
used to disambiguate the meaning of the verb in that sentence. Suppose a verb
has two meanings and it has occurred in two sentences. Then if in both of these
sentences it has its meaning number 1, the two sentences will have a high degree
of synonymity, whereas if in one sentence the verb has its meaning number 1
and in the other its meaning number 2, the sentences will have a lower degree of
synonymity. For instance, ‘the table showed the result’ and ‘the table expressed
the result’, have a hight degree of synonymity and similarly for ‘the map showed
the location’ and ‘the map pictured the location’. This degree decreases for the
two sentences ‘the table showed the result’ and ‘the table pictured the result’.
We used our second concrete construction to implement this task.

The data set for our first experiment was developed by [16] and had 120 sen-
tence pairs. These were all intransitive sentences. We compared the results of our
method with composition operations implemented by [16], these included addi-
tion, multiplication, and a combination of two using weights. The best results
were obtained by the multiplication operator. Our method provided slightly
better results. However, the context provided by intransitive sentences is just



44 M. Sadrzadeh and E. Grefenstette

one word, hence the results do not showcase the compositional abilities of our
method. In particular, in such a small context, our method and the multiplica-
tion method became very similar, hence the similarity of results did not surprise
us. There is nevertheless two major differences: our method respects the gram-
matical structure of the sentences (whereas the multiplication operation does
not) and in our method the vector of the verb is computed differently from the
vectors of the nouns: as a relation and via a second order construction.

For the second experiment, we developed a data set of transitive sentences.
We first picked 10 transitive verbs from the most occurring verbs of the BNC,
each verb has at least two different non-overlapping meanings. These were re-
trieved using the JCN (Jiang Conrath) information content synonymity measure
of WordNet. The above example for ‘show’ and its two meanings ‘express’ and
‘picture’ is one such example. For each such verb, e.g. ‘show’, we retrieved 10
sentences which contained them (as verbs) from the BNC. An example of such
a sentence is ‘the table showed the result’. We then substituted in each sentence
each of the two meanings of the verb, for instance ‘the table expressed the result’
and ‘the table pictured the result’. This provided us with 200 pairs of sentences
and we used the plain method described above to build vectors for each sentence
and compute the cosine of each pair. A sample of these pairs is provided below.

In order to judge the performance of our method, we followed guidelines
from [I6]. We distributed our data set among 25 volunteers who were asked to
rank each pair based on how similar they thought they were. The ranking was
between 1 and 7, where 1 was almost dissimilar and 7 almost identical. Each
pair was also given a HIGH or LOW classification by us. The correlation of the
model’s similarity judgements with the human judgements was calculated using
Spearman’s p, a metric which is deemed to be more scrupulous and ultimately
that by which models should be ranked. It is assumed that inter-annotator agree-
ment provides the theoretical maximum p for any model for this experiment, and
that taking the cosine measure of the verb vectors while ignoring the noun was
taken as the baseline.

The results for the models evaluated against the both datasets are presented
below. The additive and multiplicative operations are applications of vector ad-
dition and multiplication; Kintsch is a combination of the two, obtained by mul-
tiplying the word vectors by certain weighting constants and then adding them,
for details please see [I6]. The Baseline is from a non-compositional approach,
obtained by only comparing vectors of verbs of the sentences and ignoring their

Table 3. Sample sentence pairs from the second experiment dataset

Sentence 1 Sentence 2

1 table show result table express result
2 table show result table picture result
3 map show location map picture location
4 map show location map express location
5 child show interest child picture interest
6 child show interest child express interest
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Table 4. Results of the 1st and 2nd compositional disambiguation experiments

Mode.l High  Low p Model High Low p
izzehne 8?; 8‘22 8.8481 Baseline 047 044  0.16
Kintsch 047 045 0.09 Add oo o

Multiply 0.67 059 0.17
Categorical 0.73 0.72 0.21

UpperBound 4.80 2.49 0.62

Multiply 0.42 0.28 0.17
Categorical 0.84 0.79 0.17

UpperBound 4.94  3.25  0.40

subjects and objects. The UpperBound is the summary of the human ratings,
also known as inter-annotator agreement.

According to the literature (e.g. see [16]), the main measure of success is
demonstrated by the p column. By this measure in the second experiment our
method outperforms the other two with a much better margin than that in the
first experiment. The High (similarly Low) columns are the average score that
High (Low) similarity sentences (as decided by us) get by the program. These
are not very indicative, as the difference between high mean and the low mean of
the categorical model is much smaller than that of the both the baseline model
and multiplicative model, despite better alignment with annotator judgements.

The data set of the first experiment has a very simple syntactic structure
where the context around the verb is just its subject. As a result, in practice
the categorical method becomes very similar to the multiplicative one and the
similar outcomes should not surprise us. The second experiment, on the other
hand, has more syntactic structure, thereby our categorical shows an increase
in alignment with human judgements. Finally, the increase of p from the first
experiment to the second reflects the compositionality of our model: its perfor-
mance increases with the increase in syntactic complexity. Based on this, we
would like to believe that more complex datasets and experiments which for
example include adjectives and adverbs shall lead to even better results.

