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Preface

This book and its sister volumes constitute the proceedings of the 18th Inter-
national Conference on Neural Information Processing (ICONIP 2011) held in
Shanghai, China, during November 13–17, 2011. ICONIP is the annual confer-
ence of the Asia Pacific Neural Network Assembly (APNNA). ICONIP aims to
provide a high-level international forum for scientists, engineers, educators, and
students to address new challenges, share solutions, and discuss future research
directions in neural information processing and real-world applications.

The scientific program of ICONIP 2011 presented an outstanding spectrum of
over 260 research papers from 42 countries and regions, emerging from multidis-
ciplinary areas such as computational neuroscience, cognitive science, computer
science, neural engineering, computer vision, machine learning, pattern recogni-
tion, natural language processing, and many more to focus on the challenges of
developing future technologies for neural information processing. In addition to
the contributed papers, we were particularly pleased to have 10 plenary speeches
by world-renowned scholars: Shun-ichi Amari, Kunihiko Fukushima, Aike Guo,
Lei Xu, Jun Wang, DeLiang Wang, Derong Liu, Xin Yao, Soo-Young Lee, and
Nikola Kasabov. The program also includes six excellent tutorials by David Cai,
Irwin King, Pei-Ji Liang, Hiroshi Mamitsuka, Ming Zhou, Hang Li, and Shan-
feng Zhu. The conference was followed by three post-conference workshops held
in Hangzhou, on November 18, 2011: “ICONIP2011Workshop on Brain – Com-
puter Interface and Applications,” organized by Bao-Liang Lu, Liqing Zhang,
and Chin-Teng Lin; “The 4th International Workshop on Data Mining and Cy-
bersecurity,” organized by Paul S. Pang, Tao Ban, Youki Kadobayashi, and Jung-
suk Song; and “ICONIP 2011 Workshop on Recent Advances in Nature-Inspired
Computation and Its Applications,” organized by Xin Yao and Shan He.

The ICONIP 2011 organizers would like to thank all special session orga-
nizers for their effort and time high enriched the topics and program of the
conference. The program included the following 13 special sessions: “Advances
in Computational Intelligence Methods-Based Pattern Recognition,” organized
by Kai-Zhu Huang and Jun Sun; “Biologically Inspired Vision and Recogni-
tion,” organized by Jun Miao, Libo Ma, Liming Zhang, Juyang Weng and Xilin
Chen; “Biomedical Data Analysis,” organized by Jie Yang and Guo-Zheng Li;
“Brain Signal Processing,” organized by Jian-Ting Cao, Tomasz M. Rutkowski,
Toshihisa Tanaka, and Liqing Zhang; “Brain-Realistic Models for Learning,
Memory and Embodied Cognition,” organized by Huajin Tang and Jun Tani;
“Clifford Algebraic Neural Networks,” organized by Tohru Nitta and Yasuaki
Kuroe; “Combining Multiple Learners,” organized by Younès Bennani, Nistor
Grozavu, Mohamed Nadif, and Nicoleta Rogovschi; “Computational Advances
in Bioinformatics,” organized by Jonathan H. Chan; “Computational-Intelligent
Human–Computer Interaction,” organized by Chin-Teng Lin, Jyh-Yeong Chang,
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John Kar-Kin Zao, Yong-Sheng Chen, and Li-Wei Ko; “Evolutionary Design
and Optimization,” organized by Ruhul Sarker and Mao-Lin Tang; “Human-
Originated Data Analysis and Implementation,” organized by Hyeyoung Park
and Sang-Woo Ban; “Natural Language Processing and Intelligent Web Infor-
mation Processing,” organized by Xiao-Long Wang, Rui-Feng Xu, and Hai Zhao;
and “Integrating Multiple Nature-Inspired Approaches,” organized by Shan He
and Xin Yao.

The ICONIP 2011 conference and post-conference workshops would not have
achieved their success without the generous contributions of many organiza-
tions and volunteers. The organizers would also like to express sincere thanks to
APNNA for the sponsorship, to the China Neural Networks Council, Interna-
tional Neural Network Society, and Japanese Neural Network Society for their
technical co-sponsorship, to Shanghai Jiao Tong University for its financial and
logistic supports, and to the National Natural Science Foundation of China,
Shanghai Hyron Software Co., Ltd., Microsoft Research Asia, Hitachi (China)
Research & Development Corporation, and Fujitsu Research and Development
Center, Co., Ltd. for their financial support.

We are very pleased to acknowledge the support of the conference Advisory
Committee, the APNNA Governing Board and Past Presidents for their guid-
ance, and the members of the International Program Committee and additional
reviewers for reviewing the papers. Particularly, the organizers would like to
thank the proceedings publisher, Springer, for publishing the proceedings in the
Lecture Notes in Computer Science Series. We want to give special thanks to the
Web managers, Haoyu Cai and Dong Li, and the publication team comprising
Li-Chen Shi, Yong Peng, Cong Hui, Bing Li, Dan Nie, Ren-Jie Liu, Tian-Xiang
Wu, Xue-Zhe Ma, Shao-Hua Yang, Yuan-Jian Zhou and Cong Xie for checking
the accepted papers in a short period of time. Last but not least, the organizers
would like to thank all the authors, speakers, audience, and volunteers.

November 2011 Bao-Liang Lu
Liqing Zhang
James Kwok
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Multimodal Identity Verification  
Based on Learning Face and Gait Cues  

Emdad Hossain and Girija Chetty  

Faculty of Information Sciences and Engineering, University of Canberra, Australia 
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Abstract. In this paper we propose a novel multimodal Bayesian approach based 
on PCA-LDA processing for person identification from low resolution 
surveillance video with cues extracted from gait and  face biometrics. The 
experimental evaluation of the proposed scheme on a publicly available database 
[2] showed that the combined PCA-LDA face and gait features can lead to 
powerful identity verification and can capture the inherent multimodality in 
walking gait patterns and discriminate the identity from low resolution 
surveillance videos.  

Keywords: Biometric, gait recognition, PCA, LDA, Bayesian, k-NN.  

1   Introduction 

Human identity verification from arbitrary views is a very challenging problem, 
especially when one is walking at a distance. Lately, recognizing identity from gait 
patterns has become a popular area of research in biometrics and computer vision, and 
one of the most successful applications of image analysis and understanding. Gait 
recognition is one of new and important biometric technologies based on behavioral 
characteristics, and it involves identifying individuals by their walking patterns. Gait 
can be captured at a distance by using low resolution devices, while other biometrics 
needs higher resolution. Gait is difficult to disguise, and can be performed at a 
distance or at low resolution and requires no body-invading equipment to capture gait 
information. Gait recognition can hence be considered as a powerful recognition 
technology for next-generation surveillance and access control applications, with 
applicability to many civilian and high security environments such as airports, banks, 
military bases, car parks, railway stations etc. Further, gait is an inherently 
multimodal biometric as proposed in [1], suggesting that there are 24 different 
components to human gait, and involves not only the lower body but also the upper 
body motion, including head and the hands. If all gait movements from full body 
images can be captured, it can be a truly an unique biometric for ascertaining identity. 
In this paper we propose a novel approach based on learning face and gait features in 
transform subspaces. And show even without inclusion of dynamic gait features, it is 
possible to obtain a significant improvement in recognition performance, provided 
appropriate transform subspaces are considered. We examined two such multivariate 
statistical subspaces based on principal component analysis (PCA) and linear 
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discriminant analysis (LDA and fusion of face and gait features. Extensive 
experiments conducted on a publicly available gait database [2] suggest that the 
proposed approach can capture several inherent multimodal components from gait, 
and face of a walking human from low resolution video. Even without dynamic cues, 
a simple, practical and robust identity verification system can be built in spite of poor 
quality data from surveillance video, and significant pose and illumination variations.  

Rest of the paper is organized as follows. Next Section discusses the background 
and the previous work, followed by our proposed scheme in Section 3. In Section 4 
we describe the details of the experimental work carried out, and a discussion on 
some of the results obtained from the experimental work. The paper concludes in 
Section 6 with conclusions and plan for further work.  

2   Background 

Current state-of-the-art video surveillance systems, when used for recognizing the 
identity of the person in the scene, cannot perform very well due to low quality video 
or inappropriate processing techniques. Though much progress has been made in the 
past decade on visual based automatic person identification through utilizing different 
biometrics, including face recognition, gait analysis, iris and fingerprint recognition, 
each of these techniques work satisfactorily in highly controlled operating 
environments such as border control or immigration check points, under constrained 
illumination, pose and facial expressions. To address the next generation security and 
surveillance requirements and for diffusion of biometrics based security systems for  
day-to-day civilian access control applications, we need a robust and invariant 
biometric trait [3] to identify a person for both controlled and uncontrolled 
operational environments. 

Face recognition has been the focus of extensive research for the past three decades 
[3]. The approaches for this task can be broadly divided into two categories: 1) 
Feature-based methods [4, 5], which first process the input image to identify and 
extract distinctive facial features such as the eyes, mouth, nose, etc. as well as other 
fiducially marks and then compute the geometric relationships among those facial 
points, thus, reducing the input facial image to a vector of geometric features. 
Standard statistical pattern recognition techniques are then employed for matching 
faces using these measurements. 2) Appearance-based (or holistic) methods [6, 7], 
which attempt to identify faces using global representations, i.e., descriptions based 
on the entire image rather than on local features of the face. Though face recognition 
methods traditionally operate on static intensity images. In recent years, much effort 
has also been directed towards identifying faces from video [8] as well as from other 
modalities such as 3D [9] and infra-red [10]. 

Recently, much effort has been expended on combining various biometrics in a bid 
to improve upon the recognition accuracy of classifiers that are based on a single 
biometric. Some biometric combinations which have been tested include face, 
fingerprint and hand geometry [11]; face, fingerprint and speech [12]; face and iris 
[13]; face and ear [14]; and face and speech [15, 16, 17]. The potential of gait as a 
powerful biometric has been explored in some of the recent works [18, 19], though 
inherent multimodal components present in the whole body during walking has not 
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been much exploited by the research community. In this paper we explore some 
preliminary work on how these multimodal aspects can play an important role in 
differentiating individuals during walking.   

On another note, some of the most important challenges for diffusion of biometrics 
in day-to-day civilian applications are issues related to invasion of privacy. In [20], an 
extensive study has shown that physiological biometrics as having no negative impact 
on privacy. That is an excellent motivation for us to investigate face, body and gait 
cues during walking as a powerful biometric with inherent multimodality for 
establishing the identity of a person. Further, these video based cues can be captured 
remotely from a distance, and by using an appropriate biometric identification 
protocol such as the one suggested by authors in [21], it can be ensured that sensitive 
privacy concerns are addressed as well. An appropriate protocol as in [21] can ensure 
that the identification system is not misused and that function creep (i.e. use for 
another purpose is prevented). This means in particular that a component should not 
be able to learn more information than what is really needed for a correct result. In 
fact our proposed fusion of side face, body and gait cues captured from low resolution 
surveillance videos (“security check: pass”) needs strong algorithms and processing 
techniques  to be of any use for establishing identity, and of no use without them, and 
safe-guard the privacy to some extent automatically. The details of the publicly 
available gait database used for this research, and the proposed multimodal 
identification scheme are described in the next Section.  

3   Multimodal Identification Scheme 

For experimental evaluation of our proposed multimodal scheme, we used a publicly 
available video database of human actions [2]. This video database contains  six types 
of human actions (walking, jogging, running, boxing, hand waving and hand 
clapping) performed several times by 25 subjects in four different scenarios: outdoors 
s1, outdoors with scale variation s2, outdoors with different clothes s3 and indoors s4.   
Currently the database contains 2391 sequences.  

  

Fig. 1. Sample images from human action database for walking sequences [2] 

All sequences were taken over homogeneous backgrounds with a static camera 
with 25fps frame rate. The sequences were down-sampled to the spatial resolution of 
160 × 120 pixels and have a length of four seconds in average. We used only the 
walking sequences for our experiments and Figure 1 shows some of the sample 
images from the walking video sequences. 
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For all our experiments we used 100 video sequences for 25 people. There were 19 
males and 6 females in the entire walking dataset. We performed some image pre-
processing steps corresponding to background segmentation,  cropping, filtering and 
histogram equalization of  images of the walking human and then extracted features 
based on PCA (principal component analysis) and LDA (linear discriminant analysis). 
We used separate set for performing training and testing. The low dimensional PCA 
and LDA features were then classified by a Bayesian classifier.  

 

 

Fig. 2(a). Score-level Fusion for proposed multimodal identification scheme based on side face 
and gait cues extracted from low-resolution video 

 

 

Fig. 2(b). Feature-level fusions for proposed multimodal identification scheme based on side 
face and gait cues extracted from low-resolution video 

We examined three different classifiers, the nearest neighbor (k-NN), the Bayesian 
linear and the Bayesian quadratic classifiers. The combination of the low dimensional, 
discriminative PCA and LDA features along with powerful Bayesian classifiers allow 
us to achieve significant improvement in recognition accuracy. This is because 
Bayesian classifiers have the flexibility to incorporate prior information, and can 
predict how a system’s performance will change when going from one environment to 
another or when going from one type of testing to another [23]. And k-NN is very 
effective simple classifier with noise reduction capabilities [24]. Further, we 
examined two different fusion methods – feature-level fusion and score-level fusion 
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of face and gait features. The schematic for the proposed multimodal identification 
scheme is shown in Figure 2(a) and 2(b). 

From the segmented face and gait gray-scale images, we extract the PCA and LDA 
features. As more than 95% variations were captured in first 40 dimensions, the 
length of face and gait PCA and LDA vectors were kept at 40. For score-level fusion, 
we used SUM rule with equal weights for face and gait features. For feature-level 
fusion, we  concatenated face and gait features into a one long vector.    

The Bayesian linear and quadratic discriminant classifier uses Bayesian decision 
rule for classifying a set of learned feature vectors to a class [27]. While the linear 
classifier fits a multivariate normal density to each group, with a pooled estimate of 
covariance, the quadratic discriminant classifier fits MVN (multivariate normal) 
densities with covariance estimates stratified by group.  Both methods use likelihood 
ratios to assign observations to groups. Given a set of classes M characterized by a set 
of known parameters in model Ω a set of extracted feature vector X belongs to the 
class which has the highest probability. This is shown in Eq.(1)) and is known as 
Bayesian decision rule. 
 

( ) ( ) klXMPXMPMX lkk ≠∀Ω≥Ω∈ ,, …      ………(1) 
 
To calculate the a-posteriori probability shown, we used Bayesian law of statistics 
which finally by assuming that features are distributed normally, leads to a quadratic 
classifier format known as Bayesian Quadratic classifier [26]. The model Ω consists 
of the  mean and the covariance of our training vectors, and likelihoods are calculated 
as stated above. The details of the experiments carried out is discussed in the next 
Section. 

4   Experimental Results and Discussion 

We performed different sets of experiments for examining the discriminating ability 
of proposed feature extraction transformation and classifier techniques. Further we 
also compared the performance of  score and feature-level fusion (schematic shown in 
Figure 2(a) and 2(b)) The recognition performance of single mode face and gait 
features, and with fusion of face and gait features  at score-level and at feature-level, 
are discussed in next few sub-sections. 

4.1   Recognition Performance with PCA-Features 

For the first set of experiments we used PCA features for training and testing, with a 
Bayesian (linear/quadratic) and k-nearest neighbor classifiers for classification. Table 1 
shows the recognition accuracies achieved for PCA only features. For this experimental 
scenario, we received 85% recognition accuracy for Bayesian-linear classifier, 90% 
accuracy for Bayesian quadratic, and 95% for 1-NN classifier.  Though we expect a 
100% accuracy for face-only mode, what we found was that quality of side face images 
was very poor, resulting in failure to recognize some poor quality faces.  
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Table 1. PCA with Bayesian Classifiers and 1-Nearest Neighbour Classifier 

Classifier Type Face-Only 
PCA  

Gait-Only 
PCA 

Face-Gait 
(Feature  
Fusion) 

Face-Gait 
Score 
Fusion 

Bayesian-linear 85 % 45 % 75 % 65% 
Bayesian-quadratic 90 % 50 % 65 % 60% 
1-NN classify 95 % 50 % 70 % 55% 
 
Next, we performed experiments for gait only mode, and we achieved a poor 

recognition accuracy of 45% recognition for Bayesian linear classifier, 50% for 
Bayesian-quadratic classifier and 50% of 1-NN classifier. Once again, PCA features 
for gait only mode failed badly because of the inability of PCA technique to capture 
the gait dynamics of each person. However, when we integrated the face-only 
information with gait information, the performance improved significantly, resulting 
in an accuracy of 75%, 65% and 70% for Bayesian-linear, Bayesian-quadratic and 1-
NN classifiers respectively.  

Further, as can be seen in Table 1, feature level fusion performs better than score 
level fusion for all three classifiers ascertaining the inherent multimodality in face and 
gait, which is modeled better with feature-level fusion mode as compared to score-
level fusion. For all the experiments in this set we used 40 PCA feature dimensions.  

4.2   Recognition Accuracies with PCA-LDA Features 

For this set of experiments, we obtained the PCA transformation first and then PCA 
features were transformed in the LDA space again, training and testing was performed 
on PCA-LDA vectors, with this, we achieved 100% accuracy for face-only data set. 
For gait only data set, we achieved a recognition accuracy of 90% for Bayesian-linear, 
90% for Bayesian-quadratic, and 80% for 1-NN classifier. Combining the face-gait 
features in PCA+LDA subspace it was possible to achieve a recognition accuracy of 
100% for all three types of classifiers. 

Since the face only classifier in PCA-LDA subspace results in 100% accuracy, it 
would appear that there is no need for fusion with gait features. However, the 
dimensionality of face only PCA-LDA features was 40 for achieving 100% accuracy, 
whereas, the dimensionality of features needed to achieve 100^ accuracy was much 
lesser when face and gait features were fused. We needed 20 features for feature-level 
fusion and 30 features with score-level fusion to achieve 100% accuracy. As can be 
seen in Table 2, PCA features in LDA subspace were capable in capturing the person-
specific gait variations accurately for all three classifiers. So it was a synergistic 
fusion, with PCA helpful in reducing the dimensionality and LDA capturing inter-
person and intra-person gait associated variations accurately. Another interesting 
observation was though it is well known in literature, that the score-level fusion 
results in better performance than feature level fusion, we found that the number of 
features needed for score fusion is higher (30 as compared to 20 features for feature-
level fusion before concatenation). Thus could be because score level fusion does not 
preserve the inherent multimodality present in face and gait as well as feature-level 
fusion can do. 
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Table 2. PCA - LDA with Bayesian Classifiers and 1-Nearest Neighbour Classifier 

Name Face-Only 

PCA-LDA 

 (40) 

Gait-Only 

PCA-LDA 

 (40) 

Face-Gait 

Feature Fusion 

 (20) 

Face-Gait 

Score Fusion 

 (30) 

Bayesian-linear 100% 90% 100% 100% 

Bayesian-quadratic 100% 90% 100% 100% 

1-NN classify 100% 80% 100% 100% 

5   Conclusions and Further Scope 

In this paper we propose a novel multimodal Bayesian approach based on PCA-LDA 
processing for person identification from low resolution surveillance video with cues 
extracted from gait, face and body biometrics. The experimental evaluation of the 
proposed scheme on a publicly available database [2] showed that the combined 
PCA-LDA approach turns out to be a powerful method for capturing the inherent 
multimodality in walking gait patterns and at the same time discriminating the 
identity from low resolution video with noisy backgrounds. Further work involves 
exploring novel methods for identity verification for unconstrained operating 
environments. 
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Abstract. This paper describes a robust control method using difference signals
and multiple competitive associative nets (CAN2s). Using difference signals of a
plant to be controlled, the CAN2 is capable of leaning piecewise Jacobian matri-
ces of nonlinear dynamics of the plant. By means of employing the GPC (gener-
alized predictive controller), a robust control method to switch multiple CAN2s
to cope with plant parameter change is introduced. We show the effectiveness of
the present method via numerical experiments of a crane system.

Keywords: Robust control, Switching of multiple CAN2, Difference signals, Ja-
cobian matrix, Control of nonlinear plant.

1 Introduction

This paper describes a robust control method using difference signals and multiple com-
petitive associative nets (CAN2s). Here, the CAN2 is an artificial neural net for learning
an efficient piecewise linear approximation of nonlinear functions by means of compet-
itive and associative schemes[1,2]. The effectiveness is shown in several areas such as
control problems, function approximation, rainfall estimation, time series prediction,
and so on [3]-[6]. Here, note that the local linear models [7,8] also utilize the piecewise
linear approximation, but they use linear models in piecewise regions obtained via the
K-nearest neighbors or the SOM (Self-Organizing Map), while the CAN2 utilizes lin-
ear models (associative matrices) in the piecewise regions obtained via the competitive
learning designed for minimizing the mean square prediction error. Since theK-nearest
neighbors and the SOM are for minimizing the distance measures between input vectors
and the centers of piecewise regions without any relationship to the prediction error, the
CAN2 is expected to show better performance in prediction problems.

As an application of the CAN2, we are developing control methods using CAN2
for learning and utilizing piecewise linear models of nonlinear and time varying plant
dynamics [5,6]. Recently in [6], we have presented a method to cope with parameter
change of the plant, where we use multiple CAN2s to control the plant with different pa-
rameter values. Although the method is shown robust to the parameter change through
numerical experiments of the temperature control of RCA cleaning solutions (see [6]
for details), we could not have clarified the method analytically.

In the next section, we formulate and analyse the control method using difference
signals and multiple CAN2s to show a robust control of nonlinear plant whose param-
eter may change. And then, in Sect. 3, we examine the effectiveness of the method

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 9–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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through numerical experiments applied to a nonlinear crane system involving several
parameter values.

2 Control Method Using Difference Signals and Multiple CAN2s

We formulate and analyse the control method using difference signals and multiple
CAN2s to cope with the parameter change.

2.1 Plant Model Using Difference Signals

Suppose a plant to be controlled at a discrete time j = 1, 2, · · · has the input u[p]
j and

the output y[p]
j . Here, the superscript “[p]” indicates the variable related to the plant for

distinguishing the position of the load, (x, y), shown below. Furthermore, we suppose
the dynamics of the plant is given by

y
[p]
j = f(x[p]

j ) + d
[p]
j , (1)

where f(·) is a nonlinear function which may change slowly in time and d[p]
j represents

zero-mean noise with the variance σ2
d. The input vector x[p]

j of the function consists of

the recent input and output of the plant as x[p]
j �
(
y[p]

j−1, · · · , y[p]
j−ky

, u[p]
j−1, · · · , u[p]

j−ku

)T
,

where ky and ku are positive integers, and the dimension of x[p]
j is k = ky + ku. Then,

for the difference signals Δy[p]
j � y[p]

j − y[p]
j−1, Δu[p]

j � u[p]
j − u[p]

j−1, and Δx[p]
j �

x
[p]
j − x

[p]
j−1, we have the relationship Δy[p]

j � JfΔx
[p]
j for small ‖Δx

[p]
j ‖, where

Jf = ∂f(x)/∂x
∣∣
x=x[p]

j−1
indicates the Jacobian matrix (row vector). If Jf does not

change for a while around the time j, then we can predict Δy[p]
j+l by

Δ̂y
[p]

j+l = Jf Δ̃x
[p]

j+l (2)

for l=1, 2, · · · , recursively. Here, the elements of Δ̃x
[p]

j+l = (Δ̃y
[p]

j+l−1, · · · , Δ̃y
[p]

j+l−ky
,

Δ̃u
[p]

j+l−1, · · · , Δ̃y
[p]

j+l−ku
)T are the past and the predictive input and output given by

Δ̃y
[p]

j+m =

{
Δy

[p]
j+m for m < 1

Δ̂y
[p]

j+m for m ≥ 1
and Δ̃u

[p]

j+m =

{
Δu

[p]
j+m for m < 0

Δ̂u
[p]

j+m for m ≥ 0.
(3)

Here, see Sect. 2.3 for the predictive input Δ̂u
[p]

j+m (m ≥ 0). Then, we have the predic-
tion of the plant output from the predictive difference signals as

ŷ[p]
j+l = y[p]

j +
l∑

m=1

Δ̂y
[p]

j+m. (4)
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Fig. 1. Schematic diagram of (a) the CAN2 and (b) the overhead crane system

2.2 CAN2 Using Difference Signals and Relation to Parameter Change

A CAN2 has N units. The ith unit has a weight vector wi � (wi1, · · · , wik)T ∈
R

k×1 and an associative matrix (row vector) M i � (Mi1, · · · ,Mik) ∈ R
1×k for

i ∈ I = {1, 2, · · · , N} (see Fig.1(a)). In order for the CAN2 to learn a given dataset
Dn = {(x[p]

j , y
[p]
j ) | j = 1, 2, · · · , n} obtained from the plant, we feed the input and

output of the CAN2 as (x[can2], y[can2]) = (Δx[p]
j , Δy

[p]
j ). Then, the CAN2 after learning

(see [4] for the learning method) approximates the outputΔy[p]
j = f(Δx[p]

j ) by

Δ̂y
[p]

j = M cΔx[p]
j , (5)

where the index of the unit, c, is selected by

c = argmin
i∈I

‖Δx[p]
j −wi‖2. (6)

Now, let us examine Eqs.(5) and (6). From Eq.(2) and Eq.(5), we can see that the asso-
ciative matrix approximates the Jacobian matrix, or M c � Jf . Furthermore, Eqs.(5)
and (6) indicate an assumption that the associative or the Jacobian matrix can be iden-
tified by Δx[p]

j , although it depends on the original signal x[p]
j−1 from the definition

Jf = ∂f(x)/∂x
∣∣
x=x[p]

j−1
. However, when Jf does not change for a while and

Δx[p]
j−m (m = 1, 2, · · · ) involves k (= dimΔx[p]

j ) linearly independent vectors, we

can derive Jf =
[
Δx[p]

j−1, · · · , Δx[p]
j−k

]−1 [
Δy[p]

j−1, · · · , Δy[p]
j−k

]
from Δy[p]

j−m =

JfΔx
[p]
j−m for m = 1, 2, · · · , k. This indicates that Jf can be identified by 2k -

dimensional vector,Δx′[p]
j = (Δy[p]

j−1, · · · , Δy[p]
j−k−ky

, Δu[p]
j−1, · · · , Δu[p]

j−k−ku
) which

involves all elements in
[
Δx

[p]
j−1, · · · , Δx

[p]
j−k

]
. Thus, the relation fromΔx′[p]

j toΔy[p]
j
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becomes a single valued function Δy[p]
j = JfΔx[p]

j = g(Δx′[p]
j ). Then, consider-

ing the linear approximation Δy[p]
j = g(Δx′[p]

j ) � JgΔx′[p]
j , the relation from Δx′[p]

j

to Jg is a vector-valued function. Therefore, the Jacobian Jf for the enlarged vec-

tor Δx[p]
j = (Δy[p]

j−1, · · · , Δy[p]
j−k′

y
, Δu[p]

j−1, · · · , Δu[p]
j−k′

u
) with k′y = k + ky and

k′u = k + ku is a vector-valued function of Δx[p]
j , or Jf = Jf (Δx[p]

j ). Thus, let’s

use this enlarged vector Δx[p]
j below from here, so that the control using Δy[p]

j+l pre-

dicted fromΔx[p]
j is expected to be robust to the parameter change of the plant because

parameter values are reflected by Jf which can be identified by Δx[p]
j .

Moreover, note that the learning and the prediction using (Δx
[p]
j , Δy

[p]
j ) is more ef-

ficient than those using (x[p]
j , y

[p]
j ) as shown in [5]. Namely, for learning and predicting

the relationship y[p]
j = f(x[p]

j ) � bj + Jfx[p]
j , the CAN2 using the original signals

(x[can2], y[can2]) = (x[p]
j , y

[p]
j ) � (x[p]

j , bj + Jfx[p]
j ) has to learn the data for all bias

bj , while the CAN2 using the difference signals (x[can2], y[can2]) = (Δx
[p]
j , Δy

[p]
j ) =

(Δx[p]
j ,JfΔx[p]

j ) does not have to learn bj and the prediction for any bias bj can be
done by Eq.(4).

2.3 GPC for Difference Signals

The GPC (Generalized Predictive Control) is an efficient method for obtaining the pre-
dictive input û[p]

j which minimizes the control performance index:

J =
Ny∑
l=1

(r[p]
j+l − ŷ[p]

j+l)
2 + λu

Nu∑
l=1

(Δ̂u
[p]

j+l−1)
2, (7)

where r[p]
j+l and ŷ[p]

j+l are desired and predictive output, respectively. The parametersNy ,

Nu and λu are constants to be designed for the control performance. We obtain û[p]
j by

means of the GPC method as follows; the CAN2 at a discrete time j can predict Δy[p]
j+l

by Eq.(2) and then ŷ[p]
j+l by Eq.(4). Then, owing to the linearity of these equations, the

above performance index is written as

J = ‖r[p] −GΔu[p] − y[p]‖2 + λu‖Δ̂u‖2 (8)

where r[p] =
(
r[p]
j+1, · · · , r[p]

j+Ny

)T
and Δ̂u

[p]
=
(
Δ̂u

[p]

j , · · · , Δ̂u
[p]

j+Nu−1

)T
. Fur-

thermore, y[p] =
(
y

[p]
j+1, · · · , y[p]

j+Ny

)T
and y[p]

j+l is the natural response ŷ[p]
j+l of the

system Eq.(1) for the null incremental input Δ̂u
[p]

j+l = 0 for l ≥ 0. Here, we actu-

ally have y[p]
j+l = y[p]

j +
∑l

m=1Δy
[p]
j+m from Eq.(4), where Δy

[p]
j+l denotes the nat-

ural response of the difference system of Eq.(2) with Jf replaced by M c. The ith
column and the jth row of the matrix G is given by Gij = gi−j+N1 , where gl for
l = · · · ,−2,−1, 0, 1, 2, · · · is the unit step response y[p]

j+l of Eq.(4) for ŷ[p]
j+l = û

[p]
j+l =
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0 (l < 0) and û[p]
j+l = 1(l ≥ 0). It is easy to derive that the unit response gl of Eq.(4)

is obtained as the impulse response of Eq.(2). Then, we have Δ̂u
[p]

which minimizes J

by Δ̂u
[p]

= (GT G + λuI)−1GT (r[p] − y[p]), and then we have û[p]
j = u[p]

j−1 + Δ̂u
[p]

j .

2.4 Iterations of Control and Learning

In order to improve the control performance, we execute iterations of the following
phases.

(i) control phase: Control the plant by some default control schedule at the first iter-
ation, and by the above GPC using the CAN2 after the phase (ii) otherwise.

(ii) learning phase: Using the dataset Dn = {(x[p]
j , y

[p]
j |j = 1, 2, · · · , n)} obtained

from the control phase, apply the batch learning method to the CAN2 [4].

2.5 Switching Multiple CAN2s to Cope with Parameter Change

To cope with parameter change of the plant, we may use a CAN2 for learning a huge
dataset of (Δx[p]

j , y
[p]
j ) produced from the plants for different parameter values. How-

ever, to avoid time-consuming learning of the huge dataset, we employ the following
steps using multiple CAN2s, each of which, we denote CAN2[θs], is the CAN2 after
learning the training dataset for parameter θs and s ∈ S = {1, 2, · · · }.

step 1: At the time j in the control phase, select the unit for each CAN2[θs] by Eq.(6),
or c[s] = argmin

i∈I
‖Δx

[p]
j − w

[s]
i ‖2, where w

[s]
i (i ∈ I) are the weight vectors of

CAN2[θs].
step 2: Select the s∗th CAN2 which has the minimum MSE (mean square prediction

error) for the recent Ne outputs,

s∗ = argmin
s∈S

1
Ne

Ne−1∑
l=0

‖Δy[p]
j−l −M c[s]Δx[p]

j−l)‖2, (9)

where M c[s] is the c[s]th associative matrix of CAN2[θs].

Note that step 2 is necessary because c[s] obtained by step 1 indicates the optimal
unit only for the Voronoi partition of the sth CAN2 and different CAN2 has different
Voronoi partition. For evaluate the fitness to the recent data, the above MSE seems to
be a reasonable criterion.

3 Numerical Experiments of Crane System

In order to examine the effectiveness of the present method, we execute numerical ex-
periments of the following crane system.
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3.1 Overhead Traveling Crane System

We consider the overhead traveling crane system shown in Fig.1(b). From the figure,
we have the position and motion equations given by

(x, y) = (X + r sinφ, r cosφ) (10)

m(ẍ, ÿ) = (−T sinφ−mCφ̇ cosφ,mg − T cosφ−mCφ̇ sinφ) (11)

MẌ = F + T sinφ (12)

where (x, y) and m are the position and the weight of the suspended load, (X, 0), M
and F are the position, weight and driving force of the trolley, r and φ are the length
and the angle of the rope, T is the tension of the rope, and C is the viscous damping
coefficient. From Eqs.(10) and (11), we have the nonlinear second order differential
equation of φ given by rφ̈ + (C + 2ṙ)φ̇ + g sinφ + Ẍ cosφ = 0. Thus, with Eq.(12),

the transition of the state x =
(
φ, φ̇,X, Ẋ

)T
is given by

ẋ = h(x) =

⎡⎢⎢⎢⎢⎢⎣
φ̇

−C + 2ṙ
r

φ̇− g

r
sinφ− F + T sinφ

rM
cosφ

Ẋ
F + T sinx1

M

⎤⎥⎥⎥⎥⎥⎦ , (13)

where T = m
√

(ẍ+ Cφ̇ cosφ)2 + (ÿ − g + Cφ̇ sinφ)2 is also a function of x. The
control objective is to move the horizontal position of the load, x = X + r sinφ, to a
destination position xd by means of operating F .

3.2 Parameter Settings

The parameter values of the crane system are set as follows: the trolley weight M =
100kg, the damping coefficient C = 0.5m/s, the maximum driving force Fmax = 20N,
and we have examined the robustness to the rope length r from 2 to 10m, and the
load weight from 10 to 100kg. We obtain the discrete signals by u[p]

j = F (jTv) and

y
[p]
j = x(jTv) with Tv = 0.5s. Here, we use the virtual sampling method shown in

[3], where the discrete model is obtained with the virtual sampling period Tv while the
observation and operation are executed with shorter actual sampling period Ta = 0.01s.
We use k′y = k′u = 4 for the enlarged input vector Δx

[p]
j , and Ny = 20, Nu = 1 and

λu = 0.01 for the GPC. We used Ne = 50 samples for switching multiple CAN2s,
where we used the actual sampling periodTa for the discrete time j−l in Eq.(9), thus the
period of time forNe samples indicatesNeTa = 0.5s. Let crane[θ] denote the crane with
the parameter θ. Especially, let θ = θs for s = 1, 2, 3, 4 denote θ = (r,m) = (2, 10),
(2, 100), (10, 10) and (10, 100), respectively, which are used for training CAN2s. Let
CAN2[θs] denote the CAN2 made through 20 iterations of control and learning phases
for crane[θs]. We use N = 5 units for each CAN2. Let CAN2[θS] denote the set of all
CAN2[θs] for s ∈ S = {1, 2, 3, 4} used for the switching controller.
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Fig. 2. Resultant time courses of x, X and F for the controller using single CAN2[2,10] (top) and
multiple CAN2[θS ] (bottom), and the crane with the parameter θ = (r, m) = (2, 10) (left side)
and θ = (10, 10) (right side). The unit of x, X and xd is [m], and that of F is [10N].

3.3 Results and Remarks

Examples of resultant time courses of x,X and F are shown in Fig.2, where we can see
that the controller using single CAN2[2,10] has controlled not crane[10,10] but crane[2,10]

with allowable overshoot less than 100mm. On the other hand,the switching controller
using multiple CAN2[θS] has controlled both cranes with allowable overshoot.

A summary of the resultant settling time and overshoot by the controllers applied to
the crane for several parameter values is shown in Table 1. We can see that the controller
using a single CAN2[θs] has controlled crane[θs] with allowable overshoot, but has not
always controlled other crane[θ] for θ �= θs. However, the switching controller using
multiple CAN2[θS] has controlled every crane[θ] for θ = θs (s = 1, 2, 3, 4) as well as
θ = (r,m) not involved in θS with allowable overshoot.

The above robust control to the parameter change is owing to the switching method
shown in Sect. 2.5 which selects the best M c[s∗] � Jf for predicting Δy[p]

j+l at each

time j, which is capable because Jf is a function of Δx[p]
j regardless of θ as shown in

Sect. 2.2. Furthermore, one of the advantages of the present method is that the robust-
ness to additional parameter value can be incrementally added by means of employing
additional CAN2.
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Table 1. Settling time and overshoot for parameter change. The parameter θs (s = 1, 2, 3, 4, S)
in the second row from the top indicates CAN2[θs], and θs (s = 1, 2, 3, 4) in the leftmost column
indicates the controlled crane[θs]. The underlined figure shows the result by the controller using
CAN2[θs] applied to crane[θs]. The thick figure indicates the best (smallest) settling time and
overshoot in each row.

crane Settling time tS(s) Overshoot xO(mm)
θ = (r, m) θ1 θ2 θ3 θ4 θS θ1 θ2 θ3 θ4 θS

θ1 = ( 2, 10) 15.7 21.1 15.2 21.3 16.1 68 105 26.8 397 0
( 2, 55) 14.8 20.2 26.8 21.5 16.9 77 103 6 288 0

θ2 = ( 2, 100) 21.6 14.9 21.2 13.5 14.0 185 63 0 100 73
( 6, 10) 14.7 20.0 26.3 16.4 17.9 91 109 358 69 6
( 6, 55) 14.2 22.7 27.0 15.4 15.3 94 158 0 17 48
( 6, 100) 20.6 27.5 34.5 24.7 21.1 126 220 462 12 0

θ3 = (10, 10) 25.6 25.8 23.6 24.2 22.4 174 204 36 251 83
(10, 55) 14.1 15.0 28.9 15.5 13.8 81 21 384 7 50

θ4 = (10, 100) 20.4 22.0 20.6 14.2 14.2 141 162 9 5 43
average 18.0 21.0 24.9 18.5 16.9 115 127 139 127 34

4 Conclusion

We have presented a robust control method using multiple CAN2s and difference sig-
nals. The CAN2 using difference signals of a plant is shown to lean Jacobian matrices
of nonlinear dynamics of a plant. We have introduced the switching method of mul-
tiple CAN2s to cope with plant parameter change after showing the GPC using dif-
ference signals to control the plant. Via numerical experiments of a crane system, we
have shown the effectiveness of the present method. We would like to derive necessary
and/or sufficient conditions for this method in our future research study.

This work was partially supported by the Grant-in Aid for Scientific Research (C)
21500217 of the Japanese Ministry of Education, Science, Sports and Culture.
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Abstract. In this paper, the relationship between the fusion result and the 
number of sensor tracks taking part in fusion is investigated, which reveals that 
it may be better to fuse many instead of all of the sensor tracks at hand. This 
result is interesting because at present, most approaches fuse all the available 
sensor tracks and treat all sensor data equally without regard of their different 
quality and different contribution to the system tracks. Then, in order to show 
that the appropriate sensor tracks for a fusion can be effectively selected from a 
set of available sensor tracks, an approach named STF is presented. STF is 
based on a two-stage paradigm of heuristic function construction and track state 
estimation fusion. The outliers in the tracks are eliminated by the orthogonal 
polynomial regression method at first. Then heuristic function is constructed by 
evaluating the quality of each track using grey correlation degree. Last, the 
track state estimation fusion is guided by the heuristic function, in which an 
optimal number of tracks are fused. In addition, the paper discusses its 
implementation in the multi-sensor and multi-target environment. The 
effectiveness and the superiority of STF are verified in experiment.  

Keywords: Track fusion, Heuristics, Multi-sensor, Multi-target, Grey 
correlation degree. 

1   Introduction 

Nowadays, the research of track fusion has been a very hot spot. Some theoretical and 
practical problems are international puzzles, but a lot of famous scholars still devote 
themselves to the research [1,2]. At present, Measurement Fusion (MF), Simple 
Fusion (SF) and Weighted Covariance Fusion (WCF) are the most representative 
track fusion algorithms. MF possesses the advantage of simple idea and small 
computational cost, but lower accuracy. SF was proposed by Siger and has a notable 
advantage, high efficiency. However, the accuracy of SF is still not high. WCF was 
proposed by Bar-Shalom, which is also a classical algorithm. It is characterized by 
high accuracy, but heavy computational cost. Until now, some performances of them 
are still the objectives pursued. The accuracy required by the system is variable, so 
sometimes the simple fusion algorithm can gain the same result as the complex one. 
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For such considerations, Beugnon, Singh, Llinas and Saha proposed an adaptive track 
fusion algorithm [3]. In 2006, Li, Cheng, Zhang and Shen added the feedback 
structure on the basis of the adaptive track fusion algorithm [4]. The fusion center 
feeds back the state estimation and the error covariance to the local nodes as the initial 
value of the filter in the next interval to improve the filtering accuracy. In recent 
years, the scholars put forward many solutions to the track fusion problems under 
different environment. Chen and Bar-Shalom modify the existing track fusion 
algorithm accounting for the model mismatch among some of the local tracks [5]. 
Watson and Rice develop the solution for the fusion of multiple tracks from an 
arbitrary number of asynchronous measurements with a low complexity [6]. Chang, 
Chong and Mori focus on scalable fusion algorithms and conduct analytical 
performance evaluation under different operating conditions [7]. There are also many 
other approaches for track fusion. Examples are as follows. Yuan, Dong and Wang 
propose a fusion algorithm based on an adaptive neuro-fuzzy inference system, which 
combines the merits of fuzzy logic and neural network [8]. Duan and Li propose two 
optimal distributed fusion algorithms by taking linear transformation of the raw 
measurements of each sensor [9]. Hu, Duan and Zhou propose a distributed 
asynchronous fusion algorithm by reconstructing the optimal centralized fusion result 
[10]. These works promote the research of the track fusion problem. 

No matter what kind of fusion technology we adopt, the selection of reliable data is 
the precondition of a successful fusion. The reliability of data is important to the 
validity of a fusion system. So before a track fusion, what is a high-quality track and 
how many tracks should take part in fusion should be answered. In response to the 
above problems, an approach named Selective Track Fusion (STF) is presented.  

2   System Description 

Throughout this paper, the research is with the assumption that M sensors observe 
T  targets in clutter. The observation obtained in the discrete time is made up of 
several measurements, of which some are from the targets and others are from the 
clutter.  

Let )(kx  be the state vector at time k . The target model can be expressed as: 

)()()()()()1( kvkukGkxkFkx ++=+  (1) 

where )(kF  is a state transition matrix, )(kG  is an input control matrix, )(ku  is 

a mobile acceleration input matrix, )(kv is a discrete-time white noise sequence, and 

0)]([ =kvE . 

The measurement equation of sensor i  can be expressed as: 

)()()()( kwkxkHkZ ii +=  (2) 

where )(kH  is an observation matrix, and )(kwi  is Gauss observation noise with 

zero mean and variance )(kRi .  
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3   Outlier Elimination 

In order to improve the quality of the sensor tracks, we eliminate outliers at first.  
The analog signal parameters of track possess non-linear characteristics. In a closed 

interval, it can be described by a p-th polynomial of t :  

nktatatkx k
p
kpkk ,,2,1,0,)( 2

210  =+++++= εαα  (3) 

Suppose the sampling interval is I and 00 =t , then the k-th measurement time is 

kIkIttk =+= 0 . Substitute kt  into (3), we have: 

k
p

p kIakIakIkx εαα +++++= )()()()( 2
210   (4) 

Let p
pp III αβαβαβαβ ==== ,,,, 2

221100  . Substitute iβ  into (4), 

we have: 

nkkkkkx k
p

p ,,2,1,0,)( 2
210  =+++++= εββββ  (5) 

Take the following orthogonal polynomials:  
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where, 
2

1+= n
k .   

According to the table of orthogonal polynomial, we can calculate the coefficient 
of the regression equation:  
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And the regression equation is:  

)()()()(ˆ '
2

'
21

'
1

'
0 kkkkx ppφβφβφββ ++++=   (8) 

Based on the theory of statistics, the random error variance is: 

2

0

2 ))(ˆ)((
1

ˆ jxjx
n

n

j

−= 
=

σ  (9) 

We exploit the orthogonal regression mathematical models to estimate the state value 
of the sampling point and then compare it with the corresponding measurement value. 

If the difference is less than σ̂5 , namely: σ̂5)(ˆ)( <− txtx , then the value is 

reasonable. If not, the point is regarded as an outlier which should be eliminated and 
be replaced by )(ˆ tx .  

4   Heuristics Function Construction 

In the multi-sensor environment, there is a large amount of redundant information and 
the contribution of every sensor track to system track is different. However, most 
existing multi-sensor systems treat all sensor tracks equally. A track quality 
evaluation, as done here, is a useful preliminary step to design Heuristics Function.  

Suppose M  sensors observe the targets at the same time, and 

},,1|))(,),2(),1({( Minxxxx iiii  ==   is the output data from the sensor 

i . Then the expectation )( jx  can be expressed as:  
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The grey correlation degree can describe the quality of sensor track effectively. Based 
on the grey theory, the quality of a track can be defined as follows: 
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where ζ is the environment correlation factor, and .50=ζ  in this paper. For a 

track, the larger its grey correlation degree is, the better its quality is.  
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The heuristic function Select (C) selects a track based on its quality from the set of 
sensor tracks C.  Select (C) is defined as: 

}|)({maxarg)( CxxhCSelect ii ∈=  (12) 

5   Selective Track Fusion 

STF selects the high-quality tracks for the sequential fusion based on the heuristic 
function. 

5.1   The Basic Idea of STF 

For presentation convenience, the sensor tracks are numbered by the quality of the 
tracks. Initially, let 1=i , then the algorithm selects two highest-quality sensor tracks 

1S  and 2S  for fusion in accordance with the heuristic function, and the fusion track 

'1S  is acquired. If )()'( 11 ShSh < , the algorithm is over and 1S  is the ultimate 

system track. Otherwise, * let 1+= ii , and choose 1+iS  based on the heuristic 

function, then fuse 1+iS  and '1−iS , and the fusion track 'iS  is acquired. Repeat * 

until )'()'( 1−< ii ShSh  or all the tracks have taken part in the fusion. The algorithm 

takes '1−iS  as the ultimate system track. 

5.2   Track State Estimation Fusion 

The fusion center fuses the tracks from the local sensors to acquire the system tracks. 
Here, we exploit SF strategy.  

The global state estimation at k  is: 

)()]()()[()()]()()[()(ˆ 11
STF kxkPkPkPkxkPkPkPkx jjiiijij

−− +++=  (13) 

The global error covariance is: 

)()]()()[()( 1
STF kPkPkPkPkP jjii

−+=  (14) 

where )(kxi  is the local state estimation and )(kPi  is the local error covariance of 

the track from sensor i  at time k . 

6   Experimental Results and Analysis 

In order to facilitate the problem discussion, this paper supposes all the state 
estimations sent into the fusion center are in the same coordinate system, all the 
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sensors sample synchronously, and the delay time of data transmission is 0. The 
simulation designs four sensors to observe five targets at the same time. The sampling 
interval is l second, and the target-tracking lasts 200 seconds. The target tracks are 
shown in Fig. 1, and the observational data of the sensors are shown in Fig. 2. 
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Fig. 1. The target tracks                  Fig. 2. The observational data 

The comparisons between fusing “many” sensor tracks and fusing “all” sensor 
tracks on error in x-axis, y-axis and z-axis of target1 are shown in Fig. 3. We can see 
by fusing “many” sensor tracks, the error of system track is reduced greatly, which 
verifies fusing “many” sensor tracks instead of “all” sensor tracks can acquire the 
system tracks with higher accuracy. For other targets, there are similar conclusions. 

0 20 40 60 80 100 120 140 160 180 200
-200

-150

-100

-50

0

50

100

150

200

time(s)

er
ro

r

 

 

all

many

 
0 20 40 60 80 100 120 140 160 180 200

-200

-150

-100

-50

0

50

100

150

200

time(s)

er
ro

r

 

 

all

many

 
0 20 40 60 80 100 120 140 160 180 200

-200

-150

-100

-50

0

50

100

150

200

time(s)

er
ro

r

 

 

all

many

 
(a) In x-axis                    (b) In y-axis                   (c) In z-axis 

Fig. 3. The comparisons between fusing “many” sensor tracks and fusing “all” sensor tracks on 
error in x-axis, y-axis and z-axis of target1 

The comparisons among MF, SF, WCF and STF on error covariance at the 
inflection points in x-axis, y-axis and z-axis of target1 are exhibited in Fig. 4.  We 
can see STF has highest accuracy at the inflection points. 
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Fig. 4. The comparisons among MF, SF, WCF and STF on error covariance at inflection points 
in x-axis, y-axis and z-axis of target1 

The average errors in x-axis, y-axis and z-axis of each target gained by MF, SF, 
WCF and STF are exhibited in Table 1. And Table 2 shows the average time for 
fusion of all targets by MF, SF, WCF and STF. From the two tables, we can see that 
MF and SF have a fast speed, but a low accuracy; WCF possesses of the highest 
accuracy, but with a very heavy calculation burden. The above three algorithms exist 
serious imbalance between accuracy and computational burden. However, STF almost 
approaches the accuracy of WCF with much less computational cost. The success of 
STF may lie in that it can significantly exclude those “bad” sensor tracks, which both 
reduces the fusion time and improves the fusion accuracy. 

Table 1. The Comparison on Error 

Algorithm 
Target1 Target2 Target3 Target4 Target5 

x y z x y z x y z x y z x y z 
MF 60 64 67 29 58 61 55 36 33 56 57 53 45 48 47 
SF 65 59 68 26 45 56 51 38 29 53 49 49 41 51 49 

WCF 34 37 37 18 29 36 35 22 20 35 31 27 30 29 32 
STF 36 42 41 24 35 39 31 30 26 32 36 35 31 33 38 

Table 2. The Comparison on Fusion Time 

Algorithm Fusion Time (s) 
MF 183 
SF 225 

WCF 525 
STF 284 

7   Conclusion 

At present, most track fusion algorithms take into account the adaptation and the 
completeness of the fusion strategies, with little thinking over the quality of the 
information provided by the sensors. Different from them, the paper introduces a 
selective track fusion algorithm in the multi-sensor and multi-target environment. STF 
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has the following features: it eliminates the outlets by orthogonal polynomial 
regression, exploits the heuristics to guide track fusion, and fuse “many” instead of 
“all” sensor tracks, which not only facilitates the process of track fusion, but also 
improves the accuracy of the system tracks.  
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Abstract. The bystander effect is a well-known phenomenon in criminology, 
stating that bystanders tend to inhibit people’s tendency to intervene in 
situations where norms are violated. This paper presents an agent-based 
simulation model of this phenomenon. The simulation model presented 
demonstrates the decision process of an agent for norm violation situations with 
different characteristics, such as high versus low personal implications. The 
model has been tested by performing a number of case studies. The outcome of 
these case studies show that the model is able to represent the behaviour of 
bystanders as expected based on various experimental studies. 

Keywords: Bystander effect, Psychology, Cognitive modelling, Agent-based 
Simulation, Norm violation. 

1   Introduction 

In 1964 a young woman, named Kitty Genovese, was stabbed to death right outside of 
the apartment building in which she lived [1]. A newspaper claimed that 38 neighbours 
witnessed the event for half an hour but did not intervene. This claim was later proven 
inaccurate (no one could actually observe the entire assault), but the fact that a woman 
was murdered while bystanders observed part of the attacks (screaming, people 
fighting) without intervening is shocking. This case has been the starting point of 
research into the phenomenon of (non-)intervention (or the so-called bystander effect).  

The main goal of the research presented in this paper is to develop a simulation 
model of the effect bystanders can have on people’s reaction to a situation that 
(potentially) needs intervention e.g. because of norm violation or in case of an 
emergency.  

The results of this study can be used in different domains. In the field of 
criminology, it may be useful to gain more insight in the mechanism of the bystander 
effect. This can help answering questions like: When do bystanders intervene? and 
What factors can help increase the number of interventions? 

In the area of artificial intelligence this research can be helpful to create more 
realistic agents. These agents can be used for training purposes (e.g. for police agents) 
in a simulated setting, but can also be interesting in virtual societies (e.g. second life). 
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In this paper, the theory of the bystander effect will be explained in more detail in 
Section 2. In Section 3 an overview of related work is shown to demonstrate the 
innovative aspects of this study. The modelling approach and the simulation model 
are explained in Sections 4 and 5 and Section 6 shows a case study to illustrate the 
model. The paper is concluded with a discussion section (Section 7). 

2   Bystander Effect 

Bystander effect is a term used in a situation when people base the decision of acting 
in a certain situation (e.g. a norm violating situation or an emergency situation) on 
their bystanders. Imagine being in a situation in which intervening might be necessary 
e.g. you see someone falling on the ground. This could be caused by a heart attack, 
but maybe the person just tripped over his shoelace. Do you decide to help or not?  

Research by [2, 3] demonstrated that the presence of other people decreases our 
willingness to help a victim in an emergency situation. Later studies, which are 
described in the next section, demonstrated that this is not only the case in emergency 
situations, but also for example in case of norm violations. 

The main problem seems to be that people do not know how they should act in a 
given situation. They are not unwilling to help but do not know if their interpretation 
of the situation is correct. They seek for confirmation by looking at the behaviour of 
other bystanders, and let social cognition have a large influence on their behaviour. 

Latané and Nida [4] distinguish three social psychological processes that might 
occur when an individual is in the presence of other people to explain their social 
inhibition of helping namely audience inhibition (you run the risk of embarrassment if 
you decide to intervene while you misinterpreted the situation), social influence (you 
confirm to the behaviour of others) and diffusion of responsibility (reduction of the 
psychological costs of non-intervention. Why should you help while all the other 
bystanders are also capable but do not do a thing?)  

3   Related Work 

In Section 3.1 an overview is given of related work in the area of social psychology. 
Similarly, in section 3.2 an overview of related work in the area of agent-based 
simulation is provided. 

3.1   Social Psychology 

In the field of social psychology a number of studies have been performed to 
investigate the effect of bystanders on behaviour. As mentioned in the previous 
section [2, 3] demonstrated that the presence of other people decreases our 
willingness to help a victim in an emergency situation.  

Later studies demonstrated that the presence of others not only decreases our 
willingness to help in an emergency situation but that people are also less likely to 
answer the door [5], or leave a large tip in a restaurant [6] in the presence of others. 

Chekroun and Brauer [7] conducted field studies to explore the influence of the 
number of bystander-observers on the likelihood of social control. The results of their 
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studies make clear that perceived personal implication moderates the extent to which 
people are inhibited by the presence of others when they decide whether they should 
exert social control or not. 

The difference between the current research and the work mentioned above is the 
approach. The researchers of the mentioned articles conduct field studies to 
investigate the effect of a certain action on the behaviour of bystanders, with the 
number of bystanders as dependent variables. In the research presented in this paper, 
methods from the area of agent-based simulation are used to analyse the decision-
making process, on a cognitive level. No real life experiments have been performed, 
but a model has been developed to simulate behaviour, given different parameters. 

3.2   Agent-Based Simulation 

In the last decades, there has been a growing interest in the area of Agent-Based 
Social Simulation (ABSS). In ABSS, which integrates approaches from agent-based 
computing, computer simulation, and the social sciences, researchers try to exploit 
agent-based simulation to gain a deeper understanding of social phenomena [8]. 

This approach has been used in a large number of studies, some of which address 
the criminological domain. For example in [9] an agent-based modelling approach has 
been presented for decision making, which integrates rational reasoning based on 
means-end analysis with personal psychological and biological aspects. In this project 
the authors use the same approach as presented in the current paper, namely 
simulating a decision process. However, the domain that they investigate is the 
domain of decision making in the case of street robbery while the work presented here 
focuses on the effect of bystanders on intervention. 

Other ABSS studies in the field of criminology are the work by [10], which 
presents a model of deterrence with emphasis on the social network and the perceived 
sanctions. The paper leaves the mental aspects unaddressed, while the current paper 
also focuses on the cognitive aspect of the decision making process. 

In [11], the authors model the process of emotion contagion. The focus is on 
cognitive aspects as is the focus of the model presented in the current paper. 
However, the authors do not apply their model to a real life situation.  

With respect to norm violating behaviour many formal approaches exist. In [12] 
and [13] approaches for representing norm-governed multi-agent systems are 
introduced. More specific for norm violation, in [14] procedural norms are discussed 
that can for example be used to motivate agents that play a role in recognizing 
violations or applying sanctions. In [15] a formalism is introduced to detect, sanction 
and repair violations of norms. The difference between these papers and the research 
presented in the current paper is that we focus specifically on norms in a human 
situation instead of norms in software agents. 

4   Modelling Approach 

To model the various relevant aspects of the bystander effect in an integrated manner 
poses some challenges. On the one hand, qualitative aspects have to be addressed, 
such as desires, and intentions, and some aspects of the environment such as the 
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observation that an action occurs and that the other bystanders do not intervene. On 
the other hand, quantitative aspects have to be addressed, such as the number of 
bystanders and the level of seriousness of the norm violation.  

The modelling approach based on the modelling language LEADSTO [16] fulfils 
these requirements. It integrates qualitative, logical aspects and quantitative, 
numerical aspects. This integration allows the modeller to exploit both logical and 
numerical methods for analysis and simulation. LEADSTO enables to model direct 
temporal dependencies between two state properties in successive states by means of 
executable dynamic properties, which are comparable to rules as occurring in 
specifications of a simulation model; for example: 

 
If                 in the current state, state property p holds, 
then            in the next state, state property q holds 
 
 

Here, atomic state properties can have a qualitative, logical format, such as an 
expression desire(d), expressing that desire d occurs, or a quantitative, numerical format 
such as an expression  belief(norm,y) which expresses that y is a threshold above which 
actions are considered norm violations. For more details of the language LEADSTO, 
see [16]. Based on LEADSTO, a dedicated piece of software has been developed 
[16]. The LEADSTO Simulation Environment takes a specification of executable 
dynamic properties as input, and uses this to generate simulation traces. 

5   Simulation Model 

The decision model for a single agent consists of a set of LEADSTO rules. The model 
is depicted in Figure 1. The model of the decision making process shown in Figure 1 
is inspired by the so-called BDI-model [17]. The BDI-model bases the preparation 
and performing of actions on beliefs, desires and intentions. It incorporates a pattern 
of reasoning to explain behaviour in a refined form. Instead of a process from desire 
to action in one step, as an intermediate stage first an intention is generated. An action 
is performed when the subject has the intention to do this action and it has the belief 
that the opportunity to do the action is there. The BDI model is extended by 
introducing rules that formalise the theory by [4]. The model consists of rules to 
determine the belief that the agent is personally responsible, to determine the desire to 
help, the belief that there is an opportunity to help and eventually to perform the 
action. These sets of rules are explained below.  

 
Personal responsibility 

 
LP1 “If you observe that others do not intervene this leads to the belief that intervention will be 
evaluated negatively (social influence)”: 

observe(no_intervention_by_others) →→belief(intervention_will_be_evaluated_negatively) 
 

LP2 “If you observe a number of bystanders present then you will believe that the bystanders 
can observe you”: 

∀n:INTEGER 
observe(number_of_bystanders(n)) →→ belief(others_observe_me(n)) 
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LP3 “If you observe an action and you believe that others can observe you and that intervention 
will be evaluated negatively this will lead to the belief of audience inhibition with value n”: 

∀a:ACTION ∀n:INTEGER 
observe(a) ∧ belief(others_observe_me(n)) ∧ belief(intervention_will_be_evaluated_negatively) 
→→ belief(audience_inhibition(n)) 
 

LP4 “The number of bystanders that you observe determines your belief about the costs of 
intervention. The higher the number of bystanders the higher the costs (diffusion of 
responsibility)”: 

∀n:INTEGER 
observe(number_of_bystanders(n)) →→ belief(costs_intervention(n)) 
 

LP5 “Your belief about the costs of intervention combined with your belief of audience 
inhibition determines your belief on personal responsibility. The lower the costs and audience 
inhibition the higher the belief of personal responsibility”: 

∀n1, n2:REAL 
belief(audience_inhibition(n2)) ∧ belief(costs_intervention(n1)) ∧ n1<thn1 ∧ n2<thn2 →→ 
belief(personal_responsibility) 
 

The thresholds used in LP5 (thn1 and thn2) are linked to the level of seriousness. If 
you believe that a certain violation is very serious, and thus feel highly personally 
implicated then you will probably less likely let the costs of intervention or audience 
inhibition stop you from intervening. The threshold for non-intervention is high. 
However, if you believe a violation is not serious at all, then you will let the costs and 
audience inhibition keep you from intervening. In this case the threshold for non-
intervention will be low. 

 
Desire to help 

 
LP6 “When you observe an action and you believe that this action has a seriousness of value s 
and you see that there are bystanders present and that these bystanders do not intervene then 
this leads to the belief that the level of seriousness of the action is s divided by the amount of 
bystanders times α. Here, α is a parameter that determines the influence of the group; α is by 
default set to 0.5. You adjust your opinion on the level of seriousness based on the non 
intervention of the others”: 

∀s:REAL ∀a:ACTION ∀n:INTEGER 
observe(a) ∧ observe(no_intervention_by_others) ∧ observe(number_of_bystanders(n)) ∧ 

belief(has_seriousness(a,s)) →→ belief(seriousness, s/n^α) 
 

LP7 “If you belief that the action has a level of seriousness of x and you belief that a certain 
norm has value y and the action violates the norm (x>y) then you believe that there is an 
emergency”: 

∀x,y:REAL 
belief(seriousness, x) ∧ belief(norm,y) ∧ x>y →→ belief(emergency) 

 
LP8 “If you believe that there is an emergency then you have the desire to help”: 

belief(emergency) →→desire(i) 
 

Intention to help 
 

LP9 “When you believe that you are personally responsible to help, and you have the desire to 
help then you have the intention to help”: 

desire(i) ∧ belief(personal_responsibility) →→ intention(i) 
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Opportunity to help 
 

LP10 “If you belief that you are capable to help and have the required resources then you 
believe that you have the opportunity to help”: 

belief(capable(i)) ∧ belief(resources(i)) →→ belief(opportunity_for(i)) 
 

Performance of Action 
 

LP11 “The intention to help combined with the belief that you have the opportunity to help 
leads to the actual intervention”: 

intention(i) ∧ belief(opportunity_for(i)) →→ perform(i) 
 

belief(others_observe_me(n))

belief(intervention_will_be
_evaluated_negatively)

observe
(number_of_
bystanders(n))

observe(a)

belief(seriousness,x)

belief(has_
seriousness(a,s))

observe
(no_intervention_
by_others)

x = s/√n

belief(emergency)

desire(i)

belief(norm,y)

x>y

belief(personal_
responsibility)

intention(i)

n<thn2

n<thn1

belief(costs_
intervention(n))

belief(audience_
inhibition(n))

perform(i)

belief(capable(i))

belief(resources(i))

belief
(opportunity_for(i))

 

Fig. 1. Simulation model 

6   Case Studies 

To illustrate the behaviour of the model we present two case studies: one case study 
with a norm violation in a situation with high personal implication and one case study 
with a norm violation in a situation with low personal implication. Recall that 
personal implication indicates the level of responsibility a person feels for a particular 
situation: when you feel it is your duty to intervene in a certain situation you feel 
highly personally implicated (e.g. when someone damages something in your home). 
However, when you do not feel any responsibility to intervene, you have a low 
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personal implication (e.g. when you see someone shoplifting). The norm violating 
situations used in the case studies are based on the experiments presented in [7]. 

In Section 6.1 the case studies will be described and the results of the simulations 
are shown in Section 6.2. 

6.1   Description 

Low personal implication 
 

Chekroun and Brauer [7] conclude that whether or not people feel personally 
implicated, has a great impact on their incentive to intervene. According to their 
research people feel low personal implication in case of a norm violation in an 
elevator in a shopping mall. This is caused by the fact that the shopping mall belongs 
to a corporate business and professional cleaning personnel is responsible for keeping 
the shopping mall clean.  

In their experiment [7], a young man is waiting for the elevator. When people join 
him, he enters the elevator with them. Once the doors are closed, he takes out a 
marker and draws something on the wall. He gives the other people in the elevator the 
opportunity to react, before leaving the elevator at the first floor. The results of the 
experiment show that the number of bystanders has an effect on the intervention rate. 
The more bystanders were present, the lower the probability that someone expressed 
his or her disapproval. 

 
High personal implication 

 

People feel highly personally implicated in situations in which they feel it is their 
personal obligation to intervene. Chekroun and Brauer [7] use a park as a situation in 
which people feel highly personally implicated. The maintenance of the park is paid 
via local taxes and thus by the inhabitants. Further, aspects with respect to rising 
consciousness about the environment play an important role in feeling personally 
implicated.  

To test the intervention behaviour and the effect of bystanders, the following 
experiment was performed in [7]. Two females are walking through a park. As soon 
as they approach other people, they start to drink from a plastic bottle and throw the 
bottle in the bushes. They make sure that all bystanders notice this. Then they walk 
away, and give the bystanders the opportunity to react to the littering. 

The results of this experiment show that in this case, the number of people present 
does not affect the intervention behaviour of the bystanders.  

6.2   Example Simulation Traces 

We have used the situations described in Section 6.1 as scenarios to demonstrate our 
model. For each of the situations (low personal implication and high personal 
implication), we have run the simulation model with various parameter settings for 
the amount of bystanders, the value of the norm and the level of seriousness. 

Table 1 shows the parameter settings (first four columns) and results (last four 
columns) of some of these runs. The first column shows how many bystanders are 
present. The second column indicates the agent’s behavioural norm. A norm with 
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value 0.1 means that the agent believes very quickly that norms are violated; while a 
value of 0.8 means that the agent will not believe this very quickly. The seriousness 
(column 3) determines how serious the agent believes a certain action usually is (0.1 
means that an action is not considered to be very serious, while an action rated with 
0.9 is considered to be very serious). The value for the thresholds used in LP5 (thn1 
and thn2, which are currently taken equal) is mentioned in the fourth column. Based 
on these settings, the fifth column shows the updated seriousness (which is the result 
of the calculation performed by LP6), i.e., the agent’s perceived seriousness of an 
action in one particular situation. The final three columns show whether or not the 
agent feels responsible to intervene, has a desire to intervene and performs an 
intervention.  

Table 1. Results simulation runs 

#by-
standers norm

serious-
ness threshold

updated 
seriousness

personal 
responsibility desire

inter-
vention

1 0.1 0.2 2 0.20 yes yes yes
3 0.1 0.2 2 0.18 no yes no
4 0.1 0.2 2 0.17 no yes no
5 0.1 0.2 2 0.17 no yes no
1 0.1 0.5 5 0.50 yes yes yes
3 0.1 0.5 5 0.45 yes yes yes
4 0.1 0.5 5 0.44 yes yes yes
5 0.1 0.5 5 0.43 no yes yes
1 0.1 0.9 9 0.90 yes yes no
3 0.1 0.9 9 0.81 yes yes yes
4 0.1 0.9 9 0.78 yes yes yes
5 0.1 0.9 9 0.77 yes yes yes
1 0.5 0.1 1 0.10 no no yes
3 0.5 0.1 1 0.09 no no no
4 0.5 0.1 1 0.09 no no no
5 0.5 0.1 1 0.09 no no no
1 0.5 0.5 5 0.50 yes no no
1 0.5 0.6 6 0.60 yes yes no
1 0.5 0.9 9 0.90 yes yes yes
3 0.5 0.9 9 0.81 yes yes yes
4 0.5 0.9 9 0.78 yes yes yes
5 0.5 0.9 9 0.77 yes yes yes
1 0.8 0.9 9 0.90 yes yes yes
2 0.8 0.9 9 0.84 yes yes yes
3 0.8 0.9 9 0.81 yes yes yes
4 0.8 0.9 9 0.78 yes no no  

 
These results show that the model is able to reproduce the behaviour as found in 

the experiments performed by [7]. Indeed, intervention depends on the amount of 
bystanders and the personal commitment. The number of bystanders is important in 
the low personal implication scenarios (seriousness 0.1-0.5), while the bystanders do 
not have a large effect on the intervention behaviour in the high personal implication 
scenarios (seriousness 0.6-0.9).  

7   Discussion 

In this paper we have developed a simulation model to demonstrate the behaviour of 
bystanders in norm violating situations. This model was tested in two case studies 
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with multiple different scenarios. In these case studies we used situations with low 
and high personal implication and tested the model with different settings for the 
number of bystanders, the level of the norm, seriousness of the violation and 
thresholds. The results of the simulations show that the model can replicate the 
behaviour of the agent as expected based on the results of various real life 
experiments [7].  

The model can be useful in different domains. In the field of criminology the 
model can support researchers to gain more insight in the decision process behind the 
bystander effect. For instance: Under what circumstances will people intervene? Do 
they intervene when they see someone stealing a bike? Or when someone gets 
murdered like in the Kitty Genovese case?  

Within the domain of Artificial Intelligence, the results are interesting for the 
development of more realistic virtual agents. These agents play an important role, 
e.g., in training simulations for police officers. Thus, the model can be used as a first 
step in developing ‘virtual bystanders’ for such applications. 

Finally, the results can also be helpful for policy makers. For instance, it may 
provide ideas about how to change environmental design in such a way that  
bystander interventions are encouraged. This might make it possible to reduce the 
amount of police effort, and thus to reduce costs.  

This paper is a starting point of agent-based simulation in the area of the bystander 
effect. Future work will include research into other relevant aspects (e.g., 
environmental aspects of the location of the violation, appearance of the offender), 
and to a more extensive validation of the model. 
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Abstract. Carbon trading scheme is being established around the world
as an instrument in reducing global GHG emission. Being an emerging
market, there only a few simple simulation studies related to carbon trad-
ing that have been reported. In this paper, we propose a novel carbon
trading simulator capable of modeling traits of human traders in carbon
markets. The model is driven by the concept of Nash equilibrium within
an agent based modeling paradigm. The model is capable of implement-
ing crucial issues such as carbon emissions, Marginal Abatement Cost
Curve (MAC), and complex human trading behaviour. Experiments car-
ried out provide insights into interaction between traders’ behaviour and
how the interaction affects profitability.

Keywords: Carbon emission trading, game theory, multi agent system,
marginal abatement curve, Nash equilibrium.

1 Introduction

Carbon trading is a term commonly used to reflect the activity of trading carbon
credits (GHG credits or units). A unit is a measure of allowable CO2 emission,
so to be “greener” is to reduce GHG emissions. Carbon markets, based on mar-
ket competition, spread the financial cost of carbon emissions reduction across
different nations.

Being an emerging domain of research, limited literature is available on mod-
eling of carbon trading. A group of researchers on carbon trading markets have
restricted their research to using human participants [1, 16]. Others have used
computer models [9, 10, 14, 15]. Mizuta and Yamagata were probably the first
to present carbon trading simulation using agent modeling approach [10]. They
developed a generic framework called Artificial Society with Interacting Agents
(ASIA). In the ASIA framework, an agent represents a country. Their simu-
lations used 12 countries (6 Annex I countries and 6 Non Annex I countries)
covering year 2008 to 2012, and the reduction is distributed evenly across the
trading years. They found that an agent’s decision to act on GHG reduction early
or late was influenced by the technology advancements and other (unspecified)
factors.

Mizuta and Yamagata extended ASIA to also include human players [11, 12],
and made three important observations. Firstly, that human players made dis-
honest and irrational bids resulting in no deals. To deal with this problem, they
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restricted human players to Double Auction trading. Secondly, human sellers
controlled price at the expense of human buyers. Finally, when human players
could invest in technological advancement for self-cutting, they invested more
heavily in technology and price control became unpopular. However, it was un-
clear how this change in behaviour affected the selling price, and therefore, prof-
its. To answer this question, we propose a framework in which agents tend to
control selling price (having the trait of “greed”), less likely to control selling
price (having the trait of “goodwill”) and agents who have the same likelihood
to have the trait of greed or goodwill (“neutral”). Our proposed framework is
described in the next section.

2 The Proposed Model

As mentioned in the previous section, research in carbon markets show that
human players exhibit the “greed” and “goodwill” characteristics. Thus, the
carbon trading markets become very similar to Prisoners’ Dilemma, the classic
problem in game theory that explains why two people do not cooperate even if
it is in their best interest to do so.

To get a clearer understanding of our trading model, we elaborate the Prison-
ers Dilemma as follows. Let us consider two persons who have been arrested for
a crime. Now, if one person confesses to implicate the partner and the partner
does not also confess, then the person who made the confession goes free and the
partner gets ten years of imprisonment. If both of them confess, then they each
get five years. If neither of them confess, then each of them gets two years. The
best outcome for an individual criminal is to go free, and the worst outcome is
to be in prison for ten years. But, the best outcome for both criminals is when
they cooperate: none of them confess and each gets only two years. However, a
“selfish” criminal is more likely to confess since there is a chance to be free. In
this case, a “greedy” trader is similar to the “selfish” criminal who is more likely
to confess, while a “goodwilled” trader is less likely to confess.

In our framework, we propose three major categories of traders: Profit Driven
(PD) to represent “greed”, Green Driven (GD) to represent “goodwill”, and
Neutral who switches between PD and GD. Note that the Neutral behaviour
was not a distinct behaviour observed in [11, 12], but we would like to evaluate
the performance of such a flexible trader. A PD trader attempts to maximize
monetary gain at the expense of other traders. The classic example of PD moti-
vation is “buy low and sell high”. On the other hand, a GD trader makes trading
decisions with monetary gain of secondary importance; it focuses on having deals
approved. However, this does not mean that a GD trader does not seek to make
a gain. Rather, it means that a GD trader is more likely to seek a lower profit
margin than PD one. In other words, in response to the same market situation,
a GD trader tends to bid higher and ask lower than a PD one.

The next sections explain how to implement these human traits in computer
agents, how to use game theory in making decisions, and how the trading mech-
anism works.
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2.1 Coding Trader Traits in Computer Agents

The complex behaviour of traders can be implemented using the concept of
payoff matrix of game theory by changing the values of the matrix. The payoff
values (u) are in the integer range of [0...10].

The three columns in Figure 1 are actually the three payoff matrices and
represent the three different distinct agent personalities: PD (profiteering or
ugly), Neutral and GD (environmental trait or good). For a PD agent, the gain
will be made at the expense of her trading partner. A GD agent, on the other
hand, seeks co-operation above everything else. A neutral agent has the equal
probability of being a PD or GD. The next section now discusses the proposed
two-stage trading mechanism, and how the payoff matrices affect the behaviour
of the agents.

6 32 2 19 32 1 2

5 51 9 3 3 2 8 73

7 1

8 8

Pr(Seller/Buyer is PD)=0
Pr(Seller/Buyer is GD)=1

Pr(Seller/Buyer is PD)=1
Pr(Seller/Buyer is GD)=0

Pr(Seller/Buyer is PD)=0.5
Pr(Seller/Buyer is GD)=0.5

Profiteering

PD Seller PD SellerPD Seller

GD Seller GD SellerGD Seller

GD BuyerPD Buyer GD Buyer PD Buyer PD Buyer GD Buyer

Neutral Environmental

Fig. 1. The payoff matrices representing PD (profiteering), Neutral and (GD) environ-
mental

2.2 The Two Stage Trading Algorithm

In making trading decisions, a nation agent in the model relies on four pieces of
information: emissions profile, Marginal Abatement Cost (MAC) profile, market
information, and payoff matrices. Each piece of information provides the agent
with a view of the overall situation from different angles.

Based on the emission profile, an agent can answer how polluted or green it is,
and decide what its emissions target is in a certain year. Using the MAC profile,
an agent knows how much it costs to reduce its carbon emission domestically.
With the market information, an agent knows what the global price of each unit
of carbon credit is. Using the payoff matrix, an agent decides on the “optimal”
course of action. Together, these views give a big picture of the market and hence
enable an agent to form conjectures about trading decision.

There are two distinct stages in an agent’s decision making process and the
output of the first stage forms the input of the second stage (see Figure 2). Stage
1 determines the carbon credit quantity for selling (ask) or buying (bid) and the
preliminary selling or buying price P1 using only the agents MAC and market
unit price. The advertised price P2 in stage 2 is the result of a mark-up or mark-
down of preliminary price P1 produced in stage 1. The next section describes
the algorithm in stage 1.
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Fig. 2. The proposed two stage trading algorithm

Stage One. Every agent in the model has a reduction target (Rreq), which
is spread evenly across the trading years. To achieve this target, an agent can
either self reduce, sell or buy carbon credits. Let PMac be an agent’s MAC price
to cut emissions by Rreq, so PMac = MAC(Rreq), and PM the market price of
Rreq.

To obtain an optimal decision, an agent examines its MAC and compares
PMac with PM for reducing Rreq. Comparing PMac with PM , there are three
possible outcomes: PMac is less than, equal to, or greater than PM . When PMac

equals to PM , an agent has no carbon credits to sell nor buy. When PMac �= PM ,
the agent has to decide whether to buy or sell.

Let PM1 be the market price in case PM is greater than PMac. Similarly,
let PM2 be the market price in case PM is less than PMac. Figure 3 shows
the mechanism of an agent determining the sellable/buyable quantity and the
corresponding unit price by comparing PMac and PM .
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Fig. 3. An agent compares PMac with PM to determine sellable or buyable quantity
and the corresponding unit price

Let R� be the trading quantity that an agent would propose to make a trad-
ing gain:

Case 1: Sellable quantity R� = |Rreq −RM1|
Case 2: Buyable quantity R� = |Rreq −RM2|
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Let P1 be the preliminary trading price of R�. In real world, traders would
make offer with reference to the current market price PM . Traders’ offers could
be either above, equal to, or below the market price. Each trader would propose
a different price, so in stage 1 of the algorithm, the model has a price fluctuation
function that randomly sets P1 within ±5% difference of PM . In addition, the
fluctuation is constrained so that agents would not “sell below cost” (sell below
PMac) or “buy at a loss” (buy above PMac). Thus, the definition of P1 is as
follows:

P1 =
{
max(�, PMAC) Agent′s role = Seller
min(�, PMAC) Agent′s role = Buyer

� = (1± α) × PM , α ∈ [−0.05,+0.05]

Let CostMac be the cost (in dollar) to self-cut emissions by an amount of | a−b |.
It is the area under MAC curve:

CostMac =
∫ b

a

MAC

hyphenationreceiv-a-ble Trading money exchanged between buyers and sellers
is referred to as payable (amount of money a buyer expected to buy) and re-
ceivable (amount of money a seller expected to receive). For R� carbon credits
traded at price P1, payable/receivable is calculated as follows: PayableR� or
ReceivableR� = R� × P1. With payable/receivable and CostMac known, an
agent can estimate the potential gain. An agent gain from either selling or buy-
ing carbon credits. For R� trading quantity:

– Sale gain, the amount of difference between the self-cut cost and the amount
of payment received from buyer (see Figure 3).

Sale Gain = ReceivableR� − CostMac = R� × P1 −
∫ RM1

Rreq

MAC

– Buy gain, the amount of difference between the supposed self-cut cost and
the actual cost of buying credits.

Buy Gain = CostMac − PayableR� =
∫ Rreq

RM2

MAC −R� × P1

Once the gain has been calculated using the MAC function as above, we apply
game theory using Nash equilibrium (NE) to adjust the offering or buying price,
and the trader traits (either green or greedy) will affect how much the unit price
will be adjusted. The price adjustment is performed in the second stage of the
algorithm, and it is described next.

Stage Two. In the second stage of the two-stage trading algorithm, game theory
is applied to select an “optimal” price for a given agent type (PD or GD).

A core component of a payoff matrix is the payoff function. Suppose that there
are n Game Players in a game and xi is the type of player i (GD, PD). Let x be a
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type profile which is a set containing the type of each player x = (x1, x2, . . . , xn).
Payoff function of a player i takes a type profile x as input and returns payoff
value as output:

ui(x) where i = player and x = type profile.

In the model, a payoff value (or utility) has an integer scale from zero to ten
(lowest to highest). A Game Player i specifies its preferred type xi in type profile
x. A payoff value is not only a preference but also a measure of the quality of
outcome to a player i when selecting a type xi in type profile x.

Let PM be the current market price, MAC the marginal abatement cost curve
of a trader, MAC−1 the inverse of MAC. Let RM be the trader’s potential
trading quantity at market price:RM =MAC−1(PM ). With PM andRM known,
a real world trader has with three options:

1. Price adjustment to make his/her bid/ask being more or less competitive;
2. Quantity adjustment to make more or less profit; or
3. Combination of (1) and (2).

In our trading system, agents propose how much units to buy or sell, and when a
deal is struck, the settled deal is the lower of the two. This is because the trading
system enforces a partial order when there is a difference between “supply” and
“demand” quantity. In stage-2 of the algorithm, agents apply price adjustment
to P1 reflecting its type. The logic behind this adjustment is as follows. Let β
the adjustment percentage intended for P1:

β ≡ f(t, o) where t : type ∈ (PD,GD) and o : role ∈ (Seller, Buyer)

Let P2 be the advertised price in stage-2:

P2 = P1 × (1± u

10
× β) = P1 × (1± u

10
× f(t, o))

where u: payoff amount ∈ [0, 10].
The price adjustment function with GD type is defined as follows:

f(t = GD, o) =
{
random(−0.3, 0.1), o = Seller
random(−0.1, 0.3), o = Buyer

The random function used in the implementation of the model is a uniform
distribution pseudo-random numbers generator [8]. When a GD agent decides to
buy, the probabilities of positive (P2 ≥ P1) and negative (P2 < P1) adjustments
are as follows:

– Case 1: Probability of positive price adjustment

Pr(P2 ≥ P1) = Pr(0 ≤ β ≤ 0.3) = 0.3× 1
0.3− (−0.1)

=
3
4
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– Case 2: Probability of negative price adjustment

Pr(P2 < P1) = Pr(−0.1 ≤ β < 0) = 1− Pr(0 ≤ β < 0.3) = 1− 3
4

=
1
4

As previously discussed, GD and PD types have opposite priorities. GD is more
concerned about getting deals approved than maximizing trading gain whereas
PD is aggressive in maximizing gain in every approved deal. In terms of pricing
adjustment, a PD agent acts in the opposite manner to a GD agent. That is, a
PD agent is likely to sell at a higher price and buy at a lower price as compared
to a GD. Such a bias is captured in the following price adjustment function:

f(t = PD, o) =
{
random(−0.1, 0.3), o = Seller
random(−0.3, 0.1), o = Buyer

Payoff values are an agent’s measure of quality of outcome and they are used to
search for Nash equilibrium strategy in the payoff matrix. The higher the payoff
value, the better the outcome is. Another role of the payoff value u is to act as
the scaling factor of the price adjustment percentage β. The value of u indicates
the strength of an agent’s type; for example, two nations are of GD type, but a
nation with u = 9 is more aggressive in getting the deal approved (by lowering
its profit margin) than say a nation with u = 7.

3 Experiment Setup

Trading is conducted using First Price Sealed Bid auction (FPSB). Price is ini-
tially set at $25/ton, based approximately on the recent trading prices reported
at European Climate Exchange (ECX). The values of payoff matrices were given
in Figure 1. We simulated six Annex 1 nations expected to lead the world in
reducing GHG emissions. We excluded non Annex 1 nations mainly because
there are no reliable MAC functions available. We err on the side of simulating
fewer nations and use more realistic data. Since these six countries are expected
to lead the world, their activities will probably dominate the carbon trading
markets landscape, so the simulation results will still be meaningful. The six
Annex 1 countries in the simulations are Australia, US, Russia, UK, Sweden,
and Switzerland. Their MAC functions are linear curve fit of McKinsey’s MAC
estimates [2–7].

An experiment has 11 trading years, starting from year 2010 till 2020 (inclu-
sive); a trading year has one trading round. All agents share a common reduction
goal of 24% of the base year (1990) carbon emissions; 24% being the Australian
reduction target conditional on adequate global agreement [13]. All agents must
meet their reduction target by the end of a simulation either by self-cutting or
trading.

The experiments were conducted under three trading scenarios: Neutral, Green
Driven, and Profit Driven. A trading scenario is designed by aligning a majority
of nation agents in the experiment with the similar trait. In the context of ex-
periments, “majority” or “most” means the nation agents in the population are
greater than 50%. For example, in Green Driven scenario, most agents are GD.
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For each trading scenario, we setup an experiment and simulate it repeatedly
ten times, so there are thirty simulations in total. The next section presents
the results and analysis of results. Note that in the absence of any available
literature devoted to similar type of investigations, it has not been possible to
conduct comparisons with any other approaches reported earlier.

4 Results and Discussions

A snapshots of results in ”Green Driven” trading scenario is given in Table 1.
Similar to the findings of [12], nations tend to self cut in the first few years,
and then self correct in the later years. Annotation 1 in Table 1 emphasizes
the presence of a period (from year 2010 to 2013) when there is no trading
activity. This special trading period is known as Cut-To-Grow (CTG): there is
no incentive for that trader to buy carbon credits internationally. Rather, the
trader would seek to sell credits and to self-cut carbon emissions at home because
such actions would have a net positive effect on its economy [6].

Annotation 2 marks a rare event when nation agents in the model trade
at a loss and such an event happens beyond the control of agents. Agents may
experience loss when trading because of the rule of trading: partial bid is allowed
and there is no reserve price or quantity.

Annotation 3 is an example of market price decline. From year 2014 to year
2020, we observed that market price decline happens less frequently than market
price increase.

In Annotation 4, market price remains unchanged from 2016 to 2017. This
situation arises because there is no successful deal in that period (Sale Gain =
Buy Gain = 0). No deal happens from time to time when agents see no gain in
trading (CTG for example); or proposed bids and asks simply do not match.

Table 1. A snapshot of simulation results under Green Driven trading scenario
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Green Driven Trading Scenario
YearYear

We now examines the relationship between trading trait and total trading
gain (sale gain + buy gain). The yearly average total gain for three different
scenarios are: (i) Profit Driven, (ii) Neutral, and (iii) Green Driven. For each
trading scenario, the yearly total gains of simulations are averaged and displayed
in Figure 4.

An agent’s trading performance is measured by the amount of monetary gain it
made through the trades. In Figure 4, the trading performances of three different
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Fig. 4. Stacked-column chart shows Yearly Average Total Gain in different scenarios:
PD vs. Neutral vs. GD

scenarios in each year are compared to each other. The higher the bar, the better
the trading performance is. A trading scenario is said to have a high performance
year (high year) when agents under the trading scenario make the most gain as
compared to agents in other scenarios in the same year. For example, in Figure 4,
in 2015, agents under trading scenario Neutral (N) have a high year while agents
under Profit Driven (PD) have a low performance year (low year). Comparing the
scenarios yearly performance from 2005 to 2020, there is no clear cut winner or
loser: agents in three different trading scenarios have an equal share of number of
high and low years, so no conclusion can be made with regards to the relationship
between trading trait and total gain.

Next, we examine the relationship between trait and sale gain, and the rela-
tionship between trait and buy gain. Figure 5 shows the yearly average sale and
buy gain. The numbers of high and low years for sale and buy were counted.
For the high year in sale and buy gain, the count gives us no insight as their
probabilities are the same across the board. The result of low year count was
represented as pie charts in Figure 5: GD and PD trading scenario have the

Fig. 5. Yearly Average Sale and Buy Gain in different scenarios: PD vs. Neutral vs.
GD
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lowest probability (1 out of 6) of encountering a low performance year in sale
and buy respectively. With these findings, we can make the following remarks
about the relationship between trading trait and sale/buy gain.

From a seller’s perspective, adopting environmental trait would likely to yield
a sale profit better than average on a yearly basis. With the environmental
trait, the probability of having a low performance year is 0.17 (1 out of 6):
environmental agents would make high to moderate profit most of the time. On
the other hand, if an agent is more likely to be a seller rather than a buyer,
profiteering is the worst trait to adopt. Because with profiteering, there is a 50%
(3 out of 6) chance of having a low performance in terms of sale gain.

From a buyer’s perspective, profiteering is an optimal trait for maximizing buy
gain on a yearly basis. In other words, buyer agents should adopt profiteering
trait and avoid environmental trait.

In Figure 6, for each experiment, the yearly total gains from 2015 to 2020 are
added up and compared to each other. As clearly shown in Figure 6, Neutral
trading trait makes the most overall total gain, and fares marginal better for
overall sale and buy gain.

Fig. 6. Sum of Yearly Average Total Gain in different scenarios: PD vs. Neutral vs.
GD

5 Conclusions and Future Work

In this paper, we presented a carbon trading model by combining elements of
modeling human traits and game theory. The contributions of our carbon trad-
ing model to the state of research in this field are twofold. First, we incorporated
complex human behaviour in agent. Second, we demonstrated the merits of gen-
eralizing strategies by motivations (Profit Driven vs. Green Driven) and Game
Players by trading roles (seller vs. buyer). In doing so, we can run simulations
under different scenarios. We found that Profit Driven players do not always win.
This may be because focusing on only making gains at the expense of others re-
sults in no deals: a Neutral trader sometimes earn less but allow deals to pass.
Green Driven trading trait perform consistently better than others in terms of
yearly average sale gain. On the other hand, Profit Driven trait is best for yearly
average buy gain performance. But in terms of total gain performance, Neutral
agents - who can swing equally back and forth between Green Driven and Profit
Driven trading strategy - earn the most total gain during the last six years of
heavy trading (from 2015 to 2020). Based on these results, our recommendation
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is Neutral trait which would give agents the highest total gain performance and
the second best yearly sale and buy gain performance.

