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Abstract. Scene classification plays an important role in multimedia
information retrieval. Since local features are robust to image transfor-
mation, they have been used extensively for scene classification. How-
ever, it is difficult to encode the spatial relations of local features in the
classification process. To solve this problem, Geometric Local Features
Integration(GLFI) is proposed. By segmenting a scene image into a set
of regions, a so-called Region Adjacency Graph(RAG) is constructed to
model their spatial relations. To measure the similarity of two RAGs,
we select a few discriminative templates and then use them to extract
the corresponding discriminative graphlets(connected subgraphs of an
RAG). These discriminative graphlets are further integrated by a boost-
ing strategy for scene classification. Experiments on five datasets validate
the effectiveness of our GLFI.
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1 Introduction

Scene classification is an important issue for many multimedia applications, such
as image retrieval and surveillance. To deal with scene classification successfully,
it is essential to have proper discriminative image features. In the evolution
of image analysis, many features have been proposed and they can be catego-
rized into two groups: global features and local features. Global features, e.g.,
eigenspace [1], represent an image by a single vector and are hence tractable
for conventional classifiers, such as Support Vector Machine(SVM) [13]. How-
ever, global features are sensitive to occlusions and clutters, which result in poor
classification accuracy. In contrast to global features, local features, e.g., Scale
Invariant Feature Transform(SIFT) [12], are extracted at interest points and are
robust to image deformations. Different images may produce different number
of local features. In order to be tractable for conventional classifiers, these lo-
cal features are often integrated into an orderless bag-of-features representation.
Unfortunately, as a non-structural representation, the bag-of-features represen-
tation ignores the spatial relations of local features, which prevents it from being
discriminative.
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To encode the spatial relations of local features for scene classification, graph
based local feature integration [2–7] is proposed. In [2, 3], each image is modelled
as a tree and image matching is formulated into tree matching. Unfortunately,
compared to general graphs, the capability of modelling regions’ spatial rela-
tions by trees is limited. Felzenszwalb et al. [4] modelled the relation of different
parts of an object as a spring. However, [4] relies heavily on the optimal back-
ground subtraction. In [5], Hedau et al. defined a new measure of pairwise regions
based on the overlaps between regions; but just region overlaps are too simple
to capture the complicated spatial relations of regions. Keselaman et al. [6] de-
fined a graph, called Least Common Abstraction (LCA), for an object. However,
LCA cannot be output to a conventional classifier, e.g., SVM [13] directly. Walk
kernel [7] captures the walk structures of regions by a finite sequence of neigh-
boring regions. Unfortunately, as demonstrated in [8], the totter phenomenon
brings noise to walk kernel [7] and thus makes it less discriminative.

(c) Discriminative graphlets boosting(a) Construct RAG for each image (b) Obtain discriminative graphlets
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Fig. 1. The flowchart of our GLFI

To solve or at least reduce the aforementioned problems, a new local fea-
ture integration method GLFI is proposed for scene classification. As shown
in Fig. 1, first of all, each scene image is segmented into a set of regions. To
model the spatial relations of these regions, a graph called RAG is constructed
subsequently (Fig.1(a)). Then, to measure a pair of RAGs, it is straightforward
to compare all their pairwise graphlets. Unfortunately, based on graph theory,
the number of graphlets of an RAG is huge, making the graphlet enumeration
computational intractable. Towards an efficient measure, it is necessary to se-
lect a few discriminative graphlets for comparison. As the number of candidate
graphlet for selection is huge, aiming at fewer candidates, we obtain templates
by discretizing the continuous labels of graphlets into discretized ones, then
only highly discriminative templates are selected and further used to extract the
corresponding discriminative graphlets (Fig.1(b)). Finally, these discriminative
graphlets are integrated by a boosting strategy for scene classification (Fig.1(c)).
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2 Region Adjacency Graph(RAG)

A scene image usually contains millions of pixels. If we treat each pixel as a local
feature, high computational cost will make scene classification computational
intractable. Fortunately, a scene image can be represented by a set of clusters
because pixels are usually highly correlated with their spatial neighbors, wherein
each cluster consists of neighboring pixels with consistent color intensities. Thus,
we propose RAG to represent a scene image by a set of regions and encode their
spatial relations in a labelled graph.