5 Conclusion and Future Work

We have provided a brief overview of the categorical compositional distributional
model of meaning as developed in [6]. This combines the logical and vector space
models using the setting of compact closed categories and their diagrammatic
toolkit and based on ideas presented in [5] on the use of tensor product as a
meaning composition operator. We go over two concrete constructions of the
setting, show examples of one construction on a toy vector space and implement
the other construction on the real data from the BNC. The latter is evaluated on
a disambiguation task on two experiments: for intransitive verbs from [16] and
for transitive verbs developed by us. The categorical model slightly improves the
results of the first experiment and betters them in the second one.



46 M. Sadrzadeh and E. Grefenstette

To draw a closer connection with the subject area of the workshop, we would
like to recall that sentences of natural language are compound systems, whose
meanings exceed the meanings of their parts. Compound systems are a phenom-
ena studied by many sciences, findings thereof should as well provide valuable
insights for natural language processing. In fact, some of the above observations
and previous results were led by the use of compact categories in compound
quantum systems [I]. The caps that connect subject and verb from afar are
used to model nonlocal correlations in entangled Bell states; meanings of verbs
are represented as superposed states that let the information flow between their
subjects and objects and further act on it. Even on the level of single quantum
systems, there are similarities to the distributional meanings of words: both are
modeled using vector spaces. Motivated by this [T9/22] have used the methods
of quantum logic to provide logical and geometric structures for information re-
trieval and have also obtained better results in practice. We hope and aim to
study the modular extension of the quantum logic methods to tensor spaces of
our approach. There are other approaches to natural language processing that
use compound quantum systems but which do not focus on distributional mod-
els, for example see [4].

Other areas of future work include creating and running more complex exper-
iments that involve adjectives and adverbs, working with larger corpora such as
the WaCKly, and interpreting stop words such as relative pronouns who, which,
conjunctives and, or, and quantifiers every, some.
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Abstract. In this paper, we investigate the ability of the Predication-based Se-
mantic Indexing (PSI) approach, which incorporates both symbolic and distribu-
tional information, to support inference on the basis of structural similarity. For
example, given a pair of related concepts prozac:depression, we attempt to iden-
tify concepts that relate to a third concept, such as schizophrenia in the same way.
A novel PSI implementation based on Kanerva’s Binary Spatter Code is devel-
oped, and evaluated on over 100,000 searches across 180,285 unique concepts
and multiple typed relations. PSI is shown to retrieve with accuracy concepts on
the basis of shared single and paired relations, given either a single strong exam-
ple pair, or the superposition of a set of weaker examples. Search space size is
identical for single and double relations, providing an efficient means to direct
search across predicate paths for the purpose of literature-based discovery.

Keywords: Distributional ~ Semantics, Vector Symbolic  Architectures,
Literature-based Discovery, Abductive Reasoning.

1 Introduction

This paper presents new results that demonstrate ways in which high-dimensional vec-
tor representations can be used to model proportional analogies such as “prozac is to
depression as what is to schizophrenia?”” Our approach is based on our earlier “Logical
Leaps” work [1], and Kanerva’s work on hyperdimensional computing and analogical
mapping [2] (both presented at Quantum Informatics, 2010). This approach depends
upon being able to represent concepts as high-dimensional vectors, and relationships
between concepts as mathematical operations on these vectors. Such operations include
composition of vectors using product and superposition operations, and the selection of
nearby pure concepts from a superposed or product state. The work is part of the family
of generalized quantum methods currently being explored: basic concepts are analogous
to pure states; superposition and product operations give rise to compound concepts
analogous to mixed and entangled states; and the selection of a nearby known con-
cept from a product state is analogous to quantization or quantum collapse. A notable
departure from traditional quantum mechanics is our use of real and binary vectors,
instead of complex vectors. This departure is not novel and is an oft-understated dis-
crepancy of approaches: for many years the information retrieval and machine learning
communities have used real-valued vectors; Kanerva’s work uses binary-valued vectors

D. Song et al. (Eds.): QI 2011, LNCS 7052, pp. 48—@, 2011.
(© Springer-Verlag Berlin Heidelberg 2011
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as examples [2]; and traditional quantum mechanics almost exclusively used complex
Hilbert spaces, as have emerging approaches to information retrieval [3] and distribu-
tional semantics [4]. We mention this at the outset as perhaps one of the key senses
in which “generalized quantum” models should be thought of as generalizations, not
applications, of quantum physics.