Our results showed that modeling of human trading behaviour in agents cre-
ates more market dynamics. In future, we intend to extend the model further
by incorporating other human behavioural traits and different socio-economics
parameters. The modeling of MAC would also be made for realistic by using
polynomial curve fittings technique (which is more accurate than linear fitting).
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15. Stańczak, J., Bartoszczuk, P.: CO2 emission trading model with trading prices.
Climatic Change 103, 291–301 (2010)

16. Watkins, C.: Carbon emissions markets: A simulation approach. In: The Aus-
tralian National University International Congress on Modelling & Simulation
Proc. (2001)



B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 47–56, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Fast and Incremental Neural Associative Memory  
Based Approach for Adaptive Open-Loop Structural 

Control in High-Rise Buildings 

Aram Kawewong1,2, Yuji Koike3, Osamu Hasegawa1, and Fumio Sato4 

1 Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 
4259-R2-52 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan 

2 Department of Computer Engineering, Faculty of Engineering, Chiangmai University, 
Chiang Mai, 50200, Thailand 

3 IHI Corporation, Research Laboratory,  
1, Shin-nakahara-cho, Isogo-ku, Yokohama, 235-8501, Japan 

4 IHI Corporation, Infrastructure Operation,  
Toyosu IHI Building, 1-1, Toyosu 3-chome, Koto-ku, Tokyo 135-8710, Japan 

{kawewong.a.aa,hasegawa.o.aa}@m.titech.ac.jp,  
{yuuji_koike,fumio_satou}@ihi.co.jp 

Abstract. A novel neural associative memory-based structural control method, 
coined as AMOLCO, is proposed in this study. AMOLCO is an open-loop 
control system that autonomously and incrementally learns to suppress the 
structural vibration caused by dynamic loads such as wind excitations and 
earthquakes to stabilize high-rise buildings. First, AMOLCO incrementally 
learns the associative pair of input excitation from either winds or earthquakes 
and the corresponding output control response generated by standard optimal 
control only under a single simple condition (i.e., low wind conditions). After 
learning for a short period of time, i.e., 15 min, AMOLCO becomes capable of 
efficiently suppressing more intense structural vibrations such as those caused 
by very strong winds or even earthquakes. In this study, evaluation of the 
AMOLCO method is performed by using the physical simulation data. The 
results show that the control signal generated by AMOLCO is similar to that 
generated by the state-of-the-art control system used in a building. In addition, 
the resulting control signal is tested on a realistic simulation to affirm that the 
signal can control the structures. These results show that for the first time, 
AMOLCO offers another approach of structural control, which is inexpensive 
and stable similar to a standard open-loop system and also adaptive against 
disturbances and dynamic changes similar to a closed-loop system. 

Keywords: Self-organizing neural network, Active-tuned mass damper, 
structural control, open-loop control. 

1   Introduction 

For nearly half a century, structural vibration control has been a topic of 
intensive research in both civil engineering and the architecture industry. The 
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Fig. 1. Buildings with the mass damper installed for structural control. (a) The landmark tower 
of Japan. (b) The Taipei 101 in Taiwan. (c) The illustration of how the damper has been 
installed into the Taipei 101 building. (d) The damper of Taipei 101 building. 

control of this parameter is indispensable for public safety, which is always of 
utmost importance. One of the most well-known structural control strategies is 
the use of a mass damper (Fig. 1 (d)) that is installed on the top floor of a 
building (Fig. 1 (c)) to stabilize the structure against dynamic loads such as wind 
and earthquake. The device consists of a mass, spring, and damper and is 
attached to a structure to reduce its dynamic response [1]. Some examples 
buildings with mass dampers installed are Taipei 101 (Fig. 1(b)) in Taiwan, 
Yokohama Landmark Tower (Fig. 1 (a)), and Trump world tower in the USA. 

From the structural control perspective, the control method of the mass 
damper is categorized into four main paradigms: active, passive, hybrid and 
semi-active [2]. In passive control, the damper remains functional without an 
external power source, posing no significant risk of an unstable situation. 
However, the devices are incapable of adjusting to structural changes and 
varying loading conditions [2]. In contrast, active control is expected to provide 
more effective protection against winds and earthquakes by utilizing a variety of 
computer-controlled mechanisms with smaller mass weights. Thus, passive 
control has advantages of high stability and reliability with low cost and low 
power requirement, while active control offers adaptability and versatility [3], 
[4]. Hybrid control is a combination of passive and active controls [5]. Finally, 
semi-active control is actually a passive control that functions with low power 
requirement while achieving the active control performance [6]. 

Although research in active structural control is popular [1], [3], [6], there are 
still a number of challenges including (1) reduced capital cost and maintenance 
and (2) increased system reliability and robustness. This paper particularly 
addresses these two challenges. In this paper, neural associative memory is 
applied to these challenges. We assumed that the damper’s movement and the 
building’s input excitation had a pattern. Thus, a set of associative neurons are 
created by first observing the real building controller. Once a sufficient number 
of associations were learned, the proposed neural associative memory-based open-
loop control system (AMOLCO) performed structural control by deriving the input 
excitation and outputting the appropriate response from its associative memory.  
The associative memory storage can be updated incrementally. The evaluation was 

(a) (b) (c) (d) 
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using the simulation data that features many challenging vibration conditions 
such as earthquakes and strong winds. We found that the control signal generated 
by AMOLCO was similar to that generated by the state-of-the-art optimal control 
method of such as Linear Quadratic Regulator (LQR) [7] and the H∞ technique 
[3]. Another realistic simulation was also conducted to show that the output 
control of AMOLCO can suppress the vibration of the building. 

 

Fig. 2. (a) Sample of data observed from structural control during 50 s period of time. (b) The 
overview of the proposed AMOLCO system for structural control. 

2   Problem Definition and Related Works 

Modern control systems can be classified as either open-loop or closed-loop. In an 
open-loop control system, the control action is independent of the output (no 
feedback). In a closed-loop control system, the control action depends on the 
feedback, resulting in the risk of oscillations in the output. As a result, for open-loop 
control systems, oscillations are not possible, and thus, the method lacks the 
adaptability to perform new control actions corresponding to unfamiliar conditions. 

Many previously proposed active control approaches are based on different control 
strategies such as Fuzzy Control [8], Optimal Control [3], [7], or Neural Networks 
[9]. Nevertheless, closed-loop controllers still have a risk of instability since the 
output control signal depends on the feedback from the building. Therefore, this paper 
proposes a new control system that is stable similar to the open-loop controller and 
also adaptive to dynamic changes similar to the closed-loop approach. Fig. 2 (b) 
portrays an overview of the proposed system, AMOLCO. First, the system self-
organizes and incrementally learns from the closed-loop control system (right) for a 
short period of time. Then, it controls the building in an open-loop fashion. 

(a) (b)
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Before discussing AMOLCO in detail, some essential input variables for structural 
control must be clarified. For input excitations, three variables were observed from 
the sensors mounted on a building. For output control, one more variable was used. 
Note that the structural control addressed herein is allowed of single degree of 
freedom. All variables are described as follows: 

  : acceleration of the structure 
 : velocity of the structure 
 : displacement of the structure 
 : command displacement of the mass damper 

AMOLCO must capture the associations between , ,  and  and represent 
them in an appropriate compact format. Fig. 2 (a) portrays the sample data of four 
variables during 50 s observation time. Three variables describe the status of the 
building and one describes the damper movement. 

Reviews of the literature about the application of associative memory indicate that 
there is a clear difference between the proposed AMOLCO system and the fuzzy 
associative memory (FAM) approach [10]. Most of the FAM approaches [10], [11] 
require a construction of interpretable and meaningful fuzzy sets, whereas AMOLCO 
does not have such requirement. FAM aims to model the association among fuzzy 
rules, while AMOLCO looks for associations among real values. That is, unlike 
FAM, in AMOLCO, the associations are represented in the space of , where n is 
the dimension of the feature vector (section 3).  

The objectives of AMOLCO and FAM approaches are different. The FAM-based 
method is essentially an improvement of the fuzzy-logic-based method. Both the 
methods based on fuzzy logic neural networks-based methods are intentionally 
proposed to replace the current optimal control theory [3], [7]; it does not learn from the 
optimal control theory. However, the main purpose of these methods is to reduce human 
efforts required for designing analytical control theories such as H

∞

 [3] and LQR [7]. 
Unfortunately, the performance of the intelligent closed-loop control strategy is still not 
sufficient for real use. Moreover, these approaches are still considered a kind of closed-
loop system. However, the proposed AMOLCO aims to learn the best control strategy 
that can be applied in real buildings, so as to generate very similar control actions 
corresponding to the input excitations. It should be emphasized that AMOLCO needs to 
learn from only one simple condition (small winds that occur once in 0.1 years) for only 
a short period of time (900 s in this paper), and is capable of controlling the building 
under more intense conditions such as strong winds that occur once in 1000 years and 
earthquakes. 

3   Proposed Approach 

The proposed AMOLCO has two phases: learning and controlling (testing). Being 
online and incremental, AMOLCO can switch forth and back between these two 
phases at anytime. Fig. 2 (b) shows an illustration of the working of AMOLCO. 

3.1   Feature Representation 

We represent associations in the form of “if INPUT then OUTPUT,” where INPUT is 
an associative key (input excitation) and OUTPUT is the corresponding output 
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(control response). To generate the appropriate control action, AMOLCO needs to 
process the input data periodically. In particular, given  as the length of the interval 
of the time series input data for consideration, , ,  as variables observed up to 
time t, i.e., = (( ) , … , ( ) ), the feature vector of associative key at time t is = ( ), ( ), … , ( )                                                   (1) 

The variable ( ) might be displacement ( ) , acceleration ( )  or velocity ( )  of the structure, where 1 , 1 + 1, and  indicates the 
element index of the vector. The parameter ω  affects the performance of the 
AMOLCO. If  was too large, then the association would not be sufficiently 
discriminative to produce the accurate control response. In contrast, if  was too 
small, the information in the associative key would be insufficient to correctly 
represent the input excitation. The input associative key  comes with a 
corresponding control response , = ( ), ( ), … , ( )                                                   (2) 

where ( )  is ( )  from the variable  observed up to time t. Then, an 
associative pattern  is derived by =                                                                  (3) 

where , .  
One problem of concern is that  and  might be of different units (i.e., 

acceleration displacement). This may lead to errors in clustering because the 
distance is measured, Euclidean distance, where all dimensions of the vectors bear the 
same importance and priority. For example, associative pairs between  and  
have different unit scales. The scale size of  is larger, so the data would be 
grouped into clusters primarily on the basis of . Therefore, we create the 
associative pair of only the same units, i.e., velocity with velocity and displacement 
with displacement. Namely, out of the three possible types of associations, only 

 are used. Note that we use the notation  to represent the association 
between the associative key F and the corresponding output R. 

3.2   Online Incremental Neural Associative Memory [12] 

Self-organizing and incremental neural associative memory, coined as SOIAM [12], 
is a recently developed incremental online algorithm which that can learn from 
associative input data in an incremental manner. Its performance has been reported to 
be better than that of bidirectional associative memory (BAM) [13], Hopfield-based 
methods [14] and the Kohonen feature map [15]. Starting from the empty set, SOIAM 
considers the first two input data as the starting two nodes, and then, for every input 
associative pattern , where  is an associative key and  is a 
corresponding output, the algorithm finds the first-nearest node  and the second-
nearest node  by the equations: = argmin     (4) = argmin ,   (5) 
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where  is the set of all nodes in the SOIAM and  is the -dimensional weight 
vector of node . If the distances between the new input associative pattern and the 
first and second winners are less than the threshold, the pattern is assigned as the first 
winner node. Otherwise, SOIAM will determine that the input associative pattern is 
very different from the current nodes and that a new node should be created. 

Consider the case in which a new associative pattern is assigned to the nearest node 
 in the SOIAM; the weight vector  will be updated by the value of the new 

input pattern and an edge between the first and the second winners will be created (if 
it does not exist already). The clustering behavior of SOIAM [12] and SOINN [16] 
are similar, and both are significantly different from other clustering methods such as 
k-means. The new input associative pattern data is not directly added to form the 
cluster. Instead, the cluster is formed by connecting existing SOIAM nodes. This 
saves a significant amount of running memory in the long term. The SOIAM also 
allows the nodes to be autonomous agents. At any time, each node has its own age 
and accumulated errors (represented by the sum of the distance of the input pattern for 
every time it is selected as the first winner). With these properties, each node can 
perform two activities: it can become dead or it can divide itself. If the node exists for 
a long time without winning for any new input pattern (a noisy or useless node), all 
connected edges will gradually die. Alternatively, if the accumulated noise is very 
large, the node will divide itself into two.  

3.2.1   Learning the Associations (Training) 
To obtain informative data, the sliding window technique with the shifting steps  
has been employed. That is, the number of input data we can obtain at time  is + 1 ( = 1). We have tried different values of , but they do not affect the 
accuracy of AMOLCO significantly. The parameter  significantly affects only the 
computation time since it indicates the amount of data available for learning. We use = 5  for all experiments in this paper. This value is small enough to enable 
AMOLCO to respond in less than 0.01 s (data sampling time of a real building). 

In this paper, we use the training data obtained under very low wind conditions that 
occur frequently (every 0.1 years) for 900 s with a sampling rate = 0.01 s. This results 

in data of a total of (90000) 200 /5 + 1 = 17961 associative pairs that have 

been used as the input for SOIAM learning. The parameter  is set by SOIAM to 
allow the pattern to capture at least two local optimum points in the input wave (  = 
200 in this paper). A value of more than 200 does not significantly increase the 
algorithm accuracy but slows down AMOLCO so that the system cannot respond in 
the desired response time.  

3.2.2   Controlling the Structure (Testing) 
At any time, AMOLCO can perform structural control by using the associative 
memory learnt so far. However, all previous learnings have been done in only one 
simple condition. Therefore, it is very unlikely that the system would be able to 
control the structure in different conditions, i.e., during an earthquake. As a solution, 
we use a simple but efficient technique to amplify the magnitude of the nodes. This 
technique is based on our observations that the pattern of the input associative key 
and its corresponding output is stable across different environments. The only 
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difference is the magnitude of the input and output. Therefore, duplicating SOIAM 
nodes into multi-scale clusters could enable AMOLCO to control the building in 
variable conditions. In this study, we multiply the clusters in 5 scales. That is, given n( ) as the number of all nodes in SOIAM at the current time , the multiplication 
process results in a total of n( ) n( ) + 5 n( ) nodes in SOIAM. Note that 
these multiplied nodes are used only during the structural control phase. If the system 
switches back to the learning mode, all the duplicated nodes are discarded. 

AMOLCO obtains the time series input associative key, , and then retrieves the 
appropriate response, , from a set of associative nodes from the three neural 
associative memory systems corresponding to the associations = , … , ( ) , 
where  is the ith node of the node set  of the neural associative memory of the 
association between  and  at current time t. In particular, the desired 
corresponding displacement control for damper ( ) is derived by using a query with 
the input associative key = (( ) , … , ( ) )                     (6) 

to retrieve the set of nodes in the neural associative memory = , where = argmin ( )                         (7) =                               (8) 

4   Experiments and Results 

To test the performance of the proposed method, AMOLCO, we use physical 
simulation dataset to feature many challenging vibration conditions. Since AMOLCO 
is the first control system approach used for controlling structure, which works in an 
open-loop fashion by using the associative memory, there is no established baseline 
for comparison. Thus, we also utilized AMOLCO based on k-means to compare the 
results with the SOIAM-based AMOLCO approach. 

The data was obtained from realistic physical simulation of a 20 m tall building. It 
models five different wind conditions and two different earthquakes. Each dataset was 
studied for only 1000 s. The data sampling rate is 0.01 s, so a total of 100,000 data 
points per condition were obtained. The detail of the datasets is shown in Table 1. The 
return period year of the wind (i.e., 0.1, 1, 10 years) is the period in which the wind 
occurs once. For instance, the wind condition of 1 year indicates that the wind occurs 
once in 1 year. Ultimately, wind speed experienced by a building depends on its 
location. In this paper, the wind speed is assumed to range from about 21 to 35 m/s. 

Table 1. Description of datasets 

Conditions data length (s) Sampling rate (s) Train data 
wind 0.1 year 1000 0.01  

 
wind 0.1 
(1~900s) 

wind 1 year 1000 0.01 
wind 10 year 1000 0.01 
wind 50 year 1000 0.01 
wind 1000 year 1000 0.01 
Hachinohe EW earthquake 100 0.01 
Elcentro NS earthquake 100 0.01 
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Out of the seven trial conditions, only the condition with 0.1 year wind condition is 
used to train AMOLCO. The training was done in an online incremental manner; the 
signal was incrementally input to AMOLCO every 0.01 s. Then, AMOLCO began to 
control the building structure under various excitation conditions. 
 
 
 
 
 
 

Fig. 3. Signal flow for calculating the building acceleration using the mass damper 
displacement command generated by AMOLCO 

For evaluation, we compared the performance of k-means-based and SOIAM-
based AMOLCO. The performance of each method is evaluated by considering the 
root mean square (RMS) error compared to the ground truth (original optimal LQ 
control [7]). The comparisons are done for both command displacement and building 
acceleration. The comparison of the  signal with that of the ground truth shows 
the similarity of displacement command. In Fig. 4 (right column), it is clear that the 
damper displacement command of AMOLCO is very similar to that of the ground 
truth. In addition, we create another simulation to test if AMOLCO’s control signal 
can adequately control the building. The model of this simulation is shown in Fig. 3. 
The building acceleration response is analyzed by using its signal and comparing it to 
the acceleration response of the ground truth. This figure shows the case for wind load 
excitation. The mass inertia force is obtained by inputting the displacement command 
into the mass damper dynamic characteristic. The inertia force acts to suppress the 
wind load. In case of an earthquake, the building acceleration is calculated by 
considering the wind load as the inertia force induced by the ground motion. 

The results suggest that both k-means-based and SOIAM-based AMOLCO can 
efficiently control the building even though the test conditions are significantly 
different from the training conditions; the system learns to control the building in 
small winds and can achieve suppression of vibrations induced from earthquakes. The 
RMS error between 8 and 15 % is considered adequate for real construction. Fig. 4 
shows a graph of a typical output signal sample of AMOLCO and the ground truths. 
The signal is similar for both command and building acceleration.  

Both k-means-based and SOIAM-based AMOLCO show similar performance.  
Nevertheless, k-means has many drawbacks: (i) the computation of k-means data 
clustering is expensive. (ii) the number of k must be manually input by a user. (iii) k-
means cannot learn new data incrementally. We conduct another experiment to show 
that increasing the number of data learning period results in an increasing accuracy of 
AMOLCO. This shows that for the future work of fully autonomous control system 
that learn to control all by itself from the beginning, where training data would be 
input incrementally, the SOIAM-based AMOLCO is more suitable since its accuracy 
will increase with an increasing amount of training data. This is shown by the graph 
in Fig. 5 (b). The graph shows the accuracy of SOIAM-based AMOLCO after 
exposure to different number of training datasets. It is clear that the accuracy of 
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Table 2. Root mean square error of building acceleration of AMOLCO 

 

 
Fig. 4. Results of the experiment. (Left column) Graphs show the building acceleration under 
wind excitation at 50 and 1000 return period years, respectively, controlled by the SOIAM-
based AMOLCO and LQ optimal control [7]. (Right column) Graphs show the signal of 
damper displacement command generated by SOIAM-based AMOLCO and the ground truth 
(LQ control [7]). 

 
Fig. 5. (a) RMS value errors of the SOIAM-based and k-means-based AMOLCO at different 
noise scales. The SOIAM-based method is much more robust against noise than the k-means 
method. (b) The decreasing value of mean error of the displacement command of SOIAM-
based AMOLCO. 

AMOLCO increases with the increasing number of training periods. (iv) SOIAM is 
very robust against noise. We conducted an experiment by randomly adding noise to 
the training dataset (wind 0.1 [1~900]). In particular, we intentionally paired the 
associative keys with the wrong corresponding output sampled from the dataset itself. 
This simulates the situation where the system learns to control the system through 
trial and error (future work). The wrong associative patterns added to the training set 
were 10%, 20%, 30%, 40%, 50% and 60% in each case. Each case was repeated 10 
times. The result of this noise simulation is shown in Fig. 5 (a). 

 RMS Error of building acceleration (%) Learning 
time (s) Method Wind excitation (return period years) Earthquakes* Avg. 

Error 0.1 1 10 50 1000 elcentro hachiew 
SOIAM 13.50 14.20 14.30 15.20 9.29 3.85 4.88 10.75 115.11 
k-means 17.08 20.79 11.79 11.78 5.37 7.58 4.27 11.24 463.97 

* elcentro = Elcentro NS, hachiew = Hachinohe EW 

(a) (b) 
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5   Conclusion 

By the results, AMOLCO successfully handle the challenges stated previously. It is 
an inexpensive structural control that poses no risk of output oscillation while being 
adaptive to deal with unfamiliar intense vibration conditions. The simulation in Fig. 3 
allowed us to the graph plotted in Fig. 4 (left-column) to confirm that the control 
output from AMOLCO can actually stabilize the building and make the acceleration 
as close to zero as possible. It is also noteworthy that the final goal for the AMOLCO 
project is to be a fully self-adaptive system that learns to control the building 
structures all by itself right from the beginning. The version of AMOLCO in this 
paper is an important step in this process, which proves that SOIAM-based AMOLCO 
can accurately learn in an incremental manner from very noisy associations, a 
characteristic that is highly suitable to the reinforcement learning scheme. 
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Abstract. Growing interest in robot colony has led to initial experimental 
applications in biology, sociology, and synecology. Especially, it is noticeable 
that some researchers have tried to study on robot colony using evolutionary 
computational. In this paper, we present an evolutionary robot colony model 
and analyze their behavior for leadership characteristics in group of robots. 
Each robot has its own social position: leader, follower, and stranger. Leaders 
have responsibility of the existence of its group while followers choose their 
behavior going after their leaders’. Strangers behave independently without a 
leader or a follower. Transition between social positions is controlled by simple 
rules and probability, and behaviors change adaptively to the environment using 
evolutionary computation. Simulation has been conducted with 2-D based robot 
simulator Enki of EPuck mobile robots. Through experiments, we have found 
that the more centralized structure emerges in the evolutionary robot colony 
with a few leaders and safety behavior policy when facing with a difficult 
condition.  

Keywords: Evolutionary computation, mobile robot colony, leadership behavior. 

1   Introduction 

Recently, multiple mobile robots based analysis method is actively applied for 
different research areas. In the initial stage, more efforts were put on making robots 
intelligent so that they can choose their own behavior adaptively to the environment 
like robot soccer field [1]. This has been connected to a research area that tries to 
learn from multiple robots’ behavior rather than the reproduction itself such as 
communication and information suppression between robots [2], [3]. The aim of this 
sort of research is to explain phenomena and to get insight from their behavioral 
development. In this respect, studying emergence of leadership behavior and 
development of social structure in robot colony is also one of interesting and 
untreated topics.  

Krause defined leadership as the emergence of new behavioral pattern by some 
entities that are promptly accepted by other group members [4]. Analogous to Krause, 
Robbins describes leadership as the exerting one’s influence to other entities for 
achieving a specific goal [5]. So we can redefine that leadership is a power of 
influence that exert voluntary acceptance to other entities for a definite aim with a 



58 S.-H. Lee, S.-H. Yi, and S.-B. Cho 

new behavior strategy. This leadership was steadily observed from not only human 
beings but also animal colony such as primates, canids, birds and fishes [6]. Some 
researchers extended to build a computational model that captures a leadership 
behavior from colony’s moving.  

In this paper, we investigate the emergence of leadership behaviors and 
developmental aspects from mobile robot colony with evolutionary behavior. Robot 
can have three different social status, leader, follower, and stranger, and adaptively 
use this social relation to survive in the competitive world. The robot’s behavior is 
manifested by evolutionary neural network which is the source of the development of 
new behavior. We design two experimental groups based on the level of risk: high-
risk and low-risk assignments. From the independent simulation results, we analyze 
the developmental aspects of social structure and leadership behavior, and also 
investigate which environmental characteristics are favorable for the emergence of 
leadership in mobile robot colony.  

2   Related Works  

Research on the evolutionary robot colony can be divided into two areas based on the 
main focus: one is research on the activity and the other is communication between 
robots. For an example of the research on communication, Floreano et al. analyzed 
how robot colony develops the way of communication when they found food or 
poison with embedded LED sensor [2]. They utilized neural network for the control 
of robot’s movement, and experiment with different selection method and grouping 
mechanism. As an extension to Floreano’s study, Mitri et al. found that robots deceive 
other entities when their interests conflict with each other [3]. This was shown by the 
emission of light nearby poison.  

On the other hand, diverse characteristics that lead leadership also were analyzed in 
animals, human beings and even digital organism. Cozin et al. indicated that the 
difference in information each animal has is the primary motive for the pattern of 
mass movement [7]. Similarly, situation of neighbor entity was known to the key 
factor which decides an entity’s movement in its group [8]. As well as the findings of 
animal behavior, Dyer et al. revealed that the size of group, spatial structure of the 
group, and the a few entities who have information decide the emergence of 
leadership behavior in human groups. Especially, they suggested that groups can 
achieve the goal when a leader is located in the center or the each corner. Last, 
selection method can make a difference in leadership behavior from the experiment of 
digital structure [9]. Based on these previous researches that dealt with leadership and 
mobile robots, we focus on the developmental aspect of leadership behavior given 
two different settings.  

3   Modeling Evolutionary Robot Colony 

3.1   Overview 

The proposed simulation model consists of three parts as shown in Fig. 1: socializing 
module, artificial working space, and evolution engine. Socializing module creates and 
eliminates small robot group and changes each robot’s social status based on the simple 
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predefined rules in a stochastic way. These social relations between each mobile robot 
are inputted in the artificial simulation space. In the artificial working space, each 
colony and individual robot competes with each other to achieve a goal which is 
realized as hunting a prey robot. Based on the simulation results, a child robot with new 
strategy created from excellent parents robots is generated and replaced with the one 
eliminated from the robot colony. This evolutionary computation is controlled by 
evolution engine with selection, crossover, and mutation operation.   

 

Fig. 1. Evolutionary robot colony framework 

3.2   Social Position 

Mobile robots in the proposed model can take a social position among leader, 
follower, and stranger. Leaders are responsible for the survival of its own colony. 
Leaders decide their own behavioral strategy which affects the followers’ behaviors. 
No robots are allowed to become a leader without at least follower. Followers choose 
their behavior based on the changes in environment and their leaders. Strangers do not 
belong to any colony. Strangers act by themselves not considering any other robots 
similar to leaders. However, strangers do not take responsibility nor gain any help 
from other entities. Robots can choose collective or independent activity considering 
their situation. Initial social position is set to a stranger for all robots.  

Group G consists of a tuple, a leader L and a set of follower F, G=<L, F>. We 
assume only a leader can take a group. So given G has at most one leader, n(L) = 1, 
and at least one follower, n(F)>=1. Group is broken up when a leader is eliminated or 
no follower exists. A follower can follow only one leader at a time, but the change of 
its leader is allowed.  

 
 

Fig. 2. Six possible changes in social position. (A) Elimination of the leader robot. (B) 
Incapable of self-sustenance. (C) Elimination of all followers. No followers. (D) Emergence of 
a follower. (E) Get higher efficiency than the leader. (F) Emergence of a more efficient 
follower. 
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Fig. 2 depicts all possible changes of robots’ social position. This transition divided 
into voluntary transition and compulsory transition. Voluntary transition happens for 
taking advantage of survival such as being a follower when no sustainable capability, 
and being a stranger when a leader is incapable. On the other hand, compulsory 
transition happens due to the structural changes like group’s or robot’s extinction. 

We need to decide a guideline for some transitions of social position. For example, 
a robot should be able to decide when it follows more efficient entity. A robot also 
should be able to choose when it stops following or changes a leader. For this 
purpose, we design a transition mechanism in a stochastic way. An index that can 
guarantee appropriate decision is vitality of a robot entity in the artificial world. When 
vitality Vital is given, we can calculate the transition probability from stranger to 
follower is as (1) where nn is the size of colony. 

 
 

(1) 

Even if a robot decides to be a follower, it does not always guarantee an organization 
of a group. Becoming a leader can also be affected by the current situation, the 
amount of difference in vitality between the potential follower j and the potential 
leader i. The probability of emergence of leader is defined as (2) by considering the 
relative vitality gap between i and j. 

 
 

(2) 

When following the current leader is not beneficial for its survival, a robot can change 
a leader or be a stranger. The probability a robot changes its leader is decided based 
on its vitality and average vitality of members in the other groups as (3) where nk, nj is 
the colony size of k, j, respectively.  

 
 

(3) 

If the calculated probability is lower than threshold, a follower changes its social 
position into stranger.  

3.3   Behavior Control and Evolution 

Mobile robots’ behavior pattern is realized by the control of speed of both left and 
right wheels. So it is important to define an adjusting mechanism of wheel speed. In 
this work, we use a neural network model for dynamic and flexible behavior strategy 
as shown in Fig. 3.  

Neural network model consists of 8 input nodes, 2 output nodes and 16 weights 
which connect inputs to outputs. All robots use distance, relative location to prey 
robot and velocity of prey robot on x and y axis as inputs. Follower robots 
additionally get distance, relative location, velocity of a leader robot. These inputs 
about a leader and weights are disregarded by leader and stranger robots in the 
calculation of its wheel speed. Each observed input values are normalized based on its 
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Fig. 3. Structure of neural network for control of robot behavior 

maximum and minimum values. In the output nodes, the output is filtered by sigmoid 
function and actual wheel speed is calculated by multiplying filtered value and 
maximum wheel speed.  

We achieve robots’ adaptive behaviors by using the basic evolutionary 
computation operations such as selection, crossover, and mutation [10]. The search 
space is the weights value between input and output nodes. We do not invite the 
structure of neural network, but we try to find appropriate weights in the fixed simple 
network structure. 

First, entities which are efficient within 50% based on fitness value are selected for 
the generation of new strategy. We used 3-point crossover to create a new strategy 
from parent strategies which is for a robot that is inserted in the artificial world. The 
reason for the application of 3-point crossover is to minimize the effect from the 
difference by social status. Finally, through mutation new strategy is finalized. 
Mutation is also applied for the strategy of less efficient robot entities in order to lead 
positive changes.  

 

Fig. 4. Eight directions in the artificial world 

4   Experimental Design 

4.1   Assignments Design 

The goal of mobile robot with two wheels is to survive from the artificial 2-D 
simulator by hunting a prey robot P. As described above, each robot cooperates or 
competes according to its social position. Robot is randomly placed with the same 
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distance from P located in the center regardless of its group or social position. Robot 
has a head which becomes a direction of vision field. The direction is divided into 8 
subareas represented in real number depicted in Fig.4. NE, NN, and NW have positive 
value while SW, SS, and SE have negative. 

Physical collision in the given time determines success or failure in the designed 
hunting situation. The robot entity that touches P takes possession from the successful 
hunting. If this robot belongs to a group, prey is shared with the members; a leader 
takes large proportion. If a stranger catches P, it takes all. 

Robots sometimes are injured in the hunting process. In case of head-on collision 
with the prey, robots get damage from injury. When a robot bumps into P, the angle 
of moving directions determines the extent of injury described in (4). 

 
 

(4) 

Fitness value Fitness of entity i is defined as (5) 

 
 

(5) 

where Dist(i, p) indicates the distance from P to i where Vsuccess and Vgroup mean the 
gain when it or its group member successes. Both Vsuccess and Vgroup are activated in 
case of success, and Vsuccess is always higher than Vgroup. Fitness value increases 
robot’s vitality while the default cost for living Energycost decreases it as shown in (6).  

  (6) 

When vitality has negative value, the robot is eliminated from the artificial space with 
its social position. Stranger robot with new behavior strategy replaces the elimination. 

4.2   Settings 

We design two different experimental groups according to the difficulty of the given 
assignment. In the high-risk environment the fitness value is sharply reduced by 
injury whereas the decrease exists but not very crucial for survival in the low-risk 
environment. Earning is far much larger in highly risky prey than the one in low risky 
prey. To make difference between two preys in the artificial simulation world, we 
make risky prey turn its head faster than the easy prey. 

Simulation has been conducted with 2-D based robot simulator Enki 
(http://home.gna.org/enki/) of EPuck mobile robots (http://www.e-puck.org/). Each 
experimental group has been tested five times for each on Ubuntu 10.04 with C++ 
programming language. 100 seconds was given for 10 robots to hunt the prey robot 
within 150x150 size of artificial space.  

5   Results and Analysis 

We have analyzed the behavioral strategies, social structures and characteristics of 
leadership in evolving robot colony. At first, Fig.5 shows the changes in maximum, 
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average, and minimum value of vitality for difficult and easy assignments, 
respectively. The vitality waved with short period in the low-risk environment 
whereas a leader and group existed for relatively long time in the high-risk setting. A 
few powerful leaders emerge in the difficult situation rather than the safe 
environment. This result was due to the level of competition. In the high-risk 
environment, competition between robots was not harsh so less competitors emerged 
who can potentially threaten the position of the current leader.  

Fig. 6 shows the developmental aspect in the ratio of social position in the robot 
colony. As seen in Fig.6 it showed a chaotic fluctuation until the generation 2000 in 
both settings. This result is attributable to the time taken for the emergence of 
successful hunting strategy. From the middle stage, the difference in social structure 
between two settings is clearly come out. Multiple groups formed frequently by 
multiple leaders in the low-risk environment. In the high-risk environment, however, 
a group maintained with many loyal followers. Similarly, the number of strangers 
which independently behave is larger in the first experimental group. 

 
(a) Low-risk environment (b) High-risk environment 

Fig. 5. Changes in average vitality of robot colony for each experimental group 

 

 

 
(a) Low-risk environment (b) High-risk environment 

Fig. 6. Changes in the social position of robot colony 
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Result of the actual moving pattern depicted in Fig. 7 is also coincident with the 
previous results. Robots tended to show active and straightforward movement in the 
low-risk environment while passive behavior patterns came out in the high-risk 
setting. It seems that leaders gave influence on followers in a way to suppress. These 
results imply that harsh condition can lead more powerful form of leadership. The 
more robots decided to follow a heroic leader rather than facing high risk. On the 
other hand, less powerful but more number of leadership emerges in the lowly risk 
condition. Observation of the more number of independent behaviors supports this 
implication.  

6   Conclusion and Future Works 

We have analyzed the leadership behavior using evolutionary robot colony. Neither 
leadership nor evolutionary computation is new research area, but it seems certain that 
leadership in the evolving robot colony is attractive and interesting topic not touched 
so much, that can be connected to the more research on robot sociology. In this paper, 
we have designed the artificial robot colony. The robots are classified into three social 
position based on their own choice, and their behaviors are controlled evolutionary 
neural network.  

For the short-term future work, we are trying to bring out simulation-level work 
into the reality. By utilizing a tracking system of mobile robots we are building, we 
can analyze the behavioral pattern with real mobile robots. Along with this we will 
work how robot can guess a neural network structure or probability model of other 
robots when their physical observation values are given. 
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Abstract. Communication is not just the manipulation of words, but
needs to decide what is communicated considering the surrounding sit-
uations and to understand the communicated signals considering how
to reflect it on the actions. In this paper, aiming to the emergence of
purposive and grounded communication, communication is seamlessly
involved in the entire process consisted of one neural network, and no
special learning for communication but reinforcement learning is used to
train it. A real robot control task was done in which a transmitter agent
generates two sounds from 1,785 camera image signals of the robot field,
and a receiver agent controls the robot according to the received sounds.
After learning, appropriate communication was established to lead the
robot to the goal. It was found that, for the learning, the experience of
controlling the robot by the transmitter is useful, and the correlation
between the communication signals and robot motion is important.

Keywords: emergence of communication, grounded communication, re-
inforcement learning, neural network, robot control task.

1 Introduction

Many speaking robots have appeared recently, and interactive talking can be
seen in some of them. A robot talking with humans looks intelligent at a glance,
but a long interaction with them makes us notice that the partner is not a
real life but a robot. One major reason must be that the communication is not
grounded, but is just the manipulation of words based on pre-designed rules.
Many attempts have been made to solve the “Symbol Grounded Problem”[1] for
a long time. In the model of lexicon emergence in [2] or [3], extracted features of
a presented object are associated with words or codes. Under the assumption of
common observation between two agents, the models have a way of getting the
listener’s words closer to the speaker’s.

They suppose patterns and symbols separately, and focus on bridging between
them through specialized learning that is independent of the other learning.
Steels himself said in [3], ”The experiments discussed in this article all assume
that agents are able to play language games, but how do the games themselves

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 66–75, 2011.
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emerge?” The question gets the heart of the problem. Primitive communication
observed in animals or ancient people seems purposive such as telling food loca-
tion or coming dangers. Communication should emerge in the learning in daily
life, and the communication learning should not be isolated from the other learn-
ing. It is worth noting that, when we see the section of the brain, the language
areas are not isolated from the other areas, nor look so different from them. The
communication is not generated only by the language areas of the brain, but
is generated by the whole brain as a massively parallel and flexible processing
system. That enables us to consider many things simultaneously in parallel and
to decide flexibly and instantly what we talk, the authors think.

The emergence of purposive communication has been aimed by evolutional
approach[4] or reinforcement learning[5]. The author’s group has also investi-
gated it through reinforcement learning[6][7][8]. Discretization of the communi-
cation signal through reinforcement learning in a noisy environment was also
shown[8]. However, in these cases, the environment is very simple, and learning
is performed only on computer simulation.

In this paper, using a real camera, speaker, microphone, and robot, a trans-
mitter learns to output two sounds with appropriate frequencies from more than
one thousand color image signals from the camera, and a receiver learns to out-
put appropriate motion commands from the received sounds. Each agent uses a
neural network to compute the output, and learns it by reinforcement learning
only from a reward when the robot reaches a goal state and a small punishment
when it is close to a wall. The emergence of symbol is left as a future problem.

There are some communication robots with one or two cameras[9][10][11], but
the camera is used for the perception of communication partners or environment
or for giving the feeling of being gazed to the partner. The camera image is not
reflected to the communication directly, and no organic integration of the camera
image and communications can be seen in them.

2 Reinforcement Learning with a Neural Network

Reinforcement learning is autonomous and purposive learning based on trial and
errors, and a neural network (NN) is usually used as a non-linear function ap-
proximator to avoid the state explosion due to the curse of dimensionality. An
author has claimed that by the combination, parallel processing that enables to
consider many things simultaneously is learned purposively, seamlessly and in
harmony, and as a result, necessary functions such as recognition, memory (when
using RNN) emerges to get rewards and to avoid punishments. The flexible and
parallel processing is expected to contribute to saying goodbye to the “Func-
tional Modules” approach, in which each functional module is sophisticatedly
programed independently and the modules are integrated to develop an intelli-
gent robot. It is also expected to contribute to solving the “Frame Problem”.

The system is consisted of one NN whose inputs are sensor signals and whose
outputs are actuator commands. Based on reinforcement learning algorithm,
training signals are generated autonomously, and supervised learning is applied
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using them. This eliminates the need to supply training signals from outside.
In this paper, for a continuous input-output mapping, actor-critic[13] is used as
a reinforcement learning method. Therefore, the outputs of the NN are divided
into a critic output P and actor outputs a. The actor output vector a is used as
motion commands to its actuators after adding a random number vector rnd as
an exploration factor. For learning, TD-error is represented as

r̂t−1 = rt + γP (st)− P (st−1) (1)

where rt is the reward given at time t, γ is a discount factor, st is the sensor
signal vector that is the input of the NN at time t, and P (st) is the critic output
when st is the input of the network. The training signal for the critic output is
computed as

Pd,t−1 = P (st−1) + r̂t−1 = rt + γP (st), (2)

and the training signal for the actor output is computed as

ad,t−1 = a(st−1) + r̂t−1rndt−1 (3)

where a(st−1) is the actor output when st−1 is the input of the NN, and rndt−1

is the random number vector that was added to a(st−1). Then Pd,t−1 and ad,t−1

are used as training signals, and the NN with the input st−1 is trained once
according to Error Back Propagation[14]. Here, the sigmoid function whose value
ranges from −0.5 to 0.5 is used. Therefore, to adjust the value range of the neural
network output to that of the actual critic value, 0.5 is added to the critic output
of the neural network in Eq. (1), and 0.5 is subtracted from the derived training
signal in Eq. (2). The learning is very simple and general, and as you notice, no
special learning for communication or the task is applied.

3 Learning of Purposive and Grounded Communication

3.1 System Architecture and Robot Control Task

Fig. 1 shows the system architecture and performed task. There are a mobile
robot (e-puck) in a 30cm × 30cm square field and two communication agents;
a transmitter and a receiver. The transmitter has a camera that is fixed and
looking down the field from above. It has a neural network (NN), and its input
vector s is the RGB pixel values of the camera image. It also has a speaker and
transmits two sounds. The frequencies of two sounds are decided by the sum
of the actor output vector a and an exploration factor rnd through the linear
transformation of each element to the range between 1,000Hz and 1,300Hz. The
two sounds are one-second sin-waves, and come out successively with a small
interval. Due to a bug in the program, the frequency of the transmitted signal
was actually about 20Hz smaller than intended. The receiver has a microphone
and catches the two sounds from the transmitter. The receiver also has a NN. Its
input vector s has 60 elements, each of which represents the average spectrum
over 10Hz width around its responsible frequency of one of the two sounds and is
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Fig. 1. System architecture and robot control task. In this figure, two speakers and
two microphones are drawn, but actually, two sounds come out from one speaker with
a small interval and are received by one microphone.

normalized by the maximum value. The receiver generates the control commands
for the left and right wheels of the robot in proportion to the sum of its actor
output vector a and an exploration factor rnd, and sends them to the robot
through bluetooth.

Learning is very easy, and just proceeds according to the regular reinforcement
learning independently in each agent as described in the last section. There is a
big red circle in the center of the robot exploration field. When the robot center
reaches the circle, the both agents get a reward 0.9 and the episode terminates.
When the robot comes close to the wall, it is brought back to the position at
the previous time step, and a small punishment -0.01 is imposed.

A sample raw camera image is shown in Fig. 2(a). To reduce the computational
time, the image is resized to 26× 20. Fig. 3 shows the definition of forward and
backward and also relative and absolute orientation of the robot. The green part
indicates the front of the robot, and absolute angle θ is the angle from the vertical
axis of the image, and relative angle α is the angle from the line connecting to
the center of the goal.

In the preliminary learning in which the NN with the input of 26×20 pixels is
trained to output the relative distance and orientation (cosα, sinα) for a variety
of robot locations by supervised learning, the error for the orientation outputs did
not decrease so much. It would be difficult to recognize the relative orientation
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(a) Sample camera image (b) Robot-centered image

Fig. 2. Robot-centered image

θ
α

forward

backward

Fig. 3. The definition of forward and
backward, and absolute and relative
orientation θ and α of the robot

for every robot location from the image inputs. Therefore, the robot-centered
image as shown in Fig.2(b) was introduced. From the viewpoint of autonomous
and seamless learning, acquisition of appropriate image shift by camera motion
through learning is expected, but here, for simplicity, the image shift was given.
The empty area that appears by the shift is filled with gray color as in Fig.2(b).
Furthermore, to increase the precision, the resolution of the 5 × 5 area around
the center of the image is doubled. Each pixel color is represented by the three
signals for RGB, and 1,785 signals are the input of the NN in total. Each signal
is linearly normalized from -0.5 to 0.5 prior to the input.

3.2 Effect of Preparation Learning

In this task, the robot can reach the goal area by going forward or backward
after changing its orientation by rotating motions. The rotational direction can
be left or right, but for eliminating wasted motion, the optimal one is right
for α ≤ 90◦ or 180◦ < α ≤ 270◦, and left for otherwise. Around α = 90◦

or α = 270◦, the optimal direction changes drastically by the small difference
of α. After learning, the robot could reach the goal successfully. However, the
rotational direction was not optimal, but was always the same. That would be
because, for the transmitter, the communication signals do not directly influence
the robot motion, but indirectly influence it through the receiver.

Then, before the communication learning, the transmitter learns directly to
control the robot by reinforcement learning as a single agent learning. After that,
using the internal representation of the NN, in other words, after resetting all
the connection weights between hidden and output layers to 0.0, it learns the
communication signals with the receiver. After the single agent learning, the ro-
tational direction was appropriately chosen depending on the relative orientation
α. Also after the following communication learning, the direction was appropri-
ately chosen as shown in the next section. It is interesting that the previous
experiments are useful for learning of appropriate communication.

3.3 Correlation between Communication Signals and Motions

One of the reasons of unsuccessful learning found during investigation is little
correlation between communication signals and motions. In the receiver’s NN,
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Fig. 4. The loss of the correlation between the frequency of a communication signal
and the output of each hidden neuron by random initial weights in the receiver agent

each hidden neuron had a random initial connection weight to each input signal
after FFT. Therefore, the output of the neuron does not change monotonically
according to the frequency of a communication signal as shown in Fig. 4(a).
Then, the motion commands, which are the receiver’s actor output, also have
little correlation with the frequency. If the correlation does not exist, it is dif-
ficult for the transmitter to know whether the frequency should be increased
or decreased to make the robot motion more appropriate. Accordingly, in this
research, the weights for the inputs for one communication signal to each hid-
den neuron increase or decrease gradually as the responsible frequency of input
increases as shown in Fig. 4(b). In the same reason, the exploration factor rnd
that is added to the receiver’s actor output is ±0.1, while the transmitter’s
exploration factor is ±1.8. It is reported also in [7] that such setting is useful.

4 Experiment

Parameters in this learning are shown in Table 1. Because of the high-dimensional
input, the NN in transmitter has 5 layers, while the receiver has a 3-layer NN.
6,000 episodes of learning were done. The range of initial location of the robot
becomes wider gradually as the learning progresses. Fig. 5 shows two sample
episodes with no exploration factors after learning. In one of the episodes (a),
the robot was located upper-left area and the absolute orientation of the robot
was θ = 0◦, that means that the green part of the robot was located upper
than the white part. In the other episode (b), the robot was located lower-
left area and the orientation was also θ = 0◦. For each episode, time series of
camera image, transmitter’s critic and actors (signal frequencies), and receiver’s
critic and actors (motion commands) are shown. In the first sample, at first,
the transmitter sent a high frequency sound followed by a low frequency sound,
and the robot went backward rotating anti-clockwise. After that, the transmitter
sent high frequency sound and then a little high frequency sound, and the robot
went backward, and finally arrived at the goal. In the second sample, at first,
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Table 1. The parameters used in the learning

transmitter receiver

discount factor γ

penalty

reward

exploration factor

initial weight (hidden -> output)

initial weight (input -> hidden)

learning rate

number of neurons 1785-300-75-20-3 60-20-3

0.5 0.3

weight after
preparation learning

0.9

0.01

0.96

random [-1.8 - 1.8]

random [-0.5 - 0.5] random [-2.0 - 2.0]

random [-0.1 - 0.1]

orderd (-2.0 - 2.0)

low-frequency sound and then high-frequency sound are sent, and the robot went
forward rotating clockwise. After that, the transmitter’s second sound became
around the middle, and the robot went forward until it arrived at the goal.

Fig. 6(a) shows the two signal frequencies (transmitter’s actor outputs) for
some combinations of the robot location and absolute orientation θ. The fre-
quencies are generated in the transmitter from the actually captured camera
image. It can be seen that the frequencies are different depending on the lo-
cation or orientation of the robot, but when the relative location of the goal
from the robot is the same, the frequencies are similar to each other (e.g. upper
left in (a-1) and lower left in (a-2)). Fig. 6(b) shows the motion commands (re-
ceiver’s actor outputs) for some combinations of the two signal frequencies. To
make this figure, actual sin-wave sound were emitted from the speaker, caught
by the microphone, and were put into the receiver’s NN after FFT. It can be
seen that two motion commands change smoothly according to the two signal
frequencies. Fig. 6(c) shows the relation between robot state and motion com-
mands. The motion commands were generated from the actually captured image
through the transmitter, the speaker, the microphone, FFT, and the receiver. It
is shown that through appropriate communications, the robot rotated appropri-
ately depending on the state even though the robot motion was not completely
optimal.

The communication signals represent only the motions that the robot should
execute, but does not represent the state or action value. Therefore, the receiver
cannot represent the critic considering the robot state, but acquires the mapping
from the communication signals to the robot motions. That is also shown in [15],
and the problem of state confusion in the receiver was pointed in it.

5 Conclusion

It was shown that using a real mobile robot, a camera, a speaker, and a micro-
phone, the communication from the transmitter, who saw the robot’s state as
the camera image, to the receiver, who generated the motion commands to the
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longest in the lower or left direction) (b)The motion commands (left, right) (receiver’s
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robot, could be established through reinforcement learning only from a reward
and punishment. It is also claimed that in the communication learning, actual
control experience in the transmitter, and also the correlation between the trans-
mitted communication signal and the final effect are important. In this paper,
the communication signals are continuous, and in this meaning, the “Symbol
Grounding Problem” has not been solved. However, purposive and grounded
communication that includes what should be communicated considering the sit-
uation through many sensor signals and also how should the communication
signals be reflected on motions was acquired through learning without any spe-
cialized learning for communication.
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Abstract. An action selection method based on the estimation of other’s inten-
tion is proposed to treat with time-varying multi-agent environments. Firstly, the
estimation level of other’s intention is stratified as active, passive and thoughtful
levels. Secondly, three estimation levels are formulated by a policy estimation
method. Thirdly, a new action selection method by switching three estimation
levels is proposed to cope with time-varying environments. Fourthly, the estima-
tion methods of other’s intention are applied to the Q-learning method. Finally,
through computer simulations using pursuit problems, the performance of the
estimation methods are investigated. As a result, it is shown that the proposed
method can select the appropriate estimation level in time-varying environments.

Keywords: Multi-agent system, Reinforcement learning, Intention estimation,
Action selection, Pursuit problem .

1 Introduction

Multi-agent systems can emerge intellectual behavior such as cooperative behavior to-
ward a goal of agent group through mutual interaction among individual agents. In
general, multi-agent systems can cope with intractable problems that single-agent sys-
tems cannot solve and dynamical environments [1]. As giving agents a reinforcement
learning function, multi-agent systems can maximize its potential abilities such as co-
operativeness and robustness [2,3].

To realize cooperative behavior in multi-agent systems, if agents are able to com-
municate with others using some kind of communication tool, agents can pick up on
other’s intention. Agents however have to estimate the other’s intention if agents are
unable to communicate with others by restrictions of robot hardware and external envi-
ronments. In the present paper, we assume intention as agent’s behavior with a goal and
a plan after Bratman’s definition [4]. In this situation, agents are required to accurately
estimate the other’s intention and to cooperatively act toward a goal of agent group.

Nagayuki et al. presented a policy estimation method which can estimate the other’s
action to be taken based on the observed information about the other’s action sequence
[5,6]. They successfully applied it to the Q-learning method [7] which is one of rein-
forcement learning methods and showed to get effective the other’s policy. Meanwhile,
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Yokoyama et al. proposed an approach to model action decision based on the other’s
intention according to an atypical situation such as human-machine interaction [8,9].
They defined three estimation levels of the other’s intention and presented a computa-
tional model of action decision process to solve cooperative tasks through a psycholog-
ical approach.

Although the approach of Nagayuki et al. assumes the policy estimation as the other’s
action prediction, they don’t consider a deep intention estimation at all, i.e. a self-action
prediction by others. The self-action therefore consists of a self-experience and the
other’s action prediction. On the other hand, The approach of Yokoyama et al. esti-
mates the other’s intention but has to learn in advance by classifying action probabilities
according to goals and cannot cope with time-varying environments.

In the present paper, we propose an action selection method based on the estimation
of the other’s intention to treat with time-varying multi-agent environments. In Section
2, we briefly outline the Q-learning method. In Section 3, we give three estimation levels
of the other’s intention based on the work of Yokoyama et al. and formulate these three
estimation levels using the policy estimation method of Nagayuki et al. We further-
more propose a new action selection method by switching the three estimation levels
to cope with time-varying environments. At the same time, all the estimation methods
are applied to the Q-learning method. In Section 4, we investigate the performance of
the estimation methods through computer simulations using pursuit problems. As a re-
sult, we confirm that the proposed method can select the appropriate estimation level in
time-varying environments.

2 Reinforcement Learning

Reinforcement learning is a machine learning technique that a decision-making agent
takes actions and then receives rewards in an environment, and finally acquires the
optimum policy by trial and error [2,3].

The Q-learning method by Watkins et al. is a representative reinforcement learning
technique and guarantees that a value function will converge to the optimal solution by
appropriately adjusting a learning rate in Markov decision process environments [7]. A
state-action value functionQ(s, a) is updated by (1) so as to take the optimal action by
exploring it in a learning space.

Q(s, a)← (1− α)Q(s, a) + α

(
r + γmax

a′∈A
Q(s′, a′)

)
, (1)

where s′ is the next state after an agent takes action a, r is a reward at the state s′, A
is a set of all possible actions, α is a learning rate (0 < α < 1), γ is a discount rate
(0 ≤ γ ≤ 1).

Probabilistically, an agent selects action a at state s according to policy π(s, a).
Throughout the present paper, we employ the Boltzmann method defined by (2) as the
policy.

π(s, a) =
exp (βQ(s, a))∑

b∈A

exp (βQ(s, b))
, (2)
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where β is a parameter to control randomness of action selection called as inverse
temperature parameter. The policy π(s, a) referes to a probability to select action a at
state s.

3 Intention Estimation Levels and Their Application to
Reinforcement Learning

3.1 Intention Estimation Levels

In the present paper, intention estimation refers to the estimation of an action sequence
toward a goal. We formulate three estimation levels according to the depth of the inten-
tion estimation which referes to the work of Yokoyama et al. [8,9]. Then we propose
a new estimation level which can switch three levels depending on the situation. Note
that we abbreviate level as Lv. and intention estimation as IE.

Lv.0 IE. We sometimes behave without awareness of others. We call this as active
behavior and label Lv.0 IE. Lv.0 IE assumes an action selection mechanism which
an agent approaches a self-goal without intention estimation of others.

Lv.1 IE. We often select actions by predicting the other’s actions. We call this as pas-
sive behavior and label Lv.1 IE. Lv.1 IE is an action selection mechanism by pre-
dicting the other’s actions based on an other’s action history.

Lv.2 IE. We often decide actions by estimating the other’s intention. We call this as
thoughtful behavior and label Lv.2 IE. Lv.2 IE is an action selection mechanism not
only by predicting the other’s actions but also by estimating the other’s intention
based on the other’s situation.

Lv.3 IE. We often choose actions by changing estimation levels depending on the sit-
uation. We label this Lv.3 IE. Lv.3 IE is an approach to switch the above three
estimation levels, i.e. Lv.0, Lv.1, and Lv.2 IEs depending on the situation.

In the next section, we implement these estimation levels with reinforcement learning.

3.2 Application to Reinforcement Learning

At first, we formulate the estimation levels described in 3.1 in order to apply them to re-
inforcement learning. In the present paper, we employ the Q-learning method described
in 2 as a reinforcement learning method. After that, we propose a new reinforcement
learning system which can switch three estimation levels depending on the situation.

Action Selection Method at Lv.0 IE. Lv.0 IE realizes active action selection without
considering the other’s intention. The learning at Lv.0 IE therefore employs the standard
Q-learning method.

To begin with, let us denote a self-state as ss, a self-action as as (∈ As), and an
other’s action as ao (∈ Ao). Note that As and Ao refer to the sets of all possible actions
by self and the other, respectively. In the present paper, both action elements of self
and those of the other assume completely identical, i.e. As = Ao. Let us denote a
Q-function as Q(ss, as, ao). An update rule of Q(ss, as, ao) is represented by

Q(ss, as, ao)← (1− α)Q(ss, as, ao) + α

(
r + γ max

a′
s∈As

Q̄(s′s, a
′
s)
)
, (3)
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where s′s is a next self-state and Q̄(ss, as) is the average of Q(ss, as, ao) with respect
to ao.

Q̄(ss, as) =
∑

ao∈Ao

1
|Ao|Q(ss, as, ao), (4)

where |A| denotes the number of elements in set A.
We employ the Boltzmann method in (2) as action selection. Note that the Q-function

in (2) should be replaced by (4). At Lv.0 IE, self-action as with the higher value of
Q̄(ss, as) tends to be selected.

Action Selection Method at Lv.1 IE. Lv.1 IE realizes passive action selection with
predicting the other’s actions. The learning at Lv.1 IE is assumed as the Q-learning
method based on other’s action estimation.

We employ the policy estimation method by Nagayuki et al. [5,6] for Lv.1 IE. The
method predicts an other’s action using a policy estimation function Ps(ss, ao). The P-
functionPs(ss, ao) is updated by (5) for all the other’s actions to be taken, i.e. ao(∈ Ao)

Ps(ss, ao)← (1− ρ)Ps(ss, ao) +

{
ρ (ao = a∗o),
0 (otherwise),

(5)

where a∗o is the actual other’s action and ρ is a positive parameter (0 ≤ ρ ≤ 1).
As updating P-value by (5), P-value with a∗o increases and the other P-values de-
crease. Repeatedly updating P-values, an agent can predict other’s actions. Note that∑

ao∈Ao
Ps(ss, ao) = 1 holds at any time.

An update rule of Q(ss, as, ao) at Lv.1 is denoted by

Q(ss, as, ao)← (1− α)Q(ss, as, ao) + α

(
r + γ max

a′
s∈As

Q̄(s′s, a
′
s)
)
, (6)

where Q̄(ss, as) is a weighted average of Q(ss, as, ao) with respect to ao.

Q̄(ss, as) =
∑

ao∈Ao

Ps(ss, ao)Q(ss, as, ao). (7)

We also employ the Boltzmann method in (2) at Lv.1 IE as action selection. Note that
the Q-function in (2) should be replaced by (7). As introducing the policy estimation
method into Q-learning, Q-values are able to update by predicting other’s actions. At
Lv.1 IE, action as with the higher value of Q̄(ss, as), i.e. the average of Q(ss, as, ao)
with respect to policy estimation function Ps tends to be selected. In this way, the pre-
diction of other’s actions reflects self-action selection. As a result, an agent can gradu-
ally predict other’s actions.

Action Selection Method at Lv.2 IE. Lv.2 IE realizes thoughtful action selection
which an agent decides a self-action by estimating the other’s intention based on other’s
situation. The agent should therefore consider the self-intention which is estimated by
the other.
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: self-agent
: other-agent

Level 1 Level 2

Fig. 1. Difference of policy estimation between Lv.1 and Lv.2

In the present paper, the estimation of self-intention by the other realizes by replacing
the other’s position with the self-position as shown in Fig.1. The P-function is updated
in the similar with Lv.1 IE. Since the P-function at Lv.2 IE is assumed as the self-policy
estimation by the other, it is denoted by Po. The P-function at state so is updated by (8)
for all the self-actions to be taken, i.e. as(∈ As)

Po(ss, as)← (1− ρ)Po(ss, as) +

{
ρ (as = a∗s),
0 (otherwise),

(8)

where a∗s is the actual self-action. The P-value that an agent actually took increases
according to (8). The agent predicts an action which the other desires for the self.

An update rule of Q(ss, as, ao) using Po at Lv.2 is denoted by

Q(ss, as, ao)← (1− α)Q(ss, as, ao) + α

(
r + γ max

a′
s∈As

Q̄(s′s, a
′
s)
)
, (9)

where Q̄(ss, as) is a weighted average of Q(ss, as, ao) with respect to as.

Q̄(ss, as) =
∑

ao∈Ao

Po(ss, as)Q(ss, as, ao). (10)

We also employ the Boltzmann method in (2) at Lv.2 IE as action selection. Note that
the Q-function in (2) should be replaced by (10). At Lv.2 IE, self-action as with the
higher value of Q̄(ss, as), i.e. the average of Q(ss, as, ao) with respect to policy esti-
mation function Po tends to be selected.
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Action Selection Method at Lv.3 IE. Lv.3 IE is an approach to switch three estimation
levels, i.e. Lv.0, Lv.1, and Lv.2 IEs depending on the situation.

Since an observed state will change with time in real environments, an agent has to
appropriately select an action in time-varying environments. If the estimation level is
fixed, however, the agent has difficulty adjusting to the environment. The agent there-
fore needs to appropriately change the estimation levels.

We propose a selective method of the estimation levels in (11) to cope with time-
varying environments.

c = arg max
i∈{0,1,2}

PQi, (11)

where PQi (i = 0, 1, 2) is defined as follows.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

PQ0 =
∑

as∈As

∑
ao∈Ao

1
|Ao|Q(ss, as, ao),

PQ1 =
∑

as∈As

∑
ao∈Ao

Ps(ss, ao)Q(ss, as, ao),

PQ2 =
∑

as∈As

∑
ao∈Ao

Po(ss, as)Q(ss, as, ao).

(12)

The proposed selective method is described as follows. Firstly, we calculate PQi, i.e.
the product sum of P-values and Q-values. Note that P-values at Lv.0 IE mean the
equal probability because they don’t predict actions and estimate intention. Secondly,
we compare the values of PQi and choose the estimation level c that has the maximum
value of PQi. Note that we use the update rules of P-values and Q-values as described
before. We can therefore select an estimation level according to the learning situation
of P-values and Q-values.

4 Computer Simulation

4.1 Problem Setting

A pursuit problem is a well-known multi-agent problem which plural hunters pursuit
preys (or a prey) and catch them in a grid field. The followings are assumed in the
present paper.

– 9× 9 grid field with a torus structure in Fig.2.
– Two hunters (H1 and H2) and two preys (P1 and P2) in the field. Initially, H1 and
H2 are located in the center of the field, P1 is located near from the hunters, and
P2 is located far from the hunters as shown in Fig.2(a). It allows that hunters and
preys are occupied in the same cell.

– Two hunters can observe all the cells (complete observation) and act according to
their own estimation levels. The hunters can synchronously move up, down, left, or
right by one cell or stay on the same cell.

– A goal state is assumed that each hunter is occupied in one of four adjacent cells.
An example of the goal state is depicted in Fig.2(b).
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(a) Initial position (b) A goal position

near

far

Fig. 2. (a) Initial position of two hunters (H1 and H2) and two preys (P1 and P2), (b) an example
of a goal position

4.2 Simulation Setting

Two hunters get a positive reward r = 50 if a goal state is reached and get a negative
reward r = −0.01 if otherwise. The number of steps is limited to 30,000 and we start a
next trial if it reaches the limit.

We prepare the following two kinds of simulation setting according to behavioral
patterns of two preys, P1 and P2.

– Simulation 1

• P1 can only move up.
• P2 can only move right.

– Simulation 2

• Two preys can only move right before 1,500 episodes.
• Two preys can only move left after 1,500 episodes.

Under this simulation setting, each hunter has to choose a different prey with the other
hunter as a target. Since the initial positions of P1 and P2 are different, one hunter needs
to choose P2 as a target with considering the other hunter. In simulation 2, hunters are
required to adjust to the change of the environment.

The parameters were selected as α = 0.1, γ = 0.99, β = 10, and ρ = 0.75. Initial
Q-values and P-values were set to 0.1 and 0.2, respectively. These parameters were
selected so as to get the best performance through preliminary simulations.

4.3 Simulation Results

The learning curves for four combinations of estimation levels in Simulation 1 and 2
are shown in Figs.3 and 4, respectively. In all the simulations, the number of steps
is averaged for 10 trials. In this figure, Lv.i-j (i, j ∈ {0, 1, 2, 3}) refers to pairs of
estimation levels which assigned for two hunters. For example, we denote Lv.0-2 if H1

is Lv.0 IE and H2 is Lv.2 IE. We pick up the representative pairs of estimation levels
out of 10 pairs, i.e. Lv.0-0, Lv.1-1, Lv.2-2, and Lv.3-3. We also enlarge the learning
curves around the last episodes, i.e. from 2,800 to 3,000 episodes for comparison. The
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Fig. 3. Learning curves of in Simulation 1
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Fig. 4. Learning curves in Simulation 2
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transition diagrams of estimation levels of two Lv.3’s hunters in simulation 1 and 2 are
shown in Figs.5 and 6, respectively. Although we need to update both P-values and
Q-values, we initialized Q-values with the learned Q-values without loss of generality.
We got the learned Q-values at Lv.0-0 after 3,000 episodes. In this situation, the agents
don’t have any advantage or disadvantage.
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Fig. 5. Transition diagrams of estimation levels of two Lv.3’s hunters in Simulation 1
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Fig. 6. Transition diagrams of estimation levels of two Lv.3’s hunters in Simulation 2

As seen in Figs.3 and 4, the convergence of Lv.3-3 (combination of the proposed
method) is faster than other combinations of estimation levels, i.e. Lv.0-0, Lv.1-1, and
Lv.2-2. In simulation 2, as the environment is changed at 1,501 episode, the other com-
binations other than Lv.3-3 get increase their average number of steps. As seen in Figs.5
and 6, the estimation levels of two hunters begin at Lv.0 IE and then transit to Lv.1
IE and Lv.2 IE. Finally, H1 and H2 choose Lv.1 IE and Lv.2 IE in simulation 1, re-
spectively and they select Lv.2 IE and Lv.1 IE, respectively. All the combinations of
estimation levels without Lv.3 IE are six. After we conduct simulations with all the
combinations, we found that Lv.1-2 showed the best performance in both simulation
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1 and 2. Consequently, Lv.3-3 automatically searched the best combination, i.e. Lv.1-
2. This result agrees with the work of Yokoyama et al.[8,9] That is, Yokoyama et al.
pointed out that the best performance out of six combinations was Lv.1-2.

5 Summary

In the present paper, we have proposed an action selection method based on the es-
timation of the other’s intention to treat with time-varying multi-agent environments.
Firstly, we have stratified the estimation levels of the other’s intention as active, pas-
sive and thoughtful levels incorporating the work of Yokoyama et al. Secondly, we have
formulated three estimation levels using the work of Nagayuki et al. Thirdly, we have
proposed a new action selection method by switching the three estimation levels to
cope with time-varying environments. Fourthly, the estimation methods of the other’s
intention has been applied to the Q-learning method. Finally, through computer simu-
lations using pursuit problems, we have investigated the performance of the estimation
methods. As a result, we have confirmed that the proposed method could select the best
combination of estimation levels even in time-varying environments.

Acknowledgments. This work was partly supported by Grant-in-Aid for Scientific
Research (No.20500207, 20500277, and 23500181) from MEXT, Japan.

References

1. Stone, P., Veloso, M.: Multiagent Systems: A Survey from a Machine Learning Perspective.
Autonomous Robots 8(3), 345–383 (2000)

2. Kaelbling, L.P., Littman, M.L., Moore, A.P.: Reinforcement Learning: A Survey. Journal of
Artificial Intelligence Research 4, 237–285 (1996)

3. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)
4. Bratman, M.E.: Intention, Plans and Practical Reason. Harvard University Press (1987)
5. Nagayuki, Y., Ishii, S., Ito, M., Shimohara, K., Doya, K.: A Multi-Agent Reinforcement

Learning Method with the Estimation of the Other Agent’s Actions. In: Proceedings of the
Fifth International Symposium on Artificial Life and Robotics, vol. 1, pp. 255–259 (2000)

6. Nagayuki, Y., Ito, M.: Reinforcement Learning Method with the Inference of the Other
Agent’s Policy for 2-Player Stochastic Games. Transactions on the Institute of Electronics,
Information and Communication Engineers J86-D-I(11), 821–829 (2003) (in Japanese)

7. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3-4), 279–292 (1992)
8. Yokoyama, A., Omori, T., Ishikawa, S., Okada, H.: Modeling of Action Decision Process

Based on Intention Estimation. In: Proceedings of Joint 4th International Conference on Soft
Computing and Intelligent Systems and 9th International Symposium on advanced Intelligent
Systems, vol. TH-F3-1 (2008)

9. Yokoyama, A., Omori, T.: Model Based Analysis of Action Decision Process in Collaborative
Task Based on Intention Estimation. Transactions on the Institute of Electronics, Information
and Communication Engineers J92-A(11), 734–742 (2009)



Describing Human Identity Using Attributes

Zhuoli Zhou1, Jiajun Bu1, Dacheng Tao2, Luming Zhang1,
Mingli Song1,�, and Chun Chen1

1 Zhejiang Provincial Key Laboratory of Service Robot, Computer Science College,
Zhejiang University

2 Centre for Quantum Computation and Intelligent Systems,
University of Technology, Sydney

{zhlzhou,jjb,zglumg,brooksong,chenc}@zju.edu.cn,
dacheng.tao@gmail.com

Abstract. Smart surveillance of wide areas requires a system of mul-
tiple cameras to keep tracking people by their identities. In such multi-
view systems, the captured body figures and appearances of human, the
orientation as well as the backgrounds are usually different camera by
camera, which brings challenges to the view-invariant representation of
human towards correct identification. In order to tackle this problem, we
introduce an attribute based description of human identity in this paper.
Firstly, two groups of attributes responsible for figure and appearance
are obtained respectively. Then, Predict-Taken and Predict-Not-Taken
schemes are defined to overcome the attribute-loss problem caused by
different view of multi-cameras, and the attribute representation of hu-
man is obtained consequently. Thirdly, the human identification based
on voter-candidate scheme is carried out by taking into account of human
outside of the training data. Experimental results show that our method
is robust to view changes, attributes-loss and different backgrounds.

Keywords: Human identification, attributes learning, camera networks.

1 Introduction

Systems for recognizing human identity under multiple cameras are becoming
more and more important in a variety of research areas. They can be used for
human activity pattern analysis. In simulators, they can be used to evaluate
crowd flow or evacuation under multi-camera networks.

Previous approaches in this domain can be roughly classified into two cate-
gories: ones that extract human spatial-temporal phenomenon to characterize
the motion of an individual, e.g. gait[1]. These paradigms, which require ob-
served motion keeps invariant during the duration of the video, usually is not
robust due to camera views. The other approaches extract a feature set using
appearance for a frame, e.g. faces[2]. Face recognition has been intensively in-
vestigated for more than ten years. The state-of-the-art face recognition systems

� Corresponding author.

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 86–94, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Describing Human Identity Using Attributes 87

yield satisfactory performance only when confronted with controlled conditions
such as invariant to illumination and pose, and high resolution images.

Smart surveillance system needs recognizing human identity even under com-
plicated conditions, such as different viewpoints, poses changes and abnormal
human motion. Moreover, different from traditional object recognition, query
object (human identity) may be in a different appearance feature space from the
training data which requires the system be flexible and feasible for knowledge
transfer[3]. Therefore, previous techniques, which heavily relied on invariant to
pose, motion, face and fixed feature spaces, face significant difficulties.

In recent years, attributes are used to describe, compare and categorize
objects[4]. Attributes, which are learned from annotation, make it possible to
describe objects and identify objects based on textual descriptions. This capac-
ity to infer attributes is instinctive superior on viewpoint changes[3,4]. Moreover,
when the system faces a new kind of object, attributes can still describe some-
thing even though we cannot identify it[3].

However, using conventional attribute based method to identify human faces
difficulties. On one hand, using attributes to model the appearance of suspi-
cious identity still challenging since the features obtained from different cameras
are usually diverse. Most previous research only takes effect on a small degree
of viewpoint variations instead of dramatic variations in the smart surveillance
scenario. On the other hand, previous object recognition methods, which work
under the assumption that there always is an object, face the challenge of distin-
guishing The object is not A and There isn’t an object where the traditional clas-
sifier both answers ”no” when classifying object A. The problem attribute-loss,
which happened under such assumption, sometimes causes significant influence
on the recognition results, e.g. observing face from back or observing bag on the
back from the front. To our best knowledge, the attribute-loss problem has not
been directly tackled before.

In order to tackle the above mentioned problems, we present a new attribute
based model for predicting human identity by modelling human figure and
appearance in video frames. First, our attributes model with spatial and view
information ensures the representation of human identity keeping invariant
to view-points changes. Secondly, our model provides two different schemes:
Predict-Taken and Predict-Not-Taken to solve the attribute-loss problem which
usually caused by different views of multiple cameras. Thirdly, with the at-
tributes based representation, the identification process uses a voter-candidate
scheme to meet the requirement of knowledge transferring on human by taking
into account of human outside of the training data.

2 Our Approach

In order to build a probabilistic model towards an attribute-based, multi-view
representation of human identity, the input video and query video undergo the
following preprocessing steps:
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• Target human modelling and body attribute learning
• Appearance attribute model learning and inference

After the above two steps, the obtained attributes representations of human
identity are grouped into two sets, the voters and the candidates. For simplicity,
we assume that all attributes representation have binary values such that the
attribute representation ay = (a1, a2, ..., aA) for any human y are fixed-length
binary vectors, where A is the number of attributes used to describe target
object. If the set of the voters is defined as V = {vi; i = 1...n}, where vi =
(a1

vi
, ..., aA

vi
) and the set of candidates in a certain query video is defined as

C = {ci; i = 1...n}, where cj = (a1
cj
, ..., aA

cj
), then the distance between voter vi

and candidate cj is denoted by a A-dimension vector, i.e.:

xi,j = (|a1
vi
− a1

cj
|, ..., |aA

vi
− aA

cj
|) (1)

Let (x1,1, y1,1), ..., (xn,m, yn,m) ∈ X ×Y be training sample where Y = {0, 1} in-
dexes the relationship between voter and candidate. The training task is to learn
a classifier f : X → Y to label any given voter-candidate pair. This scheme is
flexible enough to handle different combination of attributes which don’t appear
in the training data.

SVM

Positive
pairs

negative
pairs

1.Tracking 2.Target body modeling
and body attribute learning

3.Background subtraction
and segmentation

4.Appearance
attribute learning 5.Identification

Fig. 1. The steps of human identification with input videos

2.1 Target Human Modeling and Body Attribute Learning

At first, we learn the model of 3D human body in the videos. The selection of
such model should provide the following information: 1) the movement orien-
tation, which corresponds to the body viewpoint, that is the key parameter of
3D human appearance model which will be used in the next section; 2) body
figure information, such as the height and width etc., from which we can obtain
attribute such as fat, tall and slow. We use a modified 3D person tracking algo-
rithm [5] based on a Bayesian framework on 3D state space and body model to
obtain such information. Given a video clip with background subtraction (in this
paper, we use [6]), the human body is represented by a 7-dimensional vector:

U = (u, u̇, v, v̇, α,H,W ) (2)
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where(u, v) denotes the ground plane position of object, (u̇, v̇) denotes the
speed of the object, α denotes the movement orientation in 8 discrete direc-
tions {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}, and (H,W ) denotes the height
and width of the object, i.e.,

p(Wk|Wk−1, αk−1) = p(Wk|Wk−1)p(Wk|αk−1) (3)

where the first term on the right hand imposes some temporal continuity to the
estimated width, and is simply modelled as constant model(i.e. p(Wk|Wk−1) =
N (Wk;Wk−1, σ

2
W )), where N is a Gaussian distribution) and the second term

defines as p(Wk|αk−1) = N (Wk;W0
αk−1 , σW0 ) where we choose W0

αk−1 as a
uniform prior for different orientation.

The above model can automaticlly select a frame that has the lowest speed
during the duration without view changes. This selection is based on such obser-
vation that higher speed causes Virtual Shadow which may add extra information
unexpectedly. Then, the foreground of the selected frame is normalized to a still
image for appearance attribute learning.

2.2 Appearance Attribute Model

In this section, we introduce a latent-topic bag-of-visual word model with
view and spatial information(vs-LTM) for describing 3D human appearance at-
tributes. Most of the previous work in human identity recognition has taken the
approach of assuming a small variation of rotation. We argue that using the view
parameter learned in the previous section, our multi-view attribute representa-
tion can provide a more accurate estimation of human identity in application.
Unlike 2D attribute model[3], however, part of attributes of 3D body may not
be observed in 2D surveillance screen. Our goal is, therefore, not only to learn
the observed appearance attributes but also to estimate the unseen attributes
to solve the attribute-loss problem.

The spatial correlation of attributes has not been considered in previous
work. However, earlier research infer that the pixels in the region are similar
with respect to some appearance feature, such as intensity, color, or texture[7].
To explicitly model the spatially coherent nature of images, we assume the vi-
sual words in the same Homogeneous Region(HR)[7] share the same attribute.
Thus, we average the pixels in a patch as the color feature and use Mean-Shift
with small spatial bandwidth to over-segment the image into several regions us-
ing such color feature. Then, we detailed the model learning and inference as
followings.

Model Learning. Given an image I, a set of N patches are extracted. For each
patch, the model observes its position Xi and visual word assignment Yi. Then,
with the partitioned region r = 1, 2, ..., R and the relationship of r and Xi, the
process that generates the image I formally from the model is as follows:

1. A view-point T is modeled by a multinomial distribution T ∼Mult(α) where
α is obtained as described in Sect 2.1 α ∼ p(αk|u̇, v̇, αk−1).
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2. An image has a list of attributes, denoted by a. For a region r, an attributes
aj is sampled from a uniform distribution ar

j ∼ 1/A, where A is the length
of attribute list.

3. For a topic k of the material value, a multinomial parameter φk is sampled
from Dirichlet prior φk ∼ Dir(β).

4. For material value of an attribute j, a multinomial parameter πj over K
topics is sampled from Dirichlet prior πj ∼ Dir(η).

5. A topic label zn of word n is sampled from the discrete distribution of at-
tribute ar

j , zji ∼ Discrete(πj).
6. The value Yn of word n is sampled from the discrete distribution of topic
zji, Y r

ji ∼ Discrete(φk)

The joint distribution of Y i of attribute j selected from the total of A attributes,
given an image I and a region i, can be written as:

Pj(Y r|α, β, η,K,A) =
Nr∏
i

K∏
k

pj(T |α)Pj(πj |η)Pj(zji|πj)Pj(Y r
i |πj , β) (4)

For the attribute learning task, a region is classified into attribute j∗ if

j∗ = arg max
1≤j≤A

π(j) (5)

For the image I, the attributes value aj can be written as the normalized result
over all the regions in this image:

âj =
aj∑
n an

(6)

Model Inference. zjn can be sampled through a Gibbs sampling procedure
integrating out πj and φk, we compute the material value at first:

p(zji = k|z−ji,Y, η, β) ∝ n
(k)
−ji,yji

+ βyji∑
y(n

(k)
−ji + βy)

· n
(j)
−ji,k + ηk∑

k′(n
(j)
−ji,k′ + ηk′ )

(7)

where n(k)
−ji is the number of words in the corpus with value y assigned to topic

k excluding word i in attribute j, and n(j)
−ji,k′ is the number of words in attribute

j assigned to topic k excluding word i in attribute j. Eq 7 is the product of two
ratios: the probability of word yji under topic k and the probability of topic k
in attribute j.

With a set of samples from the posterior distribution p(z|y), statistics that are
independent of the content of individual topics can be computed by integrating
across the full set of samples. For any single sample we can estimate φk and πj

from the value z by

φy
ik =

n
(y)
i + β

n
(·)
i +Wβ

πy
ij =

n
(αj)
i + η

n
(·)
i + Tη

(8)
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2.3 Attribute-Loss

As we discussed above, the changes of view usually leads to attribute-loss. The
attribute-loss can be defined as follows:if attribute aj is labeled ”yes” on view
θ, and ”no” on view δ, attribute aj is lost on view-point δ. Before attributes
learning, we use two different schemes: Predict-Taken and Predict-Not-Taken.
The former scheme is based on such situation that even though the attribute is
not observed due to view, the target human is prone to be the one such as black
hair and yellow face and we predict this attribute value ”yes” before learning;
meanwhile the latter one treats this attribute is ”no” if the attribute misses hit in
the next learning step which actually ignores attribute-loss problem and believe
that non-observed attribute do not exist. Furthermore, for different attributes,
we take different schemes based on the rate, which is averaged by ten labelling
results, of attribute-loss happened through a threshold value.

3 Experiment

3.1 Data Set

Data Organization. In this experiment, we use videos captured by five dif-
ferent cameras in different locations of the campus. This data set includes 40
short videos for training from 5 human models in 8 orientations, each of which
is about 10 seconds, and 10 long videos for testing, each of which is about 20
minutes. Specially, locations are chosen to ensure that the human appears in two
cameras at least. All the background subtraction results are resized such that
the height has 300 pixels and the weight has 100 pixels. We use 29 attributes to
describe these human, which are divided into two groups: body figure attribute
such as fat, thin, tall, low, fast, slow and appearance attribute such as black hair,
yellow face, white jacket, gray trousers, black bag etc.. There are totally 6 body
figure attributes and 23 appearance attributes. The orientation-human-attribute
relationship is labeled by human subjects and presented in a 8× 10× 29 matrix
M , Fig 2(a) illustrates a subset of this matrix from in orientation
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Fig. 2. (a) 5 training samples and 5 testing sample of human-attribute matrix in our
dataset (b) the results of attributes learning
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Feature Representation. To obtain the local descriptors, images are convolved
with the filter bank proposed in[8], which is a combination of 3 Gaussians, 4
Laplacian of Gaussians, and 4 first order derivatives of Gaussians, and was shown
to have good performance for object categorization. Instead of only computing
visual words at interest points as in[7], we evenly sampled grid space at 10× 10
pixels for a given image. Moreover, to maintain the importance of color in our
attributes representation, unlike previous work, we computed the patch on three
channels RGB and quantized into a visual word. The codebook, with the size
W , is obtained by k-means.

3.2 Implementation Details and Results

Part 1: Performance of Body and Appearance Attribute Learning. Fig
2(a) show the real attributes value of 5 training models and 5 testing samples.
The responses of 10 test persons were averaged to determine the real-valued
association strength between attributes and human. The darker the boxes, the
higher is the attribute correlated to the human. Binary attributes are obtained
by thresholding at the overall matrix mean. The attribute #1, #3 and #5 are
the antonym of attribute #2, #4 and #6 and nobody would consider a person
fat and thin at the same time, thus the sum of the probability of the attributes
equals to 100%. Attribute #7 black hair is almost 100% for every person except
for test sample #4. Yellow face and white face is hardly to distinguish, thus the
real value is more complicated than the body attributes. Different appearance
attributes which describe the jacket and trousers are allowed to exist at the same
time, because not the total clothes have only one color.

Fig.2(b) shows the learning results of the attributes. Black hair achieves the
highest accuracy of nearly 100%, because such attribute appears in almost all
the images and around the same position. The attributes black bag and white
bag achieves the lowest accuracy, because the bag hardly appears in the training
data, and the position changed a lot both on different views and different human.

Part 2: Overall Performance of Human Identification. In Sect 2.3, we
introduced Predict-Taken and Predict-Not-Taken on attribute-loss, which allow
the model to predict unseen attributes on different orientations. In the following,
we evaluate both methods by applying them to our pedestrian dataset. For
Predict-Taken method, we apply the average value of all learned attribute as
the predict results of the lost ones. For Predict-Not-Taken method, we apply the
minimal value of all learned attribute as the predict result of the lost one. Then,
we train a non-linear SVM to predict the voter-candidate value as introduced in
Sect 2. The weight parameter is determined by the frequency of the attribute
normalized by all attributes without spatial limits in the training data. Using
the 40 short videos, the sample pairs of different orientations from one person
are selected as the positive samples, and different person without considering
the orientations are selected as the negative samples of the SVM. In order to
obtain probability estimates, we perform the SVM training using only 90% of
the training samples and use the remaining training data as validation set for
Platt scaling[3,9].
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For testing, we select 3 clips for each one of the five pedestrian. Thus, each
pedestrian has about 3 positive test pairs (employ permutation)and 18 negative
test pairs for each human. As shown in Table 1 this results in a multi-person
accuracy of 76.2% for ”Predict-Not-Taken” as measured by the mean of the
true positive and true negative, a multi-person accuracy of 84.8% for ”Predict-
Taken”, and a multi-person accuracy of 89.5% for mixture of the two schemes.
Clearly, the performance of the ”Predict-Taken” is higher than ”Predict-Not-
Taken” of nearly 8%. On the other hand, the performance of mixed scheme is
higher than the other two, higher performance on identification rate requires
further attributes selection.

Table 1. Human identification results

Methods True positive False positive True negative False negative

Predict-Not-Taken 8 18 72 7
Predict-Taken 11 12 78 4
Mixed 13 9 81 2

4 Conclusion

In this paper, we propose a new identification method to construct an attribute
model for human identification in a multi-camera environment. The proposed
model is robust to orientation and environment. The main contributions of our
work are summarized as follows. (1) An attribute based method for human iden-
tification. (2) A probabilistic model with spatial and view information to learn
appearance attributes. (3) Two schemes on attributes-loss. In addition, the ex-
perimental results show that the proposed method is robust for surveillance
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Abstract. Humans can easily adapt to a visually distorted environ-
ment: We can make correct movements after a few dozens of actions
with visual guidance in the new environment. However, it is unclear
what visual information our brain uses for this visuo-motor adaptation.
To answer this question, we conducted a behavioral experiment of prism
adaption of a ball shooting task, with manipulating visual information
of the ball. We found that prism adaptation occurred when the position
of ball impact (or endpoint) was not visually presented. A similar result
was replicated in a modified experimental setup where the vision of the
body was completely eliminated. These results imply that the error in-
formation at the time of hit/impact (i.e., the displacement between the
target and the hit position) is not required for prism adaptation. This
suggests that the visual information of on-the-fly ball trajectory can be
utilized for prism adaptation.

Keywords: visuo-motor transformation, prism adaptation, motor learn-
ing, virtual shooting task, feedback delay.

1 Introduction

Our brain transforms visual information into motor information in making an
action to a visually given target, for example, in reaching/grasping an object and
shooting a target. Considering that human can modify the movement according
to the change in the visual environment, our brain presumably updates the visuo-
motor transformation adaptively. The learning mechanism of this transformation
is an important topic in brain science, and a number of experiments have been
reported [1,2,3,4], where visual environment was distorted by the wedge prism
and VR devices. In concrete, a subject performs reaching [2] and shooting [3] with
wearing goggles with wedge prisms. Although the endpoint of reaching/shooting
is displaced by the amount of the visual shift just after wearing the prism goggles,
the displacement gradually decreases and the subject correctly reaches/shoots
the target after a few dozens of trials.

It is commonly accepted that prism adaptation is driven by some error signal
contained in visual information. However, it is unclear what the essential source

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 95–102, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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of error signal is for the adaptation. In reaching task, for example, the displace-
ment between the target and endpoint (i.e., task error) provides a kind of error
signal. However, if our brain modifies the relationship between the motor com-
mand and the resultant endpoint (i.e., forward model), the error signal should
be given by the difference between the predicted endpoint (based on the forward
model) and the actual endpoint, not by the difference between the target and
endpoint. The finding that the prism adaptation occurred when the target was
displayed only instantly (and not displayed at the task end) (unpublished data)
suggested that the “real” visual displacement between the endpoint and target
is not required for adaptation. Anyhow, we know little about what kind of error
information our brain actually uses for the prism adaptation.

In line with this discussion, the present study deals with the question whether
the visual information of the endpoint is required for prism adaptation. To an-
swer this question, we ran behavioral experiments of a ball shooting task. A
subject wore shutter-controlled goggles which dynamically manipulated the vi-
sual information during the task. In the first experiment, we deprived of visual
information from the midway to the end of the ball trajectory (that is, the subject
could not see the impact position), and compared the magnitude of adaptation
between the deprived-vision condition and full-vision condition. In the second
experiment, we conducted a similar experiment where the visual information of
the subject arm/hand during shooting action was completely eliminated. The
results of these experiments showed no difference in magnitude of adaptation
between two conditions, suggesting that the visual information of the impact
position was not required for prism adaption of ball shooting task. We will dis-
cuss the implication of the present result.
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2 Experiment 1

2.1 Apparatus

A subject seated on a chair with his/her head restrained by a chin rest (Fig. 1 A).
A subject wore goggles with ferroelectric liquid crystal (FLC) shutters (FE-1,
Cambridge Research Systems) on the head, which controlled his/her sight. The
response time of the FLC shutter was 0.1 ms and its transmission rate was 30%
in the open condition, and its contrast ratio between open and close conditions
was 1000:1. A pair of removable wedge prisms (about 9 diopter) were attached
to the goggles. Subjects wore a special grove for detecting a ball in the hand.
Rubber balls (4 cm in diameter, 50 g) were wrapped by aluminum foil, and the
grove detected the existence of a ball using electric current. The subject task
was to throw out a ball to a target by overhand. The target was specified by a
green laser spot projected to the fiberboard (hereafter to be called the board)
which stood 2 m in front of the subject. The position of the spot was controlled
by the experimental program. A shock sensor detected the impact of the ball
hitting.

2.2 Method

Three subjects participated in the experiment.
Figure 1 B shows the diagram of an experimental trial. The FLC shutter

was closed at the beginning of a trial. A subject picked up a ball from the ball
holder (placed near the subject’s temple) with the thumb and forefinger. One
second after the grove detected the ball, the shutter was opened and the target
became visible. The shutter was closed again in 1.5 second. The subject started
the shooting when the shutter was closed. The shutter was opened again when
the ball was released from the hand. The shutter was closed at a time specific
to the experimental condition. The next trial starts 5 seconds after the ball
reached the board. One experimental block consisted of 35 trials. First 5 trials
were “pre-adaptation period” which gave the baseline of the performance. Next
15 trials were the “adaptation period” where the wedge prisms were attached to
the subject’s goggle, and the subjects performed the shooting task in a visually
shifted environment. The last 15 trials were “de-adaptation period”, where the
wedge prisms were detached.

2.3 Conditions

We prepared the two conditions. In control condition, the shutter closed 1500 ms
after the ball was released. In this condition, subject could see the hit location
because the ball reached the target board in about 450 ms after the ball release.
In restricted condition, on the other hand, the shutter closed 300 ms after the
ball release so that the subject could not see the hit location.

Each subject performed two sessions of three blocks. Orders of the two exper-
imental conditions are counter-balanced among the subjects.
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2.4 Result and Discussion

Figure 2 shows the result of experiment, where horizontal errors relative to the
target are plotted against trial sequence.

The line shows the mean of 9 sessions (3 subjects x 3 blocks). The arrow
indicates the amount of aftereffect (i.e., mean of the error of the first trial in the
de-adaptation block).

We calculated the amount of aftereffect by the horizontal error in the first
trial of the de-adaptation period, and compared it between control and restricted
conditions. As shown in Fig. 3, they showed no significant difference (p = 0.9502,
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Wilcoxon rank-sum test). Of course, the amount of aftereffect (the error in the
first trial of de-adaptation period) was significantly greater than zero in both
conditions (p < 0.01).

This result shows that prism adaptation occurred irrespective of the experi-
mental conditions (i.e., durations of visual information).

The present result indicates that prism adaptation was not degraded even if
the real visual information on the shooting error (i.e., the displacement between
the target and hit position) was not provided. Then, a question can be raised
what visual information our brain used for the adaptation. One possibility is
that the brain used visual information of on-the-fly ball trajectory. There are
two possible ways for using this visual information for adaptation. First, the
brain guesses the hit position from the observed ball trajectory and utilizes
the displacement between the predicted hit position and the observed target
[5]. Second, the brain predicts the ball trajectory and obtains the difference
between the predicted trajectory and actual trajectory. We do not discuss which
of these ways is true. Another possibility is that our brain might utilize the visual
information of the body movement for adaptation. It is plausible that the posture
of the arm/hand in throwing action could be correlated with the ball trajectory.
Thus, it is possible that the visual information of the arm movement might give
a clue for the prism adaptation. In order to examine the second possibility, we
ran the second experiment explained below.