(a). A scene image (c). Graphlet (d). Template

1 2

1

6

2

47

5 1
(b). RAG

Fig. 2. The flowchart from a scene image(a) to its RAG(b) and further to its graphlet(c)
and its template(d)

As shown in Fig.2(a, b), given a scene image I, we segment it into a set of
regions {r1, r2, · · · , rM} (Unsupervised Fuzzy Clustering(UFC) [17] based seg-
mentation is applied because of its stability), and an RAG G is constructed to
model a scene image I, i.e.,

G = (V, E, H, L, h, l) (1)

where V = {v1, v2, · · · , vM} is a finite set of vertices, vi represents region ri;
h : V → H is a function assigning a label to each v ∈ V , i.e., h(v) is a row vector
representing the RGB histogram of the region corresponding to v; l : V → L
is a function assigning an index to each vertex v ∈ V , i.e., l(v) means the
region corresponding to v is obtained from the l(v)-th segmentation(multiple
segmentations are applied); E = {(vi, vj)|vi, vj ∈ V ∧ l(vi) = l(vj) ∧ vi ∼ vj} is
a set of edges, vi ∼ vj means two regions corresponding to vi and vj are spatial
adjacent.

As shown in Fig.2(c), given an RAG G, we call S a graphlet of G if S is a
connected subgraph of G. For two graphlets S and S

′
, they are isomorphic [8],

denoted by S ∼= S
′
, if there exists a bijection ϕ : V → V

′
such that for each

u, v ∈ V ,(u, v) ∈ E iff (ϕ(u), ϕ(v)) ∈ E
′

and h(u) = h(ϕ(u
′
)). If S ∼= S

′
and

S
′ ⊆ G

′
, we call S subgraph isomorphic to G

′
or, G

′
supergraph isomorphic to

S, denoted by S � G
′
.

3 Discriminative Graphlets Selection

Based on the definition of RAG, the similarity of a pair of scene images I and
I

′
depends on their corresponding RAGs G and G

′
. To measure the similarity

between G and G
′
, it is straightforward to compare all their pairwise graphlets.
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However, 1). based on graph theory, the number of graphlets of an RAG is
O(MM )(usually M > 50); 2). non-discriminative graphlets make no contribution
to scene classification. Therefore, it is necessary to select a few discriminative
graphlets for scene classification.

Towards an efficient selection of discriminative grpahlets, a three-step method
is developed: firstly, we obtain a small set of templates from the training RAGs
and accordingly derive the class label of template. Then, a few discriminative
templates are selected. Finally, these discriminative templates are used to extract
the corresponding discriminative graphlets.

3.1 Template and Its Class Label

As shown in Fig.2(d), to obtain a template, a codebook HD = [hD
1 , hD

2 , · · · , hD
P ]

is generated by k-means [13] on all the training vertex labels firstly, then the
continuous label h(v) of vertex v is discretized into hD(v) by:

hD(v) = arg min
h∈HD

||h(v) − h|| (2)

where || · || is the Euclidean norm. Based on HD and hD, given an graphlet S, we
define its corresponding template T is obtained by mapping g : S → T , where

T = {V, E, HD, L, hD, l} (3)

Since template is a label-discretized graphlet, the number of candidate templates
for selection is much smaller than that of graphlets, thus it is feasible to select
a few discriminative ones for scene classification. Before selecting discriminative
templates, we need to measure template’s discrimination, i.e., how accuracy of
a template predicting the class labels of scene images. As a label-discretized
graphlet, template describes the spatial relations of local features in an approx-
imate manner, to accurately predict the class label of template T , given an
RAG G , it is necessary to find graphlets in G corresponding to T . Formally, we
call graphlets S satisfying T , if g(S) = T , and graphlets of G satisfying T are
collected into G(T ), i.e.,

G(T ) = {S|S ⊆ G ∧ g(S) = T } (4)

If G(T ) �= ∅, each graphlet S ∈ G(T ) can be represented as a vector h(S), i.e.,

h(S) = ∪v∈S [h(v)] (5)

where ∪[·] is a row-wise vector concatenation operator.
Based on (5), given a set of training RAGs G = {G1, G2, · · · , GN} and a

template T , we obtain a set of feature vectors H = {h(S)|S ∈ G(T ) ∧ G ∈ G},
and further train a SVM classifier [13] C based on {H,K}, where K is the set
of class labels corresponding to RAGs in G. Based on trained SVM classifier C,
given an RAG G and a template T , the class label k ∈ {1, 2, · · · , K} of graphlet
S ∈ G(T ) is obtained based on the posterior probability P (G → k|S) output
from C, i.e.,

S → argmax
k

P (G → k|S) (6)
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Since there may be more than one graphlets in G satisfying template T , i.e.,
|G(T )| ≥ 1, the label of G(T ) is derived from a multiple classifiers combin-
ing strategy [19] (under the sum rule), i.e., the posterior probability for G(T )
belonging to class k ∈ {1, 2, · · · , K} is:

P (G → k|G(T )) = (1 − Z)P (G → k) +
Z∑

i=1

P (G → k|Si) (7)

where Z = |G(T )|; P (G → k) is the probability of RAG G belonging to class k
(computed from the training RAGs), i.e.,

P (G → k) =
|G → k ∧ G ∈ G|

N
(8)

Based on (7), the class label of G(T ) is obtained by:

G(T ) →
{

argmaxk P (G → k|G(T )) if G(T ) �= ∅
0 if G(T ) = ∅ (9)

where G(T ) → 0 means decision cannot be made on G(T ).