2 Background

The “Logical Leaps” approach is an extension of our previous work in the domain
of literature-based discovery [5], in which we evaluated the ability of various scal-
able models of distributional semantics to generate indirect inferences [6], meaningful
connections between terms that do not co-occur in any document in a given corpus.
Connections of this sort are fundamental to Swanson’s model of literature-based dis-
covery [7], which emerged from the serendipitous discovery of a therapeutically useful
[8] connection between Raynaud’s Syndrome (reduced blood flow in the extremities)
and fish oils. This connection was based on the bridging concept “blood viscosity”:
fish oil can decrease blood viscosity thus increasing blood flow. Swanson’s method can
be seen as an example of abductive reasoning, hypothesis generation as proposed by
Peirce (see [9]), and provides the basis for several computer models that aim to facil-
itate discovery [10], [11]. As an alternative to stepwise exploration of the vast search
space of possible bridging concepts and discoveries, distributional approaches such as
Latent Semantic Analysis [6], Random Indexing (RI) [12] and others have been applied
to infer meaningful indirect connections between terms without identifying a bridging
concept [13], [14], [5]. In contrast to these approaches, which are based on general as-
sociation strength, “Logical Leaps” are derived from a vector space in which both the
target and the type of a relation to a concept are encoded into its vector representation.
This has been achieved using Predication-based Semantic Indexing (PSI) [15], a variant
of RI that uses permutation of sparse random vectors to encode relationships (such as
TREATS) between concepts into a high-dimensional vector space. In this paper, we
attempt to direct searches in PSI space by specifying predicate paths using a pair of
example concepts. We achieve this end with an alternative implementation of PSI based
on Kanerva’s Binary Spatter Code which we introduce in the following section.

3 Mathematical Structure and Methods

The methods in this paper all use high-dimensional vectors to represent concepts. There
are many ways of generating such representations. Ours is based upon the RI paradigm
using terminology as described in [5], in which semantic vectors are built as superpo-
sitions of randomly generated elemental vectors, derived by training over a corpus of
documents. Throughout this paper we will write £(X) and S(X) for the elemental and
semantic vectors associated with the concept X. In addition to concept vectors, we in-
troduce vectors for relations. For example, F(R) would denote the elemental vector for
the relation R. Many relationships are directional, and we will use Rj,, to denote the
inverse of R, so that A R B and B R, A carry the same external meaning (though they
may in some cases be represented by different vectors).
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Kanerva’s Binary Spatter Code [16] provides the means to encode typed relations
into a high-dimensional binary vector space. The Spatter Code is one of a group of
representational approaches collectively known as Vector Symbolic Architectures [17]
(VSAs), which originated from Smolensky’s tensor product based approach [18], and
include Holographic Reduced Representations (HRRs) [19] amongst others. VSAs dif-
fer from earlier connectionist representations as they allow for the encoding of typed
relations and nested compositional structure. Most of the definitions given below work
for VSAs in general. However, we make particular use of VSAs with binary-valued
vectors and component-wise exclusive or (XOR) as the binding operation: this has the
special property of being its own inverse, which the reader should not assume for other
implementations.

The primary operations facilitated by VSAs are binding and bundling. Binding is
a multiplication-like operator through which two vectors are combined to form a third
vector C that is dissimilar from either of its component vectors A and B. We will use the
symbol “®” for binding, and the symbol “©®” for the inverse of binding throughout this
paper. Be aware that binding may have different implementations in different models,
and is not meant to be identified with the tensor product. It is important that this operator
be invertible: if C = A ® B, then A © C = A © (A ® B) = B. In some models, this
recovery may be approximate, but the robust nature of the representation guarantees
that A @ C is similar enough to B that B can easily be recognized as the best candidate
for A @ C in the original set of concepts. Thus the invertible nature of the bind operator
facilitates the retrieval of information encoded during the binding process. While this
operator varies across VSAS, it results in a product that is of the same dimensionality
as the component vectors from which it was derived, unlike the tensor product which
has the dimensionality of its component vectors squared. When XOR is used, binding
commutes: A ® B=B ® A.

Bundling is an addition-like operator, through which superposition of vectors is
achieved. For example, vector addition followed by normalization is commonly em-
ployed as a bundling operator. Unlike binding, bundling results in a vector that is max-
imally similar to its component vectors. We will write the usual “+” for bundling, and
the computer science “+=" for “bundle the left hand side with the right hand side and
assign the outcome to the symbol on the left hand side.” So for example, S(A) +=
E(B) means “increment the semantic vector for A by the elemental vector for B using
the bundling operator.” This in particular is a very standard operation in training.

In the case of the spatter code, XOR is used as a binding operator. As it is its own
inverse, the binding and decoding processes are identical (®=0). For bundling, the
spatter code employs a majority vote: if the component vectors of the bundle have more
ones than zeros in a dimension, this dimension will have a value of one, with ties broken
at random (for example, bundling the vectors 011 and 010 may produce either 010 or
011). Once a vector representation for a concept has been built up by binding and/or
bundling, it is possible to apply an operator that reverses the binding process to the
vector as a whole.