���

�����	�
� ��

����� �����

��� � �

� � ��� �

���
���� �

��� � � ����� � � �

���	� � � ����
 � � ��� �

�!����� � ���

" ���� � � #$� � �

% &'(�)	*�+,-./0 .	)�1	.

2345656789:

;-< ./(�)
< .

= ��>�� 	� ?	� �

@�A &B.

C
DEF$GHI
J5656789:

KLM KNO/O

4565678�:

P � �	�
Q

R � �� ?	� �

S3656-8�:

TNU I V5U W
J5636-8�:P � �	��Q

J565678�:XYH6565678�: J565678�:ZJ565678�:
234565678�:

[ \

Fig. 4. Experimental Setup in Experiment 2

3 Experiment 2

3.1 Method

Four subjects participated in the experiment.
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Experimental apparatus (Fig. 4 A) was almost the same as in the first ex-
periment, but different in several points, including the magnitude of prism shift
and throwing manner (overhand vs. underhand). Shutter goggles were the same
as the first experiment. Shutter goggles were fixed to a head-chin rest. Remov-
able wedge prisms (about 17 diopter) were attached to the goggles. A horizontal
plate was placed near the subject’s chin which prevented the subject from seeing
his/her arm and hand. The subject wore a special finger grove for detecting a
ball held in the hand (its detail was different from that used in the first ex-
periment). Rubber balls (4 cm in diameter, 50 g) were wrapped by aluminum
foil. The subject picked up a rubber ball from a ball holder (located around the
thigh), and threw the ball in an underhand manner. The shock sensor installed
on the board for detecting the ball impact. A microcomputer gathered the sensor
data and controlled the actuator devices (including sound beeps) in a real-time
manner. In this experiment, the target was given by a colored paper (4 cm x
4 cm) attached on the board. The position of the target was displaced between
the without-prism trials and with-prism trials so that visual target position was
maintained at the same position irrespective of the prism condition.
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Fig. 5. Learning Curves in Experiment 2

Figure 4 B shows the diagram of the visual information presentation within an
experimental trial. One second after the subject held a ball with the thumb and
the implement, three beeps rang with intervals of 600 ms, and the FLC shutter
opened at the offset of the third beep. The subject was asked to throw the ball
within 500 ms after the third beep. The shutter was closed at a time specific to
the experimental condition. The next trial started after 3 seconds after the ball
reached the board. Each block consists of 50 trials as in the first experiment.
Concretely, “pre-adaptation period” were 10 trials, “adaptation period” were 20
trials, and “de-adaptation period” were 20 trials.
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Fig. 6. Amount of Aftereffect in the Experiment 2

3.2 Conditions

We prepared the control condition and restricted condition as in the first exper-
iment. In the control condition, the shutter closed 800 ms after the ball release,
whilst it closed 300 ms after the ball release in the restricted condition. Each
subject performed four blocks (2 conditions x 2 shift-directions). Orders of the
experimental conditions were counter-balanced.

3.3 Result and Discussion

Figure 5 shows the learning curves in the two conditions. The amount of after-
effect showed no significant difference between control and restricted conditions
((Fig. 6, p = 0.8785). The amount of aftereffect was significantly larger than zero
in both conditions (p < 0.01). Again, the prism adaptation occurred irrespective
of the vision conditions. Thus, real visual information on the task error was not
required for the prism adaptation of shooting task. In addition, the brain does
not rely on the visual information on the body movement. This in turn implies
that visual information of the on-the-fly trajectory is sufficient for the prism
adaptation.

4 Concluding Remark

The present results confirmed that the prism adaptation of the ball shooting
task occurs if no visual information is provided on the hit location (or shooting
error). This suggests that for prism adaptation of a shooting task, our brain
may use visual information of the flight trajectory. Indovina, et al. [6] suggested
some predictive mechanisms of physical laws of motion may be equipped in the
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human brain. In a shooting task, what information does the brain utilize for
the adaptation? As mentioned above, we hypothesized two possibilities. First,
our brain may estimate the hit position based on the on-the-fly ball trajectory
(using the forward model of ball motion), and compare the estimated hit position
and the observed target, giving the endpoint error (or task error). Second, our
brain may compare the predicted ball trajectory (based on the forward model
of ball trajectory brought by a shooting action) and observed ball trajectory
and use their difference for adaptation. It is open for further investigation which
hypothesis is true, but the answer to this question is indispensable for building
a computational model for visuo-motor adaptation.
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Q-Learning with Double Progressive Widening:

Application to Robotics
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Abstract. Discretization of state and action spaces is a critical issue in
Q-Learning. In our contribution, we propose a real-time adaptation of the
discretization by the progressive widening technique which has been al-
ready used in bandit-based methods. Results are consistently converging
to the optimum of the problem, without changing the parametrization
for each new problem.

Keywords: Q-Learning, discretization, applications.

1 Introduction

In a large number of real world applications it is intractable to estimate a model.
Q-Learning is a well known model-free reinforcement learning algorithm, where
Q-values – which estimate the expected reward for taking a particular action
in a given state – are learnt. However, in the approach it is assumed that the
domain is discrete, or discretized. If the state and/or action spaces are continu-
ous, the application of the Q-Learning is not straightforward. If the state/action
domains are continuous (or very large), it becomes hardly possible to keep (and
to update) a look-up table which contains Q-values for each state-action pair.
Besides discretization approaches [1,2,3], including adaptive techniques, there
exist a number of techniques applied to the reinforcement learning which allow
to work with continuous values. To discretize a continuous state and action space
is a challenge, since if a discretization is too rough, it will be impossible to find
the optimal policy; if a grid is too fine, the generalization will be lost.

Among the state-of-the art approaches are the following discretizing (and
often feature and model selecting) approaches. A historical but still actively ex-
ploited approach is CMAC (Cerebellar Model Arithmetic Computer) that has
been introduced for robotics [4,5]. In CMAC Q-Learning the state space is par-
titioned into tiles, which are binary features. A parameter (or weight) θ is as-
sociated with each tile, and Q-values are not kept in a look-up table but are
represented by a parametric family of functions, parametrized by the vector Θ.
CMAC Q-Learning is similar to a neural network. Overall, the introduction of
neural networks into Q-Learning to process continuous states has been actively
studied, see e.g., [6]. If the number of tiles is quite large, the computational
complexity of such parametric approaches can be high.

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 103–112, 2011.
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Vector Quantization Q-Learning (VQQL) [7,8] produces a compact represen-
tation of the state domain via clustering of simulated states. The drawback of
the method is that a refinement of the grid is not foreseen.

Recently in [9] the Two Steps Reinforcement Learning (2SRL) has been intro-
duced, where decision (and regression) trees are used to perform the state space
discretization. The algorithm is based on two alternating steps; in the first phase
some discretization of the state domain is produced, in the second one a current
policy is improved. The reported drawback of the method is the requirement for
the discrete reward function.

The important problem is to refine the discretization grid of states (and ac-
tions) adaptively, especially around the areas of interest, e.g., around the goal.
If the initial grid is rather coarse, and if all vertices of the grid are far enough
from the goal, it is possible that an agent never reaches a goal. An adaptive
approach to refine the initial grid has been recently proposed by [10]. The idea
is to provide pseudo-goals which lie on the vertices of the initial grid. It has been
shown that the method is efficient, however, its serious disadvantage is that the
knowledge of a location of a goal is required. The initialization of the grid with
the pseudo-goals, which are in a proximity to the true goal, is not obvious.

In this contribution, we propose a technique, inspired by methodologies devel-
oped in Monte-Carlo Tree Search, for directly working in the continuous setting.
To the best of our knowledge, this is the first dynamic discretization approach
handling both continuous states and continuous actions - which is critical for
many important applications.

The paper is organized as follows. Section 2 presents progressive widening Q-
Learning. Section 3 provides the results of our experiments on both a synthetic
reinforcement learning task and on a realistic problem of a robot navigation
is a 3-dimensional partially observable environment. Concluding remarks and
perspectives close the paper.

2 Progressive Widening Q-Learning

In this section, we describe briefly the Q-Learning approach. We discuss its
limits with respect to continuous problems, and introduce progressive widening
Q-Learning procedure.

2.1 Q-Learning Approach

To solve a goal-planning task means to find an optimal policy, i.e. a policy
π� that is equal or better (in terms of cumulated expected reward) than any
other policy π. It is known [11] that optimal policies share the same optimal
action-value function Q�. Given a set of states S and a set of actions A, optimal
action-value function is defined as
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Q�(s, a) = max
π

Qπ(s, a)

= E{rt+1 + γmax
a′ Q�(st+1, a

′)|st = s, at = a}

=
∑
s′
Pa

ss′

(
Ra

ss′ + γmax
a′

Q�(s′, a′)
)
, (1)

where Pa
ss′ = p(s′|s, a), R is the reward, s, s′ ∈ S, and a, a′ ∈ A. In other words,

the action-value function Q : S × A −→ R defines the quality of each (state,
action) pair.
Q-Learning is a general term for approaches which compute the expected

reward given an action a in a given state s, and allow to choose an action
maximizing the reward value. The strength of Q-Learning methods is that they
do not require any knowledge of a model of environment Pa

ss′ , which is not
available in a number of real-world applications.

An example of a policy is the greedy policy, given by

π(s) = argmax
a

Qπ(s, a), (2)

which we use in the following.
One-step Q-Learning is proposed by [12]. The approach is based on the fol-

lowing update rule:

Q(s, a) = Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
, (3)

where α is usually called learning rate, α ∈]0; 1], and γ – discount factor, γ ∈
[0; 1[. The complete reinforcement learning procedure is drafted as Algorithm 1.

Algorithm 1. One-step Q-Learning
Initialize Q(s, a)
for each episode do

Initialize s
for each step of episode do

Choose a (ε-greedy policy derived from Q)
Take action a, observe r and s′

Q(s, a) = Q(s, a) + α
(
r + γ maxa′ Q(s′, a′) − Q(s, a)

)
s = s′

end for
end for

2.2 Applying Double Progressive Widening to Q-Learning

Since we can not enumerate all possible states and all possible actions, we exploit
the idea to use a table of Q values which is not static. We explore and add states
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and actions to the Q-table progressively. Under double progressive widening we
mean that we increase the number of explored states and actions.

We can naturally apply the double progressive widening procedure to the
Q-Learning framework. Since our state and action spaces both are continuous,
some discretization has to be done, if we want to apply the Q-Learning directly.
At the same time, both the state and action spaces should be well explored
to achieve some reasonable cumulated reward. For this, we slowly increase the
number of states and actions, by the progressive widening technique successfully
used in bandit-based algorithms [13,14,15]. When a state is sufficiently highly
visited, compared to the number of times the previous action has been tried in
the previous state, then it is added in the discretization of states; and when the
number of visits of a state is sufficiently large, compared to the pool of actions
already considered, then a new action is added. The discretization of states and
actions is carried out based on the Euclidean distance. A newly observed state
(action) gets the same discrete value as its closest state (action) in the already
explored set of states S (set of actions A).

The approach we use is drafted as Algorithm 2; λ is the progressive widening
parameter associated with states exploration, and λ′ – with exploration of deci-
sions. Both parameters are equal in our experiments, so that we do not introduce
a bias by a highly tuned parameterization; interestingly, we will see that some
values of λ = λ′ are good for all our tests.

Algorithm 2. Progressive Widening Q-Learning
Initialize S – set of explored states
Initialize A – set of explored actions, specific for states
Initialize Q(s, a) – Q-values
Initialize parameters C > 0, λ ∈]0, 1[, α ∈]0; 1], γ ∈ [0; 1[
for each episode do

Initialize s
for each step of episode do

nbV isits(s) = nbV isits(s) + 1
k = �CnbV isits(s)λ�
Choose action a from {a1, . . . , ak} associated with s using Eq. (2)
Update the number of visits nbV isits(s, a) = nbV isits(s, a) + 1
Take action a, observe s′ and r

if
(
�CnbV isits(s, a)λ′� > #S

)
&
(
s′ /∈ S

)
then

S = S ∪ s′

end if
Update Q(s, a), using Eq. (3)
s = arg mins′′∈S ‖s′′ − s′‖

end for
end for
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3 Experiments

In this section, we illustrate efficiency of the proposed progressive widening Q-
Learning on a synthetic problem called Treasure Hunt, and on a realistic – robot
navigation – task.

3.1 Treasure Hunt Problem

The problem considered in this section is an artificial problem which allows us
to demonstrate clearly that the double progressive widening Q-Learning is a
powerful approach. Treasure Hunt is a two-dimensional problem, i.e., an agent
moves in a two-dimensional environment, with the dimensions 15× 15. The aim
of the agent is to discover the treasure. Both the agent and the treasure are
always initialized in the same coordinates (the agent is initialized in the lower
left corner of the 15 × 15 room, and the treasure is located in the upper right
corner). The agent knows his position at each time step. The reward equals 1000
when the treasure is reached, otherwise the instantaneous reward equals −1.

To consider different scenarios, we make use of three variations of the Treasure
Hunt framework:

1. Treasure Hunt as described above.
2. An obstacle is added, i.e. a hole is added in the center of the two-dimensional

space. If the agent falls into the hole, the reward is −500.
3. Uniform noise (on states) is added.

The difficulty is the fact that both states (positions of the agent) and actions (or
decisions of the agent) are continuous. In our experiments, we compare the stan-
dard Q-Learning without progressive widening with the method proposed above.
To perform experiments with the standard Q-Learning we discretize the state
and action spaces using some grid of a constant size. The progressive widening
parameter λ controls how many and how fast new states and actions are added
to the table, which contains states × actions Q-values. In our experiments, we
apply the same progressive widening parameter value to states and actions, i.e.,
λ = λ′. Note, that when λ = 0, neither new states, nor new actions are added,
and therefore, the results are equivalent to ones of the standard Q-Learning.
We can start the progressive widening procedure from empty sets for states
and actions. In the experiments, we have considered two cases: we start the
learning procedures (Q-Learning and progressive widening Q-Learning) from 1
pre-simulated state and action; and from 5 pre-simulated states and actions. We
use the following Q-Learning parameters is our experiments: α = 0.15, γ = 0.85.

The following figures illustrate our results – the mean of the cumulated reward
– on different scenarios of the Treasure Hunt problem and for difference progres-
sive widening (PW in the legend) parameter values. The number of Monte-
Carol simulations on the plots is 500. Figure 1 is the basic case, where there
are no any obstacles and the transitions are completely deterministic (no noise).
Figure 2 demonstrates the case with the noise. Figure 3 is the variation with
the hole in the center of the 2-dimensional search space, and Figure 4 is the
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scenario with the obstacle and with the noise. We can conclude that the stan-
dard Q-Learning with 1 pre-simulated state and action copes quite bad with
the task. The Q-Learning which disposes 5 states and 5 actions ameliorates the
performance when the number of the Learning episodes increases. It is obvious
that the double progressive widening Q-Learning is much more efficient. Note,
that the progressive widening parameter plays a significant role, λ = 0.5 allows
to add more states and actions than λ = 0.25, and hence makes the discretiza-
tion of the state and action spaces more adapted. Overall, the problem is rather
simple and can be discretized in a small number of states and actions.
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Fig. 1. Treasure Hunt task. Without noise and without obstacles; left: starting with
1 state and 1 action; right: starting with 5 states and 5 actions. Note that while
applying the parameter 0, the double progressive widening boils down to a non-adaptive
discretization.

3.2 Robot Navigation in a 3D Partially Observable Environment

Autonomous robot navigation is a challenging task, especially in an environment
which is partially observable. The values of the Q-Learning parameters and the
number of simulations are the same as in the previous section.

The 3D simulator we use in our experiments has been developed at IDIAP1.
The simulator models the 3D environment which resembles one designed for
computer video games. An agent is placed in a virtual room, and the goal is
to teach it to touch the red flag. In every training (and testing) episode, the
robot and the flag are placed randomly. The described task is a typical problem
which can be solved by reinforcement learning. If the robot touches the walls,
the instantaneous reward equals −1, if the red flag is reached the reward is +10,
otherwise the reward is 0 at each time step.

The difficulty of the task is that the environment is not fully observable, it
is partially observable. The robot does not know its position. The agent has to
1 http://www.idiap.ch/
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Fig. 2. Treasure Hunt task. With noise and without obstacles; left: starting with 1
state and 1 action; right: starting with 5 states and 5 actions. Note that while apply-
ing the parameter 0, the double progressive widening boils down to a non-adaptive
discretization.
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Fig. 3. Treasure Hunt task. Without noise and with obstacles; left: starting with 1
state and 1 action; right: starting with 5 states and 5 actions. Note that while apply-
ing the parameter 0, the double progressive widening boils down to a non-adaptive
discretization.

deduce where it is and what it has to do (i.e., which action should be taken)
based on video images it gets on each time step. Figure 5 illustrates two typical
observations of an agent (on the left: the robot does not observe the goal, on the
right: the robot sees the flag).

On each time step, the agent gets a video image. Using the a priori knowledge
that the flag, the robot is looking for, is red, we apply the image processing
technique to extract the information, whether the agent sees the flag, whether
the flag is observed on the right/left/in front of the robot. We have introduced
an additional reward for the training phase only. If the flag is observed on the
right or on the left, the supplementary reward is +2.5, if the robot can observe
the goal just in front of it, the supplementary reward equals +5. Figure 6 shows
the dependence of the cumulated reward (test phase) on the learning time.



110 N. Sokolovska, O. Teytaud, and M. Milone

1 10 100 2000 5000
0

100

200

300

400

500

600

700

800

900

1000
M

ea
n 

re
w

ar
d

Episodes

 

 
PW = 0
PW = 0.001
PW = 0.25
PW = 0.5

1 10 100 2000 5000
0

100

200

300

400

500

600

700

800

900

1000

M
ea

n 
re

w
ar

d

Episodes

 

 
PW = 0
PW = 0.001
PW = 0.25
PW = 0.5

Fig. 4. Treasure Hunt task. With noise and with obstacles; left: starting with 1 state and
1 action; right: starting with 5 states and 5 actions. Note that while applying the param-
eter 0, the double progressive widening boils down to a non-adaptive discretization.

Fig. 5. 3D environment designed by the simulator. On the left: the robot does not
observe the goal, on the right: the robot sees the flag.
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Fig. 6. Navigation of the robot in a 3D environment: cumulated reward (testing phase);
λ = 0.5
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In the Appendix we provide video images of a typical exploitation trajectory
of the agent. The robot and the goal are initialized and placed randomly, and
the agent is approaching the the red flag.

4 Conclusion

We proposed, to the best of our knowledge, the first approach for handling,
without fixed discretization, both a continuous state space and a continuous
action space. While we have no consistency proof, we believe that results as
in [16] can be used for proving the consistency of our approach. Experimental
results suggest that the algorithm efficiently adapts the discretization where it is
needed, and that the “widening” principle, consisting in extending an edge when
it is simulated more than nλ times where n is the number of visits to the parent
situation, is a stable methodology with coefficient λ around 1

3 (interestingly,
nearly the same constant as in [17] and [16] in different contexts).
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Abstract. In this paper we study on recognizing user’s identity based on instant 
messages. Considering the special characteristics of chatting text, we mainly 
focus on three problems, one is how to extract the features of chatting text, the 
second is how the user’s model is affected by the size of training data, and the 
third is which classification model is fit for this problem. The chatting corpus 
used in this paper is collected from a Chinese IM tool and different feature 
selection methods and classification models are evaluate on it.  

Keywords: Authorship, identification, classification, instant message.  

1   Introduction 

The goal of this paper is to determine whether an instant message is sent by the real 
sender indicated by the sender’s ID. It belongs to the field of authorship verification. 
Authorship verification is used to determine whether an author (for whom we have of 
a corpus of writ-ing samples) is also the author of a given anonymous text. Usually it 
can be viewed as a multi-class, single-label text categorization from the point of the 
machine learning. 

With the wide application of instant messaging tools, instant messaging (IM) has 
become the most popular way of communication through internet. Unfortunately, this 
is also the reason why IM becomes a popular object to be attacked by hackers. Once 
an IM account is stolen by a hacker, the hacker can then send fraudulent messages to 
the victims’ friends in the name of the victim. This brings the users of IM a serious 
security risk. Therefore, it is a meaningful work to verity the identity of an instant 
message sender. Currently as what we know, no similar research has been done in this 
field.  

2   Related Work 

2.1   Verification Problem 

Some researchers look authorship verification as ‘similarity detection’ task, which 
determine whether they are generated by the same entity or not, without knowing the 
actual author. Pavelec[1] used this way to address the writer independent model 
which is possible to create a robust system even when few genuine samples per writer 
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are available. Following the same notion of verification, Van Halteren[2] has 
proposed a relatively different method called linguistic profiling.  

There is another group of researchers who look the authorship verification as two-
class text classification problem. For example, writer dependent or personal model 
adopted by [1] is based on one model per author. However, it is implemented using 
one-against-all strategy which means that positive examples and negative examples 
are all required to create this model. Luyckx and Daelem[3] also applied this kind 
“one vs. all” scheme to analyze the contribution of each kind of features.  

Koppel & Schler[4] considered authorship verification as a one-class classification 
problem, and ‘unmasking’ method is proposed for authorship verification. However, 
this method needs long texts. 

2.2   Features 

Authorship analysis is based on the hypothesis: every author has the writing habit of 
his own, and this habit is defined in terms of different features. Usually two types of 
feature are employed, one is content-based features, and the other is stylometric 
features. 

1. content-based features is relevant to a specific subject, if we want to determine 
the author of an anonymous text in a specific subject, this feature has been proved to 
be efficiently [5]. 2. stylometric features include three types of features: token-based 
feature, syntax feature and structural features. 

Token-based features can be either word-based or character-based features. Word-
based features include word length, sentence length [6], word frequency [7], word n-
gram [8],  and vocabulary richness[9]. Character-based features include alphabetic 
characters count, uppercase and lowercase characters count ,digit characters count,  
letter frequencies, and punctuation marks count [9][10][11]. The most efficient 
feature of this measure is n-gram feature, and the application of this approach to 
authorship identification has been proven quite successful [7][12][13][14]. 

Syntax features, including function words [5][15][16][17], punctuations, and part 
of speech [18][19], can capture the writing style in sentence level, it is considered 
more reliable authorial features in comparison to the token-based features. Among 
them, function words are the best features to discriminate between authors.  

Structural features which are applied to handle the layout and organization of a 
piece of writing have proved particularly important in analyzing online texts [9]. It 
includes the number of paragraphs or sentences, the average length of the paragraph, 
as well as some word structure. Similar features are introduced to the chat mining for 
gender prediction and authorship characterization problem [20][21]. 

Most of works mentioned above experimented with the literatures. However, the 
style of IM messages is very different from them. The real time nature of IM message 
produces unedited text; they are relatively casual compared with formal text. The 
most difficult problem is that IM messages are very short, and it is very hard to collect 
a large amount corpus for analyzing, in addition the real time nature of instant 
messaging requires to decide the identity of a user in a short time and using messages 
as small as possible. Therefore, we study on validating the identities of IM users. 
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3   User Identification for IM Messages 

3.1   Feature Selection and Extraction 

In this paper the chatting corpus we used is Chinese text. We choose the following 
features considering the special characteristic of Chinese chatting text:  

Token-based features: tokens are defined as Chinese characters, punctuations, 
English words, and some other separated alphabets or symbols appeared in an instant 
message. In this paper we choose the following token-based features from a sample: 
the number of Chinese characters, the number of English words, the number of digits, 
frequency of punctuations, and the punctuation richness (how many types of 
punctuation are used in one sample). 

In our experiments we found punctuation is effective in authorship verification for 
chatting text. When using IM to communicate with others, users are used to using 
characters they like to separate sentences. For example, some peoples like to use 
white space, while others may excessively use some special separators. Moreover, 
users always prefer to use what they like without considering whether the usage is 
correct in grammar. Useful punctuations are selected according to the frequency they 
occur in the text. The punctuation richness is calculated by the ratio of the number of 
punctuations to the total number of tokens in a sample. 

Syntax features: Syntax features include frequency of function words and POS tag 
frequency. Firstly, we use Chinese Word Segmentation tool to find Chinese words, 
and then use Chinese POS tagger to assign POS tags to Chinese words. Function 
words are selected according to their POS tags. To select effective features of a user, 
we prepare two datasets for each user, one dataset contains only text messages of the 
user’s own, and the other dataset contains messages randomly selected from chatting 
groups which include 2000 peoples. Information gain method is used to select 
effective function words that can represent the user’s characteristics. We calculate the 
information gain of each function word and sort the function words in the user’s own 
dataset in the decreasing order of their information gain, and select the top N function 
words as feature words. 

POS tag features are selected according to their frequency in the user’s own 
dataset; top N POS tags with high frequencies are selected. 

IM-related features: Instant messages have their own special language styles. For 
example, popular internet words, special abbreviations, emoticons and words with 
similar pronunciation to others often appear in chatting text. Users select and use 
them according to theirs own language habits. We sum up the features of IM 
messages, and list some in Fig. 1. 

 

Fig. 1. Part of IM related Features 
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Structural feature: in this paper we only choose one structural feature, the average 
length of sentences. 

3.2   Model Generation 

Theoretically we can use multiple classification models to solve authorship 
verification problem. However, in this problem the number of IM users is not fixed, 
we cannot determine the number of categories. For a user to be recognized, the data 
we can obtain is the user’s own data (positive data), it is very difficult to collect 
enough negative samples that are representative of the entire negative class. One 
interesting problem for chatting text is that a person can use different chatting styles 
to chat with different peoples. For example, A has two friends B and C, A can chat 
with B using a totally different style as A chats with C. Usually if A decides a 
speaking style to chat with B, A will not change it; at least will keep it a relatively 
long time. That means we can not create a unique model to represent a user. 
Considering above special situations, one-class classification model is the best choice; 
in addition, a user need to build a recognition model for each of her/his chatting 
friends, for example, B and C will build a model of A respectively, and the two 
models may not be identical. 

In this paper we choose two types of one-class classifiers. One is a feed-forward 
neural network with ‘bottle-neck’[22]; the other is one-class SVM. Fig.1. shows the 
structure of the neural network. The neural network is trained using the standard back 
propagation algorithm to learn the identity function on the samples. The overall idea 
of the neural network is that while the bottleneck prevents learning the full identity 
function on m-space; the identity on the small set of samples is in fact learnable. 
Thus, the set of vectors for which the network acts as the identity function is a kind of 
sub-space which is similar to the trained set. Thus, the filter is defined by applying the 
network to a given vector; if the result is the identity, then the vector is “interesting”.  

To apply this idea to classify documents, we need to (i) decide on the number of 
hidden neurons and choose the appropriate learning rates. (ii) encode the documents 
as vectors, (iii) determine the appropriate acceptance thresholds when applying the 
trained networks to classify new documents.  

If the documents are represented as an m-dimensional feature vectors, the structure 
of the network is m input units, m output units. By trying different network 
parameters, we set the parameters of the network as follows. the feed forward network 
has 3 layers, 37 input units, 37 output units and 18 hidden units. All units are standard 
sigmoid units. The learning rate is 0.75 and momentum coefficient is 0.08. The 
iteration for training is stopped until the mean-square error falls below a 
predetermined level. We set the threshold for classification according to the 
classification error of threshold selection set; the threshold should satisfy that the 
classification accuracy is about 90%. This means that we expect false negative  
is 10%.  

In our work we use the LIBSVM available from http://www.csie.ntu.edu.tw/? 
cjlin/libsvm. This is an integrated tool for support vector classification. We use the 
standard parameters of the algorithm. 



 User Identification for Instant Messages 117 

 

Fig. 2. A neural network with bottleneck 

4   Experiment Result 

The chat dataset used in this paper is collected from QQ, a widely used IM tool in 
China. The corpus contains three month’s chatting text of different peoples. It 
includes 10 personal chatting logs and 14 group chatting logs of 2226 users in total. 
The images and the emoticon symbols are automatically transformed into text when 
we extract the chat logs from the QQ. Therefore, all these data are pure text. 
Information not relevant to the user, such as the system message, joke or notification 
copied from the web, is deleted. 
Performance measure: we use the true positive rate (TP) and true negative rate (TN) 
rate to evaluate the performance of a classifier. TP is the ratio of the number of one 
user data correctly classified as this user to the total number of testing data of this 
user. TN is the ratio of the number of non-self data correctly classified as non-self to 
the total number of the non-self testing data.  
Experiment setting: In the following experiments, we used 37 features in total: 16 
function words, 12 token-based features, 9 IM related features. The data set for each 
user is partitioned into three sets for threefold cross-validation. In additional, we also 
build three shared sets; each includes 800 samples selected randomly from 14 group 
chatting logs, one for threshold selection, one for feature selection, and another for 
evaluating TN. We randomly select four users for training and testing. For the 
convenience of comparison, in the experiments we set the TN is about 90%, and then 
we compare the TP of each model. In practice we want a high TN; it means more 
pretenders are found. 
Experiment 1: We use two methods to choose function words. Method 1(M1) only 
uses the training dataset of each user to select function words according their 
frequency. In method 2(M2), besides the user’s training data set, one shared data set is 
used, the top 16 function words with high information gain in the training data set are 
chosen. The results are shown in table 1. (The number of training samples for each 
user is about 180, and the length of each sample is about 210). 
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Table 1. Performance of M1 and M2 

User M1(%) M2(%) 
TP TN TP TN 

U1 83 90 86 90 
U2 87 90 91 90 
U2 62 91 65 91 
U3 62 89 60 89 

 
Experiment 2: it is required for IM tools to recognize a user’s identity in a short 

time. In reality it is also difficult to collect a large amount of corpus for a user. Thus, 
the length of data samples is a key factor for recognition. We chose different length of 
samples on the same training data set; the sample length is set as 120, 150, 180, 210, 
240 and 300 Chinese characters, respectively. The corresponding numbers of training 
samples for each length are about 350, 250, 210, 180, 150, and 120, respectively. The 
results are shown in table2. 

Table 2. Performance on the different sample size 

 

Experiment 3: We test the TP and TN using three type features separately, and then 
test the TP and TN using the combination of three types of features, the average 
results for the four users are shown in table 3. In table 3 F1 represents function words, 
F2 represents token based features, F3 represents IM-related features. 

Table 3. Performance for Different Features 

 

5   Conclusion 

From the above experiments we can draw the following conclusions. 
Conclusion from experiment 1: In general the performance of M2 is better than 

that of M1. For one-class classification problem, it is very likely that positive data and 
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negative data have many common features, in our experiment although the shared 
data set cannot represent the features of all negative samples; it is helpful to filter part 
of common features. This is the reason why we use two data sets (positive and 
negative) to select features. 

Conclusion from experiment 2: Compared with a short sample, a long sample can 
more accurately represent the characteristics of instant messages. Therefore, with the 
increase of the sample’s length, the performance of the one-class classifier is 
improved. However, for a fixed training data set, if the samples’ length is too long, 
the number of training samples will be decreased greatly, this will affect the 
classifier’s performance. The experiments show that when we set the sample size at 
200 more or less, we get the best overall performance. 

Conclusion from experiment 3:  The features we expect are the features that have 
big TP and TN. From the experiment result, function words have the best 
discrimination power, the IM related features also have the capability to recognize 
user identity, but their discriminative power is relatively weak, that is because most of 
the IM related features are popular among peoples, it is very difficult to select some 
as features of a specified person. By combining three types of features, we get better 
experimental results. 

Here we only give the results of neural network. We also test the performance of 
one-class SVM; its TP is about 10 percent lower than neural network, so we do not 
show the experimental results of SVM. 
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Abstract. A new question classification approach is presented for questions in 
CQA (Community Question and answering Systems).  In CQA, most of the 
questions are non-factoid questions and can hardly be classified according to 
their answer types as factoid questions. A rough grained category is introduced 
and Multi-label classification method is used for question classification. That is, 
a question can belong to several categories instead of a specific one and the 
classification result is a category set. A two-step strategy is used for question 
Multi-label classification. In the first step, series binary classifiers of each ques-
tion category are used separately. In the second step, results of those classifiers 
are combined and a set of question category is given as classification result. A 
hybrid kernel model, which combines tree kernel and polynomial kernel, is used 
for each binary classifier. A data set with 22000 questions is built and 20000 of 
which is used as training data, other 2000 as test data. Experiment result shows 
that the hybrid model is effective. A question paraphrase recognition experi-
ment is carried on to verify the effectiveness of multi-label classification. The 
experiment results show that Multi-label classification is better than Single-
label classification for questions in CQA. 

Keywords: CQA, Kernel Method, Question Classification. 

1   Introduction 

Question classification is very important for QA systems, and the classification result 
directly affects the quality of the QA system. Firstly proposed by A.M. Turing (1950), 
QA is the task of automatically answering questions in natural language form [1]. 
Researchers have done much work on factoid questions analyzing and answering. 
However, most of the questions in real environment are non-factoid questions. There-
fore, traditional QA systems cannot answer those non-factoid or complicated ques-
tions. The past few years saw the emergence of community-based QA system –CQA 
(e.g., Yahoo Answers 1 , Live QnA 2 , and Baidu Zhidao 3 ). In CQA, people ask  

                                                           
1 http://answers.yahoo.com/ 
2 http://liveqna.spaces.live.com/ 
3 http://zhidao.baidu.com/ 
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questions freely, more importantly, other people may give answers according to their 
knowledge. Finally, the asker selects one best answer for the question. In this way, 
CQA groups people on Internet together and accumulates tremendous QA pairs which 
contain great knowledge. Analyzing and reusing those QA pairs are of great meanings 
[2]. One way is searching similar QA pairs according to question semantic similarity 
when a new question is asked. Classifying questions into some semantic category is 
helpful for question similarity calculating. 

Question classification is a center problem for QA system. Question classification 
is helpful to indicate what a question is asking for and impose some constrains on the 
answers. Most of the previous researches focus mainly on factoid questions indicated 
by some interrogative keywords (when, where, who and etc) and answers are some 
short words. Machine learning methods are widely used for question classification 
problem. The information selected or features used are the most important factor for a 
classifier when a machine learning model is fixed. Sun (2008) extracts features from 
predict argument and parsing result [3]. WEN (2006) studies the feature extraction 
problem and uses subject predicating structure and interrogative words as basic fea-
ture set [4]. Hu (2008) applies POS tag and syntax structure features on answer classi-
fication [5]. Alessandro Moschitti (2007) encodes Predicate Argument Structures 
(PASs) into a svm for question classification [6]. All the approaches mentioned above 
work for factoid questions. However, most of the questions in CQA are non-factoid 
and the answers are no longer short words but a sentence or a few sentences. Thus, 
new question classification technique and strategy should be exploded. FAQFinder 
firstly uses machine learning methods for question classification in CQA [7]. Hyo-
Jung (2005) proposes new question taxonomies for the encyclopedia service [8]. 
Duan (2008) find similar questions from CQA by Identifying Question Topic and 
Question Focus [9]. 

In this paper, we introduce a new question classification framework. The main dif-
ference between our work and previous study is that: (1) the question category is 
course grained and can cover any questions. (2) in our framework, a question may 
belong to several question categories according to its information need.  

2   Question Classification Problem in CQA 

2.1   Category for Question Classification 

For factored questions, each question is assigned to one class which can be identified 
by some specific interrogative words. But in CQA, some questions are ambiguous and 
can be classified into several categories according to the information need. For  
example: 

Will stock SZA000001 rise next week? 

This question can be classified as yes/no question easily according to interrogative 
words. But in CQA, people will not prefer the answer like ‘yes’ or ‘no’ but the reason 
of rise or not for the stock. That is, a question can belong to several question types. 
This paper defines thirteen question types for questions in CQA. The question catego-
ry is listed in table 1. The question category is rough grained and can cover most of 
the questions. 
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Table 1. Question category 

Question type Abbr. Information need 
Quantity Wqua The answer is measurement. 
Description Wdes The answer need description 
Yes/No Wyes The answer should be yes or no 
Procedure Wpro The answer should be a series of event for something 
Definition Wdef The answer is the definition of topic 
Location Wloc The answer is location 
Reason Wrea The answer can explain the question 
Contrast Wcon The answer is the comparison of the items proposed in the 

question 
Person Wwho The answer is about the people’s information 
Choice Wcho The answer is one of the choice proposed in the question 
Time Wtim The answer is the data or time length about the event in the 

question 
Entity Went The answer is the attribute of the topic. 
Other Woth Other 

2.2   Question Multi-label Classification 

Now give the description of question Multi-label classification. Given a question cat-

egory set },...,,{ 21 nrrrR = , a question set Q , the single-label classification problem 

is to find a function RQf >−: . In our framework, a question can belong to several 

types instead of a specific one and the classification result is a set of question catego-
ry. Let )(RΩ denotes all the subset of R , and question classification can be defined 

as: )(: RQf Ω>− , obviously the Y space )(RΩ is very large, it is hard to find 

the function directly for data sparseness problem.  
In this paper, a two-step method is presented for question Multi-label classifica-

tion. In the first step, a series of binary classifiers are used for each question category:  

R:
otherwise,0
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　　　　                        (1) 

Where ( )iC q  is used to judge that if or not question q  belong to category iC . In 

the second step, results of those classifiers are merged: 

)()( qCqC i∪=                                    (2) 

Finally, ( )C q  is given as the question classifying result. 

3   The Hybrid Kernel Method for Question Multi-label 
Classification 

There are many machine leaning models such as ME model, KNN and decision trees 
can be used for binary classification problem. However, all those models suffer the 
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same disadvantage: they cannot use the structure information of the question parsing 
result which is important for question classification. Researchers have developed tree 
kernels for this kind problem [10]. Generally, given an input space, a kernel-based 
method accomplishes its algorithm in a novel feature space derived from the input 
space. Thus, compared to ordinary nonlinear methods, kernel-based methods incur 
lower computational cost [11]. As a popular kernel-based method, Support Vector 
Machines (SVM) is linear functions of the form bxwxf +•=)(  where xw•  
is the inner product between the weight vector w  and the input vector x . The SVM 

can be used as a classifier by setting the class to 1 if 0)( >xf  and to -1 otherwise. 

Obviously, SVM can easily model features of Bag of words and Bag of POS tags by 
using polynomial kernels. However, the parsing tree structure features are also impor-
tant for question classification. In this paper, we use both Polynomial kernels and 
Tree kernels for question classification problem.  

3.1   Polynomial Kernels 

For polynomial kernels, we use three kind features and those feature templates are 
listed as follows:  

Word Features 
Three kinds of word features are used: Unigram, Bigram and Trigram. The words are 
selected automatically according to their time frequency and discrimination. The dis-
crimination is evaluated by the mutual information between the question type and 
word features.  

Long Distance Rule Features 
In questions, there are some fixed representation forms which can be treated as long 
distance rule features. For example:  

What is the difference between * and * 

Here ‘*’ can be any words sequence. ‘What is the difference between’ and ‘and’ are 
treated as long distance rule features. This kind rule based features can be identified 
by shallow string matching algorithm. Finally, 1105 long distance rule features are 
collected manually which can cover 61% questions statistically.  

Special Interrogatives Words Features 
Some interrogative words are ambiguous in semantic meanings when used in ques-
tions. To avoid this kind of ambiguity, more information is needed. The pre-word, 
post-word, pre-word POS tag and post-word POS tag are used as the context of the 
special interrogative words. The contexts together with the interrogative words are 
used as features. The number of special interrogative words is 35. 

3.2   Tree Kernels 

Our tree kernel method represents substructures of a parser tree as features. And the 
associated kernel function measures the similarity between two trees by counting the 
number of their common substructures. We use the subset tree (SST) as the substruc-
tures of a parser tree. Fig. 1 shows the parse tree of the sentence: 

"  " together with its 6 SSTs (out of 17), 
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Fig. 1. A tree with some of its subset trees 

Now give the main idea of tree kernel function which can calculates the number of the 
common substructures between two trees T1 and T2 without explicitly considering 
the whole fragment space. A tree kernel function can be defined as follows: 

1 1 2 2

1 2 1 2( , ) ( , )
n N n N

K T T n n
∈ ∈

= Δ                            (3) 

Where N1 and N2 are the sets of all nodes in trees T1 and T2, respectively and 

1 2( , )n nΔ is the number of common fragments rooted in the 1n  and 2n . 1 2( , )n nΔ
can be calculated by an inductive procedure: 

1 if the production rules at 1n  and 2n  are different then 1 2( , )n nΔ  = 0; 

2 else if their children are the same and they are leave nodes, then 1 2( , )n nΔ =1; 

3 else 
1( )
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Where {0,1}σ ∈ is a decay factor which in range [0, 1], 1( )nc n is the children num-

ber of 1n  and 1
i
nc is the i-th child of node 1n . 

4   Experiment for Question Multi-label Classification 

4.1   Data for Experiment 

22000 questions are manually assigned question types according to the category de-
fined in table 1. The statistics result for the 20000 training questions is shown in Fig. 2 
and Fig. 3. Fig. 2 is the distribution of question types which shows that the top five 
question types (description, procedure, entity, yes/no and reason) cover most of the 
questions, in CQA. The top five question types are non-factoid question types and need 
reference or specific knowledge to answer. Fig.3 is the distribution of questions classi-
fied by type counts. 37% of the questions had one question type, 46% had two question 
types, 15% had three question types, 2% had more than four question types and the 
mean question type number is 1.82. The statistical result shows that questions with 
more than one question type is a common phenomenon and most of the questions have 
two question types wile few question has more than four question types. 
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Fig. 2. Distribution of question types 

 

Fig. 3. Distribution of questions on type counts 

4.2   Experiment for Question Multi-label Classification 

In our question classification framework, we need a binary classifier. We use three 
models as binary classifier: 

(1) ME: a Maximum Entropy model which uses the same features as polynomial 
kernels. 

(2) PK: a SVM model which only uses polynomial kernels. 
(3) TK: a SVM model which uses both polynomial kernels and tree kernels.  

Two evaluations are used in this paper by considering human assigned label as mea-
surement standard, one is to measure the precision ratio of binary classification, and 
the other one is to measure the precision ratio of question classification. Now give 
some basic definition: 

N : The question number in test data.  

iP : The right classified number for i-th binary classifier.  

0.15%
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qP : The right classified question number. Note that only when the question classifi-

cation result (the question category set) is identical to the real question category set.  
The binary precision ratio can be defined as: 

*

i
i C

P
B precision

N C
∈− =


                                 (4) 

The question precision ratio can be defined as: 

qP
Q precision

N
− =                                   (5) 

Table 2 shows the performance of those three models. For question classification, TK 
use a hybrid kernel (tree kernel and polynomial kernel) which contains rich informa-
tion than the other two models. TK achieves the best performance both in binary pre-
cision and question precision which is consistent to our assumption. The SVM model 
using polynomial kernel is better than ME model, although they have the same input 
features.  

Table 2. Experiment result for question Multi-label classification 

Question type  ME PK TK 

B-precision 67.8 79.6 83.6 
Q -precision 58.4 62.3 76.1 

5   Question Paraphrase Recognition  

To test the effectiveness of question Multi-label classification, a question paraphrase 
recognition experiment is carried. We setup two recognition algorithms, which use the 
result of question Multi-label classification and question single-label classification 
respectively. The experimental results show the power of question Multi-label classi-
fication.  

Question paraphrase recognition is to judge if two questions have the same seman-
tic meaning. Question paraphrase recognition is important for CQA. When people 
present a new question, it is convenient to list all the paraphrase questions which were 
presented earlier. 165 groups of question paraphrase set, which consists of 1082 ques-
tions, are selected from the CQA as test data. To test the effectiveness of QICA and 
multi-label classification, four methods are presented for question paraphrase recogni-
tion based on similarity calculation.  

Let W(q) denotes all but integrative words of question q . 

Let Ts(q) denotes our multi question type identification result, where Ts(q) is a 
question type set. 

Let T(q) denotes the most probable question type of Ts(q). Obviously, T(q) is 
equivalent to a traditional question classification result. 
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The two question paraphrase recognition methods are defined as follows: 

W(q)+ T(q) 
This method uses words information and single question type of a question. For a 
question q, its paraphrase set can be defined as a set:  

)}()(,),(:{)( qTaTqasimaq =>=Ω δ                  (3) 

When the similarity between two questions (a and q) is higher than a specific valueδ
and their question type are identical, the two questions are treated as paraphrasing 
pair.  

W(q)+ Ts(q) 
The second method uses words information and our question type identification result 
which can be represented as: 

( ) { : ( , ) , , ( )& ( )}q a sim a q t t Ts q t Ts aδΩ = > ∃ ∈ ∈　　

             (4) 

Eq. 4 indicates that if questions having a same question type they will be calculated. 
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              (5) 

A comparing experiment between the four algorithms is done. Table 3 shows the 
performance of the two methods when the threshold parameters of 　δ  is set to 0.75. 
Table 3 shows that the method using question Multi-label classification result 
achieved better performance of 63.7% on F1-measure. This means that our question 
Multi-label classification is better than traditional question classification of single 
question type.  

Table 3. Question paraphrase recognition performance of different methods 

method Pre.(%) Rec.(%) F1(%） 
W(q)+T(q) 60.3 46.6 52.6 
W(q)+Ts(q) 58.3 70.3 63.7 

 

According to Eq. 3, 4 the threshold δ  has the directly relationship to the perfor-
mance. Fig. 4 shows that with the increasing ofδ , the precision increases and the 
recall decreases. When δ  is in range [0.7, 0.9], these two methods achieve the best 
performance. Comparing W(q)+T(q) and W(q)+Ts(q), the previous method has a 
better performance on precision but suffer a bad performance on Recall. The F1-
measure shows that methods using Ts(q) has a great advantage over methods using 
T(q). This result gives the proof that question Multi-label classification is better than 
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traditional single question classification for question paraphrase recognition. The 
question paraphrasing recognition verifies the effectiveness of our question classifica-
tion approach. 

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

80

 

 

P
ar

ap
hr

as
e 

re
co

gn
iti

on
 P

re
ci

si
on

threshold

 W(q) +T(q) 
 W(q)+Ts(q) 

0.0 0.2 0.4 0.6 0.8 1.0
30

40

50

60

70

80

90

100

 

 

P
ar

ap
hr

as
e 

re
co

gn
iti

on
 R

ec
al

l
threshold

 W(q) +T(q) 
 W(q)+Ts(q) 

  
Fig. 4. Influence of thresholdδ on question paraphrase recognition performance 

6   Conclusion 

In this paper, a new question classification approach for questions in CQA is pre-
sented. A two-step framework, which contains a series of binary classifiers, is used 
for question Multi-label classification. A hybrid kernel model is used as binary clas-
sifier. Experimental results show that the hybrid kernel model is better than ME  
model and SVM model with single kernel. The hybrid kernel model achieves 83.6% 
precision in binary classification and 76.1% precision in multi-label classification. 
The classification result is used for question paraphrase recognition. The experiment 
results show that algorithm using Multi-label classification result is better than the 
algorithm using single-label classification result.  
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Abstract. This paper presents a method for semantic interpretation designed for 
Tunisian dialect. Our method is based on lexical semantics to overcome the lack 
of resources for the studied dialect. This method is Ontology-based which 
allows exploiting the ontological concepts for semantic annotation and 
ontological relations for interpretation. This combination reduces inaccuracies 
and increases the rate of comprehension. This paper also details the process of 
building the Ontology used for annotation and interpretation of Tunisian dialect 
utterances in the context of speech understanding in dialogue systems. 

Keywords: Tunisian dialect, Ontology, semantic annotation, semantic 
interpretation. 

1   Introduction 

The semantic parsing of understanding component in the context of dialogue systems 
helps to clarify the utterances meaning [1]. Since the spoken dialects are not written, 
it is very hard to obtain adequate corpora to deal with learning methods to understand 
utterances. In fact, approaches based on machine learning, still requires manual 
annotation of a large amount of training data. Moreover, tools of speech transcription 
are very expensive especially for Arabic dialect. On the other hand, using methods 
based on rules and parsers in the understanding module could pose inefficiency 
problem [2] especially in the case of a restricted domain. In fact, users often use 
keywords rather than well-structured sentences to request for information [3]. These 
characteristics are identified in a spoken dialogue for many restricted domain. Indeed, 
we noted the extensive use of keywords and the neglect of grammatical structures. 
These observations led us to use a lexical semantic approach to build the 
understanding module in Tunisian dialect. The method described in this work 
explores the meanings of words and their interconnection based on lexical choice 
databases. This is the subject of lexical semantics researches [4]. In this work, the 
lexical choice consists of integrating the domain and the task Ontology to allow 
annotation and semantic interpretation of utterances. Indeed, Ontologies have been 
used in several systems for semantic annotation. In this context, Allen and al. [5] use 
a domain independent Ontology to provide semantic representation in understanding 
module of a dialogue system. Also, the work of Milward [6] uses domain Ontologies 
to increase the level of clarification in dialogue manager. 
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Our contribution in this work consists in processing Tunisian dialect in dialogue 
systems. To our knowledge, this work is the first which deals with Tunisian dialect in 
an understanding component of a dialogue system. In this work we use domain 
Ontology to cover the lexicon used in the all services of railway station and we use a 
task Ontology which gathers all achievable tasks in this area as request information 
about the train time, booking, etc. To process utterances in Tunisian dialect in the 
restricted field, we exploit Ontologies for the semantic annotation and interpretation. 
Semantic annotation is used to assign semantic labels to each word without making a 
relationship between words or a group of words, while the semantic interpretation has 
a purpose larger than the semantic annotation. Indeed, the semantic interpretation 
increases the rate of comprehension by emphasizing the relationships between words 
in the same utterance. 

This paper is organized as follows. The next two sections present an overview of 
Tunisian dialect and building Ontologies. Sections 4 and 5 present our method for the 
annotation and semantic interpretation based on Ontologies. The last tow sections 
show results and report conclusions. 

2   Tunisian Dialect 

Among variants of modern standard Arabic (MSA) are dialects which are spoken and 
informal. Arabic dialects differ from the MSA in terms of phonology, morphology, 
syntax and lexical level. Consequently, we could not use standard Arabic tools and 
adapt them to parse Arabic dialect. The Arabic dialect represents the real form of 
language. They are generally limited in use for informal everyday communication [7]. 
In fact, the dialect is mainly spoken and unwritten. So, it is crucial to study Arabic 
dialects in dialogue systems. We have chosen the Tunisian dialect as a representative 
example to study Arabic dialects in dialogue systems. 

The Tunisian dialect is characterized by many features especially in the restricted 
field of railway services. To begin with, utterances in Tunisian dialect are not long. In 
fact, the average of word number in an utterance is about 3.61 [8]. Another feature in 
Tunisian dialect is the non respect of grammar and the use of foreign words especially 
in the studied field. In fact the most important key words are borrowings from French 
language. Finally, user utterances are characterized by a frequent use of domain 
dependant key words. All these features led us to investigate a method which focus on 
key word and relation between them and use a knowledge base to annotate and 
interpret utterances in Tunisian dialect by means of Ontologies. 

3   Building Ontologies 

Ontology is a formal specification, explicit and consensual conceptualization of a 
domain [9]. Indeed, the design and creation of Ontologies help humans to understand 
and solve the ambiguities for specific domains [10]. It consists of a set of concepts 
linked together in a methodological manner. In the literature, we can identify several 
types of Ontologies. In this work, we are interested in specialized Ontologies which 
are domain Ontology and task Ontology. Indeed, the domain Ontology provides 



 Towards Understanding Spoken Tunisian Dialect 133 

concepts of a domain [11] and relations between them. While task Ontology contains 
all tasks performed in a given domain [12]. It should be noted that the use of existing 
Ontologies is crucial. Nevertheless, we have not Ontologies in Tunisian dialect in the 
studied field. Therefore, we have manually built Ontology by following a known 
methodology. Several methodologies for building Ontology have been identified [9] 
[13]. We can mention as an example MethoOntology methodology and OntoClean 
methodology. There are other methodologies which are proposed for the construction 
of linguistic Ontology. TERMINAE methodology is one of the methodologies which 
allows manual construction of Ontologies from texts, based on language processing 
tools, to extract the lexicon and lexical or syntax relations. 

The main purpose in this section is to explain the various steps followed in this 
work to build Ontologies using the TERMINAE methodology. To start the 
construction of our Ontology, we should have a corpus representing the domain 
knowledge. The used corpus is called TuDiCoI (Tunisian Dialect Corpus 
interlocutor) which is a corpus of spoken dialogue in Tunisian dialect. It is a pilot 
corpus which gathers a set of conversations recorded in the railway station between 
the staff and customers who request information about the departure time, price, 
booking, etc [8].  

In an understanding module of a dialogue system, we annotate user utterances. 
That’s why we process in this corpus only user utterances. So, among 369 as user 
utterances, we considered randomly 194 utterances as a development corpus which 
consists of 701 words. The rest of the utterances are left as a test corpus. We have 
manually transcribed the corpus because the lack of resources for automatic dialogue 
transcription especially for Tunisian dialect. 

After fixing the corpus of a domain; we will continue the TERMINAE process to 
manually build the Ontology from a transcribed spoken corpus. 

3.1   Lexical Specification 

The lexical specification step consists of extracting the representative lexical of the 
domain and relations between lexical varieties. It is based on manual linguistic 
analysis of the corpus since we do not have language tools for Tunisian dialect. This 
step requires the intervention of linguistic experts to validate the obtained lexicon and 
lexical relations. After lexicon specification, we try to classify by group each set of 
semantic lexicon carrying the same semantic.  

For example, { )3( لكسبراس ,)2(أسريع , )1( نورمال  } {nwrmAl (1), Os~ryE (2), lksbrAs 
(3)}1{Normal (1), Rapid (2), Express (3)} is a group which is carrying the same 
global semantic. It is the lexicon used to specify the train type.  

3.2   Standardization 

This step consists of assigning to each lexical variation a concept. So, from lexical 
varieties and lexical relations, we obtained a group of concepts and semantic 
relationships. At the end of this phase, we get a semantic network represented by a set 
of concepts linked by semantic relations. As example of standardization, the lexical 
                                                           
1 For all examples, the transliteration is produced by the Buckwalter Arabic Transliteration 

System (http://www.qamus.org/transliteration.htm). 
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group {(3) لكسبراس  , )2(أسريع , )1(نورمال   } {nwrmAl (1), Os~ryE (2), lksbrAs (3)} 
{Normal (1), Rapid (2), Express (3)} is denoted by the concept “Train_Type”. 

3.3   Formalization 

The purpose of the formalization step is to translate the semantic network obtained in 
the previous step into a knowledge representation language. In our work, the 
formalization is done by the OWL language (Ontology Web Language) 2 . OWL 
constitutes a knowledge representation language used to represent knowledge in a 
form usable by the machine.  

4   Semantic Annotation 

The semantic annotation is defined as the process used to associate semantic labels to 
each word or a group of words in a statement. In this work, we perform a semantic 
annotation of a transcribed speech based on domain Ontology and task Ontology. 
Hence, it is important to note that there are many problems in the utterances 
annotation since the dialect is the target of this study. In fact, we note that the spoken 
dialect does not respect correct grammatical form, which prevents us to use any 
analyzer of standard Arabic language and adapt it to the Tunisian dialect. The second 
problem is the segmentation of the utterance that appears as a key critic step in 
semantic annotation. Indeed, it sometimes becomes difficult to identify the text 
elements to annotate [11] because of morphological varieties of words, compound 
words, etc. So we have to make a standardization step of utterances before doing 
Ontology-based annotation by following the same standard used to build the Ontology 
in order to make a correspondence between elements of the Ontology with words of 
the utterance to be labeled. 

− Treatment of compound words 
Through the corpus study, we identified a definite list of compound words in the 
domain of railway information. This list is kept in a compound words dictionary. We 
have identified 55 significant compound words of the studied domain. 

− Radicalization and lexical variants removal 
The radicalization to remove lexical variants [14] is an effective method especially in 
the case of a limited field. Indeed, we try to deduce the singular form if the word is in 
the plural and the base form in the case of morphological variants. 

After utterance normalization, we attribute a semantic label for each word in the 
utterance based on the domain Ontology and the task Ontology.  In fact, we exploit 
our Ontologies by scanning all concepts instances of both Ontologies and we look for 
the presence of a given word in the Ontology instances. It should be noted that it is 
possible to have two concepts, a one concept or no concept attributed to a given word. 
In case of having two different labels for a given word, it is possible to improve 
understanding through the phase of semantic interpretation which is presented in the 
next section. In case of a single semantic label for a word, we noticed a percentage of 

                                                           
2 http://www.w3.org/TR/owl-features/  
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95% that the attributed label to a given word is correct. The case of non recognition of 
the semantic label of a given word is explained by incomplete words, a non-domain 
lexicon and peculiar phenomena to spontaneous speech which are not yet studied in 
this work. It can be noted in the example of figure 1 that the first word has two 
different semantic labels. So we should ameliorate semantic annotation by a semantic 
interpretation step to disambiguate the meaning. 

The use of Ontology in the semantic annotation step does not provide significant 
benefit and its use in this step does not exceed the use of a domain dictionary. But the 
major contribution of the use of Ontologies is at the semantic interpretation presented 
in the next section. Therefore, the next step is a semantic interpretation which 
improves the semantic annotation by exploiting the semantic relations in Ontologies. 

 

Fig. 1. Example of semantic annotation 

5   Semantic Interpretation 

The semantic interpretation can be defined as a semantic decoding which clarifies the 
semantics carried in a statement and increases the accuracy of understanding. It is 
important to note that this work is not interested in contextual interpretation; it is only 
interested in lateral interpretation (i.e. context-free dialogue). Indeed, we try to 
improve labeling taking into account only semantic relations between the words of the 
same utterance and not an interpretation based on all utterances in the same dialogue. 

The semantic interpretation allows exploiting linguistic links in an utterance and 
identifying their correspondence; as semantic relation; in the Ontology. So, it permits 
to link words together in the same utterance, so expressing a precise meaning.  

The semantic interpretation is triggered for each word with two different labels 
detected after the semantic annotation step. Indeed, when we detect two labels for the 
same word, we traverse the utterance to detect the semantic relations in the utterance. 
If a relationship is identified in the utterance, we check in the Ontology if the target of 
this relationship is one of the concepts already identified as a label tag for a word or 
not. If yes, the target of the semantic relation is the correct label and should be 
attributed as a label to the word. 

To explain the proposed method for semantic interpretation, we take the following 
utterance as an example: “ اضي ساعهلملتونس إ ” “ltwns IlmADy sAEh” “To Tunis One 
Hour o'clock”. First, we begin by the standardization step which consists of detecting 
the compound words and the semantic relationships. The statement becomes: “ إلى تونس
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ساعه_لماضيإ ” “IlY twns IlmADy_sAEh” “To Tunis One Hour o'clock”. After the 
standardization step, we annotate semantically an utterance as it is presented in  
figure 2. 

 

Fig. 2. Example of semantic annotation 

We note in figure 2 that the word “تونس” “twns” “Tunis” has two different semantic 
labels. It is labeled at the same time as “Departure_City” and “Arrival_City”. Now, 
we apply the semantic interpretation step. To explain this point, we present an extract 
of our domain Ontology in a semantic network representation illustrated in figure 3. 
In this figure, the instance “تونس” “Tunis” belongs to two different concepts. At the 
interpretation level, we use semantic relations. In the utterance, there is the 
relationship “إلى” “to” which its target is the concept “ الوصول_مدينة ” “Arrival_City”. 
So the word “تونس” “Tunis” should have as semantic label “ الوصول_مدينة ” 
“Arrival_City”. 

 
 
 

 
 

 
 

 
 
 
 
 

Fig. 3. Extract from the domain Ontology in a semantic network representation 

6   Results 

To build our Ontologies, we used the Protégé platform 3 . Protégé allows the 
generations of OWL file which represents the Ontology. In fact, OWL language is 
used in our work as a formalization language. To implement our method of semantic 
interpretation, we used the Jena framework. It is a Java framework for building 

                                                           
3 http://protege.stanford.edu/ 
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Semantic Web applications. The Jena Framework includes an OWL API4  which 
facilitates the operating of the Ontology. 

To test our method, we have used a test corpus which consists of 175 user 
utterances. This corpus contains 670 different words. 

To evaluate the results of our method of semantic interpretation, we used Precision 
and F-measure. These measures are used to measure the semantic labels assigned to 
different words in oral utterances with relation to instances of Ontology concepts. In 
our case, the Precision measures the number of words correctly labeled divided by the 
total number of annotated words (correctly labeled and not correctly labeled) and F-
measure measures the number of words correctly labeled divided by the total number 
of words of the test corpus. 

Note that the number of words correctly recognized is 448, and the number of 
words which are not recognized is 208 words. So we get a Precision of 0.96 and an F-
measure of 0.66. 

Table 1. Experimentation results on the test corpus 

Correct Annotation  (a)    448 
Incorrect Annotation (b) 14 
Not Recognized (c) 208 
Total (d) 670 
F-Measure (a / d) 0.66 
Precision (a/(a+b)) 0.96 

 
The precision ratio obtained for this evaluation is encouraging because we have not 

yet dealt with the specific phenomena of spontaneous speech. Indeed, after the 
analysis of 208 tokens which are not recognized in the interpretation, we noted that 38 
tokens come from speech phenomena such as hesitation, incomplete words and the 
rest represent anaphors and out of vocabulary lexicon. 

7   Conclusion 

In this work, we have proposed a method which takes into account the specificity of 
the Tunisian dialect which has no linguistic processing resources. Indeed, the 
proposed method is based on lexical semantics which incorporates domain Ontology 
and task Ontology for the semantic interpretation of the utterance in a spoken 
dialogue without incorporating methods based on rules or parsers. In this method, we 
used the concepts of both Ontologies to annotate the utterances, while the semantic 
relations of Ontologies are used to disambiguate the interpretation and to increase the 
understanding level. To our knowledge, this method is the pioneer which proposes 
building domain Ontology and task Ontology for the Tunisian dialect in a limited 
domain. The proposed method is implemented and tested on a Tunisian dialect corpus 
using specialized framework in the Ontologies processing. Results are encouraging  
 

                                                           
4 http://www.openjena.org/ 
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for a first validation of this method. Indeed, we obtained an accuracy of 0.96. This 
precision is being improved by incorporating a processing level of particular 
phenomena of spontaneous speech. 
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Abstract. Topic models are hierarchical Bayesian models for language model-
ing and document analysis. It has been well-used and achieved a lot of success in
modeling English documents. However, unlike English and the majority of alpha-
betic languages, the basic structural unit of Chinese language is character instead
of word, and Chinese words are written without spaces between them. Most pre-
vious research of using topic models for Chinese documents did not take the Chi-
nese character-word relationship into consideration and simply take the Chinese
word as the basic term of documents. In this paper, we propose a novel model to
consider the character-word relation into topic modeling by placing an asymmet-
ric prior on the topic-word distribution of the standard Latent Dirichlet Allocation
(LDA) model. Compared to LDA, this model can improve performance in doc-
ument classification especially when test data contains considerable number of
Chinese words not appeared in training data.

Keywords: Topic Models, Latent Dirichlet Allocation, CWTM, Gibbs Sampler.

1 Introduction

Topic models are a class of hierarchical probabilistic models for analyzing discrete data
collections. It assumes that documents are mixtures of topics and each topic is a prob-
ability distribution over words. Topic models have attracted a lot of attentions in recent
years because it tries to model document in semantic level. Unlike English and the ma-
jority of alphabetic languages, the basic structural unit of Chinese language is character
instead of word [13], and Chinese words are written without spaces between them. Most
previous research applying topic models to analyze Chinese documents choose Chinese
word as the basic term. Chinese documents are segmented into words which are gen-
erally believed to have more specific meanings than characters. However, word-based
methods completely ignore the information that a Chinese word are composed of Chi-
nese characters. Words sharing one same character may have some semantic relations,
such a relation cannot be detected in word-based models. For example, the Chinese
words “xué xı́ ”(study) and “xué shēng ” (student) are literally related by sharing the
same character “xué”, and they are also semantically related in meaning and may have
a high probability to occur in the same context. However, in word-based computational
models, these two words are treated as two distinct words has no relations at all.

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 139–147, 2011.
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The number of commonly used Chinese characters1 is around 3000, while the size
of word vocabulary can be way larger with new words created constantly. However, the
characters constitute the new word probably already appeared in the history documents.
In the standard Latent Dirichlet Allocation [3] model, all those words unseen in train-
ing data are assigned the equal probability in a topic by simply placing a symmetric
dirichlet prior[8] on the topic-word distribution, regardless of their component charac-
ters having different occurrence rates in the training data. Hence, we will extend LDA
by incorporating Chinese character-word relation to improve the performance of topic
model when modeling Chinese documents.

This paper is structured as follows, the new proposed generative model is introduced
in details in Section 2. We apply Gibbs sampling [1,5] method to inference the model
in Section 3. Empirical results are given to evaluate this model in Section 4. The con-
clusions and future work is discussed in the end.

2 Character-Word Structure in Topic Modeling

2.1 Generative Model

To encode the character-word relation into topic model, we extend the standard LDA
by placing an asymmetric prior on the topic-word distribution. This prior is obtained
according to the character-word relation and topic-character distribution. The graphical
model is shown in Fig. 1. Besides, we refer to this extended LDA model as Character-
Word Topic Model (CWTM) in this paper.

D
N

,d n
W,d n

Z
d

K
( )k ( )k( )k

W
sD

s
C

s

Fig. 1. Graphical model representation of Chinese character-word topic model

As illustrated in the Fig. 1, the document-topic modeling (the left part) is exactly
the same as standard LDA [2,3]. Wd,n represents an observable Chinese word where d
(d = 1, . . . ,D) is the index of document and n (n = 1, . . .Nd) is the index of words in
the document d. Zd,n is a K-dimensional multinomial random variable indicate which
topic is assigned to Wd,n. Each document d is a mixture of topics parameterized by θd

1 Previous research show that 3500 most commonly used characters can cover 99.48% of a
corpus of written materials with over 2 million characters. 1000 most used character can cover
90% of a daily life corpus with over a billion characters [16].
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which has a Dirichlet prior with hyperparameters mD, sD. The Dirichlet distribution is
denote by Dir(m, s) in this paper, where m is the normalized mean (

∑
i mi = 1) and s is

called precision parameter (a scalar) that m ∗ s is equivalent to α in standard Dirichelet
distribution [8].

The CWTM model assumes that documents in a corpus C with Chinese word vocab-
ulary size VW and character vocabulary size VC are generated by the following process:

1. For document d = 1, . . . ,D:
(a) Draw a distribution over topics θd ∼ Dir(mD,sD).
(b) For each Chinese words n = 1, . . . ,Nd, in document d:

(i) Draw a topic assignment Zd,n ∼Mult(θd).
(ii) Draw a word Wd,n ∼Mult(ϕW(Zd,n)).

2. For each topic k = 1, . . . ,K:
(a) Draw a topic distribution over Chinese characters ϕC(k) ∼ Dir(mC, sC).
(b) Infer the distribution over Chinese words based on a deterministic function of

the distribution of Chinese characters ϕC(k) and character-word relationship
R: mW(k)=F(ϕC(k),R).

(c) Draw a distribution over Chinese words ϕW(k) ∼ Dir(mW(k), sW ).

R is a 2-dimensional matrix containing Chinese character-word composition rela-
tionship, it is defined as the count of character (C j) contained in word (Wi):

Ri j = Count(Wi,C j) i = 1, 2, ...,VW j = 1, 2, ...,VC (1)

where VW and VC represent the size of Chinese word vocabulary and Chinese character
vocabulary, respectively. We define the deterministic function F as:

mW(k,i) = F(ϕC(k),R)i = Nk(
VC∏

j=1

ϕC(k, j)
Ri j)

1
∏VC

j=1 Ri j i = 1, 2, ...,VW (2)

where Nk is a constant to ensure all the coordinates of mW(k) sums to 1 and the character-
word relation can be used in other form by simply altering the definition of function F.

2.2 Likelihood

The major difference between this model and LDA is the prior of the topic-word dis-
tribution ϕW. In LDA, all the K distributions ϕW(1), ϕW(2), ..., ϕW(K) own a common
symmetric dirichlet prior. While CWTW impose each topic-word distribution ϕWk with
a unique asymmetric Dirichlet prior parameterized by mW(k) and sW [11]. This means
that each ϕW(k) has a corresponding prior Dir(mW(k), sW ). And the mean of this Dirich-
let prior mW is obtained by a deterministic function F, which takes character-word
relation R and topic-character distribution ϕC(k) as inputs. Owing to the determinis-
tic characteristic of generating ϕW(k) from R and ϕC(k), K topic-character distributions
ϕC(1), ϕC(2), ..., ϕC(K) should be different to ensure that topic-word distributions ϕW(1:K)
own priors with different mean parameters mW(1:K). Therefore, the character-word re-
lation is incorporated as prior, which could make it less sensitive to errors caused by
character-word relation, rather than is hardcoded into the model[9]. And the balance
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between the prior originated from character-word relation and observed data could be
controlled by adjusting the Dirichlet precision parameter sW .

According to the description in Section 2.1, the joint distribution of all the variables
given hyperparameters is:

p(Wd,Zd, θd, ϕW, ϕC|mD, sD,mC, sC , sW ,R) =
Nd∏

n=1

p(Wd,n|ϕW(Zd,n))p(Zd,n|θd) (3)

·p(θd|mD, sD) ·
K∏

k=1

p(ϕW(k)|sW ,mW(k))p(mW(k)|ϕC (k),R)p(ϕC(k) |sC ,mC)

where p(mW(k)|ϕC (k),R) = 1 only when mW(k) = F(ϕC(k),R) and 0 for all the other
values of mW(k) because F is a deterministic function.

3 Inference

Several methods have been proposed to do inference in LDA-like topic models [2,3].
In this paper, we will use Gibbs sampling [5], which is a special form of Markov chain
Monte Carlo [1,4] for CWTM inference.

3.1 Document Likelihood

As we can see from the graphical model illustrated in Fig. 1, the joint distribution
p(W,Z|mD, sD,mW, sW ) could be factored as follows:

p(W,Z|mD, sD,mW, sW) = p(W|Z,mW, sW )p(Z|mD, sD) (4)

And the two terms on the right side of above equation can be obtained by canceling out
ϕW and θ respectively:

p(W|Z,mW, sW ) =
∫

p(W|Z, ϕW)p(ϕW|mW, sW )dmW

=

K∏

k=1

Γ(sW)

Γ(sW + nT
k )

VW∏

i

Γ(nTW
k,i + sW ∗mW(k,i))

Γ(sW ∗mW(k,i))

(5)

p(Z|mD, sD) =
∫

p(Z|θ)p(θ|mD, sD)dθ

=

N∏

d=1

Γ(sD)

Γ(sD + nD
d )

K∏

k=1

Γ(nDT
d,k + sD ∗mD(k))

Γ(sD ∗mD(k))

(6)

where nTW is a matrices stored the counts of the number of times each Chinese word
is assigned to each topic, say nTW

k,i denotes the count number of Chinese word indexed
by i is assigned to topic k. Similarly, nDT

d,k , element of nDT , denotes the count number

of Chinese words which are assigned to topic k in document d. And nT
k =
∑VW

i=1 nTW
k,i ,

nD
d =
∑K

k=1 nDT
d,k .
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3.2 Collapsed Sampler

To perform Gibbs sampling, we need a sampler p(Zd,n = k|Zd,n−,W) from which new
samples are drawn. This sampler is similar to that of standard LDA in [5]. The derivation
of standard LDA’s inference algorithm based on Gibbs sampling is introduced with
details in [6].

p(Zd,n = k|Zd,n−,W) ∝ [nTW
k,v− +mW(k,v)][n

DT
d,k− + sd ∗mD(k)]

∑VW

i=1 nTW
k,i− + sW

(7)

Noting W = {Wd,n = v,Wd,n−}, the subscript ‘ − ‘ represents current token indexed by
(d, n) is not taken into consideration. Besides, nTW

k,i− denotes the count number of Chinese
word indexed by i is assigned to topic k.

Since this Gibbs sampling method directly estimate Zd,n for each word in the corpus,
topic-word distributions and document-topic distributions can be obtained by:

ϕW(k,i) =
nTW

k,i + sW ∗mW(k,t)
∑VW

i=1 nTW
k,i + sW

(8)

θd,k =
nDT

d,k + sD ∗ mD(k)
∑K

k=1 nDT
d,k + sD

(9)

3.3 Estimate Topics over Chinese Characters

The Gibbs sampler proposed in Section 3.2 assumes mW as known, which is converted
from topics over Chinese character through a deterministic process by the function
F(R, ϕC). Therefore it is necessary to estimate topics over Chinese characters ϕC.

To approximately estimate ϕC, we assume each Chinese character contained in the
Chinese word token Wd,n in the corpus is directly sampled from the corresponding
character-topic Multinomial distribution:

C( j)
d,n ∼ Mult(ϕC(Zd,n )) (10)

where j denotes the index of the character in the word token Wd,n.
This means all characters in a word shared the identical topic, which is the same as

the word’s topic assignment. That is to say, if Chinese word “jı̀ suàn”(Wd,n) is assigned
with topic k, then its component characters “jı̀”(C(1)

d,n) and “suàn”(C(2)
d,n) are assigned the

same topic k. This makes sense because characters in a word are inclined to express
more related meanings.

Thus, the topic-character distribution could be approximately estimated as:

ϕC(k, j) =
nTC

k, j + sC ∗mC(k, j)
∑VC

j=1 nTC
k, j + sC

(11)

where nTC
k, j denotes the count number of Chinese character indexed by j is assigned to

topic k.
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The hyperparameters for CWTM are: mD, sD,mC , sC , sW , which are either Dirichlet
mean parameter or Dirichlet precision parameter. As with the standard LDA model, we
use symmetric priors in the latter experiment section. That is to say, we set mD and
mC as uniform distributions. For the other Dirichlet precision parameter, Griffiths have
given a setting that show good quality in [5]. So we use that setting to fix sD = 50,
sW = VW ∗ 0.1 and sC = VC ∗ 0.1 for all k topics.

4 Experimental Studies

4.1 Data Descriptions

The Chinese corpus used in this paper is a news archive for classification provided by
the Sogou laboratory2. The documents in this corpus are news articles collected from
the website of the Sohu.com, which is one of the China’s biggest Internet media com-
pany. These news articles are manually edited and classified into 10 classes that cover
military, education, tourism and other topics. In the original corpus, each class contains
8000 documents. But few of these documents contain nothing but some meaningless
non-Chinese symbols. Therefore those documents contain less than 100 Chinese char-
acters will be ignored in our research. We then selected 1000 documents with 100 doc-
uments per class from the corpus as our experiment data which is named as NEWS1K
and it is open to public online3. To take Chinese word as basic unit of topic model,
we split Chinese documents into word tokens by using a Chinese word segmentation
tool ICTCLAS-094 in our experiments. We also removed rare terms that appears less
than 10 times across the whole corpus. For those terms that appears in over 50% of the
documents, we consider them as stop words and remove them from the corpus as well.
After the above preprocessing steps, the corpus NEWS1K contains 21389 unique Chi-
nese words and 3631 unique Chinese characters. We then split NEWS1K into training
and test set by the rate 1 : 1. There are 3747 Chinese words only appeared in the test
set, but are unseen in training set.

4.2 Extracted Topics and Document Classification

The implementation of CWTM is based on GibbsLDA++5. Then we separately apply
the standard LDA and CWTM to analyze NEWS1K’s training data with topic number
varies from 10 to 100. Fig. 2(a) shows top 20 terms of two topics independently ex-
tracted from CWTM and standard LDA when the number of topics is 50. As we can see
from the results, topics extracted from these 2 models are relevant to sports.

As we mentioned in Section 1, for the words not appeared in training data, characters
composing these words have appeared as component of other words in the training data.
CWTM takes the character-word relation into consideration. Therefore, as is illustrated

2 The corpus can be obtained at: http://www.sogou.com/labs/dl/c.html
3 Dataset is available at: http://icmll.buaa.edu.cn/projects/topicmodel/index.html
4 ICTCLAS is an integrate Chinese lexical analysis system which provides a tool for Chinese

word segmentation. http://ictclas.org/
5 C/C++ Implementation of LDA. http://gibbslda.sourceforge.net/
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in Fig. 2(b), some of the words relevant to sports, even not appeared in the training
data, were assigned relatively higher probabilities in topics about sports by CWTM. For
example, the word “zhǔ kè chǎng”(home and away), though never appeared in training
documents, its component characters “zhǔ”, “kè”, and “chǎng” are the components of
those words appeared in training data. Therefore, it obtained a higher probability in
CWTM. On the other hand, not surprisingly, none of these words were ranked into
top 1000 words in the corresponding topic extracted by standard LDA model. Similar
situations as described above happened with different number of topics.

Term Rank CWTM (Topic 6) Standard LDA (Topic 45)

1

2

3

4

5

6

7

8

9

10

11

12
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14

15

16

17

18

19

20

(a) Top 20 words of extracted topics from

CWTM and the standard LDA when the

number of topics is 50.

Term Rank CWTM (Topic 6)

450

453

468

477

480

532

536

580

592

783

859

863

933

(b) Some words, though not

appeared in training data,

ranked in top 1000 of the 6th

topic extracted from CWTM

with topic number equals to 50.

Fig. 2. Samples of extracted topics by using two different topic models: LDA and CWTM

The above extracted topics indicates that our method to incorporating character-word
relation make the topics more reasonable. Then we make experiments to see its per-
formance in document classification compared to standard LDA[12]. When modeling
documents with topic model, each document can be represented as a distribution over
topics by parameter θ. If two documents are semantically similar, it means the distance
between two corresponding topic distributions is small, too. By using topic distribu-
tions, we can quantitatively measure the semantic (dis)similarities between documents.
In such a way, documents of each class can be mapped to a K-dimensional space where
K is the number of topics. In such a space, we can use discriminative machine learn-
ing algorithms, such as Neural Network (NN), k-Nearest Neighbor (kNN) or Support
Vector Machine (SVM), to classify these documents based on the semantic distance
measure in terms of dissimilarity between topic distributions θ. In particular, we em-
ploy the SVM to the classification task on the NEWS1K dataset for its effectiveness in
text classifications such as question classification [10,7]. We adopted libsvm6 with its
default RBF kernel in our experiments.

6 LIBSVM is an integrated software for support vector classification, regression and distribution
estimation. http://www.csie.ntu.edu.tw/˜cjlin/libsvm/



146 Q. Zhao, Z. Qin, and T. Wan

 52

 54

 56

 58

 60

 62

 64

 66

 68

 70

 72

 10  20  30  40  50  60  70  80  90  100

A
cc

ur
ac

y(
%

)

Number of Topics

Text classification

Standard LDA Accuracy
Character-Word Topic Model Accuracy

Fig. 3. Text classification accuracy based on standard LDA and CWTM

The classification accuracy of standard LDA and CWTM on the test data with differ-
ent number of topics k is shown in Fig. 3. CWTM have a higher classification accuracy
at all numbers of topic except when number of topic equals to 10. This may be caused
by the too much errors brought to the topic-word distribution ϕW by the character-word
relation prior when the number of topics is very small. Generally, our model have a
better performance in document classification when a considerable number of words
appeared only in test data while not in training data.

5 Conclusions

In this paper, we propose a method to incorporate character-word relation into the topic
model by placing an asymmetric prior on the topic-word distribution of standard Latent
Dirichlet Allocation (LDA) model. And experiments show, compared to LDA, CWTM
can extract more reasonable topics and improve performance in document classification
under certain circumstance. Besides, our proposed method can be easily applied to the
most of the other topic models.

Though this method of encoding Chinese character-word relation could improve the
performances of topic model, the errors brought to the model by this method prevent it
from performing much better in modeling Chinese documents. This may be improved
by altering the definition of the function F(ϕC(k),R) or a more sophisticated model
structure.
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Abstract. Classifying web queries into predefined target categories, also
known as web query classification, is important to improve search rele-
vance and online advertising. Web queries are however typically short,
ambiguous and in constant flux. Moreover, target categories often lack
standard taxonomies and precise semantic descriptions. These challenges
make the web query classification task a non-trivial problem. In this pa-
per, we present two complementary approaches for the web query classi-
fication task. First is the enrichment method that uses the World Wide
Web (WWW) to enrich target categories and further models the web
query classification as a search problem. Our second approach, the re-
ductionist approach, works by reducing web queries to few central to-
kens. We evaluate the two approaches based on few thousands human
labeled local and non-local web queries. From our study, we find the
two approaches to be complementary to each other as the reductionist
approach exhibits high precision but low recall, whereas the enrichment
method exhibits high recall but low precision.

Keywords: Query Classification, Unsupervised, Semi-supervised,
Bayesian Approach.

1 Introduction

With the increasing popularity of search engines as the de-facto gateway to the
World Wide Web (WWW), web queries have become an important medium by
which a system can understand user’s interests. Web queries can be however very
diverse and any meaningful use requires classifying them into small commercial

� This work was partially supported by a grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China (Project No. CUHK 413210).
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taxonomy. Several challenges however make the task web query classification a
difficult and a non-trivial problem. Web queries are typically short containing
mostly two or three terms [1]. As a result, they tend to be ambiguous. For
instance, the term “apple” can be either mean the fruit or the company or
a gadget (apple computers). Web queries are also in constant flux and keeps
on changing with current ongoing events (such as release of Apple’s IPad or
Japan Earthquake, nuclear leak, etc.). Moreover, target categories are not fixed,
they depend on business requirements and often lack precise clean semantic
descriptions.

As highlighted by the 2005 KDD Cup Challenge1, the above challenges as-
sociated with the web query classification task has generated lot of interest in
the academia and in the industry. Building on existing research in this area, this
paper presents two complementary approaches for the web query classification
task. First, the enrichment method uses the World Wide Web (WWW) to enrich
categories and models the web query classification as a search problem. Second,
the reductionist approach reduces a query to smaller subset of tokens that main-
tain the broad intention of the query. This smaller set of tokens are referred as
central terms of a query, hence the reductionist approach here is is sometimes
referred as the centroid approach.

That paper is organized as follows. In Section 2, we first explore some of the
relevant work and existing approaches for web query classification. Section 3
presents the underlying theory and implementation of the proposed approaches.
Section 4 discusses our evaluation strategy; we use crowdsourcing to obtain hu-
man labeled queries for training and testing purpose and further use standard
measures of precision, recall and F1 for evaluation. Lastly, Section 5 presents
conclusions and a discussion on the complementary nature of the two approaches.

2 Related Work

The task of web query classification is to classify queries into a set of predefined
categories. Unlike document classification techniques, web query classification
techniques have to deal with short queries and lack rich set of textual features,
required for the classification purpose. To overcome the lack of rich query fea-
tures, many researchers proposed query-enrichment based methods [2,3], also
called post-retrieval techniques. Query-enrichment associates a collection of text
documents to every query by sending the query to a commercial search engine
and collecting the search engine results. Each query is represented by a pseudo-
document bundling together the titles and snippets of the top ranked search
result pages. These pseudo-documents are then classified into the target cate-
gories using text classification techniques. Since the target categories typically
does not have associated training data, the KDD CUP 2005 winning solution
solved the training problem by using the Open Directory Project (ODP) to build
a an ODP-based classifier. The ODP taxonomy is then mapped to the target
categories using various methods [4]. Thus, the post-retrieval query document is
1 http://www.sigkdd.org/kdd2005/kddcup.html
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first classified into the ODP taxonomy, and the classifications are then mapped
into the target categories for web query classification. Using the above approach,
the KDD cup winning solution [5] achieved an F1 measure of 0.44, which shows
that accurate and robust query classification is still a difficult and open research
problem.

Broder et al. [3] avoid the need for mapping between taxonomies (for instance
from ODP to target categories) by using a set of keywords, attached to categories
by human editor, as training documents. Although, their method achieves very
good results (F1=0.893) on tails queries, it is difficult to compare these results to
2005 KDD Cup results as they use very different target taxonomy and dataset.
Another challenge with their approach is that often target categories are just
labels without any description of keywords.

Beitzel et al. [6] exploits both labeled and unlabeled training data for this
task. Diemert and Vandelle [7] propose an unsupervised method based on au-
tomatically built concept graphs for query categorization. Some work has been
dedicated to using very large query logs as a source of unlabeled data to aid in
automatic query classification. Wen et al. [8] proposed a clustering method for
query classification, which tried to associate related queries by clustering session
data of query logs. The session data contain multiple queries and click-through
information from users. Wen et al. [8] considered terms from result documents
that a set of queries has in common. The use of query keywords together with
session data has shown to be effective for query clustering. Beitzel et al. [9] tried
to exploit some association rules between query terms to help query classifica-
tion. Furthermore, they exploited several classification approaches, emphasized
on an approach adapted from computational linguistics named selectional pref-
erences, and used unlabeled query log data to mine these rules and validate the
effectiveness of their approaches.

3 Web Query Classification Approaches

As shown in Eq. (1), the web query classification task can be modeled as the
challenge of finding a category (ci) that has maximum probability given a web
query (q) as,

QC = argmax
c
P (ci|q). (1)

In this paper, we use two complementary approaches to compute the probability
of a category (ci) given a query (q). Each of the two approaches are discussed
in greater details in the following subsections.

3.1 Enrichment Approach

As discussed in Section 2, many researchers use the query-enrichment approach
to overcome the short nature of a web query. A query-enrichment method works
by transforming web queries into a set of pseduo-documents extracted from the
WWW. In our enrichment approach, we use similar process but enrich target
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Fig. 1. Enrichment Method

categories instead of web queries. As shown in the Fig. 1, our category enrichment
based approach is a two-step process.

Enriched Taxonomy. The first step, an offline phase, is the category enrich-
ment process. Category enrichment is achieved by sending the category name as
the search term to a commercial search engine and collecting the search engine
results. For each category, we thus have a ranked list of documents where a doc-
ument consists of a URL, a title, a search snippet, the URL’s web page content,
meta keywords and the category label that is used as a search term. The number
of documents(γ) used per category is set empirically as described in Section 4.

Query Classification as Search. The second step, an online phase, is con-
cerned with the actual web query classification task. Here we model the web
query classification task as a search problem. Using Sphinx search engine2, we
first create a search index consisting of all the documents extracted in step 1. A
web query that needs to be classified is then issued against this index. The results
of this search includes a ranked list of indexed documents and associated BM25
relevance scores. Since, each document is assigned to one to more category from
the offline phase, we can write the conditional probability of a category given a
query as

P (ci|q) =
∑

d

P (ci|dj)P (dj |q), (2)

where P (ci|dj) is the conditional probability of a category (ci) given a docu-
ment (dj) and P (dj |q) is the conditional probability of a document given a web

2 http://sphinxsearch.com/
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query (q). P (dj |q) is calculated as the normalized BM25 score of a document.
For P (ci|dj), one can naively assume it to be binary depending upon whether
a document belongs to a given category or nor or, as discussed below, use a
Bayesian transformation as shown in Eq. (3).

P (ci|dj) =
P (dj |ci)P (ci)

P (dj)
. (3)

We calculate prior category probability from human labelled training data.
P (dj |ci) and P (dj) are computed using category names as search phrases against
the above built index.

Using Eqs. (2) and (3), the enrichment method returns probability scores for
all target categories for a given web query. In order to select relevant categories,
we introduce two hyper-parameters, (1) threshold (α) and (2) number of cate-
gories (β), that are empirically tuned by running several tests on the training
dataset. The threshold (α) is the minimum acceptable probability score of a cat-
egory required to qualify as a relevant category. For instance, a threshold value
of 15% indicates that only categories for which probability score is more than
15% are relevant. In some cases, this might still lead to too many categories. For
instance, it is possible to have about 20 categories if the threshold is set to a
low 5%. Since typically a search query belongs to a few categories, we also set a
hard limit (β) on the number of categories that are selected. Thus, in the above
example, if β is set to 3 then only top 3 categories, when ordered by decreasing
probability scores, are selected.

3.2 Reductionist Approach

The hypothesis of our reductionist approach (or the centroid approach) is that,
if queries share equivalent or synonymous centroid terms, these queries are very
likely to share the same categories. Here, the centroid term in a query is the term
that represents the broad and major intention of this query. In other words, this
approach aims at reducing query terms (or tokens) to a smaller set of centroid
terms while maintaining the broad intention of queries. As an illustrative exam-
ple, consider the two queries “harvard university” and “the london college”. The
centroid terms of these queries are “university” and “college”, respectively. Sup-
pose we know that “harvard university” belongs to the category “education”,
it is very likely that “the london college” also belongs to the same category.
Since they share synonymous centroid terms “university” and “college”. If we
have a reasonably large size of (e.g., several thousands of) queries with labeled
categories, we can use them for classifying new queries.

We explore crowdsourcing [10,11] to obtain the labeled queries. Crowdsourc-
ing describes outsourcing of tasks to a large group of people instead of assigning
such tasks to an in-house employee or contractor, and allows to complete stan-
dard tasks more accurately in less time and at lower cost. Using crowdsourcing
platforms such as Amazon Mechanical Turk, we distribute our query labelling
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Fig. 2. Overall workflow for the centroid method

task to a large number of workers to obtain several labels per data point, and
we apply statistical methods to filter out noisy labels. Consequently, we obtain
approximately 3,300 labeled queries. We describe some details of our approach
in Section 4.

Figure 2 shows the overall procedure. First, we perform some linguistics pre-
processing of the query, including stemming, abbreviation extension, stopword
filtering, misspelled word correction, location handling, part-of-speech (POS)
tagging, named entity recognition (NER), etc. A number of off-the-shelf toolk-
its can be exploited for this purpose. For example, we use the porter stem-
ming algorithm for query stemming, and we use Stanford POS tagger, NER
tagger and parser for POS tagging, NER and parsing, respectively. The function
Query2Centroid takes the pre-processed query as input, and identifies the cen-
troid term of this query based on the POS tagging, NER and parsing results. For
most queries, the centroid terms are nouns, verbs, noun or verb phrases. This
considerably facilitates centroid identification, and we exploit rule-based meth-
ods for the Query2Centroid function, which performs effectively in practice. The
function Synonym via WordNet returns all synonyms in WordNet for a query cen-
troid term. For labeled queries, we conduct similar processing Query2Centroid to
extract the centroid terms. We then construct a hash table in which the keys are
centroid terms and the values are corresponding labeled categories. For an input
query, we use synonyms of its centroid term to search the hash table to find the
category. Note that the function Synonym via WordNet is useful since it enhances
the coverage and boosts the recall. Take the query “the london college” for ex-
ample to illustrate the procedure of the centroid method. After pre-processing,
we list the POS tagging, NER and parsing results as follows:
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POS tagging: the/DT london/NNP college/NN
NER: the/O london/LOCATION college/O
Parsing:
(ROOT

(FRAG
(NP (DT the) (NNP london) (NN college))))

det(college-3, the-1)
nn(college-3, London-2)

From these results, we know that “london” is a location name and college is
a noun, and the function Query2Centroid can easily extract the centroid term
“college” for the query “the london college”. The function Synonym via WordNet
finds all synonyms of “college” as “college” and “university”. Suppose the hash
table contains the key “university” and corresponding value (category) “educa-
tion”, we can easily and quickly find the category “education” for the query “the
london college”.