3.2 Selecting Discriminative Templates

In the extreme case, a template T is optimal if ∃k ∈ {1, 2, · · · , K}, the following
two conditions are satisfied:

C1: P (G(T ) → k|G → k) = 1
C2: P (G → k|G(T ) → k) = 1

where C1 maximize the descriptive ability of template T , and C2 maximize the
discriminative ability of template T . However, as proved in [13], in the case of
noisy training data, such optimal template may not always exist. Therefore, it
is necessary to search for a set of sub-optimal templates, i.e., ∃k ∈ {1, 2, · · ·K},
such that:

C3: P (G(T ) → k) ≥ min(P (G → k))
C4: P (G → k|G(T ) → k) ≥ α ∗ P (G → k)

To satisfy C3, we obtain a set of discretized RAGs GD = {GD|GD = g(G)∧G ∈
G} based on (2), then the frequency of template T is computed by counting how
many GD ∈ GD are supergraph isomorphic to T , i.e.,

P (G(T )) =
|T � GD ∧ GD ∈ GD|

N
(10)

Based on (10), the frequency of a template belonging to class k ∈ {1, 2, · · · , K}
is computed by:

P (G(T ) → k) =
|T � GD ∧ GD ∈ GD ∧ GD = g(G) ∧ G → k|

N
(11)
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For a template T , a larger P (G(T ) → k) means T has a higher generalization
ability towards class k. In our approach, an efficient frequent subgraph mining
algorithm, FSG [18], is employed to output templates whose P (G(T ) → k) ≥
min(P (G → k))

To satisfy C4, given a template T , its measure of discrimination is defined as
largest discrimination towards class k ∈ {1, 2, · · · , K}, i.e.,

disc(T ) = max
k

[
P (G → k|G(T ))

P (G → k)

]
(12)

where denominator is computed based on (8); the numerator is computed based
on (7). Template whose disc(T ) < α is regarded as a less discriminative one.
Based on C3+C4, we present the algorithm of discriminative template selection
in Table 1.

Table 1. Discriminative Template Selection(Algorithm 1)

input: A set of training data D = {Gi, ki}N
i=1; Threshold α;

output: A set of discriminative template L;
begin:

1. For each RAG Gi in D, obtain the corresponding discretized-RAGs GD
i and save them into GD ;

2. Conduct FSG on GD to output templates T whose P (G(T )→ k) ≥ min(P (G→ k)) into L ;
3. for each template T ∈ L

if disc(T ) < α, then L ← L \ T ;
end for;

Return L;
end

3.3 Extracting Discriminative Graphlet

Each template T ∈ L (output from Algorithm 1) is discriminative. Thus given an
input RAG G, we conduct depth-first-search on G, and graphlets of G satisfying
T are extracted for scene classification. It is noticeable that, vertices in RAG are
of low degree, i.e., less than 5 on average, so its computational is approximately
linear increasing with the number of vertices in RAG G.

4 Discriminative Graphlets Boosting

To integrate the extracted discriminative graphlets for scene classification, a
boosting strategy is developed. In detail, for each template T ∈ L, a SVM
classifier C is trained as described in Section 3.1. Based on {Ci}|L|i=1, we develop a
multi-class boosting algorithm to integrate the |L| weak classifiers {Ci}|L|i=1 into
a strong one C. We present the algorithm of discriminative graphlets boosting
in Table 2.

5 Experimental Results and Analysis

To demonstrate the advantage of our GLFI, we experiment on five datasets:
Scene15 [9], Scene67 [20], Caltech256 [14], PASCAL VOC 2009 [15] and LHI [16].
Details of the five datasets are presented in Table 3.
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Table 2. Discriminative Graphlets Boosting(Algorithm 2)

input: A set of training RAGs and their corresponding labels: {Gj , kj}N
j=1;

A set of weak classifiers {Ci}|L|
i=1; Iteration number of boosting R;

output: A strong classifier: C(G);
begin:
1. Set the training RAG weights wj = 1

N , j = 1, 2, · · · , N ;
2. for t = 1, 2, · · · , R

(a).Select a weak classifier C(t) from {Ci}: arg minC(t)∈{Ci}
∑ N

j=1 wj ·
∏

(Gj(Ti) � k);

(b).Compute weighted training error: errt =

∑N
j=1 wj·∏(Gj (Ti)�k)

∑N
j=1 wj

;

(c). at ← log (1−errt)
errt + log(K − 1);

(d). Update the training RAG weight: wj ← wj · exp[at ·∏ (Gj(T ) � k)];
(e). Re-normalize wj ;
end for;