The XOR operator used in the spatter code offers an apparent advantage over the
original permutation-based implementation of PSI: both concepts and relations are rep-
resented as high-dimensional binary vectors. This suggests relatively simple ways to
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Table 1. Comparison between real vector and binary vector implementation of PSI

Real/Permutation-based Binary

Implementation

Semantic vectors S(X) Real vectors (d = 500) Binary vectors (d = 16,000)

Elemental vectors F(X) Sparse ternary Dense binary

Represent predicate R Assign permutation Pr Assign elemental vector E(R)
) . —1 Assign new elemental vector

Reversed predicates Riny Use natural inverse P, E(Rinv)

Encoding / training of S(X) += Pfl(E(Y)) S(X) += E(R)® E(Y)

relationship X R'Y S(Y) += P (E(X)) S(Y) += E(Rinv) ® E(X)

Superposition Vector addition Majority vote

direct search across predicate paths of interest, such as those that have been shown
useful for literature-based discovery [20]. For example, the “ISA-TREATS;,,,” path,
which may identify conditions treated by the class a drug belongs to, can be specified
as “S(prozac) @ E(ISA) ® E(TREATS;,y).” To explore the potential advantages of
this formulation, we generated a binary implementation of PSI. This differs from our
previous implementation in several ways, summarized in Table[Il

We are now in a position to describe our core algorithm for building the binary PSI
space used in our experiments throughout the rest of this paper. The procedure is as
follows:

1. Assign an elemental vector E(X) to each concept X that occurs 100,000 times
or less in the database. More frequent concepts are excluded as they tend to be
uninformative, approximating use of a stop-word list. Elemental vectors are 16,000-
dimensional binary vectors with a 50% chance of a one or zero in each position.

2. Assign an elemental vector E(R) to each predicate type R excluding negations
and the PROCESS OF predicateﬂ which has shown to be uninformative. In most
cases, two vectors are assigned, one for each direction of the predicate R and Ry,
to distinguish between the roles of the concepts involved. For a small number of
symmetric predicate types, such as COEXISTS WITH, only one vector is as-
signed. Note that this process differs from the original implementation using per-
mutations as operations, since each permutation P has a natural distinct inverse
P_;. This is not the case for the current implementation, since XOR is its own
inverse. In addition we assign a vector “GA” to represent general association.

3. Assign a semantic vector to each concept occurring 100,000 or fewer times. In
this implementation, semantic vectors contain 16,000 real-valued variables, ini-
tially set to zero. These keep track of votes in each dimension to facilitate bundling.

4. Statistical weighting is applied to accentuate the influence of infrequent terms. In-
verse document frequency (idf) is calculated for concepts and predicates, and ap-
plied during encoding such that general associations are weighted according to the
idf of the concept concerned, while specific (typed) relations are weighted according

! This predicate occurs in predications such as “tuberculosis PROCESS OF patient” which
would create an uninformative link between most human diseases.
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to the sum of the idfs of the concept and the predicate concerned. Consequently, spe-
cific relations are weighted more heavily than general relatons.

5. Process the predications a concept occurs in: each time a concept occurs in a
predication, add (bundle) to its semantic vector the elemental vector for the other
concept in the predication bound with the elemental vector for the predicate con-
cerned. For example, when the concept fluoxetine occurs in the predication “flu-
oxetine TREATS major depressive disorder (MDD),” we add to S(fluoxetine) the
elemental vector for TREATS bound with the elemental vector for MDD. We also
encode general association by bundling the elemental vector for MDD bound with
the elemental vector for general association (GA), ensuring that two concepts re-
lating to the same third concept will have similar vectors, even if they relate to
it in different ways. In symbols, we have that S(fluoxetine) += E(TREATS)
® E(MDD) + E(GA) ® E(MDD).

The PSI space was derived from a set of 22,669,964 predications extracted from cita-
tions added to MEDLINE over the past decade by the SemRep natural language pro-
cessing system [21], which extracts predications from biomedical text using domain
knowledge in the Unified Medical Language System [22]. For example, the predica-
tion “fluoxetine TREATS MDD” is extracted from “patients who have been success-
fully treated with fluoxetine for major depression.” In a recent evaluation of SemRep,
Kilicoglu et al. report .75 precision and .64 recall (.69 f-score) [23].