In summary, the centroid method is quite easy to implement as compared for
example to related approaches mentioned in Section 2, while also performing
reasonably well. The hash table look-up is very fast in on-line scenarios. This
approach has a few limitations. First, as a reductionist approach, this method
loses some information for query representation. Second, the quality of centroid
identification (e.g., incorrect centroid terms) will affect the categorization per-
formance. Third, for some queries, the categories cannot be found in the hash
table. Therefore, this method exhibits high precision but low recall.

4 Experiment

Preparing Testing and Training Dataset. In order to test the two ap-
proaches, we extracted several thousands local and non-local web queries from
search logs of two different commercially available search engines. A local search
(such as “pizza near glendale ca”, “walmart in new jersey city”, etc.) is a special-
ization of the web (or non-local) search that allows users to submit geographical
contained queries [12]. A non-lcoal search is any web search and ranges naviga-
tional searches (such as facebook, amzon api, etc) to informational searches (such
as major stars in solar system, effects of global warming, etc.). Using Amazon
Mechnical Turk’s crowdsourcing system, each sampled query was labeled by 10
workers and assigned to one of the target category by each worker. In order to
filter noisy data in the collected labelled data, we use two filtering steps. First,
each worker is presented with a golden set of test queries randomly inserted into
the labelling task. A golden set test query is a query for which we can easily and
in an unambiguous manner identify the right category. For instance, one can
easily say that “Italian restaurant” belongs to “Food & Drink” category given
that there is no other category either related to Italian and restaurants. For each
worker, we then calculate percentage adherence to these golden set queries by
matching their selected categories to the expected target categories. We ignore
all the labels from a worker who tends to differ from the golden set by more than
70%. This step removed about 3% labeled data.
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Table 1. Performance of Enrichment and Centroid Method

Local Search Non-Local Search

Enrichment Centroid Enrichment Centroid

Precision 0.613 0.616 0.428 0.707

Recall 0.421 0.409 0.281 0.233

F1 0.499 0.491 0.339 0.350

Second, for each web query, we calculate number of votes received across all
the target categories and select only those categories that received more than
35% of votes. For instance, assume that out of 10 worker 4 say that the query
“financial news” belongs to “news” category, while the other 4 say that it belongs
to “finance” category and 2 say that it belongs to “business” category. In this
particular, case we then accept “news” and “finance” as two correct categories
and reject the “business” category. However, this constraint also introduces a
limitation in our experiment. By restricting to only those categories that received
more than 35% of votes, we are restricted to at-most two categories per query.

After this filtering, we are finally left with about 3,353 local and 3,324 non-
local human labeled queries. Only 5% of queries in both the datasets have two
categories associated with them. We randomly select 20% queries in the two
datasets for testing purpose and use the rest 80% for training.

Results. As discussed in Section 3.1, the enrichment approach has three hyper-
parameters, namely (1) threshold (α), (2) number of categories (β), and (3)
number of documents (γ) used to represent a target category. In order to se-
lect optimal parameters, we run the enrichment algorithm several times on the
training data with different parameter values. Figure 3 shows the influence of the
three hyper-parameters on the F1 measure. In each of the figure, one parameter
is varied while keeping the other two parameters constant. In Fig. 3 one notices
the optimal performance of the enrichment method occurs by setting number of
documents to 300, threshold to 15% and considering top two categories. We use
the following settings to evaluate the performance of the enrichment method on
the testing data.

Table 1 shows the precision, recall, and F1 measures for the two approaches
on the local and non-local search queries. One notices that the performance of
both the approaches (based on F1 Measure) significantly decreases for non-local
searches as compared to local searches. This is partly because non-local searches
tend to be much more diverse. For instance, a quick analysis of one month of local
and non-local search log indicates that there are only 5% unique local searches
in contrast to 23% unique non-local searches. This indicates that, as compared
to local searches, non-local searches tend to be much more diverse and hence
explains decreased performance of the two approaches on non-local searches.

Additionally, from Table 1 one also notices that the two approaches have
comparable F1 measure; however, they demonstrate very different behavior.
The centroid method exhibits higher precision as compared to the enrichment
method, whereas the enrichment method shows higher recall as compared to the
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Threshold = 0.15 No. Documents = 300

No. Categories = 2 No. Categories = 2

(a) (b)

No. Documents = 300

Threshold = 0.15

(c)

Fig. 3. Influence of hyper-parameters on the performance of the Enrichment method

centroid method. This is expected as the centroid method uses much more precise
data (labeled queries) as compared to the enrichment data (online resources).
As a result, the centroid method displays higher precision as compared to the
enrichment method. On the other hand, however, using only labeled queries in
part restricts the ability of the centroid method to deal with unseen centroid
terms. In contrast, the noise in online documents helps improve recall of the
enrichment method.

5 Conclusion

In this paper, we present two approaches–enrichment and reductionism, for the
web query classification purpose. As demonstrated from the experiment, the two
approaches are complementary in many different ways. First, on the theoreti-
cal level, the two methods approach the web query classification problem from
two different ends. While the enrichment method focuses on enriching target
categories, the reductionist approach focuses on reducing web queries to a few
centroid terms. Second, at the pragmatic level, the two approaches demonstrate
complementary precision and recall. The enrichment method has high recall but
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low precision, while the centroid method has high precision but low recall. The
complementary nature of the two approaches indicates a much higher perfor-
mance can be achieved by combining the two using an ensemble technique [13],
an aspect that we aim to further explore in future.
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Abstract. In this paper, we propose a new dynamic template based event 
detection algorithm (DTED). Candidate template of an event is firstly 
constructed from a set of texts or their surrogates. Each candidate template 
contains several terms automatically extracted by the term weighting algorithm 
proposed in this paper. Then, we classify each text into a candidate event 
through a new similarity function. Some insignificant candidate templates are 
deleted. Whether an event template represents a new happened event or not is 
determined by comparing it with the event templates constructed in previous 
time window. Some events are merged into existing events and their templates 
are updated again. To evaluate the proposed DTED algorithm, we construct two 
datasets for experiment and F-measure is used as performance metric. The 
experiment result shows that DTED outperforms single-pass algorithm and 
clustering algorithms implemented in Cluto toolkit; meanwhile, Experimental 
results on Linguistic Data Consortium (LDC) dataset TDT4 show that DTED 
gets promising result. 

Keywords: Dynamic template, online event detection, event detection and 
tracking. 

1   Introduction 

The booming of World Wide Web (WWW) greatly promotes the needs of fast 
detecting new happened events and comprehensively collecting news articles and 
weblogs (called “web documents” in this paper) about these events. They are very 
useful in applications like automatic editing and organizing web documents, 
intelligent news recommendation etc [1]. The large amount of RSS feeds provided by 
numerous websites is one important type of timely resource for document collection. 
RSS feeds precisely keep the chronological order of published articles and thus are 
very suitable for using in detecting and new happened events and tracking their 
evolution. Obviously, for the same event, there are usually a lot of web documents 
published in a relatively short duration (e.g. several hours). This duration is called a 
time window in this paper. For real applications, we can assume that most events will 
not develop within this duration. So web documents related to one event and 
published within this duration can be treated as describing the same event rather than 
any evolution of it. Under this assumption, we can use a batch of web documents for 
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real time topic detection and tracking (TDT), which is different from the input of 
traditional single-pass [4] based TDT techniques. In traditional TDT tasks, documents 
are processed one by one. Traditional TDT tasks also try to distinguish different 
topics about the same event. It is not necessary in the case that users prefer to get 
comprehensive viewpoints of an event within the same context. For this case, Wang et 
al (2008) proposes a method of clustering multiple topics into one news issues [2]. 
But the event detection mentioned above is different from news issues detection and 
other retrospective study of event since they usually put larger time granularity into 
consideration [3] [5]. 

Because that new events usually contain unknown terms that play important roles 
in events detection, it is difficult to construct event template only by existing terms 
and their statistical properties. So the named entities had been applied in most TDT 
techniques [9] [10]. In these techniques, named entities are emphasized through well 
designed term weighting frameworks and full documents are accounted in weighting 
procedure. Though useful in increasing clustering precision, this type of framework 
does not fully apply the merits of key terms of an event to improve both the detection 
efficiency and precision. When composing a news article or a weblog, the author 
usually pays a lot of effort on constructing its title to reflect its topic and to attract 
readers who concern the related event. This effort has been widely applied in 
commercial search engines, but it is not specifically treated in topic detection tasks.  

In this paper, we divide the event detection task into two steps. In the first step, we 
construct event templates just by analyzing titles of web documents. In this step, 
important terms like named entities, verbs etc. are extracted from multiple document 
titles that are collected within the same duration. For each extracted term t, we 
partition the full document title set into two subsets, one contains document titles that 
include t, and left titles compose of another subset. As one document is usually called 
a story in TDT [4], we call the first subset a candidate story cluster. Candidate clusters 
are then sorted according to the number of titles they are composed of. Candidate 
clusters that just contain few stories are removed. According to the percentage of 
overlapped stories, a candidate cluster that is overlapped with another larger candidate 
cluster may be merged. The event template of a survived cluster is composed by 
several terms selected according to the weighting formula provided in this paper. The 
second step is classifying each document into event according to the similarity of 
document and event template. The full document text or abstract is involved in this 
step. Since similarity is computed between a document and an event template, a new 
similarity function is proposed to improve classification precision.  

The rest of the paper is organized as follows: Section 2 presents our event detection 
algorithms. Section 3 describes the experimental data and evaluation metrics. The 
experimental results and discussions are given in Section 4. The paper is closed with 
conclusion and future work discussion in Section 5. 

2   Dynamic Template Based Event Detection 

2.1   Pre-processing of Web Document 

The RSS feeds provide a very suitable news source for online event detection 
applications. But they usually do not contain full documents. To be comparable with 
existing text clustering algorithms, we use web pages crawled by spiders to conduct 
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our experiments. For the test purpose, titles, contents and important metadata such as 
publishing date, category, source, images, etc. are extracted from web pages. The 
word segmentation is performed for Chinese texts. And then we perform part-of-
speech tagging and remove stopwords [11]. Some special noise words related to our 
corpus such as “新浪” (Sina), “博客” (blog), “转载” (reprint), “出处” (source) etc. 
are also treated as stopwords. Following the conceptions defined by Allan et al, we 
call a web page content with its title a story [8]. 

Though time window has been applied since Yang et al in retrospective research 
on events [4], we use it here for a little different purpose. We assume that the 
chronological order of web documents published within a time window t is not 
distinguishable. By this assumption, we divide story stream into windows with a fixed 
duration. The length of time window is set according to requirement of applications 
and the speed of story collection. It could be several minutes, hours or days. 

2.2   General Framework of DTED Algorithm 

Processing of DTED Algorithm: After above preprocessing of web documents, this 
paper divides the task into two steps: 1) candidate template of an event is constructed 
from a set of story titles; 2) classify each story into events through a new similarity 
function. Here the event template is defined as follows: 

Definition 1. The n-order template of an event is a finite set of n (term, weight) pairs 
sorted in the descending order of weight values. 

By above definition, each candidate template contains several terms automatically 
extracted by the term weighting algorithm proposed in latter section. Fig 1 and 2 
illustrate the procedure of building event templates. At first, important terms such as 
named entities, verbs etc. are extracted from titles of stories in story set . For each 
extracted term w, we partition  into two subsets  and . The subset 
includes stories that contain term w in their titles and is thought as a candidate event 
cluster. Fig 1 illustrates a simple example of this procedure. In this figure, the story 
set , and totally 8 important terms are extracted from titles of 
stories in . Then 8 clusters are constructed corresponding to these 
terms. In this example,  and . It is obvious that these 
clusters may overlap with each other, e.g.  and  contain the same story set 

. 

 

Fig. 1. Cluster documents by title terms 
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To detect new events and construct their templates, all candidate clusters are sort in 
the descending order of their cardinalities. Then a smaller candidate cluster may be 
merged into a larger one if their overlapping degree denoted as  is greater enough. 
Those candidate clusters with cardinalities smaller than a threshold value are thought 
as noise and are removed from the candidate list. Each survived cluster represents a 
new detected event and is used to build template for the new detected events. This 
procedure is illustrated in Fig 2 for the same example as in Fig 1. Here clusters 

are merged into  and clusters are removed for they contain no 
more than 2 stories. Clusters and are finally survived and two events and 
corresponding to these clusters are detected. The last task of the first step is building 
the event template. To finish this task, terms included in the story titles of an event 
cluster are weighted and ranked by their weights. Top n terms with their weights are 
then extracted to compose of the n-order event template. Though stories are clustered 
into some candidate event clusters in the first step, this is not the final decision. It is 
because that only title of each story is processed.  

 

Fig. 2. Detect event from title clusters 

Term Extraction and Weighting of DTED Algorithm: In this section, two 
questions that had been originated in the general DTED framework are answered: 1) 
How to extract important terms before building candidate clusters for them? 2) How 
to weight terms within a survived cluster for the construction of event template? 

For the first question, we simply apply the incremental idf approach applied in [3] 
with minor variation in equation (1). 

                        (1) 

Where  is the cardinality of , is the number of stories that include term 

w in their titles. The term with its incremental idft  greater than a threshold value  

is the important term in our clustering step. 
For answering the second question, we provide a weighting formula forterm

 in cluster  of  tth time window in equation (2). 
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where is a story, is the term frequency of  in , is the 

document frequency of term  in cluster ,  is computed as in equation 

(1) except that the full story content is put into consideration rather than just processes 

the story title, | | is the cardinality of . The n-order event template vector of a 

cluster  is then constructed by ranking terms in descending order of their weights 

and choosing top n terms. In this paper, a normalization version of the original weight 
value calculated by equation (2) is stored into the event template. The normalization 
of a term weight value is computed as: 

                                  (3) 

Then the event template vector is represented by equation (4). 

                       (4) 

Though for the n-order event template, usually n terms should be extracted from the 
event cluster, but sometimes, terms ranked near n may get very small weight values 
and putting them into the event template may cause a lot of noises. In such cases, 
these terms are removed from the template. In our model, the minimum weight value 
required for the event template is denoted as . 

Here we take the news event “US President Barack Obama's first visit to China” as 
a real example. Table 1 is the 15-order event template for this event. In the template, 
the top 3 terms “奥巴马” (Obama), “美国” (US), “中国” (China) label the main 
contour of this event, and other terms respect to various aspects of this event that 
people may concern about. 

Table 1. An example of 15-order event template 

 

2.3   Similarity Function 

For the comparison of the story and the event template, a suitable similarity measure 
is required. Though traditional Cosine function or other kind of similarity function is 
applicable for this task, we provide a variant of the Cosine similarity as follows. 
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                                    (5) 

                                             (6) 

Where is the term belong to ,  is the weight that term supports the story
which is computed by the traditional tf-idf formula,  is the normalized 

weight of term in .  is to emphasize the relative idf value of a term in 
the event template, n is the order of . 

3   Experimental Setup 

3.1   Datasets and Evaluation Metrics 

Self-Collected Datasets: Two Chinese datasets constructed from real web 
environment and they are used to evaluate the proposed DTED algorithm. Recall, 
Precision and F1-measure are applied for performance evaluation [7]. Topic 
annotation is done on the two datasets as the same as TDT annotation1. 

Dataset1 is crawled from the link http://news.sina.com.cn/zt/, which contains 
13252 news pages that include picture pages, video pages, weblogs and flash videos 
etc. For those WebPages that contain non-text contents, we just extract their text 
contents or use their titles if no text contained in them. These pages are related to 28 
events tagged by the website editors. The maximum event cluster contains 3122 
stories, while the minimum event cluster has 19 stories. 

Dataset2 is crawled from the Sina Blog website indexed by the hyper link 
http://blog.sina.com.cn/lm/zt/index.shtml. It consists of 1589 weblogs related to 40 
events labeled by Blog site editors. The maximum event cluster has 138 weblogs, and 
the minimum event cluster contains just 4 weblogs. As mentioned by Wang and 
Zhang et al (2008), weblogs usually have much more noises than web news. So we set 
this experiment to compare its performance with news articles [2]. 

Standard Dataset:  Experiments are also performed on standard Linguistic Data 
Consortium (LDC) dataset TDT4. It contains new stories from October 2000 to 
January 2001. We only use Mandarin stories which contain about 27145 documents 
reigning from news agencies such as Xinhua, ZBN, CTV, etc. All of the topics belong 
to one of the “13 Rules of Interpretation”. In the evaluation of dataset TDT4, classical 
measure  is used [4] [10]. 

4   Experiments and Discussion 

4.1   Events Detection Results 

The parameters mentioned in the paper for DTED are: , , , 
. As shown in Fig 3, the DTED algorithm reaches the best performance on 

                                                           
1 http://www.ldc.upenn.edu/ 
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Dataset1, of which the precision result 95.04% and F1-measure is 90.17%. 
Agglomerative hierarchal clustering reaches the highest recall rate and worst 
precision rate while its F1-measure result is nearly the same as single-pass algorithm. 
This result dose not agrees with the result in [3]. The direct-I2 and rbr-H2 algorithms 
implemented in Cluto toolkit2 perform well in precision and perform poor in recall. 

 

Fig. 3. Experiment results for Dataset1 

Fig 4 shows the experiment results on Dataset 2. Be compared with Fig 3 we can 
see that the overall results of DTED and agglo-upgma algorithms on Dataset2 are 
worse than results on Dataset1. And the DTED also get the best performance with a 
little advantaged than Single-Pass and direct-I2. On this dataset, Single-Pass reaches 
the highest precision of 97.16%. But its recall result is the worst one. 

 

Fig. 4. Experiment results for Dataset2 

We ran our system on the TDT4 dataset. Fig 5 shows the DET curve. The topic-
weighted minimum normalized cost is 0.418 at a false alarm rate of 2% and a miss 
rate of 32%. 

4.2   DTED Algorithm Discussion 

In DTED algorithm, two critical factors are the event template vector and the event-

story similarity function. In equation (2), we introduce the factor 

(denoted as CF) on traditional tf-idf weighting. To see the effectiveness of CF and our 
similarity function given by equation (5), we conduct an experiment to compare the 
 
                                                           
2 http://www.cs.umn.edu/~karypis/cluto 
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for their relevance. The result shows that the system reached the average precision of 
84% and is applicable in real applications. Since the scale of the corpus is still 
increasing, it will be a very useful corpus for online event detection and tracing. 

5   Conclusion and Future Work 

In this paper, we propose a new two-steps DTED algorithm for online event detection. 
At first, the candidate template of an event is constructed from a set of story titles. 
Then each story is classified into events through a new similarity function. Since the 
clustering is just taken on document titles, DTED saved a lot of time for the detection 
task. Another merit of DTED algorithm is that the title-based event template takes the 
advantages of authors’ effort on representing an event by few terms and thus improves 
the effectiveness of event representing model. Since the event template is represented 
just by several terms, which saves the storage space and increases the catching 
capabilities in event tracking. Our experiments conducted on two Datasets show that 
DTED outperforms the state-of-the-art clustering algorithms and the single-pass 
algorithms in F1-measure; meanwhile, experiment on standard TDT4 dataset shows 
promising result. 
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Abstract. In document clustering, semantically similar documents are grouped
together. The dimensionality of document collections is often very large, thou-
sands or tens of thousands of terms. Thus, it is common to reduce the original
dimensionality before clustering for computational reasons. Cosine distance is
widely seen as the best choice for measuring the distances between documents in
k-means clustering. In this paper, we experiment three dimensionality reduction
methods with a selection of distance measures and show that after dimensionality
reduction into small target dimensionalities, such as 10 or below, the superiority
of cosine measure does not hold anymore. Also, for small dimensionalities, PCA
dimensionality reduction method performs better than SVD. We also show how
l2 normalization affects different distance measures. The experiments are run for
three document sets in English and one in Hindi.

Keywords: document clustering, dimensionality reduction, distance measure.

1 Introduction

Document clustering is a basic method in text mining and has been used, for example,
for information retrieval [6,11,13] and in explorative research [4]. Document clustering
differs from the clustering of other kinds of data in some ways. The textual data needs
preprocessing before feature extraction, which influences heavily the resulting term-
document matrix. The term-document matrix is very sparse: most of the terms occur in
a small subset of the document collection only.

A traditional straightforward way to extract the meaningful features from a docu-
ment is to calculate the frequencies of occurrence of certain (or possibly all) words in
the document. This approach is usually called the bag-of-words model. The frequency
distribution is very skewed and follows a power law. The distribution has a small num-
ber of words with very high frequency and many words with very low frequency. The
most frequent words in each language, such as the, and, he in English, do not usually
carry the semantic content of the document. By collecting these terms to a stop word

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 167–176, 2011.
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list and removing them from the data set, the dimensionality of the data matrix can
be reduced and the skewness diminished. Nevertheless, stop word removal adds data
sparsity, since the most filled feature vectors are removed from the data matrix. Word
stemming is another common preprocessing step. Stemming removes inflected forms of
a word by cutting the ends of the words. Also words that occur only a couple of times
in the data set can be removed, since there is a large amount of them and they do not
help much in the clustering. Stemming and low frequency word removal reduce spar-
sity through combining the features (former) or removal of very sparse feature vectors
(latter).

Our contribution in this paper is to show that dimensionality reduction affects the
performance of distance measures, especially in small target dimensionalities, and that
the superiority of the cosine distance does not hold everywhere. We also show that PCA
performs better than SVD in the document clustering task in small dimensionalities and
that Bray-Curtis, which is not a very well-known distance measure, performs usually
best with PCA in small dimensionalities. We perform experiments with a selection of
dimensionality reduction methods and normalization of document data. We also apply
the same experiments for two very different languages, English and Hindi.

2 Methods

In this section we discuss dimensionality reduction, different distance measures, and
document clustering with k-means algorithm.

2.1 Dimensionality Reduction

Dimensionality reduction is transformation of data into a more compact, low-dimensional
representation. It is used to decrease the computational load of clustering and it can also
remove redundancy in the data. However, too extensive reduction may result in the loss
of information that would be beneficial for the clustering. Three linear techniques are
popular for dimensionality reduction: Principal Component Analysis, Singular Value
Decomposition, and a naive approach that selects terms that have largest weight in the
document set. We denote by X the data matrix which contains n-dimensional document
vectors x1, . . . ,xN as its columns. The linear reduction into the target dimensionality
D can be achieved by a transformation

XD = WT
DX, (1)

where the matrix WD is of size n×D.
In Principal Component Analysis (PCA), the columns of WD are chosen as the D

eigenvectors corresponding to the D largest eigenvalues of the data covariance matrix.
In Singular Value Decomposition (SVD) of the data matrix X = VΣUT, the matrix
WD is formed by choosing the D column vectors of the matrix V corresponding to
the largest singular values of X. It is worth noting that if the data vectors are centered,
i.e., E(X) = 0, PCA and SVD produce the same projection, but otherwise the methods
are not equivalent. PCA is not well suited for text data, because computation of the
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covariance matrix involves centering the data matrix, which fills the sparse data. Any-
way, we wanted to experiment with PCA because of its popularity. The use of SVD for
term-document matrices is better known as Latent Semantic Analysis (LSA) [2] in the
IR community.

As the naive approach, the dimensionality was reduced by selecting the terms with
the highest term frequency – inverse document frequency (tf-idf) weight sums over a
document set. The kth tf-idf weight is xk,i = fk,i · log(N/Nk), where fk,i is the fre-
quency of the term tk in the document i, N is the total number of documents in the
collection and Nk is the number of documents where the term tk appears. Considering
the Equation (1), dimensionality reduction with tf-idf weight sums is choosing WD so
that each column vector has one of the elements corresponding to the D terms with the
highest tf-idf scores equal to 1 and the rest of the elements are zeros.

2.2 Distance Measures

We interpret the term distance measure in a space Ω as a function d : Ω × Ω → R

that is non-negative, symmetric, and reflexive. Some of the distance measures used in
this study satisfy also stricter conditions, e.g., the properties of a metric. However, those
conditions are not always necessary for practical purposes, like clustering.

A number of distance measures that will be studied in the document
clustering task are listed in Table 1. Some of them have been tested earlier for doc-
ument clustering [5,10,15,17]. The distance measures are defined for two data vectors

Table 1. Distance measures between column vectors xi and xj of the data matrix X

Measure Distance dij Measure Distance dij

Euclidean
√

(xi − xj)T(xi − xj) Spearman3 1 − (ri − r̄)T(rj − r̄)

‖ri − r̄‖2‖rj − r̄‖2

Standardized √
(xi − xj)TV−1(xi − xj) Bray-Curtis

∑n
k=1 |xk,i − xk,j |∑n
k=1(xk,i + xk,j)Euclidean1

City block
n∑

k=1

|xk,i − xk,j | Bray-Curtis 2

∑n
k=1 |xk,i − xk,j |∑n

k=1(|xk,i| + |xk,j |)
Chebychev max

1≤k≤n
{|xk,i − xk,j |}

Cosine 1 − xT
i xj

‖xi‖2‖xj‖2
Canberra4 ∑

k

|xk,i − xk,j |
|xk,i| + |xk,j |

Correlation2 1 − (xi − x̄i)
T(xj − x̄j)

‖xi − x̄i‖2‖xj − x̄j‖2

1 V is a n × n diagonal matrix of variance of the kth variable on its kth diagonal element
2 x̄i is the mean vector of elements xi
3 ri is the coordinate-wise rank vector of xi and r̄ contains mean ranks of an n-dimensional
vector, i.e. (n + 1)/2
4 The sum is taken over those k, for which |xk,i| + |xk,j | �= 0

xi = [x1,i, . . . xn,i]T and xj = [x1,j , . . . xn,j ]T. City block, Euclidean, and Chebychev
distances are the standard special cases of the lp-metric [3]. The standardized Euclidean
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distance differs from the Euclidean distance by having the variance of each variable nor-
malized into unity. The cosine distance measures the angle between two data vectors.
Correlation distance works in a similar way, but it is more commonly used to compare
variables of a space, rather than data vectors in the space, like in this work. Correlation
distance is based on the formulation of Pearson’s correlation coefficient between two
variables. Spearman distance is based on Spearman’s rank correlation coefficient. We
also try out Bray-Curtis and Canberra distances, that are less conventional for clustering
document collections. They originate from ecological and environmental research [1].
The Bray-Curtis distance is for non-negative data but the dimensionality reduction with
SVD and PCA results in data with negative values. Thus we also use a modified version
of Bray-Curtis (referred to Bray-Curtis 2) which uses the absolute values of the vector
components in the denominator.

We first illustrate with artificial data how dimensionality reduction into different tar-
get dimensionalities affects the behavior of the distance measures: we observe how the
neighborhoods of data vectors are preserved during the dimensionality reduction. This
relates to the notion of distance preservation, which is often chosen as a criterion for
nonlinear dimensionality reduction methods [8]. Our artificial data resembles real term-
document data to some extent: a sparse data matrix Xtoy ∈ R1000×100 contains 90% of
zero elements and 10% of random numbers distributed uniformly between [0, 1]. The
vectors are normalized to unity in l2 norm. The nearest neighbor of each data vector
is calculated for each distance measure separately. After dimensionality reduction with
SVD, PCA, and tf-idf, the nearest neighbors are searched again. The mean ratios of
the preserved neighbors, calculated over 20 repetitions of the experiment, are shown
for each dimensionality reduction method and distance measure in Figure 1. The max-
imum target dimensionality is 100, the number of documents, for both SVD and PCA
since the rank of the data matrix is 100. The dimensionality reduction with the tf-idf
weights is plotted up to 1000, the original dimensionality. Figures of SVD and PCA are
so similar that we show just the former.
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Fig. 1. Mean Nearest neighbor score of toy data with a. SVD and b. tf-idf

In target dimension 100, SVD and PCA correspond to a rotation of the coordinate
axes and thus Euclidean and cosine distances preserve all the neighbors. Correlation
modifies the vectors before comparing the angles between the vectors and gets a slightly
lower score than cosine in dimension 100. These distance measures perform best in the
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neighbor-preservation task with SVD and PCA dimensionality reduction for all target
dimensionalities. The other distance measures are sensitive to rotation of the coordi-
nates and thus give low nearest neighbor scores at dimension 100. With low target di-
mensionalities up to dimensionality 50, the Bray-Curtis measures give almost as good
results as Euclidean, cosine, and correlation distances.

Tf-idf is not able to preserve the neighborhood of data vectors below target dimen-
sionality 100: less than 15% of the neighbors are preserved with all distance measures.
For dimensionalities between 100 and 1000 the best scores are obtained with Cheby-
chev, cosine, correlation and both the Bray-Curtis measures, respectively.

2.3 K-Means Clustering

Different clustering methods have been analyzed and compared in the literature of
the document clustering task: e.g., hierarchical partitional and hierarchical agglomera-
tive clustering [20], one-dimensional Self-Organizing Map and graph partitioning [17],
and more generally spectral clustering (see tutorial in [9]). Latent Semantic Indexing
(LSI) [2] and spectral clustering transform the data into a new space and after that, use
e.g. k-means clustering. K-means is a popular method in document clustering [15,5].
In our analysis of multiple dimensionality reduction methods and several distance mea-
sures, we use k-means due to the simplicity, efficiency and fairly good performance in
general. See a comprehensive analysis of document clustering methods in [11].

The k-means algorithm is described e.g., in [7]. Given a set of data vectors X =
{x1, . . . ,xN} ⊂ R

D and the number of clusters k, the algorithm tries to find a set of
k vectors {c1, c2, . . . , ck} ⊂ R

D and a partition of the data set C = {C1, C2, . . . , Ck}
such that the cost function

μ(C) =
k∑

j=1

∑
xi∈Cj

d(xi, cj)2 (2)

is minimized with respect to a given distance measure d.
The assumption with k-means when using the Euclidean distance is that the data

contains spherical clusters. With the other distance measures the clusters are assumed to
be of different shape, e.g. standardized Euclidean finds elliptical and city block cubical
clusters. These assumptions, however, do not often hold for natural data sets. K-means
clustering can be performed efficiently by iteratively updating each cluster centroid ci
as the mean vector of the vectors belonging to the cluster Ci in the Euclidean case. This
greedy algorithm usually results in fast convergence, although it may easily stop at a
local minimum of the cost function, depending on the cluster centroid initialization [18].
In addition to Euclidean distance, the cluster centroid is defined as the mean vector for
Standardized Euclidean and Chebychev distances. For the other distance measures, the
update of the cluster centroids must be modified. For cosine, correlation, and Spearman
distances the mean vector is normalized. For the city block, Canberra, and Bray-Curtis
measures the cluster centroids are updated as the component-wise median vector of
the vectors in a cluster. If kernel k-means were utilized in this task the kernel could
have been selected so that the distances between data items were replaced with vector
similarities and thus updating the cluster centroids would have been easy.
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3 Experiments

We have conducted our experiments for three data sets in English and one set in Hindi.
After preprocessing the data, a set of dimensionality reduction methods are applied.
The clustering is run with the k-means algorithm using a number of distance measures
The number of clusters k is fixed according to the number of categories present in a
document collection. For evaluation we use the Normalized Mutual Information (NMI)
score (used also in [16] and a variant in [19]). All the results are obtained by calculating
the mean NMI scores after running the clustering 20 times with a given distance mea-
sure. The centroids are initialized by selecting randomly k vectors from the data set and
the resulting clusters are evaluated with the class labels.

3.1 Data and Preprocessing

First of our three English data sets is REUTERS R81 with 8 categories, collected origi-
nally from Reuters newswire. The categories are very skewed, varying from 41 docu-
ments in the smallest category to 2840 documents in the largest category. The second
data set is from the same web page, 20 Newsgroups (called NEWSGROUP), containing
about 11 000 newsgroup articles in 20 categories. Each category has almost the same
number of documents. The third document collection is CLASSIC42 set of documents
from four sources. As our HINDI data set we collected online news articles from a Hindi
news site 24duniya3. The articles are from 4 categories: Automobile, Business, Health
and Election and they have been collected manually between 4–7 February 2011.

The text in each data set was lowercased and punctuation was removed. Next, a list of
stop words were removed. Our stop word lists contain 422 words in English (including
single letters) and 97 words in Hindi. The remaining words were stemmed using a Java
implementation4 of the Porter’s stemmer [12] for English and a simple stemmer for
Hindi, following the approach described in [14]. From the remaining data, words that
occur 5 times or less in the data set were removed. Finally, the words were weighted
with the tf-idf weighting scheme and the weights normalized with l2 norm. The sizes of
the data sets after preprocessing are shown in Table 2. The dimensionality (number of
features) and average length of documents are calculated after preprocessing. REUTERS

and CLASSIC documents are fairly short compared to the other sets.

Table 2. The characteristics of the used data sets

Data set Documents Dimensionality Categories Avg. length
NEWSGROUP 11293 16555 20 126.2
REUTERS 5485 4199 8 58.4
CLASSIC 4774 4130 4 57.2
HINDI 768 2669 4 123.2

1 http://web.ist.utl.pt/˜acardoso/datasets/
2 ftp://ftp.cs.cornell.edu/pub/smart/
3 http://www.24dunia.com/hindi.html
4 http://tartarus.org/˜martin/PorterStemmer/
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Table 3. Mean NMI scores of clustering without dimensionality reduction for unnormalized (U)
and l2-normalized (N) data. The best result for each data set is shown in bold face.

Distance measure
NEWSGROUP REUTERS CLASSIC HINDI

U N U N U N U N
Euclidean 0.063 0.512 0.209 0.444 0.240 0.548 0.098 0.403
Standardized Euclidean 0.040 0.098 0.110 0.092 0.074 0.065 0.049 0.095
City block 0.055 0.072 0.180 0.231 0.047 0.069 0.105 0.199
Chebychev 0.162 0.133 0.117 0.114 0.172 0.156 0.057 0.067
Cosine 0.607 0.607 0.512 0.512 0.627 0.627 0.422 0.422
Correlation 0.604 0.604 0.513 0.513 0.509 0.509 0.434 0.434
Spearman 0.429 0.429 0.530 0.530 0.585 0.585 0.410 0.410
Bray-Curtis 0.144 0.156 0.261 0.258 0.117 0.128 0.151 0.256
Bray-Curtis 2 0.144 0.156 0.261 0.258 0.117 0.128 0.151 0.256
Canberra 0.050 0.044 0.202 0.194 0.050 0.044 0.029 0.024

3.2 Results

The clustering results of original data sets without dimensionality reduction are shown
in Table 3. Cosine, correlation and spearman measures perform best in the classification
task for all data sets. With l2-normalization, also Euclidean gives good results.

In Figure 2, the effect of l2-normalization is shown with PCA dimensionality reduc-
tion on the REUTERS data and SVD on the NEWSGROUP data. The dimensionality was
reduced into target dimensionalities ranging between 2 and 1000 and the clustering run
with k-means using all the distance measures. Normalization affects neither cosine nor
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Fig. 2. Mean NMI of unnormalized and l2-normalized data for target dimensions 2–1000
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Fig. 3. Mean NMI after dimensionality reduction into dimensions 2–1000 for normalized data.
See Fig. 2 for the legend.

correlation measures in large dimensionalities but decreases the performance below di-
mensionality 10 with PCA dimensionality reduction. On the other hand, all the other
dimensionality reduction methods perform better with normalized data for almost all
dimensionalities. Especially Bray-Curtis, both the Euclidean measures, and Spearman
benefit from the normalization. An exception is Canberra which reaches lower scores
with normalized than unnormalized data above dimensionality 100.
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Since normalization generally helps document clustering, the rest of the results are
given for normalized data. The mean NMI results after SVD, PCA and tf-idf dimen-
sionality reduction are shown in Figure 3 for all four data sets: CLASSIC, REUTERS,
NEWSGROUP, and HINDI. As predicted already with the toy data, cosine and correlation
distances perform best almost always in target dimensionalities above 10. For target
dimension 10 or below, all the distance measures give very similar results and the di-
mensionality reduction method has the major role in the performance. For the small
dimensionalities, PCA performs better than SVD, which may be due the to fact that
PCA minimizes the mean-square error between vectors but SVD minimizes the Frobe-
nius distance between matrices. For dimensionalities above 10 the differences between
SVD and PCA are very small, except for Spearman which works better with PCA than
SVD. The performance of Bray-Curtis is very stationary and usually within the three
best measures throughout the target dimensionalities with SVD and PCA. Spearman
performs well with tf-idf dimensionality reduction and pretty well also with SVD and
PCA. Also standardized Euclidean works with tf-idf but gives poor results with other
dimensionality reduction methods. Canberra, Bray-Curtis 2, and Chebychev are always
among the worst-performing measures. The performance of Bray-Curtis works best
with normalized data and PCA or SVD dimensionality reduction. Standardized Eu-
clidean, City block, Chebychev, Bray-Curtis and Canberra did very poor performance
in the original dimensionality (Table 3) but did benefit from SVD and PCA dimension-
ality reduction.

4 Conclusions

In this work, we studied the effect of dimensionality reduction on different distance
measures in document clustering. As a result, we found that for document vectors of
very small dimensionality, such as 10 or below, the commonly used cosine distance
with SVD dimensionality reduction does not always give the best results. For example,
Bray-Curtis distance with PCA dimensionality reduction should be used instead. Gener-
ally, for small target dimensionalities, PCA performs better than SVD for l2-normalized
data, independently of the distance measure. With dimensionality reduction according
to tf-idf weights, the Spearman distance gave very good results for all dimensionali-
ties. As an overall result, we found that cosine and correlation distance measures give
us good results with all three dimensionality reduction methods: SVD, PCA, and tf-
idf. Bray-Curtis and Spearman are usually the next ones. Euclidean and Standardized
Euclidean produced inconsistent results depending on normalization and the applied
dimensionality reduction method. Canberra, the modified Bray-Curtis, and Chebychev
were among the worst-performing measures.

The dimensionality reduction method and the target dimension has a substantial ef-
fect on the clustering performance. In this work, the behavior of different dimensional-
ity reduction methods and distance measures were quite consistent over different data
sets. In the future, this work can be carried out for a larger variety of different languages
and domains. The results reported in this paper can also be utilized in other studies that
use document clustering as part of the application.
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Abstract. Question retrieval is an important research topic in community-based 
question answering (QA). Conventionally, questions semantically equivalent to 
the query question are considered as top ranks. However, traditional question 
retrieval technique has the difficulty to process the users’ information needs 
which are implicitly embedded in the question. This paper proposes a novel 
method of question recommendation by considering user’s diverse information 
needs. By estimating information need compactness in the question retrieval 
results, we further identify the retrieval results need to be diversified. For these 
results, the scores of information retrieval model, the importance and novelty of 
both question types and the informational aspects of question content, are 
combined to do diverse question recommendation. Comparative experiments on 
a large scale real community-based QA dataset show that the proposed method 
effectively improves information need coverage and diversity through relevant 
questions recommendation.  

Keywords: Question answering, Community-based question answering, 
Question recommendation, Question diversity, Information need. 

1   Introduction 

Recent years see a booming of online question answering (QA) community portals, 
such as yahoo answers! and Baidu Zhidao. Such portals accumulate huge question 
and accepted answer archives, from where users can directly search and find similar 
questions with accepted answers. 

A lot of research is conducted on question retrieval [1] to enhance the precision of 
retrieving questions semantically equivalent to the posted question. The retrieved 
questions tend to be homogenous and express the same information needs (infoNeeds) 
as the posted question.  

However, diverse infoNeeds are potentially embedded in the question. On the one 
hand, there is a gap exists between the infoNeeds expressed in the question and in the 
user’s consciousness [2]. The user may be unable to express his/her infoNeeds 
completely because s/he is in lack of domain knowledge, or the system function is 
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limited. On the other hand, users with different intentions may have different 
infoNeeds for the same question [3].  

q1: Which bank provides the best credit card?  

For the example question q1, if the user only wants to confirm the bank he knows, the 
name of the bank is enough for an answer. While the user plans to open a credit card, 
he may want to see detailed description and comparison between credit card services 
of different banks, and thus the answers for following question q2 and q3 should  
be useful. Nevertheless, such infoNeeds are not given explicitly in the question text  
of q1.  

q2: Please give me a comparison between the credit card service of Citibank or 
HSBC? 
q3: How to choose a credit care? 

In QA systems, question type is commonly used as the general representation of user 
infoNeeds [4], while the question content sets the context (by question topic) and 
specifies the infoNeed (by question focus). As can be seen, q2 and q3 are different 
from q1 both in question type (q1: entity type; q2: comparison type; q3: method type) 
and content. These questions may not be represented to the users by the conventional 
question retrieval systems, because they are not semantically equivalent to q1. 
Therefore, only returning questions semantically homogenous with the posted 
question is not sufficient to fulfill the potential diverse infoNeeds of users. The 
coverage of infoNeeds in the retrieved questions should be enhanced. 

To fulfill the implicit and diverse infoNeeds of the question issued by average 
users, this paper propose an novel question recommendation algorithm, with 
diversification infoNeeds both in question types and content. By estimating 
information need compactness in the question retrieval results, we identify the 
retrieval results need to be diversified. For the question in these results, this proposed 
algorithm first recognizes its question type, topic and focus. The diverse infoNeeds 
are then modeled in the question type and content separately by probability models. 
Those factors are then combined linearly in the diversification algorithm for question 
recommendation. By returning recommended questions and corresponding accepted 
answers to users, this algorithm can provide more relevant and diverse information. 

Previous works on information diversity [5] mainly target on short queries in the 
information retrieval scenario. Their focuses are to mine the different interpretations 
of ambiguous queries or subtopics for a broad-sense query. Achananuparp et al. 
attempted to diversify the aspects of the answer to complex questions [6], while their 
focus is still on the short information nuggets returned by search engines. [7] 
recommended questions which have similar topics and different focus with the query 
question. However, they didn’t consider the diversity or coverage of infoNeeds in the 
recommendations. As far as we know, this work is the first attempt to diversify 
question recommendation. Extensive comparative experiments conducted on a large 
scale dataset collected from real community-based QA portals to validate the 
effectiveness of the proposed method. 

The rest of this paper is organized as follows. Related work is introduced in 
Section 2; Section 3 explains the proposed algorithm in detail; Section 4 describes 
experimental settings and comparative results; the conclusion is given in Section 5. 
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retrieval model. First, we consider a question as a document and convert questions 
into vectors in the vector space model: di=(xi1, xi2, ...). Each component of the vectors 
represents a distinct unigram and is weighted by tf.idf of this unigram. For each group 
of query and result questions (denoted as Dqy), the infoNeed compactness is 
formulated as: 

    
(1)

 
Diverse questions are recommended for qy with infoNCompact(qy) no larger than Φ. 

Question Type Classification 

To ensure that the recommended questions have diverse question types, a question 
type prediction model is built using supervised machine learning methods with 
probabilistic output p(typei|qy). 

Since real questions are a mixture of factoid as well as complex ones, 14 types are 
defined in this paper, which are location, person, time, quantity, thing, alternative, 
definition, comparison, description, procedure, reason, yesNo, abstractEnity and 
other. The first 5 types are factoid, and the latter 8 are complex. Detailed feature 
descriptions are referenced to [8]. Thus we have 

    (2) 
If importance(type(q)|qy) is larger than a threshold θ (θ is empirically set to 0.5), then 
the type is considered as a relevant type of infoNeeds of qy.  

Informational Aspects Mining in Question Content 

The content words (namely nouns, verbs and adjectives) are extracted from qy as the 
question content. The question content consists of two different information roles: 
question topic which presents the major context/constraint of a question and 
characterizes users’ interest; and question focus which presents certain aspect (or 
descriptive features) of the question topic [8]. Hence, by diversifying the question 
content, we aim to diversify the informational aspects of the question topic.  

Question Topic and Focus Determination  

We first compute the local tf.idf (taking qy and the top n search result as the document 
set, labeled as loc_tf.idf) and global tf.idf (taking the whole indexed questions as the 
document set, labeled as glob_tf.idf) of the content word (labeled as cw) in qy. 

   (3) 

  (4) 

Next, the rank of content words cw in qy is determined by: 

   (5) 

where rank(loc_tf.idf) and rank(glob_tf.idf) are the ranked position of cw according to 
local and global tf.idf value, respectively. 

We consider the top 50% content words (with additional constraint of no more than 
3 words) ranked by cwRank as the topic words, and the left ones are focus words.  

( ) ( )1 1
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Informational Aspects of Question Topic  

Next, the informational aspects of question topic of qy are extracted. For each qi in the 
top 100 search result questions, which contains at least one topic word (tw) of qy, the 
relevance of cwi in qi to qy is computed as: 

     (6) 
where PMI denotes the pointwise mutual information [9] between two words.  

The top 50 cwi ranked by relevance(cwi, qy) are considered as the potential 
informational aspects of question topic.  

However, the aspects extracted may have synonyms, or express similar meanings. 
Therefore, the Star Clustering [10] is applied to merge homogeneous topic aspects. 
The key factor in Star Clustering is the similarity criterion based on which two 
vertices (i.e., informational aspects) are connected as an edge. This paper defines the 
criterion as ContextSimi(cwi; cwj) > a (a is empirically set to 0.05). The word before 
and after cwi are considered as its context. ContextSimi(cwi; cwj) measures the context 
similarity between cwi and cwj, which is computed follows the algorithm in [11].  

After the clustering process, the cluster centroids are considered as the 
informational aspects of topic. Among those words, relevance(cwi, qy) are normalized 
as a probability distribution p(cwi,| qy), denoted as importance(cwi,| qy). For a 
question q containing cwi: 

  (7) 
Diversification Algorithm 
_____________________________________________________________________ 
Input:  top n (n=100) question & answer pairs retrieved by the IR model 
Output: top m (m=10) question & answer pairs with diverse infoNeeds 
Procedure: 

Denote relist as the list of questions already re-ranked by diversity, for q in the remaining 
retrieved questions: 

(1) Compute type and content novelty of q, denoted as Novelty(Tq) and Novelty(Cq): 

  
(8)

 

  
(9)

 
where dftype(q) is the frequency of type(q) in reList, and type(q) is one of the relevant 
InfoNeed types of qy; dfck is the frequency of the content word ck in reList, and ck is one of 
the informational aspects of the query topic. 
(2) Then rel_div_score(q) is computed as : 

    

(10) 

where λ1 and λ2 are experiment weights and 0≤λ1, λ2, λ1 +λ2≤1. The question with the highest 
rel_div_score(q) is added to reList. 

(3) Repeat the above procedure until the reList with top m question&answer pairs are returned 
to the user. 

_____________________________________________________________________ 
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3   Evaluation and Discussions 

3.1   Experiment Dataset and Settings 

Dataset: Questions with accepted answers are collected from Yahoo! Knowledge 
and Baidu Zhidao, respectively. After removing invalid questions, more than 
1,380,000 postings are obtained. The title of the posting is used as the question.  

4800 questions are chosen randomly from the collection to build the question type 
prediction model. Another 100 questions are chosen randomly from the collection as 
the query questions.  

Experimental Platform: Unigrams of content words of the remaining questions are 
indexed by Lucene, to build a question retrieval system. Vector space model, the 
Okapi BM25 model and language model are used as the information retrieval model, 
respectively. The best performance achieved by the BM25 model is reported here. 
More state-of-the-art retrieval models, such as [1, 12] will be employed in the future 
work. 

Relevance Set: The relevance set is built with the aim on mind that the recall of 
relevant questions should be enlarged, so that the coverage of infoNeeds will be 
enlarged. Therefore, the questions that are not semantically equivalent to the query 
but contain relevant information are also included in the relevance set. 

Information Need Annotation: Since the aim of proposed diversification algorithm 
is to accommodate the potential difference between the infoNeeds of different users, 
three annotators annotate relevant infoNeeds individually. A list consisting of the 14 
question types and a list consisting of the information aspects collected by the 
algorithm in Section 2.2 are provided to the annotators, from which they can choose 
relevant infoNeeds. 

Thus, three different infoNeeds sets of the query questions are generated. The 
algorithm performance is evaluated on each infoNeeds set separately, and the average 
performance is reported. 

Evaluation Criteria: Three evaluation metrics used in the TREC diverse track are 
employed in this paper: MAP_IA, P@5_IA [13], and α-nDCG@10 (α=0.5) [14]. The 
weights in the evaluation criteria are equal among different infoNeeds currently. 

Evaluated Algorithms: (1) Retrieve_M: the performance of using only the 
information retrieval model; (2) MDL-based question recommendation: [7] 
recommends questions which have similar topics and different focus with the query 
question. (3) MMR: MMR [15] measures the relevance and diversity independently 
and provides a linear combination, called “marginal relevance”, as the metric. (4) 
Type_Div: the proposed diversification algorithm, but only uses the question type for 
diversity. (5) Content_Div: the proposed diversification algorithm, but only uses the 
question content for diversity. (6) Type&Content_Div: the proposed diversification 
algorithm in this paper.  

To achieve a fair comparison, all the diversity parameters in the above algorithms 
are set to 0.5, i.e., the relevance and diversity of the question are equally weighted. 
For Type&Content_Div, since we have two parameters, λ1 and λ2 are set equally to 
0.25. 
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3.2    Experimental Results 

Evaluations on Question Analysis 
Support Vector Machine (SVM) is applied for question classification, using the 
default parameters of the Rainbow toolkit. The 5-fold cross-validation performance is 
91.43%. The question type prediction probability output by SVM is employed in this 
paper.  

Totally 790 informational aspects are collected for the 100 query questions, out of 
which 133 aspects are annotated as irrelevant by at least two annotators. Thus, the 
precision of the informational aspects are 83.2%. This result indicates that the real 
questions collected on-line can effectively reflect the infoNeeds of average users. 

Effectiveness of Information Need Compactness Recognition 

Questions with infoNeed Compactness larger than Φ=0.003 are considered 
unnecessary to precede the question recommendation step. 51 questions are left as the 
infoNeed_diverse questions.  

We use the relevant infoNeeds sets annotated by the three annotators to measure 
the effectiveness of the algorithm of infoNeed compactness. Questions satisfying the 
following two conditions are considered as infoNeed_compact: (1) having only one 
single relevant question types; (2) having only one or two relevant informational 
aspects, which are similar to the focus of the query question, or having no relevant 
informational aspects at all. Table 1 gives the precision and recall of the infoNeed 
compactness algorithm. 

Table 1. Comparison between infoNeed compactness algorithm and manual annotation 

 

As can be seen, the precision of recognizing questions with diverse infoNeed are 
high enough for practical use. For the 9 precision errors, most of the questions have 
uncommon topics. The retrieved questions are irrelevant to the query but contain 
diverse information. The recall are much lower, some questions have large amount of 
redundancy in the question collection, increasing the number of search results for 
compactness computation may be a solution. 

For the performance of question recommendation diversification, we only report 
results on the query set recognized by the compactness algorithm as infoNeed diverse. 

Experimental Comparisons 
Table 2 lists the evaluation performance of different algorithms. The performance of 
only considering the diversity of question types, the informational aspects of the 
question content and their combinations for evaluation are listed, respectively.  

By definition, performance of Retrieve_M, Type_Div, Content_Div and 
Type&Content_Div demonstrate the diverse infoNeeds description ability of different 
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models, namely, the conventional bag-of-word IR model, question types, question 
content and the combination of them based on the results of IR model, respectively.  

It is observed that Type_Div achieves good performance, which consistently ranks 
in the top 2 best performance among the comparative methods, even only considering 
the content diversity for evaluation. However, performance of Content_Div are 
comparable with, and even slightly worse than Retrieve_M. More detailed analysis 
should be conducted further to explain this.  

Type&Content_Div outperforms in most of the evaluation criteria. This result 
shows the effectiveness of the proposed recommendation diversification algorithm. 
This also indicates that correlations exist between the relevant information aspects 
and question types.  Modeling the distribution of these two factors jointly may be 
helpful to enhance the performance of question recommendations. 

Table 2. Question recommendation evaluation performance using MAP_IA, P@5_IA, α-
nDCG@10 

MAP_IA Retrieve_M MDL MMR Type_DivContent_Div Type&Content_Div 
type  0.054 0.145 0.202 0.094 0.134 
content 0.830 0.437 0.778 0.838 0.809 0.899 

type&content 0.297 0.132 0.306 0.309 0.322 0.326 
P@5_IA Retrieve_M MDL MMR Type_Div Content_DivType&Content_Div 
type 0.136 0.091 0.162 0.229 0.138 0.180 
content 0.303 0.189 0.308 0.372 0.270 0.412 
type&content 0.173 0.104 0.189 0.218 0.162 0.256 
α-nDCG@10 Retrieve_M MDL MMR Type_Div Content_DivType&Content_Div 
type 0.408 0.288 0.500 0.591 0.444 0.537 
content 0.817 0.494 0.798 0.831 0.860 0.865 
type&content 0.548 0.337 0.597 0.625 0.569 0.663 

 
MDL-based question recommendation method performs the worst among all the 

methods. Its poor performance may due to the emphasis of their algorithm. MDL 
algorithm encourages returning questions of which the focus part should have the 
least similarity with the focus part of the query question. Although this emphasis can 
return refresh information to users, the usefulness and the diversity of the information 
are not guaranteed. 

The performance of MMR and our method are comparable if only considering the 
question type diversity for evaluation. However, when it comes to the diverse 
informational aspects in the question content, the performance of MMR drops sharply. 
One possible reason is that this paper use unigram to model the informational aspects. 
The Euclidean distance based similarity is not sensitive to such small granularity. On 
the contrary, question types differ from each other not only in the interrogative 
patterns, but also may have different syntactic structures, thus adding more new 
information to satisfy the max margin required by MMR. 
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5   Conclusions 

This paper proposes a method of question recommendation. The recommended 
questions are relevant to the query question, and are diverse both in the question type 
and content. The factors including scores of information retrieval model, importance 
and novelty of both question types and the informational aspects of question content 
are combined for question re-ranking. Experimental results demonstrate that the 
proposed method effectively recommends relevant questions with high information 
need coverage and diversity in community-base QA. 

Overall, performance of diversifying question content is better than that of question 
types, which shows recommending questions with relevant and diverse infoNeed 
types are essentially more difficult. However, it also indicates large room of future 
improvement; other effective approaches should be explored later. 
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Abstract. Prediction of animal's behavior and detection of task relevant neural 
cliques using multi-spike trains are of great importance and challenges. We 
propose a robust and high accurate approach to classify multi-spike trains based 
on point process model and Bayesian rules. To detect task relevant neural 
cliques, a graph is constructed with its edge weights indicating the collaboration 
degree of neurons' trail-to-trail response to tasks. Then minimum graph cut 
algorithm is introduced to detect neural cliques. Tested by data synchronously 
recorded in hippocampus during five sets of mouse U maze experiments (about 
500 trails), the predicting accuracy is rather high and the statistical significance 
of the cliques is demonstrated. 

Key words: multi-spike trains classification, task relevant cliques, minimum 
graph cut. 

1   Introduction 

With the improvements in multi-electrodes synchronous recording techniques, various 
experiments are designed to study the relationship between neural spike trains and 
external stimuli [1]. One kind of such experiments which are usually referred as 
neural decoding is to infer external stimuli that an animal undergoes by analysis of 
temporal and spatial firing characters of synchronously recorded spikes [1-3]. A 
frequently used framework is to select most task sensitive neurons whose firing rate is 
significantly distinguishable among different stimuli or tasks, then HMMs or 
Bayesian rules are applied to derive post-possibility of the stimuli to an observed 
spike trains of new coming trails [4-6]. However, in dynamic animal autonomous 
experiments, neurons recorded esp. in cortex or hippocampus, fires rather variously 
across trails.  This variability may be due to both the randomness of firing 
mechanism and the deviation in cognitive process on different trails [7]. Therefore, 
finding a robust method which is tolerant to such variability, works stably in small 
data set and does not require manual selection of neurons, is appealing and 
challenging. Based on high order inhomogeneous Poisson model [6, 8], we propose a 
multi-spike train classification approach, making improvements in spike train 
transformation algorithm and scoring measure. 
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Another issue that draws broad attention is to investigate whether or how much a 
neuron functions in a particular dynamic task. By scrutiny of neurons’ relevance to a 
set of elaborately designed tasks, more precise rolls they play may be inferred [9]. 
Such a problem is also challenging. Pairwise correlation and JPSTH are two usual 
ways to analyze neurons’ grouping during a task [10, 11]. However, these direct 
Pearson correlation based techniques are limited to detect multi-scale relationship of 
neurons. Our basic motivation is that since the cognitive processes in the neuron 
system vary from trail to trail, if a neuron functions closely in the task, its biological 
signal that draws neurons firing should has some relationship with this trends. The 
cognitive process of each trail is unreachable and it is impossible to judge whether the 
trail-to-trail variability is caused by the cognitive process or by other irrelevant 
stimuli by just one neuron. However, if a considerable count of neurons response in a 
correlated way from across trails, such collaboration may be due to the fluctuation of 
cognitive process. We define neurons’ matching value and construct a graph with its 
edge weights defined as the correlation of neurons’ matching values. By iteratively 
applying minimum edge cut algorithm to cut least relevant neurons, we reserve task 
relevant ones that forms cliques. To the best of our knowledge, it is the first time that 
minimum graph cut is introduced in finding neural relationship. 

In the following sections, we first present our multi-spike train data classification 
method and reveal its performance on data recorded in hippocampus during mouse U 
maze experiments. Then based on correlation matrix of classifying matching values, 
we introduce minimum graph cuts algorithm to detect task relevant neural cliques and 
gain each neuron’s relevance. The statistical significance of the cliques is demonstrated. 

2   Multi-spike Trains Classification 

In this section, we reveal the present approach to classify multi-spike trains according 
to their undergoing tasks. Since trails’ durations are not necessarily congruent, spike 
trains are transformed first. Since the drawing biological signal varies from trail to trail, 
we model the spiking process with high order inhomogeneous Poisson process. Then 
we estimate the average point process as their prototypical process. Matching values 
are derived to measure the possibility that a spike train is generated by certain Poisson 
process. The final prediction is determined by an integrating strategy of all neurons. 

2.1   Spike Train Transformation 

In autonomous animal experiments, the animal behaviors are conducted only by 
animals themselves. In order to estimate neurons’ firing rate, spike trains should be 
transformed into identically long ones. We propose the Recursive Shorten (RS) or 
Recursive Extend (RE) Algorithm to adjust a spike train’s length. Spike train 
transformation should not destroy the original local or overall statistics including 
expect and variance, nor should algorithm introduce artificial order. 

For programming convenience, RS and RE algorithm uses recursion to clip a spike 
train into N small pieces, then cut or add a spike train segment of length S/N at a 
random position. S denotes the length need to be shortened or elongated. For a very 
small piece of spike train, its firing rate could be regarded as constant. Thus cutting or 
adding a small segment in the piece would not change its local statistics. 
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Note that equation (1) is the same as the estimate of PSTH, but it provides a 
different perspective of the process that generates spike trains. It indicates that spike 
trains are not generated by the same point process across trails, and what we really 
estimate is the expectation of the high order Poisson point process. Since they have 
the same form and value, we do not discriminate them in the following sections. At 
any time t, ( )  could be estimated by equation (1). In order to reduce computing 
complexity, we just estimate some discrete time points and interpret points for the 
rest. Fig.2 reveals two estimated Poisson curves. 

2.3   Bayesian Rules for Matching Value 

Suppose ( )  denotes the non-stationary Poisson process of the neuron i for task j, 
and [1, ], j [1, ], N is the count of neurons recorded and K is the task count to 
be recognized. To classify a trail by a single neuron i, it is reasonable to find the 
largest possibility ( ( )| ) for any j.  denote a new coming trail’s spike train 
of neuron i. A spike train could be decomposed into a series of inter-spike intervals 
(ISI), = ( , , … ) where S is the count of spikes,. According to Bayesian 
rules, 

                   (2)
 

For any k1, k2, 1 ≠ 2 , ( | ( ))  and ( | ( ))  are mutual 
independent and ( ) is identical for any tasks, thus 

 
(3)

 

The ( )  obeys the first order waiting time for inhomogeneous Poisson 

process, thus we have 

                    (4)
 

where  is the occurring time of k-th spike. ( ( )) is the prior possibility of the 
task, and for the sake of clarity in equation (4), we simply use  denote the 
possibility of task j. Then, we bring equation (4) into equation (3), and transform 
equation (3) into its log function, 

   
(5)
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In equation (5),   could be calculated by the total trails counts dividing the 

occurrence of task j. ∑ ( )  denote the integration of ( ) , and for 

different spike trains, this value is identical. Thus, equation (5) is rewritten as 

    
(6)

 

Now, the matching value that measures the possibility that a spike train is generated 
by a known Poisson process has been derived. Note that the most time-consuming 

terms for computing is the (ô) ô, and for multiple classification tasks, this term 
could be computed in advance, thus reducing the computational complexity. 

2.4   Integrating Strategy 

Through equation (6), we are able to classify trails by single spike train, and obtain 
their classification = ( , , … , ) . The present classifying algorithm include 
comprehensive analysis of all the neurons’ response to reduce errors. Each neuron’s 
classification as well as its confidence of the current classification should be both 
taken into consideration. For neuron i, = ( , , … , ) denotes its matching 
value to task K calculated through equation (6). Suppose  denotes the average value 
of , and the confidence of its classification is defined as, 

                         (7)
 

max( ) is the maximum value of . Using sigmoid normalization, each neuron’s 
classifying confidence is between 0 and 0.5. Suppose = ( , , … , ), then a trail is to be classified into task i, if and 
only if 

                         
(8)

 ä  function transforms any value that equals i to 1 and others to 0. Equation (8) works 
similarly to a weighted vote, and the confidence is the weight.  

2.5   Multi-Spike Trains Classification Results 

To test the performance of the present approach, a U maze experiment is designed in 
which a mouse is trained to run clockwise and anticlockwise fetching water 
alternatively. Multi-spike train data and time when the mouse arrive at position 1 and 
2 demonstrated in Fig.3(b) are recorded synchronously. Neurons recorded are in 
mouse’s hippocampus by micro-electrode array. Five sets of U maze experiment are 
carried out in three days, with each set lasting about half an hour. Detailed parameters 
of the experiment are listed in Tab.1. Due to slight deviation of electrodes and 
different execution of spike sorting algorithm, counts of sorted neurons among these 5 
sets of experiments are not identical. Besides, the mouse did not execute trained task 
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Fig. 4. This figure reveals single neuron classification accuracy by 10 train trails and 20 train 
trails in the first set of data. The blue bar represent the accuracy by 10 train trails, and the black 
bar is for 20 train trail. This figure illustrates that the increase of train set improves little in 
classification accuracy. 

3   Detection of Task Relevant Neural Cliques 

The trail-to-trail variability of the cognitive process and the random feature of spiking 
process have been considered to be the main cause of variability across trails. The 
variability of spiking process under Poisson model could be measured by Fano factor. 
For Poisson model the Fano factor should be 1. However, in most of experiments, 
especially in autonomous animal experiments, the observed Fano factor is far larger 
than 1, which illustrates that most part of the trail-to-trail variability is caused by the 
fluctuation of the underlying biological signal. And if a neural ensemble functions 
during a particular task, some of the neurons’ biological signal varies relevantly with 
the cognitive process from trail to trail. By detecting the correlation of neurons’ 
response, we could find the task relevant cliques. 

First, we find a prototypical process for each neuron’s response to a task and as is 
discussed above, a proper prototypical is neuron’s average inhomogeneous Poisson 
process which could be estimated by equation (1).  Then a measurement should be 
defined to compare the distance between a trail and a point process. The measurement 
is also discussed above, and the log-possibility in equation (6) performs well. Suppose = ( , , … , ) denote the matching value of all trails of a task of neuron i. 
Then we calculate the pairwise correlation matrix of , and  is the Pearson 
correlation of  and . The Pearson correlation is given by 

                        (9)
 

Then we construct a correlation graph whose vertexes represent neurons and edges 
are their correlation coefficients . In order to detect the cliques, minimum graph cut 
is applied iteratively until it reaches a user defined threshold. The pseudo code is 
listed below in matlab style. 
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function V = cliques(G, threshold) 
  V = {}; 

  P = {G}; 

  while(P is not empty) 

      take an element in P as G;  

      Remove G from P; 

      if minAveDegree(G)>threshold 

          Put G into V; 

      else 

          G.degree = Degree(G); 

          [G1 G2]= mincut(G); 

          G1.degree= G.degree + Degree(G1)*G1.size/G.size; 

          G2.degree= G.degree + Degree(G2)*G2.size/G.size; 

          put G1, G2 into P; 

    end 

   end 

  end 

The function minAveDegree() returns the minimum average degree of vertex in a 
graph. This criterion for cutting a graph guarantees the detected cliques guarantees 
even the least correlated vertexes meet the given threshold. The function mincut() cuts 
a graph into two sub-graphs using minimum cut edges, we implement this algorithm 
according to [12]. The function Degree() returns the mean degree of a graph. By 
iteratively cutting least relevant neurons and the remaining cliques are highly coherent 
and task relevant.  

     
                        (a)                                             (b) 

Fig. 5. This figure reveals the gathering effect using degrees to sort neurons. In figure (a), the 
top left and bottom left figures are the original correlation matrixes of matching value in task 1 
(clockwise) and task 2 (anticlockwise) respectively, and the top right and bottom figures are the 
sorted matrixes. Figure (b) reveals the arranged connectivity under 0.01 level significance of 
task 1. The deviations of neurons to the center accord with their reciprocals of relevance. 
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The algorithm also derives degrees indicating the relevance of a neuron to a task. 
The degrees of the observed neurons map pairwise relationship into topological 
relationship by their collaboration level with others. Fig.5(a) reveals the comparison 
of original correlation matrix and the sorted correlation matrix using neurons’ degree. 
Obviously, the correlated neurons gather in the right bottom corner of the graph while 
others gather in the opposite direction. Fig.5(b) is the connectivity graph arranged by 
neurons’ relevance to a task. 

In order to illustrate the correlation of matching value between neurons has the 
statistical significance. We disorder each neuron’s matching value respectively and 
then apply the present algorithm again. Fig.6 reveals the results and degrees of 
neurons calculated in random task are conspicuously lower than the real ones. 

Table 2. Cliques Derived by Minimun Graph Cut 

 

 

Fig. 6. This figure reveals the degrees of neurons relevance of in real task and random tasks. 
The blue and red curves are the neuron’s degree in task 1 and task 2 respectively and the brown 
and purple curves are derived from disordered matching value. 

In addition, we adjust the algorithm to obtain cliques with grounded statistical 
significance using the 0.05 significance level null hypnosis instead of  . Cliques 
detected in 2 sets of U maze experiment with the two tasks are listed in Tab.2. 

No. Cliques
1 Task 1

Task 2
{7, 8, 15, 19, 22}, {2, 3, 5}

{2, 6, 10, 14, 19}, {8, 13}, {11, 20}

2 Task 1 {5, 20, 8, 19, 9, 18, 11}, {14, 13}, {24, 23}

Task 2 {4, 2, 20, 11}, {17, 19}, {10, 3, 21}, {15, 14}
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4   Discussion 

We have presented our method to classify trails by multi-spike train data. Based on 
high order inhomogeneous Poisson model and Bayesian rules, the classification 
method performs well in several aspects: (1) the accuracy of classification is high, 
since in about 500 trails prediction test, the accuracy is nearly 99%; (2) the train set is 
rather small, only random 10 train trails for each task in the U maze experiment is 
needed to obtain remarkable results; (3) No manual work have done to select rough 
recorded data. Besides, we introduce a novel approach to analyze the task relevant 
neural dependencies based on neurons’ matching value which indicating their 
distance to the prototypical Poisson processes. Minimum graph cut is proposed to 
derive task relevant neural cliques which are significant in statistics. Further work 
should be done to find evidence that such cliques may have close biological 
connectivity or act in concert to fulfill certain function. 
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Abstract. In this paper a computational model is presented that models how 
dreaming is used to learn fear extinction. The approach addresses dreaming as 
internal simulation incorporating memory elements in the form of sensory 
representations and their associated fear. During dream episodes regulation of 
fear takes place, which is strengthened by Hebbian learning. The model was 
evaluated by a number of simulation experiments for different scenarios. 

Keywords: dreaming, fear extinction learning, computational model.  

1   Introduction 

In the recent cognitive and neurological literature the mechanisms and functions of 
dreaming have received much attention; e.g., [19-23], [27-32]. In such literature, 
usually dreaming is considered a form of internal simulation of real-life-like processes 
serving as training in order to learn or adapt certain capabilities. Dreaming makes use 
of memory elements for sensory representations (mental images) and their associated 
emotions to generate ‘virtual simulations’; e.g., [20], pp. 499-500. Taking into 
account fear emotions that often play an important role in dreams, strengthening of 
regulation of such emotions is considered an important purpose of dreaming; see, for 
example, [20, 30]. To this end in dreams adequate exercising material is needed: 
sensory representations of emotion-loaden situations are activated, built on memory 
elements suitable for high levels of arousal: 

‘They are recombined or remapped in order to introduce elements that are 
incompatible with existing fear memories, thus facilitating (among other functions) 
the acquisition or maintenance of extinction memories. The latter inhibit fear 
memories (..), and consequently alleviate affect load.’ ([20], pp. 500-501) 

A comparison can be made to a virtual reality form of exposure therapy ([20], pp. 500-
501). Strong fear associations of the sensory memory elements used to make up a 
dream creates situations in which a person has to cope with high levels of fear. 
Adopting basic elements from [26] the computational model presented here generates 
the type of internal simulation that is assumed to take place in dreaming. For the 
different dream episodes, the internal simulation incorporates interrelated processes of 
activation of sensory representation states (from memory) providing mental images, 



198 J. Treur 

and activation of associated feelings. Moreover, it incorporates emotion regulation to 
suppress the feeling levels and the sensory representation states. The regulation 
mechanism strengthens the relevant connections by Hebbian learning; e.g., [2, 10, 16]. 

The structure of the paper is as follows. In Section 2 the computational model is 
described in more detail. Section 3 presents simulation results providing some dream 
scenarios. Finally, Section 4 is a discussion, in which also the relation of the model 
with neurological theories and findings is addressed. 

2   A Computational Model for Fear Extinction Learning 

The computational model presented here is based on mechanisms suggested in 
neurological literature; see Fig. 1 for an overview of the states and connections. Some 
of the (non-adaptive) basic elements were adopted from [26]. In Fig. 1 the basic 
model for a given stimulus sk with sensory representation state srssk  and dream 
episode state essk  is shown (k = 1, …, n). An explanation of the states used is shown in 
Table 1; an overview of the connections is shown in Table 2. Note that in Fig. 1 a 
sensory representation state and episode state for only one stimulus sk is depicted. In 
the specification of the model below an arbitrary number n of such states are taken 
into account. In Section 4, a simulation scenario with four stimuli sk  is presented. 

 

Fig. 1. Overview of the states and connections in the model 

The inhibiting links for fear regulation are indicated by dotted arrows (in red). The 
two links between srssk and psb indicate the bidirectional association between stimulus sk and emotional response b. The links between psb and sb indicate a recursive as-if 
body loop (see below).  

Table 1. Overview of the state variables used  

state explanation psb Preparation state for bodily response b sb Feeling state for b srssk Sensory representation state for stimulus skcssk,b Control state for regulation of sensory representation of sk  and feeling b essk Dream episode state for skmtsk Memory trigger for sk
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Table 2. Overview of connections and weights 

from states to state weights LP srs s1, …, srssn, sb, ess1, …, essn psb ω1,1, ... ω1,n, ω2, ω12,1, ... ω12,n LP1 psb, css1,b, …, cssn,b sb ω3 , ω4,1, …ω4,n LP2 psb, cssk,b, mtsk srssk ω5,k , ω6,k, ω0,k LP3 srssk, sb, essk cssk,b ω7,k , ω8,k, ω13,k LP4 srssk, ess1, …, essn, cssk,b essk ω9,k, ω10,1,k, …, ω10,n,k, ω11,k LP5 

The model incorporates four connected cycles (see Fig. 1): 

 A positive preparation-feeling cycle psb  – sb                 (right lower part in Fig. 1) 

 A positive preparation-sensory representation cycle psb  – srssk      (left lower part) 

 A negative emotion regulation cycle cssk,b   – sb, srssk, essk                      (upper part) 

 A positive fear extinction learning cycle cssk,b   – ω7,k, ω8,k                  (upper part) 

Each of these cycles will be briefly discussed. 

The Preparation-Feeling Cycle psb  – sb        
As indicated in Section 1 above, dreams can be considered as flows of activated 
imaginations based on (re)combined sensory memory elements with emotional 
associations. Such flows can be related to the notion of internal simulation put 
forward, among others, by [4, 5, 12, 17, 18]. The idea of internal simulation is that 
sensory representation states are activated (e.g., mental images), which in response 
trigger associated preparation states for actions or bodily changes, which, by 
prediction links, in turn activate other sensory representation states.  

sensory representation states →  preparation states  →  sensory representation states 

Internal simulation has been used, for example, to describe prediction of effects of 
own actions (e.g., [3]), processes in another person’s mind (e.g., [12]) or processes in 
a person’s own body (e.g., [4]). The idea of internal simulation has been exploited in 
particular by applying it to bodily changes expressing emotions, using the notion of 
as-if body loop (cf. [4], pp. 155-158; [5], pp. 79-80; [7]):  

sensory representation  →  preparation for bodily changes = emotional response  →   
emotion felt =  based on sensory representation of (simulated) bodily changes 

Damasio [4] distinguishes an emotion (or emotional response) from a feeling (or felt 
emotion). The emotion and feeling in principle mutually affect each other in a 
bidirectional manner: an as-if body loop usually occurs in a recursive, cyclic form by 
assuming that the emotion felt in turn also affects the prepared bodily changes, as he 
points out, for example, in ([6], pp. 91-92; [7], pp. 119-122): 

emotion felt  =  based on sensory representation of (simulated) bodily changes  →   
preparation for bodily changes = emotional response      
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The Preparation-Sensory Representation Cycle psb  – srssk   
Sensory representations as stored in memory usually have emotional responses 
associated to them. This means that as soon as a sensory representation is activated 
also its associated emotional response preparations are activated, and, conversely, 
when an emotional response preparation is active, also the sensory representations 
associated to this type of response become active. This results in a cycle between 
sensory representations srssk  and emotional response preparations psb shown in the 
left lower part of Fig. 1. Together with the preparation – feeling cycle discussed 
above, this provides a state of fear as a complex and cyclic activation state of fear 
response preparations, fear feelings and fearful sensory representations.  

The Emotion Regulation Cycle cssk,b   – sb, srssk, essk     
Fear extinction indicates the process of suppressing fear states. This can be considered 
a specific type of emotion regulation to control emotions that are felt as too strong; cf. 
[11, 13, 14]. Emotion regulation mechanisms cover antecedent-focused regulation 
(e.g., selection and modification of the situation, attentional deployment, and 
reappraisal) and response-focused regulation (suppression of a response). Regulation 
of high levels of fear can take place by antecedent-focused emotion regulation, for 
example, by attentional deployment in the form of focusing attention in such a way 
that situations or aspects of situations in which too strong fear-related stimuli occur 
are kept out of the attention focus, or by a form of re-appraisal decreasing the 
negative feeling level based on changing the cognitive interpretation of fear-related 
stimuli into a less negative one. In the upper part of Fig. 1 such an emotion regulation 
mechanism is depicted. The upward arrows to the control state cssk,b take care for 
monitoring the sensory representations srssk, feeling state sb and episode state essk    for 
the fear state, and when the fear level is too high, this leads to activation of the 
relevant control states cssk,b. These control states in turn lead to inhibition of the fear-
related states (the downward, dotted arrows in the upper part of Fig. 1). 

The Fear Extinction Learning Cycle cssk,b   – ω7,k, ω8,k 
The basis of fear extinction learning is that the emotion regulation mechanisms 
discussed above are adaptive: they are strenghtened over time when they are 
intensively used. Note that fear extinction learning is not a form of unlearning or 
extinction of acquired fear associations, but it is additional learning of fear inhibition 
in order to counterbalance the fear associations which themselves remain intact (e.g., 
[20], p. 507). This learning process is modelled by applying a Hebbian learning 
principle (e.g., [2, 10, 16]) to the upward connections ω7,k  and  ω8,k  from sensory 
representation state srssk  and feeling state sb to the control state cssk,b   in the upper part 
of Fig. 1. Note that the dream episode state and its upward link to the control state 
serve as an amplifier in this Hebbian learning process. The positive cyclic character of 
this learning process is as follows: the stronger the upward connections become, the 
higher the activation level of the control state, and this again strengthens the learning 
process for the connections. 

The computational model has been formalised as a set of differential equations. 
Parameter γ  is used as a speed factor, indicating the speed by which an activation 
level is updated upon received input from other states. During processing, each state 
has an activation level represented by a real number between 0 and 1. Below, the 
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(temporally) Local Properties (LP) for the dynamics based on the connections 
between the states in Fig. 1 are described by differential equations. In these 
specifications a threshold function th is used as a combination function for k incoming 
connections as follows: the combined input level is th(μ1V1+ …+ μkVk) with μi the 
connection strength for incoming connection i and Vi  the activation level of the 
corresponding connected state. For this threshold function th   different choices can be 
made. In the simulation experiments (in LP1 to LP4) the following continuous logistic 
form was used: th(X) =  (

11+ (   )  -  11+  ) (1 +  )                                   (1) 

Here σ is a steepness and τ a threshold parameter. Note that for higher values of στ  
(e.g., σ  higher than 20/τ) this threshold function can be approximated by the simpler 
expression; this has been used in LP5:   th(X) = 

1 (   )                                                            (2) 

The first property LP1 describes how preparation for response b is affected by the 
sensory representation and episode states of stimuli sk (triggering the response), and 
by the feeling state for b: 

LP1 Preparation State for Response b ( ) = γ  [ th(Σk ω1,ksrssk(t) + ω2 sb(t) + Σk ω12,kessk(t)) - psb(t) ]          (3) 

The feeling state for b is not only affected by a corresponding preparation state for b, 
but also by the inhibiting control states for sk and b.  This is expressed in dynamic 
property LP2. Note that for this suppressing effect the connection weight ω4,k from the 
control state for sk and b to feeling state for b is taken negative, for example ω4k = -1. 

 

LP2  Feeling State for b ( ) = γ  [ th(ω3 psb(t) + Σk ω4,k cssk, b(t)) – sb(t)  ]                    (4) 

The sensory representation state for sk is affected by the preparation state for b (fear 
association) and by the suppressing control state for sk and b. For this suppressing 
effect the connection weight ω6k from the control state for sk and b is taken negative. 
This is expressed in dynamic property LP3. Moreover, property LP3 is used to 
describe how the sensory representation of any traumatic sk is triggered from memory, 
as a starting point for a dream: in a scenario the memory trigger values are taken 1.  
For non-traumatic sk such triggering does not take place: the values are taken 0. 
 

LP3  Sensory Representation State for sk  ( )  = γ  [ th(ω5,k psb(t) + ω6,k cssk,b(t) + ω0,k mtsk(t)) – srssk(t) ]        (5) 
Activation of a control state for a specific sensory representation for sk  and b is based 
on the level for feeling b and the activation level of the sensory representation and 
episode states of sk: 
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LP4  Control State for sk and b  , ( )  = γ  [ th(ω7,k srssk(t) + ω8,k sb(t) + ω13,k essk(t)) – cssk,b(t)]  (6) 

Due to the inherent parallellism in neural processes, at each point in time multiple 
sensory representation states can be active simultaneously. For cases of awake 
functioning the Global Workspace Theory (e.g., [1]) was developed to describe how a 
single flow of conscious experience can come out of such a large multiplicity of 
(unconscious) parallel processes. The basic idea is that based on the various 
unconscious processes a winner-takes-it-all competition takes place to determine 
which one will get dominance and be included in the single flow of consciousness. 
This idea was applied here in the dreaming context to determine which sensory 
representation element will be included as an episode state essk  in a dream. This 
competition process is decribed in LP5, using mutual inhibiting connections from 
episode states essi  with i ≠ k to essk. For the suppressing effects the connection weights 
from the essi with i ≠ k to essk are taken negative, for example ω10,i,k = -0.6 for i≠k. Note 
that for the sake of notational simplicity ω10,k,k = 0  is taken. For traumatic stimuli sk an 
additional and strong way of inhibition of the corresponding episode state takes place, 
blocking the generation of an episode state for this stimulus. It is based on the control 
state for sk and b and is assumed to have a strong negative connection strength ω11,k. 
For non-traumatic stimuli this connection is given strength 0. 

 

LP5  Episode State for sk  ( ) = γ  [ th(ω9,k srssk(t) + ω11,k cssk,b(t) + Σi ω10,i,k essi(t)) – essk(t)]    (7) 
Hebbian Learning to Strengthen Fear Extinction 
From a Hebbian perspective [16], strengthening of a connection over time may take 
place when both nodes are often active simultaneously (‘neurons that fire together 
wire together’). The principle goes back to Hebb [16], but has recently gained 
enhanced interest by more extensive empirical support (e.g., [2]), and more advanced 
mathematical formulations (e.g., [10]). In the adaptive computational model two 
upward connections that play a role in monitoring for the emotion regulation cycle 
are adapted based on a Hebbian learning principle. More specifically, for such a 
connection from node i to node j its strength ωij  is adapted using the following 
Hebbian learning rule, taking into account a maximal connection strength 1, a 
learning rate η, and an extinction rate ζ (usually taken small):  
 

   
  ( ) = η ai(t)aj(t)(1 - ωij(t)) - ζωij(t)  =  η ai(t)aj(t) - (η ai(t)aj(t) + ζ) ωij(t)  (8) 

Here ai(t) and aj(t)  are the activation levels of node i and j at time t and ωij(t)   is the 
strength of the connection from node i to node j at time t. A similar Hebbian learning 
rule can be found in [10], p. 406. By the factor 1 - ωij(t) the learning rule keeps the 
level of ωij(t)  bounded by 1 (which could be replaced by any other positive number); 
Hebbian learning without such a bound usually provides instability. When the 
extinction rate is relatively low, the upward changes during learning are proportional 
to both ai(t)   and aj(t)   and maximal learning takes place when both are 1. Whenever 
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one of ai(t)   and aj(t) is 0 (or close to 0) extinction takes over, and ωij slowly decreases 
(unlearning). This learning principle has been applied (simultaneously) to the two 
upward connections from sensory representation and feeling states to the control state 
in Fig. 1, according to the following instantiations of the general learning rule above:  
     7, ( )  = η srssk(t) cssk,b(t)(1 - ω7,k(t)) - ζω7,k(t)          =  η srssk(t) cssk,b(t) - (ηsrssk(t) cssk,b(t) + ζ) ω7,k(t)       (9)    8, ( )  = η sb(t) cssk,b(t)(1 - ω8,k(t)) - ζω8,k(t)           =  η sb(t) cssk,b(t) - (η sb(t) cssk,b(t) + ζ) ω8,k(t)     (10) 
In principle, the learning rate η and extinction rate ζ, can be taken differently for the 
different connections. In the example simulations discussed in Section 4 (shown in 
Fig. 2) the following values have been used: η = 0.7 for all ω7,k  and η = 0.4 for all ω8,k, 
and ζ = 0.001 for all ω7,k  and ω8,k.  
4   Simulations of Fear Extinction Learning in Dream Scenarios 

In dream scenarios in which the cycles as discussed play their roles as follows. 

Triggering s1 
• A stimulus s1 is given for which previously a high extent of fear has been experienced, and for 

which from time to time (in particular during sleep) a sensory representation state is triggered 
by memory (for the model this is considered an external trigger); note that such a memory 
trigger was not used for the other stimuli: their activation automatically happens due to the 
high fear levels induced by triggering s1, and maintained by the subsequent dream episiodes. 

• The activation of the sensory representation of s1 leads to activation of an enhanced 
preparation level for a bodily fear response b  

 

The positive preparation-feeling cycle psb  – sb 
• By an as-if body loop an enhanced preparation level for b leads to an enhanced fear feeling 

level for b and vice versa 
 

Blocking s1 
• By a strong form of emotion regulation in particular the sensory representation and episode 

state of s1 are strongly suppressed: the activation level of the sensory representation of s1  

becomes low, and no dream episode state for s1 occurs, as this is blocked  
The positive preparation-sensory representation cycle psb – srssk  
• Other fear-associated stimuli sk  for k ≥ 2 are available for which the person has less strong 

previous experiences; the sensory representation states for these sk  are activated by links 
from the high preparation state for b, depending on the strength of these links 

• When the sensory representation state of a stimulus sk  is activated, this leads to an 
enhanced activation level of the preparation state for the emotional fear response 

 

The positive preparation-feeling cycle psb – sb 
• Due to the higher activation level of preparation for fear based on b, via the as-if body loop 

also the feeling level for b becomes higher: the person experiences more fear 

Competition to achieve a dream episode essk 
• The active sensory representation for some sk  leads to a corresponding dream episode state, 

according to a competion process by mutual inhibition to get dominance in the episode 
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The negative emotion regulation cycle cssk,b   – sb, srssk, essk 
• By the control states for emotion regulation for an active sensory representation for sk  both 

the fear feeling level and the sensory activation level of sk  are suppressed (resp., re-
appraisal, attentional deployment) 

•  

The fear extinction learning cycle cssk,b   – ω7,k, ω8,k 
• Due to nonzero activation levels of the control states and the fear feeling state for b, and the 

sensory representation and episode states for sk  Hebbian learning takes place strengthening 
the connections from feeling state and sensory representation to control state 

• Increased connection strengths lead to higher activation levels for the control states 

A variety of simulation experiments have been performed according to such 
scenarios, using numerical software. In the experiments discussed below (see Fig. 2) 
the settings were as shown in Table 3.  

Table 3. Settings used for connection strength, threshold and steepness parameters 

 

As shown in the left hand side of the table, all noninhibiting connections to 
preparation, feeling, control, and episode states have strength 1, and all inhibiting 
connections from control states to feeling, sensory representation states and episode 
states, and mutually between episode states have strengths -0.2, -0.5, -0.2, and -0.6, 
respectively, with an exception for the sensory representation and episode states for 
s1, which are inhibited by strength -2 and -20 (they are blocked due to a previous 
traumatic event involving s1). Small differences in emotional associations for the 
different sk are expressed by different strengths from preparation of emotional 
response to sensory representation states, varying from 0.5 to 0.4. In the scenarios 

from state connection to state threshold steepness
1

0.5 41
1
1

0.5 4
-0.2
0.5

0.25 8
-2
0.5

0.25 8
-0.5
0.45

0.25 8
-0.5
0.4

0.25 8
-0.5

1
1 81

0.3
1

0.25 60
-0.6
-0.2
-20
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Fig. 2. Dream with three episodes showing extinction learning and reduction of feeling level 

considered, the memory trigger for the sensory representation of s1  has level 1 and  
connection strength 0.5. The threshold and steepness values used are shown in the 
right hand side of Table 3. Relatively low steepness values were used, except for the 
episode states. The threshold values for preparation and feeling states were taken 0.5; 
in order to model differences in emotional associations between the sk, different 
threshold values were taken for their sensory representation and control states. The 
initial values of all states were taken 0, and for the adaptive connection strengths 0.1 
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initially (which also could be taken 0). The speed factor γ  was 1, and the step size ∆t 
was taken 0.1. For learning and extinction rates the following values have been used: 
η = 0.7 for all ω7,k  and η = 0.4  for all ω8,k, and ζ = 0.001 for all ω7,k  and ω8,k. The example 
scenario discussed addresses a case where three dream episodes occur, related to the 
sensory representations of s2, s3, s4, subsequently. In Fig. 2 time is on the horizontal 
axis and the activation levels of the indicated states and connections are on the 
vertical axis. In the first graph it is shown that right from the start the sensory 
representation for s1 becomes active (triggered from memory). Immediately the 
emotional response preparation for b starts to develop, and the related feeling, as 
shown in the third graph. Also in the third graph it is shown how as a result the 
control state for s1 becomes active. Due to the strong suppression, no (full) dream 
episode develops for s1, as shown in the second graph. Due to the relatively high 
emotional response and feeling level, the sensory representations for s2, s3, s4 become 
active, following that order and strength (first graph). 

In a cyclic process, this further increases the emotional response preparation and 
feeling levels (third graph). As the sensory representation of s2 is the strongest, it wins 
the competition for the dream episode from time point 3 to 9 (second graph).  

Given this first episode and the high feeling and sensory representation levels, 
extinction learning takes place of the connections to the control state for s2  (see fourth 
graph), reaching strengths one around 1 at time point 9, and hand in hand with this 
process the level of the control state for s2 jumps up from time point 7 on (see third 
graph). As a result of this, control is exerted, suppressing after time point 9 the feeling 
level (third graph), the sensory representation of s2 (first graph), and the related 
episode (second graph). As the feeling level was only partly reduced, and the sensory 
representation for s2 does not compete anymore, from time point 11 on a second 
episode occurs, based on the sensory representation of s3 (second graph). Again the 
whole adaptation process occurs, this time related to s3. From time point 16 on, this 
brings the feeling level more down (third graph), and suppresses the sensory 
representation of s3 (first graph), and the related episode (second graph). After this, 
the whole process repeats iteself for a third dream episode, based on the sensory 
representation of s4. This leads to another reduction of the feeling level around time 
25. Overall, all connections for fear extinction in relation to the most strongly fear-
related sensory representations have been learned and have values around 1, and the 
feeling level was reduced to below 0.6. 