Return C(G) = arg maxk

∑ T
t=1 at ·∏ (G(Ti)→ k);

end

Table 3. Details of the five datasets

Dataset # of categories. # of images. # of training images # of test images

Scene15 15 4485 100 per category rest per category

Indoor67 67 15620 80 per category 20 per category

Caltech256 256 30,607 50 per category rest per category

VOC2009 20 14,743 7,054 7,689

LHI 5 20 N/A N/A
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Fig. 3. Classification accuracy of the compared methods on Scene15(top left),
Scene67(top right), Caltech256(bottom left) and PASCAL VOC 2009(bottom right)

5.1 GLFI versus Representative Local Features Integration
Methods

In Fig. 3, we compare our GLFI with five representative local feature integra-
tion methods, i.e., fixed length walk kernel(FLWK) [7], fixed length path kernel
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(FLPK) [8], multiresolution histogram(MRH) [10], spatial pyramid matching
kernel(SPMK) [9] and region-based hierarchical image matching(RHIM) [2]. The
experimental settings are as follows: the lengths of FLWK [7] and FLPK [8] are
tuned from 2 to 10; for MRH [10], we smooth images with RBF kernels of 15 gray
levels; for SPMK [9], each image is decomposed into over 1 million SIFT [12]
features of 16 × 16 pixel patches computed over a grid with spacing of 8 pixels,
then a codebook of size 400 is generated by k-means [13]; for our GLFI, the
times of multiple segmentations, max(L), is tuned from 2 to 7, and the iteration
number of boosting, R, is set to 200.

In Table 4, we present the classification accuracy of each category on PASCAL
VOC 2009 . As seen, our GLFI outperforms the three compared graph based local
feature integration methods significantly on most categories, which is consistent
with our theoretical analysis in Section 1.

Table 4. Averaged classification accuracy of 20 categories on PASCAL VOC 2009(%)

aero bicycle bird boat bottle bus car cat chair cow

FLWK 72.2 40.6 41.2 42.1 23.9 56.6 39.8 44.3 47.2 20.2

FLPK 73.1 42.8 44.3 50.4 22.7 57.1 41.2 43.9 43.5 22.3

RHIM 60.8 22.1 25.3 33.2 11.3 34.6 30.1 26.3 30.2 13.2

GLFI 75.6 54.1 60.6 58.2 33.4 65.2 56.5 56.4 48.5 37.7

dining dog horse motor person potted sheep sofa train tv

FLWK 32.3 33.1 42.2 44.3 76.6 27.3 30.9 26.7 63.8 44.4

FLPK 33.7 34.4 44.5 44.5 73.2 29.6 32.1 28.4 65.3 46.7

RHIM 13.4 22.1 26.4 25.4 56.8 9.6 17.6 10.2 44.8 30.1

GLFI 47.7 43.2 60.2 63.2 74.6 29.4 31.3 40.2 77.3 51.1

5.2 Influence of Different Segmentation Settings

In retrospect to the proposed GLFI, we notice that the influence of segmenta-
tion operation in the construction of RAG is nonnegligible. To evaluate scene
classification under different segmentation settings, based on (12), we report the
frequent template’s(output from Step2 of Algorithm 1) meausre of discrimination
under benchmark-segmentation, deficient-segmentation, and over-segmentation.
We experiment on PASCAL VOC 2009 [15] beacause its segmentation bench-
mark is helpful to make a precise comparison.

As shown in Fig. 4, templates from benchmark-segmentation achieves the
highest discrimination, with the highest disc value of 35.4, followed by the
over-segmentation 33.7 and deficient-segmentation 31.2. The explanations are
as follows: 1).the benchmark segmentation is obtained by manually annotation,
which encodes the high-level semantic understanding, thus it is unavoidable that
UFC [17] may be less accurate than the benchmark segmentation; 2).in contrast
with deficient-segmentation, more regions are obtained in over-segmentation set-
ting, so it is rarer for one region spans several components, fewer discriminative
components are neglected.
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Fig. 4. disc value of templates under 3 different segmentation settings

5.3 Visualization of the Discriminative Graphlets

A unique property of our GLFI is the ”transparency” of the scene classification
model. As shown in Fig. 5, we visualize the the most discriminative graphlets
of aerial images in LHI [16]. As seen, discriminative graphlets from different
categories have different structure pattern, which further validates the intuition
of our GLFI.

(b) Marine

(d) Residential

(a) Intersection

(e) School

(c) Parking

Fig. 5. Visualized discriminative graphlets

6 Conclusions

In this paper, a new local feature integration method GLFI is proposed for scene
classification. First, an RAG is constructed to encode the geometric property and
color intensity distribution of scene image. Then, the discriminative graphlets are
selected from the RAGs. Finally, these discriminative graphlets are integrated
by a boosting strategy for scene classification. Extensive experiments on five
datasets validate the effectiveness of our GLFI.
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