4 Analogical Retrieval

Now that we have built our PSI space, we can use it to search for relations and analogies
of concepts as described in the abstract and introduction. The process for performing
this search in predication space is similar to Kanerva’s XOR-based analogical mapping
[2]. Consider the vectors S(fluoxetine) and E(MDD):

S(fluoxetine) = F(MDD) ® E(TREATS) + E(MDD) ® E(GA)
S(fluoxetine) @ E(MDD) = F(MDD) @ E(MDD) ® E(TREATS)
+E(MDD) @ E(MDD) ® E(GA)
— E(TREATS) + E(GA)

When encoding many predications, the result will be a noisy version of this vector,
which should be approximately equidistant from E(TREATS) and F(GA). Therefore
we would anticipate being able to search for the treatment for schizophrenia, for ex-
ample, by finding the semantic vector that is closest to the vector “S(fluoxetine) @
E(MDD) ® E(schizophrenia).” This search approximates the single-relation analo-
gies that occur as questions in standardized tests such as the SAT, and have been the
focus of recent evaluations of distributional models that estimate relational similarity
(eg. [24]). However, useful predicate paths, such as the ISA-TREATS;,,, example, of-
ten involve more than one relation. The mathematical properties of the binary PSI space
suggest that a similar approach can also be used to search across two relations. Consider
the following steps that occur during generation of the binary PSI space:
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S(amoxicillin) += E(antibiotics) ® E(ISA)
S(streptococcal tonsilitis) += E(antibiotics) ® E(TREATSi,y)
S(prozac) += E(fluoxetine) ® E(ISA)
S(MDD) += E(fluoxetine) ® E(TREATS;yy)

Assuming for the sake of simplicity that these are the only encoding operations that
have taken place, an example cue could be generated as follows:

S(amoxicillin) @ S(streptococcal tonsilitis)

E(ISA) ® E(antibiotics) @ E(antibiotics) ® F(TREATS;,y)
E(ISA) @ E(TREATS )

S(amoxicillin) @ S(streptococcal tonsilitis)

E(fluoxetine) ® E(TREATSiny) @ E(TREATS;,y) ® E(ISA)
E(fluoxetine) ® E(ISA)

= S(prozac)

S(MDD)

O

Table 2l illustrates analogical retrieval with single and dual predicates. For single pred-
icates (top three examples), the cue is constructed by combining E(schizophrenia)
with the elemental and semantic vector of a pair of concepts, using XOR. The nearest
semantic vector to this composite cue is in all cases related to schizophrenia by the
same relation that links the example pair: emd 57445 is an experimental treatment for
schizophrenia [25], syngrl is a gene that has been associated with it [26], and certain
mannerisms are relevant to the diagnosis of schizophrenia.

In the case of dual predicates (bottom three examples), the cue is constructed by
combining the semantic vector for schizophrenia with the semantic vectors for a pair
of concepts, using XOR. Depression is treated by antidepressants such as prozac. Sim-
ilarly, schizophrenia is treated by antipsychotic agents, such as mazapertine succinate.
Blood glucose fluctuation is a side effect of diabetic treatment, as impaired work per-
formance is a side effect of drugs treating schizophrenia. Finally, chronic confusion

Table 2. Schizophrenia-related searches, single- (top 3) and dual-predicate (bottom 3).
MDD=Major Depressive Disorder. Scores indicate 1 —normalized hamming distance.

Example pair Nearest predicate Nearest neighboring
semantic vector
S(fluoxetine) @ E(MDD)  E(TREATS) 0.56 S(emd 57445)

S(apolipoprotein e gene)  p(ASSOCIATED WITH) 0.76 S(syngrl)
@ E(alzheimer’s disease)

S(wheezing) @ E(asthma) E(DIAGNOSES) 0.63 S(mannerism)

S(prozac) @ S(MDD) E(ISA) ® E(TREATSiny) 0.54 S(mazapertine succinate)
S(diabetes mellitus)@ E(TREATSinv)® 0.55 S(impaired job

S (blood glucose fluctuation) E(CAUSESinv) performance)

S (chronic confusion) @ E(ISA) ® 076 S(acculturation

E(COEXISTS WITH) 76 difficulty)

S(alzheimer's disease)
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occurs in dementias such as Alzheimer’s, as acculturation difficulty occurs in psychotic
disorders such as schizophrenia.

4.1 Evaluation

To evaluate the single-predicate approach, we extracted a set of test predications from
the database using the following procedure. Firstly, a set of candidate predicates was
selected. Only predicates meeting the previously-listed constraints for inclusion in our
vector space model that occurred one thousand or more times in the data set were con-
sidered, leaving a total of 37 predicate types (such as DIAGNOSES). For each of these
predicates, fifty predications were randomly selected taking into account the strength of
association between the example pair (e.g. S(wheezing) @ E(asthma)) and the predi-
cate (e.g. E(DIAGNOSES)) such that ten examples were obtained for each predicate
that fell into the following ranges of association strength: 0.5211-0.6, 0.61-0.7, 0.71-
0.8, 0.81-0.9, 0.91-1.0. We sampled in this manner in order to test the hypothesis that
better examples would have a stronger cue-to-predicate association strength, and ex-
cluded any example pairs in which this association was less than 0.5211, a value 5SD
above the median similarity between a set of 5000 random vectors. Only predicates in
which ten examples in each category could be found were tested, resulting in a test
set of 1400 predications, fifty per eligible predicate (n=28). For each predicate, every
example was tested against every other example pair (n=49) using three approaches
summarized in Table 3. 68,600 searches were conducted with each approach. In each
case, the nearest semantic vector (e.g. S(mannerism)) to the composite cue vector (e.g.
S(wheezing) @ E(asthma) ® E(schizophrenia)) was retrieved, and tested for occur-
rence in a predication with the object of the second pair (e.g. schizophrenia), and the
same predicate as the example pair (e.g. DIAGNOSES).