4   Discussion 

The assumption that dreaming, especially when negative emotions are involved, can 
be considered as a purposeful form of internal simulation is widely supported, in 
particular, for the purpose of strengthening fear emotion regulation capabilities; cf. [9, 
15, 20, 21, 29, 30, 32]. In this paper a computational model was presented that models 
the generation of dream episodes from an internal simulation perspective, and uses 
these episodes for fear extinction learning. Building blocks to create such internal 
simulations are memory elements in the form of sensory representations and their 
associated emotions. The model exploits a mutual (winner-takes-it-all) competition 
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process to determine sensory representation states that dominate in different dream 
episodes, comparable to one of the central ideas underlying the Global Workspace 
Theory of consciousness (cf. [1]). Adaptive emotion regulation mechanisms (cf. [11, 
13, 14]) were incorporated to regulate the activation levels of the feeling (by re-
appraisal) and the sensory representation states (by attentional deployment). 
Adaptation in the model is based on Hebbian learning. The computational model was 
evaluated by a number of simulation experiments for scenarios with different numbers 
of dream episodes. 

In [20] dreaming is related to a network of four main brain components (called the 
AMPHAC network) and their connections: Amygdala, Medial PreFrontal Cortex 
(MPFC), Hippocampus, Anterior Cingulate Cortex (ACC). Note that the biological 
counterparts of the preparation and sensory representation states in the model can be 
found in the sensory and (pre)motor cortices, indicated in ([20], p. 505) to be 
‘robustly connected’ to the components in the AMPHAC network. One of the roles of 
the Hippocampus is to store and maintain the relations between sensory memory 
elements and their emotional associations; in the model these connections are 
assumed to be fixed and modelled by the (bidirectional) connections between the 
sensory representations states srssk  and preparation states psb of the emotional 
response b. The feeling state sb in the model can be related to the Amygdala, possibly 
in combination with some limbic areas involved in maintaining ‘body maps’. As 
discussed in Section 2, the interaction between preparation state psb and feeling state sb is in line with the neurological theories of Damasio [4-7]. About the role of ACC 
empirical studies show evidence in different directions (e.g., [20], pp. 505-512); 
therefore it is not clear yet what exactly its function is in dreaming and how it can be 
related to the model presented in Section 2.  

Especially the interaction between MPFC and Amygdala in fear extinction during 
dreaming has been extensively studied; e.g. [4, 5, 8, 20, 24, 25]. In various empirical 
studies it has been found that lower activity of MPFC correlates to less controlled 
feeling levels, and, moreover, REM sleep is found to strengthen MPFC activation and 
reduce feeling levels; see, for example, [11, 15, 20, 30, 32]. This regulating role of 
MPFC with respect to Amygdala activation makes these two neurological 
components suitable candidates for biological counterparts of the control state cssk,b 
and the feeling states sb in the computational model presented in Section 3. 
Moreover, the reported finding suggests that fear extinction learning affects activation 
of MPFC; this is in accordance with the modelling choice that the Hebbian learning 
was applied to the two upward connections from sensory representation and feeling 
states to the control state. As before, the connections between the two types of states 
may be related to the Hippocampus. Note that in the computational model the control 
states cssk,b  also have a role in suppressing the activation of the corresponding sensory 
representation state srssk which can be justified as being a form of emotion regulation 
by attentional deployment; cf. [13, 14]; see also Section 2. The episode states essk and 
their competition can be justified by referring to the Global Workspace Theory of 
consciousness (cf. [1]), as explained in Section 3. 



208 J. Treur 

References 

1. Baars, B.J.: In the theater of consciousness: the workspace of the mind. Oxford University 
Press, Oxford (1997) 

2. Bi, G., Poo, M.: Synaptic modification by correlated activity: Hebb’s postulate revisited. 
Annu. Rev. Neurosci. 24, 139–166 (2001) 

3. Becker, W., Fuchs, A.F.: Prediction in the Oculomotor System: Smooth Pursuit During 
Transient Disappearance of a Visual Target. Exp. Brain Research 57, 562–575 (1985) 

4. Damasio, A.R.: Descartes’ Error: Emotion, Reason and the Human Brain. Papermac, 
London (1994) 

5. Damasio, A.R.: The Feeling of What Happens. Body and Emotion in the Making of 
Consciousness. Harcourt Brace, New York (1999) 

6. Damasio, A.R.: Looking for Spinoza: Joy, Sorrow, and the Feeling Brain. Vintage Books, 
London (2003) 

7. Damasio, A.R.: Self comes to mind: constructing the conscious brain. Pantheon Books, 
NY (2010) 

8. Davidson, R.J.: Anxiety and affective style: role of prefrontal cortex and amygdala. Biol. 
Psychiatry 51, 68–80 (2002) 

9. Franzen, P.L., Buysse, D.J., Dahl, R.E., Thompson, W., Siegle, G.J.: Sleep deprivation 
alters pupillary reactivity to emotional stimuli in healthy young adults. Biol. Psychol. 80, 
300–305 (2009) 

10. Gerstner, W., Kistler, W.M.: Mathematical formulations of Hebbian learning. Biol. 
Cybern. 87, 404–415 (2002) 

11. Goldin, P.R., McRae, K., Ramel, W., Gross, J.J.: The neural bases of emotion regulation: 
reappraisal and suppression of negative emotion. Biol. Psychiatry 63, 577–586 (2008) 

12. Goldman, A.I.: Simulating Minds: The Philosophy, Psychology, and Neuroscience of 
Mindreading. Oxford Univ. Press, New York (2006) 

13. Gross, J.J.: Antecedent- and response-focused emotion regulation: divergent consequences 
for experience, expression, and physiology. J. of Personality and Social Psych. 74, 224–
237 (1998) 

14. Gross, J.J.: Handbook of Emotion Regulation. Guilford Press, New York (2007) 
15. Gujar, N., McDonald, S.A., Nishida, M., Walker, M.P.: A Role for REM Sleep in 

Recalibrating the Sensitivity of the Human Brain to Specific Emotions. Cerebral 
Cortex 21, 115–123 (2011) 

16. Hebb, D.: The Organisation of Behavior. Wiley (1949) 
17. Hesslow, G.: Will neuroscience explain consciousness? J. Theoret. Biol. 171, 29–39 

(1994) 
18. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends Cogn. 

Sci. 6, 242–247 (2002) 
19. Hobson, J.A.: REM sleep and dreaming: towards a theory of protoconsciousness. Nature 

Reviews Neuroscience 10, 803–814 (2009) 
20. Levin, R., Nielsen, T.A.: Disturbed dreaming, posttraumatic stress disorder, and affect 

distress: A review and neurocognitive model. Psychological Bulletin 133, 482–528 (2007) 
21. Levin, R., Nielsen, T.A.: Nightmares, bad dreams, and emotion dysregulation. A review 

and new neurocognitive model of dreaming. Curr. Dir. Psychol. Sci. 18, 84–88 (2009) 
22. Nielsen, T.A., Stenstrom, P.: What are the memory sources of dreaming? Nature 437, 

1286–1289 (2005) 
23. Revonsuo, A.: The reinterpretation of dreams: An evolutionary hypothesis of function of 

dreaming. Behavioral and Brain Sciences 23, 877–901 (2000) 



 Dreaming Your Fear Away 209 

24. Salzman, C.D., Fusi, S.: Emotion, Cognition, and Mental State Representation in 
Amygdala and Prefrontal Cortex. Annu. Rev. Neurosci. 33, 173–202 (2010) 

25. Sotres-Bayon, F., Bush, D.E., LeDoux, J.E.: Emotional perseveration: an update on 
prefrontal-amygdala interactions in fear extinction. Learn. Mem. 11, 525–535 (2004) 

26. Treur, J.: A Computational Agent Model Using Internal Simulation to Generate Emotional 
Dream Episodes. In: Samsonovich, A.V., et al. (eds.) Proc. of the Second Intern. Conf. on 
Biologically Inspired Cognitive Architectures, BICA 2011. IOS Press (in press, 2011) 

27. Valli, K., Revonsuo, A., Palkas, O., Ismail, K.H., Ali, K.J., Punamaki, R.L.: The threat 
simulation theory of the evolutionary function of dreaming: evidence from dreams of 
traumatized children. Conscious Cogn. 14, 188–218 (2005) 

28. Valli, K., Revonsuo, A.: The threat simulation theory in light of recent empirical evidence: 
a review. Am. J. Psychol. 122, 17–38 (2009) 

29. Walker, M.P.: The role of sleep in cognition and emotion. Ann. N Y Acad. Sci. 1156, 168–
197 (2009) 

30. Walker, M.P., van der Helm, E.: Overnight therapy? The role of sleep in emotional brain 
processing. Psychol. Bull. 135, 731–748 (2009) 

31. Yoo, S.S., Gujar, N., Hu, P., Jolesz, F.A., Walker, M.P.: The human emotional brain 
without sleep – a prefrontal amygdala disconnect. Curr. Biol. 17, R877–R878 (2007) 



Simple Models for Synaptic Information

Integration

Danke Zhang1,2, Yuwei Cui3, Yuanqing Li1, and Si Wu2

1 School of Automation Science and Engineering,
South China University of Technology, Guangzhou, China

2 Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
3 Department of Biology, University of Maryland, College Park, MD, USA

Abstract. Neural information processing is extremely complicated. A
core challenge in theoretical neuroscience is to develop properly simplified
models, which, on one hand, capture the fundamental features of the
complex systems, and on the other hand, allow us to pursue analytic
treatments. In the present study, we aim to develop simple models for
synaptic information integration. We use simple current-based models
to approximate the dynamics of conductance-based multi-compartment
ones. The nonlinear shunting inhibition is expressed as a product between
the contributions of excitatory and inhibitory currents, and its strength
depends on the spatial configuration of excitatory and inhibitory inputs,
agreeing with the experimental data. We expect that the current study
will serve as a building brick for analyzing the dynamics of large-size
networks.

Keywords: Synaptic information integration, Shunting inhibition,
Conductance-based model, Current-based model.

1 Introduction

Neural information processing is an extremely complicated process. It involves
chemical and electrical interactions at many different levels, including synapses,
neurons and networks, to name a few. It also requires information acquisition,
propagation, storage, and retrieval in neurons, networks and systems. To make
things worse, these interactions are often nonlinear and are implemented in com-
plicated infrastructures. Thus, a core challenge in theoretical neuroscience is to
develop properly simplified models, which, on one hand, capture the fundamen-
tal features of the complex systems, and, on the other hand, allow us to pursue
analytic treatments [2].

The focus of the present study is on developing simple models for synaptic
information integration. Experimental data has revealed that the integration of
excitatory and inhibitory inputs at the soma of a neuron is a nonlinear process [3],
in which a nonlinear shunting inhibition is involved. To get an intuitive idea
of the shunting effect, let us consider a simple example: a conductance-based
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neuron model receiving both excitatory and inhibitory inputs. The dynamics of
the membrane potential of the neuron is given by

Cv̇ = −gL(v − EL)− gE(v − Ee)− gI(v − Ei), (1)

where v is the membrane potential of the neuron, C the membrane capacitance,
gL the leaky conductance and EL the resting potential. gE and gI are, respec-
tively, the excitatory and inhibitory conductances, with Ee and Ei the corre-
sponding reversal potentials. In the stationary state, the membrane potential is
given by

v = EL +
gE(Ee − EL)
gL + gE + gI

+
gI(Ei − EL)
gL + gE + gI

. (2)

We see that the contribution of the inhibitory input has two folds: apart from
inducing a negative term (the third one in the right-hand side of equation), it also
decreases the contribution of the excitatory input by enlarging the denominator
of the second term. Thus, the integration of excitatory and inhibitory inputs at
the soma is more than a linear summation.

The real shunting process is more complicated than the above described, and
its effect depends on the spatial configuration of the soma and the locations
of excitatory and inhibitory inputs on the dendrites. Interestingly, despite the
seemingly complex form, Hao et al. found that the impact of shunting inhibition
on the magnitude of somatic potential can be well expressed as a simple arith-
metic rule, in which the effect of shunting inhibition is represented as a product
between the influences of excitatory and inhibitory inputs applied separately [1].

Motivated by this finding, in the present study, we develop simple current-
based models to approximate the dynamics of conductance-based multi-
compartmental ones, in particular, to develop a simple way representing the
effect of nonlinear shunting inhibition. The current-based neuron models, due
to their simplicity, are often used in the theoretic study of large-size networks.
Hence, we expect that the current study will serve as a building brick for ana-
lyzing the impact of shunting inhibition on the dynamics of large-size networks.

2 A Neuron Model with Soma and a Dendrite

We start by considering a simple integrate-and-fire model consisting of only the
soma and a single dendrite. The neuron receives an excitatory and an inhibitory
inputs from the locations E and I on the dendrite (Fig.1a). We study first the
configuration that the inhibitory input is on the route for the excitatory current
propagating to the soma, called the on-path configuration. The neuron fires when
its somatic membrane potential exceeds a threshold. Here, our interest is on the
sub-threshold dynamics of the neuron.

Below the firing threshold, the dynamics of the local membrane potentials at
the soma, the dendritic locations I and E, are given by

CS v̇S = −gLS(vS − EL)− gC1(vS − vI), (3)
Cdv̇I = −gLD(vI − EL)− gC1(vI − vS)− gC2(vI − vE)− gI(vI − Ei), (4)
Cdv̇E = −gLD(vE − EL)− gC2(vE − vI)− gE(vE − Ee), (5)
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where vS , vI , and vE denote, respectively, the local potentials at the soma, the
dendrite locations I andE.CS andCd are the membrane capacitances of the soma
and dendrite, respectively. gLS and gLD are the leaky conductances at the soma
and dendrite, respectively. gC1 is the transfer conductance between the location
I and the soma, gC2 the transfer conductance between E and I. Since our focus
is on the dendritic information integration, hereafter, for simplicity, we consider
gE and gI to be constants, equivalent to assuming that the dendrite is receiving
continuous external inputs. An equivalent circuit describing the sub-threshold dy-
namics of the neuron is presented in Fig.1b.

IE
soma

gE gI
gC2 gC1

(a)

somaIE

SCdC
dC

LELELE

LSg
LDg

LDg Eg Ig

iEeE

1Cg
2Cg

(b)

Fig. 1. (a) The spatial configuration of synaptic inputs on the dendrite, with the in-
hibitory input being on-path from the excitatory one to the soma; (b) The equivalent
electrical circuit for describing the sub-threshold dynamics of the neuron

3 A Simplified Current-Based Model

The dynamics given by Eqs.(3-5) is difficult to analyze, in particular, when a
network model of many such neurons is concerned. Our goal is to simplify this
conductance-based multiple-compartmental model into a simple current-based
one, so that they have roughly the same dynamical features.

From Eqs.(3-5), we see that the time constants for the somatic potential, the
local potentials at I and E can be roughly estimated to be τs = CS/(gLS +gC1),
τI = Cd/(gLD + gC1 + gC2) and τE = Cd/(gLD + gC2). Since the membrane
capacitance increases linearly with the surface area of a membrane, we have
CS � Cd. Moreover, gLS and gLD are in the same order, and gLS � gC1. Thus,
we have τs � τI and τs � τE . This implies that the dynamics of vI and vE are
much faster than that of vS . Therefore, we take the following approximation: we
consider vS to be a slow variable, and vI and vE reach their steady values at a
given vS instantly.

By setting the left-hand sides of Eqs.(4-5) to be zero, we obtain

vI = EL +
gC1(vS − EL) + gC2(vE − EL) + gI(Ei − EL)

gLD + gC1 + gC2 + gI
, (6)

vE = EL +
gC2(vI − EL) + gE(Ee − EL)

gLD + gC2 + gE
. (7)

Substituting the above equations into Eq.(3), we get

τsv̇
S = −(vS − EL) + f1(gE) + f2(gI) + kf1(gE)f2(gI), (8)
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where

f1(gE) =
gC1gC2gE(Ee − EL)

gLS(gL + gC1 + gLD/gLSgC1)(gLD + gE)
, (9)

f2(gI) =
gC1gI(Ei − EL)

gLS(gLD + gC1 + gLD/gLSgC1) + (gI + gC2)(gLS + gC1)
, (10)

k =
gLS + gC1

gC1(EL − Ei)
. (11)

To get the above result, we have used the conditions that gC2 � gLS and
gC2 � gLD, provided that E and I are sufficiently separated [4].

It is instructive to look at the steady value of the somatic potential in response
to constant synaptic inputs, which is obtained by setting the left-hand side of
Eq.(8) to be zero. We get

vS = EL + f1(gE) + f2(gI) + kf1(gE)f2(gI). (12)

When no inhibitory input is applied, f2(gI) = 0, f1(gE) = vS−EL, is the voltage
change at the soma due to the excitatory input gE ; when no excitatory input is
applied, f1(gE) = 0, f2(gI) = vS − EL, is the voltage change at the soma due
to the inhibitory input gI . Interestingly, when both excitatory and inhibitory
inputs are presented, their joint effect on modifying the somatic potential, i.e,
vS−EL, is expressed as a linear summation of their separated influences, f1(gE)
and f2(gI), with an additional term of their product, i.e., kf1(gE)f2(gI). This
multiplicative term comes from the nonlinear shunting inhibition in the original
conductance-based model, and the coefficient k represents the shunting strength.
This simple arithmetic rule for the steady value of the somatic potential has been
observed in the experiment [1].

The shunting strength is given by Eq.(11), which decreases with the transfer
conductance gC1. The latter, on the other hand, is known to decrease with the
distance between I and the soma. This tells us that k tends to have a larger
value at the distal side of a dendrite than at the proximal side, agreeing with
the experimental finding [1].

Similarly, we can compute the case of the out-of-path configuration, where
the inhibitory input is not on the route for the excitatory current propagating
to the soma. The results are similar, except that f1(gE) and f2(gI) are replaced
by f1(gI) and f2(gE) accordingly. The new shunting strength is given by k =
(gLS + gC1)/

[
gC1(El − Ee)

]
. Since the absolute value of (EL − Ee) is much

smaller than that of EL − Ei according to the biological data, the shunting
strength in this case is much smaller than in the on-path configuration. This
agrees with the experimental observation [1].
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Fig.2 compares the sub-threshold dynamics of the somatic potential described
by the original conductance-based model and the simplified current-based one.
In the case of excitatory input dominating (Fig.2a), there is a small discrep-
ancy between the stationary values of two models, but the time costs for them
reaching to the steady states are about the same. In the case of inhibitory input
dominating (Fig.2b), the time courses of two models agree well. Overall, the
simplified model captures the dynamical features of the complex one well.
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Fig. 2. The conductance-based multi-compartment model vs. the simplified current-
based one. (a)The excitatory input dominates, gE = 40nS and gI = 2nS; (b) The
inhibitory input dominates, gE = 2nS and gI = 40nS. The other parameters are:
Cs = 740pF, Cd = 50pF, gLS = 20nS, gLD = 10nS, gC1 = 20nS, gC2 = 1nS, EL =
−70mV, Ee = 10mV and Ei = −80mV .

From Eqs.(9-10), we observe that f1(gE) first increases linearly with gE when
gE � gLD, and that f2(gI) first decreases linearly with gI when gI � gLS. They
saturate when gE and gI are sufficiently strong (Fig.3). This tells us that for
small synaptic inputs, we may approximate f1(gE) and f2(gI) as linear functions
of gE or gI , that is, f1(gE) ∼ gE and f2(gI) ∼ gI , and the shunting inhibition
is expressed in the form of hgEgI with h a proper constant. This linear approx-
imation is very useful when studying the dynamics of a large-size network.

4 Extension to Multiple Dendrites

The above multiplicative rule for representing the shunting inhibition can be
extended to more complicated dendrite morphologies. We consider three config-
urations, which can be related to a number of synaptical connecting patterns in
practice.

In the first configuration, individual excitatory or inhibitory inputs are scat-
tered on different dendritic branches (Fig.4a). In this case, the shunting inhibi-
tion can be ignored, and the simplified current-based model is written as

τsv̇
S = −vS + EL +

∑
i

f(gsyn
i ), (13)
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Fig. 3. (a) The function f1(gE); (b) The function f2(gI). The dotted lines represent
the linear approximation. The parameters are used as in Fig.2.

where τs = CS/(gLS + gC), with gC the transfer conductance between the input
site and the soma. f(gsyn

i ) =
∑

i g
Cgsyn

i (Esyn
i −EL)/(gLS +NgC)(gLD + gsyn

i ),
where N is the number of branches, gsyn

i the synaptic conductance on the ith
dendritic branch and Esyn

i the corresponding reversal potential. gsyn
i can be

either excitatory or inhibitory.
In the second configuration, pairs of excitatory and inhibitory inputs are scat-

tered on different dendrites (Fig.4b). In this case, shunting inhibition only exists
between a pair on the same dendritic branch. For the on-path configuration, the
simplified model is written as

τsv̇
S = −vS + EL +

∑
i

[
f1(gE

i ) + f2(gI
i ) + kf1(gE

i )f2(gI
i )
]
, (14)

where τs = CS/(gL +NgC), k = (gL +NgC1)/
[
gC1(EL − Ei)

]
,

f2(gI
i ) = gC1gI

i (Ei − EL)/
[
(gLS +NgC1)(gLD + gI

i + gC2)
]

and f1(gE
i ) = gC1gC2gE

i (Ee − EL)/
[
gLS(gLD + gE

i )(gLS +NgC1)
]
. The result

for the out-of-path case can be similarly obtained.
In the third configuration, excitatory inputs are scatted on dendritic branches

and an inhibitory input is on the soma or located very close to the soma (Fig.4c).
In this case, the inhibitory input shunts all incoming excitatory currents, termed
global shunting, and the simplified model is written as

τsv̇
S = −vS + EL +

∑
i

f1(gE
i ) + f2(gI) + kf2(gI)

∑
i

f1(gE
i ), (15)

were τs = CS/(gLS + NgC + gI),f2(gI) = gI(Ei − EL)/(gLS + gI + NgC),
f1(gE

i ) = gCgE
i (Ee − El)/

[
(gLD + gE

i )(gLS +NgC)
]
, and k = 1/(EL − Ei).
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Fig. 4. Three different spatial configurations of synaptic inputs to the soma

5 Conclusions

In the present study, we have derived simple current-based neuron models to
approximate the dynamics of conductance-based multi-compartmental ones. In
our simplified models, the effect of shunting inhibition is expressed as a product
between the contributions of excitatory and inhibitory currents, and the shunt-
ing strength depends on the spatial configuration of excitatory and inhibitory
inputs, agreeing with the experimental finding [1]. We show that our simplified
models can well capture the dynamical features of the original complex ones.
The advantage of this approximation is that it simplifies the nonlinear synaptic
integration at the single neuron level significantly, and hence provides a foun-
dation for us to simplify the complicated synaptic interaction patterns in large
systems. In the future work, we will apply these simplified models to study the
dynamics of large-size networks.
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Abstract. In this paper an adaptive decision model based on predictive loops 
through feeling states is analysed from the perspective of rationality. Four 
different variations of Hebbian learning are considered for different types of 
connections in the decision model. To assess the extent of rationality, a measure is 
introduced reflecting the environment’s behaviour. Simulation results and the 
extents of rationality of the different models over time are presented and analysed. 

Keywords: decision making, cognitive agent model, emotion, Hebbian learning. 

1    Introduction 

In decision making tasks different options are compared in order to make a reasonable 
choice out of them. Options usually have emotional responses associated to them 
relating to a prediction of a rewarding or aversive consequence. In decisions such an 
emotional valuing often plays an important role. In recent neurological literature this 
has been related to a notion of value as represented in the amygdala [1, 2, 14, 15, 17]. 
In making decisions experiences with the environment (from the past) play an 
important role. By learning processes the decision making mechanism is adapted to 
these experiences, so that the decision choices made are reasonable or in some way 
rational, given the enviroment reflected in these past experiences. In this sense the 
emotion-related valuing in the amygdala as a basis for decision making may be 
expected to satisfy some rationality criterion. The question to which extent this indeed 
is the case for certain biologically plausible learning models is the focus of this paper. 

The decision model considered involves predictive as-if body loops through feeling 
states in order to reach decisions for selections of actions (e.g., [3, 6, 8]). The type of 
learning considered is Hebbian learning (cf. [10, 12]), in four different variations by 
applying it to different types of connections in the decision model. To assess their 
extent of rationality, a rationality measure is introduced reflecting the environment’s 
behaviour. 

In this paper, in Section 2 the decision model and the different variants of 
adaptivity considered are introduced. Section 3 presents a number of simulation 
results. In Section 4 measures for rationality are discussed, and the different models 
are evaluated. Finally, Section 5 is a discussion. 
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2    The Adaptive Decision Models Addressed 

Traditionally an important function attributed to the amygdala concerns the context of 
fear. However, in recent years much evidence on the amygdala in humans has been 
collected showing a function beyond this fear context. In humans many parts of the 
prefrontal cortex (PFC) and other brain areas such as hippocampus, basal ganglia, and 
hypothalamus have extensive, often bidirectional connections with the amygdala [11, 
15, 18]. A role of amygdala activation has been found in various tasks involving 
emotional aspects [16]. Usually emotional responses are triggered by stimuli for 
which a prediction is possible of a rewarding or aversive consequence. Feeling these 
emotions represents a way of experiencing the value of such a prediction: to which 
extent it is positive or negative. This idea of value is also the basis of work on the 
neural basis of economic choice in neuroeconomics. In particular, in decision-making 
tasks where different options are compared, choices have been related to a notion of 
value as represented in the amygdala [1, 2, 14, 15, 17, 19]. 

Any mental state in a person induces emotions felt by this person, as described in 
[7, 8, 9]; e.g., [9], p. 93:  ‘… few if any exceptions of any object or event, actually 
present or recalled from memory, are ever neutral in emotional terms. Through either 
innate design or by learning, we react to most, perhaps all, objects with emotions, 
however weak, and subsequent feelings, however feeble.’ More specifically, in this 
paper it is assumed that responses in relation to a sensory representation state roughly 
proceed according to the following causal chain for a body loop (based on elements 
from [4, 7, 8]): 

 

sensory representation   →  preparation for bodily response  →  body state modification  →  
sensing body state  →  sensory representation of body state →  induced feeling 

 

In addition, an as-if body loop uses a direct causal relation 
 

preparation for bodily response  →  sensory representation of body state 
 

as a shortcut in the causal chain; cf. [7]. This can be considered a prediction of the 
action effect by internal simulation (e.g., [13]). The resulting induced feeling is a 
valuation of this prediction. If the level of the feeling (which is assumed positive) is 
high, a positive valuation is obtained. 

The body loop (or as-if body loop) is extended to a recursive (as-if) body loop by 
assuming that the preparation of the bodily response is also affected by the level of 
the induced feeling:  

 

induced feeling  →  preparation for  the bodily response   
 

Such recursion is suggested in [8], pp. 91-92, noticing that what is felt is a body state 
which is under control of the person: ‘The brain has a direct means to respond to the 
object as feelings unfold because the object at the origin is inside the body, rather than 
external to it. The brain can act directly on the very object it perceives. (…) The 
object at the origin on the one hand, and the brain map of that object on the other, can 
influence each other in a sort of reverberative process that is not to be found, for 
example, in the perception of an external object.’ In this way the valuation of the 
prediction affects the preparation. A high valuation will strengthen activation of the 
preparation. 
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Informally described theories in scientific disciplines, for example, in biological or 
neurological contexts, often are formulated in terms of causal relationships or in terms 
of dynamical systems. To adequately formalise such a theory the hybrid dynamic 
modelling language LEADSTO has been developed that subsumes qualitative and 
quantitative causal relationships, and dynamical systems; cf. [4]. This language has 
been proven successful in a number of contexts, varying from biochemical processes 
that make up the dynamics of cell behaviour to neurological and cognitive processes; 
e.g. [4, 5]. Within LEADSTO a dynamic property or temporal relation a →→D b denotes 
that when a state property a occurs, then after a certain time delay (which for each 
relation instance can be specified as any positive real number D), state property b will 
occur. Below, this D is the time step Δt. A dedicated software environment is 
available to support specification and simulation. A specification of the model in 
LEADSTO format can be found in Appendix A. 

An overview of the basic decision model involving the generation of emotional 
responses and feelings is depicted in Fig. 1. This picture also shows representations 
from the detailed specifications explained below. However, note that the precise 
numerical relations are not expressed in this picture, but in the detailed specifications 
below, through local properties LP0 to LP6. 

 

Fig. 1. Overview of the model for decision making evaluated from a rationality perspective 

Note that the effector state for bi combined with the (stochastic) effectiveness of 
executing bi in the world (indicated by effectiveness rate λi between 0 and 1) activates 
the sensor state for bi via body loop as described above. By a recursive as-if body loop 
each of the preparations for bi generates a level of feeling for bi which is considered a 
valuation of the prediction of the action effect by internal simulation. This in turn 
affects the level of the related action preparation for bi. Dynamic interaction within 
these loops results in equilibrium for the strength of the preparation and of the feeling, 
and depending on these values, the action is actually activated with a certain intensity. 
The specific strengths of the connections from the sensory representation to the 
preparations, and within the recursive as-if body loops can be innate, or are acquired 
during lifetime. The computational model is based on such neurological notions as 
valuing in relation to feeling, body loop and as-if body loop. The adaptivity in the 

srs(bi) feeling(bi)

sensor_state(w)

sensor_state(bi)

world_state(w) srs(w) prep_state(bi) effector_state(bi)ω1i
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model is based on Hebbian learning. The detailed specification of the model is 
presented below starting with how the world state is sensed. 

 
LP0  Sensing a World State 
If         world state property w occurs of level V1 
    and  the sensor state for w occurs has level V2 
then      the sensor state for w will have level V2 + γ [V1 – V2] Δt. 

 _ ( ) 
 = γ [world_state(w)  - sensor_state(w)]  (1) 

 

From the sensor state, sensory representation is updated by dynamic property LP1. 
 

LP1  Generating a Sensory Representation for a Sensed World State 
If        the sensor state for world state property w has level V1,  
    and the sensory representation for w has level V2 
then    the sensory representation for w will have level V2 + γ [V1 – V2] Δt. 

 ( ) 
 = γ [sensor_state(w)  - srs(w)] (2) 

 

The combination function h to combine two inputs which activate a subsequent state 
uses the threshold function th thus keeping the resultant value in the range [0, 1] : 

 

th(σ, τ, V) = ( ) (1 + ) (3) 
 

where σ is the steepness and τ is the threshold value. The combination function is: 
 

h(σ, τ, V1, V2, ω1, ω2) =  th (σ, τ, ω1V1 + ω2V2) (4) 
 

where V1 and V2 are the current activation level of the states and ω1 and ω2 are the 
connection strength of the links from these states. 

Dynamic property LP2 describes the update of the preparation state for bi from the 
sensory representation of w and feeling of bi. 

 

LP2  From Sensory Representation and Feeling to Preparation of a Body State 
If           a sensory representation for w with level V occurs  
    and   the feeling associated with body state bi has level Vi 
    and   the preparation state for bi has level Ui 
     and   ω1i is the strength of the connection from sensory representation for w to preparation for bi 
     and   ω2i is the strength of the connection from feeling of bi to preparation for bi 
     and    σi    is the steepness value for preparation of bi and  τi    is the threshold value for preparation of bi 
     and    γ1    is the person’s flexibility for bodily responses 
then       after Δt  the preparation state for body state bi will have level Ui + γ1 [h(σi, τi, V, Vi, ω1i, ω2i ) - Ui] Δt. 

 ( ) 
 = γ [ h(σi, τi, srs(w), feeling(bi), ω1i, ω2i)  - preparation(bi) ] (5) 

 

Dynamic property LP3 describes the update of the sensory representation of a body 
state from the respective preparation state and sensor state. 

 

LP3  From Preparation and Sensor State to Sensory Representation of a Body 
State 
If     preparation state for bi has level Xi 

and sensor state for bi has level Vi 
and  the sensory representation for body state bi has level Ui 
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and  ω3i is the strength of the connection from preparation state for bi to sensory representation for bi 
and  σi     is the steepness value for sensory representation of bi 

and  τi     is the threshold value for sensory representation of bi 
and  γ2    is the person’s flexibility for bodily responses 

then     after Δt  the sensory representation for bi will have level Ui + γ2 [ h(σi, τi, Xi, Vi, ω3i, 1)- Ui ] Δt. 
 ( )

 = γ [ h(σi, τi, preparation(bi), sensor_state(bi), ω3, 1) - srs(bi) ] (6) 
 

Dynamic property LP4 describes update of feeling bi from the sensory representation. 
 

LP4 From Sensory Representation of a Body State to Feeling 
If   the sensory representation for body state bi has level V1,  

and bi is felt with level V2 
then  bi will be felt with level V2 + γ [V1 – V2] Δt). 

 ( )
 = γ [srs(bi) - feeling(bi)] (7) 

 

LP5 describes how the effector state for bi is updated from the preparation state. 
 

LP5 From Preparation to Effector State 
If   the preparation state for bi has level V1,  

and the effector state for body state bi has level V2. 
then   the effector state for body state bi will have level V2 + γ [V1 – V2] Δt. 

 _ ( ) 
 = γ [preparation_state(bi) - effector_state(bi)] (8) 

 

LP6 describes update of the sensor state for bi from the effector state for bi. 
 

LP6  From Effector State to Sensor State of a Body State 
If   the effector state for bi has level V1,  

and λi is world preference/ recommendation for the option bi 
and  the sensor state for body state bi has level V2,  

then   the sensor state for bi will have level  V2 + γ [λi V1 – V2] Δt 
 _ ( ) 

 = γ [λi effector_state(bi) - sensor_state(bi)] (9) 
 

For the considered case study it was assumed that three options are available to the 
agent and the objective is to see how rationally an agent makes its decisions using a 
given adaptive model: under constant as well as in stochastic world characteristics 
and in both cases static as well as changing worlds. The dynamic properties LP7 to 
LP9 describe a Hebbian learning mechanism for the connection strengths  

(A) from sensory representation for w to preparation for option bi  
(B) from feeling bi to preparation for bi 
(C) from preparation for bi to sensory representation of bi 

These have been explored separately (A), (B), or (C), and in combination (ABC). 
 

LP7 Hebbian Learning (A): Connection from Sensory Representation of w to 
Preparation of bi 
If   the connection from sensory representation of w to preparation of bi has strength ω1i 

and the sensory representation for w has level V  
and  the preparation of bi has level Vi  
and  the learning rate from sensory representation of w to preparation of bi is η 



222 J. Treur and M. Umair 

and  the extinction rate from sensory representation of w to preparation of bi is ζ 
then      after Δt  the connection from sensory representation of w to preparation of bi will have  
 strength ω1i + (ηVVi (1 - ω1i) - ζω1i) Δt. 
 

1
 = ηsrs(w)preparation(bi) (1 - ω1i) - ζω1i (10) 

 

LP8  Hebbian Learning (B): Connection from Feeling bi to Preparation of bi 

If   the connection from feeling associated with body state bi to preparation of bi has strength ω2i 
and the feeling for bi has level Vi  
and  the preparation of bi has level Ui  
and  the learning rate from feeling of bi to preparation of bi is η 
and  the extinction rate from feeling of bi to preparation of bi is ζ 

then      after Δt  the connection from feeling of bi to preparation of bi will have  
 strength ω2i + (ηViUi (1 - ω2i) - ζω2i) Δt. 

2
 = η feeling(bi)preparation(bi) (1 - ω2i) - ζω2i (11) 

LP9 Hebbian Learning (C): Connection from Preparation of bi to Sensory 
Representation of bi 

If   the connection from preparation of bi to sensory representation of bi has strength ω3i 
and the preparation of bi has level Vi    and  the sensory representation of bi has level Ui  
and  the learning rate from preparation of bi to sensory representation of bi is η 
and  the extinction rate from preparation of bi to sensory representation of bi is ζ 

then    after Δt  the connection from preparation of bi to sensory representation of bi will have 
 strength ω3i + (ηViUi (1 - ω3i) - ζω3i) Δt. 

 

3
 = η preparation(bi) srs(bi) (1 - ω3i) - ζω3i (12) 

3   Simulation Results 

In this section some of the simulation results, performed using numerical software, 
are described in detail. The simulation results address different scenarios reflecting 
different types of world characteristics, from constant to stochastic world, and from 
static to changing world. Moreover, learning the connections was done one at a time 
(A), (B), (C), and learning multiple connections simultaneously (ABC). Due to space 
limitation the graphs for only (A) are shown here. A summary of the results is given 
in Table 1. Results for the rationality factors are presented in the next section. For all 
simulation results shown, time is on the horizontal axis whereas the vertical axis 
shows the activation level of the different states. Step size for all simulations is ∆t = 1. 
Fig. 2 shows simulation results for the model under constant, static world 
characteristics: λ1 = 0.9, λ2 = 0.2, and λ3 = 0.1 . Other parameters are set as: learning 
rate η = 0.04, extinction rate ζ = 0.0015, initial connection strength ω2i= ω3i= 0.8, 
speed factors γ = 1, γ1 = 0.5, γ2 = 1, steepness σ = 2 and threshold τ = 1.2 for 
preparation state, and σ = 10 and τ = 0.3 for sensory representation of bi. For initial 
80 time units the stimulus w is kept 1 and for next 170 time units it is kept 0 and same 
sequence of activation and deactivation for stimulus is repeated for rest of simulation. 
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Fig. 2. Constant World:  (a) Connection strengths (A)  (b) Effector States for bi 
Initial values ω11= ω12= ω13= 0.5; η= 0.04,  ζ= 0.0015      

Moreover it depicts the situation in which only one type of links (ω1i) is learned as 
specified in LP7 using the Hebbian approach (A) for the connection from sensory 
representation of w to preparation state for bi. It is shown that the model adapts the 
connection strengths of the links ω1i according to the world characteristics given by λi. 
So ω11 strengthens more and more over time, resulting in the higher activation level 
of the effector state for b1 compared to the activation level of the effector states for the 
other two options b2 and b3. 

Similar experiments were carried out for a stochastic world with four different 
cases as mentioned earlier. To simulate the stochastic world, probability distribution 
functions (PDF) were defined for λi according to a Normal Distribution. Using these 
PDFs, the random numbers were generated for λi limiting the values for the interval 
[0, 1] with μ1=0.9, μ2=0.2 and μ3=0.1 for λi respectively. Furthermore the standard 
deviation for all λi was taken 0.1. Fig. 3 shows the world state w and stochastic world 
characteristics λi. Fig. 4 shows the simulation results while learning is performed for 
the links (A) from sensory representation of w to preparation state for bi.  

 
 

 

Fig. 3. Stochastic World 

It can be seen from these results that also in a stochastic scenario the agent model 
successfully learnt the connections and adapted to the world characteristics rationally 
with results quite similar to the results for a static world. 
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Fig. 4. Stochastic World: (a) Connection strengths (A)  (b) Effector States  
Initial values ω11= ω12= ω13= 0.5; η= 0.04, ζ= 0.0015     

Another scenario was explored in which the (stochastic) world characteristics were 
changing drastically from μ1=0.9, μ2=0.2 and μ3=0.1 for λi respectively to μ1=0.1, 
μ2=0.2 and μ3=0.9 for λi respectively with standard deviation of 0.1 for all. Fig. 5 and 
Fig. 6 show the results for such a scenario. The results show that the agent has 
successfully adapted to the changing world characteristics over time. The initial 
settings in this experiment were taken from the previous simulation results shown in 
Figs. 3 and 4 to keep the continuity of the experiment. It can be observed that the 
connection strength for option 3 becomes higher compared to the other options, and 
consequently the value of the effector state for b3 becomes higher than for the other 
two by the end of experiment. 

 

 

Fig. 5. World State 

 

 

Fig. 6. Changing World: (a) Connection strengths (A)   (b) Effector States  
Initial values ω11=0.78, ω12= 0.53, ω13= 0.52;  η= 0.04,ζ= 0.0015  
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Table 1. Overview of the simulation results for all links (A), (B), (C) and (ABC) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

Similar results were observed for all other cases (B), (C), and (ABC) as 
summarised in Table 1. Note that the table contains the values of different connection 
strengths and the activation level of effector states after the completion of simulation 
experiments. This shows a rational behavior of the agent in this particular scenario. 

4   Evaluating Agent Models on Rationality 

In the previous section it was shown that the agent model behaves rationally in 
different scenarios. These scenarios and its different cases are elaborated in detail in 
the previous section, but the results were assessed with respect to their rationality in a 
qualitative and rather informal manner. For example, no attempt was made to assign 
an extent or level to the rationality observed during these experiments. The current 
section addresses this and to this end two different formally defined measures to 
assess the extent of the rationality are introduced; one rationality measure is based on 
a discrete scale and the other one on a continuous scale.  

 
Method 1 (Discrete Rationality Measure) 

The first method presented is based on the following point of departure: an agent 
which has the same respective order of effector state activation levels for the different 
options compared to the order of world characteristics λi will be considered highly 
rational. So in this method the rank of the average value λi at any given time unit is 

Link Scenario ωx1 ωx2 ωx3 ES1 ES2 ES3

S tatic 0.78 0.53 0.52 0.56 0.15 0.14

S tocastic 0.78 0.53 0.52 0.56 0.15 0.14

Change 
World

0.40 0.38 0.80 0.09 0.09 0.58

S tatic 0.89 0.58 0.46 0.65 0.38 0.31

S tochastic 0.89 0.59 0.47 0.65 0.39 0.32

Change 
World

0.42 0.57 0.89 0.30 0.37 0.65

S tatic 0.88 0.29 0.23 0.63 0.28 0.26

S tochastic 0.88 0.29 0.23 0.63 0.28 0.27

Change 
World

0.04 0.08 0.87 0.25 0.26 0.63

0.81 0.55 0.54

0.85 0.30 0.29

0.85 0.30 0.29

0.80 0.55 0.54

0.84 0.30 0.29

0.84 0.30 0.29

0.64 0.64 0.94

0.02 0.03 0.96

0.02 0.03 0.96

A

0.13

S tocastic 0.57 0.13 0.13

Changed 
World

0.16 0.16 0.75

B

C

ABC

S tatic 0.59 0.13
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determined, and compared with the rank of the respective effector state levels. More 
specifically, the following formula is used to determine the irrationality factor IF.  

 = ( ( ) ( )) (13) 

 

where n is the number of options available. This irrationality factor tells to which 
extent the agent is behaving rationally in the sense that the higher the irrationality 
factor IF is, the lower is the rationality of the agent. It is assumed that the there is 
uniqueness in ranking and none of the two values assign a similar rank. To calculate 
the discrete rationality factor DRF, the maximum possible irrationality factor Max. IF 
can be determined as follows. 

 Max. IF  =  ( +1)2 (2) (14) 
 

Here ceiling(x) is the first integer higher than x. Note that Max. IF  is approximately ½n2. As a higher IF means lower rationality, the discrete rationality factor DRF is 
calculated as: 

 DRF  = 1 - .  (15) 
 

On this scale, for each n only a limited number of values are possible; for example, 
for n = 3 three values are possible: 0, 0.5, and 1. In general ½ Max. IF  +1 values are 
possible, which is approximately ¼n2 + 1. As an example, suppose during a 
simulation average values of λ1= 0.107636, λ2 = 0.203044, and λ3 = 0.888522 are 
given, whereas the effector state values are ES1=0.170554, ES2= 0.12367 and ES3 = 
0.43477 at a given time point. So according to the given data the world’s ranks will be 
3, 2, 1 for λ1, λ2, λ3 and the agent’s ranks 2, 3, 1 for ES1, ES2, ES3 respectively. So 
according to the given formulas IF= 2, Max. IF = 4 and DRF = 0.5. So in this 
particular case at this given time point the agent is behaving rationally for 50%. 

 

Method 2 (Continuous Rationality Measure)  

The second method presented is based on the following point of departure: an agent 
which receives the maximum benefit will be the highly rational agent. This is only 
possible if ESi is 1 for the option whose λi is the highest. In this method to calculate 
the continuous rationality factor CRF, first to account for the effort spent in 
performing actions, the effector state values ESi  are normalised as follows. 

 nESi = ∑  (16) 
 

Here n is number of options available. Based on this the continuous rationality factor 
CRF is determined as follows, with Max(λi) the maximal value of the different λi. 

 

CRF  =  
∑ ( )  (17) 

 

This method enables to measure to which extent the agent is behaving rationally in a 
continuous manner. For the given example used to illustrate the previous method 
CRF= 0.6633. So according to this method the agent is considered to behaving for 
66.33% rationally in the given world.  
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Fig. 7. Rationality during learning ω1i (A)  Fig. 8. Rationality during learning ω2i (B) 

 

 

 Fig. 9. Rationality during learning ω3i (C)   Fig. 10. Rationality for learning ω1i, ω2i, ω3i (ABC) 

 

Fig. 7 to Fig. 10 show the two types of rationality (depicted as percentages) of the 
agent for the different scenarios with changing stochastic world. In these figures the  
first 250 time points show the rationality achieved by the agent just before changing 
world characteristics drastically for the simulations shown from Fig. 4. From time 
point 250 onwards, it shows the rationality of the agent after the change has been 
made (see Fig. 6). It is clear from the  results (Fig. 7 to Fig. 10) that the rationality 
factor of the agent in all four cases improves over time for the given world. 

5   Discussion 

This paper focused on how the extent of rationality of an adaptive decision model can 
be analysed. In particular, this was explored for variants of a decision model based on 
valuing of predictions involving feeling states generated in the amygdala; e.g., [1, 2, 6, 
8, 14, 15, 17]. The adaptation was based on using four different variations of Hebbian 
learning; cf. [10, 12].  

To assess the extent of rationality with respect to given world characteristics, two 
measures were introduced, and using these extents of rationality of the different 
models over time were analysed. It was shown how by the learning processes indeed a 
high level of rationality was obtained, and how after a major world change after some 
delay this rationality level is re-obtained. It turned out that emotion-related valuing of 
predictions in the amygdala as a basis for adaptive decision making according to 
Hebbian learning satisfies reasonable rationality measures.  
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Appendix A  Model Specifications in LEADSTO Format 
 

 

LP0  Sensing a world state
world_state(w, V1) & sensor_state(w, V2)  sensor_state(w, V2 + [V1 – V2] t)
LP1  Generating a sensory representation for a sensed world state
sensor_state(w, V1) &  srs(w, V2) srs(w, V2 + [V1 – V2] t)
LP2  From sensory representation and feeling to preparation of a body state
srs(w, V)  &  feeling(bi, Vi)  &  preparation_state(bi, Ui) &  
has_connection_strength(srs(w), preparation(bi), 1i)  &  
has_connection_strength(feeling(bi), preparation(bi), 2i)  & 
has_steepness(prep_state(bi), σi) & has_threshold(prep_state(bi), τi)

preparation(bi, Ui + 1 (h(σi, τi, V, Vi, 1i, 2i) - Ui) t)
LP3  From preparation  and sensor state to sensory representation of a body state
preparation_state (bi, Xi)  &  sensor_state(bi, Vi)  &  srs (bi, Ui) & 
has_connection_strength(preparation(bi), srs(bi), 3i)  &  has_steepness(srs(bi), σi) &
has_threshold(srs(bi), τi)  srs(bi, Ui + 2 (h(σi, τi, Xi, Vi, 3i, 1) - Ui) t)
LP4 From sensory representation of a body state to feeling
srs(bi, V1)  & feeling(bi, V2) feeling(bi, V2 + [V1 – V2] t)
LP5 From preparation to effector state
preparation_state(bi, V) & effector_state(bi, V2) effector_state(bi, V2 + [V1 – V2] t))
LP6  From effector state to sensor state of a body state
effector_state(bi,V1) & effectiveness_rate(bi, λi) & sensor_state(bi,V2)

sensor_state(bi, V2 + [λi V1 – V2] t)
LP7 Hebbian learning (A): connection from sensory representation of w to preparation of bi
has_connection_strength(srs(w), preparation(bi), 1i) &  srs(w, V)  &  preparation(bi, Vi)  &  
has_learning_rate(srs(w), preparation(bi), )  &   has_extinction_rate(srs(w), preparation(bi), )

   has_connection_strength( w, bi, 1i + ( VVi (1 - 1i) - 1i) t)
LP8  Hebbian learning (B): connection from feeling bi to preparation of bi
has_connection_strength(feeling(bi), preparation(bi), 2i) &  feeling(bi, Vi)  &  preparation(bi, Ui)  &  
has_learning_rate(feeling(bi), preparation(bi), )  &  has_extinction_rate(feeling(bi), preparation(bi), )

   has_connection_strength(feeling(bi), preparation(bi), 2i + ( ViUi (1 - 2i) - 2i) t)
LP9 Hebbian learning (C): connection from preparation of bi to sensory representation of bi
has_connection_strength(preparation (bi), srs(bi), 3i) &  preparation (bi, Vi)  &  srs(bi, Ui)  &  
has_learning_rate(preparation (bi), srs(bi), )  &   has_extinction_rate(preparation (bi), srs(bi), )

   has_connection_strength(preparation (bi), srs(bi), 3i + ( ViUi (1 - 3i) - 3i) t)
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Abstract. This paper proposes a novel architecture for continuous
spatio-temporal data modeling and pattern recognition utilizing evolv-
ing probabilistic spiking neural network ’reservoirs’ (epSNNr). The paper
demonstrates on a simple experimental data for moving object recogni-
tion that: (1) The epSNNr approach is more accurate and flexible than
using standard SNN; (2) The use of probabilistic neuronal models is supe-
rior in several aspects when compared with the traditional deterministic
SNN models, including a better performance on noisy data.

Keywords: Spatio-Temporal Patterns, Spiking Neural Network, Reser-
voir Computing, Liquid State Machine.

1 Introduction

Video information is spatio-temporal (ST) in nature and the problem of ST pat-
tern recognition (STPR) is a challenging task in the machine learning domain.
Existing statistical and artificial neural networks machine learning approaches
fail to model the complex ST dynamics optimally, since they either process spa-
tial and temporal component separately or integrate them together in a simple
way, losing the significant correlation information present in the ST data. Many
of the existing methods process data on a frame-by-frame bases, rather than as
whole spatio-temporal patterns.

Hidden Markov Models (HMM) is among the most popular statistical ap-
proaches, widely used for processing time series [1]. HMM are often used either
with traditional neural networks [2] or on its own [3]. However, HMM have some
limitations when used for multiple times series that have spatial components
too [4].
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There are other emerging approaches such as deep machine learning which
involves the combination of Deep Belief Networks (DBNs - Generative Model)
and Convolutional Neural Networks (CNNs - Discriminative Model) [5]. The
proposed DBNs model nevertheless carries out learning in a frame by frame
manner, rather than learning the entire STD patterns.

The brain inspired SNN have the ability to learn spatio-temporal patterns by
using trains of spikes (which are spatiotemporal events) [6]. Furthermore, the
3D topology of a spiking neural network reservoir has the potential to capture a
whole STD pattern at any given time point. The neurons in this reservoir system
transmit spikes via synapses that are dynamic in nature, collectively forming a
ST memory [7]. Often, learning rules such as Spike-Time-Dependent-Plasticity
(STDP) [8] are commonly utilized in SNN models.

Recently, several SNN models and their applications have been developed by
numerous research groups [9],[10] as well as by our research group [11], [12], [13].
However, they still process ST data as a sequence of static feature vectors ex-
tracted from segments of data, without utilizing the SNN’s capability of learning
whole ST patterns.

In order to address the limitations of the current machine learning techniques
for ST pattern recognition from continuous ST data, we have developed a novel
SNN architecture called evolving probabilistic SNN reservoir (epSNNr).

2 The Proposed epSNNr Architecture

The proposed epSNNr architecture is characterised in principle by the following
characteristics:

– its structure is evolving from input data;
– it uses a probabilistic model of a neuron;
– it captures in its internal space ST patterns from data that can be classified

in an output module;

The design of the overall pSNNr architecture is illustrated in Fig.1, where the
data acquisition part represents the video and/or audio data stream along with
the spike encoding module. The data processing module represents several com-
ponents/modules where dimensional transformation and learning takes place.

The connections between neurons are initially set using a Gaussian function
centered at each spatially located neuron, so that closer neurons are connected
with a higher probability. The input information is transformed into trains of
spikes before being submitted to the epSNNr. Continuous value input variables
can be transformed into spikes using different approaches:

– population rank coding [14],[11],[12];
– thresholding the input value, so that a spike is generated if the input value

is above a threshold;
– thresholding the difference between two consecutive values of the same vari-

able over time as it is in the artificial cochlea and artificial retina devices
[15],[16].
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Fig. 1. A generic epSNNr architecture for ST data modeling and pattern recognition

The input information is entered in the epSNNr continuously and its state is
evaluated after a ’chunk’ of the input stream is entered, rather than after every
single time frame.

The epSNNr uses a probabilistic neural model as explained in the next section.
The current state of the epSNN ’reservoir’ S(t) is captured in an output module.
For this purpose dynamically created spatio-temporal clusters C1, C2, . . . Ck of
close (both in space and time) neurons, can be used. The state of each cluster Ci

at a time t is represented by a single number, reflecting on the spiking activity
at this time moment of all neurons in the cluster, which is interpreted as the
current spiking probability of the cluster. The states of all clusters define the
current reservoir state S(t). In the output function, the cluster states are used
differently for different tasks.

3 Probabilistic Neuronal Models in the epSNNr as
Extensions of the LIF Model

Models of probabilistic neurons have been proposed in several studies, e.g. in the
form of dynamic synapses [16], the stochastic integration of the post-synaptic
potential [17] and stochastic firing thresholds [18]. In [13] a probabilistic neuronal
model is introduced that has three probabilistic parameters to extend the LIF
model:

– pcj,i(t) is the probability that a spike emitted by neuron nj will reach neuron
ni at a time moment t trough the connection between nj and ni ;

– psj,i(t) is the probability of the synapse sj,i to contribute to the post synaptic
potential PSPi(t) after the latter has received a spike from neuron nj ;

– pi(t) is the probability parameter for the neuron ni to emit an output spike
at time t, once the total post-synaptic potential PSPi(t) has reached a value
above the PSP threshold (a noisy threshold).

As a partial case, when all or some of the probability parameters are fixed to
”1”, the pSNM can be reduced to the LIF. The LIF neuron is arguably the
best known model for simulating spiking networks. It is based on the idea of
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an electrical circuit containing a capacitor with capacitance C and a resistor
with resistance R, where both C and R are assumed to be constant. The model
dynamics are described by the following differential equation:

τm
du

dt
= −u(t) +RI(t) (1)

The constant τm is called the membrane time constant of the neuron. Whenever
the membrane potential u crosses a threshold v from below, the neuron fires a
spike and its potential is reset to a resting potential ur. It is noteworthy that
the shape of the spike itself is not explicitly described in the traditional LIF
model. Only the firing times are considered to be relevant. We will introduce here
only three types of probabilistic models considering only the third probability
parameter pi(t) of the probabilistic model from [13]. The rest of the probability
parameters are not considered in this study or assumed to be set to 1.

We define a stochastic reset (SR) model that replaces the deterministic reset
of the potential after spike generation with a stochastic one. Let t(f) : u(t(f)) = v
be the firing time of a LIF neuron, then

lim
t→t(f),t>t(f)

u(t) = N(ur, σSR) (2)

defines the reset of the post-synaptic potential. N(ur, σSR) is a Gaussian dis-
tributed random variable with mean μ and standard deviation σ. Variable σST

represents a parameter of the model.
We define two stochastic threshold models that replace the constant firing

threshold v of the LIF model with a stochastic one. In the step-wise stochastic
threshold (ST) model, the dynamics of the threshold update are defined as

lim
t→t(f),t>t(f)

v(t) = N(v0, σST ) (3)

Variable σST represents the standard deviation of the Gaussian distribution N
and is a parameter of the model. According to Eq.2, the threshold is the out-
come of a v0-centered Gaussian random variable which is sampled whenever the
neuron fires. We note that this model does not allow spontaneous spike activity.
More specifically, the neuron can only spike at time t(f) when also receiving a
pre-synaptic input spike at t(f). Without such a stimulus a spike output is not
possible. The continuous stochastic threshold (CT) model updates the thresh-
old continuously over time. Consequently, this model allows spontaneous spike
activity, i.e, a neuron may spike at time even in the absence of a pre-synaptic
input spike . The threshold is defined as an Ornstein-Uhlenbeck process [19]:

τv
dv

dt
= v0 − v(t) + σCT

√
2τvξ(t) (4)

where the noise term ξ corresponds to Gaussian white noise with zero mean and
unit standard deviation. Variable σCT represents the standard deviation of the
fluctuations of v(t) and is a parameter of the model. We note that v(t) has an
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overall drift to a mean value v0 , i.e, v(t) reverts to v0 exponentially with rate
τv, the magnitude being in direct proportion to the distance v0 − v(t).

In this paper we explore the feasibility of using the above three probabilistic
models in an epSNNr for a simple moving object recognition task.

4 Preliminary Experiments on Moving Object
Recognition in the epSNNr

4.1 Goals of the Experimental Study

The aim of this study is to demonstrates the feasibility of the proposed a novel
architecture for continuous ST modeling and pattern recognition utilizing ep-
SNNr. More specifically, in this study we show that: (1) The epSNNr approach
is more accurate and flexible than using standard SNN; (2) The use of probabilis-
tic neuronal models is superior when compared with the traditional deterministic
SNN models, including a better performance on noisy data.

In order to demonstrate the feasibility of the proposed novel architecture, we
have evaluated our approach on a synthetic video dataset that has been described
in the following subsection.

4.2 Synthetic Video Dataset

The synthetic video data set (see Fig.2) consists of 4 different classes having 5
samples in each class. Each class corresponds to the objects trajectory / movement

Samples

Cl
as

se
s

M
oving O

bject D
irection

Synthetic Spatio-Temporal Video Data

tim
e (t)

4x4 Pixels

Fig. 2. The figure above illustrated the synthetic video data. There are four classes
corresponding to the 4 different directions of their movement where each class consists
of 5 samples. The arrow head points towards the direction in which the objects will be
moving.
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(from up to down, left to right, down to up and right to left). Moreover, from
Fig. 2 it can be seen that each of the samples belonging to the same class has
varying amount of noise (distorted shapes). There are in total 20 video sequences
in the dataset. Each of the videos have a frame rate of 25 frames per second with
time span averaging around ≈ 4 seconds. All video sequences are then resized to
4× 4× 4.

Since our goal is to apply our method for action recognition of moving objects.
This particular synthetic data set was designed to test the systems capability of
classifying moving objects based on their trajectory/motion. Furthermore, this
synthetic dataset will also confirm the models feasibility in handling continuous
spatio-temporal data stream where the epSNNr is provided with multiple spikes
as input (i.e. 3 dimensional inputs).

4.3 Design of the Experiment

Similar to [14], we have use the population rank encoding method for transform-
ing the continuous value input variables into spikes. These spikes are then fed
to the epSNN reservoir which results in liquid responses.

It can be seen (from Fig.3) that there are sharp peaks in the peristimulus time
histograms (PSTH). This is due to occurrence of spikes after every repetition.
These spikes are also know as reliable spikes and are useful for training the
algorithms in order to map a particular reservoir response to a desired class
label. Figure 3) shows the raster plot and PSTH produced by Step-wise Noisy
Threshold probabilistic neuronal model for a particular instance belonging to
the four different classes. On acquiring these liquid responses from the last layer
of epSNN reservoir, they are concatenated as state vectors according to their
corresponding classes. On transforming these liquid responses to state vectors,
they are used for training and testing the classifiers.

For our pilot experiment, we have used 5 different types of classifiers as
the readout functions which are namely Naivebayes, Multi-Layered Perceptron
(MLP), Radial Basis Function (RBF), Decision Tree Induction Algorithm (J48)
and Support Vector Machine (SVM). Default parameter settings were used for
each of the classifiers in all our experiments. For MLP, the learning rate has been
set to 0.3, with 64 hidden nodes for 500 epochs. RBF kernel was used for SVM
with gamma value as 0.0 and weights as 1. As for the J48, the confidence factor
used for pruning is 0.25 and the minimum number of instances per leaf is set
to 2.

Due to the sparsity of the data samples in each class, we have used the leave-
one-out cross-validation method for the training and testing of all the five clas-
sifiers. This allows us to test all the samples while being unbiased and with
minimum variance. The experiment was run 10 times and the obtained test re-
sults are averaged. Moreover, no pre-processing steps such as feature selection
were applied on the synthetic video dataset.

Since, one of the purposes of this study is to investigate the feasibility of
epSNNr for spatio-temporal video pattern recognition using different proba-
bilistic neuron models. We have tested our synthetic video dataset with three
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Class 1 Class 2 Class 3 Class 4

Step-wise Noisy Threshold (ST)

Fig. 3. The figure shows the raster plots and PSTH of 4 typical states for the 4 classes
produced by Step-wise Noisy Threshold (ST). The top row shows the raster plot of the
neural response of epSNNr with ST probabilistic neurons recorded in 64 repetitions.
The bottom row presents the corresponding smoothed PSTH for each raster plot. Each
column corresponds to 4 different classes as indicated by the plot labels.

probabilistic neuron models namely, Noisy Reset (NR), Step-wise Noisy Thresh-
old (ST) and Continuous Noisy Threshold (CT) along with the standard Leaky
Integrate and Fire (LIF) neuron model. In order to continuously feed three di-
mensional inputs to the reservoir, the dimensions of the input layer are set as
4 × 4. This input layer dimensions are the same as that of the synthetic video
data. Therefore, there is one input neuron for each pixel at a time.

4.4 Experimental Results

In order to evaluate epSNNr’s performance on different classifiers, the state of
the epSNN ’reservoir’ S(t) is captured in an output module. These captured
liquid state S(t) are then used for training and testing the classifiers. Similarly,
the performances of all the classifiers were also tested without the epSNNr.

From table 1, it can be seen that epSNNr approach is more accurate and
flexible than using standard SNN. Also on an average, the probabilistic neuronal
models performed 7.09% better than the traditional deterministic LIF neuron
model. Furthermore, when compared to the results obtained by the classifiers
without the reservoir, the epSNNr approach average performance was 37.55%
higher. We assume that this is due the epSNNr’s ability to naturally process
spatio-temporal data streams when compared to traditional methods. Also, the
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Table 1. The following table presents the Classification Accuracy (Acc.) and Standard
Deviation (Std. Dev.) for 5 different methods namely Naivebayes, Multi-Layered Per-
ceptron (MLP), Radial Basis Function (RBF), J48 Decision Tree and Support Vector
Machine (SVM)

Methods Without Reservoir With Reservoir
(Classifiers) Acc.(%)/Std. Dev. LIF Model NR Model ST Model CT Model

Naivebayes 36.45 ± 08.3073 48.92 ± 11.3356 65.00 ± 09.4786 75.00 ± 22.9640 78.39 ± 06.6023
MLP 50.00 ± 15.9344 98.75 ± 02.7951 100.00 ± 0.0000 100.00 ± 0.0000 100.00 ± 0.0000
RBF 55.00 ± 08.1490 93.75 ± 10.8253 96.25 ± 05.5902 96.25 ± 03.4233 93.75 ± 06.2500
J48 36.25 ± 06.8465 53.57 ± 17.0240 63.60 ± 11.9486 61.25 ± 16.7705 63.92 ± 17.2511
SVM 46.25 ± 12.1835 81.25 ± 19.2638 80.10 ± 19.3137 83.75 ± 17.4553 77.50 ± 18.0061

probabilistic neuron models further enhance the separability of the reservoir. The
advantage of probabilistic neural model has been well established in previous
studies [15] and it is also apparent from our experiment. From table 1, it can
be seen that our proposed epSNNr approach performs very well especially with
classifiers such as MLP and RBF for this particular dataset.

5 Conclusion and Future Works

This particular pilot study shows epSNNr’s capability of handling continuous
multiple spike injection using probabilistic neuron model. Moreover, the dif-
ference in the recognition rates for the system when compared to the results
obtained by the classifiers without the reservoir, the epSNNr approach average
performance was significantly higher. This proves that the use of probabilistic
neuronal models is superior in several aspects when compared with the tradi-
tional deterministic SNN models, including a better performance on noisy data.
However, further study on the behavior of the epSNNr architecture under dif-
ferent conditions is needed and more experiments are required to be carried out
on benchmark action recognition video datasets.

Several methods will be investigated for the improvement of the epSNNr: Us-
ing dynamic selection of the ’chunk’ of input data entered into the epSNNr; A
new algorithm for an evolving (adaptive) learning in the epSNNr will be devel-
oped. In order to improve the separability of the reservoir, we shall experiment
with Separation Driven Synaptic Modification (SDSM) approach that has been
proposed by [18]. With this approach the viscosity of the reservoir is adjusted by
modifying the synapses of the network. Moreover, it has been well established
that there is a high correlation between accuracy and separability, hence high
separability translates to higher accuracy [18].

Using more complex probabilistic spiking neuron models, such as [13], would
require dynamic optimization of its probabilistic parameters. We intend to use
a gene regulatory network (GRN) model to represent the dynamics of these
parameters in relation to the dynamics of the spiking activity of the epSNNr as
suggested in [20]. Each of the probability parameter, the decay parameter, the
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threshold and other parameters of the neurons, will be represented as a function
of particular genes for na set of genes related to the epSNN model, all genes being
linked together in a dynamic GRN model. Furthermore, various parameters such
as the connection probability, size and shape of the network topology shall also
be tested. In this respect the soft winner-take-all topology will be investigated
[21]. For applications that require on line training we intend to use evolving SNN
classifier [11],[12]. Finally, implementation of the developed models on existing
SNN hardware [22],[23] will be studied especially for on-line learning and object
recognition applications such as intelligent mobile robots [24].
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Abstract. One of the more useful tools for better understanding popu-
lation dynamics is the phase response curve (PRC). Recent physiological
experiments on the PRCs using real neurons showed that different shapes
of the PRCs are generated depending on the perturbation, which has a
finite amplitude. In order to clarify the origin of the nonlinear response
of the PRCs, we analytically derived the PRCs from single neurons by
using a spike response model. We clarified the relation between the sub-
threshold membrane response property and the PRC. Furthermore, we
performed numerical simulations using the Hodgkin-Huxley model and
their results have shown that a nonlinear change of the PRCs is gener-
ated. Our theory and numerical results imply that the nonlinear change
of PRCs is due to the nonlinear element in spike time shift of firing
neurons induced by the finite amplitude of the perturbation stimuli.

Keywords: phase response curve, spike response model, neuron model.

1 Introduction

One of the more useful tools for better understanding population dynamics is the
phase response curve (PRC) [1,2]. We are now able to discuss the responses of
oscillatory neurons to external perturbation stimuli without knowing the inner
state of those neurons by using a phase reduction method.

Recent physiological experiments [3,4,5] on the PRCs using real neurons have
found that different shapes of the PRCs are generated depending on the pertur-
bation, which has a finite amplitude. It is hard to express the nonlinear changes
of the PRCs depending on the amplitudes of the perturbation stimuli when
using the conventional theory for PRCs [1,2] because the amplitudes of the per-
turbation stimuli are assumed to be negligibly small. Therefore, the PRCs must
be derived while taking into account the nonlinearity against the perturbation
stimuli, which has a finite amplitude [3,4,5] .

We would like to figure out what triggers the nonlinearity change of the PRCs
against the perturbation stimuli, which have different amplitudes. We consider
there are a couple of possible reasons for this change. One is the nonlinearity
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c© Springer-Verlag Berlin Heidelberg 2011



Nonlinear Effect on Phase Response Curve of Neuron Model 241

caused by the impulse responses of the neurons, which depend on the ampli-
tude of the perturbation stimuli. The other is the nonlinearity caused by the
shift in spike time of the oscillatory neurons, which depend on the amplitude
of the perturbation stimuli. However, it is unclear how these causes influence
the nonlinear change of the PRCs depending on the perturbation stimuli whose
amplitude is different. We thus are trying to clarify the cause of the change of
the PRCs depending on the amplitude of the perturbation stimuli by using a
mathematical neuron model.

In this study we analytically derive the PRCs with a nonlinearity against the
perturbation stimuli, which has a finite amplitude, by using the spike response
model [6,7], and discuss the influence of the amplitude of the perturbation stim-
uli on the PRCs. In the SRM, the membrane response property found in the
real neurons is described by the kernels. We are able to handle the SRM using
biological plausibility by appropriately setting the kernel. One of the most bio-
logically plausible models is the Hodgkin-Huxley model (HHM) [8], but it is not
analytically tractable because it is described by using simultaneous nonlinear
differential equations. We thus numerically obtained the PRCs from the HHM.
We show the influence of the nonlinearity against the perturbation stimuli whose
amplitude are finite on the PRCs by comparing the PRCs obtained analytically
from the SRM with the PRCs obtained numerically from the HHM. Our results
showed that the main cause of the nonlinear change in the PRCs depending on
the amplitude of perturbation stimuli is due to the nonlinear element in spike
time shift of firing neurons induced by the amplitude of the perturbation stimuli.

This paper is organized as follows. In Sec. 2 we define the SRM and the PRC
and we derive the PRC of the SRM. In Sec. 3 we show the results of our numerical
simulations using different amplitudes of perturbation stimuli, and in Sec. 4 we
make our concluding remarks.

2 Formulation

2.1 Spike Response Model

We describe the dynamics of a spike response model (SRM) [6,7] in this subsec-
tion. The membrane potential of a neuron u(t) at time t in the SRM is described
by,

u(t) = η(t− tf ) +
∫ t−tf

0

κ(s)Iext(t− s)ds. (1)

The neuron fires when the membrane potential u(t) reaches the given thresh-
old. The time tf denotes the recent fired time in Eq. (1). We set the reference
potential of the membrane potential u(t) as the resting potential of the neuron.

The membrane potential u(t) in Eq. (1) consists of two terms in the SRM.
The first term of Eq. (1) expresses the effect of the action potential of the neu-
ron. The action potential is a short electrical pulse when the neuron fires. We
show the kernel η(t− tf ) in Fig. 1 in this paper. We add a perturbation stimulus
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at time t0 to the neuron, which then takes on the resting potential, as shown
in Fig. 1. The neuron fires when the amplitude of the perturbation stimulus is
sufficiently large. We define the kernel η(t − tf ) as the impulse response of the
membrane potential when the neuron fires.

The second term in Eq. (1) expresses the influence of the external inputs on the
membrane potential. When we add an external current Iext(t − s) to the neuron
at time t − s, the membrane potential increases by κ(s) Iext(t − s)ds. The kernel
κ(s) is a proportionality factor for the external currents. The dynamics of the sub-
threshold membrane potential are described by using a convolution function of the
kernel κ(s) and the external inputs Iext(t−s). This kernel κ(s) is presented in Fig.
2. We add a perturbation stimulus with sufficiently small amplitude to the neuron,
which takes on the resting potential at time t, as shown in Fig. 2. This perturba-
tion stimulus causes a change in the dynamics of the membrane potential. When
the amplitude of the perturbation stimulus is a finite value, the membrane poten-
tial of a neuron does not fire and thus decays to the resting potential. We define
the subthreshold dynamics of the membrane potential as κ(s).
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Fig. 1. Schematic of kernel η. A kernel η
is obtained from a action potential (top),
which is caused by a perturbation stim-
ulus (bottom) whose amplitude is suffi-
ciently large at time t0.
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Fig. 2. Schematic of kernel κ. A ker-
nel κ is obtained for an impulse re-
sponse of membrane potential (top) that
is caused by a perturbation stimulus (bot-
tom) whose amplitude is a sufficiently
small at time t0.

We assume the external input Iext(t) is Iext(t) = I0 + εδ(t − t0), by using a
constant current I0 and a perturbation stimulus εδ(t−t0), where δ(·) is a Dirac’s
delta function, and the constant input I0 has a constant value. The perturbation
stimulus εδ(t− t0) is added to a neuron at time t0, where the amplitude of the
stimulus is denoted by ε.

The dynamics of the membrane potential are characterized by the kernel η(t−
tf ) and κ(s) in the SRM [7]. The kernels biologically correspond to the impulse
responses of the membrane potential in real neurons and those in conductance-
based neuron models [6,7]. The SRM reproduces the responses of the membrane
potential of each neuron by relating the membrane potential dynamics of real
neurons to the kernel function of SRM.
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2.2 Analytical Derivation of PRC Using SRM

Phase Response Curve. We describe the phase response curve (PRC) [1,2]
in this subsection. The PRC characterizes how sensitively oscillatory neurons
respond to external perturbation stimuli. We assume in this paper that neurons
periodically fire when induced by a constant current. When we use the external
Iext(t) = I0, the constant current I0 induces the oscillatory firing on neurons. We
add the perturbation stimuli to neurons that periodically fire. We then obtain
the PRCs of neurons from the spike time shift depending on the stimulated time
and the stimulus amplitude.
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Fig. 3. Schematic of response of model neuron. The regular spikes (top, bold line) of
the membrane potential are induced by the external input, which has a constant value.
The perturbation response of the neuron, which spikes periodically (top, dashed line),
is caused by the constant current and the perturbation stimulus whose amplitude is ε.
We obtain a phase response curve (PRC) Z from the spike time shift ΔT (t0, ε).

We explain the external inputs and the membrane potential dynamics of a
model neuron using Fig. 3. The bottom of Fig. 3 shows the external inputs. The
top part of Fig. 3 shows the time course of the membrane potential. When the
external input is a constant current (ε = 0), we set the dynamics of membrane
potential to u0(t),

u0(t) = η(t− tf ) + I0

∫ t−tf

0

κ(s)ds. (2)

The solid line in Fig. 3 denotes the membrane potential u0(t) when added with
the no perturbation stimulus (ε = 0). We set the periodic cycle of the membrane
potential u0(t) at T . The dashed line in Fig. 3 denotes the membrane potential
u(t) when added with the perturbation stimulus (ε �= 0).

As shown by the dashed line at the top in Fig. 3, the perturbation stimulus
εδ(t − t0) induces the time course u(t), which is different from u0(t). When we
add the perturbation stimulus εδ(t − t0) to the neuron, we set the next fired
time at T1(t0, ε). The time T1(t0, ε) depends on the perturbation time t0 and
its amplitude ε. We define the time shift on the neuron induced by the added
perturbation stimulus as

ΔT (t0, ε) = T − T1(t0, ε). (3)



244 M. Iida et al.

The amplitude of the perturbation stimulus ε has a finite value in biological
experiments [3,4,5]. We expand the time shift ΔT (t0, ε) with respect to the
amplitude of the perturbation stimuli ε,

ΔT (t0, ε) = a0(t0) + a1(t0)ε+ a2(t0)ε2 + a3(t0)ε3 + . . . . (4)

We denote the time shift ΔT (t0, ε) in this paper by using the two-dimensional
polynomial function of the amplitude of the perturbation stimulus ε. Here, we
set a0(t0) = 0 because the time shift ΔT (t0, ε) is zero when the amplitude of the
perturbation stimulus ε is zero. We normalize ΔT (t0, ε) by using the period T
and the amplitude of the perturbation stimulus ε, and set the PRC Z(t0) to

Z(t0) =
ΔT (t0, ε)

T ε
. (5)

We define the PRC Z(t0) as follows,

Z(t0) = zl(t0) + zn(t0)ε. (6)

Here, we used the following equations in Eq. (6),

zl(t0) =
a1(t0)
T

, (7) zn(t0) =
a2(t0)
T

. (8)

Equations (7) and (8) denote the linear element zl(t0) and the nonlinear element
zn(t0) of the PRC against the applied perturbation stimuli whose amplitude is
ε, respectively. The linear element zl(t0) corresponds to the infinitesimal PRC
(iPRC) [1,2]. The existing PRCs theories are mostly discussed using iPRC. The
nonlinear element zn(t0) is an element of phase response Z(t0), which cannot be
captured with only the linear response. We discuss the nonlinearity of the PRCs
against the perturbation stimuli by showing zn(t0).

Analytical Derivation of PRC Using SRM. In this subsection, we show
how to analytically derive the PRC of the SRM. We focus on the firing threshold
and the membrane potential of neurons that periodically fire. Figure 4 shows the
schematic diagram used to derive the PRC of the spike response model.

The solid line in Fig. 4 denotes the time course of membrane potential u0(t)
without perturbation stimuli (ε=0). The dashed line in Fig. 4 denotes the time
course of membrane potential u(t) with perturbation stimuli (ε �=0). The mem-
brane potential u(t) shifts only εκ(t− t0) from the membrane potential u0(t) due
to the perturbation stimuli εδ(t− t0). From Eqs. (1) and (2), we obtain

u(t) = u0(t) + εκ(t− t0). (9)

We also discuss the membrane potential at a spiked time. The dot-dashed line in
Fig. 4 denotes the firing threshold. As shown in Fig. 3, the membrane potential
u(t) reaches the firing threshold at time T1 and the membrane potential u(T1) is
the firing threshold. Thus, at spiked time T1, we obtain the following equation,
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Fig. 4. Schematic diagram used to theoretically derive PRC of spike response model.
The time course of a membrane potential without perturbation is shown by u0(t) (solid
line), and the time course of a membrane potential induced by perturbation at time
t0 is shown by u(t) (dashed line). The dashed-dotted line denotes the firing threshold.
The period and the spike time shift is denoted by T and ΔT (t0, ε), respectively. We
introduce more information in the main paragraph.

u(T1) = u0(T1) + εκ(T1 − t0). (10)

The spiked time is denoted T1 = T − ΔT (t0, ε) by using the spike time shift
ΔT (t0, ε). Therefore, we obtain

u(T1) = u0(T −ΔT (t0, ε)) + εκ(T −ΔT (t0, ε)− t0). (11)

On the other hand, the membrane potential u0(t) without perturbation stimuli
reaches the firing threshold every period T . Since the membrane potential u0(T )
at time T is the firing threshold, we obtain u0(T ) = u(T1). Thus, we obtain as
follows,

u0(T ) = u0(T −ΔT (t0, ε)) + εκ(T −ΔT (t0, ε)− t0). (12)

We expand the first and second terms of Eq. (12) as follows,

u0(T −ΔT (t0, ε)) = u0(T )−
(

d
dt
u0(t)
∣∣∣∣
t=T

)
ΔT (t0, ε) + · · · , (13)

κ(T −ΔT (t0, ε)− t0) = κ(T − t0)−
(

d
ds
κ(s)
∣∣∣∣
s=T−t0

)
ΔT (t0, ε) + · · · .(14)

We substitute ΔT (t0, ε) = T
(
zl(t0)ε + zn(t0)ε2

)
, which is obtained from Eqs.

(5) and (6), and organize it as ε, and then obtain the following,

Tu(1)zl(t0)− κ(0)(t0) +(
Tu(1)zn(t0)− u(2)z1(t0)n + κ(1)(t0)zl(t0)

)
ε+ O(ε2) = 0 (15)

where O(ε2) denotes the second or more dimensions of ε.
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Here, we use the following notations:

u(1) =
d
dt
u0(t)
∣∣∣∣
t=T

, (16) u(2) =
1
2

d2

dt2
u0(t)
∣∣∣∣
t=T

, (17)

κ(0)(t0) = κ(T − t0), (18) κ(1)(t0) =
d
ds
κ(s)
∣∣∣∣
s=T−t0

. (19)

Therefore, we obtain zl(t0) and zn(t0) as

zl(t0) =
κ(0)(t0)
Tu(1)

, (20)

zn(t0) =
κ(0)(t0)
Tu(1)

(
u(2)κ(0)(t0)− u(1)κ(1)(t0)

(u(1))2
ε

)
. (21)

Thus, we obtain the PRC Z(t0) as,

Z(t0) =
κ(0)(t0)
Tu(1)

(
1 +

u(2)κ(0)(t0)− u(1)κ(1)(t0)
(u(1))2

ε

)
. (22)

Therefore, we have analytically derived the PRC using the SRM. In this paper,
we regard the kernel κ(s) as a linear response of the amplitude of the perturba-
tion stimuli ε, and are able to similarly discuss when the kernels are dependent
on the amplitude of the perturbation stimuli ε. The relation between the PRCs
and the membrane properties of neurons has been analytically clarified using the
PRCs described by the kernels of the SRM.

Moreover, from Eq. (22),when the amplitude of perturbation stimuli ε is neg-
ligibly small, the PRC Z(t0) corresponds to the linear response such as iPRC.
When the amplitude of perturbation stimuli ε is not negligibly small, the PRC
Z(t0) changes depending on its amplitude ε.

3 Verification Using Conductance-Based Model

In this section, we investigate the change of the kernels of the SRM and the
change in the spike times against the perturbation stimuli by using numerical
simulations, respectively, to find the main cause of the nonlinear change of PRCs.
We performed numerical simulations on the conductance-based model, and ex-
amine the PRCs dependency on the amplitude of the perturbation stimuli in
Sec. 3.1. In Sec. 3.2, we compare the PRCs obtained from our theory that were
derived in Sec. 2.2 with those that are obtained directly from the conductance-
based model, using perturbation stimuli whose amplitudes are different. In Sec.
3.3, we show the difference presented by the PRCs that are obtained from the
theory against the perturbation stimuli and the difference presented by the
PRCs that are obtained directly from the conductance-based model against
the perturbation stimuli. We also investigate the cause of the nonlinear change of
the PRCs.
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3.1 Derivation of PRC of SRM

Conductance-based models are biological plausible neuron models. However,
they are hard to analytically handle because they are nonlinear models. In this
paper, we perform the following numerical simulations using the conductance-
based models [8,9]. The membrane potential V obeys the following equation:

Cm
dV
dt

= −INa − IK − IL + Iext, (23)

where Cm = 1μ F/cm2 and Iext are the injected current (in μA/cm2).
The sodium, potassium and leaky currents of the Hodgkin-Huxley Model

(HHM) [8] are expressed by INa, IK and IL in Eq. (23), respectively.
The external input Iext(t) is assumed to be a sum of the constant current and

a perturbation stimulus, Iext(t) = I0 + εδ(t− t0), as given in Sec. 2.2. We added
the perturbation stimuli to the neurons and obtained the PRCs of the neurons
from the time shift, as shown in Fig. 3.

We obtain the PRCs with the perturbation stimuli that have different ampli-
tudes (ε=0.01 and 0.1), respectively, and Fig. 5A shows the PRCs of the SRM.
The pluses (+) denote the PRCs of the HHM with the perturbation stimuli
whose amplitude ε is 0.01. The crosses (×) denote the PRCs of the HHM with
the perturbation stimuli whose amplitude ε is 0.1. The horizontal axis shows the
phase θ(θ∈ (0.5,1.0]) when the neuron is perturbed, and a phase θ corresponds to
t0/T , where t0 and T expresses the perturbed time and the period, respectively.
The vertical axis shows the PRC Z(θ). We show 0.5 < θ < 1.0 in Fig. 5A. We
find that the PRCs of the HHM at 0.8 < θ < 1.0 changes when the amplitude
of the perturbation stimuli ε changes,which is shown in Fig. 5A. Thus, we find
the maximum value of the PRC when the amplitude of the perturbation stimuli
increases. We also find the nonlinear dependence of the PRCs on the amplitude
of the perturbation stimuli in the numerical simulation using the HHM.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0.5  0.6  0.7  0.8  0.9  1

Z(
θ

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0.5  0.6  0.7  0.8  0.9  1

θ

A B

Fig. 5. (A) Numerically obtained PRCs of HHM. The amplitudes of the perturbation
stimuli ε are ε = 0.01 (plus, +) and ε = 0.1 (cross, ×). (B) Theoretically derived PRCs
using kernel of SRM that is estimated from HHM. The amplitude of the perturbation
stimuli ε are ε = 0.01 (solid line) and ε = 0.1 (dashed line). In A and B, the horizontal
axis denotes the phase θ(θ∈ (0.5,1.0]) when the neuron is perturbed, and a phase θ
corresponds to t0/T , where t0 and T expresses the perturbed time and the period,
respectively. The vertical axis shows the PRC Z(θ).
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3.2 Comparison of Derived Theory Using Conductance-Based
Models

We compose the PRCs by using the theory presented in Sec. 2.1. Figure 5A
and Fig. 5B shows the PRCs that are derived by using the kernels of the SRM.
We estimate the kernels of the SRM by using the perturbation stimuli whose
amplitude ε is 2.1× 10−3 from the conductance-based model defined in Sec. 3.1.

In Fig. 5B, as with Fig. 5A, we obtain the PRCs when setting the amplitude of
the perturbation stimuli (ε) at 0.1 and 0.01. The solid line denotes the PRCs of
the SRM when the amplitude of the perturbation stimuli ε is 0.01. The dashed
line denotes the PRCs of the SRM when the amplitude of the perturbation
stimuli ε is 0.1. We show the PRCs for 0.5 < θ < 1.0 . We found that the PRCs
of the SRM change around 0.8 < θ < 1.0 when the amplitude of perturbation
stimuli changes. We also confirmed that the maximum value of the PRCs changes
when the amplitude of the perturbation stimuli increases. We have verified that
the PRCs change depending on the amplitude of the perturbation stimuli using
the solid and dashed lines in Fig. 5B.

By paralleling between Figs. 5A and 5B, we confirm that the PRCs obtained
directly from the HHM (plus and cross in Fig. 5A) are shaped like the PRCs
theoretically derived from the SRM (solid and dash lines in Fig. 5B). The values
of the PRCs around phase (θ) ∼0.8 in Figs. 5A and 5B are similar. We confirmed
through a comparison of Figs. 5A and 5B that the PRCs obtained from an
estimation of the kernels are shaped like the PRCs obtained directly from the
HHM.

3.3 Dependence of PRC on Amplitude of Perturbation Stimuli

In this subsection, we show the relation between the amplitude of the pertur-
bation stimuli ε and the nonlinear dependence of the PRCs on the perturbation
stimuli to clarify the relation between the perturbation stimuli and the PRCs.
In Fig. 6, the crosses denote the amount of nonlinear dependence of the PRCs
of the HHM. The horizontal line in Fig. 6 denotes the amplitude of the per-
turbation stimuli ε. The vertical line is the change amounts in the PRCs or
the kernels, which are normalized by the amounts obtained for the perturbation
stimuli ε = 2.1×10−3. As shown crosses in Fig. 6, the PRCs of the HHM change
depending on the amplitude of the perturbation stimuli.

We would like to figure out what triggers the nonlinearity change of the PRCs.
As already mentioned in Sec. 1, we consider there are two possible reasons for the
nonlinearity change of the PRCs. One is the nonlinearity caused by the kernel
of the SRM, which depend on the amplitude of the perturbation stimulus. The
other is the nonlinearity caused by the nonlinear elements of the PRCs derived
in Eq. (22), which depend on the amplitude of the perturbation stimulus. We
investigated the nonlinearity of the kernel of the SRM and the nonlinearity of
the PRCs, caused by the perturbation stimuli.

First, we investigated the nonlinearity caused by the kernel of SRM depending
on the amplitude of the perturbation stimuli. In Fig. 6, the pluses denote the
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Fig. 6. Change in kernel (plus) and change in PRCs (cross) obtained from numerical
simulation using HHM. Perturbation stimuli in each have different amplitude ε. The
solid and dashed lines denote the change in theoretically derived PRCs using kernel
of SRM that is estimated from HHM. We used the kernels estimated by using the
perturbation stimuli with fixed (solid line) and changed (dashed line) amplitudes.

change in the kernel κ against the amplitude of the perturbation stimuli. We
compare the change in the kernel κ (plus) and the change of the PRCs from
HHM (cross) in Fig. 6. This inplies that the nonlinearity change of the kernel κ
cannot satisfactorily explain the nonlinearity change of the PRCs of the SRM.

Secondly, we investigated the nonlinear elements of the PRCs zn(t0) given in
Eq. (21) with and without the influence of the nonlinearity change of the kernel
κ, respectively, by using our theory. To begin with, we assumed first case that
the nonlinear change of the kernel κ influences the PRCs. We estimated the
kernel κ(ε) for every perturbation stimuli amplitude. We denote the change in
the PRCs with the kernel κ(ε) depending on the amplitude of the perturbation
stimuli by the dashed line in Fig. 6. Thus, we took into account the nonlinearity
of the PRCs against the perturbation stimuli (Eq. (22)) with the nonlinearity of
the kernel κ against the perturbation stimuli. We based this on the PRCs with
the amplitude of the perturbation stimulus ε = 2.1× 10−3. We believe that the
dashed line in Fig. 6 captures the amounts of the crosses.

On the other hand, we also had to consider that the nonlinear change of the
kernel κ does not influence the PRCs. We estimated the kernel κ(ε0) by using
just one amplitude of the perturbation stimuli (ε0 = 2.1 × 10−3). We denote
the change in the PRCs with the kernel κ(ε0) depending on the amplitude of the
perturbation stimuli by the solid line in Fig. 6. Thus, we had to consider the non-
linearity of the PRCs against the perturbation stimuli (Eq. (22)) without the non-
linearity of the kernel κ against the perturbation stimuli. We believe that the solid
line in Fig. 6 captures the amounts of the crosses. We have confirmed that the solid
and dashed lines explain the changes of the PRCs, which are directly obtained
from the HHM (cross) in Fig. 6.

Therefore, we consider the main cause of the nonlinear change in the PRCs
depending on the amplitude of perturbation stimuli, is not the nonlinear response
property of κ(ε), but is the effect of the nonlinear element of the PRCs zn(t0)
(Eq. (21)).
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4 Concluding Remarks

We analytically derived the PRCs from single neurons by using a spike response
model in order to clarify the origin of the nonlinear response of the PRCs. We
clarified the relation between the subthreshold membrane response property and
the PRC. We performed numerical simulations using our theory and our numer-
ical simulation results have shown that the nonlinear change of the PRCs is
possible because of the effect of the nonlinear element of the PRCs zn(t0).
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Abstract. Weakly electric fish can recognize object’s parameters, such
as material, size, distance and shape, in complete darkness. The abil-
ity to recognize these object’s parameters is provided by electrosensory
system of the fish. The fish generates electric field using its electric or-
gan (EOD: electric organ discharge). An object around the fish distorts
the self-generated EOD and make the EOD modulation on fish’s body
surface. The EOD modulation is converted into firings of electroreceptor
afferents on fish’s body surface. The fish can extract object’s param-
eters from the firings. In the present study, we investigated features of
the EOD modulations including information of object’s shape. Therefore
we calculated EOD modulations generated by objects that were various
shapes and firing patterns of electroreceptors evoked by electric images
using computer simulation. We found that the shape of an object near
the fish was represented by the maximum of firing rate of the receptor
network. However the difference of the maximum of the firing rate be-
tween various objects was small when the distance of the object from the
fish was more than about 3-4 cm. This result suggested that detection
limit of the fish for object’s shape would be about 3-4 cm and the limit
would be smaller than that of other sensory systems.

Keywords: electrosensory system, electric image, weakly electric fish.