To evaluate the paired-predicate approach, we selected fourteen relationship pairs
representing predicate paths of interest, including our recurring ISA-TREATS;,,, ex-
ample, and pairs such as INHIBITS-CAUSES;,,, that are of interest for literature-
based discovery [20]. For each pair, we extracted sixty example concept pairs by first
selecting for each subject (e.g. prozac) occurring in a relationship of the first type (e.g.
ISA) the bridging term (e.g. fluoxetine) and object (e.g. MDD) of the second relation-
ship (e.g. TREATS;,) with the strongest cue-to-predicate-pair association (similar-
ity between S(prozac) @ S(MDD) and F(ISA) @ E(TREATS;yy)). This constraint
ensured that it was possible to obtain an adequate number of examples at each cue-to-
predicate-pair threshold level. These strongly associated paths were sampled at random,
such that sixty example pairs were drawn for each predicate pair, with twenty of these
occurring in each of the threshold levels 0.5211-0.6,0.61-0.7, 0.71-1.0.

Each elemental predicate vector was bound to every other predicate vector, to gener-
ate a set of 5,929 paired predicate vectors, such as E(TREATS;,,) ® E(ISA), to use
for the dual-relation equivalent of the 2-STEP procedure. This and other procedures
used to generate cues for this experiment are shown in Table 3. The major difference
from the single-relation approach is the use of the semantic vector for both subject and
object of the example pair to generate the cue. Also, the general association step does
not require binding, as we would anticipate the semantic vectors for two objects asso-
ciated with the same subject being similar once constructed. Each of the example pairs
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Table 3. Approaches to cue vector generation. subi, obj; = subject and object from example
pair. Obj2 = test object. E(pred nearest) = nearest predicate vector ((1) single-predicate) or bound
predicate vectors ((2) dual-predicate) to bound example pair. GA = general association.

Method Bound cue vector Example
1-STEP (1) S(sub1)@E(obj1)®E(obj2) S(fluoxetine) © E(MDD)
® F(schizophrenia)
2-STEP (1) E(pred nearest) ® E(obj2) FE(schizophrenia) ® F(TREATS)
GA (1) E(GA) ® E(obj2) E(GA) ® E(schizophrenia)
1-STEP (2)  S(sub1)@S(obji)@S(objz2) S(prozac) @ S(MDD) @ S(schizophrenia)
2-STEP (2) E(pred nearest) @ S(obj2) E(ISA) ® E(TREATSiny)
@ S(schizophrenia)
GA (2) S(objz2) S (schizophrenia)

(n=60) for each predicate pair was tested with the object of every other example pair in
the set (n=59), for a total of 49,560 searches per method.

Approaches to cue generation are summarized in Table [3l The generated cues are
intended to be similar to the vector representation of the concept (or concepts) provid-
ing a solution to an analogical problem of the form sub; is to obj; as what is to objy?
1-STEP cue generation binds the example pair to the target object directly. The 2-STEP
approach first finds the nearest predicate vector (single predicates) or bound predicate
vectors (dual predicates) to the example pair, and then binds this to the target object.
The store of predicate vectors here acts as a “clean-up memory” (Plate 1994 [19], pg
101), removing noise from the approximate representation of the predicate (or pair of
predicates) retrieved from the example pair. Finally, as a control, we retrieve the con-
cept that our model associates most strongly with the object when the relation type is
not considered (General Association, GA). As an additional control, we repeated both
experiments while searching the space of elemental vectors using the elemental vector
for the test object, to provide a random baseline. As this failed to produce any correct
mappings in the vast majority of cases, the results are not shown.

4.2 Results

The results of the single predicate experiment are shown in Fig. 1 (left). The y-axis
shows the mean number of test cases in which the retrieved concept occurred in a pred-
ication with the test target in which the predicate matched that linking the example pair.
Both the 1-STEP and 2-STEP approaches are sensitive to the strength of association
between the example pair and the predicate that links them. As might be expected, an
intermediate step utilizing clean-up memory improves performance in the 2-STEP ap-
proach, particularly as the cue-to-predicate association drops. These results show that
an example concept pair can be used to prime search to retrieve concepts that are related
to a cue concept in a particular way, with (2-STEP) or without (1-STEP) retrieving a
representation of the relationship concerned. This approach is particularly effective with
example pairs that have a strong association to the representation of the predicate of in-
terest. The GA approach retrieves a correct mapping less frequently, and is not sensitive
to cue-to-predicate association.
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Fig. 1. Analogical retrieval: single (left) and dual (right) predicates. Error bars = standard error