1 Introduction

A weakly electric fish generates electric field around its body by emitting elec-
tric organ discharges (EOD). It can detect objects by sensing disturbances in
the electric field [3,12]. The ability is called electrolocation. The EOD is either
continuous and quasi-sinusoidal (‘wave-type species’), or discrete and pulse-like
(‘pulse-type species’). We investigated electrolocation in a wave-type species,
Eigenmannia. The fish can recognize various object’s parameters of an object,
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size, distance, shape, electric properties, etc, in complete darkness on electroloca-
tion [18]. Objects with electric properties that differ from those of the surround-
ing water distort the EOD around the fish’s body [16]. The level of distortion
depends on the size, lateral distance, shape, and electric properties of the object.
The fish is able to detect the current level using an array of electroreceptors lo-
cated in the skin. The fish must then analyze the two-dimensionally distributed
EOD modulation generated on the skin to locate the object. Thus, an under-
standing of the mechanisms that mediate electrolocation depends on the ability
to quantify the EOD modulation on the body surface.

A number of modeling and theoretical studies have evaluated the EOD mod-
ulation induced by resistive objects [11,13]. The population coding of electrosen-
sory information in electroreceptors and the electrosensory lateral-line lobe was
proposed on the basis of EOD calculations [17,15,7,10,9]. These studies focused
on the changes in amplitude modulation of the EOD caused by an object without
considering various object’s properties and evaluated the neuronal mechanisms
underlying amplitude coding in the electrosensory system. Although EOD mod-
ulation induced by shape of an object and mechanism of recognition of various
object’s properties is poorly understood. The ability to detect object’s proper-
ties is critical as prey such as insect larvae and small crustaceans. However, it is
difficult to accurately measure the spatial distribution of EOD modulation in an
experimental setting. Given this, a theoretical approach may be used to provide
insights into the process.

The EOD modulation is processed by the electroreceptor network on the skin,
the electrosensory lobe in the hind brain and the torus semicircularis in the
midbrain of the fish on electro perception [2]. It is important to clarify the
representation of the EOD modulation induced by an object on response of the
electroreceptor network because extraction of object’s parameters on higher elec-
trosensory nucleus is affected by ability of representation of the electroreceptor
network.

In the present study, we focused on one question. What features of the EOD
modulation and response of the electroreceptor network represent object’s shape?
To address this issue, we developed a model of the fish body that can be used
to accurately calculate the amplitude and phase modulation of an electric field
produced by objects that had various sizes and shapes. The model is based on
the finite-element-method [13,8]. Furthermore, we made a model of the electrore-
ceptor network. This is the first study to investigate the changes in the EOD
modulation induced by objects with various properties in wave-type fish.

2 Methods

2.1 Simulation Setup

The wave type fish (Eigenmannia, etc) was used as a model animal. The fish
size was 16×0.8×3 cm3. The fish was kept in the water tank (24×24×18 cm3)
that was filled with water (3.8 kΩcm). The tank was divided into small cube
(0.1 × 0.1 × 0.1 cm3). An object was near the fish. In the present study, we
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used three kinds of objects, the large cubes (3 × 3 × 3 cm3), the small cube
(2×2×2 cm3), and the pyramid (3×3×3×(1/3) cm3) (shown in Fig. 1B). These
objects were metal (0.1 kΩcm). We calculated the EOD with its modulation by
an object in order to investigate representation of shape of an object on response
of the electroreceptor network of weakly electric fish.

Fish
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Fish
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height
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Fig. 1. (A) Situation of the simulation. An object was near the fish. (B) Objects using
in the present study. The upper object named “large cube” was the cube (3×3×3 cm3).
The middle object named ”small cube” was the cube (2×2×2 cm3). The lower object
named ”pyramid” was the pyramid (3 × 3 × 3 × (1/3) cm3). (C, D, E) The model for
calculating the EOD field of a fish. The fish was in the water tank. In the present study,
height of the object was 0 cm (the object is just beside the fish).

2.2 Model for Calculating EOD Modulation Induced by an Object

To calculate EOD field around the fish, we modeled an aquarium (containing
the fish), the surrounding medium (water), and an object, in three-dimensional
space (Fig. 1C, D, E). We made a model of fish body by which we calculated
numerically the spatio-temporal patterns of EOD around the fish. The fish was
approximated by a rectangular parallelepiped. The fish was placed in a water
container. The model fish consisted of a body surrounded by skin that had high
resistivity and an electric dipole produced by the electric organ. The electric
organ was represented by a dipole made up of two point sources because the
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spatial pattern of the EOD is approximately dipolar at some distance from the
point of discharge. The rostral and caudal ends of this organ were placed at
(13.6, 14, 9) and (18.4, 14, 9), respectively. Finite-element-method was used to
calculate the electrostatic potential at each point on the body and the external
space in the case where a metal object was put on a point in the space [13,8].
The detail of the method of the simulation is given in the previous paper [8].

We calculated the voltage across the lateral skin of the fish. The skin is two-
dimensional. The transdermal voltage, Vskini,j(t), at the site of (i, j) on the fish
skin is defined by

Vskini,j(t) = A(VEOD + VEODAMi,j) sin(2πft+ φEODPM), (1)

where VEOD is the transdermal voltage without an object, VEODAMi,j is the
EOD amplitude modulation of site (i, j), φEODPM is EOD phase shift, A is the
constant value of transdermal voltage, f is the frequency of self-generated EOD.

2.3 Model of the Electrosensory Receptor Network

The model of electrosensory system consisted of two-dimensional electroreceptor
network, as shown in Fig. 2. The electroreceptors received EOD and its modula-
tion depending on the position of the electroreceptor on the fish body. We, here,
used P-receptors that code the modulation of EOD.

Skin

receptor

EOD AM

Fig. 2. Our neural model of the electroreceptor network. The receptors were on the
fish’s skin. The receptors were placed on two dimensional array. The receptors received
self-generated EOD and EOD modulation by an object near the fish.

The model of P-electroreceptor and P-afferent nerve was made based on the
leaky integrate-and-fire model except that the threshold was also a dynamic
variable [5,7]. The dynamic change of the threshold was needed to adaptively
regulate the firing rate of P-afferent for various magnitudes of EOD AM stimuli
elicited by an object with various distances and shapes. The membrane potential
and threshold of P-receptor at (i, j) site, Vi,j and V th

i,j , were determined by

dVi,j

dt
=

1
τV

(−Vi,j + Vskini,j(t)), (2)
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dV th
i,j

dt
=

1
τth

(−V th
i,j + V0), (3)

where τV and τth are time constant of Vi,j and V th
i,j , respectively, and V0 is con-

stant parameter. An action potential is occurred when the membrane potential is
equal to the threshold for firing. The threshold is incremented by a constant dur-
ing the firing of a receptor. Vskin,i,j is the amplitude to the transdermal voltage
to the receptor at (i, j) site, which is calculated by the transepidermal voltage
across the fish skin that is obtained using the EOD calculation described in
Sec. 2.2. f is the frequency of the fish’s own EOD, f = 400 Hz.

3 Results

3.1 EOD Modulations

We calculated EOD modulations induced by three types of objects. The cal-
culated EOD modulation provides accurate inputs to the receptor network in
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Fig. 3. Spatial distribution of the amplitude modulation of the EOD. (A) The EOD
amplitude modulations on the skin was generated by the large cube. The EOD modu-
lation two-dimensionally distributed. (B) Change in the EOD amplitude modulations
(AMs) on the skin generated by the large cube varying distance of the large cube from
the fish. (C) Change in EOD amplitude modulations on the skin generated by large
cube, the small cube and the pyramid when the objects placed at 1 cm from the fish.
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order to study the mechanism of information processing of electrorecptors for
recognition of the shape of an object.

Figure 3A shows two-dimensionally distributed EOD modulation on the skin
of the fish generated by the large cube placed as 1 cm from the fish. Figure
3B shows the change in EOD amplitude modulations induced by the large cube
varying the distance of the object from the fish. Figure 3C shows the EOD am-
plitude modulations induced by the large cube, the small cube and the pyramid
placed at 1 cm from the fish. The EOD modulations became smaller and wider
as the large cube was moved from the fish (Fig 3B). Conversely, the EOD mod-
ulation increased and became wider as the size of the object increased (Fig 3C).
The EOD modulation induced by pyramid was smaller and wider than that in-
duced by cubes. These results suggest that the maximum and width of EOD
modulation would depend on distance and shape of an object however we could
not discriminate between changes in the EOD modulations induced by distance
and shape of an object.

3.2 Representation on the Receptor Network

We simulated the response of the receptor network. The receptors were on the
skin of the electric fish. The receptor responded to the EOD modulation. The fish
has two type receptors. One is the P-type receptor afferent that mainly responds
to amplitude modulation. Two is the T-type receptor afferent that mainly re-
sponds to the phase of the EOD wave. In the present study, we simulated the
response of the P-type electroreceptor network.
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Fig. 4. The response of the receptor network. A The responses of the receptor network
varying distance of the large cube from the fish. Solid, dotted and broken lines indicate
the response of the receptor network stimulated with EOD modulations induced by
the large cubes placed at 1, 2 and 3 cm (laterally) from the fish, respectively. B The
maximum firing rate of the response of the electroreceptor network. Horizontal line
indicates distance of the object from the fish. The vertical line indicates the maximum
of the firing count of the network for 1000 ms. Solid, dotted and broken lines indicate
the maximum firing rate of the receptor network evoked by the large cubes, small cube
and pyramid, respectively.
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Figure 4A shows firing rates of the receptors located on center line of the
network with varying the distance of the large cube from the fish. Spatial dis-
tribution of the firing rate resembled “Mexican hat”. The mexican hat shape is
derived from EOD modulation. Thus the receptor network encoded the shape of
the EOD modulation. This result showed the EOD amplitude modulation was
represented on the response of the receptor network.

Figure 4B shows the change of maximum firing rate of the response of the
receptor network. The maximum of the firing rate depended on the shape of the
objects. This result suggests that the maximum of the firing rate would be one
of the characteristic features of EOD modulation that represent the shape of
an object. However, the difference of the maximum firing rate between objects’
shapes was small when distance of the objects from the fish was more than about
3-4 cm. These results show that it may be difficult for the fish to recognize the
shape of the object when distance is more than about 3-4 cm because difference
of the response of the electroreceptor network did not clearly appear.

4 Concluding Remarks

The purpose of the present study is investigation of difference of the response of
the receptor network produced by object’s shapes. To address of this issue, we
calculated the three-dimensional electric field generated by the weakly electric
fish and simulated the response of the receptor network. We found that the
shape of an object near the fish was represented by the maximum of firing rate
of the receptor network. However the difference of the maximum of the firing
rate between various objects was small when the distance of the object from the
fish was more than 3-4 cm. In 2010, Von der Emde et al showed the limit of
distance of an object on object recognition. The limit is about 4 cm. Our result
was in agreement with the result of von der Emde et al [18]. This result suggests
that detection limit of the fish for object’s shape would be about 3-4 cm and the
limit is smaller than that of other sensory systems. In the future work, we will
investigate changes in width of the response of the receptor network and index for
discrimination between EOD modulation induced by distance, size, shape, etc.
Furthermore, we will study the role of spike timing dependent plasticity (STDP)
for electrosensory perception because STDP was found in electrosensory lobe,
and provides the function of spatial filter [6].
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Abstract. A PID controller is a simple and general-purpose way of pro-
viding responsive control of dynamic systems with reduced overshoot and
oscillation. Spiking neural networks offer some advantages for dynamic
systems control, including an ability to adapt, but it is not obvious how
to alter such a control network’s parameters to shape its response curve.
In this paper we present a spiking neural PID controller: a small network
of neurons that mimics a PID controller by using the membrane recovery
variable in Izhikevich’s simple model of spiking neurons to approximate
derivative and integral functions.

Keywords: SpiNNaker, neural networks, PID controllers.

1 Introduction

A proportional-integral-derivative (PID) controller is a closed-loop controller
that takes the difference between the desired and measured value of some variable
of a dynamic system as its input. This difference is the error signal. The controller
manipulates one or more inputs to the dynamic system with a control signal to
reduce the error. The control signal is produced using a weighted sum of the
present, past and predicted future values of the error. Where t is time, u(t) is
the control signal and e(t) is the error, a PID controller has the form

Pt = kP e(t)

It = kI

∫
e(t)dt (1)

Dt = kD
d

dt
e(t)

u(t) = Pt + It +Dt

The advantage of this modular approach is that the parameters kP , kI and kD

can be tuned to variously modify the steady-state error, rise time, overshoot, re-
sponse to step change and settling time of the system. While there are algorithms
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to monitor the responsiveness of the system and automatically tune the param-
eters to optimise control, the controller is simple enough that manual parameter
tuning is possible. Conversely, it is difficult to modify the various parameters
of a spiking neural network (including individual neuron parameters, synaptic
weights and connectivity) and know how this will affect the overall behaviour of
the neural network. If we want to make a spiking neural network controller less
responsive to noise in the error signal, for instance, it is not clear how to do this.

In this paper we propose a method of building a PID controller using three
neurons. The reason for this is to combine the advantages of PID controllers, dis-
cussed above, with the advantages of using biologically plausible neural networks
for dynamic systems control.

Work has been done to build PID controllers using a collection of artificial
neurons [11], using the well known backpropagation algorithm to tune the pa-
rameters kP , kI and kD. In this paper we only show that a spiking neural PID
controller is possible. Future work will focus on using established, biologically
plausible learning algorithms to automatically tune the parameters.

We can build a PID controller using only three spiking neurons, where each
neuron approximates one of the terms of the controller, by taking advantage
of the spike frequency adaptation behaviour exhibited by biological neurons.
Class 1 excitable neurons, when given sufficient current, will spike regularly at a
low frequency. This frequency will respond to changes in current according to a
continuous F-I curve [7]. Such neurons tend to exhibit spike frequency adaptation
behaviour, wherein the neuron habituates to its input. If we introduce a step
increase in the input current of a neuron that is firing at a steady rate, the firing
rate of the neuron will increase. The neuron will then begin to habituate to the
new stimulus; the firing rate will decrease until it settles at a new equilibrium.
Similarly, a step decrease in input current will lead to a largely reduced firing
rate, which then steadily increases as the neuron habituates. This behaviour is
illustrated in fig. 1.

(a) Step increase in input current (b) Step decrease in input current

Fig. 1. Spike frequency adaptation. The lower line represents the input current of the
neuron.
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Because of this spike frequency adaptation, the outgoing firing rate of regular
spiking class 1 excitable neurons is a function of the input stimulus and the
recent rate of change of that stimulus. That is, the firing rate of a neuron is a
combination of a proportional and a differential term of the input current, while
the relative weights of the two terms depends on the level of adaptation the
neuron exhibits. If, for some dynamic system control problem, we provide such
a neuron with the error signal - the difference between the measured and desired
value of a process variable - as an input current, and use the output to adjust
some parameter of the system, then we could consider the neuron to be a simple
PD controller. Neurons with stronger habituation would have a higher value for
the derivative gain (kD) and a lower value for the proportional gain (kP ).

By tuning their parameters appropriately, simulated neurons can be made to
give outputs that are approximations of each of the functions in (1) applied to the
input. The spiking neural PID controller circuit is a collection of such neurons,
with the various gain parameters given by the relevant synaptic connections.

2 The SpiNNaker Architecture

Neural simulations were run on the SpiNNaker architecture. SpiNNaker is com-
posed of custom components and off-the-shelf hardware optimized to simulate
spiking neural networks [9]. However this architecture does not limit to this task
since its main component is an ARM processor with DSP extensions and low
power specifications.

The features of this architecture [10] that are relevant to simulate biological
structures are:

1. Native parallelism: in biological neural networks, each neuron is an indi-
vidual computational element that receives input from other neurons, cre-
ating a massively parallel computational network. The SpiNNaker system
mimics this structure using multiple general purpose computational element
(18 cores) inside each chip, each with its own private subsystem and shared
resources. In particular a communication controller is shared across the chip,
which handles the interconnection with other surrounding chips.

2. Event-driven behaviour: in biology, neurons communicate through spikes.
The SpiNNaker architecture uses AER packets to transmit neural signals be-
tween processors (and therefore neurons) over a configurable packet switched
network with asynchronous interconnection.

3. Distributed incoherent memory: in biology, a central memory does not
exist. Neurons use only local information to process incoming stimuli. In the
SpiNNaker architecture we use a hierarchy of memories: a Tightly-coupled
memory local to to each of the cores and an SDRAM chip shared between
the cores in a chip, with an incoherent access mechanism.

4. Reconfigurability: in biology, neurons are plastic. This means that the
interconnections change both in shape and in strength, while the neural
network evolves. Likewise in the SpiNNaker architecture the routing system
allows for reconfiguration on-the-fly.
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3 Design

We propose a method of combining neurons with different levels of spike fre-
quency adaptation in a small circuit in order to mimic the behaviour of a PID
controller. The key to this approach is to treat a spiking neuron as a function
which, when applied to an input sequence, gives an output sequence. The goal
is to find neural parameters to approximate each of the functions in (1).

The steps in this process are as follows. First, we must choose an appropriate
neuron model. Then we must decide on a neural coding method in order to
be able to describe neurons as functions of input intensities. Then we use a
parameter fitting algorithm to find two sets of neuron parameters. The first
neuron must give an output that is proportional to the derivative of the input
current. The second neuron must give an output that is proportional to the
integral of the input current over some time window. These neurons are then
combined in a circuit with a dummy proportional-term neuron to form a spiking
neural PID controller, where the weight of each term is determined by a synaptic
weight.

Fig. 2. A spiking neural PID controller

3.1 Neuron Models

In order to simulate spiking neurons we must first choose a neuron model. Some
models aim to be biophysically meaningful and are generally computationally
expensive. For example, Hodgkin-Huxley type models consist of a set of differen-
tial equations and parameters which model the flow of currents through the cell
membrane, as well as the opening and closing of ion channels [4]. Other models,
which aim for computational efficiency, are less biophysically meaningful. Choos-
ing a neuron model is often a trade-off between these two measures. Any neuron
model we use must satisfy two requirements. The model must be relatively com-
putationally simple and it must exhibit spike frequency adaptation behaviour.
For our purposes we selected the Izhikevich neuron model. It has the required
features and an implementation of the model is currently available on our sim-
ulation hardware, the universal real-time spiking neural network architecture,
SpiNNaker [2].
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Izhikevich’s simple model of spiking neurons exhibits a wide range of observed
cortical neuron behaviour, including spike frequency adaptation, with a pair of
differential equations [5]. The model is extremely computationally simple when
compared to other models with as many features [6] and the SpiNNaker imple-
mentation of Izhikevich neurons is particularly efficient [8].

The behaviour of Izhikevich’s simple spiking neurons is governed by a pair of
ordinary differential equations.

v′ = 0.04v2 + 5v + 140− u+ I (2)

u′ = a(bv − u) (3)

if v ≥ 30mV, then

{
v ← c

u← u+ d
(4)

The variable v represents the membrane potential and the variable u represents
the recovery variable, which is responsible for spike frequency adaptation.
Of the parameters, a represents the time scale of the recovery variable, b describes
the sensitivity of the recovery variable to the value the membrane potential, c
is the after-spike reset of the membrane potential, and d is the after-spike reset of
the recovery variable. Our parameter fitting algorithm will seek values for these
four parameters for three neurons, each of which approximates a function from
(1).

3.2 Neural Coding

We need to choose a neural coding method in order to be able to, at a given
time, determine the value or intensity of the input or output of a neuron based
on the recent spike sequence. We encode the error signal as a current to be
injected into each neuron in the circuit, scaled such that it lies in a biologically
plausible range.

To decode the output value of a neuron, we take the traditional view that
most of the information in a spike train is carried in its mean firing rate. By
the most common definition, the mean firing rate of a neuron is taken to be
the average spike count over some window [3]. This average is calculated using a
causal sliding window, where only past spikes within the window are counted [1].
The averaging window used was 100 ms in length, and was shifted 20 ms at a
time, giving (simulation time −100) / 20 data points.

3.3 Approximating the Functions

Proportional Term. The proportional term is given by a regular spiking
neuron which exhibits no adaptation behaviour; the parameter d is set to 0.
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The input current is scaled such that it lies in a range where the current is always
high enough to elicit spikes and always low enough that the spike train is not
saturated. That is, the input current is kept in a range where there is a linear
relationship between input current and spike frequency.

Derivative Term. If the d parameter is positive (as is usual in models of
biological neurons), the neuron has spike frequency adaptation behaviour, as
shown in fig. 1. The neuron is essentially subtracting previously seen stimuli
from the current stimulus. With a sufficiently high level of adaptation, and a
fast-leaking recovery variable, the firing rate of the neuron will be proportional
to the current stimulus minus any stimuli seen very recently; the neuron will
approximate differentiation of the input. Altering the a parameter will change
the window size over which differentiation is approximated. Note that an increase
in window size must be offset by a decrease in the parameter d (to give a lower
weight to stimuli within the window).

Integral Term. If the d parameter is negative, the neuron has negative spike
frequency adaptation behaviour. There is a positive feedback loop, such that
every time the neuron spikes the input current required to elicit a spike decreases.
If such a neuron is given a constant current, its firing rate will increase over
time. The neuron essentially approximates the integral of its input over time.
To bound the window over which the neuron integrates, and to stop runaway
epileptic behaviour, the recovery variable must leak fairly quickly; again, altering
the a parameter changes the size of the window for integration. Altering the d
parameter changes the weight given to stimuli within the window. Appropriate
values for both parameters will give a neuron whose firing rate is a leaking
integral of its input.

3.4 Parameter Fitting Algorithm

To find neurons that approximate differentiation and integration, a parameter
fitting algorithm is used, which works as follows. First we construct an input
current sequence i, where each value represents an input current for a 5 ms
duration. The current sequence, which is to be injected into every trial neuron,
is a sinusoid of varying amplitude and frequency. A discrete form of the relevant
function from (1) is applied to i to produce i′. In the case of the integral, a
leaking integral is calculated.

The search takes place over the Izhikevich neuron parameters a, b, c and d.
The input current sequence is injected into a trial neuron for each set of pa-
rameters. For each trial neuron, the averaging method outlined in 3.2 is used
to construct a sequence of firing rates, f , from the resultant spike train. We
interpolate values in the sequence f , such that there is a corresponding value
for each value in i′, and then calculate the Pearson product-moment correla-
tion coefficient (PMCC) between f and i′. The PMCC is a measure of linear
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dependence between two variables, giving values between -1 and 1 inclusive. It
is given by the covariance of the two variables divided by the product of their
standard deviations. A correlation coefficient of 1 means that a linear equation
precisely describes the relationship between the two variables. A coefficient of
0 indicates that there is no linear relationship between the two variables. The
neuron with the highest correlation coefficient between its transformed input
current and its spike frequency best approximates the relevant function.

4 Results

Table 1 shows the parameters of the neurons that best approximate the func-
tions. The table also gives the correlation coefficients between the target and
actual spike frequency for each neuron. The first coefficient is for the input
current sequence that was used in the parameter fitting algorithm. The second
coefficient is for a test input current sequence that played no role in selecting
the parameters.

The proportional neuron has a PMCC that is very nearly 1; there is a linear
relationship between the input current and spike frequency. The proportional
and integral neurons have a high correlation between the target and actual spike
frequency for both the training current sequence and the test current sequence.
The derivative neuron has a lower, but still significant, correlation for the test
current sequence.

Table 1. The best results found by parameter fitting. c is the training current sequence.
ct is the test current sequence.

Function a b c d PMCC with c PMCC with ct

Proportional 0.100 0.222 -61.6 0.0 0.976 0.958

Derivative 0.0105 0.656 -55.0 1.92 0.832 0.688

Integral 0.0158 0.139 -70.0 -1.06 0.920 0.920

Fig. 3 shows the spike frequency (solid line) against the result of applying
the relevant function to the input current (dashed line) of each neuron. This
second metric is essentially the target spike frequency. Note that in the case of
the integral function, a leaking integral of the input current is shown. Each of
the three neurons is shown with the training and the test input current. For
reference, the lower line in each figure shows the input current of the neuron. In
all cases, the simulation was run for 2.5 seconds. The graph for the derivative
neuron shows a significant amount of noise in the spike frequency. This may be
solved by using a small population of neurons to represent the derivative term
and using a population coding scheme.
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Fig. 3. Spike frequency (upper solid line) against target spike frequency (dashed line).
The input current is also shown.
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5 Conclusions

We have shown that a single biologically plausible neuron can approximate each
of the terms of a PID controller, and therefore that a circuit of three neurons can
act as a controller. Such a controller would have a simple design and have the
modular configurability property discussed in section 1. Future work will focus
on using established biological learning rules of neural networks to automati-
cally configure and optimise a spiking neural PID controller for a simple control
problem.
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Abstract. Recently, a Dual Neural Network-based kWTA has been pro-
posed, in which the output nodes are defined as a Heaviside step activa-
tion function. In this paper, we extend this model by considering that the
output nodes are stochastic. Precisely, we define this stochastic behavior
by the logistic function. It is shown that the DNN-based kWTA with
stochastic output nodes is able to converge and the convergence rates of
this network are three folds. Finally, the energy function governing the
dynamical behavior of the network is unveiled.

Keywords: Convergence, Dual Neural Networks, kWTA, Stochastic
Output Nodes.

1 Introduction

In many classical design, a kWTA consists of n nodes and n2 connections [1, 2].
By re-formulating the k winners selection problem as a linear program, Wang
and his co-workers have recently proposed a Dual Neural Network (DNN) struc-
ture to implement a kWTA which consists of only n output nodes, and 2n
connections [3–5]. The output nodes are defined as the Heaviside step activa-
tion function, while the hidden node behaves as a recurrent state variable1. This
simple structure makes it suitable for hardware implementation.

However, as known in the studies of fault tolerant neural network, hardware
implementation can never be perfect [7–9]. The behavior of a electronic com-
ponent can always be affected by random fault. Therefore, it is inevitable to
analyze the behavior of this kWTA if random fault exists in the output nodes
[7, 10–12]. In this paper, we define the probability that the output of an output
node is 1 by the logistic function.

1 An identical structure has very recently been proposed independently in [6].
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In the rest of the paper, the analytical results on this DNN-based kWTA
with stochastic output nodes will be elucidated. In the next section, the DNN-
based kWTA network will be presented. The mathematical model of a stochastic
output node is defined. The convergence behavior is then analyzed in Section 3.
Section 4 presents the energy function governing the dynamical behavior of the
network. We conclude the paper in Section 5.

2 DNN-Based kWTA

For a general n inputs kWTA, the inputs are denoted as u1, u2, · · · , un and the
outputs are denoted as x1, x2, · · · , xn. Without loss of generality, we assume
that the values of uis are all distinct and bounded by zero and one. Following
Wang’s notation, we denote ūn, ūn−1, · · · , ūn−k+1 as the k largest numbers, and
0 ≤ ū1 < · · · < ūn ≤ 1.

2.1 Deterministic Output Nodes

The DNN-based kWTA is modeled by the following state-space system2.

ε
dy

dt
=

n∑
i=1

xi(t)− k, (1)

xi(t) = g(ui − y(t)) for i = 1, 2, · · · , n, (2)

where

g(s) =
{

1 if s > 0
0 otherwise. (3)

The value k in (1) is specified by the user. By (1) and (2), y(t) converges[5].

2.2 Stochastic Output Nodes

In Wang’s DNN-based kWTA model, the function of the output node g(s) is a
step function, which is a deterministic function of (ui−y), and it is implemented
by threshold logics. However, the hardware components can always be affected
by random noise in the circuit or by radiation. Thus, the output of the nodes
turns out to be random. As a result, the output can be 1 even if ui ≤ y or the
output can be 0 even if ui > y. We model this dynamic behavior by the following
state-space system :

ε
dy

dt
=

n∑
i=1

xi(t)− k, (4)

xi(t) = g̃(ui − y(t)) for i = 1, 2, · · · , n, (5)

2 Equations (29) (30) in [5].
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Fig. 1. Change of y(t) against time. (a) y(0) = 0 and (b) y(0) = 1. Note that the scale
on the time is in log scale. The inputs are 0.5, 0.7, 0.8, 0.4, 0.1 and 0.3 respectively.
k = 2, ε = 0.0001 and α = 100.

where g̃(ui − y(t)) is output of the ith output node at time t. To model the
stochastic behavior of this output node, we define the output of g̃(s) as a binary
random variable. The probability that g̃(s) will output 1 is determined by the
logistic function :

P (g̃(s) = 1) =
1

1 + exp(−αs) . (6)

If parameter α in (6) tends to infinity, g̃(s) reduces to g(s).
Figure 1 shows two typical cases on the convergence of y(t). The values of

the input variables are 0.5, 0.7, 0.8, 0.4, 0.1 and 0.3. The value of ε is 0.0001 and
α is 100. It is clear that the convergence behavior of y(t) and the convergence
time are quite different from those obtained in the original DNN-based kWTA.
For the case that y(0) = 0, the change of y(t) goes through three phases. In the
initial phase, the change of y(t) is rapid. Once y(t) has reached a value above
0.5, it increasing rate os proportional to log(t). When y(t) reaches a value close
to 0.6, it increases in a very slow rate.

3 Convergence Analysis

With the new definition on the output nodes, it is critical to investigate if the
network converges. If it converges, what will be its convergence rate. To answer
these questions, we need to analyze the dynamical change of y(t). In this sec-
tion, we will first show that y(t) converges. Then, limt→∞ y(t) will be derived.
After that, we will show that y(t) converges by three different rates. The energy
function governing the dynamical behavior will be discussed in the next section.

Consider the change of y(t) from t to t+ τ , we get that

y(t+ τ) = y(t) +
1
ε

{
n∑

i=1

∫ τ

0

g̃(ui − y(η))dη − kτ
}
. (7)
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By (6), the above equation (7) can be rewritten as follows :

y(t+ τ) = y(t) +
τ

ε

{
n∑

i=1

f(ui − y(t))− k
}

(8)

for τ is small and f(s) in (8) is given by

f(s) =
1

1 + exp(−αs) . (9)

With (8), we can prove that the DNN-based kWTA with stochastic output nodes
has only one equilibrium point.

Theorem 1. For a DNN-kWTA with stochastic output nodes, there exists a
unique equilibrium point. If furthermore, |ūi+1− ūi| ≥ 2

α for all i = 1, · · · , n− 1,
the equilibrium point y∗ is given by y∗ = (ūn−k + ūn−k+1)/2.

Proof: For the uniqueness property, we let

F (y) =
n∑

i=1

f(ui − y(t))− k. (10)

From (9), f ′(s) = αf(s)(1 − f(s)). It is thus clear that F ′(y) < 0. In virtue
of limy→−∞ F (y) > 0 and limy→∞ F (y) < 0, F (y) is therefore a monotonic
decreasing function with unique y∗ such that F (y∗) = 0.

Rewrite the equation (8), we can have the following recursive equation.

y(t+ τ) = y(t) +
τ

ε

{
n−k−1∑

i=1

1
1 + exp(−α(ūi − y(t)))

+
1

1 + exp(−α(ūn−k − y(t))) +
1

1 + exp(−α(ūn−k+1 − y(t)))

+
n∑

i=n−k+2

1
1 + exp(−α(ūi − y(t))) − k

}
. (11)

By the assumption that |ūi+1 − ūi| ≥ 2
α for all i = 1, · · · , n− 1, we can have the

following approximations for the case when ūn−k + 4
α < y(t) < ūn−k+1 − 4

α .

n−k−1∑
i=1

1
1 + exp(−α(ūi − y(t))) = 0. (12)

1
1 + exp(−α(ūn−k − y(t))) = exp(α(ūn−k − y(t))). (13)

1
1 + exp(−α(ūn−k+1 − y(t))) = 1− exp(−α(ūn−k+1 − y(t))). (14)
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n∑
i=n−k+2

1
1 + exp(−α(ūi − y(t))) = k − 1. (15)

By (12), (13), (14) and (15), the equation (11) can then be written as follows :

y(t+ τ) = y(t) +
τ

ε
{exp(α(ūn−k − y(t))) − exp(−α(ūn−k+1 − y(t)))} . (16)

For t→∞, it is clear that limt→∞ y(t) is equal to (ūn−k+ūn−k+1)/2. Hence, the
proof is completed. Q.E.D.

Now, we can state the convergence theorem regarding the convergence of y(t)
defined by (4), (5) and (6).

Theorem 2. For a DNN-kWTA with stochastic output nodes, y(t) converges.
If, furthermore, |ūi+1 − ūi| ≥ 2

α for all i = 1, · · · , n− 1, limt→∞ y(t) = (ūn−k +
ūn−k+1)/2.

Proof: For the first part of the theorem, we let y∗ be the equilibrium point such
that limt→∞ y(t) = y∗. So, we can have the equality that

∑n
i=1 f(ui − y∗) = k.

For large t, y(t+ τ) = y∗ +Δy(t+ τ) and y(t) = y∗ +Δy(t). From (8), we can
get that

Δy(t+ τ) = Δy(t) +
τ

ε

{
n∑

i=1

(f(ui − y(t))− f(ui − y∗))
}
. (17)

Note that
∑n

i=1 f(ui−y) is a continuous function of y. By Mean Value Theorem,
there exists ξ(t) ∈ [y(t), y∗] such that

n∑
i=1

f(ui − y(t))− f(ui − y∗) =
n∑

i=1

f ′(ui − ξ(t))Δy(t). (18)

Therefore, we can get from (17) and (18) that

Δy(t+ τ) =

{
1− τ

ε

n∑
i=1

f ′(ui − ξ(t))
}
Δy(t), (19)

where f ′(ui−ξ(t)) = αf(ui−ξ(t))(1−f(ui−ξ(t))). Note that 0 < f ′(ui−ξ(t)) <
α/4 for all ui, ξ(t) ∈ R. As for any arbitrary values of α, n and ε, we can define
0 < τ < 4ε

αn such that 0 < ατ
ε

∑n
i=1 f(ui − ξ(t))(1 − f(ui − ξ(t))) < 1. Hence

from (19), we can readily show that

lim
m→∞Δy(t+mτ) = lim

m→∞

m∏
q=0

{
1− τ

ε

n∑
i=1

f ′(ui − ξ(t+ qτ))

}
Δy(t)

= 0. (20)

In other words, y(t) converges to y∗. Q.E.D.
The next theorem states the convergence rates of y(t) (i) if y(t) has just passed

the boundary of [ūn−k, ūn−k+1] and (ii) if y(t) is close to (ūn−k + ūn−k+1)/2.
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Theorem 3. For y(t) ∈ [ūn−k, ūn−k+1] and |ūi+1−ūi| ≥ 2
α for all i = 1, · · · , n−

1, (i) the convergence rate of y(t) for α(ūn−k+1 − y(t)) � 1 is proportional to
α−1 log(t); and (ii) the convergence rate of y(t) for α(y(t) − ūn−k) � 1 and
α(ūn−k+1 − y(t))� 1 is proportional to exp(−2αt/ε).

Proof: Without loss of generality, we assume that y(t) is increasing from zero
to ūn−k.
Case (i) Consider that α(ūn−k+1 − y(t))� 1, (16) can be reduced to

y(t+ τ) = y(t) +
τ

ε
exp(αūn−k) exp(−αy(t)). (21)

Next,dy
dt is approximated by y(t+τ)−y(t)

τ for τ � 1. Based on the approximation,
(21) can be rewritten as follows :

dy

dt
≈ ε−1 exp(αūn−k) exp(−αy(t)). (22)

The solution of (22) is given by3

y(t) = α−1 log
(
exp(αūn−k)ε−1αt+ γ

)
, (23)

where γ in (23) is a constant determined by the initial condition. For t→∞,

y(t) ≈ α−1 log
(
exp(αūn−k)ε−1α

)
+ α−1 log(t),

≈ ūn−k + α−1 log
(
αε−1
)

+ α−1 log(t), (24)

For α� 1, α−1 log
(

α
ε

)→ 0. Therefore from (24), we can have

y(t) ≈ ūn−k + α−1 log(t). (25)

If we further change the base of the log(t) in (25) from natural number e to 10,
y(t) will be given by

y(t) ≈ ūn−k + (α log10 e)
−1 log10(t). (26)

If α = 100, (α log10 e)−1 = 0.0230. The value conforms with the one shown in
Figure 1.
Case (ii) For α(y(t)− ūn−k)� 1 and α(ūn−k+1−y(t))� 1, (16) can be reduced
to

y(t+ τ) = y(t) +
τα

ε
{(ūn−k + ūn−k+1)− 2y(t)))} . (27)

We can conclude from (27) that the convergence rate is proportional to
exp(−2αt/ε). The proof is completed. Q.E.D.

From the above theorem and the example given in Figure 1, the convergence
of y(t) if y(0) = 0 manifests three different phases. (I) When 0 < y(t) < ūn−k,

3 Note that h(t) = α−1 log(βαt + γ), where γ is a constant determined by the initial
condition of h(0), is a solution of the differential equation dh

dt
= β exp(−αh).
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Fig. 2. Energy function being minimized, with α = 100. The number of winners (k) is
2 and the inputs are 0.5, 0.7, 0.8, 0.4, 0.1 and 0.3 respectively.

y(t) converges very fast to ūn−k. (II) When y(t) has just passed the point ūn−k,
its convergence rate is proportional to log(t). (III) When y(t) is close to (ūn−k +
ūn−k+1)/2, its convergence rate is proportional to exp(−2αt/ε). Similarly, the
convergence of y(t) if y(0) = 1 manifests the same three different phases. In both
cases, the longest time spanned is in the second phase. In sequel, the convergence
time of a DNN-based kWTA with stochastic output nodes can be approximated
by exp(α(ūn−k+1 − ūn−k)/2).

4 Energy Function

It should also be noted that (8) can be rewritten as follows :

y(t+ τ) = y(t)− τ

ε

∂V

∂y

∣∣∣∣
y=y(t)

, (28)

where

V (y) = ky + α−1
n∑

i=1

log (1 + exp(α(ūi − y))) . (29)

In other word, the dynamical change of the DNN-based kWTA with stochastic
output nodes (8) can be treated as a gradient descent algorithm which minimizes
the energy function V (y) given by (29). Figure 2 shows the shape of this energy
function if the inputs are 0.5, 0.7, 0.8, 0.4, 0.1 and 0.3 and α = 100. It is clear
that V (y) has just one minimum and the shape of V (y) around the minimum
is almost flat. It explains why the convergence rate of y(t) is very small if it is
close to the equilibrium point. The energy function for much larger α has also
been plotted but not shown here. As expected, the shape of V (y) around 0.6 is
almost flat. For α→∞, V (y) is a piecewise linear function as derived in Wang’s
paper [4] and the value of V (y) is constant for all y ∈ (0.5, 0.7).

5 Conclusion

In this paper, we have presented an extended model of the DNN-based kWTA,
in which the output nodes are stochastic. The probability that the node will
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output 1 is governed by the logistic function. With this new definition, we have
shown that the convergence of the state variable y(t) is also guaranteed. How-
ever, in contrast to the original DNN-based kWTA, the convergence time of this
extended model is infinite. The limit limt→∞ y(t) could be located outside the
range of [ūn−k, ūn−k+1], especially when the inputs are too close to each other.
If the inputs are sparsely located, we have shown that the convergence of y(t)
manifests three different values. The slowest rate appears when y(t) is close to
the boundary of [ūn−k, ūn−k+1]. Apart from the analyses on the convergence
rate of the network, the energy function governing the dynamical behavior of
the network has been unveiled.
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Abstract. This paper first derives the training objective function of faulty radial
basis function (RBF) networks, in which open weight fault and multiplicative
weight noise co-exist. A regularizer is then identified from the objective func-
tion. Finally, the corresponding learning algorithm is developed. Compared to the
conventional approach, our approach has a better fault tolerant ability. We then
develop a faulty mean prediction error (FMPE) formula to estimate the general-
ization ability of faulty RBF networks. The FMPE formula helps us to understand
the generalization ability of faulty networks without using a test set or generat-
ing a number of potential faulty networks. We then demonstrate how to use our
FMPE formula to optimize the RBF width for the co-existing fault situation.

Keywords: RBF networks, fault tolerance.

1 Introduction

Many researchers [1–3] showed that if special care is not taken during training, the
weight fault situation could lead to a drastic performance degradation. Hence, obtaining
a fault tolerant neural network is very important. In the implementation of neural net-
works, weight faults, such as multiplicative weight noise [4] and open weight fault [5],
happen unavoidably. The classical way to improve the fault tolerance is to generate
a number of faulty networks during training. Injecting random weight fault [1] during
training is a typical example. But the number of training epoches should be large. Simon
& Sherief [6], and Zhou et al. [3] formulated the learning problem as an unconstrained
optimization problem. The above formulations are computationally complicated when
the multi-weight fault situation is considered.

Although many training methods have been developed in the past two decades, most
of them focus on one kind of weight faults. For example, in [2], the algorithm was
used to handle the open weight fault only. In [4], the algorithm was used to handle the
multiplicative weight noise. Clearly, in the real situation, different kinds of weight faults
could co-exist unavoidably.

This paper uses the RBF network model as an example to develop a regularizer for
the weight fault situation in which the open weight fault and multiplicative weight noise

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 276–283, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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co-exist. We first derive an objective function for the co-existing situation. A regularizer
is then identified from the objective function. With the regularizer, the training algo-
rithm is developed. Finally, we develop a faulty mean prediction error (FMPE) formula
to predict the generalization ability of faulty networks. To demonstrate the effectiveness
of the FMPE formula, we discuss the way to use optimize the RBF width.

2 Background

We are given a training set: Dt = {(xi, yi) : xi ∈ K , yi ∈ , i = 1, · · · , N},
where xi and yi are the input and output of the i-th sample, respectively, and K is the
input dimension. The output is generated by an unknown stochastic system, given by
yi = f(xi) + εi, where f(·) is a nonlinear function, and εi’s are the independent zero-
mean Gaussian random variables with variance σ2

ε . In the RBF approach, the unknown
system f(·) is approximated by f(x) ≈ f̂(x,w) =

∑M
j=1 wjφj(x) = φT (x)w,

where w = [w1, · · · , wM ]T is the weight vector, φ(x) = [φ1(x), · · · , φM (x)]T , and

φj(x) = exp
(
− ‖x−cj‖2

Δ

)
is the j-th basis function. Vectors cj’s are the RBF centers.

Parameter Δ controls the width of the basis functions. The training set error E(Dt) is
given by

E(Dt) =
1
N

N∑
i=1

(yi − φT (xi)w)2. (1)

Among different forms of network faults, multiplicative weight noise and open weight
fault are the most common fault models [2–5, 7]. The multiplicative weight noise [4]
results from the finite precision representation in the implementation of trained weights.
For the open weight fault [2, 3], some RBF nodes are disconnected to the output layer.

In the real situation, the multiplicative weight noise and open weight fault could
co-exist. In this situation, the mathematical model is given by

w̃j,b,β = (wj + bjwj)βj ∀ j = 1, · · · ,M, (2)

where bj’s are identical independent zero-mean random variables with variance σ2
b , the

density function of bj’s are symmetric. In this way, the weight noise bjwj is proportional
to the magnitude of the weight. For weight fault, the fault factors βj’s are identical
independent binary random variables that describes whether the j-th weight operates
properly. The j-th weight is out of work when βj = 0, otherwise it operates properly.
The probability mass function of the fault factor is given by Prob(βj = 0) = p and
Prob(βj = 1) = 1− p.

In this model, if a weight is not damaged (not opened), the implemented weight is
affected by the multiplicative weight noise (precision error) only. On the other hand,
when the weight is with open weight fault, the faulty weight are clamped at zero. In the
vector notation, the faulty weight vector is given by

w̃b,β = (w + b⊗w)⊗ β = w ⊗ β + b⊗w ⊗ β (3)

where w̃b,β = [w̃1,b,β , · · · , w̃M,b,β ]T , b = [b1, · · · , bM ]T , β = [β1, · · · , βM ]T , and ⊗
is the element-wise multiplication operator.
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3 Objective Function, Regularizer, and Training Algorithm

Given a faulty weight vector w̃b,β , from (2) and (3), the training error of a faulty net-
work is given by

E(Dt)b,β=
1
N

N∑
i=1

(yi − φT (xi)w̃b,β)2

=
1
N

N∑
i=1

⎡⎣y2
i − 2yi

M∑
j=1

βjwjφj(xi)+
M∑

j=1

M∑
j′=1

βjβj′wjwj′ (1 + bjbj′)φj(xi)φj′ (xi)

+
M∑

j=1

M∑
j′=1

(bj + bj′)βjβj′wjwj′φj(xi)φj′ (xi)− 2yi

M∑
j=1

bjβjwjφj(xi)

⎤⎦ . (4)

According to the definition of the weight fault, we have 〈βi〉 = 〈β2
i 〉 = 1 − p, and

〈βiβi′〉 = (1− p)2 ∀ i �= i′ , where 〈·〉 is the expectation operator. For weight noise, we
have 〈bi〉 = 0, 〈b2i 〉 = σ2

b , and 〈bibi′〉 = 0 ∀ i �= i′ . Taking the expectation over b’s and
β’s, the training error of a faulty network is given by

Ē(Dt)b,β = 〈E(Dt)b,β〉b,β

=
1
N

N∑
i=1

⎡⎣y2
i − 2(1− p)yi

M∑
j=1

wjφj(xi) + [(1− p)2
M∑

j=1

M∑
j′=1

wjwj′φj(xi)φj′ (xi)

+[p− p2 + σ2
b (1 − p)]

M∑
j=1

w2
jφ

2
j (xi)

⎤⎦
=

1− p
N

N∑
i=1

(yi − φT (xi)w)2 +
p

N

N∑
i=1

y2
i + (1− p)wT [(p+ σ2

b )G− pH]w , (5)

where H = 1
N

∑N
j=1 φ(xi)φT (xi), and G = diag(H). Equation (5) tells us the train-

ing error of faulty RBF networks. Since the term p
N

∑N
j=1 y

2
i in (5) is independent of

w, minimizing the training error of faulty networks, i.e.(5), is equivalent to minimizing
the following objective function:

L(w) =
1
N

N∑
i=1

(yi − φT (xi)w)2 + wT [(p+ σ2
b )G− pH]w . (6)

In (6), the second term is similar to the conventional regularization term in regulariza-
tion techniques [8, 9]. Hence, we could define the co-exist fault regularizer as

wT [(p+ σ2
b )G− pH]w . (7)

where (p+σ2
b )G−pH is the so-called regularization matrix. Hence, the optimal weight

vector for minimizing the training error under co-existing fault is given by

w =
(
(1− p)H + (p+ σ2

b )G
)−1 1

N

N∑
i=1

φ(xi)yi. (8)
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In (6), if the open weight fault probability is large (p is large), some eigenvalues of
the regularizer matrix are positive and some eigenvalues are negative. That means, for
attaining the co-existing fault tolerance, the regularization matrix should contain both
positive and negative eigenvalues.

4 Faulty Mean Prediction Error of Faulty Networks

In (5), we know the training error of faulty networks. Besides, with (8) we know the
way to minimize the training error of faulty networks. However, in many situations, we
would like to know how well the network performs on unseen samples. This section
will derive a way to estimate the generalization ability for faulty networks trained with
the co-existing fault regularizer.

Recall that Dt = {(xj , yj)}Nj=1 is the training set. The training error of faulty net-
works can be rewritten as

Ē(Dt)b,β =
〈
(y − φT (x)w̃b,β)2

〉
Dt,b,β

=〈y2〉Dt−2(1−p)〈yφT (x)w〉Dt +(1−p)2wT Hw+(1−p)(p+σ2
b)w

T Gw. (9)

LetDf = {(x′
i, y

′
i)

N ′
i=1 be the testing data set. Similarly, the test error of faulty networks

is given by

Ē(Df )b,β =
〈
(y′ − φT (x′)w̃b,β)2

〉
Df ,b,β

=〈y′2〉Df
−2(1−p)〈y′φT (x′)w〉Df

+(1−p)2wT H ′w+(1−p)(p+σ2
b)w

T G′w.(10)

where H ′ = 1
N ′
∑N ′

i=1 φ(x′
i)φ

T (x′
i) and G′ = diag(H ′). Denote the true weight

vector as wo. Hence,

yi = φT (xi)wo + εi and y′i = φT (x′
i)wo + ε′i, (11)

where εi’s and ε′i’s are independent zero-mean Gaussian random variables with variance
σ2

ε . Since w is obtained entirely from Dt, the second term in (10) can be expressed as

−2(1 − p)〈y′φT (x′)w〉Df = −2(1 − p)(
1

N ′

N′∑
i=1

y′
iφ

T (x′
i))w. (12)

From (8) and (11), (12) is then given by

−2(1−p)( 1
N ′

N ′∑
i=1

y′iφ
T (x′

i))[(1 − p)H + (p+ σ2
b )G]−1 1

N

N∑
i=1

yiφ(xi). (13)

As εi’s and ε′i’s are independent, from (11), “ 1
N ′
∑N ′

i=1 y
′
iφ

T (x′
i)” and

“ 1
N

∑N
i=1 yiφ(xi)” are equal to

1
N ′

N ′∑
i=1

y′iφ
T (x′

i) = wT
o H ′ and

1
N

N∑
i=1

yiφ(xi) = Hwo. (14)
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From (14), the second term in (10) becomes

−2(1−p)〈y′φT (x′)w〉Df
= −2(1−p)wT

o H ′[(1−p)H +(p+σ2
b )G]−1Hwo. (15)

Using the similar method, the second term in (9) can be expressed as

−2(1 − p)〈yφT (x)w〉Dt =

−2(1−p)

(
wT

oH[(1−p)H +(p+σ2
b )G]−1Hwo+

σ2
ε

N
Tr
{

[(1−p)H +(p+σ2
b )G]−1H

})
, (16)

where Tr{·} denotes the trace operation. Following the common practice, for large N
and N ′, we can assume that H ′ ≈ H , G′ ≈ G, and 〈y′2〉Df

≈ 〈y2〉Dt . The differ-
ence between the generalization error of faulty networks and the training error of faulty
networks is given by

Ē(Df )b,β−Ē(Dt)b,β=2(1−p)σ
2
ε

N
Tr
{
[(1− p)H + (p+ σ2

b )G]−1H
}
. (17)

From (9) and (17), the generalization error of faulty networks becomes

Ē(Df )b,β=(1−p)E(Dt)+
p

N

N∑
i=1

y2
i +(p2−p)wTHw+(1−p)(p+σ2

b)w
TGw

+2(1− p)σ
2
ε

N
Tr
{
[(1− p)H + (p+ σ2

b )G]−1H
}
. (18)

In (18), the first term (1 − p)E(Dt) is the training set MSE of the trained fault-free
network. It can be directly obtained after training. The second term p

N

∑N
i=1 y

2
i can be

obtained from the training set. The last two terms are in terms of matrices H and G.
These two matrices can be obtained from the training set too. The only unknown is the
variance σ2

ε of the measurement noise. The measurement noise can be estimated based
on the Fedorov’s method [10], given by

σ2
ε ≈

1
N−M

N∑
i=1

(yi−φT (xi)H−1 1
N

N∑
i′=1

φ(xi′)yi′ )2. (19)

5 Simulations

5.1 Fault Tolerance

To verify our theoretical results, we consider two data sets: (i) the sinc function and
(ii) a nonlinear autoregressive time series (NAR) [11]. The sinc function is a common
benchmark example. The output is generated by y = sinc(x) + ε, where the measure-
ment noise ε is a zero-mean Gaussian random variable with variance σ2

ε = 0.01. The
input x is randomly taken from−5 to 5. Both training set and test set contain 200 sam-
ples. The network model has 37 RBF nodes. The RBF centers are uniformly selected
from the range [−5, 5]. The RBF width Δ is set to 0.1.
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Fig. 1. MSE of faulty networks for Sinc function example

0 0.02 0.04 0.06 0.08 0.1

0.0176

0.0178

0.018

0.0182

0.0184

0.0186

0.0188

0.019

0.0192

open weight fault rate p

M
S

E

test set error, weight noise variance σ2=0.0025

 

 

Co−existing fault regularizer
Zhou method

0 0.02 0.04 0.06 0.08 0.1
0.0185

0.019

0.0195

0.02

0.0205

0.021

0.0215

0.022

open weight fault rate p

M
S

E

test set error, weight noise variance σ2=0.01

 

 

Co−existing fault regularizer
Zhou method

Fig. 2. MSE of faulty networks for the dynamical system. Since the MSEs of the least square
method are too high, we do not plot it in the figure.
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Fig. 3. Selection of RBF width from the FMPE approach for Sinc function example
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Fig. 4. Selection of RBF width from the FMPE approach for the dynamical system
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We also consider a nonlinear dynamical system [11], given by

y(t+ 1) =
y(t)y(t− 1)y(t− 2)(y(t− 2)− 1)x(t− 1) + x(t)

1 + y2(t− 1) + y2(t− 2)
+ ε(t+ 1), (20)

where x(t) is the input, and the noise term ε(t) is a zero mean Gaussian variable with
variance σ2

ε = 0.12. We generate 400 samples with y(0) = y(−1) = y(−2) = 0.
To excite all the modes of the system, inputs x(t)’s are random signal generated in the
range of [−0.5,0.5]. The first 200 samples are used for training and other samples are
used as test set. The network model has 50 RBF nodes. The RBF centers are randomly
selected from the training set. In addition, the RBF width Δ is set to 0.6.

Two other techniques are also considered in the simulation. They are the pseudo
inverse and Zhou’s method [3]. The least square is a reference which tests the perfor-
mance of faulty networks when special care is not considered. The average test MSEs,
under various weight noise levels and open weight fault levels, are shown in Figures 1
and 2. In Figure 2, we do not show the MSEs of the least square method because
its MSE values are too high (greater than 10). From our result, the least method has
very poor performance. This result confirms that without special care during the perfor-
mance of faulty networks could be very poor. The Zhou’s method and our co-existing
fault regularizer can improve fault tolerance. Compared with the Zhou’s method, our
approach has a better performance. The reason is that the co-existing fault regularizer
aims at minimizing the MSE of faulty networks.

5.2 Application of FMPE Formula: Selecting RBF Width

The FMPE formula help us not only to estimate generalization ability of a trained net-
work but also to select some model parameters. In the RBF approach, one tuning pa-
rameter is the RBF widthΔ. We illustrate how our MPE results can help us to select an
appropriate value of Δ. Following the conventional approaches in selecting parameters
for fault–free networks, we try different values ofΔ. Afterwards, we use the FMPE for-
mulae to estimate the test error of faulty networks. The results are depicted in Figure 3
and Figure 4.

From the figures, although there are small differences between the true test errors 1

and FMPE values, our method can locate optimal Δ for minimizing the generalization
error of faulty networks.

For example, for the dynamic system example with weight noise variance σ2
b =

0.0001 and open weight fault rate p = 0.01, the searched Δ is 1.413 and the corre-
sponding test set error is 0.01421. When we use the brute force way (test set method) to
search Δ, the test set error is 0.01409. With weight noise variance σ2

b = 0.01 and open
weight fault rate p = 0.1, the searched Δ is 0.631 and the corresponding test set error
is 0.01905. When we use the brute force way (test set method) to search Δ, the test
set error is 0.01899. The simulation confirms the applicability of our FMPE results for
the selection of RBF width. For other faulty levels and examples, we obtained similar
results (not shown here).

1 When we use the test set method, we need to have a test set and generate a number of faulty
networks to measure the performance of faulty networks under different weight noise and
weight fault levels.
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6 Conclusion

This paper addresses the fault tolerance of RBF networks when the weight noise and
weight fault happen co-exists. An objective function for minimizing the training error
of faulty networks are then derived. A regularizer for handling the co-existing fault situ-
ation is identified from the objective function. The corresponding learning algorithm is
developed. In our approach, the objective function and the learning algorithm are com-
putationally simple. Besides, we also derive the a formula to predict the generalization
performance of the faulty networks trained from our algorithm. In the simulation, we
demonstrate the way to use the formula to optimize the RBF width.
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Research on a RBF Neural Network in Stereo Matching 

Sheng Xu, Ning Ye, Fa Zhu, Shanshan Xu, and Liuliu Zhou 
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Nanjing Forestry University, Nanjing 210037, China 

Abstract. There are so many shortcomings in current stereo matching 
algorithms, for example, they have a low robustness, so as to be influenced by 
the environment easily, especially the intensity of the light and the number of 
the occlusion areas; also they often have a poor practical performance for they 
are difficult to deal with the matching problem without knowing the disparity 
range and have a high complexity when using the global optimization. In order 
to solve the above problems, here design a new stereo matching algorithm 
called RBFSM which main uses the RBF neural network (RBFNN). The 
RBFSM will get the correspondence between the input layer nodes and hidden 
layer nodes by the Gaussian function and then use the weight matrix between 
the hidden layer and output layer to calculate input pixels’ disparity. Here will 
give the analysis of this new RBF neural network matching algorithm through a 
lot of experiments, and results show that the new algorithm not only overcome 
the shortcomings of the traditional methods like low robustness and low 
practical performance, but also can improve the matching precision 
significantly with a low complexity. 

Keywords: Robustness, Practical performance, RBFNN, Correspondence, Stereo 
matching.  

1   Introduction 

With two identical cameras shooting the same scenario from two angles, we can get 
two pictures. According to these two photographs, we will find a corresponding 
relationship between left image pixels and right image pixels. Using this mapping we 
can also get the objects actual space depth information in the scene and solving this 
correspondence problem is called the stereo matching.  

Current stereo matching algorithms are based on regional or feature [1]. These 
algorithms usually convert the problem into minimizing an energy equation, and to 
solve the energy equation means to get the disparity [2]. Here the disparity is the 
answer of the stereo matching problem. There are so many algorithms, for example, 
SAD, SO (Scanline Optimization) [3], DP (Dynamic Programming) [4]. However the 
above algorithms are belong to local optimization methods. While later the GC 
(Graph cut) [5] and BP (Belief Propagation) [6] deal with the matching problem by 
global energy optimization methods so as to get a much better result, All these above 
algorithms need to know the disparity search range and cannot avoid the redundant 
search. Now the below algorithms give a different way to deal with the stereo 
matching, and the basic theory is the neural network [7]. For example, the Hopfield 
neural network [8], and a relatively good method MSOM [9] which uses the  
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self-organizing neural network to do the stereo matching. Taking into account all the 
advantages of neural network algorithms and knowing the Gaussian radial basis 
function network can preserve a good pixel relationship between the input layer nodes 
and the hidden layer nodes. Here design a new algorithm called RBFSM which 
innovative uses of the RBF neural network.  

Compared with the above neural network methods, the RBFSM shows a good 
robustness. It still works well even when the two matching images have a quite 
different light intensity or one of the images is rotated. Both these two advantages are 
not met by the above Hopfield network or self-organization network. Because of the 
good pixel relationship, it can give a higher precision in the occlusion area than the 
current methods. Furthermore it has a good practical performance that it does not 
need to know the disparity range which methods do not use the neural network are 
impossible to have like SAD, SO and DP, etc. The RBFSM has only one hidden layer 
and the network structure is not complex so it can improve the precision significantly 
while with a low complexity and the high complexity is exactly the major 
disadvantage of the global optimization methods.  

2   The RBFSM Algorithm 

2.1   The RBF Neural Network 

The output of the last layer in RBFNN can be described by the following (1). 


=
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cici XHidY

1

)(ω
                              

 (1) 

The input sample is X, and the hidden layer function is Hid. Here c indicates the order 
of hidden nodes, and there are n nodes in the hidden layer. Through the Hid, the input 
will be mapped to the hidden layer, reflecting the information between hidden nodes 
and input nodes. Next, let the matrix which is output from the hidden layer multiply 
the weight ω, here i is the order of the last layer nodes, and then we will get i-th node 
output Yi in this layer.  

2.2   The Design of the RBFSM Algorithm  

Obviously, according to the traditional RBF neural network, we are unable to solve the 
stereo matching problems. It should be made some changes to make the input X is the 
left pixels and when get the output Y, we will also obtain the input pixels’ disparity. 

Steps of the RBFSM algorithm are as follows: 

1. Note a pixel in the right image PR(M, N), where M is the horizontal axis and N is 
the vertical axis for the point PR, then define three attributes for PR, they are 
PR(M,N)i ,PR(M,N)j and PR(M,N)I, as (2)~(4) 

MNMP iR =),(                                   (2) 

NNMP jR =),(
                                  

 (3) 

),(),( NMINMP RIR =                               (4) 
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The IR(M,N) expressed the intensity of the pixel whose axis is (M,N) in the right 
image, and then we selected two special regions for the corresponding point PR. As 
shown in Fig. 1, the rectangular area BR1 which is Kin pixels from the center point PR, 
and the rectangular area BR2 which is Kout pixels from the center point PR. 

2. From the left image, the algorithm should look for a BL2 to be best match for the 
BR2, which means to find a region with the same size in the left, and make the two 
regions have the minimum distance between their pixels. The way to find the BL2 
and its center point is PL(p,q) is (5): 

)),(2),(2(min),(
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Here we define the minimum distance is (6). The distance includes the intensity and 
axis of the two areas pixels. 
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Note that the vertical disparity is assumed to be 0, that is, the algorithm only searches 
in one line, so in (5) the x is m while the y ranges from N to W. The W is the width of 
the image while the H is the height. At this point we get the center of the regional BL2 
and that is the PL(p,q), see Fig. 2. Now the BL2 is the best block region to match the 
BR2, with the help of center point PL, we can find the BL1. The RBFSM has a hidden 
layer with 5 nodes. There are the center PL and four corners of the BL1 region, as 
shown in Fig. 2 

 

 
 

Fig. 1. The block to be matched in the right 
image 

Fig. 2. How the block pixels in the left image 
get their disparity 

The five points are in the Point set. See (7), and the input X is the whole pixels in 
BL1 region as the (8) expresses. 

},,,/),(),,({int ininininLL KKiKKjqpPiqjpPPo −=−=++=               (7) 

},...,1,;,...,1,/),({ ininininininL KkKiKKKjiqjpPX +−−=+−−=−−=     (8) 
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The benefit of only considering 5 nodes is that it can handle the matching block. Not 
only can improve the accuracy but also speed up the efficiency of the algorithm. Only 
considering the part of pixels is due to the pixels far away from the center will be 
given a very smaller impact. Therefore, it eliminates the need for the calculation of 
the distance pixels. We get the hidden layer output by (9). In (9) the hiddenk 
expresses the k-th center hidden node, while the output matrix of the hidden layer 
nodes is the hidden (10). Each column of the hidden represents the affection of a 
hidden node makes on X. 
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The weights matrix ω  between the hidden layer and output layer saves the 
displacement from the left to the right image. Using the correspondence relationship 
from the hidden layer, we can calculate the disparity for the whole BL1 region. 
Specific method is to calculate the offset from the center of BL2 to the center of BR2, 
and the horizontal direction is (11). 

NqHor −=                                  (11) 

Then calculate the location difference between the pixels in right which have the same 
offset as the center point PR(M,N) and the corresponding pixels in the left image. 
Then each pixel PL(x,y) in left can get its horizontal disparity matrix_Hor(x,y)i in 
(12), and the η is the learning efficiency. The Steps of the way to get the disparity can 
reference to the Fig. 2. That is starting from the input layer, through the hidden layer, 
and then together with the weight ω  to arrive at the output layer, at the last the 
disparity of the input will be shown by the last layer. 
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The matrix ω  which is between the hidden layer and output layer is shown in (13). 

iLiR yxPHoryxP ),(),( −−=ω                           (13) 
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When we try to get the temp_Hor(x,y)i, we should consider the impact of all the 
hidden nodes, so we use a function f to achieve the purpose ,see (14). Often we use an 
easy method, which is just calculating the mean of the vector in (15) 

At this time we have obtained the disparity for each pixel within BL1. Then do the 
similar process to other pixels in the left image, and pixels to be processed can be in 
ordered or can be random. Note that before the iteration we should update the 
coordinates for BL1 pixels by (16) 
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Iterate the steps above. When all pixels are calculated by iteration at least once, the 
left image will be transferred into a new image. Then, let the coordinates of each pixel 
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in the new image minus the initial pixels’ coordinate in the left image, and that is the 
horizontal disparity of each pixel in left image as the (17) shows in disMap_hor(x,y)i. 

WyHxyxPyyxhordisMap iLi ≤≤≤≤−= 11),(),(_          (17) 

3   Implementation and Results 

3.1   Algorithms Comparison and Parameters Setting 

Now we will compare the RBFSM with some typical stereo matching algorithms, 
including SAD, SO, DP, GC, BP, and the MSOM, to prove the superiority of the 
RBFSM algorithm. 

The images for the experiments come from the well known website: 
http://vision.middlebury.edu. There are Tsukuba, Venus, Cones, and Teddy. All of 
them have been calibrated and the disparity in the vertical direction is 0. To further 
reflect the superiority of the new algorithm, the RBFSM not only consider the above 
images in their standard situation, but also consider these images in non-standard 
situation that current stereo matching methods are very difficult to solve, including 
the high brightness, and the rotation. 

Now let us determine the parameters. Considering the Tsukuba first, through a 
large number of experiments, we find σ is 20 and the learning efficiency η is 0.005 
will get the best disparity map. Here we make the σ as a constant instead of a varied 
in the traditional RBFNN. The Kout. is mainly used to find the corresponding between 
the right image point PR and the left image point PL. while the Kin is mainly to 
construct the BR1 region, deciding the pixels to enter the net. Here we know when the 
Kout is 3 and Kin is 1, the result seems to be the best. Now parameters have been set, 
but remember these parameters are just suitable for the Tsukuba. So the different 
images should be given different parameters. 

3.2   Standard Situation 

Here we show the style of stereo matching images for Tsukuba in Fig. 3, the a) is the 
left image, b) is the right image and the c) is the groundtruth. 

Test the RBFSM algorithm in different images, including the Tsukuba, Venus, 
Cones and Teddy. We give three disparity maps in Fig. 4 from a) to c), and their 
groundtruth maps are from d) to f). As shown in the Fig. 4, the disparity map appears 
smooth and there is no ladder in it. This is because it is different from the traditional 
algorithms. For the disparity is not limited to the integer. The real world is 
continuous, but not segmented. Therefore, the traditional algorithm often uses the 
sub-pixel technology after the initial disparity map has been obtained. This 
technology can improve the accuracy and makes the image becomes smooth, and 
without the ladder in the disparity map. Compared to traditional methods the RBFSM 
is more realistic and convenient. In addition, the new algorithm does not know the 
disparity range at the beginning. But the algorithm will give the disparity range for 
each image, as shown below dis_Venus is 18.43, dis_Cones is 53.54, and dis_Teddy 
is 60.24. While the true disparity ranges are dis_venus is 19, dis_cones is 59, and 
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dis_teddy is 59. The error is only about 6%. See RBFSM can accurately give the max 
disparity, so the algorithm does not need the prior knowledge of the disparity range. 

Here we use a common evolution mechanism in [10] as described in (18). The 
dc(x,y) is the disparity from each algorithm and the dT(x,y) is the disparity from the 
groundtruth, and the (x,y) is the pixel point in the left image (imagel). In table 1, we 
give the accuracy for each algorithm’s accuracy in different images. 
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a).left image b).right image c).groundtruth
d).High 

brightness
e).Rotation

 

Fig. 3. The Tsukuba in standard and non-standard situation 

a).Venus b).Cones c).Teddy 
d).Venus 

groundtruth 
e).Cones 

groundtruth 
f).Teddy 

groundtruth 

Fig. 4. The RBFSM algorithm for each image and their groundtruth. 

Table 1. Each algorithm’s accuracy in different images 

Image Algorithm 

 SAD SO DP GC BP 
MSOM

[9] 
RBFSM 

Tsukuba 15.31 7.01 6.42 4.80 6.02 5.17 12.5 

Venus 20.02 8.53 13.21 4.11 3.11 3.48 5.06 

Cones 38.46 30.05 19.54 22.35 20.20 14.97 13.33 

Teddy 34.25 25.36 18.12 20.15 16.85 11.77 10.12 

3.3   Non-standard Situation 

In this section, we will discuss the Tsukuba in non-standard situations to further 
reflect the superiority of the algorithm. Considering the two following situations, one 
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of the Tsukuba images is in high brightness, as the Fig. 3 d) shows. Though the 
accuracy is decreased now, we still can get a good disparity map in Fig. 5 a). It means 
that the algorithm is not very sensitive to the intensity. Meanwhile, we try the other 
algorithms in this case and give the results in Fig. 5 from b) to f), showing that the 
traditional methods could not get the disparity map. Perhaps it is because the 
parameter settings, but we can surely know that the traditional methods are not as 
good as the RBFSM. Another situation is one of the images has a slight rotation, in 
the experiments we rotate the left image about 5 degrees, as the e) in Fig. 3 shows. 
This situation is also impossible to deal with using the present algorithm. But the 
RBFSM can still do it quite well, which is shown in a) in Fig. 6. We also try the 
traditional methods to this situation from b) to f) in Fig. 6. Just as the above describe, 
the traditional methods is very poor now. To deal with this situation we should also 
consider the vertical disparity, so from this experiment we know the traditional 
methods is weak when there is vertical disparity while the new algorithm can still deal 
with the rotation. Now the RBFSM algorithm should be expanded in the global search 
space to give the vertical disparity, and at this time we just need to arrange x from 1 to 
H in (5). But it will also increase the search space, and make the time consumption 
increased. 

a).RBFSM 
algorithm

b).SAD 
algorithm

c).SO 
algorithm

d).DP 
algorithm

e).GC
algorithm

f).BP 
algorithm  

Fig. 5. The disparity map of high brightness images 

a).RBFSM 
algorithm

b).SAD 
algorithm

c).SO 
algorithm

d).DP 
algorithm

e).GC 
algorithm

f).BP 
algorithm  

Fig. 6. The disparity map of rotation images 

4   Conclusions  

Because of traditional algorithms have so many shortcomings, here designs a new 
algorithm called RBFSM. It is based on the RBFNN to deal with the stereo matching. 
Let the whole image pixels as the input and then their corresponding disparity will be 
showed in the output. The RBFSM algorithm need not to know the disparity range 
thus reduces the amount of the redundant search. It uses the constraint between 
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multiple lines to get a global optimum, so as to avoid the discontinuity between each 
line. Compared with the algorithm which only considers the best single line, the 
precision is greatly improved. Without the complexity compute like solving the 
minimum cut like in GC, thus the time complexity is greatly reduced. The RBFSM 
has taken various constraints into account, such as intensity constraints, local 
information constraints, and occlusion constraints, so the robustness is greatly 
strengthened. When the camera has a vertical displacement, the algorithm still could 
obtain its corresponding vertical disparity.  

Experimental results show the superiority of the RBFSM and prove that it is 
greatly improved over many traditional methods. 
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Abstract. Ensemble classifiers are very useful tools and can be applied in many 
real world applications for classifying unseen data patterns into one of the 
known or unknown classes. However, there are many problems facing 
ensemble classifiers such as finding appropriate number of layers, clusters or 
even base classifiers which can produce best diversity and accuracy. There has 
been very little research conducted in this area and there is lack of an automatic 
method to find these parameters. This paper presents an evolutionary algorithm 
based approach to identify the optimal number of layers and clusters in 
hierarchical neural ensemble classifiers. The proposed approach has been 
evaluated on UCI machine learning benchmark datasets. A comparative 
analysis of results using the proposed approach and recently published 
approaches in the literature is presented in this paper.  

Keywords: Neural ensemble classifiers, evolutionary algorithms, optimization. 

1   Introduction 

Ensemble classifiers are approaches which train multiple classifiers and fuse their 
decisions to produce the final decision. The training process in an ensemble classifier 
aims to produce the base classifiers in such a way that they are accurate and also 
differ from each other in terms of the errors they make on identical patterns. This 
phenomenon is known as diversity [1-4]. A commonly used approach to generate the 
base classifiers is by training them on different subsets of the data. This ensures 
diversified learning of the base classifiers and achieves higher accuracy. The subset 
selection algorithm varies among the different ensemble generation methods. Many 
ensemble classifier generation methods have been recently developed and there has 
been lot of research to generate ensemble classifiers using diversity phenomenon. 
Bagging [5] is one of the oldest ensemble classifier generation techniques. Diversity 
in conventional bagging is achieved by training the base classifiers on randomly 
drawn subsets from the training data. Bagging and its variants [6-7] provide a 
mechanism to achieve diversity but it does not mention any systematic mechanism to 
identify difficult–to–classify overlapping data. Boosting [8-9] is another popular 
ensemble classifier generation technique which mainly achieves diversity by creating 
data subsets using re-sampling of training data. The subsets in boosting, however, not 
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necessarily contain examples that are difficult to classify when combined together. A 
number of variants of boosting technique have been recently described in the 
literature, for example, AdaBoost [9], weighted instance selection method [10], 
smoothed boosting [11], boosting recombined weak classifiers [12], Learn++.NC [13] 
and heterogeneous boosting [14]. 

In additional to convention ensemble classifier generation techniques, some 
classifier ensemble generation techniques based on multiple clusters idea have been 
recently published [4, 15-18]. The idea is based on that any data set can contain 
multiple clusters and some clusters are easy to classify and some are not easy to 
classify. A clear identification of these difficult to classify clusters can better guide 
the learning process in ensemble classifiers. This idea has been used in clustered 
ensembles [4, 15-18] that identify multiple clusters within the classified data and train 
base classifiers. Although, a data pattern in clustered ensembles can belong to only 
one cluster and as a result the decision can be obtained from a single classifier leading 
to lack of diversity. The purpose of the research presented in this paper is to improve 
the diversity and accuracy through layered clustering and optimising layers and 
clusters using a novel evolutionary algorithm based approach. 

This paper is consists of 4 sections as follows. Section 2 presents the proposed 
approach including research methodology and processes for training and testing. 
Section 3 details the benchmark data sets, base classifiers’ parameters, experimental 
results and comparative analysis. The conclusion is presented in Section 4.   

2   Proposed Approach 

An overview of the proposed research methodology is presented in Fig. 1. The first 
step is to partition data set into variable number of clusters (1...N) using N layers to 
achieve diversity. The identical patterns from data set may belong to N alternate 
clusters. The second step is to train neural network based classifiers on clusters at N 
layers. The third step is to apply evolutionary algorithm to optimize the parameters. 

 

Fig. 1. An overview of the proposed methodology 

The main parameters are number of layers (N) and number of clusters (C) at layer 
l, where l is between 1 and N. The diversity might directly influence classification 
performance which means that we have to deal with two optimality criteria (accuracy 
and diversity) while searching for the optimal N and C. An evolutionary algorithm for 
searching the optimal L and C is used in this paper. The detailed processes used in the 
proposed ensemble classifier for training/optimising layers and testing are shown 
below in Fig. 2.  
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Neural networks as base classifiers are used in this paper but any other classifiers 
can be used in place of neural networks. The training data set is clustered in N 
separate layers. At each layer, the data is segmented into clusters based on clustering 
parameters [16] [20]. The neural network is trained using standard back propagation 
learning [21]. The parameters settings for the neural networks include variable hidden 
units between 12 and 60, learning rate of 0.01, momentum term of 0.3 and 0.4 and 25 
epochs. The majority voting for decision fusion is used. The diversity was computed 
using Kohavi-Wolpert (KW) variance [23] [24]. 

 

 

Fig. 2. Architecture of the training and testing processes used in the proposed approach 
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3   Results and Discussion 

The benchmark datasets from UCI Machine Learning Repository [19] has been 
acquired, processed and used in this research for evaluating the proposed 
methodology.  In all cases, the dataset has been divided into training and test sets.  
The experiments have been conducted on 8 datasets using these training and test sets.  
A summary of the datasets used in this paper is presented below in Table 1. In the 
experiments, 50% of the dataset was used for training and the remaining 50% for the 
testing. The parameters for training of neural networks as base classifiers are shown 
in Table 2. The evolutionary algorithm was applied for optimisation of layers and the 
detailed parameters are given in Table 3. The classification results for bagging and 
boosting are obtained using WEKA and the same training and test datasets. All the 
experiments for the proposed methodology were conducted using MATLAB. 

Table 1. Data sets used in the experiments 

Dataset Instance Attribute Class 

Wine 178 13 3 
Glass 214 10 7 

Ionosphere 351 33 2 
Sonar 208 60 2 

Thyroid 215 5 3 
Iris 150 4 3 

Ecoli 336 7 8 
Liver 345 6 2 

Table 2. The set of parameters for evolutionary algorithm 

Population size Mutation 
probability 

Termination 
count 

60 0.001 12 
   

Table 3. Best parameters for neural networks used in the experiments 

Dataset #Hidden 
units 

Learning 
rate 

Momentum 
 

#Epochs 

Wine 28 0.01 0.4 25 
Glass 50 0.01 0.5 20 

Ionosphere 50 0.01 0.4 25 
Sonar 12 0.01 0.4 25 

Thyroid 12 0.01 0.4 25 
Iris 50 0.01 0.4 25 

Ecoli 12 0.01 0.6 25 
Liver 12 0.01 0.3 15 
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The best training and test accuracies obtained by conducting experiments on 8 
benchmark datasets using the proposed approach are presented below in Table 4. The 
table also presents the number of layers, diversity and min/max clusters. Table 5 
presents the test accuracies obtained with different neural network training parameters.   

Table 4. Best training and test accuracies using the proposed approach 

Dataset Diversity 
Training 
accuracy 

[%] 

Test 
accuracy 

[%] 

#Of 
layer 

Min 
clusters 

Max 
clusters 

Wine 0.070135 100.00 98.91 88 5 88 
Glass 0.072353 97.22 94.55 8 2 97 

Ionosphere 0.055437 98.28 96.57 46 2 162 
Sonar 0.078193 100.00 87.62 59 3 103 

Thyroid 0.018869 100.00 98.18 23 1 110 
Iris 0.042774 100.00 97.33 29 1 66 

Ecoli 0.078086 92.77 89.41 18 2 166 
Liver 0.073340 97.09 68.91 70 5 172 

Table 5. Accuracies vs. neural network parameters 

Dataset #Hidden 
units 

Learning 
rate 

Momentum 
 

 
#Epochs 

Test 
accuracy 

[%] 
Wine 28 0.01 0.4 25 98.89 

 12 0.01 0.3 25 98.89 
 30 0.01 0.3 25 98.89 

Glass 50 0.01 0.5 20 94.55 
 50 0.01 0.6 25 93.64 
 12 0.01 0.5 20 92.27 

Ionosphere 50 0.01 0.4 25 96.57 
 50 0.01 0.6 20 95.42 
 36 0.001 0.4 10 93.18 

Sonar 50 0.01 0.4 25 87.62 
 12 0.01 0.4 25 86.67 
 30 0.01 0.5 25 86.67 

Thyroid 12 0.01 0.4 25 98.18 
 12 0.01 0.3 25 97.27 
 12 0.01 0.3 20 97.27 

Iris 50 0.01 0.4 25 97.33 
 12 0.01 0.6 30 97.33 
 12 0.01 0.3 25 96.00 

Ecoli 12 0.01 0.6 25 89.41 
 12 0.1 0.5 25 88.82 
 12 0.01 0.5 20 86.47 

Liver 12 0.01 0.3 15 68.91 
 12 0.01 0.3 20 67.06 
 12 0.001 0.3 15 65.90 
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3.1   Comparative Analysis 

The Table 6 provides a comparative analysis of results obtained by using the proposed 
and existing ensemble classifier approaches on UCI machine learning benchmark 
datasets. The best classification accuracies on the test sets have been used for 
comparison purposes. The proposed approach using accuracy criteria performance 
achieved 2.42% better than Bagging and 1.05% better than Boosting. The better 
performance of the proposed methodology is due to optimised parameters for 
ensemble classifier.   

Table 6. Comparative analysis of the proposed and existing approaches 

 Dataset Bagging 
[%] Boosting [%] 

Proposed 
approach in this 

paper  
[%] 

Wine 98.89 100.00 98.89 
Glass 90.00 92.73 94.55 

Ionosphere 95.45 94.89 96.57 
Sonar 80.95 86.67 87.62 

Thyroid 94.55 96.36 98.18 
Iris 97.33 97.33 97.33 

Ecoli 87.65 87.65 89.41 
Liver 68.79 68.21 68.91 

       

4 Conclusions  

We have presented and investigated a novel approach for optimisation of neural 
ensemble classifier. The clustering of data and neural trained base classifiers were 
fused together to find the best ensemble classifier. The proposed approach was 
implemented and evaluated on 8 machine learning benchmark datasets. The 
comparative results showed that the proposed approach is 2.42% better than Bagging 
and 1.05% better than Boosting ensemble classifiers. In our future research, we are 
planning to conduct experiments on more UCI datasets and include neural network 
parameters within optimisation process. 
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Abstract. This paper deals with the problem of stability criterion of
discrete-time recurrent neural networks with periodic delays. It is written
as a discrete-time multi-switched liner system (DMSLS), applying the
parameter and time dependent Lyapunov functions we obtain several new
sufficient conditions and sufficient conditions for asymptotically stability
of these systems.

Keywords: discrete-time recurrent neural networks, Delay, Stability,
switched liner system.

1 Introduction

Many biological and artificial neural networks contain inherent time delays,
which may cause oscillation and instability[1,2]. And in a hardware implementa-
tion of neural networks using the very large-scale integration (VLSI) technology,
the time delay will be inevitable and occur in the signal transmission among
the neurons, which will affect the stability of the neural system and may lead
to some complex dynamic behaviors such as periodic oscillation, bifurcation,
or chaos[1,2,3]. Thus it is very important to study the stability of recurrent
neural networks with time-varying delays. When we consider a longterm dy-
namical behaviors of the system and consider seasonality of the changing en-
vironment in many realistic systems, the parameters of the system usually will
change with time[4,5]. Recently, the periodic parameters of neural networks are
considered in the literature[6-17]. It should be pointed out that the delay func-
tion is described as a periodic function in [6,7,9,10,12,14,15]. And many works
center on continuous-time recurrent neural network(CRNN) with time-varying
delays(CRNNwTVD). When the CRNNwTVD is simulated by computer and is
implemented digitally, however, it be discretized into discrete-time recurrent neu-
ral network(DRNN) with time-varying delays(DRNNwTVD)[18]. Therefore, this
letter studies the stability criteria of DRNN with periodic delays(DRNNwPD).

On other hand, time-varying delay has a upper bound, so DRNNwTVD is
regard as a sub-DRNNwTVD at every time[18,19]. Therefore, DRNNwTVD be
transformed to a discrete-time switched liner system(DSLS) which consists of
� Corresponding author.
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a family of sub-DRNNwTVD and a switching law that orchestrates switching
between them. And [20] introduce the generalized activation function, which
belongs to the convex hull of piecewise linear functions(PLF). Simultaneously,
because in practice linear function is easily implemented, PLF may be used to
approximate other activation functions. So, in this letter we assume that the
activation functions is PLF. Obviously, the DRNN with PLF is regard as a
DSLS.

Motivated by the previous discussion, the aims of this letter are to study the
stability problem of DRNNwTVD. When DRNNwTVD be written as a discrete-
time multi-switched liner system(DMSLS), applying the parameter and time
dependent Lyapunov functions we obtain several new sufficient conditions and
sufficient conditions for stability of DRNNwTVD.

This paper is organized as follows. In section 2, we give some basic definitions.
We analyze the stability of the SDHNN in section 3. We study the stability of
the DRNNwTVD in section 4. Some examples are given in section 5. The last
section offers the conclusion of this paper.

2 Preliminaries

Consider the following discrete-time recurrent neural networks with time-varying
delays:

u(k + 1) = Au(k) +Bg(u(k)) + Cg(u(k − d(k))) + I (1)

where u(k) = {u1(k), u2(k), · · · , un(k)} ∈ Rn is the state vector associated with
n neurons; A = diag{a1, a2, · · · , an} is a diagonal matrix with positive entries;
B and C are, respectively, the connection weight matrix and the delayed con-
nection weight matrix; I is input vector; g(u) = {g1(u), g2(u), · · · , gn(u)} is the
activation function vector. d(k) is the time delay, which is a nonnegative and
periodic function with period ω and satisfies 0 ≤ d(k) ≤ d.

The equilibrium points of DRNNwTVD (1) exist by the fixed point theorem.
In the following, let u◦ = {u◦1, u◦2, · · · , u◦n} be the equilibrium point of (1), then
x(·) = u(·)− u◦. The system (1) is shifted to the following form:

x(k + 1) = Ax(k) +Bg(x(k)) + Cg(x(k − d(k))) (2)

Throughout this letter, we have the following assumptions.
A1)d(k + ω) = d(k) with period ω.
A2) The activation functions in (1), gi(.), is defined as[]:

gi(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

giNixi + eiNi , if xi ∈ (−∞,−biNi ];
...
gi1xi + ei1, if xi ∈ [−bi2,−bi1];
gi0xi, if xi ∈ [−bi1, bi1];
gi1xi + ei1, if xi ∈ [bi1, bi2];
...
giNixi + eiNi , if xi ∈ [biNi ,∞).

(3)
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Obviously, from A2) we have:

gi(θ1)− gi(θ2)
θ1 − θ2 = gi0, ∀θ1, θ2 ∈ [−bi1, b1] (4)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
gi(θ1)− gi(θ2)

θ1 − θ2 = gih, ∀θ1, θ2 ∈ [−bi(h+1),−bih] ∪ [bih, bi(h+1)] (5)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
gi(θ1)− gi(θ2)

θ1 − θ2 = giNi , ∀θ1, θ2 ∈ (−∞,−biNi] ∪ [biNi ,∞) (6)

And there exists G(k) = diag{g1(k), · · · , gi(k), · · · , gn(k)}, gi(k) ∈ {gi0, · · · ,
giNi} such that g(x(k)) = G(k)x(k) and g(x(k−d(k))) = G(k)x(k−d(k)). Then
we know G(k) ∈ G = {{g10, · · · , g1N1}×{g20, · · · , g2N2}×· · ·×{gn0, · · · , gnNn}}
and card(G) = m =

n∏
i=1

Ni. So, (3) can be rewritten as a switched system:

x(k + 1) = Ax(k) +BGϕ1(k)x(k) + CGϕ2(k)x(k − d(k)) (7)

where we denote by M the set of values the switching activation function ϕ1(k)
and ϕ2(k) may take, ϕ1 : Z+ −→M ;ϕ2 : Z+ −→M,M = {1, 2, · · · ,m}.

The next, similar to [19,20], discrete-time systems with time varying delays is
transformed into a switched system. Considering the augmented state vector:

z(k) = [xT (k), xT (k − 1), · · · , xT (k − d)]T (8)

The dynamics of the system (7) can be represented as the following switched
system:

z(k + 1) = Λϕ(k)σ(k)z(k) (9)

The state matrix Λϕ(k)σ(k) switches in the set of possible matrices {Λ11, Λ12,
· · · , Λm2d} according to ϕ(k) = (ϕ1(k) − 1)m + ϕ2(k) and the parameter σ(k)
called switching delay function. We denote that switching activation function
ϕ(k) may take ϕ : Z+ −→ M2,M2 = {1, 2, · · · ,m2} and the periodic delay
switching function σ(k), which satisfied σ(k + ω) = σ(k), may take, σ : Z+ −→
D,D = {1, 2, · · · , d}. In the case of time delays systems, the matrices Λlf , l =
(i− 1)m+ j, i, j ∈M, l ∈M2, f ∈ D are given by:

Λlf =

⎡⎢⎢⎢⎢⎢⎣
A+BGi 0 · · · 0 CGj 0 · · · 0

E 0 · · · · · · · · · · · · · · · 0
0 E 0 · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
0 · · · · · · · · · · · · 0 E 0

⎤⎥⎥⎥⎥⎥⎦ (10)

3 Main Results

According to the periodic delay switching function, periodic switching sequence
is σ, σ ∈ {s ∈ D∗ : |s| = ω}, where the set of all sequences over an alphabet D
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is denoted by D∗ and the length of a sequence s is denoted by |s|. σ is denoted
by σ(k + 1)σ(k + 2) · · ·σ(k + ω), where the value of σ(k + f), where 1 ≤ f ≤ ω
and σ(k + f) ∈ D, is the symbol in the fth position of σ. D′ is denoted by
{1, 2, · · · , ω}. Suppose that σ = 12 · · ·ω and we define the switching indicator
function

ξ(k) = [ξ1lp(k)]m2×m2

⊗
[ξ2fh(k)]ω×ω (11)

with ξ1lp(k) =
{

1, when the activation function l switches to p;
0, otherwise. , and

ξ2fh(k) =
{

1, when the periodic delay f switches to h, h = (f + 1)modω;
0, otherwise. and

the subsystem indicator function

ξ(k) = [ξ11(k), · · · , ξ1l (k), · · · , ξ1m2(k)]T
⊗

[ξ21(k), · · · , ξ2f (k), · · · , ξ2ω(k)] (12)

with ξ1l (k) =
m2∑
p=1

ξ1lp(k) and ξ2f (k) =
ω∑

h=1

ξ2fh(k)

Proposition 3.1: The following statements are equivalent:

1) There exists a Lyapunov function:

V (k, x(k)) = zT (k)(
m2∑
l=1

ω∑
f=1

ξ1l (k)ξ2f (k)Plf )z(k))

whose difference is negative definite and where ξ1l (k) and ξ2f (k) are defined in
(12), proving asymptotic stability of the system (9).

2) There exist ωm2 symmetric matrices Plf = PT
lf > 0, ∀l ∈ M2, ∀f ∈ D′,

satisfying the LMIs:[
Plf AlfPph

∗ Pph

]
> 0, ∀(l, p) ∈M2 ×M2; ∀f ∈ D′, h = (f + 1)modω (13)

Proof: The switched system (9) can also be written as

z(k + 1) =
m2∑
l=1

ω∑
f=1

ξ1l (k)ξ2f (k)Λlf z(k) (14)

From above, it is easy to verify that the system (9) is asymptotically stable if
and only if the system (14) is asymptotically stable. By the results of Theorem
2 in [21], we know that Theorem 3.1 is fulfilled.

Theorem 3.2: The following statements are equivalent:

1) There exists a Lyapunov function:

V (t, x(t)) = zT (t)
m2ω∑
f=1

ρi(t)Pi)z(t))
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whose difference is negative definite and where ρi(t) is defined in (19), proving
asymptotic stability of the system (9).