Fig. 1 (right) shows the results of the dual-predicate experiment, which are similar
to those for single-relation searches: at stronger cue-to-predicate associations, correct
mappings are found in most cases, whereas with cue-to-predicate associations closer to
those anticipated between randomly generated vectors, performance falls. This drop in
performance is mitigated to some extent by the use of the 2-STEP approach, in which
clean-up memory is used to obtain the original vector representation of the paired rela-
tionship concerned. The GA approach is less effective here. While these results do indi-
cate search-by-example is effective in certain cases, the constraint that cue-to-predicate
strength should fall in the upper strata limits this approach to a small set of example
cues. For example, in the case of the ISA-TREATS;,, predicate pair, the distribution
of cue-to-predicate associations in the set (n=114,658) from which our example cues
were sampled (which itself included only the best example for each subject) skews left-
ward, with a median association strength of 0.522. A similar distribution was observed
for single-predicate cues. It is possible to compensate for this using the 2-STEP ap-
proach, but this is not ideal for paired relations: with r relations the 2-STEP approach
requires searching through 2 possible predicate pairs. However, as each weak example
should have some association with the desired path, we would anticipate the superpo-
sition of several weak examples generating a vector with a stronger cue-to-predication-
path strength than any of its components. To evaluate this hypothesis, we generated a
second set of example pairs for the ISA-TREATS;,,, predicate path. These examples
were drawn from the aforementioned set, with the inclusion criterion that their cue-to-
predicate association must fall in the weakest category (0.5211 - 0.6). For each example,
we measured the cue-predicate association of the example pair (S(suby) @ S(obj1)). As
we added new examples, we also measured the association strength between the super-
position of all examples up to this point (S(suby )@ S(obj1)+. ..+ S(suby) @S (objy,))
and the desired predicate (E(ISA) ® E(TREAT Siny)).

The results of this experiment are shown in Fig 2 (left), which shows a rapid rise in
cue-to-predicate strength (solid line) as weak examples are added to the superposition.
The strength of this association quickly exceeds the cumulative mean (dashed line) as-
sociation strength of all of the examples added up to that point (individual dots). As
shown in Fig. 2 (right), this effect is also observed with respect to performance on the
ISA-TREATS;, test examples (n=60). This is a particularly important result from the
“generalized quantum” point of view. We have used repeated binding and bundling to
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create a superposition of compound systems that has not been (and probably cannot be)
represented as a product of two individual simple systems. In the quantum literature,
this phenomenon is known as “entanglement”. Thus our experiments demonstrate that
several weak example relationships can be superimposed to obtain an entangled repre-
sentation of the typed relation which is a much more accurate guide for inferring new
examples.

5 Discussion

In this paper, we show that relational similarity emerges as a natural consequence
of the PSI approach. This similarity is sufficient to solve proportional analogy prob-
lems stretching across one and two relations, given either a strong example with well-
preserved similarity to the relation(s) of interest, or a set of weaker examples. These
findings are pertinent to our ongoing research in the area of literature-based discov-
ery and abductive reasoning. Previously, we have discussed various forms of abductive
reasoning and constraints operative in such reasoning, and proposed that similarity of
some kind is often of importance in finding a link between a starting point of an inquiry
and fruitful novel connection to the starting point [27]. The associations are usually
weak and indirect, but likely critical in making the connection. Analogy is one form of
such indirect connection. An analogy and the starting point have relationships in com-
mon [28] so presumably finding cases of common relations is at the heart of analogy
retrieval. There have been several implementations of vector encoding to accomplish
analogical reasoning [29], [30]. These modeling efforts aim to address several aspects
of analogical reasoning: retrieving potential analogies, mapping the elements of the po-
tential target analogy to the elements of the starting point, and making inferences about
the starting point from the target analogy. Our goals are more modest in some respects
and more ambitious in others. We are initially only concerned with retrieving potential
analogies, but we aim to do this on a large scale using large numbers of predications
that have been automatically extracted from the biomedical literature, while most of the
models of analogies have worked with small sets of custom-constructed predications re-
lating to a few stories. Through analogical retrieval, we are able to direct search across
predicate paths that have been shown to be useful for literature-based discovery [20],
without incurring an exponential increase in the size of the search space when more
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than one relationship is considered. The facility for search of this nature is an emer-
gent property of the PSI model: candidates for retrieval are identified on the basis of
their similarity to a vector representing a novel relation type, composed from elemen-
tal relations during the process of model generation. An approximation of this vector
is inferred from the superposition of a set of example pairs, providing an efficient and
accurate mechanism for directed search.

6 Conclusion

In this paper, we show that accurate example-based analogical retrieval across single
and dual-predicate paths emerges as a natural consequence of the encoding of typed
relations in high-dimensional vector space. Given a suitable example pair, or set of
less suitable example pairs, it is possible to retrieve with accuracy concepts that relate
to another concept in the same way as the concepts in the example pair relate to one
another, even if this relationship involves two relations and a third bridging concept.
In the case of dual relations, search is achieved without the need to retrieve either the
bridging concept or the relations involved. The size of the search space does not increase
when dual-relation paths are sought, providing an efficient means to direct predication-
based search toward pathways of interest for literature-based discovery.
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Abstract. Spectral theory in mathematics is key to the success of as
diverse application domains as quantum mechanics and latent semantic
indexing, both relying on eigenvalue decomposition for the localization
of their respective entities in observation space. This points at some
implicit “energy” inherent in semantics and in need of quantification.
We show how the structure of atomic emission spectra, and meaning in
concept space, go back to the same compositional principle, plus propose
a tentative solution for the computation of term, document and collection

’ content.

“energy’

1 Introduction

In quantum mechanics (QM), the spectrum is the set of possible outcomes when
one measures the total energy of a system. Solutions to the time-independent
Schrédinger wave equation are used to calculate the energy levels and other
properties of particles. A non-zero solution of the wave equation is called an
eigenenergy state, or simply an eigenstate. The set of eigenvalues {E;} is called
the energy spectrum of the particle. This energy spectrum can be mapped to
frequencies in the electromagnetic spectrum.

In this paper, we argue that by decomposing a semantic space, one can gain a
“semantic spectrum” for each term that makes up the space. This makes sense
for the following reason: mapping spectra to the electromagnetic spectrum is a
unification effort to match energy and intellectual input stored in documents
by modelling semantics on QM. Energy is a metaphor here, lent from machine
learning which imitates pattern recognition and pattern naming in cognitive
space. We adopted this as our working hypothesis based on [1].

To this end, we ascribe significance to two aspects of the above parallel. Both
make the comparison between semantics and QM reasonable. The first is an al-
leged similarity between them, namely eigendecomposition and related methods
leading to meaningful conclusions in both. The second is the evolving nature of
QM and semantic systems, based on interactions among constituents, leading to
structuration. The insights we offer in this paper do not rely on extensive quan-
titative benchmarks. Instead, the paper reports our initial foray into exploring
the above metaphor.

This paper is organized as follows. Section 2 discusses core concepts in QM
relevant to this treatise. Section 3 gives an overview of semantic spaces in general
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and Section 4 describes their spectral composition in particular, including their
treatment as observables, corpus and term semantic spectra, and indications for
future work such as evolving semantics. Section 5 sums up the conclusions.

2 Related Concepts in Quantum Mechanics and
Spectroscopy

In quantum mechanics, observables are not necessarily bounded, self-adjoint
operators and their spectra are the possible outcomes of measurements. The
Schrodinger wave equation is an equation that describes how the quantum state
of a physical system changes over time. Approximate solutions to the time-
independent Schriodinger wave equation are commonly used to calculate the en-
ergy levels and other properties of atoms and molecules. From this, the emission
spectrum is easy to calculate.

Emission is the process by which two quantum mechanical states of a particle
become coupled to each other through a photon, resulting in the production of
light. The frequency of light emitted is a function of how far away in energy
the two states of the system were from each other, so that energy is conserved:
the energy difference between the two states equals the energy carried off by the
photon (Figure [I).

Since the emission spectrum is different for every element of the periodic
table, it can be used to determine the composition of a material. In general,
spectroscopy is the study of the interaction between matter and radiated energy.
A subset of spectroscopic methods, called spectrophotometry, deals with visible
light, near-ultraviolet, and near-infrared wavelengths. For the rest of this paper,
we limit ourselves to visible spectroscopy, because this approach focuses on the
electronic orbitals (i.e., where the electrons can be found), whereas, for instance,
infra-red spectroscopy is concerned with the internal motions of the molecule
(how the bonds stretch, angles bend, etc.).

A spectrogram is a spectral representation of an electromagnetic signal that
shows the spectral density of the signal. An example is astronomical spectroscopy
that studies the radiation from stars and other celestial objects (Figure[Z). While
discrete emission bands do not show clearly, the intensity of certain wavelengths
indicates the composition of the observed object. The emission lines are caused
by a transition between quantized energy states and theoretically they look very
sharp, they do have a finite width, i.e. they are composed of more than one
wavelength of light. This spectral line broadening has many different causes,
with the continuum of energy levels called “spectral bands”. The bands may

Fig. 1. The emission spectrum of hydrogen
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Fig. 2. The visible spectrogram of the red dwarf EQ Vir (figure adapted from [2])

overlap. Band spectra are the combinations of many different spectral lines,
resulting from rotational, vibrational and electronic transitions.

3 A Brief Overview of Semantic Spaces

We regard semantic spaces as algebraic models for representing terms as vectors.
The models capture term semantics by a range of mathematical relations and
operatio