2) There exist m2ω symmetric matrices Pi = PT
i > 0, ∀i ∈ M2ω, satisfying

the LMIs: [
Pi Ψ

T
i Pj

∗ Pj

]
> 0, ∀(i, j) ∈M2ω ×M2ω (15)

with Ψi =
∏ω

f=1Λlf f , which i =
∑ω

f=1(lf − 1)m2(f−1), lf ∈M2

Proof: Assume that t = (�k/ω�−1)·ω and time step of t is ω that t+1 = �k/ω�·ω.

suppose that u = t + 1, u = t and Ψ =
∏k+1

o=u+1(
m2∑
l=1

ξ1l (o)Λlσ(o)) Obviously, the

switched system (9) can be written as

z(k + 1) = Ψz(t+ 1) = ΨΨα(t)z(t) (16)

where α(t) is a switching rule defined by α(t) :: Z+ −→ Ω,Ω = {1, 2, · · · ,m2ω}
and Ψα(t) =

∏t+1
o=u+1(

m2∑
l=1

ξ1l (o)Λlσ(o))

Because Ψ is a constant matrix, the switched system (16) can be translated
into

z(t+ 1) = Ψα(t)z(t) (17)

Suppose that σ = 12 · · ·ω and we define the switching indicator function:

ρ(t) = [ξ1l1l2(u + 1)]
⊗
· · ·
⊗

[ξ1lf lf+1
(u+ f)]

⊗
· · ·
⊗

[ξ1lωl1(u+ ω)] (18)

and the subsystem indicator function

ρ(t) =[ρ1(t), · · · , ρi(t), · · · , ρm2ω (t)]T = [ρij(t)]m2ω×m2ω

=[ξ11(u+ 1), · · · , ξ1l1(u+ 1), · · · , ξ1m2(u+ 1)]T
⊗

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
[ξ11(u+ f), · · · , ξ1lf (u+ f), · · · , ξ1m2(u + f)]T

⊗
(19)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
[ξ11(ω), · · · , ξ1lω (ω), · · · , ξ1m2(ω)]T

with ρi(t) =
m2ω∑
j=1

ρij(t) and ξ1lf (u+ f) =
m2∑

lf+1=1

ξ1lf lf+1
(u+ f)

Then, the switched system (17) can also be written as

z(t+ 1) =
m2ω∑
i=1

ρi(t)Ψiz(t) (20)

From above, it is easy to verify that the system (9) is asymptotically stable if
and only if the system (20) is asymptotically stable. By the results of Theorem
2 in [21], we know that Theorem 3.1 is fulfilled.
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Remark 1: When M2 = {1}, suppose that Gϕ1(k) = Gϕ2(k) = G, the system
(10) is written as:

z(k + 1) = Λσ(k)z(k) (21)

where σ(k) is defined in (9). Based on the proof of Proposition 3.1, we suppose
that periodic switching sequence σ = σ(k + 1)σ(k + 2) · · ·σ(k + ω) = 12 · · ·ω.
Then we have the following result:

Corollary: The following statements are equivalent:

1) There exists a Lyapunov function: V (t, x(t)) = zT (t)Pz(t)) whose difference
is negative definite, proving asymptotic stability of the system (21).

2) There exist a symmetric matrices P =PT > 0, satisfying the LMI:
[
P ΨTP
∗ P

]
>

0, with Ψ =
∏ω

f=1 Λ1f .

4 Conclusions

This paper was dedicated to the delay-dependent stability of uncertain discrete-
time recurrent neural networks with time-varying delay. A less conservative LMI-
based globally stability criterion is obtained with switched quadratic Lyapunov
functional approach and free-weighting matrix approach for periodic uncertain
discrete-time recurrent neural networks with a time-varying delay.
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Abstract. This paper is concerned with uniqueness and global robust
stability for the equilibrium point of the interval bidirectional associative
memory (BAM) delayed neural networks. By employing linear matrix
inequality and Lyapunov functional, a new criterion is proposed for the
global robust stability of BAM neural networks. An example is given to
show the effectiveness of the present results.

1 Introduction

Kosko proposed a new class of neural networks called bidirectional associative
memory (BAM) neural networks[1-3]. The BAM neural network is composed
of neurons arranged in two layers, and the neurons in one layer are fully in-
terconnected to the neurons in the other layer. Because of these models are all
about the single-layer auto-associative circuit, recent years, the convergence of
dynamics of BAM neural network have been extensively studied due to the good
application prospects in the areas of pattern recognition, signal, automatic con-
trol engineering and image etc.

In that applications stability and the convergence dynamics of BAM neural
networks are prerequisite. therefore, a lots of results for BAM neural networks
concerning the existence of equilibrium points, global stability have been done,
we refer to [4-10,14-16].

A lot of effictive criterions are derived for the global stability in delayed BAM
networks by constructing suitable Lyapunov functional and the inequality tech-
nique. Cao and Wang [7] study the periodic oscillatory solution of BAM networks
with delays. In[8], the author derived several criteria for the global exponential
stability of delayed BAM neural networks. And Liao and Wong [9] gave some
sufficient conditions for the global robust asymptotic stability of the continuous-
time BAM nerual networks. In this paper, we give new criteria to guarantee the
global robust stability of the BAM neural networks.

We consider the delayed BAM networks described by the following functional
differential equations:⎧⎪⎪⎨⎪⎪⎩

u̇i(t) = −aiui(t) +
m∑

j=1

wijfj(vj(t− τij)) + Ii,

v̇j(t) = −bjvj(t) +
n∑

i=1

vjigi(ui(t− σji)) + Jj ,
(1)

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 307–314, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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where i = 1, 2, ..., n; j = 1, 2, ..., p; ui(t), vj(t) denote the potential (or volt-
age) of the cell i and j at time t respectively; ai, bj are positive constants,
they denote the rate with which the cell i and j reset their potential to the
resting state when isolated from the other cells and inputs; time delays τij ,
σji are non-negative constants, they correspond to finite speed of axonal sig-
nal transmission; the connection weights wij , vji are real numbers, they de-
note the strengths of connectivity between the cells i and j at time t − τij and
t− σji respectively; Ii, Jj denote the ith and jth component of an external in-
put source introduced from outside the network to cell i and j respectively; we
denote u(t) = [u1(t), u2(t), ..., un(t)] ∈ Rn, v(t) = [v1(t), v2(t), ..., vm(t)] ∈ Rm;
τ = max

1≤i≤n,1≤j≤m
(τij), σ = max

1≤i≤n,1≤j≤m
(σji), τ∗ = max(τ, σ).

In this paper, the activation functions are assumed to satisfy the following:

(A1)|fi(ζ)| ≤Mi, |gi(ζ)| ≤ Nj, ∀ζ ∈ R;Mi, Nj > 0.

(A2)
|fj(x) − fj(y)|
|x− y| ≤ Li,

|gj(x)− gj(y)|
|x− y| ≤ L̃j.

Where i = 1, 2, ..., n; j = 1, 2, ...,m; u, v ∈ R, u �= v and Li, L̃j are positive
constants.

The quantities ai, bj, wij , vji may be intervalized as follows:

AI = {A = diag(ai) : A ≤ A ≤ A, i.e.,
ai ≤ ai ≤ ai, i = 1, 2, · · · , n, ∀A ∈ AI}
BI = {B = (bj)n×n : B ≤ B ≤ B, i.e.,
bj ≤ bij ≤ bj , j = 1, 2, · · · , n, ∀B ∈ BI}

WI = {W = (wij)n×n : W ≤W ≤W, i.e.,
wij ≤ wij ≤ wij , i, j = 1, 2, · · · , n, ∀W ∈WI}.

VI = {V = (vji)n×n : V ≤ V ≤ V , i.e.,
vji ≤ vji ≤ vji, i, j = 1, 2, · · · , n, ∀V ∈ VI}.

(2)

2 Preliminaries

The system (1) can be rewritten in the vector form as{
u̇(t) = −Au(t) +Wg(v(t− τ)) + I,
v̇(t) = −Bv(t) + V f(u(t− σ)) + J.

(3)

where u(t) = (u1(t), u2(t), ..., un(t))T , v(t) = (v1(t), v2(t), ...vm(t))T ,
A = diag(a1, a2, ..., an), B = diag(b1, b2, ..., bm), W = (wij)m×n, V = (vij)n×m,
f = (f1, f2, ..., fm)T , g = (g1, g2, ..., gn)T , I = (I1, I2, ..., In), J = (J1, J2, ..., Jm).

It is clear that under the assumption (A1) and (A2), system (1) has at least
one equilibrium. In order to simplify our proof ,we will shift the equilibrium
point u∗ = (u1, u2, ..., un)T , v∗ = (v1, v2, ..., vm)T of system (3) to the origin by
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letting x(t) = u(t)−u∗, y(t) = v(t)− v∗, and then, the transformed system is as
follows: {

ẋ(t) = −Ax(t) +Wg(y(t− τ)),
ẏ(t) = −By(t) + V f(x(t− σ)). (4)

From assumption (A1) and (A2) we have the vector f(x), g(y) possesses the fol-
lowing properties:

f(x)
x
≤ L;

g(y)
y
≤ L̃ (5)

Definition 1 [12]: The system given by (1) with the parameter ranges de-
fined by (3) is globally robust stable if there is the unique equilibrium point
(x∗) = (x∗1, x

∗
2, · · · , x∗n)T ; (y∗) = (y∗1 , y

∗
2 , · · · , y∗n)T of the system, which is glob-

ally asymptotically stable for all A ∈ AI , B ∈ BI , W ∈ WI , V ∈ VI .
Motivated by the preceding discussion, it suffices to prove the global ro-

bust stability of the origin of system (4) with the parameter ranges defined
by (2). On the other hand, for real symmetric matrix X and Y , the nota-
tion X ≥ Y (respectively, X > Y ) means that the matrix X − Y is posi-
tive definite(respectively, semi-define). For x = [x1, x2, · · · , xn]T ∈ Rn, let |x|
denote the absolute-value vector given by |x| = [|x1|, |x2|, · · · , |xn|]T . For a ma-
trix A = (aij)(n×n) ∈ Rn×n, let |A| denote the absolute-value matrix given by
|A| = (|aij |)n×n, L = diag(L1, L2, · · · , Ln).

Lemma 1 [17]: For any x = [x1, x2, · · · , xn]T , y = [y1, y2, · · · , yn]T , B =
(bij)n×n, C = (cij)n×n with |bij | ≤ cij , we have

xTBy ≤ |x|TC|y|. (6)

3 Main Result

Theorem 1: Under the assumptions (A1) and (A2), system (4) is globally robust
stable if there exits six positive diagonal matrices H1, H2, S1, S2, P1 , P2, and
the two positive definite matrices P2, Q2 such that the following LMIs hold:⎡⎢⎢⎢⎢⎢⎢⎣

Π1 0 0 0 0 P1W0

0 Π2 0 0 Q1V0 0
0 0 −Q2 0 0 0
0 0 0 −P2 0 0
0 V T

0 Q1 0 0 −Q2 + S1 0
WT

0 P1 0 0 0 0 −P2 + S2

⎤⎥⎥⎥⎥⎥⎥⎦ < 0 (7)

and ⎡⎢⎢⎢⎢⎢⎢⎣
−H1 0 0 0 0 P1U1

0 −H2 0 0 Q1U2 0
0 0 −Q2 0 0 0
0 0 0 −P2 0 0
0 UT

2 Q1 0 0 −S1 0
UT

2 P1 0 0 0 0 −S2

⎤⎥⎥⎥⎥⎥⎥⎦ < 0 (8)



310 X. Li and M. Liu

where
Π1 = −2P1A+H1 + 3L̃2Q2,

Π2 = −2Q1B +H2 + 3L2P2,

W0 = 1
2 (W +W ), U1 = 1

2 (W −W ), V0 = 1
2 (V + V ), U2 = 1

2 (V − V ).

Proof. Consider the following Lyapunov functional:

V (x, y) = xT (t)P1x(t) + yT (t)P1y(t)
+
∫ t

t−τ
gT (y(ζ))P2g(y(ζ))dζ +

∫ t

t−σ
fT (x(η))Q2f(x(η))dη.

(9)

The time derivative of along the trajectories of (4) takes the form:

V̇ (x, y) = −2xT (t)P1Ax(t) + 2xTP1Wg(y(t− τ))
−2yT (t)Q1By(t) + 2yTQ1V f(x(t− τ))
+gT (y(t))P2g(y(t))− gT y((t− τ))P2g(y(t− τ))
+fT (x(t))Q2f(x(t))− fTx((t − σ))Q2f(x(T − σ))

Since A, P1, B, Q1 are positive diagonal matrices, we can get that:

− 2xT (t)P1Ax(t) ≤ −2xT (t)P1Ax(t). (10)

− 2yT (t)Q1By(t) ≤ −2yT (t)Q1By(t). (11)

Also, we consist ΔW = W − W0; ΔV = V − V0. From (2) we can obtain
|Δwij | ≤ u1

ij ; |Δvij | ≤ u2
ji.

So, we have

|P1ΔW | ≤ PU1; |Q1ΔV | ≤ PU2

By lemma1, we have

xT (t)P1Wg(y(t− τ)) = xT (t)P1W0g(y(t− τ)) + xT (t)P1ΔWg(y(t− τ))
≤ xT (t)P1W0g(y(t− τ)) + |x(t)|TP1U1|g(y(t− τ))|.(12)

Similarly,we can obtain that

yT (t)Q1V f(x(t− τ)) = yT (t)Q1V0f(x(t− σ)) + yT (t)Q1ΔV f(x(t− σ))
≤ yT (t)Q1V0f(x(t− σ)) + |y(t)|TQ1U2|f(x(t− σ))|.(13)

Obviously, it is easy to see that

xT (t)H1x(t) ≤
n∑

i=1

|xi(t)|h1
i |xi(t)| = |x(t)|TH1|x(t)|; (14)

yT (t)H2y(t) ≤
m∑

j=1

|yj(t)|h2
j |yj(t)| = |y(t)|TH2|y(t)|. (15)
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And

fT (x(t − σ))S1f(x(t− σ)) ≤
n∑

i=1

|f(xi(t− σ))|s1i |f(xi(t− σ))|
= |f(x(t− σ))|TS1|f(x(t− σ))|

gT (y(t− τ))S2g(y(t− τ)) ≤
n∑

i=1

|g(yi(t− τ))|s2i |g(yi(t− τ))|
= |g(y(t− τ))|TS2|g(y(t− τ))|

(16)

It follows from (5) that

fT (x(t))Q2f(x(t)) = −fT (x(t))Q2f(x(t)) − fT (x(t))|Q2|f(x(t))
+3fT (x(t))Q2f(x(t))

≤ −fT (x(t))Q2f(x(t)) − fT (x(t))|Q2|f(x(t))
+3xT (t)L̃2Q2x(t);

gT (y(t))P2g(y(t)) = −gT (y(t))P2g(y(t))− gT (y(t))|P2|g(y(t))
+3gT (y(t))P2g(y(t))

≤ −gT (y(t))P2g(y(t))− gT (y(t))|P2|g(y(t))
+3yT (t)L2P2y(t)

(17)

By using (12)-(17) ,we can get :

v̇(x, y) ≤ xT (t)(−2P1A+H1 + 3L̃2Q2)x(t) + 2xT (t)(P1W0)g(y(t− τ))
+yT (t)(−2Q1B +H2 + 3L2P2)y(t) + 2yT (t)(Q1V0)f(x(t− σ))
+fT (x(t))(−Q2)f(x(t)) + gT (y(t))(−P2)g(y(t))
+fT (x(t− σ))(−Q2 + S1)f(x(t − σ))
+gT (y(t− τ))(−P2 + S2)g(y(t− τ))
+|x(t)|T (−H1)|x(t)| + 2|x(t)|T (P1U1)|g(y(t− τ))|
+|y(t)|T (−H2)|y(t)|+ 2|y(t)|T (Q1U2)|f(x(t− σ))|
+|f(x(t))|T (−Q2)|f(x(t))| + |g(y(t))|T (−P2)|g(y(t))|
+|f(x(t− σ))|T (−S1)|f(x(t − σ))|
+|g(y(t− τ))|T (−S2)|g(y(t− τ))|

(18)

Then, we can arrange (18) as

V̇ (x(t)) ≤ ηT
1 Φ1η1 + ηT

2 Φ2η2 (19)

where η1 = [xT (t), yT (t), fT (x(t)), gT (y(t)), fT (x(t− σ)), gT (y(t− τ))]T ,
η2 = |η1|,and

Φ1 =

⎡⎢⎢⎢⎢⎢⎢⎣

−2P1A + H1 + 3L̃2Q2 0 0 0 0 P1W0

0 −2Q1B + H2 + 3L2P2 0 0 Q1V0 0
0 0 −Q2 0 0 0
0 0 0 −P2 0 0

0 V T
0 Q1 0 0 −Q2 + S1 0

W T
0 P1 0 0 0 0 −P2 + S2

⎤⎥⎥⎥⎥⎥⎥⎦
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Φ2 =

⎡⎢⎢⎢⎢⎢⎢⎣
−H1 0 0 0 0 P1U1

0 −H2 0 0 Q1U2 0
0 0 −Q2 0 0 0
0 0 0 −P2 0 0
0 UT

2 Q1 0 0 −S1 0
UT

2 P1 0 0 0 0 −S2

⎤⎥⎥⎥⎥⎥⎥⎦
From the inequality (7) and (8) ,it follows that V̇ (x(t)) < 0 for any x(t) ∈ Rn,
y(t) ∈ Rm with xT (t)x(t) �= 0 and yT (t)y(t) �= 0. Thus, the origin (4) , the
equilibrium point u∗ and v∗ of (1) is globally robust stable.

Now we are in a position to prove the uniqueness of the equilibrium. The
equilibrium point (x1, y1) of (4) is given by{−Ax1 +Wg(y1) = 0,

−By1 + V f(x1) = 0. (20)

Assume the there exist the equilibrium point satisfying (20). we can define the
functional

F (x1, y1) = 2xT
1 P1(−Ax1 +Wg(y1)) + 2y1Q1(−By1 + V f(x1))

+xT
1H1x1 − xT

1H1x1 + yT
1 H2y1 − yT

1 H2y1
+fT (x)S1f(x)− fT (x)S1f(x)
+gT (y)S2g(y)− gT (y)S2g(y)
+fT (x)Q2f(x)− fT (x)Q2f(x)
+gT (y)P2g(y)− gT (y)P2g(y).

(21)

Obviously,F (x1, y1) = 0.
On the other hand, we can get that

−2xT
1 P1Ax1 ≤ −2xT

1 P1Ax1,
−2yT

1 Q1By1 ≤ −2yT
1 Q1By1,

2xT
1 P1Wg(y1) ≤ 2xT

1 P1W0g(y1) + 2|x1|TP1U1|g(y1)|,
2yT

1 Q1V f(x1) ≤ 2yT
1 Q1V0f(x1) + 2|y1|TQ1U2|f(x1)|,

xT
1 H1x1 = |x1|TH1|x1|,
yT
1 H2y1 = |y1|TH2|y1|,

fT (x1)S1f(x1) = |f(x1)|TS1|f(x1)|,
gT (y1)S2g(y1) = |g(y1)|TS2|g(y1)|.

(22)

and

fT (x1)Q2f(x1) ≤ −fT (x1)Q2f(x1)− fT (x1)|Q2|f(x1)
+3xT

1 L̃
2Q2x1,

gT (y1)P2g(y1) ≤ −gT (y1)P2g(y1)− gT (y1)|P2|g(y1)
+3yT

1 L
2P2y1.

(23)

From (21) and (23) ,we can get that

F (x1, y1) ≤ η̃T
1 Φ1η̃1 + η̃T

2 Φ2η̃2 (24)
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where Φ1 and Φ2 are defined as (19), and η̃T
1 = [xT

1 , y
T
1 , f

T (x1),
gT (y1), fT (x1), gT (y1)]T , η2 = |η1|. Clearly, from (7) and (8), we have F (x1, y1) <
0. It contradicts with F (x1, y1) = 0, which means system (4) has the uniqueness
of the equilibrium point.

This proof is complete.

4 Example

In the following, we will give an example to consider a delayed BAM neural
networks:

A =
[
2 0
0 1

]
, A =
[
2.05 0
0 1.02

]
, B =

[
1 0
0 1

]
, B =

[
1.02 0
0 1.03

]
,

W =
[

0.020 0.041
0.032 0.051

]
,W =

[
0.022 0.043
0.034 0.053

]
, V =

[
0.058 0.013
0.020 0.066

]
, V =

[
0.060 0.015
0.021 0.068

]
,

I = J = [1 1]T , τ(t) = 0.4 + 0.5 sin(t) σ(t) = 0.4 + 0.5 cos(t)

and with

f(u(t)) =
[

tanhx1(t− σ)
tanh 2x2(t− σ)

]
; g(v(t)) =

[
tan 5y1(t− τ)
tan y2(t− τ)

]
.

By using the Matlab LMI Control toolbox, it can be easily verified that the LMIs
(7) and (8) is feasible and

H1 =
[
13.1655 0

0 10.6254

]
, H2 =

[
10.6262 0

0 10.6182

]
, S1 =

[
8.2878 0

0 8.2834

]
,

S2 =
[
9.6728 0

0 8.2873

]
, P1 =

[
17.9339 0

0 25.8229

]
, P2 =

[
15.3144 0

0 11.1579

]
,

Q1 =
[

25.8259 0
0 25.7944

]
, Q2 =

[
11.1591 0

0 11.1461

]
.

Therefore, it follows from Theorem 1 the BAM (3) with given parameters is
globally robustly stable.
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Abstract. High order network has a higher store capacity and a faster 
convergence speed compared with the first order network. To improve the 
convergence speed of the energy function, in this paper a new kind of high 
order discrete neural network with self-feedback is proposed to solve crossbar 
switch problem. The construction method of the high order energy function for 
this problem is presented and the neural computing method is given. We also 
discuss the strategies for the network to escape from local minima. Compared 
with the first order Hopfield network, experimental results show the high order 
network with self-feedback has a quick convergence speed, its performance is 
better than the first order Hopfield network. 

Keywords: Hopfield network, high order network, crossbar switch problem. 

1   Introduction 

The Hopfield network has been widely applied to solve different combinatorial 
problems, such as Traveling Salesman Problem [1], map coloring [2], maximum cut 
problems [3], bipartite subgraph problems [4], crossbar switch problem [5-7], and N-
queens problem [8]. Due to the fact that high order neural network has stronger 
approximation property, faster convergence rate, greater storage capacity, and higher 
fault tolerance than the lower order neural networks, it has attracted great attention of 
many researchers over recent years. Although high-order networks have their own 
advantages, they are seldom applied to solve combinatorial optimization problems. 
The reason is that constructing a high order network that satisfies the stability criteria 
is more difficult than constructing the first order networks. 

In the paper [5], a Hopfield-type high-order discrete neural network is proposed to 
solve crossbar switch problem. One interesting thing we found from [5] is that self-
feedback mechanism can be introduced to the high order network without affecting its 
stability. In this paper we prove the stability of this kind of high order network with 
self-feedbacks, and show that the self-feedback of neurons is helpful to accelerate the 
convergence of the high order network.  
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2   Crossbar Switch Problem 

2.1   Problem Description 

An crossbar switch is a switch connecting a set of N inputs and N outputs where each 
input can be connected to each outputs as shown in Fig.1. When there is a request 
from the input to output be satisfied the Crosspoint switch will be closed. Some 
constraints for the problem are as follows: in each input line only one output line can 
be connected; in each output line only one input line can be connected. That is to say 
two or more requests coming simultaneously for the same output line only one request 
can be satisfied, and the other requests will be blocked. 

…

…

Input 1 

Input 2 

Input N 
O

utput 1 

O
utput 2 

O
utput N

 

…

.… 

Crosspoint 

 

Fig. 1. NxN crossbar switch 

A NxN crossbar switch can be represented by an NxN binary request matrix R [5]. 
Rows and columns of the matrix R correspond to the inputs set and outputs set, 
respectively. Each element in the matrix R has exactly two values: 0 and 1. rij=1 
means there is a request from the ith input line to the jth output line; rij=0 expresses 
there is no request. The state of the switch can be represent by an NxN binary 
configuration matrix C, where cij=1 indicates that the request from the ith input line to 
the jth output line is satisfied. cij=0 indicates that the request is discarded. For proper 
operations of the switch, there should be at most one request being satisfied in each 
row and each column. The throughput of the switch is optimal when the matrix C, 
which is a subset of the matrix R, contains at most a “1” in each row/column, and has 
a maximum overlap with R.  

2.2   Solving Crossbar Switch Problem Using High Order Discrete Network 

Traditional Hopfield network (DHNN) has been applied to solve this problem, usually 
the energy function for this problem is defined as Eq.(1)[6]. It is a quadratic 
polynomial.  

  − + −=
= == =

N N
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kj

N N
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B
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2

1
)1c(

2
)1(

2
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In Eq(1) cij is the output of neuron ij. The first term is zero, if and only if there is no 
more than one request being satisfied in each row. The second term is zero, if and 
only if there is no more than one request being satisfied in each column. The input uij 



 High Order Hopfield Network with Self-feedback to Solve Crossbar Switch Problem 317 

of neuron ij is derived by the partial derivative of the energy function with respect to 
the output of neuron ij, uij is shown as Eq(2). 

)1()1(
11
 −− −−=
==

N

k
kj

N

k
ikij cBcAu  . (2) 

 

From (1) we can see that DHNN can only handle optimization problems whose 
energy functions can be expressed by a quadratic polynomial, if we want to deal with 
high-order problems, DHNN should be extend to high-order DHNN.  

The paper [5] proposed a kind of high order discrete Hopfield network to solve 
crossbar switch problem. As mentioned in section 2.1, the state of a crossbar switch 
can be represented by a NxN binary configuration matrix C. cij=1 indicates that the 
request from ith input line to the jth output line is satisfied. cij=0  indicates that the 
request is discarded. Each cij is corresponding to rij in R. In crossbar problem we need 
to only consider the cij whose corresponding rij is 1(all the other cij equals 0). For 
expression convenience, all of cij are appeared in the following equations, however 
only cij whose corresponding rij is 1 is a variable, and all the other cij is a constant, 
whose value is 0. The constraint for the ith row is represented as form (3). Equation 
(3) equals zero, if and only if there is only one request be satisfied in ith row. In (3) the 
first term is a high order term. The constraint for all rows is represented as (4). 
Equation (4) equals zero, if and only if there is only one request be satisfied in each 
row. In the same way the column constraints for crossbar switch problem can be 
constructed. Equation (5) is the energy function for all columns. It equals zero if and 
only if there is only one request is satisfied in each column. The energy function for 
crossbar switch problem is the sum of (4) and (5), which is shown in Eq.(6). When 
Eq. (6) takes the minimum value 0, all cij are the solution of the problem.  
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The neural computing algorithm working in serial mode is shown as following: 

Algorithm 1 

Step 1: 0t =  
Step 2: initialize all cij (0) to 1 for rij =1, and all cij (0) to 0 for rij =0 

( 1,...1,0, −= Nji ) 
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Step 3: For 0=i  to 1−N  
For 0=j  to 1−N {  

 If rij =0 continue; 
    )(/)( tcEtd ijij ∂−∂=  

    ))(()1( tdftc ijhij =+   

let all )or  (  ),()1( jnimtctc mnmn ≠≠=+  

1+= tt }  
Step 4: if all )1()( −= tctc ijij  return all )(tcij  else goto step 3 

In the above algorithm fh(y) is a hysteretic threshold function. If y<0, then fh(y)=0; if 
y>0, then fh(y)=1;when y=0, fh(y)keeps unchanged (in fact, this function can be seen 
as a special case of the sigmoid function). E is the energy function defined in Eq.(6). 
E is a polynomial function with respect to cij, therefore it is easy to calculate the 
derivative term dij. The description of the high order energy function and the 
convergence of the high order network are discussed in detail in [5] [8]. 

3   Introducing Self-feedbacks to the High Order Network 

The neural network model for Algorithm 1 is a single layer feedback neural network. 
The paper [5] proved that the energy of the network defined by Eq. (6) decreases or 
remains the same after each unit updates, and the network will eventually converge to 
a local minimum of the energy function(shown as form (7), for the detailed proof of 
Eq.(7), please refer to the paper[5] ).  

0/))()1(()()1( ≤∂∂−+=−+=Δ ijijij cEtctctEtEE          (7) 

Considering the characteristics of the energy function E, we can add a penalty to the 
energy function without affecting the convergence of the high order network.  The 
energy function with penalty is defined as Eq.(8). We can also prove that the value of 
the energy function (8) decreases or remains the same after each unit update, and the 
network will eventually converge to a local minimum of the energy function.  
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Proof: we have 

2
jjjjj ))()1(()(/))()1(()()1( tctcktcEtctctEtEE iiiii −+−∂′∂−+=′−+′=′Δ  

If 0/ ij <∂′∂ cE , then 1)1(j =+tci
, we get 0≤′ΔE  

If 0/ ij ≥∂′∂ cE , then 0)1(j =+tci
, we get 0≤′ΔE  

This completes the proof. 
In the above proof we can see that except a non-positive derivative term, E′Δ  

contains another non-positive term –k(cij(t+1)-cij(t))
2. If E and E’ are initialized using 

the same cij, E’ is equal to E. We can adjust the value of k to control the convergence 
speed of the energy function. Usually a big value of k is helpful to decrease the value 
of the energy function fast. From the next section we can see that adding penalty is 
equativelent to introducing self-feedback to each neuron. 
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Adding the penalty term can improve the convergence speed, however it cannot 
guarantee to reach the global minimum of the energy function. For the energy 
function, its minimum value is zero, and all of its term is non-negative, thus every 
term must be equal to 0. Taking advantage of this heuristic information, we can adopt 
the following method to escape from local minima: select some variables cij randomly 
from non-zero terms and reassign values to them, and then repeat the iteration 
process. This procedure is also called a disturbance. In this paper in order to keep the 
energy value maintained at a relatively low level, we take the smallest disturbance, 
randomly select only one non-zero term and randomly change the values of each 
variable, and then repeat the iteration process. 

Hopfield-type network is easy to fall into local minimum. There are two 
approaches usually adopted to escape from local minima: stochastic approach and 
deterministic approach. The deterministic approaches include the “divide and 
conquer” method [9], the “rock and roll” perturbation method [10], and neurons’ 
competitive learning method [12]. Stochastic approaches include genetic algorithm 
[13], annealing theory [11], particle swarm optimization [3], ant colony algorithm 
[14], and so on. Although theoretically stochastic approaches can reach the global 
optimum, practically it is very difficult to achieve. It not only takes long running time, 
but also very difficult to determine the termination conditions. All methods are 
suitable for the high-order gradient descent network. Our target is to compare the 
difference in performance caused by the topologies of the high order network and the 
lower order network, so in this paper we do not use any global optimization strategies 
discussed on above. 

From the energy function (8), we can see that in the energy function E’ each 
variable cij has two forms, one is cij and another is 1- cij. According to [5], we expand 
the structure of neurons, and each neuron has two outputs: one is the positive output 
cij, and the other is the negative output1- cij. From the topological point of view, the 
penalty can be translated into two self-feedbacks to each neuron, one is called positive 
self-feedback, and the other is called negative self-feedback. The weight of positive 
self-feedback is negative, its value is -k; the weight of negative self-feedback is 
positive, its value is k (k is a positive integer that is the coefficients of the penalty). 
The topological structure of the network is shown in Fig.2. 
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Fig. 2. Neural network topology for crossbar switch problem 
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According to Eq.(8), the input of a neuron cij is the sum of the following five parts: 
1) The product of the negative outputs of neurons that are in the same row as cij;  
2) The negative of the sum of the positive outputs of neurons that are in the same 

row as cij;  
3) The product of the negative outputs of neurons that are in the same column as 

cij; 
4) The negative of the sum of the positive outputs of neurons that are in the same 

column as cij; 
5) The positive self-feedback and negative self-feedback from each neuron. 

The first and third parts represent high order weights. Take c11 as an example, its 
input is shown in Fig.2. The neural network is represented as an NxN neuron matrix. 
Each neuron has two outputs; the black dot represents the negative output. Π is a 
multiplier. c11 has two high order weights represented by the dot line, and their weight 
value is 1.   

4   Simulation Results 

The first experiment is to illustrate that the self-feedback can accelerate the 
convergence speed of the energy function. From the proof in section 3 we can see that 
a bigger value of k is helpful to make the energy function converge fast. However, 
when cij(t+1) is not equal to cij(t) , the reduced value of E′Δ  is greater than k, since 
the minimum value of E′Δ  is 0,  k cannot be too large, overlarged k will overshoot 
the minima, this makes the value of the energy function drops quickly to a higher 
value, then does not continue to fall. We take 2020× crossbar switch problem as an 
example to interpret this problem. We assign different values to the penalty 
coefficient k, the curves of energy functions corresponding to different k are shown in 
Fig.3. From Fig.3 we can see the value of the energy function decreases fast with the 
increase of k. This means the convergence speed of E is increased with the increase of 
k. However, for k=20 the energy decreases to a certain small value, and then stops. To 
avoid it, k should be decreased gradually with the increase of iteration number, when 

E′Δ is close to 0, k should be set to 0. 
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Fig. 3. Energy curves for different penalty coefficients for 2020× crossbar switch problem 
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To test the performance of the high order network, we use it to solve different size 
of crossbar switch problems. In the experiments the size N ranges from 20 to 200. For 
each NN ×  crossbar switch problem, we simulated it 100 times and in each 
simulation the request matrix is randomly initialized. For a simulation if a solution is 
found, the simulation is called a convergent simulation. In order to test the high order 
network’s performance, we compare it with the traditional discrete Hopfield neural 
network (DHNN) [15]. The energy function of DHNN is defined as Equation (5). The 
parameters A and B are equal to 1. In our algorithm the penalty coefficient is set to 1. 
In both algorithms neurons are selected in a fixed order to be updated, when all the 
neurons are checked one time, we call this is one step. Each simulation is terminated 
if a solution is found or the iteration step exceeds the maximum iteration step 100. 
The performance of different algorithms is evaluated by the following 2 criteria: 

(1) Convergence rate: the ratio of the number of convergent simulations to the total 
number of simulations.  

(2) Average iteration steps: the average iteration steps required for each simulation. 

Table 1. Performance comparison for different size crossbar switch problems 

 
N 

Avg. Step Converge Rate (%)
DHNN HHNN DHNN HHNN

20 13.5 3.9 100 100 
30 17.4 3.8 100 100 
50 29.2 3.7 100 100 
80 45.4 3.3 100 100 

100 57.8 3.6 100 100 
200 101.6 4.1 100 100 

 
The simulation results are shown in table 1. In table 1 the high order Hopfield 

network with self-feedback is denoted as HHNN. From table 1 we can see that two 
types of neural networks have 100% convergence rate. However, the performance of 
HHNN with self-feedbacks is much better than DHNN. In average HHNN needs 
fewer steps than DHNN to get a solution, especially for a larger N the improvement 
of the performance is significant. It is because the high order network structure 
accelerates the convergence speed of the energy function. Furthermore, we can see 
that the number of steps to get a solution for HHNN is almost independent of the size 
of crossbar switches, while the iteration steps of DHNN increases greatly with the 
increase of the size of the problem. 

5   Summary 

In this paper we propose a high order network with self-feedback to solve crossbar 
switch problem. We prove the stability of the high order neural network, and interpret 
why self-feedback can accelerate the convergence speed of the high order network. 
The simulation results show higher order network with self-feedbacks has a quicker 
convergence speed than the first order network. 
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Performance of Recurrent Neural Networks
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Abstract. The objective of our study is to find out how a sparse struc-
ture affects the performance of a recurrent neural network (RNN). Only
a few existing studies have dealt with the sparse structure of RNN with
learning like Back Propagation Through Time (BPTT). In this paper,
we propose a RNN with sparse connection and BPTT called Multiple
time scale RNN (MTRNN). Then, we investigated how sparse connec-
tion affects generalization performance and noise robustness. In the ex-
periments using data composed of alphabetic sequences, the MTRNN
showed the best generalization performance when the connection rate
was 40%. We also measured sparseness of neural activity and found out
that sparseness of neural activity corresponds to generalization perfor-
mance. These results means that sparse connection improved learning
performance and sparseness of neural activity would be used as metrics
of generalization performance.

Keywords: Recurrent Neural Networks, Sparse Structure, Sparse
Coding.

1 Introduction

Several studies have suggested that neurons encode information by using a small
number of active neurons at any given point in time. This phenomenon is called
“sparse coding”. According to Olshausen [1], sparse coding has four advantages:
it increases storage capacity, makes complicated signals more explicit, makes
reading out information coded in a network easier, and saves energy. There have
been many studies on sparse coding theory. For example, Waydo et al. showed
that neurons in the human medial temporal lobe are remarkably selective to
sensory inputs [2]. Smith et al. showed that a process like independent component
analysis is used in the auditory nervous system [3]. Vinje and Gallant showed that
neurons in the V1 area of the brain exhibit a sparse response when stimulated
with image sequences [4]. While these studies have shown the advantage of sparse
coding in sensory neurons, computational studies on associative memory have
shown that sparse representation of information increases memory capacity and
fault tolerance [5][6].
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Several previous studies on recurrent neural networks used a sparse structure.
The echo-state network (ESN), for example, uses a “reservoir” to store chaotic
sequences [7]. It can store a huge variety of such sequences, because the neurons
in the reservoir are sparsely connected. While the connection weight of ESN
was fixed, the self-organizing recurrent neural network (SORN) used Hebb’s
learning rule to train the weight [8]. These previous recurrent neural networks
using a sparse structure cannot learn complex sequences such as robot’s motor
value because the connection weight is fixed or trained using local learning (e.g.
Hebb’s learning).

In this paper, we investigate how sparse structure affects performance of recur-
rent neural network (RNN) trained by back-propagation through time (BPTT)
algorithm [9]. The BPTT algorithm enables the RNN to expand its ability for
training quite complicated data. However, there are few studies dealing with the
sparseness of RNN with BPTT. We treat the learning of “language structure”
(“word” and “grammar”) as the complicated task, and use the MTRNN (Mul-
tiple Timescale RNN [10]) for the training. The relationships between sparse
connection and sparse coding in the network are investigated by introducing a
sparseness measure.

2 Target Model

We used the multiple timescale recurrent neural network (MTRNN) as the target
model. We introduced a sparse structure into this model and investigated its
performance.

2.1 MTRNN

MTRNN, shown in Fig. 1 is a variant of the Jordan RNN with two layers. One
layer acts as a predictor that inputs the current state, IO(t), and, outputs the
next state, IO(t+1), where IO(t) represents the input value. The context nodes
of MTRNN are composed of three neuron groups with different time constants:
fast context nodes (CF ), slow context nodes (CS) and parametric slow context
nodes (PCS). The time constant of the input nodes is the smallest out of all the
nodes. It increases in the order: CF , CS , PCS . Each node in the input layer is
connected to one in the output layer, with the exception of the IO(t) nodes to
the CS and PCS nodes and the CS and PCS nodes to the IO(t) nodes. The
differences in the time constants lead to differences in the firing speeds of the
context nodes. Therefore, the CF nodes represent the primitives of sequential
data while the CS nodes represent the sequence of these primitives (Fig. 2).

MTRNN can generate sequence data by connecting output nodes to its input
nodes. It can also calculate the initial state of the parametric neuron correspond-
ing to the input data. The space of the initial state is self organized depending
on the input data. Thus, MTRNN can be used as a prediction and recognition
unit. Compared with Recurrent Neural Network with Parametric Bias (RN-
NPB), MTRNN has the advantage in terms of complexity and the ability to
learn sequences.
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Training of MTRNN is done using the back propagation through time algo-
rithm, which consists of forward calculation and weight updating.

First, the outputs of the neurons are calculated through forward calculation.
The internal value of the ith neuron, ui(t), at step t is given by

ui(t) =
(

1 +
1
τi

)
ui(t− 1) +

1
τi

⎡⎣∑
j∈N

wijxj(t− 1)

⎤⎦ , (1)

where τi is the time constant of the ith neuron, wij is the weight value from the
jth input neuron to the ith output neuron, and xj(t) is the input value. The
output of the ith neuron, yi(t), is calculated by applying the sigmoid function.

yi(t) =
1

1 + exp (−ui(t))
. (2)

The input value, xi(t), is calculated using

xi(t) =
{

0.5×yi(t− 1) + 0.5×Ti(t) i∈IO,
yi(t− 1) otherwise

(3)

where Ti(t) is the teacher signal for the ith neuron at step t. The input values,
xi(t), are calculated using the output of the previous step, yi(t− 1), and feeding
back the teacher signals. This process prevents the training error from increasing.
The outputs of the context nodes ofp the previous step, (t − 1), CF (t − 1),
CS(t − 1), and PCS(t− 1), are directly fed into the input of the context nodes
of the current step, t, CF (t), CS(t), and PCS(t).

The weights are updated using the outputs calculated in forward calculation
and the training error, defined as

E =
1
2

∑
t

∑
n∈IO

(yi(t− 1)− Ti(t))
2 . (4)

The weight from the jth input to the ith output is updated using the derivative
of the training error, ∂E

∂wij
:

wij(n+ 1) = wij(n)− α ∂E

∂wij
. (5)

The initial PCS value, PCS(0), is also updated along with the weight values by
back propagating the errors to the initial step.

With the trained MTRNN, sequences can be recovered by using the PCS

value. The predicted value of step 1 (IO(1)) can be calculated by inputting
the initial PCS value (PCS(0)), the CS value, the CF value (which is fixed



326 H. Awano et al.

to zero), and the initial value of IO(0). The whole sequence can be recovered
by recursively inputting the output back into the input. This process is called
“closed-loop calculation”. In contrast, the process in which the observed values
for each step are input is called “open-loop calculation”.

2.2 Introduction of Sparse Structure

We represent sparse connections by setting the weights of some connections to
zero.

These weights are clamped to zero and the other weights are updated during
training phase.

These connections are randomly selected in accordance with the connection
rate. For example, if the connection rate is 20%, the weights for 80% of the con-
nections, randomly selected, are set to zero. Initial weights of remaining weights
were set to small random numbers from interval (x, y).

Fig. 1. Structure of MTRNN

3 Evaluation

Weconducted two experiments to evaluate the performance of the proposedmodel.
In the first,we evaluated a generalizationperformance and robustness to noisy data
relative to the connection rate. In the second, we introduced a sparseness measure
and investigated the sparseness of information coded in the network.

3.1 Performance Evaluation

We used data comprising alphabetic sequences to evaluate the performance of the
proposed model [11]. Each neuron in the input and output groups corresponded to
a letter, comma, period, and space. A neuron fired when the corresponding element
appeared. Figure 3 shows example data used for the evaluation. The left vertical
axis corresponds to a neuron, and the horizontal axis is the time scale.The color bar
on the right shows neuron output: red means that the neuron is firing and white



Use of a Sparse Structure to Improve Learning Performance of RNN 327

means that it is not. The example data in Fig. 3 represents “walk slowly”. The
parameter settings for MTRNN are shown in Table 1. The neurons in theCF nodes
(connection inside dotted line in Fig. 1) are sparsely connected. The connection
ratewas incrementally increased from20%to 100% in steps of 20%.The connection
weights were initialized using 20 sets of random values.

Generalization Capability. Generalization means adapting to unknown data.
We examined the ability of MTRNN to reproduce sequences that were not used
for training. First, the evaluation data was input to the input node of MTRNN.
Using forward calculation, MTRNN output the predicted values. The difference
between the predicted values and the actual data were calculated, and the initial
value of the neuron in the parametric group was updated using the difference
(error signal). These values were used as the initial values for the input and
parametric nodes. The whole sequence was generated (closed-loop calculation)
by recursively inputting the predicted value to the input node. We calculated
the square error between the generated sequence and the actual sequence.

Robustness to Noisy Data. We examine the ability of MTRNN to reproduce
clean data when noisy data was used to calculate the initial values of the para-
metric nodes. Noisy data was created by replacing an element in the original
data. The initial values of the parametric nodes were calculated, and the whole
sequence was recovered by closed-loop calculation. The square error between
the recovered sequence and the actual sequence without noise was calculated as
the metric.

Fig. 2. Hierarchal representation of se-
quence coded in MTRNN Fig. 3. Data used for evaluation

3.2 Measuring Sparseness

We measured the sparseness of neural output when the network was generating
sequences with the MTRNN parameters set to the same values as in the first
experiment. Methods for measuring the sparseness of the neural response include
the use of the kurtosis of the neural output [12]. In this study, we used a simpler
measure: “activity sparseness”, which was proposed by Willmore and Tolhurst
[13]. This measure was directly derived from the basic idea of sparse coding:
‘how few neurons are active at any given time’. We set a threshold value for
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Table 1. MTRNN Parameter Settings

No. of Input Nodes 30

No. of Fast Context Nodes 200

No. of Slow Context Nodes 6

No. of Parametric Slow Context Nodes 6

the response of each neuron. The neurons with a response greater than the
threshold were considered “active”. The others were considered “inactive”. The
activity sparseness at any given time is given by the number of neurons that are
“inactive” divided by the number of whole neurons. The time average activity
sparseness is given by

Sactivity =
1
T

∑
t

the number of inactive neurons

the number of whole neurons
, (6)

Where T indicates the number of whole steps.
The threshold value was set to 0.5 in this study because we used a sigmoid

function to activate the neurons in the CF node. The internal value of a neuron
was zero when the output value (after calculating the sigmoid function) was 0.5.
This means that the neurons that were “active” had a positive internal value
and the neurons that were “inactive” had a negative internal value.

4 Results

4.1 Performance Evaluation

The reproduction accuracy for untrained data is shown in Fig. 4. Each bar indi-
cates the average reproduction accuracy for the top ten patterns; the error bars
represent the maximum and minimum reproduction accuracy of the patterns.
The MTTNN showed the best performance when the connection rate was 40%.
The reproduction accuracy for noisy data is shown in Fig. 5. As with Fig. 4, each
bar indicates the average accuracy and the error bars represent the maximum
and minimum accuracy. The MTRNN showed the best performance when the
connection rate was 60%. We also calculated two-sided p-value for each experi-
ment with level of significance set to 0.05. The results are shown in Table 2, 3.
From Table 2, it can be noted that the reproduction error for connection rate
40% is significantly low compared to other connection rate for untrained data.

4.2 Measuring Sparseness

The value of activity sparseness is shown in Fig. 6. Each bar indicates the average
activity sparseness for 20 patterns. The error bars represent the maximum and
minimum value of activity sparseness. The MTRNN had the maximum value of
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activity sparseness when the connection rate was 40 %. As with previous subsec-
tion, we calculated two-sided p-value between each connection rate. The results
are shown in Table 4. The level of significance was set to same as previous sub-
section. From Table 4, it can be noted that the activity sparseness for connection
rate 40% is significantly high compared to connection rates 20%, 80% and 100%.

Fig. 4. Reproduction error for untrained
data

Fig. 5. Reproduction error for noisy data

Fig. 6. Activity sparseness

Table 2. p-value of reproduction error for untrained data: A combination which has
significant difference is denoted by an asterisk

connection rate [%] 40 60 80 100

20 0.0299* 0.814 0.552 0.196

40 0.0401* 0.0267* 0.00445*

60 0.731 0.327

80 0.548
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Table 3. p-value of reproduction error for noisy data: A combination which has sig-
nificant difference is denoted by an asterisk

connection rate [%] 40 60 80 100

20 0.00698* 0.00338* 0.108 0.480

40 0.800 0.249 0.172

60 0.161 0.124

80 0.590

Table 4. p-value of activity sparseness: A combination which has significant difference
is denoted by an asterisk

connection rate [%] 40 60 80 100

20 0.00453* 0.0836 0.755 0.914

40 0.275 0.00266* 0.00156*

60 0.0954 0.0650

80 0.811

5 Discussion

In the evaluation of generalization performance, the MTRNN performed best
when the connection rate was 40%. A connection rate of less than 40% resulted
in worse performance. An MTRNN with highly sparse connections has better
performance for learning sequences because there are fewer collisions between
sequences. However, in our experiment, it showed lower generalization perfor-
mance. An MTRNN with dense connections, on the other hand, has a larger pa-
rameter space with many local solutions. The difference between the maximum
and minimum reproduction accuracy tends to become smaller as the degree of
sparseness increases. These findings mean that appropriate selection of the con-
nection rate is required to avoid a local solution while retaining generalization
capability.

In the evaluation of activity sparseness, the MTRNN showed the maximum
sparseness when the connection rate was 40%. The value of activity sparse-
ness corresponds to generalization performance. An MTRNN with high activity
sparseness tends to have better generalization performance. This means that we
can judge whether a primitive is well organized by doing a simple calculation:
counting the number of “inactive neuron”.

6 Conclusion

We introduced sparse connection into an MTRNN model trained by BPTT al-
gorithm, and investigated how sparse connection affects generalization perfor-
mance and noise robustness. In an experiment using data composed of alphabetic
sequences, the MTRNN had the best generalization performance when the con-
nection rate was 40% and had the highest robustness when the rate was 60%.
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Future work including testing using data with a different structure (e.g. the
motor value of a robot). It also includes analyzing the structure of MTRNN and
investigating its robustness after additional training. We speculate that increas-
ing connection sparseness will reduce collisions between the learned sequences
and the additional sequences, leading to robustness after additional training.
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Abstract. As one of associative memory models, a morphological associative 
memory (MAM) has been proposed by Ritter. The model has advantages of 
large memory capacity and high perfect recall rate in comparison with other 
associative memory models. Unfortunately, the conventional MAM has a 
problem that it cannot recall the correct pattern for a pattern completely 
included with other stored patterns. To overcome the problem, we proposed a 
MAM employing a reverse recall. However, this model needs additional 
calculations for the reverse recall. The extra recall time increases as the number 
of included patterns increases. In this paper, as one of the solutions, we propose 
a MAM employing a simplified reverse recall. The extra recall time of the 
proposed model can be reduced by simplifying the calculation of the reverse 
recall for binary patterns. We confirm the validity of the proposed method by 
evaluating the recall time on hetero-association experiments. 

Keywords: morphological associative memory, reverse recall, pattern with 
inclusive relation, recall time.  

1   Introduction 

Human beings can recall reasonable information from information obtained from 
sensory organs even if it is incomplete. This kind of function is called associative 
memory which is one of the important brain functions. The associative memory 
models have been proposed from early in 80’s [1-4]. As the most popular associative 
memory model, Hopfield network [1] is well known. The model is used as not only 
the associative memory but also an optimization tool. However, it is also known that 
Hopfield network has drawbacks of low memory capacity in contrast to the number of 
memory units and instability in recall caused by the local minimum. 

On the other hand, a morphological associative memory (MAM) has been 
proposed by Ritter [5]. The model has advantages of large memory capacity and high 
perfect recall rate in comparison with other associative memory models such as 
Hopfield network. Unfortunately, Ritter’s MAM has a drawback that the design of the 
kernel image used for an association becomes difficult when the number of stored 
patterns increases. Moreover, the perfect recall rate of the MAM without the kernel 
image is inferior to the MAM with the kernel image. To overcome the problem, 
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several effective design methods of the kernel image have been proposed [6-8]. 
However, those models have a problem that the perfect recall cannot be achieved for 
pattern including a corrupted kernel image, or the stored patterns having redundancy 
bits are needed for the kernel design method. In our previous work, we proposed a 
MAM using an effective kernel design method that employs the stored pattern 
independent kernel image [9]. The model facilitated the design of the kernel image 
and improved the perfect recall rate. Unfortunately, as well as conventional MAMs, 
the model also has a problem that the correct pattern cannot be determined for a 
pattern completely included with other stored pattern (e.g., “C and G”, “E and F”). As 
the number of the stored patterns increases, the existence of inclusive patterns 
becomes serious. Therefore, we proposed a MAM employing a reverse recall method 
[10]. In this model, the reverse recall method is introduced into the MAM using the 
stored pattern independent kernel image. In the reverse recall method, the candidates 
of an input pattern can be estimated by the reverse recall, and then the plausible recall 
pattern can be determined by comparing the input pattern with the candidates 
obtained by the reverse recall. However, the MAM employing the reverse recall needs 
additional calculations for the reverse recall method. When the number of included 
patterns increases, the extra recall time increases for the reverse recall. 

In the case of binary patterns, the calculation of the reverse recall can be 
simplified. By simplifying the calculation, the stored pattern can be reversely recalled 
in one-shot. The MAM, even if the stored patterns are limited to binary, has been used 
for many applications; ex. the model is applied to hyperspectral image analysis, image 
recognition and binary image processing, etc. [11-13]. Therefore, in this paper, as one 
of the solutions, we propose a MAM employing the simplified reverse recall method 
for reducing the extra recall time. In order to confirm the validity of the proposed 
method, we evaluate the recall time and the perfect recall rate by hetero-association 
experiments. 

2   Morphological Associative Memory: MAM 

2.1   Ritter’s MAM 

Ritter proposed the MAM [5] that has two-stage recall process using memory 
matrices “M” and “W” in the stages, as shown in Fig.1. In the recall process, a kernel 
image is used as an index for an association. The information of the stored patterns is 
stored into the memory matrices “M” and “W”. Here, let ( ) ( )RR YXYX ,,,, 11   be R stored 

pattern pairs with ),,( 1
r
n

rr xxX =  and ),,( 1
r
m

rr yyY = . The memory matrices “M” 

and “W” are given as; 
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where R is the total number of the pattern pairs. 
ijm  and 

ijw  are (i, j)-th unit of 

memory matrices “M” and “W”, respectively. The symbols ∨  and ∧  denote 
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maximum and minimum operators, respectively. The kernel image rZ  is used to 
recall the stored pattern rY  and consists of partial units of the stored pattern rX . The 
output pattern rY  corresponding to the input pattern rX  is obtained as follows; 
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Fig. 1. Recall process of Ritter’s morphological associative memory [5] 

2.2   MAM Using an Effective Kernel Design Method and a Reverse Recall 

In Ritter’s MAM, the design of the kernel image becomes hard as the number of 
stored patterns increases because the kernel image consists of partial units of the 
stored pattern and it cannot overlap each other. To overcome this problem, we 
proposed the MAM using the stored pattern independent kernel image [9]. In this 
kernel design method, only one element of the kernel image is ‘1’ and other elements 
‘0’. Fig.2 shows the recall process of the MAM using the stored pattern independent 
kernel image. This model has advantages that the design of the kernel image is 
facilitated and the perfect recall rate is improved. 
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Fig. 2. Recall process of the MAM using the stored pattern independent kernel image [9] 

However, as well as conventional MAMs, the MAM using the stored pattern 
independent kernel image has a problem that the correct pattern cannot be recalled if a 
pattern is completely included with other stored patterns (a pattern in the pair is called 
“inclusion pattern”), as shown in Fig.3.  
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Fig. 3. Recall process of the MAM using the stored pattern independent kernel image for the 
inclusion pattern in hetero-association.  denotes “C” completely included with “G”. 

As one of the solutions, we introduced the reverse recall method into the MAM 
using the independent kernel image [10]. The recall process of the MAM employing 
the reverse recall, as shown in Fig.4, executes the following steps; 
 

step1. the kernel image is determined in the 1st recall, as same as the MAM using 
the stored pattern independent kernel image, 

step2. the overlapped kernel image is separated to individual kernel images, 
step3. the stored pattern corresponding to each kernel image is reversely recalled by 

each separated kernel image, independently, 
step4. Hamming distance is calculated between the input pattern and the reversely 

recalled patterns obtained in step3, 
step5. the kernel image of the minimum Hamming distance is selected as the 

plausible kernel image, 
step6. finally, the output pattern is recalled by the final kernel image in the 2nd 

recall. 
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Fig. 4. Recall process of the MAM employing the reverse recall method [10] 

3   Simplified Reverse Recall Method 

The MAM employing the reverse recall needs additional calculations for the reverse 
recall. As the number of included patterns increases, the extra recall time t increases. 
The extra recall time is given by; 
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,5.0 recallip tNt ××=  (5) 

where 
ipN  is the number of included patterns and 

recallt  is the recall time with no 

inclusion pattern. In the MAM employing the reverse recall, the overlapped kernel 
image is separated to individual kernel images and then the stored pattern 
corresponding to each kernel image is reversely recalled using each separated kernel 
image. 

Here, in the MAM employing the reverse recall, the stored pattern rX  reversely 
recalled for the kernel images rZ is given as; 
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is i-th unit of the kernel image rZ , R is the total number of the stored pattern. In the 
case of binary patterns, Eq. (6) can be rewritten as; 
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Eq. (7) shows that the stored pattern corresponding to each kernel image can be 
reversely recalled by one element of the kernel image. Therefore, by using Eq. (7), the 
stored pattern can be reversely recalled by the one-shot reverse recall. 
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Fig. 5. Reverse recall process in the simplified reverse recall method 

Here, the kernel design method of the proposed model uses the stored pattern 
independent kernel image [9]. In the proposed model, when the overlapped kernel 
image is recalled in the 1st recall, the stored patterns corresponding to the firing unit 
of the overlapped kernel image can be reversely recalled by using Eq. (7) because 
each kernel image is represented by unique one bit. Finally, as shown in Fig. 5, the 
plausible input pattern is specified by comparing the Hamming distance between the 
input and recalled patterns and the correct kernel image can be fixed.  
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The MAM using the proposed method processes through the following steps: 

step1. The kernel image is recalled in the 1st recall, as same as the MAM 
employing the reverse recall, 

step2. when the overlapped kernel image is recalled, the stored pattern 
corresponding to each element of the kernel image is reversely recalled using 
the corresponding firing unit of the overlapped kernel image, as illustrated in 
Fig.5, 

step3. the final kernel image is determined by comparing an input pattern with 
patterns obtained in step.2, 

step4. finally, the output pattern is recalled using the final kernel image in the 2nd 
recall. 

4   Experimental Result 

In order to evaluate the performance of the proposed MAM, we investigate the perfect 
recall rate and the recall time through hetero-association experiments. In the 
experiments, each pattern consists of 10 x 10 = 100 binary units. The unit of pattern 
takes ‘1’ or ‘0’, the ‘1’ represents black and ‘0’ white.  

Firstly, we investigate the perfect recall rate of the proposed method for patterns as 
shown in Fig.6. Fig.6 shows that (a) is the stored patterns that consist of only sets of 
twofold inclusion patterns and (b) is threefold inclusion patterns. Here, the perfect 
recall rate is evaluated by an average of 10,000 trials in the simulation. The noise is 
defined as to change ‘1’ to ‘0’ (or ‘0’ to ‘1’). 

              

(a)        (b) 

Fig. 6. Stored patterns: (a) patterns that consist of only sets of twofold inclusion patterns, and 
(b) threefold inclusion patterns 

Fig.7 shows the noise tolerance of the MAM using the reverse recall and the 
proposed method for patterns illustrated in Fig.6 (a). As shown in Fig.7, the 
performance of the proposed MAM is equivalent to the MAM employing the reverse 
recall [10]. 
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(a)     (b) 

Fig. 7. Noise tolerance in hetero-association for twofold inclusion patterns: (a) the result of the 
MAM employing the reverse recall, and (b) the proposed method 

Next, we investigate the recall time of the MAM using the reverse recall and the 
proposed method. The one recall time is evaluated by an average of 10,000 trials in 
the simulation. In the experiment, two sets of patterns illustrated in Fig.6 (a) and (b) 
are used as the stored patterns. Table1 shows the one recall time of the MAM using 
the proposed method in comparison with the MAM employing the reverse recall. 
Here, a CPU of the PC is Intel Core2 Quad @ 2.4 GHz. 

Table 1. Recall time of the MAM employing the reverse recall and the proposed method 

 One recall time ( μ sec) 

Previous model Proposed model 
Twofold inclusion patterns 83.2 62.4 (25% reduced) 

Threefold inclusion patterns 106.5 63.5 (40% reduced) 

 
As shown in Table1, in comparison with the MAM using the reverse recall, the 

proposed method reduced the one recall time by 25% for twofold inclusion patterns 
and by 40% for threefold inclusion patterns. 

5   Conclusion 

The MAM employing the reverse recall has the problem that the extra recall time 
increases as the number of included patterns increases. In order to overcome the 
problem, we proposed the MAM employing the simplified reverse recall method. The 
proposed method reduced the extra recall time without decreasing the noise tolerance. 
In comparison with the MAM employing the reverse recall, the proposed method 
reduced the one recall time by 25% for twofold inclusion patterns and by 40% for 
threefold inclusion patterns. The improved rate increases as the number of included 
patterns increases. 
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Although the MAM employing binary stored patterns has been used for many 
applications, the applications can be extended by using the more complex type of the 
stored pattern. In the future works, we will develop the model that can handle not only 
binary patterns but also the other patterns, and tackle practical applications using an 
associative memory. 
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Abstract. In this paper, we propose a framework to analyze the tempo-
ral dynamics of the emotional stimuli. For this framework, both EEG sig-
nal and visual information are of great importance. The fusion of visual
information with brain signals allows us to capture the users’ emotional
state. Thus we adopt previously proposed fuzzy-GIST as emotional fea-
ture to summarize the emotional feedback. In order to model the dynam-
ics of the emotional stimuli sequence, we develop a recurrent neuro-fuzzy
(RNF) network for modeling the dynamic events of emotional dimen-
sions including valence and arousal. It can incorporate human expertise
by IF-THEN fuzzy rule while recurrent connections allow the network
fuzzy rules to see its own previous output. The results show that such a
framework can interact with human subjects and generate arbitrary emo-
tional sequences after learning the dynamics of an emotional sequence
with enough number of samples.

Keywords: Dynamics of Emotion, Electroencephalography (EEG),
Fuzzy-GIST, International Affective Picture System (IAPS), Recurrent
Neuro-Fuzzy Network (RNF).

1 Introduction

The need for computational and robotic models which can understand the emo-
tional state of the user is ever growing [1]. A lot of literatures are dedicated to
studying affect detection. R. Calvo et al give a comprehensive interdisciplinary
review of models, methods and applications of affect detection [2]. However, time
is clearly important in emotion and emotions are a special dynamic form of cog-
nition, there is few study on analyzing the dynamic events of emotional scene
sequence. In this paper, we propose a framework aiming to analyze the temporal
dynamics of the emotional stimuli sequence.

In order to make the system be capable of understanding more complex emo-
tions, we consider a valence-arousal (VA) model [3] [4]. By using such a dimen-
sional approach, all emotions can be represented as points in the VA space, in
which we can label the images joy, pleasure, anger and sadness. Not only is
the VA space helpful in visualizing the location, extent and relationships be-
tween emotion categories, but also it is associated with the limbic system which
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suggestively supports a variety of functions including emotion, behavior, long
term memory, and olfaction. Responses along the emotional valence dimension
are associated with significant clusters in the amygdala, the anterior parietal
cortex, and the insular cortex. Responses along the arousal dimension are asso-
ciated with significant clusters in two regions: activity in the right supramarginal
gyrus, and thalamic activity varied with reported arousal [5]. For emotion related
feature extraction, we adopted the fuzzy-GIST, which is a kind of conceptual
gist of a scene that contains semantic information from both EEG and visual
information [6]. Furthermore, we develop a novel recurrent neuro-fuzzy network
to incorporate the human expertise to model the dynamic events of emotional
stimuli sequence.

The remaining sections are organized as follows. Section 2 introduces the pro-
posed fuzzy-GIST and recurrent neuro-fuzzy network for this study. In Section 3,
we will give the experiment results and evaluate the performance of the proposed
system. Some final conclusions and discussions are given in the last section.

2 Methods

2.1 Overview of the Emotion Dynamic Analysis

Figure 1 demonstrates the graphic outline of the proposed approach. The con-
sidered input sequence is split into the sequences of visual information and EEG
signal. EEG can be allocated to specific image in the sequence, therefore, both
EEG and visual features are dynamic. After signal processing, we extract the
fuzzy-GIST for 2-emotion understanding to model the dynamics of emotional
valence through a recurrent neuro-fuzzy network. Meanwhile, by taking arousal
indicator into consideration, the fuzzy-GIST for 4-emotion understanding are
fed to another recurrent neuro-fuzzy network to analyze the dynamic events of
the emotional dimension of arousal. The fuzzy-GIST for 2-emotion and that for
4-emotion are introduced in [6]. We can then monitor the emotional trajectory
by mapping each stimulus onto VA space.

2.2 Fuzzy-GIST as Emotional Feature at Semantic Level

Since we need features in emotional perspective, we propose the fuzzy-GIST to
build a semantic feature vector to represent a scene image as well as consider
the human feeling stimulated by the scene. The fuzzy-GIST is originated from
the “GIST” [7] [8], and it is a kind of conceptual gist of a scene that contains
semantic information. The procedure of extracting fuzzy-GIST from a natural
scene is demonstrated in Fig. 2. 11-channel EEG signals are recorded and we
adopt wavelet decomposition (WLD) [9] for denoising EEG in our study. The
selected wavelet filter for denoising the raw EEG signal is the reverse biothorg-
onal6.8 (rbio6.8) [10], and we select the D7, D8, and D9 to reconstruct the desired
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Fig. 1. Graphic outline of the proposed approach

“real signals”. We focus on the 500 ms time course starting from stimulus onset
and extract the power difference between left and right hemispheres in both
alpha and gamma band to monitor the valence state of test subjects [11] [12].
On the other hand, beta/alpha ratio is used as an indicator if the subject is
in an arousal state [13]. The EEG features from a subject are processed by
the fuzzy C-means clustering (FCM). Based on the clustering result, a natural
scene is assigned to positive/negative and calm/arousal groups to a degree of
belongingness. According to the relation between the orientation distribution
and human emotion evoked by a natural scene, the FCM is used to partition the
orientation information of the image into 4 classes in terms of the orientation
distribution and make an orientation descriptor for the image. We can describe
the lightness as very dark, dark, middle, light and very light. A membership grade
maps semantic words because of the fuzziness of human perception [14]. In the
similar way, we got warm-cool descriptor including warm, middle and cool, as
well as saturation descriptor that indicates the low, middle and high saturation of
the natural scene. The brain activity membership grades and visual information
membership grades are cascaded to construct the emotional feature space. The
difference between the fuzzy-GIST for 2-emotion understanding and that for 4-
emotion understanding depends on considering the arousal indicator obtained
from EEG signals. Different subjects may have different emotional responses
even toward the same scene image, the fuzzy-GIST based on the combination
of visual semantic information and the semantic EEG information can help to
handle this personal bias for the emotion recognition.

2.3 Recurrent Neuro-fuzzy Network

There is possibility, which is to allow time to be represented by the effect it
has on processing. This means giving the processing system dynamic properties
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Fig. 2. The procedure of extracting fuzzy-GIST from a natural scene

which are responsive to temporal sequences. In short, for modeling the dynamics
of sequence, the network must be given temporal memory.

Figure 3 demonstrates the proposed recurrent neuro-fuzzy network. As show
in the Fig. 3, the proposed network is based on Takagi-Sugeno-Kang (TSK) type
neuro-fuzzy inference system [14]. The input of the network consists of previ-
ous and current input fuzzy-GIST, as well as previous output of the network.
Nodes in layer 2 act as membership function to express the input fuzzy linguistic
variables, the Gaussian membership function is adopted as:

O
(2)
ij = exp{− (u(2)

j −mij)2

σ2
ij

} (1)

where mij and σij are the center and the width of the Gaussain membership
function of the ith term of the jth input variable u(2)

j .
Each node in layer 3 is called a rule node, it is formed by fuzzy and operation

as:

O
(3))
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n∏
j=1

O
(2)
ij = exp{−

n∑
j=1

(u(2)
j −mij)2

σ2
ij

} (2)

where n is the dimension of input layer.
Nodes in layer 4 are called consequent nodes which perform a weighted linear

combination of the input variables. The output of the network is the result of
defuzzification (layer 5) of outputs of layer 4. The recurrent connections allow the
network’s fuzzy rule nodes to see its own previous output, so that the subsequent
behavior can be shaped by previous responses. The recurrent connections are
what give the networks memory.
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Fig. 3. The architecture of the proposed recurrent neuro-fuzzy network

The input consists of the fuzzy-GISTs of current stimulus and previous 2
stimuli, as well as outputs of previous 5 stimuli. As far as training is concerned,
the backpropagation through time (BPTT) algorithm is used [15].

3 Experiment

11 subjects participated in this study and 110 color images selected from IAPS
and the corresponding EEG stimulated by images were used to extract the emo-
tional features. We randomly selected 50% of the data and reordered them to
generate 20 different emotional sequences for learning the valence and arousal
dynamics of the emotional scene sequence. And we used the remaining data to
generate random sequence to evaluate the generalization capability of the trained
network. During the experiments, human subjects were asked to give valence and
arousal scores to describe the emotional feedback of each stimulus. These results
are used to evaluate the accuracy of an emotional sequence generated by the
network. The current valence and arousal states highly depend on the previous
states. In order to handle the temporal effect on emotional processing, we took
the average values of the valence and arousal scores of current stimulus and the
previous two stimuli as valence value and arousal value for the current sample
data. Thus, the valence and arousal scores become more smooth.

Figure 4 shows the learning of dynamic events of an emotional sequence with
interacting with a particular subject. The two subfigures on the top show the
learning of valence and arousal dynamics, respectively. The solid lines represent
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the target responses while the dashed lines represent the dynamic responses of
the recurrent neuro-fuzzy networks. On the bottom , the figure on the right-hand
side is the emotional trajectory made by locating each stimulus in the valence-
arousal space. Compared with the target emotional trajectory shown on the
left-hand side, we can see that the networks is capable of learning the dynamics
of an emotional sequence.

Fig. 4. Learning the dynamics of valence and arousal by two recurrent neuro-fuzzy
networks

Fig. 5. Valence and arousal targets and output responses for a new sequence and its
emotional trajectory
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Fig. 6. Valence and arousal targets and output responses for another new sequence
and its emotional trajectory

After training the recurrent neuro-fuzzy networks for valence and arousal
dimensions, we used unlearnt data samples to randomly generate emotional se-
quences with different lengths and different orders of emotional categories. Fig-
ures 5 and 6 demonstrate the results of the trained recurrent neuro-fuzzy net-
works generating arbitrary emotional sequences by interacting with the above
mentioned subject.

As we can see from Figs. 5 and 6, through modeling the dynamics of valence
and arousal dimensions separately, our proposed network is capable of generating
the emotional trajectory for a new random emotion sequence.

We repeated the same procedure for each subject for five times, and the aver-
age accuracies of generalization for each subject can approximately achieve 70%.
This means the framework can interact with human subjects, learn the dynamic
events of a sequence of emotional stimuli and then generate a new emotional
sequence, which is close to the emotional feedback from human subject.

4 Conclusion and Discussion

A novel framework for analyzing the temporal dynamics of the emotional stimuli
is proposed, in which the emotional feature space is built based on the fuzzy-
GIST. The proposed recurrent neuro-fuzzy network is capable of separately
modeling the dynamic events of emotional valence and arousal and we can then
monitor the emotional trajectory by mapping each stimulus onto valence-arousal
space. This study shows promising results revealing that machine is capable of
interacting with human and generating its own emotion varying with natural
scene stimuli.



Analyzing the Dynamics of Emotional Scene Sequence Using RNF 347

In the future, we will continue investigating the development of schemes of
human emotion dynamics. For the next stage, we will try to consider the dynamic
emotional feedback of a subject during watching consecutive natural scene frames
or video.
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Abstract. The paper investigates classification of stress in reading for males 
and females based on an artificial neural network model (ANN). An experiment 
was conducted, with stressful and non-stressful reading material as stimuli, to 
obtain galvanic skin response (GSR) signals, a good indicator of stress. GSR 
signals formed the input of the ANN with stressed and non-stressed states as the 
two output classes. Results show that stress in reading for males compared to 
females are significantly different (p < 0.01), with males showing different 
patterns in GSR signals to females. 

Keywords: classification, artificial neural networks, galvanic skin response, 
gender stress, reading. 

1   Introduction 

The term, stress, was first coined by Hans Selye, who defined stress as “the non-
specific response of the body to any demand for change” [1]. Stress is defined as the 
body’s psychological and physical reaction or response to the imbalance between 
demands and the resources available for a person. It is known as a natural alarm, 
resistance and exhaustion [2] system for the body to prepare for a fight or flight 
response to protect the body in case of threats and make the body adapt to changes. 
Stress has been identified as a serious and growing issue adversely impacting both 
individuals and society. It is widely accepted that stress has the potential to cause a 
variety of chronic illnesses ranging from cardiovascular diseases, diabetes and even 
some forms of cancer. Societies are affected by the stress problem due to large 
proportions of their citizens facing stress, which is resulting in high economic costs, 
especially in developed countries [3, 4]. Stress research has a wide range of potential 
applications including the capacity to improve personal operations, learning and 
increase work productivity [5], making it an interesting area of research in a variety of 
fields including posing a technical challenge to Computer Science. A number of 
computational techniques have been applied to define stress objectively and build 
simplistic stress models based on techniques such as Bayesian networks [6], support 
vector machines [7], and decision trees [8]. 

Due to complexity in its definition, stress cannot be measured directly and 
objectively but can be modeled in terms of other measures, including galvanic skin 
response (GSR) [9], or heart rate variability [10]. GSR, also known as skin 
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conductance or electrodermal activity response, is reliable as a measure of stress [10-
12] and it is used in this paper to classify stress. When an individual is under stress, 
skin conductance is increased [6], which may result in moisture on the surface of the 
skin, or in a more extreme case leading to sweating. The increase in skin conductance 
is recorded as a change in GSR. GSR has been used as a measure in a biofeedback 
system to help individuals lower their stress levels. The system had Biopac sensors to 
take GSR readings and a competitive racing game component that induced stress [13]. 

Artificial Neural Networks (ANN) has been used for modeling stress but is at early 
stages of research. Physiological signals have been used as inputs to ANN for 
classifying mental workload with good accuracy rates [14]. Some emotions, such as 
fear and anger, are symptoms of stress, which have been differentiated using ANNs 
with GSR as inputs. This paper presents an ANN for determining whether there is a 
gender based difference in stress for reading. It uses GSR data obtained from a 
reading experiment comprising of stressed and non-stressed reading to obtain data 
sets for male, female and a combined data set, develops an ANN classifier for the data 
sets, and then provides an analysis of the results. An experiment was conducted, with 
stressful and non-stressful reading material as stimuli, to obtain galvanic skin 
response (GSR) signals, which is a good indicator of stress. GSR signals formed the 
input of the ANN with stressed and non-stressed states as the two classes. Three 
ANNs were built to investigate whether there is gender bias in stress. Results from the 
experiments show that stress in reading for males and females are significantly 
different (p < 0.01). The paper evaluates the classifiers, validates them, analyses 
classification rates, concludes the findings, and proposes further research. 

2   Reading Experiment 

Undergraduate Computer Science students over the age of 18 years old were recruited 
as experiment participants (after obtaining Ethics Approval from the Australian 
National University Ethics Committee). The participant group for the investigating 
gender bias experiment was made up of 10 males and 10 females with age between 18 
and 24 years. Each participant had to understand the requirements of the experiment 
from written experiment instructions with the guidance of the experiment instructor 
before they filled in the experiment consent form. Afterwards, GSR electrodes were 
attached to the participant. The instructor notified the participant to start reading, 
which triggered a sequence of text paragraphs. After finishing the reading, 
participants had to do an assessment. An outline of the process of the experiment for 
an experiment participant is shown in Fig. 1.  

 

Fig. 1. Overview of the experiment process 
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2.1   Experiment Set Up 

Experiment participants had to silently read stressed and non-stressed types of 
paragraphs. Stressed paragraphs had stressful content, whereas the non-stressed 
paragraphs had content that created an illusion of meditation or soothing 
environments. There were three paragraphs for each type of paragraph and each 
paragraph was about the same length, approximately 360 words. Participants were 
told that they would be monitored on the way they interacted with text while they read 
and then had to do an assessment, based on what they read, after the reading.  

The paragraphs were displayed on a 1050 x 1680 pixel Dell monitor. For 
consistency, paragraphs were displayed on the screen for 60 seconds and positioned at 
the same location of the computer screen for each participant. Each line of the 
paragraph had 70 characters. 

Biopac GSR100C equipment was used to obtain GSR signals at 1 kHz. Disposable 
EL507 GSR electrodes were used, which were placed on the first (or index) and forth 
(ring) fingers of the participant’s left hand. 

 

 

Fig. 2. The experiment was conducted in a room with a consistent environment for participants. 
A computer monitor displayed the reading text. The participants wore GSR equipment on their 
left hand, which they rested on the arm rest while reading. 

3   ANN Classifier for Determining Gender Bias 

An ANN is inspired by biological neural networks with characteristics for learning 
and reacting. It is made up of interconnected processors, known as artificial neurons, 
connected by weighted links that pass signals between neurons. Feed-forward ANNs 
were developed, trained and tested for testing the null and alternative hypotheses: 

H1. Null: There is no difference in GSR patterns for females and males during 
reading stressed and non-stressed material. 

H2. Alternative: There is a difference in GSR patterns for females and males 
during reading stressed and non-stressed material. 

Arm rest

Computer 
screen for 
text display 
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A three-layer (plus the input layer) ANN was trained on a data set obtained from the 
experiment to test the hypotheses. Each of the ANNs developed was trained on one of 
the three data sets: 

DF.  Female data set – standardised GSR data for all female participants 

DM.  Male data set – similar to the female data set, but the data set contained data 
for male participants only 

DFM. Male and Female data set – composed of the male and female standardized 
_GSR data sets 

An ANN was developed by training it on the male and female data set (DFM) to test 
H1. Classification rates for participants were obtained by swapping two females and 
males at a time from the training and testing sets at a time. In order to test H2, two 
ANNs were developed. Each ANN was trained on either the female data set (DF) or 
the male data set (DM). Classification rates of a participant was determined on the 
ANN trained using the opposite gender e.g. female participants were classified using 
the ANN that was trained on DM. 

The Sigmoid function was chosen as the activation function to limit the output 
values of the ANN within the range of 0 (not-stressed) and 1 (stressed). The ANNs 
were developed using the Matlab Neural Networks Toolbox and trained using the 
Levenberg-Marquardt back-propagation algorithm. 

In order to minimize individual bias, the GSR signals were standardized to a range 
within 0 and 1 using Equation (1) for each timestamp T(i). 

Standardised_GSRT(i) = (Raw_GSRT(i)  – Minimum_GSRT(i))/RangeGSRT(i) (1)

The size of the raw GSR data set for a participant reading a particular type of 
paragraph was 180,000, which was a result of a sampling rate of 1 kHz. This data set 
is not feasible to extract suitable features. Therefore, a maximum value was obtained 
for every 1000th interval to reduce the data set size to 180. This gave a data set a 
granularity level of one second. Subsequently, a running maximum algorithm was 
used with a window of five seconds. GSR after each second, SGSRt, was defined as 
the maximum Standardised_GSRT(i) from a window of size five as described in 
Equation (2). 

SGSRt = max{Standardised_GSRT(j)} where i <= j < i+5 (2)

Each SGSRt formed an input to the ANNs. Research has showed that physiological 
responses affected by stress appears a short time after an individual has been exposed 
to stressful stimulus [10, 15]. The experiment data, depicted in Fig. 4, shows an 
example of the claim. Also, a participant was given 60 seconds to read a paragraph, so 
as a consequence, SGSRt values over a 30 second time interval was used to develop a 
sample in the data set for the ANNs. An input list, Ik, for a sample in the ANN data 
set is defined in Equation (3). 

Ik = [SGSRk, SGSRk+1, SGSRk+2, …, SGSRk+29] (3)

Classification of stress for reading is non-linear and the input fed to the ANN was 
discretised and segmented. The topology of the ANN was obtained empirically based 
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on capturing prominent characteristics appearing in the data (described in Section 4) 
and experimental trials. The characteristics were observed over approximately 30 
second time intervals so GSR data over 30 second time intervals formed inputs to the 
ANN, thus the ANN had 30 input neurons. Rules of thumb were incorporated in 
determining the number of neurons in the hidden layers of the ANN. The first hidden 
layer was designed so that the number of neurons was no more than twice the number 
of neurons in the input layer and the number of neurons in the second layer was less 
than the square root of the number of neurons in the first hidden layer. Accordingly, 
50 neurons were allocated to the first hidden layer, 7 neurons were in the second 
hidden layer and one neuron in the final layer. Moreover, the topology was defined so 
that the ratio of free parameters to the number of training patterns was at most 3.  

4   Results and Discussion 

The GSR data for reading stressed and non-stressed material obtained from the 
reading experiment for each participant is shown in Fig. 3. By observation, prominent 
characteristics of stress, spikes or short periods with high GSR values, in the data  
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Fig. 3. Standardised GSR values were obtained for participants in the reading experiment. Each 
participant read three stressed and three non-stressed paragraphs in consecutive order for 
stressed and non-stressed readings respectively. (a) Standardised GSR values for male and 
female data sets while stressed reading (b) Standardised GSR values for male and female data 
sets while non-stressed reading. 
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generally span more than 20 seconds. Accordingly, the inputs for the ANN were 
defined to include this span, but not a span as large as the time period given to read a 
paragraph, which was 30 seconds. This generated 6,040 data samples, which were 
used to train the ANN. 

A 10-fold cross-validation method was used to evaluate the ANNs trained on DF, 
DM and DFM. The ANN that was trained on the female data set performed the best. 
The ANN that was trained on the male data set did not perform much worse, however, 
the ANN which was trained on the training set with both the male and female data 
performed the worst. This variation suggests that characteristics in male and female 
data sets may not be similar. The performance values of the ANN on the three 
different training sets are compared in Table 1. 

Table 1. Statistics for 10-fold cross-validation on the ANN for the reading data sets 

Data set Correct rate Sensitivity Specificity 
Female 91% 91% 91% 
Male 81% 77% 84% 
Male and Female 70% 71% 70% 

 
Average classification rates for correct classification for each of the participant 

samples were calculated over a set of five trials. For each trial, the ANN was trained 
using the training set, which varied for the hypotheses that were tested. The 
classification rates for stress for male and female participants on the ANN trained on 
DFM is shown in Table 2. 

Table 2. Average correct classification rates for samples tested on the ANN trained using 
samples of both the genders 

Participant ID Correct classification 
rates for female samples 

Correct classification 
rates for male samples 

1 68% 50% 
2 33% 34% 
3 42% 62% 
4 71% 60% 
5 33% 64% 
6 55% 58% 
7 76% 56% 
8 51% 15% 
9 78% 14% 
10 31% 44% 

 
The Student’s t-Test gives a p-value of 0.004 (p < 0.01), which shows that we have 

strong evidence that the null hypothesis, H1, does not hold. As a result, there is no 
evidence that suggests that there are no differences in GSR patterns for females and 
males during reading stressed and non-stressed material, which suggests investigating 
existence of difference in GSR patterns. 

The classification rates for stress for each female participant on the ANN trained 
on DM and for each male participant on the ANN trained on DF are given in Table 3 
to determine whether there is a difference in patterns in GSR for males and females. 
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Table 3. Average correct classification rates for samples tested on the ANN trained using 
samples of the opposite gender 

Participant ID Correct classification 
rates for female samples 

Correct classification 
rates for male samples 

1 56% 54% 
2 62% 24% 
3 34% 45% 
4 45% 54% 
5 27% 43% 
6 43% 54% 
7 38% 60% 
8 8% 10% 
9 47% 34% 
10 38% 35% 

 
The classification rates for male and female samples have a p-value of 0.16  

(p > 0.1), which means that there is strong evidence that males show different 
characteristics and patterns in GSR signals for stress to females. Thus, H2 hypothesis 
holds. Classification results in Table 2 and Table 3 and statistical analyses show that 
males and females respond to stress in reading with different GSR signals. 

5   Conclusion and Future Work 

ANN was used to classify stress in reading for females and male. We showed that 
stress in males and females are significantly different (p < 0.01) i.e. gender has 
influence in the separability of GSR characteristics. The results are consistent with 
previous studies [16]. Future possible extension to the reported work includes 
modeling GSR features for males and females on other types of classifiers (e.g. SVM) 
to generalize reported patterns, investigating discrepancies within the male data set 
and developing a method for obtaining an improved classifier for a male stress data 
set. In order to obtain a classifier with a higher classification rate, inputs of an ANN 
could be defined in terms of multiple primary measures of stress e.g. a combination of 
GSR and HRV measures. 
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Abstract. In this paper, we propose a novel artificial neural network, called 
self-adjusting feature map (SAM), and its unsupervised learning algorithm with 
self-adjusting mechanism. After the training of SAM network, we will obtain a 
map composed of a set of representative connected neurons. The trained 
network structure of representative connected neurons not only displays the 
spatial relation of the input data distribution but also quantizes the data well. 
SAM can automatically isolate a set of connected neurons, in which the number 
of the set may indicate the number of clusters to be used. The idea of self-
adjusting mechanism is based on combining of mathematical statistics and 
neurological advance and retreat of waste. For each representative neuron, there 
are three periods, growth, adaptation and decline, in its training process. The 
network of representative neurons will first create the necessary neurons 
according to the local density of the input data in the growth period. Then it will 
adjust neighborhood neuron pair’s connected/disconnected topology constantly 
according to the statistics of input feature data in the adaptation period. Lastly 
the unnecessary neurons of the network will be merged or deleted in the decline 
period.  In this study, we exploit SAM to handle some peculiar cases that 
cannot be well dealt with by classical unsupervised learning networks such as 
self-organizing feature map (SOM) network. Furthermore, we also take several 
real world cases to exhibit the remarkable characteristics of SAM.  

Keywords: Unsupervised learning, self-adjusting, representative neurons 
statistics, SOM. 

1   Introduction 

In machine learning, unsupervised learning is a class of problems in which one seeks 
to determine how the data are organized. With some network architectures it is 
possible to map patterns of arbitrary dimensionality (the pattern space) onto a lower-
dimensional structure of neurons (the feature space) having similar topology relations. 
A well-known approach to designing a self-organizing feature map (SOM) network is 
to use the Kohonen learning rule [1]. The Kohonen’s SOM is giving a topology-
preserving map that preserves neighborhood relations of the input pattern to ask for 
nearby outputs of a feature map corresponding to nearby input patterns, and it updated 
weights going to the neighbors of the winning neuron as well as to the winning 
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neuron itself. However there are two critical issues about SOM. First, the network 
becomes unstable when input patterns have a complex structure. Second, it may easily 
happen in SOM that the weight vectors lying in zero-density areas are affected by 
input vectors from all the surrounding parts of the non-zero distribution. To remove 
such problems [2], the Parallel Distributed Processing (PDP) model [3] and fuzzy 
self-organizing neural network [4] were proposed. To further deal with stability 
plasticity dilemma problem, some self-creating models were proposed [5-11]. 
Besides, we cannot ensure the similarity of network structures after the training 
process of the same input patterns are in random inputting order. The self-organizing 
motor map by Ritter et al. [12], and its enhanced version of the Clusot algorithm [13] 
can utilize the information contained in a trained SOM and do automatic detection of 
clusters in this surface. Furthermore, the visualization of most networks was proposed 
cannot directly represent the data structure and inter-neuron distance in its network 
topology preserved mapping. Many paper are proposed visualize SOM for various 
concepts [14-17].  

In this paper we proposed a self-organizing and self-varying feature map network 
with a novel learning rule. To obtain a more adaptive neural network, the learning 
rule combined the topology-preserving map with the self-adjusting mechanism. The 
self-adjusting mechanism is based on statistics that evaluate what size and structure 
should the network contain without giving a lot extra parameters. The neural network 
with the learning rule we proposed can dynamically change the size of neural network 
and constantly adjust the neighborhood relations of neurons according to input feature 
data in the training process. Therefore, it can ensure the networks of different 
trainings will be similar when the training data is the same. Besides, the visualization 
on trained result can obviously show distribution relations in the input feature space 
by the neighborhood relations among output neurons. In other words, we can 
automatically evaluate how many classes the data samples are without any post 
process. 

The remainder of this paper is organized as follows. In Section 2, we describe how 
to dynamically change the size of neural network and adjust the neighborhood 
relations of neurons in training process by the self-adjusting mechanism. Furthermore 
we also introduce the learning rule and the parameters used in our network. In Section 
3, we will discuss the effect on different parameters. Section 4, we show the 
experimental results of our neural network. Finally, in Section 5, we give our 
conclusions and we discuss some future work. 

2   Self-Adjusting Mechanism 

In our neural network, we established a self-adjusting mechanism to dynamically 
adjust network size and structure according to the input data distribution. There are 
two aspects in self-adjusting mechanism: The adaptive network size and the dynamic 
neighborhood topology. 

Assume input vector is ( )ix t


 for 1, ,i M=   and the weight vector of 

representative neuron j is 1 2( ) , , ,
T

j j j jqw t w w w =  
   

  for 1, ,j N=  , where M and 

N  represent the total number of training data and the representative neuron number 
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respectively. Parameters q and t  represent the dimension of the input vector and the 
learning time elapsed, respectively. Since the learning time scale is proceeded with a 
epock-based approach, thus the learning time t elapsed can be written as ,ept nT=  in 

which epT  is the training time needed for an epock learning of all input data learned 

once. Hereafter, we will equivalently write ept nT n
 
(discrete domain)

 
for brevity.  

The input vector is compared with all the weight vectors. A best-matching unit 
(BMU) ( )iC t  can be found by calculating the Euclidean distance between the input 

vector and the weight vector ( )jw t


 of representative neuron j, i.e., 

( ) arg min{ ( ) ( ) }i i j
j

C t x t w t= −                          (1) 

After the training iteration, the standard deviation ( )jSTD t  of data subset whose 

winner is neuron j is define as 

( )2

Neuron

( )

( )
i j

i j
i C

j

x w t

STD t
m

= ∈

−

=
  

                      (2) 

where m  and ,t  respectively, represent the number of the input belong to neuron j  

and current iteration learning time. 

2.1   Learning Rule  

In common with Kohonen’s SOFM, we give a fixed gird topology of neurons at first. 
At each iteration, input vectors are drawn randomly and presented to the network. In 
order to fully utilize self-adjusting mechanism to adjust the network size and  
structure through the learning of the input data automatically. Each representative 
neuron j of the SAM network assumes a learning rate function ( )j jtα  and 

neighborhood updating region ( )j jR t  The learning rate function neuron  j might have 

been more persuasive if it follows an exponential decay function as  

( )( ) exp  j j jt tα λ= −                             (3) 

where ( )0,1λ ∈  is the parameter for controlling representative neuron  j activity 

length and jt  is neuron j learning time being elapsed since its creation, i. e., 

equivalently the learning epoch jn  being proceeded. When all the representative 

neuron’s learning rate ( )j jtα  approaches zero, the training has completed. The SAM 

network, including its size and structure, has reached its stable steady state through 
the learning of the input data. To ensure that the network will be stable and 
convergent, we divide self-adjusting mechanism of each representative neuron into 
three periods according to its respective learning rate function as shown in Fig. 1. 
When the learning rate of a neuron descends from 1 to 0.5, the neuron is called in the 
growth period. A new neuron will be created if the parent representative neuron is not 
centralized enough. When the learning rate falls between 0.5 and 0.1, it is in the 
adaptation period and the neuron start to evaluate its neighborhood relation, either 
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connected or disconnected should be established for its neighbor. At last, when the 
learning rate becomes smaller than 0.1, the neuron is in the decline period and the 
unnecessary neurons will be deleted or merged. The network will terminate learning 
when the learning rate of each neuron approaches zero, setting to 0.01 in this paper. 
Note that λ  is usually smaller than 0.1. For example, if λ  equals 0.08, the 
representative neuron j is in the growth period when 0 8;jn≤ ≤  the neuron is in the 

adaptation period when 8< 28;jn ≤  the neuron is in the decline period when 

29< 52jn ≤ .  

Moreover, as SOM, the neighborhood updating region function is 

( ) ( )j j init j jR n R nα= ×                             (4) 

where initR  is the initial neighborhood updating region. After the BMU is 

determined, the weight vectors of the neurons are modified according to the update 
rule formulated as 

( ) ( ) ( )[ ( ) ( )], ( )
( 1)

( ), otherwise
j j j j cj j j j c j

j j
j j

w n n h n x t w n j R n
w n

w n

α+ − ∈+ = 


  


         (5) 

where ( )cjh T  is the neighborhood function and it is centered on the best-match 

neuron cw


and decreasing monotonically with time. A typical smooth neighborhood 

function could be a Gaussian function: 

( )
2

2
( ) exp

2

c
cj j

j

x w
h n

nσ

 − − =
 
 

 

                            (6) 

where ( )Tσ  is the width of the Gaussian kernel and 
2

cx w− 
 is the distance 

between the winning neuron cw


 and the input data x


 on the topology of 

neighborhood. The learning process consists of winner selection by (1) and adaptation 
of the weight vectors by (5). 

 

 
 

Fig. 1. Stages of the self-adjusting mechanism of a representative neuron 
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2.2   Adaptive Network Size and Structure 

There are three periods for representative neurons which lead to adaptive network size 
and structure of SAM dynamically. The three periods for representative neurons 
include neuron growing, neuron adaptation, and neuron decline, which are described 
below.  

 

Neuron Growing Period. In the neuron growing period, wherever the representative 
neuron is not centralized enough, an new representative neuron will be created. We 
count the data subset jS  belonging to representative neuron .j  If the data subset jS  

that fall within d (usually set as 1.5 to 2) times standard deviations from  
the representative neuron j  is smaller than p percentage, such as 80%, as shown in 
Fig. 2, we create a new neuron form neuron j , which is called the representative 

neuron k  here. This representative neuron can be chosen randomly from the data 
subset jS  that also falls outside d (usually set as 1.5 to 2) times standard deviation. 

The representative neuron k will start its local learning curse as shown in Fig, 1 with 
its local time setting as 0.kt =  By this way, the SAM network with a reasonable 

parameter setting always reaches the adaptive size and structure that was determined 
automatically by input data distribution. However, in some classical applications such 
as vector quantization for image coding, the codebook size, i.e., the network size can 
only be pre-specified. 

 

Fig. 2. The condition of neuron growing 

Neuron Adaptation Period. In adaptation period of the representative neighboring 
neurons, there are two states for dynamic neighborhood topology of connectivity: 
disconnected state indicating neighborhood splitting and connected state indicating 
neighborhood joining. Fig. 3 shows the conditions of neighborhood splitting and 
joining. If the Euclidean distance between two neighboring neurons is greater than the 
sum of the two neurons’ STDs multiplied by a given value conk , we will disconnect 

the linking between the neurons for they are not close enough. In other words, they 
are not close enough neighbor. Otherwise, we will connect the linking between these 
two neurons for they are close enough. The equation to define connectivity of 
neighboring neurons is given by 
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( )( ) ( ) ( ) ( ) ,      1, , .il jl con il jlw t w t k STD t STD t l q− ≤ × + = 
            (7) 

If the above condition is satisfied, connect the link between the neurons. Otherwise, 
disconnect them. 

 

  

(a) The condition of neuron pairs to become 
disconnected 

(b) The condition of neuron pairs to become 
connected 

Fig. 3. The conditions of neighboring neurons to become connected or disconnected 

Neuron Decline Period.  In the neurons decline period, if the Euclidean distance 
between two neurons is smaller than the larger STD of two neurons that multiplied by 
a preset value mergek  (usually greater than 2), to merge two neurons into one neuron 

with the neighborhood relations completely inherited from neurons as shown in Fig. 
4. The equation to define the merging of neighboring neurons is given by 

( )( ) ( ) max ( ), ( ) ,    1, , .il jl merge il jlw t w t k STD t STD t l q− ≤ × = 
          (8) 

If the above condition is satisfied, we merge the neuron i and neuron j . 

For neuron deleting case, if the number of the input belong to neuron j  is smaller 

than a threshold ,β  setting to 0.05 in this paper, then we delete the neuron j .  
 

Merge

 
 

(a) The plot for merging operation (b) The condition of neuron merging 

Fig. 4. The conditions of neurons merging 
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3   Experiments 

In this section, we show the experimental result of simulation and the real world 
application. In the first part, we conduct experiment on synthetic data set and in the 
second part, we use a real world application. 
 
Handling Nonstationary Data Input. In the first simulation, Data set 2 contains two 

clusters of Gaussian data with 10σ =  and 20σ =  respectively, and both cluster 
have 300 samples. The parameters ( , , , )merge conp d k k  of SAM are set as (0.9, 2, 2.2, 

2.5); The neighborhood topology of SOM is 4×4 grid; The parameter of BCL is set as 

0 0.3d = . The blue lines between neurons indicate that they are due to topological 

neighborhood relation and the yellow indicates the unit STD range of data subset 
governing by winning neurons. Figs. 5(b)---(d), respectively, show the training result 
of SAM, SOM, BCL with 16 neurons for date set 1. As usual, we use the mean square 
error (MSE) criterion to evaluate performance of each result. Experimental results 
show the MSE of SAM is smaller than other networks. Fig. 5(e) shows the average 
MSEs in ten consecutive experiments on the data set 1, when the network size is set 
as 4, 16, 64, 128, 256 neurons, respectively. We can see form Fig. 5(e) that the MSE 
of SAM is better than others independently of what the network size is. 
 

  

(a) (b) (c) 

 
 

(d)              (e) 

Fig. 5. Nonstationary data input and the vector quantization results by using (b) SAM, (c) 
SOM, and (d) BCL, respectively (e) MSE vs. neuron used plots 
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Cluster Number Estimation. In the second simulation, we use a three-dimensional 
data, as shown in Fig. 6(a). The data sets are difficult to cluster correct by the conven-
tional competitive learning schemes. Fig. 6(b) shows the results after clustering via 
SAM. We can see that the network structure of SAM can fit in with input data distri-
bution without any space projection. The link between neurons that belong to differ-
rent class will be divided up without any post-process or clustering again. 

 

 
(a) Data Sample (b) 27 neurons and 2 classes 

Fig. 6. Two cross rings data and clustering by SAM with parameters ( , , , )merge conp d k k  being  
set as (0.9, 1.5, 2, 2.5) 

4   Conclusion 

In this paper, we present a new competitive learning neural network with a special 
self-adjusting mechanism. It not only combines the advantages of self-creating, self-
merging and self-deleting model but also uses local data statistics to dynamically 
adjust the neighborhood of representative neurons according to the spatial distribution 
of input data. The network size and topological structure of SAM can adaptively 
change according to input data distribution. From experimental results on simulations 
and real world applications, SAM presents better clustering or quantization results. 
Besides, SAM can appropriately estimate the cluster number in a data set and 
adaptively respond to various data input, even for some peculiar cases. To summarize, 
SAM is a novel adaptable neural network and it is recommended to be utilized as a 
prior process in various data involved.  
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Abstract. Bivariate regression allows inferring a model underlying two
data-sets. We consider the case of regression from possibly incomplete
data sets, namely the case that data in the two sets do not necessar-
ily correspond in size and might come unmatched/unpaired. The paper
proposes to tackle the problem of bivariate regression through a non-
parametric neural-learning method that is able to match the statistics
of the available data sets. The devised neural algorithm is based on a
look-up-table representation of the involved functions. A numerical ex-
periment, performed on a real-world data set, serves to illustrate the
features of the proposed statistical regression procedure.

Keywords: Statistical nonparametric regression; Bivariate isotonic re-
gression; Look-up tables; Incomplete data sets; Nonparametric modeling.

1 Introduction

Statistical regression is advantageous in those applications where incomplete as
well as complete data are available, which might also be unmatched. Data being
incomplete means that specific observations are either lost or are not recorded
exactly. Data happen to be unmatched/unpaired when they are recorded inde-
pendently.

In some circumstances, the model underlying the data is known to be mono-
tonic. An interesting example arises in forensics: A study on the modification
of fingerprints due to ageing reveals that the mean distance between points-
of-interests on fingerprints increases monotonically with age [7]. Any regression
method devised under the hypothesis of monotonicity is referred to as ‘isotonic
regression’ in statistics [12]. A widely invoked assumption on data is that missing
data are missing at random [5,8]. The basic hypothesis underlying the missing-at-
random scenario is that the pattern of incomplete data is traceable or predictable
from other variables in the data-sets.

A natural application of regression is imputation of missing data, which con-
sists in filling-in the ‘holes’ within the data. In missing-data handling approaches,

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 365–372, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



366 S. Fiori

one of the desired outcomes is maintaining as closely as possible the shape of
the original data distribution.

Missing-data handling techniques find widespread applications in medicine
[3,15], social sciences [6], education [10], psychology [13] and meteorology [14].
More generally, applications in which uncertainty in the measurements make
classical regression techniques appear unreliable, may take advantage of statis-
tical regression technique. An example may be found in composite materials’
mechanical properties characterization [2].

In the present paper, we consider tackling the problem of bivariate isotonic
statistical regression via a neural look-up-table-based method that is able to
match the statistics of the available data sets. A non-linear-system input/output
statistical warping equation is interpreted as a valid regression equation for iso-
tonic modelling. In effect, in classical input-output system analysis, the system
transference is known and statistical methods are taken advantage of in order to
describe the distribution of system output data on the basis of the distribution
of the system input data. In the present context, the problem is reversed as the
distribution of the input and output data are known, while a monotonic neural
transference function that describes the warping of input data distribution into
output data distribution needs to be identified.

Let us denote by Dx,Dy the pair of data-sets a relationship among which is
sought for. Regression is given here an interpretation as pooled-statistic match-
ing problem for a learnable non-linear system. Namely, instead of considering
variables x ∈ Dx and y ∈ Dy as paired and to look for a non-linear model that
fits the variables values the best, we consider only cumulative information that
arise by pooling the values within data-sets Dx and Dy. As a consequence, the
proposed regression technique allows to cope with the modelling problem when
the size of the two data-sets do not match and/or when the pairing relationship
of the values within x ∈ Dx and y ∈ Dy is unknown.

A key point of the method discussed here is that the quantities of interest
as well as the designed model are represented in terms of paired lists of real
numbers implemented as look-up-tables, which provide an efficient way of rep-
resenting and handling the quantities of interest, as already shown in previous
contributions published in the neural-network literature (see, e.g., paper [4] for
an application to blind signal processing). An advantage offered by the devised
procedure is the relieving from heavy computational requirement owing, e.g., to
kernel methods (for a recent review, see, e.g., [11]).

Organization of the paper: In Section 2, we discuss the isotonic regres-
sion problem in details and present the related analytic setting and its analytic
solution. The analytic solution readily gives rise to an algorithmic formulation.
We then describe the required operations with look-up tables and present the
numerical procedure of statistical regression. In order to illustrate the behavior
of the developed statistical regression technique, in Section 3 we consider a case
of study. Section 4 concludes the paper.
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2 Bivariate Isotonic Regression Method

We suppose that the neural regression model to learn has a non-linear structure
described by relationship y = f(x), where x ∈ Dx ⊆ R denotes the input
variable, having probability density function px(·), and y ∈ Dy ⊆ R denotes the
output variable, having probability density function py(·).

2.1 Properties of Statistical Bivariate Isotonic Regression

In the hypothesis that the neural regression model be strictly monotonic, namely
f ′(x) > 0 or f ′(x) < 0, ∀x ∈ Dx, the input-output distributions and the neural
model transference may be shown to stay in the relationship:

– Positive-slope neural model: f(x) = P−1
y (Px(x)),

– Negative-slope neural model: f(x) = P−1
y (1 − Px(x)),

where symbol P−1
y (·) denotes the inverse of the cumulative distribution

function Py(·) pertaining to the y-variable and symbol Px(·) denotes the cu-
mulative distribution function pertaining to the x-variable. In effect, the above
transformations make sure that the distribution px(·) is transformed into the dis-
tribution py(·) according to the law of measure-invariance of probability density
functions [9].

The problem of selecting a monotonically increasing or a monotonically de-
creasing type neural model is solvable by reasoning on the nature of the physical
phenomena underlying the involved data-sets, regardless of the regression pro-
cedure.

The above regression method does not depend explicitly on the data, but
on the probability density/cumulative functions obtained from each data set
separately by pooling the data. Namely, data-sets may be incomplete (i.e., of
different sizes) and the data may come unmatched.

2.2 Look-Up Tables and Required Elementary Operations

In order to develop a fully-numerical neural statistical regression method, the
following ingredients are of use: A suitable numerical estimation method for
cumulative density functions and a suitable format for function representa-
tion/handling (with particular emphasis on numerical function inversion). In
order to put the above regression equations into effect, we chose to make use of
a representation of the quantities of interest based on look-up-tables.

A real-valued look-up table with N entries is basically a pair LUT = (x,y),
where x ∈ RN and y ∈ RN . The entries xk of vector x and the entries yk of
vector y, with k ∈ {1, . . . , N}, are paired and provide a point-wise descrip-
tion of an arbitrarily-shaped function. In order to handle the look-up tables for
statistical modeling purpose, the following operations are of use:

– Histogram Computation: In order to numerically approximate the prob-
ability distribution of a data set D, a histogram operator is of use. The
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histogram-computation operation is denoted by (x,y) = hist(D). The con-
structed look-up table is built up as follows: xk equals the value of the kth

bin center, yk equals the number of data-points falling in the kth bin.
– Cumulative-Sum Computation: On the basis of a look-up table (x,y),

a new look-up table (x,v) = csum(x,y) may be constructed, where array v
contains the cumulative sum of the entries of array y, possibly normalized in
order to approximate the numerical integration of the function represented
by the look-up table (x,y). In its un-normalized version, the cumulative sum
is described by v1 = y1 and vk = vk−1 + yk for 2 ≤ k ≤ N .

– Function/Table Interpolation: Interpolation may be invoked to make
computations with look-up tables on other points in the domain. In the
present context, it is necessary to preserve the monotonicity of an approxi-
mated function, therefore we refer here to linear interpolation only. Let us
denote by D the x-coordinate point-set, where the function represented by
a look-up table (x,y) needs to be interpolated. The interpolation operation
may be denoted by I = interp(x,y,D), where the set I contains the in-
terpolated y-values corresponding to the x-values in the set D. Note that,
because of the hypotheses of monotonicity of the model underlying the data,
a set-type representation is equivalent to an ordered-list representation.

– Function/Table Inversion: If a function is given a point-wise representa-
tion by the help of a look-up table (x,y), then its inverse function may be
easily given a point-wise representation by the look-up table (y,x), namely,
function inversion is equivalent to swapping look-up table’s arguments. Ap-
parently, therefore, function inversion in the context of look-up tables repre-
sentation is a computationally-costless operation.

2.3 Bivariate Isotonic Regression Algorithm

The neural bivariate isotonic regression method proposed here consists of the
following steps.

First, it is necessary to estimate the probability density functions of data
within Dx and Dy data-sets. They may be numerically estimated – up to scale
factors – by:

(x,px) = hist(Dx), (y,py) = hist(Dy). (1)

The numerical cumulative distribution functions of the Dx and Dy data-sets
may now be estimated by numerical integration of the numerical probability
density functions, which may be achieved by the help of the cumulative-sum
operator applied to look-up tables (x,px) and (y,py). Namely, we construct
look-up tables:

(x,Px) = csum(x,px), (y,Py) = csum(y,py). (2)

If the statistical model has negative slope, the look-up table (x,Px) should be
replaced by (x, 1−Px) in what follows.

For regression purpose, the neural model is to be evaluated on a ordered set
of x-points denoted here as an array x̂. Here, the array x̂ consists of R points



Bivariate Isotonic Regression by Neural Look-Up Tables 369

equally spaced over the interval of interest for the x-variable. The last step
consists of numerically evaluating the quantity Px(·) over the points in x̂ and
then of evaluating the function P−1

y (·) over the values of Px(x̂), namely:

Px = interp(x,Px, x̂), ŷ = interp(Py ,y,Px). (3)

Note that, in the second of equations (3), the inverse function P−1
y (·) appears

through the swapped look-up table of function Py(·).
The pair (x̂, ŷ) provides a look-up table representation for the non-linear

model f(·).

3 Numerical Experiment with a Real-World Data-Set

In order to illustrate the features of the proposed statistical regression proce-
dure, in the present section we show and comment on the results of a numerical
experiment performed on a real-world data set.

Data used here were collected by D. Donoho and E. Ramos in 1982 and were
used during the 1983 Data Exposition of the American Statistical Association
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Fig. 1. Cumulative distribution functions of the data-sets Dx and Dy required by the
regression procedure
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Fig. 2. Computed regression model superimposed on data-cloud. (Solid-dotted line:
Regression curve. Open circles: Data-points obtained by leaving out incomplete records
from original data.)

(ASA). Data deal with automobiles. Measures on automobile features, such as
fuel consumption (miles per gallon), number of cylinders and engine displacement
were provided. The data-set is available, e.g., from the ASA web-page [1].

In the experiment, we used fuel efficiency (miles-per-gallon, MPG) as well
as car’s power (horse-power, HPW) as variables a relationship among which
is sought for. Both data sets are incomplete and ‘holes’ do not match across
data-sets, so we regarded such data-sets as unpaired.

The cumulative distribution functions of the MPG-variable and HPW-variable,
required by the regression procedure, are depicted in the Figure 1.

Intuitively, the greater the power of an automobile (HPW), the more its fuel
consumption, hence the less its fuel efficiency (MPG). Such observation leads to
the selection of a monotonically decreasing regression model.

The regression model obtained by launching the neural bivariate isotonic re-
gression procedure devised in the present paper is depicted in the Figure 2. The
shown regression model was obtained by setting R = 100 points as regression
precision. In order to obtain a fair visualization of the modeling capability of
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the proposed bivariate isotonic regression method, the Figure 2 also shows the
original data points obtained by leaving out incomplete records.

As it is readily seen, even if the data-cloud is rather spread, the obtained
regression curve appears to fit the data in a quite satisfactory way (the com-
puted regression model looks like a ‘skeletonization’ of the data-cloud). No prior
information on the model was made use of, except for the assumption on its
(decreasing) monotonicity.

On data sets of about 400 data-points each, the regression procedure takes
about 16 milliseconds to run on a 1.86GHz, 256MB platform under MATLAB c©

environment.

4 Conclusion

It is known that real-world systems and phenomena cannot be accurately de-
scribed by a mathematical model to be evaluated analytically. In this case, sta-
tistical regression provides a useful tool to build up a model of the phenomenon
under observation. In the present paper, we discussed the problem of isotonic
bivariate regression via a learnable neural system that is able to match its input-
output statistic to the statistic of available data-sets, a relationship among which
is sought for.

In the present paper, we proceeded under the missing-at-random assumption
for the incomplete data case. Regression was given here an interpretation as
pooled-statistic matching problem for a non-linear system. Also, the assumption
that the regression model should be monotonically increasing/decreasing was
made, which led to the development of a bivariate isotonic regression method.

In order to get a better insight into the neural statistical regression method
proposed in the present paper, a numerical experiment performed on a real-world
data-set was conducted. The result of such numerical experiment showed that
the computed model fits the data in a satisfactory way.

We are currently seeking for an extension of the discussed isotonic bivariate
regression approach to the many-to-one-variable case. The main challenge here
is how to formulate the multivariate regression approach by statistics matching.
From the implementation side, the extension of traditional (two-variable) look-
up tables to multi-variable look-up tables appears straightforward.
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Abstract. This paper presents an analog neural network model to recover sparse
signals. In the original constrained optimization task for recovering sparse sig-
nals, the objective function is not differentiable. Hence, we recast the original
nonlinear programming problem as a linear programming problem with linear
inequality constraints and equality constraints. However, the second order gradi-
ent of the objective function is not convex at an equilibrium point. To solve this
problem, we further modify the objective function such that the second order gra-
dient is convex at the equilibrium point. This paper presents two sets of network
dynamics. One is for the standard recovery of sparse signals. Another one is for
the noisy situation.

Keywords: Optimization, Sparse signal.

1 Introduction

Sparse sampling is a sampling technique in data acquisition for sparse signals [1, 2].
The theory in sparse sampling tells us that a sparse signal can be represented by a few
measured values. To obtain those measured values, the sparse signal is measured by a
set of pseudo random functions. Traditional approaches to recover sparse signals from
sparse sampling are based on Newton’s method.

The analog computational circuit approach is one of important methods for solving
optimization problems in the neural networks community. In the past three decades,
a number of analog neural circuits for optimization have been proposed [3, 4]. The
advantage of the analog neural approach is that the computation is completed in mas-
sively parallel architecture. In [5], a canonical circuit was proposed to solve nonlinear
programming problems with inequality constraints. Wang [6, 7] used the concept of
dual neural networks to solve a number of problems, including constrained quadratic
programming problems. Apart from optimization, neural circuits can also be used for
searching the maximum of a set of numbers [7, 8].

In [9, 10], the Lagrange programming neural network (LPNN) model was proposed
to solve general constrained optimization problems. The model is based on the La-
grange multiplier theory in optimization. The LPNN model aims at finding a solution
satisfying the necessary conditions of optimality. The network consists of two types of
neurons: variable and Lagrange neurons. The variable neurons store the variables being
optimized. The Lagrange neurons store the Lagrange multipliers. The role of variable

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 373–380, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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neurons is to decrease the Lagrange function while the role of Lagrange neurons is to
guide the state of the network into the feasible region.

This paper adopts the LPNN model to recover sparse signal. Since the objective func-
tion for recovering sparse signal is not differentiable, we recast the original nonlinear
programming problem as a linear programming problem with linear inequality con-
straints and equality constraints. However, the second order gradient of the Lagrange
function at an equilibrium point is not convex. To solve this problem, we modify the
objective function by introducing an augmented approach such that the second order
gradient is convex. We propose the LPNN dynamics to handle two situations, including
the standard recovery of sparse signals and the noisy measurement values.

2 Background

In sparse sampling, a sparse signal x ∈ n is measured by a set of m random vectors,
{φ1, · · · ,φm : φj ∈ n}, where m < n. The m measured values are given by

y1 = 〈x,φ1〉, · · · , ym = 〈x,φm〉 , (1)

where 〈·, ·〉 is the inner product operator. In the matrix-vector form, the measured signal
is given by y = Φx. Theoretically, φi’s are global support random vectors. Practically,
we can use pseudo random valued vectors, such as noiselets [2]. The advantage of using
noiselets is that there is an efficient algorithm to computation the measurement values.
The sparse signal can be recovered from the measured signal y by solving the following
constrained optimization problem, given by

min ‖x‖l1 subject to y = Φx . (2)

Theoretically, the signal can be recovered when the number of non-zero elements is less
than Co logn, where Co is a constant.

Let x ∈ n be the variables being optimized. A LPNN aims at minimizing the
following constrained optimization problem:

Minimize f(x) subject to h(x) = 0 , (3)

where f(x) is the objective function, h(x) : n → Rm describes the m equality
constraints, and m < n. The LPNN model uses the Lagrange multiplier approach to
obtain the optimized solution of (3). The Lagrange function is given by

L(x, λ) = f(x) + λT h(x) , (4)

where λ = [λ1, · · · , λm]T is the Lagrange multiplier vector. In the LPNN approach,
we use kinds of neurons, variable and Lagrange neurons, to realize the optimization.
The variable neurons are seeking for a minimum point of (3) and the Lagrange neurons
are trying to constrain the state of the system. The neural dynamics is given by

dx

dt
= −∇xL(x,λ) and

dλ

dt
= ∇λL(x,λ) . (5)
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Fig. 1. Signal Recovery of 1D signal. (a) The original signal. (b) Recovery signal. (c) The
dynamic of the non-zero signal values.

In (5), the equilibrium point (x∗,λ∗), given by dx
dt |(x∗,λ∗) = 0 and dλ

dt |(x∗,λ∗) = 0,
fulfills the following conditions:

∇xL(x∗,λ∗) = ∇f(x∗) +∇h(x∗)λ∗T = 0 (6)

∇λL(x∗,λ∗) = ∇h(x∗) = 0 . (7)

The dynamics (5) seeks to provide solutions satisfying the necessary conditions of op-
timality. The equilibrium point of the network satisfies the Kuhn-Tucker condition for
the problem. The stability of the network are guaranteed under some general convex-
ity conditions [9, 10]. Let (x∗,λ∗) be an equilibrium point of L(x,λ) of the network.
If ∇2

xL(x∗,λ∗) > 0 and ∇x̂h(x̂) = {∇x̂h1(x̂), · · · ,∇x̂hm(x̂)} of h(x̂) are linear
independent, (x∗,λ∗) is a stable point.

3 Recovery for Sparse Signal

To recover a sparse signal from the measured vector y by LPNNs, one may suggest that
we can define the objective function of the LPNN model as

L(x̂,λ) = ‖x‖l1 + λT (y −Φx) . (8)

However, the norm–1 measure ‖ · ‖l1 , involving the absolute operator |x|, is not differ-
entiable at x = 0. Instead of giving approximation for the absolute operator, we recast
the nonlinear programming problem (2) as the following programming problem:

min
n∑
i

wi, subject to 0 ≥ xi − wi, 0 ≥ −xi − wi ∀i, y = Φx . (9)

Define z = (wT ,xT )T . (9) can be rewritten as

min qT z, subject to 0 ≥ Az, y = Aeqz, whereA =
(−In In

−In −In

)
, (10)

Aeq = [Ø|Φ], qT = (1, · · · , 1︸ ︷︷ ︸
n

, 0, · · · , 0︸ ︷︷ ︸
n

), (11)
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and In is an identity matrix. We can change the inequality constraints to equality con-
straints by introducing stack variables {s1, · · · , s2n}. The problem becomes

min qT z, subject to Az +
(
s21, · · · , s22n

)T
= 0, y = Aeqz. (12)

To simplify the notation, we introduce the pointwise multiplication operator ⊗ of two
vectors, where a⊗ b = (a1b1, a2b2, · · · )T . Now, (12) becomes

min qT z, subject to Az + s⊗ s = 0, y = Aeqz. (13)

One may think that we can use the LPNN approach to solve (13). However, the second
order gradient of the corresponding Lagrange function is equal to zero and thus the
convexity condition does not hold. So, an equilibrium point (x∗,λ∗) is not stable.

To ensure the local convexity [10], we introduce the an augmented term co

2 (Az +
s⊗ s)T (Az + s⊗ s) in (13), where co is a constant. Thus, (13) becomes

min qT z +
co
2
‖Az + s⊗ s)‖2, subject to Az + s⊗ s = 0, y = Aeqz. (14)

At an equilibrium point of the neural dynamics, “Az + s⊗ s” is equal to zero (please
see (18)). Hence, there is no change on the objective function at the equilibrium point.

Now, the Lagrange function of (14) is given by

L(z, s,λ,β) = qT z +
co
2
‖Az +s⊗s‖2 +λT (Az +s⊗s)+βT (y−Aeqz). (15)

In (15), z, s, ξ and p are state variables, while λ and β are Lagrange variables. With
(15), the dynamics of the network is given by

dz

dt
= −q − co(AT Az + AT (s⊗ s))−AT λ + AT

eqβ (16)

ds

dt
= −2s⊗ (λ + co(Az + s⊗ s)) (17)

dλ

dt
= Az + s⊗ s,

dβ

dt
= y −Aeqz . (18)

From (11), matrix A only contains identify matrices and matrix Aeq contains a zero
matrix. So, the dynamics (16)-(18) do not involve 2n× 2n matrix computation. It can
be rewritten as

dw

dt
= −

⎛⎜⎝1
...
1

⎞⎟⎠−co
⎛⎜⎝2w+

⎛⎜⎝−s
2
1−s2n+1

...
−s2n−s22n

⎞⎟⎠
⎞⎟⎠−
⎛⎜⎝−λ1−λn+1

...
−λn−λ2n

⎞⎟⎠ (19)

dx

dt
= −co

⎛⎜⎝2x+

⎛⎜⎝s
2
1−s2n+1

...
s2n−s22n

⎞⎟⎠
⎞⎟⎠−
⎛⎜⎝λ1−λn+1

...
λn−λ2n

⎞⎟⎠+ ΦT β (20)

ds

dt
= −2s⊗

(
λ+co

((−w+x
−w−x

)
+s⊗s

))
,
dλ

dt
=
(−w+x
−w−x

)
+s⊗s (21)

dβ

dt
= y −Φx . (22)
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In the above, only (20) and (22) involve matrix-vector multiplication. In (20), we need
to compute the product of a n×mmatrix and am dimension vector. In (22), we need to
compute the product of a m×n matrix and a n dimension vector. That means the num-
ber of weights is O(m×n). In this sense, we can consider that the dynamics is a special
form of bi-directional associative memories (BAMs) [11]. There are two major layers
of neurons. One layer stores the state variables x. Another layer stores the Lagrange
variables β. From (20) and (22), the connection matrix provides the information flow
between the state variables and the Lagrange variables. Practically, the weight matrix Φ
can be a random {+1,−1}matrix. This suggests that the implementation of the analog
neural circuit could be very simple because we have no need to precisely construct the
weight matrix.
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Fig. 2. Signal Recovery of 1D signal from noisy measurement. The first row is the recovery
signal. The second row is the dynamic of the non-zero signal values. (a) measurement noise
variance σ2 = 0.0025. (b) measurement noise variance σ2 = 0.01. (c) measurement noise
variance σ2 = 0.04.

4 Recovery from Noisy Measured Signal

This section considers the situation that the measured signal y contains noise, given by

y = Φx + ξ , (23)

where ξ are independently identical random noise with zero mean and variance σ2. So,
the residual ‖y − Φx‖2 should be less than the noise power. That means, y − Φx =
ξ and ξT ξ ≤ mσ2. Introducing a stack variable p, we can have y − Φx = ξ and
ξT ξ −mσ2 + p2 = 0. So, our aim is to solve the following problem:

Minimize ‖x‖l1 subject to y −Φx = ξ, ξT ξ −mσ2 + p2 = 0. (24)

Again, the gradient of the objective function is not differentiable. Hence, we recast the
nonlinear programming problem (24) as the following programming problem:
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min qT z, subject to 0 ≥ Az, y −Φx = ξ, ξT ξ −mσ2 + p2 = 0. (25)

Converting the inequality constraints to equality constraints, we have

min qT z, subject to Az + s⊗ s = 0, y−Aeqz−ξ=0, ξT ξ−mσ2+p2 =0. (26)

To maintain the convexity, the augmented term is given by co

2 ‖Az + s ⊗ s‖2. So the
augmented Lagrange function is given by

L(z, s, ξ, p,λ,β, μ) = qT z +
co
2
‖Az + s⊗ s‖2 + λT (Az + s⊗ s)

+βT (y −Aeqz − ξ) + μ(ξT ξ −mσ2 + p2) . (27)

In (27), z = (wT ,xT )T , s, ξ and p are state variables, while λ, β, and μ are Lagrange
variables. With the Lagrange function, the dynamics is given by

dw

dt
= −

⎛⎜⎝1
...
1

⎞⎟⎠−co
⎛⎜⎝2w+

⎛⎜⎝−s
2
1−s2n+1

...
−s2n−s22n

⎞⎟⎠
⎞⎟⎠−
⎛⎜⎝−λ1−λn+1

...
−λn−λ2n

⎞⎟⎠ (28)

dx

dt
= −co

⎛⎜⎝2x+

⎛⎜⎝s
2
1−s2n+1

...
s2n−s22n

⎞⎟⎠
⎞⎟⎠−
⎛⎜⎝λ1−λn+1

...
λn−λ2n

⎞⎟⎠+ ΦT β (29)

ds

dt
= −2s⊗

(
λ + co

((−w + x
−w − x

)
+ s⊗ s

))
,
dξ

dt
= β − 2μξ, (30)

dλ

dt
=
(−w + x
−w − x

)
+ s⊗ s,

dp

dt
= −2μp,

dμ

dt
= ξT ξ −mσ2 + p (31)

dβ

dt
= y −Φx . (32)

Again, only (29) and (32) involve matrix-vector multiplication. That means the num-
ber of weights is O(m × n). The dynamics can be considered as a special form of
bi-directional associative memories (BAMs) [11]. One layer stores the state variables
x. Another layer stores the Lagrange variables β. From (29) and (32), the connection
matrix provides the information flow between the state variables and the Lagrange vari-
ables.

5 Simulation Results

The first example is an artificial 1D signal, shown in Figure 1(a). The signal contains
256 samples, of which 244 samples are of zero value while 12 samples are of non-zero
values. These non-zero values are randomly distributed. Figure 1(b) shows the recovery
of the 1D sparse artificial signal from 60 measured values with no measurement noise.
From the figure, the recovered signal has the nearly the same to the original signal.
Moreover, the recovered signal has converged after 40 characteristic times, as shown in
Figure 1(c).
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(a) original (b) σ2 = 0 (c) σ2 = 0.0001 (d) σ2 = 0.0004

(d) σ2 = 0.0009 (e) σ2 = 0.0016 (f) σ2 = 0.0025 (g) σ2 = 0.0036

Fig. 3. Recovered Images for “Queen” for various measurement noise levels

(a) original (b) σ2 = 0 (c) σ2 = 0.0001 (d) σ2 = 0.0004

(d) σ2 = 0.0009 (e) σ2 = 0.0016 (f) σ2 = 0.0025 (g) σ2 = 0.0036

Fig. 4. Recovered Images for “Boy” for various measurement noise levels

Figures 1 shows the recovery of the 1D sparse artificial signal from 60 noisy
measured values. The noise added to the measured values is independently identi-
cal random noise with zero mean. We consider three values of noise variance σ2 =
{0.0025, 0.01, 0.04}. In this experiment, the values of recovered signal are also close to
the original signal as shown in Figure 2(a)-(c). The recovered signal is also converged
after 40 characteristic times, as shown in Figure 2(d)-(f).

We further use two binary images with resolution of 256 × 256 = 65536 pixels
to verify our LPNN model. The images, shown in Figure 3(a) and 4(a), are sparse.
15, 000 measured values are used for recovering. For image “Queen”, the average power
of the measured values is equal to 0.0326. For image “Boy”, the average power of
the measured values is equal to 0.0386. We add Gaussian measurement noise to the
measured values. The noise variances are given by
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σ2 = {0.0, 0.0001, 0.0004, 0.0009, 0.0016, 0025, 0.0036}.
Figure 3 and Figure 4 show the recovered images. From the figure, the LPNN method
can recover the image when there are noise in the measured values. As expected, the
recovered images are degraded when the variance of the noise increases.

6 Conclusion

In this paper, we formulate the LPNN model to handle the signal recovery in sparse sam-
pling. Hence, the objective function of sparse sampling contains a non- differentiable
term, we recast the problem as a linear programming problem with equality constraints.
However, the linear programming approach cannot lead the local convexity condition
in the LPNN. Hence, we further modify the objective function based on the augmented
approach. We propose the LPNN dynamics to handle two situations, including the re-
covery of sparse signal and the noisy measurement values. Simulation results verify that
our approach can be applied for recovering 1D and 2D signals in sparse sampling for
both noise free and noisy environments.
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City University of Hong Kong (Project No. 7002701).

References

1. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process-
ing 25(1), 21–30 (2008)

2. Coifman, R., Geshwind, F., Meyer, Y.: Noiselets. Applied and Computational Harmonic
Analysis 10, 27–44 (2001)

3. Tank, D.W., Hopfield, J.J.: Simple neural optimization networks: An AD converter, signal
decision circuit, and a linear programming circuit. IEEE Trans. Circuits and Systems 33,
533–541 (1986)

4. Culioli, J.C., Protopopescu, V., Britton, C.L., Ericson, M.N.: Neural networks models for
linear programming. In: Proc. IJCNN, vol. 1, pp. 293–296 (1990)

5. Chua, L., Lin, G.: Nonlinear programming without computation. IEEE Trans. on Circuits
Syst. 31, 182–188 (1984)

6. Liu, S., Wang, J.: A Simplified Dual Neural Network for Quadratic Programming With Its
KWTA Application. IEEE Transactions on Neural Networks 17(6), 1500–1510 (2006)

7. Hu, X., Wang, J.: An Improved Dual Neural Network for Solving a Class of Quadratic Pro-
gramming Problems and Its k-Winners-Take-All Application. IEEE Transactions on Neural
Networks 19(12), 2022–2031 (2008)

8. Sum, J., Leung, C.S., Tam, P., Young, G., Kan, W., Chan, L.W.: Analysis for a class of
winner-take-all model. IEEE Trans. Neural Networks 10(1), 64–71 (1999)

9. Zhang, S., Constantinidies, A.G.: Lagrange programming neural networks. IEEE Trans. on
Circuits and Systems II 39, 441–452 (1992)

10. Zhu, X., Constantinidies, A.G.: Lagrange programming neural networks for Linear Program-
ming. Journal of Parallel and Distributed Computing 14, 354–360 (1993)

11. Kosko, B.: Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. 18(1), 49–60
(1988)



A VLSI Spiking Neural Network with Symmetric

STDP and Associative Memory Operation

Frank L. Maldonado Huayaney1, Hideki Tanaka1, Takayuki Matsuo1,
Takashi Morie1, and Kazuyuki Aihara2

1 Graduate School of Life Science and Systems Engineering,
Kyushu Institute of Technology, Kitakyushu 808-0196, Japan

2 Institute of Industrial Science, University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Abstract. This paper proposes an analog CMOS VLSI circuit which
implements integrate-and-fire spiking neural networks with spike-timing
dependent synaptic plasticity (STDP). The designed VLSI chip includes
25 neurons and 600 synapse circuits with symmetric all-to-all connection
STDP. Using the fabricated VLSI chip, we implement a Hopfield-type
feedback network, and demonstrate its associative memory operation.
In our chip, analog information is represented by the relative timing of
spike firing events. Symmetric STDP provides an auto-correlation learn-
ing function depending on relative timing between spikes consisting of
a learning pattern. Each learning and test pattern consists of 20 spike
pulses each of which has a relative delay corresponding to a gray-scale
pixel intensity. The chip has successfully associated from an input pat-
tern the most similar learning pattern.

Keywords: VLSI, spiking neural network, STDP, associative memory.

1 Introduction

Spiking neuron models, which express analog information by the timing of neu-
ronal spike firing, attract a lot of attention with expectation of their higher
information processing ability [2,3]. From the viewpoint of VLSI implementa-
tion, spiking neurons output binary values in the voltage or current domain and
represent analog values in the time domain. Therefore, spiking neural network
systems can easily be connected to the existing digital systems than the conven-
tional analog neural network systems that output analog values in the voltage
or current domain.

Some silicon circuits and VLSI chip for spiking neurons with asymmetric
spike-timing dependent synaptic plasticity (STDP) were reported [5,1]. We have
demonstrated that the integrate-and-fire (IF) neuron model can be applied to the
Hopfield network, which is a typical feedback network model, and that it has a
retrieval property as associative memory [6]. Furthermore, we proposed an analog
CMOS circuit for IF neurons with STDP, and demonstrated memorization by
patterns using symmetric STDP and retrieval of the pattern in a Hopfield-type
feedback spiking neural network [7].

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 381–388, 2011.
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In this paper, we describe our designed VLSI chip of spiking neural networks
with STDP based on the circuit developed in our previous work, and show
measurement results about associative memory operation using the fabricated
VLSI chips. The measurement results demonstrate that the VLSI chip realizes
the symmetric STDP functions and spiking feedback network operation with
learning by STDP.

2 VLSI Spiking Neural Network

2.1 Spiking Feedback Network Model with GEU

In the IF neuron model, if the internal state value does not exceed the threshold,
the neuron does not generate spikes. However, in order to apply the spiking
neuron model to feed-back networks with continuous states, spikes have to be
generated pseudo-periodically to express an analog value by spike timing. To
achieve this operation, we have proposed a global excitatory unit (GEU) [6].

GEU receives spikes from all neurons via excitatory synapses, and it is acti-
vated by the earliest input. The activated GEU gives a continuous level stimulus
to all neurons, therefore even a neuron at the resting state can fire, and a neuron
with stronger inhibition generates a spike with later timing.

2.2 CMOS Neuron and Synapses Circuits

Our CMOS spiking neuron circuit and its timing diagram are shown in Fig. 1.
The CMOS spiking neuron circuit consists of a synapse part and a neuron part. If
spike pulse ii is fed into the synapse part from other neurons, a PSP control signal
(psp cont) is generated by a delay-and-inversion circuit (D&I ) and a NOR gate.
While psp cont is “High”, transconductance amplifier (gm-amp) A1 turns on
and charges or discharges capacitor Cint in the neuron part. Thus, the capacitor
terminal voltage Vn, which is the internal state of the neuron, is changed, and
a PSP is generated. The spatiotemporal summation of PSPs by input spikes
is performed at this capacitor. The current from the synapse is determined by
Vwij . The gm-amp A1 generates a current in proportion to Vwij − Vref . When
Vwij − Vref > 0, the circuit operates as excitatory synapse, and vice versa.

In the neuron part, the internal state potential represented by Vn returns to
resting potential Vini by leak resistance RL connected in parallel with capacitor
Cint, after charged or discharged by the current sources of the synapse parts.
A comparator (CMP) compares Vn with threshold voltage Vth. If Vn exceeds
threshold voltage Vth, a spike is generated. At the same time, the threshold
voltage increases to generate a refractory period. In this circuits, the transmission
delay is equal to the refractory period.

2.3 Symmetric STDP Circuit

Figure 2(a) and (b) show our CMOS symmetric STDP circuit and its timing
diagram, respectively. The circuit consists of a spike detection part (SD) and a
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Fig. 1. Spiking neuron circuit: (a) synapse part (PSP generation), (b) neuron part and
(c) timing diagram

weight update part (WU), as shown in Fig. 2(a). Since the circuit operation is
symmetric with respect to the order of input timing of spikes pre and post, the
circuit works only with the absolute time difference of pre and post. To achieve
this operation, SD inverts the order of input spikes or forwards them depending
on which of them arrives first.

In SD, the state value of the toggle flip-flop (T-FF) is changed twice by input
spikes pre and post. Changes in the state value are detected by a D&I and a
NOR gate. As a result, an earlier spike pulse is fed into in1 of WU, and the
other is fed into in2. If pre and post are given at the same time, the state value
of the T-FF changes once. In that case, the T-FF is reset by an AND gate, a
D&I and a NOR gate.

Weight update part WU updates the synaptic weight represented by Vwij

based on the time difference between input spikes in1 and in2. Generation of an
STDP function is achieved using a current sampling scheme [4]; the first spike
in1 triggers generation of a nonlinear waveform VNW (t) that has the same shape
as the STDP function, and the second spike in2 samples the current generated
using VNW (t). The detail of the operation is as follows. When the input spike in1
is fed into WU from SD, ramp signal VA(t) is generated by charging capacitance
CA with a constant current by MOSFET MA. At the same time, control signal
VSW , which is generated by the D&I, turns to “High”. Ramp signal VA(t) is
transformed to a nonlinear waveform by MOSFET MB and capacitor CB . After
VSW turns to “Low”, the capacitor terminal voltage VNW returns to reference
voltage Vref by resistor R. Thus, the shape of VNW (t) is the same as the half
part of the symmetric STDP function, as shown in Fig. 2(b). The gm-amp A2
updates synaptic weight capacitor voltage Vwij with current i(t) generated by
Gm(VNW (t) − Vref ), where Gm is the transconductance; ΔVwij is given by the
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Fig. 2. Symmetric STDP circuit: (a) circuit, and (b) timing diagram, and (c) measure-
ment results of symmetric STDP function with a test chip

integral of i(t) during the time span [ts, ts+Δt]. Symmetric STDP characteristics
measured using a test chip are shown in Fig. 2(c) [7].

3 VLSI Chip Design and Measurement Results

3.1 VLSI Chip Architecture and Design

We designed a CMOS VLSI chip by using TSMC 0.25 μm (1-Poly, 5-Metal)
CMOS technology. The chip includes 25 neuron circuits and 600 synapse circuits
with symmetric STDP function and those with asymmetric STDP, which are
not described in this paper. Synapse circuits with symmetric STDP comprises
symmetric all-to-all connections. The chip architecture is shown in Fig. 3, and
the chip photograph and specification are shown in Fig. 4.

3.2 Measurement Condition

We measured the output response of the Hopfield-type feedback network con-
sisting of 20 neurons trained with two learning patterns. Data is expressed by
the relative timing of asynchronous spike firing events. we define a grey scale



A VLSI Spiking Neural Network and Associative Memory Operation 385

GEU

IFN

IFN

IFN

IFN

SYM

SYM

SYM

SYM

SYM SYM

GEU
-Syn

ext_in

ext_in

ext_in

ext_in

ext_in

GEU
-Syn

GEU
-Syn

GEU
-Syn

in1

in2

in3

in4

inGEU

out1

out2

out3

out4

outGEU

Column selector (shift register)

Fig. 3. Chip architecture: neuron (IFN), synapse with symmetric STDP (SYM),
synapse with asymmetric STDP (ASYM), and GEU

4
.7
2
m
m

5.25mm
Specification

Technology

Number of neurons

Number of synapses with sym. STDP

Number of synapses with asym. STDP

Operation period

Power consumption*

Neuron part

Synapse (sym) part

Synpase (asym) part

TSMC 0.25 μm

25

600

300

200 ns

280 μW/unit

250 μW/unit

100 μW/unit

*HSPICE simulation

Fig. 4. Chip photograph and specification

timing from 0 to 100 ns, where 0 ns represent black and 100 ns white color, as
shown in Fig. 5.

Our network was trained with the two learning (memorized) patterns shown
in Fig. 5. As a similarity measure between patterns, we used the Manhattan
distance DM , which is defined by:

DM =
N∑

i=1

|Ai −Bi| (1)

where Ai and Bi are elements of the respective patterns, and N is the number
of elements. Ai (or Bi) is 0 for a black pixel and 1 for white. A value of DM = 0
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Fig. 5. Patterns for associative memory experiment: two learning (memorized) patterns
and three input patterns

Table 1. Manhattan distances between memorized and input patterns used in the
experiment

Manhattan distance input #A input #B input #C

memorized #1 (original) 3 (min.) 7.5 (min.) 10
memorized #2 (original) 10.8 11.6 16
memorized #1 (equivalent) 14.2 12.6 10
memorized #2 (equivalent) 9.4 10 4 (min.)

means that the two patterns are identical, while a large value means that both
patterns are very different. Note that the pattern reversed with black and white is
considered as the equivalent with the original pattern in our associative memory.

The input patterns used in recall experiments are also shown in Fig. 5, and
the Manhattan distances from the memorized patterns are shown in Table 1.
The system tries to converge to the image with the minimum DM .

3.3 Experiment Results

The association results are shown in Fig. 6. In all three cases, the results are
the same as the theoretical results predicted. For input pattern #A (DM = 3 to
memorized pattern #1), as shown in Fig. 6(a), the circuit successfully converges
to the memorized pattern #1. The elapsed time to find the first pattern was
around 400 ns.

For input pattern #B (DM = 7.5 to memorized pattern #1), as shown in
Fig. 6(b), the circuit converges to the memorized pattern #2. In this case, since
the input pattern is more different from that in the first case, the convergence
time is longer, 1.8 μs.

For input pattern #C (DM = 4 to memorized pattern #2), as shown in
Fig. 6(c), the circuit converges to the memorized pattern #2. Similar to the first
case, since DM is small, the convergence time is also short.
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Fig. 6. Experimental results of recall operation in associative memory using fabricated
chip: input pattern is #A (a), #B (b), and #C (c). Rectangles indicate convergence
timing).
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4 Conclusion

We designed, fabricated and tested a VLSI spiking neural network with symmet-
ric STDP function. The measurement results for associative memory operation
in a Hopfield-type feedback network demonstrated that our VLSI chip works
successfully. Our chip learned two patterns by symmetric STDP, and recalled
the closest memorized pattern for some input patterns, as the theory predicts
using Manhattan distance. Our spiking associative memory system operates in
high speed; it requires only two or three iterations for input patterns near a
memorized pattern.
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Abstract. The higher order connections network is useful to solve the
combinatorial optimization problems, however, the network topology is
complicated so that implementation on hardware is not easy. To imple-
ment the higher order connections more simply, we introduce the stochas-
tic logic architecture to the discrete hysteresis network with the higher
order connections. The proposed network can solve a Traveling Salesman
Problems as the conventional network.

Keywords: Higher order connections, Hysteresis neural network,
Quartic form, Energy function, Traveling Salesman Problems.

1 Introduction

The combinatorial optimization problems such as the Traveling Salesman Prob-
lems (TSPs) or Quartic Assignment Problems (QAPs) include a lot of applica-
tions, for example, the packet routing or delivery planning. However, it is not
easy to obtain useful solutions of these problems in real time by using con-
ventional computers. As one of the solver of these problems, we have proposed
the method to use the Inverse function Delayed network with the Higher order
synaptic Connections (HC-ID network). The ID network is a neural network
that has a negative resistance effect in its dynamics, and the output space of
the network has a region of the negative resistance effect. The network state is
updated along the gradient of the quadratic form energy function if the state
is outside the region; otherwise the state is not updated along the gradient of
the energy function. Hence we can destabilize the undesirable states through
appropriate setting of the negative resistance [1].

In the HC-ID network, we expand the energy function to the quartic form
by introducing the higher order connections. This network present a solution of
the TSPs or QAPs, in which cost at a stationary stable stateis smaller than a
prearranged cost [2]. Hence this method is a powerful solver of the combinatorial
optimization problems, and we aim to implement the HC-ID network on chip to
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obtain the solution in real time. However, it is not easy to implement the HC-
ID network directly because the higher order connections are more complicated
compare to the conventional synaptic connections.

In this paper, we introduce the stochastic logic to the higher order connections
network. The stochastic logic is common technique to code analog values in the
pulse stream. It performs the product-sum operation by using basic logic gates,
then the higher order connections may be implemented more simply by intro-
ducing the logic. The stochastic logic has been introduced to the neural network
with linear connections[3], however, it has not yet to the network with the higher
order connections. We propose a network with the higher order connections to
be operated by using the stochastic logic and investigate the performance of the
proposed network to solve the TSPs through numerical experiments.

2 Solving Combinatorial Optimization Problems by the
Higher Order Connections Network

The discrete hysteresis network with the higher order connection is derived
from the HC-ID network by introducing the binary outputs and discrete time
update[4]. This network can also solve the combinatorial optimization problems.
In this section, we describe the discrete hysteresis network with the quartic form
energy function applying it to solve the combinatorial optimization problems.

2.1 Discrete Hysteresis Network with Higher Order Connections

The discrete hysteresis network with the 3rd order connections is

δi =
1
τu

(
N∑

j=1

N∑
k=1

N∑
l=1

wijklXj(t)Xk(t)Xl(t)

+
N∑

j=1

N∑
k=1

wijkXj(t)Xk(t) +
N∑

j=1

wijXj(t) + hi

)
, (1)

Ui(t+ 1) =

⎧⎪⎨⎪⎩
Ui(t) if (Xi(t) = 0 and Ui(t) < 0 and δi < 0)

or (Xi(t) = 1 and Ui(t) > 0 and δi > 0)
Ui(t) + δi otherwise

, (2)

Xi(t+ 1) =

⎧⎪⎨⎪⎩
0 if Ui(t+ 1) < −α
1 if Ui(t+ 1) > α

Xi(t) otherwise
, (3)

where N is the number of neurons, Ui(t) and Xi(t) are the internal state and
output of a neuron i at time t, respectively, and hi is bias of a neuron i. wijk··· is
the synaptic weight from neurons j, k, · · · to a neuron i. τu is the time constant.
The parameter α is positive constraint which controls the depth of hysteresis,
and if α = 0 this network behaves as well as the discrete Hopfield network.
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Because the updating of u is restricted as shown in (2), the internal states do
not diverge.

The energy function of this network is

EHC-Hys

(
X(t)
)

=− 1
4τu

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

wijklXi(t)Xj(t)Xk(t)Xl(t)

− 1
3τu

N∑
i=1

N∑
j=1

N∑
k=1

wijkXi(t)Xj(t)Xk(t)

− 1
2τu

N∑
i=1

N∑
j=1

wijXi(t)Xj(t)− 1
τu

N∑
i=1

hiXi(t), (4)

where X(t) is the network state at time t. This energy function is 4th order
(quartic) form function for the 3rd order connections.

2.2 Quartic Form Energy Function for Solving Combinatorial
Optimization Problems

Let us consider an n × n neuron unit matrix. The quartic energy functions for
various combinatorial optimization problems are designed as

ECH

(
X
)

=
A

2

n∑
i=1

( n∑
x=1

Xxi − 1
)2

+
A

2

n∑
x=1

( n∑
i=1

Xxi − 1
)2

+
B

2

n∑
x=1

n∑
i=1

n∑
y=1

n∑
j=1

bxi,yjXxiXyj(1−XxiXyj)

+
C

2

( n∑
x=1

n∑
i=1

n∑
y=1

n∑
j=1

bxi,yjXxiXyj

)2

, (5)

where A, B and C are positive coefficients and Xxi means the output of neuron
unit (x, i). bxi,yj ∈ b[n2×n2] is a cost value when the neurons (x, i) and (y, j) fire
(Xxi ∼ 1, Xyj ∼ 1). The first, second and third terms of (5) denote constraint
conditions. The first and second terms are constraints that take the minimum
value 0 when only one neuron fires on each row and column. The third term will
be zero when all outputs of the network are zero or one. If these constraints are
satisfied, the forth term becomes the square value of the solution cost indicated
by the network state.

When this energy function is applied to discrete hysteresis network, the net-
work stability is denoted as

B

4C

{
> csol(x) then the state x is stable
< csol(x) then the state x is unstable

, (6)

where csol(x) is the cost value of the network state x. (6) indicates that we can
obtain only the solutions in which costs are less than B/4C at the stationary
stable state.



392 T. Sota et al.

X

R

+
-

EN

UD

Updown counter

sign(   )X

Comparator

maxX
aN

X
~

Fig. 1. Stochastic coding and decoding circuit

3 Introducing Stochastic Logic

The stochastic logic is a digital technique that realize pseudo-analog operations
using stochastically coded pulse sequences[3]. The neuron hardware using the
stochastic logic has high reliability thanks to digital circuits, and decreases the
area consumption. In this section we introduce the stochastic logic to the discrete
hysteresis network with the higher order connections.

3.1 Stochastic Logic

Figure 1 shows the stochastic coding and decoding circuits, whereX is an analog
value to be coded, Xmax is the maximum value of X , and R is a random number
which ranges [0 : Xmax] uniformly. X and R are the inputs for the comparator,
which outputs are 1 if X > R, or 0 else. The expectation and the variance of
the accumulation of these pulse sequences are

E[X̃ ] =
Xmax

Na
·NaPf = X, (7)

V [X̃ ] =
(
Xmax

Na

)2

NaPf

(
1− Pf

)
=

1
Na

X
(
Xmax −X

)
, (8)

where Na is the number of accumulation, Pf is the firing probability, and X̃ is
an accumulated value normalized by Xmax/Na. (8) implies that Na controls the
quantity of the coding noise.

3.2 Modification of Update Rules

The stochastic logic generates a stochastic noise in the product-sum operations,
so that the update restriction of the internal state also has to take into account
the effect of the noise. (2) is modified for the network with the stochastic logic
as

Ui(t+ 1) =

⎧⎪⎨⎪⎩
Ui(t) if (Xi(t) = 0 and Ui(t) < 0 and δi < −f)

or (Xi(t) = 1 and Ui(t) > 0 and δi > f)
Ui(t) + δi otherwise

, (9)

where f means the permissible range. Because the distribution of the pulses

follows the Gaussian distribution, we set f = max
(√

V [X̃]
)

= Wmax/(2
√
Na).
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Fig. 2. Network state dependency on the parameter B/4C of the conventional network
(a) and the proposed network (b). The parameter sets are A = 3.04 and C = 0.10, and
B is adjusted along the value of B/4C. The accumulate time Na is 2.7 × 105 in (b).
‘OSC’ denotes a oscillation state.

4 Numerical Experiments Results

In this section we show the performance of the proposed network to solve the
TSPs through numerical experiments. In all experiments, α = 0, τu = 1, and the
parameter A of the energy function is set to satisfy the constraint conditions[2].
The solved problems are a 4-city TSP and 6-city TSP.

4.1 Comparing with Conventional Network

First, we compare the proposed network with the conventional network by solv-
ing the 4-TSP. Figure 2 shows the appearance rate of the network state depend-
ing on the parameter B/4C. The colors of bars in Fig. 2 denote the network
states. The oscillation state means that the network state does not become sta-
ble state without showing any solution, and the others are the stationary stable
states. The proposed network can search the solutions similar to the conventional
network if the number of accumulation is enough large.

4.2 Effect of the Number of Accumulation

Second, we investigate the relation between the number of accumulation Na

and the appearance states by solving the 6-TSP. The result is shown in Fig. 3.
The noise caused by the stochastic pulse coding increases with decreasing Na,
and this noise destabilize the solution states in order of the cost from largest.
When Na is set appropriately, the network presents only the optimal solutions
at stationary stable state even though the parameter B/4C is not the optimal
value. Hence for appropriate Na the proposed network indicates better solutions
compared to the conventional network. However, the stochastic noise destabilizes
even the optimal solutions if Na is too small.
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Fig. 3. Network state dependency on the accumulate time Na. The parameter sets are
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5 Conclusion

The network with the higher order connections is useful to solve the combina-
torial optimization problems. However, the network topology is so complicated
that implementation on hardware is not easy. We introduce the stochastic logic
architecture to the discrete hysteresis network with the higher order connections
and show the proposed network can present the solutions accordingly.

It is the future work to implement the network with the higher order connec-
tions by using the stochastic logic based on the result shown in this paper.

References

1. Hayakawa, Y., Nakajima, K.: Design of the inverse function delayed neural network
for solving combinatorial optimization problems. IEEE Trans. Neural Netw. 21(2),
224–237 (2010)

2. Sota, T., Hayakawa, Y., Sato, S., Nakajima, K.: An application of higher order con-
nection to inverse function delayed network. Nonlinear Theory and Its Applications,
IEICE 2(2), 180–197 (2011)

3. Kondo, Y., Sawada, Y.: Functional abilities of a stochastic logic nerual network.
IEEE Trans. Neural Netw. 3(3), 434–443 (1992)

4. Sota, T., Hayakawa, Y., Sato, S., Nakajima, K.: Discrete higher order inverse
function delayed network. In: Proc. NOLTA 2010, pp. 615–618 (2010)



Dynamic Response Behaviors of a Generalized

Asynchronous Digital Spiking Neuron Model

Takashi Matsubara and Hiroyuki Torikai

Department of Systems Innovation, Graduate School of Engineering Science, Osaka
University. 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

matubara@hopf.sys.es.osaka-u.ac.jp, torikai@sys.es.osaka-u.ac.jp

http://ushiolab.sys.es.osaka-u.ac.jp/

Abstract. A generalized asynchronous digital spiking neuron model
that can be implemented by an asynchronous sequential logic circuit
is presented. The presented model is the most generalized version of
asynchronous sequential logic circuit based neurons, where the sensitiv-
ity of its vector field to a stimulation input is generalized. It is clarified
that, the generalization enables the model to exhibit various nonlinear
responses characteristics that is classified into four groups. In addition,
it is clarified that the generalization enables the model to exhibit typi-
cal dynamic response behaviors having prominent features observed in
biological and model neurons.

Keywords: Neuron model, Sequential logic circuit, Cellular automaton,
Nonlinear dynamics.

1 Introduction

Various spiking neuron models suited for electronic circuit implementations have
been proposed so far, where there exist two major approaches: (i) an analog ap-
proach that implements a nonlinear ordinary differential equation (ab. ODE) in
an analog nonlinear circuit [1,2,3,4], and (ii) a digital approach that implements
a numerical integration in a digital processor [5,6,7]. Recently, an alternative
hardware-oriented neuron modeling approach has been proposed, where a non-
linear dynamics of a neuron is modeled by an asynchronous cellular automaton
that is implemented by an asynchronous sequential logic circuit [8,9,10,11]. In
this paper, a generalized asynchronous digital spiking neuron model (ab. GDN)
is presented, where the sensitivity of its vector field to a stimulation input is
generalized. As illustrated in Fig. 1, the GDN consists of registers, logic gates,
and reconfigurable wires, where the pattern of the wires is a control parame-
ter that determines the nonlinear dynamics of the GDN. It is clarified that the
generalization enables the GDN to realize the following novel nonlinear response
characteristics and dynamic response behaviors. (1) According to [12], nonlinear
response characteristics of biological and model neurons can be classified into
four groups depending on the two features: existence of bistability and existence
of subthreshold oscillation. The GDN can exhibit these features and reproduce

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 395–404, 2011.
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Fig. 1. Generalized asynchronous digital spiking neuron model (ab. GDN)

all the four groups of nonlinear response characteristics thanks to the generaliza-
tion in this paper. (2) According to [13,12], biological and model neurons exhibit
dynamic response behaviors having prominent features that can be classified into
fifteen excitatory types and five inhibitory types. The GDN can exhibit all the
five types of inhibitory dynamic response behaviors thanks to the generalization
in this paper, whereas the previous asynchronous sequential logic circuit based
neurons can exhibit only excitatory responses [8,9,10,11].

2 Generalized Asynchronous Digital Spiking Neuron

In this section, a generalized asynchronous digital spiking neuron model (ab.
GDN), whose diagram is shown in Fig. 1, is presented. The GDN has the fol-
lowing four registers. (1) The membrane register is an N -bit bi-directional shift
register having an integer state V ∈ ZN ≡ {0, · · · , N − 1} by using the one-
hot coding manner, where “≡” denotes “is defined by”. From a neuron model
viewpoint, the state V can be regarded as a membrane potential. (2) The re-
covery register is an M -bit bi-directional shift register having an integer state
U ∈ ZM ≡ {0, · · · ,M − 1} by using the one-hot coding manner. From a
neuron model viewpoint, the state U can be regarded as a recovery variable.
(3) The membrane velocity counter is a K-bit register having an integer state
P ∈ ZK ≡ {0, · · · ,K − 1} by using the thermometer coding manner. The state
P controls a velocity of the membrane potential V . (4) The recovery velocity
counter is a J-bit register having an integer state Q ∈ ZJ ≡ {0, · · · , J − 1}
by using the thermometer coding manner. The state Q controls a velocity of
the recovery variable U . The states V , U , P , and Q are clamped to the range
[0, N − 1], [0,M − 1], [0,K − 1], and [0, J − 1], respectively. As shown in Fig.
1, the registers and the counters are connected to each other via the following
two memoryless units. (i) The vector field unit consists of logic gates and recon-
figurable wires. This unit determines the characteristics of a vector field of the
states (V, U) as its name implies. (ii) The reset value unit consists of logic gates
and reconfigurable wires. From a neuron model viewpoint, this unit determines



A Generalized Asynchronous Digital Spiking Neuron Model 397

0 15

V

0

15

U

U-nullcline

V-nullcline

Orbit

L

β
1

β
2

β
3

β
4

   0

1

C
lk

   0

1

S
tm

   0

15

V

   0

15

U

   0

15

P

   0

15

Q

0 40
   0

1

Y

β
1

β
2

β
3

β
4dn

Fig. 2. A phase plane and state transitions. The nullclines are defined in (6). The bit
lengths of the registers and the counters are N = M = K = J = 16. The parameters
are Γ = (7, 0.3, 0.2, 3, 0.1, 16, 0.5, 0.3, 0) defined in (7). A periodic stimulation input
spike-train Stm(t) with a frequency 0.312 via the synaptic weight W = 1 is applied to
the GDN.

values to which the states (V, U) are reset when the GDN fires, as its name
implies. The GDN accepts a periodic internal clock Clk(t) described by

Clk(t) =

{
1 if t (mod 1) = 0,
0 otherwise,

where t ∈ [0,∞) is a continuous time. In the next subsection A, autonomous be-
haviors of the GDN (i.e., behaviors when no stimulation input spike-train Stm(t)
is applied) are investigated. After that, in the subsection B, non-autonomous be-
haviors of the GDN (i.e., behaviors when a stimulation input spike-train Stm(t)
is applied) are investigated.

2.1 Autonomous Behaviors

Let us begin with defining the following subset L in the state space ZN × ZM

(see also Fig. 2).

L ≡ {(V, U)|V = N − 1, U ∈ ZM} ⊂ ZN × ZM .

From a neuron model viewpoint, L can be regarded as a firing threshold.
First, let us consider the case of (V, U) �∈ L. In this case, the reset value unit

in Fig. 1 does not work and thus it is now excluded from the consideration.
As shown in Fig. 1, the velocity counters accept the internal clock Clk(t) and
signals (sV , sU ) ∈ {0, 1}2 from the vector field unit. Then the internal clock
Clk(t) triggers transitions of the states (P,Q) of the velocity counters as follows.

P (t+) =

⎧⎪⎨⎪⎩
P (t) + 1 if sV (t) = 0, Clk(t) = 1,
0 if sV (t) = 1, Clk(t) = 1,
P (t) otherwise,

Q(t+) =

⎧⎪⎨⎪⎩
Q(t) + 1 if sU (t) = 0, Clk(t) = 1,
0 if sU (t) = 1, Clk(t) = 1,
Q(t) otherwise,

(1)
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where t+ denotes limε→+0(t + ε). As shown in Fig. 1, the two registers accept
signals (δV , δU ) ∈ {−1, 0, 1}2 from the vector field unit. The signals (δV , δU )
trigger transitions of the states (V, U) of the two registers as follows.

V (t+) = V (t) + δV (t), U(t+) = U(t) + δU (t). (2)

Inspired by Izhikevich’s neuron model [14,12], the following design procedure
of the signals (sV , sU , δV , δU ) is proposed that enable the GDN to exhibit var-
ious neuron-like nonlinear behaviors. The following vector field functions are
prepared.

F(V, U) = N(γ1 (V/N − γ2)
2 + γ3 − U/M)/λ,

G(V, U) = μM(γ4 (V/N − γ2) + (γ3 + γ5)− U/M)/λ,

where (γ1, γ2, γ3, γ4, γ5, λ, μ) are parameters. From a neuron model viewpoint,
the functions (F(V, U),G(V, U)) can be regarded as vector fields, as their names
imply. Using the vector field functions (F(V, U),G(V, U)), the signals (sV , sU )
are generated as follows.

sV =

{
1 if P ≥ Ph(V, U),
0 if otherwise,

sU =

{
1 if Q ≥ Qh(V, U),
0 if otherwise,

where the velocity functions (Ph, Qh) are designed as follows.

Ph(V, U) = 	|F−1(V, U)|
−1, Qh(V, U) = 	|G−1(V, U)|
−1,

where the function 	x
 gives the integer part of a real number x, and Ph(V, U),
Qh(V, U) are clamped to the range [0,K−1], [0, J−1], respectively. The signals
(δV , δU ) are generated as follows.

δV =

{
sgn(F(V, U)) if P ≥ Ph(V, U), Clk(t) = 1,
0 otherwise,

δU =

{
sgn(G(V, U)) if Q ≥ Qh(V, U), Clk(t) = 1,
0 otherwise .

where the signum function sgn(x) gives the sign of a real number x.
Second, let us consider the case of (V, U) ∈ L. In this case, the reset value

unit in Fig. 1 plays an important role in the dynamics and thus it is now focused
on. As shown in Fig. 1, the reset value unit detects the situation (V, U) ∈ L and
generates two integer signals (A,B) ∈ ZN × ZM by using the one-hot coding
manners, where the signals (A,B) are called reset values. If the states (V, U)
enter into the firing threshold L, the following reset occurs.

(V (t+), U(t+), P (t+), Q(t+)) ={
(A,B, 0, 0) if (V, U) ∈ L, Clk(t) = 1,
(V (t), U(t), P (t), Q(t)) otherwise .

(3)
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Inspired by Izhikevich’s neuron model [14,12], the following state-dependent reset
values (A,B(U)) are presented that enable the GDN to exhibit various neuron-
like nonlinear behaviors.

A = 	ρ1N
, B(U) = U + 	ρ2M
,
where the reset value unit accepts the recovery variable U as shown in Fig.
1, (ρ1, ρ2) are parameters, and A,B(U) are clamped to the range [0, N − 1],
[0,M − 1], respectively. When the firing reset occurs, the GDN generates the
following firing spike-train Y (t).

Y (t) =

{
1 if (V (t), U(t)) ∈ L, Clk(t) = 1,
0 otherwise .

(4)

2.2 Non-autonomous Behaviors

Let us now apply the following stimulation input spike-train Stm(t) to the GDN.

Stm(t) =

{
W if t = t1, t2, · · · ,
0 otherwise,

where t = t1, t2, · · · are input spike positions and W ∈ {−1, 1} is a parameter.
From a neuron model viewpoint, the stimulation input spike Stm(t) can be
regarded as a stimulation input and W can be regarded as a synaptic weight. A
post-synaptic stimulation spike Stm = W induces a transition of the membrane
potential V as follows.

V (t+) =

{
V (t) +W Stm(t) = W,

V (t) otherwise .
(5)

The stimulation input spike-train Stm(t) accelerates and decelerates the increase
velocity of the membrane potential V , depending on the sign of W . Fig. 2 shows
basic non-autonomous behaviors of the GDN, where

V-nullcline = Border between DV ∈ {−1, 0} and DV = 1,
U-nullcline = Border between DU ∈ {−1, 0} and DU = 1. (6)

As a result, the dynamics of the GDN is described by (1)–(5), and is characterized
by the following parameters.

Γ = (γ1, γ2, γ3, γ4, γ5, λ, μ, ρ1, ρ2). (7)

3 Reproduction of Various Nonlinear Responses
Characteristics and Dynamic Response Behaviors

In this section, it is shown that the GDN can exhibit various nonlinear responses
characteristics and dynamic response behaviors of biological and model neurons.
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Fig. 3. Nonlinear response characteristics (left) and dynamic response behaviors
(right) of the GDN. A solid line (dashed line) denotes the nonlinear response char-
acteristics when the input frequency fS is increased (decreased) from a small value
(a large value). The bit lengths are M = N = K = J = 64. (a) The param-
eters are Γ = (7, 0.3, 0.2, 3, 0.1, 64, 0.5, 0.3, 0) and W = 1. Bistability is observed
between the arrows α1 and α2 and subthreshold oscillation is observed. (b) The
parameters are Γ = (7, 0.3, 0.5,−2.53,−0.05, 64,−0.33, 0.3,−0.04) and W = −1. No
bistability is observed but subthreshold oscillation is observed. (c) The parameters are
Γ = (7, 0.3, 0.2,−0.5, 0.1, 64, 4, 0.37, 0.35) and W = 1. Bistability is observed between
the arrows α3 and α4 but no subthreshold oscillation is observed. (d) The parameters
are Γ = (7, 0.3, 0.2,−0.5, 0.05, 64, 4, 0.25, 0.4) and W = 1. No bistability is observed
and no subthreshold oscillation is observed.
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For simplicity, we focus on the following periodic stimulation input spike-train
Stm(t).

Stm(t) =

{
W if (t+ θ0) (mod f−1

S ) = 0,
0 otherwise,

where fS is an input frequency and θ0 ∈ [0, f−1
S ) is an initial input phase.

3.1 Groups of Nonlinear Response Characteristics

Let us begin with defining the following average firing frequency of the GDN.

fY =
(
limN→∞ 1

N

∑N
n=1 dn

)−1

,

where dn is the n-th inter-spike interval as explained in Fig. 2, fY = 0 implies
a resting state (i.e., no firing spike-train Y (t) is generated), and fY > 0 implies
a spiking state (i.e., a firing spike-train Y (t) is generated). The GDN exhibits
various nonlinear response characteristics (i.e., relations between the stimulation
input fS and the average firing frequency fY ) and dynamic response behaviors
(i.e., waveforms of the membrane potential V ). Concerning them, the following
terms are introduced.

Bistability: In the left figure of Fig. 3(a), when the input frequency fS is in-
creased from a small value (see the solid line), the average firing frequency fY

jumps from zero (corresponding to a resting state) to a positive value (corre-
sponding to a spiking state) at the arrow α1. When the input frequency fS is
decreased from a large value (see the dashed line), the average firing frequency
fY jumps from a positive value to zero at the arrow α2. Then the average firing
frequencies fY = 0 and fY > 0 overlap between the arrows α1 and α2. This
overlap corresponds to a co-existence of a resting state (fY = 0) and a spiking
state (fY > 0), where the GDN exhibits one of the co-existing states depending
on the initial state. This type of co-existing phenomenon is called the bistabil-
ity and is observed in biological and model neurons [13,12]. Bistability is also
observed in the left figure of Fig. 3(c), and is not observed in the left figures of
Figs. 3(b) and (d).

Subthreshold Oscillation: In the right figure of Figs. 3(a), the state V is
oscillating without no firing spike Y = 1 generation after the GDN generates a
firing spike Y = 1 at the arrow τ . This dynamic response behavior is called the
subthreshold oscillation and is observed in biological and model neurons [13,12].
Subthreshold oscillation is also observed in the right figure of Fig. 3(b), and is
not observed in the right figures of Figs. 3(c) and (d).

Based on the two features (i.e., existence of bistability and existence of sub-
threshold oscillation), the nonlinear response characteristics of the GDN are
classified into four groups as follows.
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Existence of subthreshold oscillation
YES NO

YES Fig. 3(a) Fig. 3(c)
Existence of (subcritical Hopf bif.) (saddle-node of invariant circle bif.)
Bistability NO Fig. 3(b) Fig. 3(d)

(supercritical Hopf bif.) (saddle-node on invariant circle bif.)

As shown in the above table, the GDN can reproduce all the possible four types of
nonlinear response characteristics and related bifurcations, where these nonlinear
response characteristics are observed also in biological and model neurons, and
fundamental relations between the nonlinear response characteristics and the
bifurcations are investigated in [12].

3.2 Inhibition Induced Dynamic Response Behaviors

According to [13,12], biological and model neurons typically exhibit dynamic
response behaviors that can be classified into fifteen excitatory types and five
inhibitory types as shown in Fig. 4. It has been shown so far that the asyn-
chronous digital spiking neuron models [11] can exhibit all the fifteen excitatory
dynamic response behaviors. Thanks to the generalization in this paper, the
GDN can reproduce all the remaining five inhibitory dynamic response behav-
iors as shown in Figs. 4 and 5.

Inhibitory dynamic response behavior
(a) Rebound spike (b) Rebound bursting (c) Threshold variability
(d) Inhibition-induced spiking (e) Inhibition-induced bursting

Excitatory dynamic response behavior
(f) Tonic spiking (g) Phasic spiking (h) Tonic bursting
(i) Phasic bursting (j) Mixed mode (k) Spike frequency adaptation
(l) Class 1 excitable (m) Class 2 excitable (n) Spike latency
(o) Subthreshold oscillation (p) Resonator (q) Integrator
(r) Bistability (s) Depolarizing after-potential (t) Accommodation

Inhibitory Excitatory dynamic response behavior
Neuron model (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r) (s) (t)

Izhikevich [12] + + + + + + + + + + + + + + + + + + + +
Hodgkin Huxley [15] + + + + + + + + + + + + + + + + +

RDN [10] - - - - - + · + · + + · + + · + + · + -
ADN [11] - - - - - + + + + + + + + + + + + + + +

GDN [this paper] + + + + + + + + + + + + + + + + + + + +

Fig. 4. Five inhibitory dynamic response behaviors and fifteen excitatory dynamic
response behaviors. The lowest table summarizes reproduction abilities of dynamic
response behaviors by typical neuron models and our models, where “+” denotes “re-
producible”, “-” denotes “not reproducible”, and “·” denotes “partially reproducible”.
Each empty square denotes that sufficient parameter and initial value conditions are
unknown but the model satisfies necessary conditions in principle [13].
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Fig. 5. Dynamic response behaviors of the GDN (each upper figure), where the post-
synaptic stimulation to the GDN is defined I = fS × W , and the Izhikevich’s neuron
model in [13] (each lower figure). The bit lengths of the GDN are M = N = K =
J = 64. The parameters Γ of the GDN and the heights of the post-synaptic stim-
ulation I are as the followings. (a)Γ = (7, 0.3, 0.2, 3,−0.1, 64, 0.5, 0.3, 0), I = −0.8.
(b)Γ = (7, 0.3, 0.2, 3,−0.1, 64, 0.5, 0.48,−0.42),I = −0.8. (c)Γ = (7, 0.3, 0.2, 3, 0.1,
64, 0.5, 0.3, 0), I = 0.2,−0.5. (d)Γ = (7, 0.3, 0.5,−5,−0.2,64,−0.2, 0.3, 0), I = −0.3.
(e)Γ = (7, 0.3, 0.5,−5, 0,64,−0.1, 0.55,−0.1), I = −0.3. The parameter values of Izhike-
vich’s neuron model can be found in [13].

4 Conclusion

The generalized asynchronous digital spiking neuron model (ab. GDN) whose dy-
namics is described by the asynchronous cellular automaton is proposed, where
the sensitivity of its vector field to the stimulation input is generalized. It has
been shown that, thanks to the generalization in this paper, the GDN can exhibit
the combinations of the two features: existence of bistability and existence of sub-
threshold oscillation that classify nonlinear response characteristics into the four
groups. It has been also shown that the GDN can exhibit all the five types of
inhibitory dynamic response behaviors. Thus the GDN can exhibit all the twenty
types of dynamic response behaviors having prominent features. These properties
will be keys to develop applications of the GDN such as neural prosthesis chip
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and artificial pulsed neural network processor. Future problems include: clarifi-
cation of relationships between the parameters of the GDN and experimentally
measurable parameters of biological neurons, development of an on-chip learn-
ing algorithm of the GDN, and development of a neuroscience-aware network
of GDNs. The authors would like to thank Professor Toshimitsu Ushio of Os-
aka University for valuable discussions. This work is partially supported by the
Center of Excellence for Founding Ambient Information Society Infrastructure,
Osaka University, Japan, and KAKENHI (21700253).
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Abstract. An artificial spiking neuron model which has a generalized
piece-wise constant (ab. PWC) vector field and state-dependent reset
is proposed. Advantages of the PWC vector field include simplicity for
hardware implementation, easiness to tune parameters, suitability for
theoretical analysis based on theories on discontinuous ordinary differ-
ential equations (ab. ODEs). Using the analysis techniques of discontin-
uous ODEs, it is shown that the model can reproduce 6 types of the
typical neuron-like responses (neurocomputational properties), the oc-
currence mechanisms of which have qualitative similarities to those of
Izhikevich’s simple neuron model.

Keywords: Spiking neuron model, Neuron-like responses, Bifurcation,
Piece-wise constant vector field, VLSI neuron.

1 Introduction

Neurons exhibit various responses depending on stimulation inputs and parame-
ter values. According to [1,2], 20 types of typical responses of neurons are called
the most fundamental neuroccomputational properties. Many mathematical mod-
els (e.g., Izhikevich’s simple neuronmodel [1,2,3] and Hodgkin-Huxlay’s model
[4]) have been studied intensively, where Izhikevich’s simple neuron model can
reproduce all the 20 types of typical responses of neurons. However, since typ-
ical control parameters of these mathematical neuron models are nonlinearities
of ordinary differential equations (ab. ODEs), straightforward analog circuit im-
plementations of these models [5,6,7,8,9,10,11,12] are sometimes cumbersome.
Hence, as a hardware-oriented neuron model, we have proposed a piece-wise
constant (ab. PWC) analog spiking neuron model which can be implemented
by a simple electronic circuit [13]. The dynamics of the model is described by
an ODE with PWC characteristics together with a state-dependent reset. It
has been shown that the PWC analog spiking neuron model can reproduce a
variety of excitatory responses of neurons [13,14]. In this paper, we propose a
generalized PWC analog spiking neuron model. Thanks to the generalization,
the model in this paper can reproduce typical neuron-like responses (i.e., mixed

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 405–415, 2011.
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mode, spike frequency adaptation, spike latency, rebound spike, rebound burst,
depolarizing after-potential) that cannot be reproduced by the original model,
where occurrence mechanisms of these responses have qualitative similarities
to those of Izhikevich’s simple neuron model [1,2,3]. Significances of this paper
include the following points. (1) Advantages of the PWC vector field include:
easy to implement by a compact electronic circuit, easy to tune parameter val-
ues, and suitability for theoretical analysis based on theories on discontinuous
ODEs [15]. (2) The neural prosthesis is a recent hot topic, where a typical ap-
proach is to prosthesize a damaged part of neural systems by a digital processor
[16,17]. On the other hand, sensory neurons should be prosthesized by analog
electronic circuits since sensory neurons accept analog signals and it is not so
efficient to utilize digital processor neurons together with analog-to-digital con-
verters to implement them. Due to the advantages in the previous point (1), the
proposed model will be a good (compact and tunable) candidate for a sensory
neuron prosthesis as well as a hardware pulse-coupled neural network. (3) The
proposed model can be regarded as a generalized version of a PWC oscillator
in [18]-[20]. However, the oscillator is designed as an abstract chaotic oscillator
and cannot exhibit neuron-like responses.

2 Piecewise Constant Analog Spiking Neuron Model

A generalized version of a piece-wise constant (ab. PWC) analog spiking neuron
model [13] is proposed in Fig.1(a). The model consists of two capacitors, two op-
erational transconductance amplifiers (ab. OTAs), a comparator, a monostable
multivibrator, an analog switch, an amplifier, an adder, and an absolute value
circuit. Fig.1(b) shows the characteristics of the OTA: it outputs a positive (neg-
ative) current if the differential voltage vε = v+−v− is positive (negative). From
a viewpoint of neuron model, the capacitor voltages v and u can be regarded
as an membrane potential and a recovery variable, respectively, as explained in
the table in Fig.1. Also, an input voltage Vin and a constant voltage VT can
be regarded as a stimulation input and a spiking threshold, respectively. The
constant voltage VT is also regarded as a spike cut-off level [1]. If the membrane
potential v reaches the spiking threshold VT , the comparator (COMP) triggers
the monostable multivibrator (MM) to generate a spike Y = E. The spike Y = E
closes the analog switch S for a short time, and then the membrane potential v
is reset to a constant value VB which is called a reset base. From a viewpoint
of neuron model, the spike Y = E is regarded as a firing spike or an action
potential as explained in the table in Fig.1. The dynamics of the PWC analog
spiking neuron model is described by the following equation.{

Cv̇ = Iv(|v|+ Vin − u)
Cu̇ = Iu(av − u)

if v < VT ,

v(t+) = VB if v(t) = VT ,

Iv(vε) =
{
I+
v if vε > 0
−I−v if vε < 0 (1)
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PWC spiking neuron Meaning as a neuron model

Capacitor voltage v Membrane potential

Capacitor voltage u Recovery variable

Input voltage Vin Stimulation input

Constant voltage VT Spiking threshold

Spike-train Y Output firing spike-train

Fig. 1. PWC analog spiking neuron model. (a) Electrical circuit model. COMP and
MM represent the comparator and the monostable multivibrator, respectively. (b)
Characteristics of the operational transconductance amplifier (ab. OTA).

Iu(vε) =
{
I+
u if vε > 0
−I−u if vε < 0

Y (t+) =
{
E if v(t) = VT

−E if v(t) < VT

where ”˙” represents the time derivative, t+ represents limε→+0(t+ ε), I+
v , I−v ,

I+
u , I−u > 0 are assumed, and v(0) ≤ VT is assumed.

In the whole state space

S ≡ {(v, u)|v ≤ VT },

the following two borders are defined by the control voltages of the two OTAs
(see also Fig.2):

v-nullcline : Σv ≡ {(v, u)|u = |v|+ Vin},
u-nullcline : Σu ≡ {(v, u)|u = av},
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where ” ≡ ” represents the ”definition” hereafter. Since the borders play the
same roles as nullclines of a smooth nonlinear ODE, the borders are called
v-nullcline and u-nullcline. The nullclines divide the whole state space S into
at most four subspaces having the following four vector fields:

(v̇, u̇) =

⎧⎪⎪⎨⎪⎪⎩
V ++ ≡ (I+

v /C, I
+
v /C) if u < |v|+ Vin and u < av,

V −+ ≡ (I−v /C, I
+
v /C) if u > |v|+ Vin and u < av,

V +− ≡ (I+
v /C, I

−
v /C) if u < |v|+ Vin and u > av,

V −− ≡ (I−v /C, I
−
v /C) if u > |v|+ Vin and u > av.

According to [13,15], the dynamics of the state (v, u) on the nullclines Σv and Σu

can be categorized into sliding mode and non-sliding mode (we also say ”without
sliding mode”). If the mode is categorized into the sliding one, there exists some
sliding vector fields on the nullclines Σv and Σu. More detailed explanations
of the sliding mode dynamics of the PWC analog spiking neuron model [13] is
omitted in this paper due to the page length limitation. Generalization of the
model in this paper is due to relaxations of the parameter restrictions.

3 Analysis of Typical Neuron-Like Responses

In this section, we study six types of neuron-like responses of the generalized
PWC analog spiking neuron model that cannnot be observed in the original
model [13]. Fig.2 shows time waveforms and phase planes of the PWC analog
spiking neuron model. In Fig.2,

v + Y ′ (2)

is used to show neuron-like waveforms, i.e., spiking wave forms of v + Y ′ are
regarded as action potentials, where

Y ′(t+) =
{
K if v(t) = VT ,
0 if v(t) < VT ,

(3)

and K is a parameter. Fig.3 shows time waveforms and phase planes of Izhike-
vich’s simple neuron model described by the following equation.{

v̇ = 0.04v2 + 5v + 140− u+ I
u̇ = a(bv − u) (4)

if v ≥ 30mV, then
{
v ← c
u← u+ d

We make comparisons between our PWC analog spiking neuron model and
Izhikevich’s simple neuron model as the followings, where the parameters
(C, VT ,K) of the PWC analog spiking neuron model are fixed to (C, VT ,K) =
(0.01, 1.0, 5.0).
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Fig. 2. Neuron-like responses of PWC analog spiking neuron model. (a) Mixed mode.
The parameters are a = 5.0, I+

v = 1.0, I−
v = 1.0, I+

u = 0.7, I−
u = 0.7, VB = 0.6. (b)

Spike frequency adaptation. The parameters are a = 0.5, I+
v = 1.0, I−

v = 0.1,I+
u = 0.2,

I−
u = 0.1, VB = 0.0. (c) Spike latency. The parameters are a = 0.5, I+

v = 0.1, I−
v = 0.1,

I+
u = 0.4, I−

u = 0.1, VB = 0.0. (d) Rebound spike. The parameters are a = 0.5,
I+

v = 1.0, I−
v = 0.1, I+

u = 0.1, I−
u = 0.1, VB = 0.0. (e) Rebound burst. The parameters

are a = 5.0, I+
v = 1.0, I−

v = 1.0, I+
u = 0.3, I−

u = 0.3, VB = 0.6. (f) Depolarizing after-
potential. The parameters are a = −0.5, I+

v = 1.0, I−
v = 0.5, I+

u = 0.21, I−
u = 0.5,

VB = −0.5.
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Fig. 2 (Continued)

A. Mixed Mode: In Fig.2(a), there exists a resting state at first. Next the
stimulation input Vin is increased and the stable equilibrium point of the resting
state loses the stability by a border-collision bifurcation [15]. Then the PWC
analog spikinge neuron model exhibits a tonic spiking [1,2] after generating
bursting spikes (phasic bursting [1,2]). This type of response is called the mixed
mode [1,2]. The above occurrence mechanism of the mixed mode is qualitatively
similar to that of Izhikevich’s simple neuron model shown in Fig.3(a).
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Fig. 3. Neuron-like responses of Izhikevich’s simple neuron model. (a) Mixed mode.
The parameters are a = 0.02, b = 0.2, c = −55, d = 4. (b) Spike frequency adaptation.
The parameters are a = 0.01, b = 0.2, c = −65, d = 8. (c) Spike latency. The parameters
are a = 0.02, b = 0.2, c = −65, d = 6. (d) Rebound spike. The parameters are a = 0.03,
b = 0.25, c = −60, d = 4. (e) Rebound burst. The parameters are a = 0.03, b = 0.25,
c = −52, d = 0. (f) Depolarizing after-potential. The parameters are a =, b = 0.2,
c = −60, d = −20.
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Fig. 3 (Continued)

B. Spike Frequency Adaptation : In Fig.2(b), there exists a resting state
at first. Next the stimulation input Vin is increased and the stable equilibrium
point of the resting state loses the stability by a border-collision bifurcation [15]
(we call this border-collision bifurcation as saddle-node on invariant circle type
border-collision bifurcation [13] because the bifurcation has qualitative similar-
ities to the saddle-node on invariant circle bifurcation [21]). Then the PWC
analog spiking neuron model generates tonic spiking with a decreasing spike
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frequency. This type of response is called the spike frequency adaptation [1,2].
The above occurrence mechanism of the spike frequency adaptation is qualita-
tively similar to that of Izhikevich’s simple neuron model shown in Fig.3(b).

C. Spike Latency: In Fig.2(c), there exists a resting state at first. Next an
excitatory pulse input Vin is injected and the stable equilibrium point of the
resting state loses the stability by a saddle-node on invariant circle type border-
collision bifurcation. Then the PWC analog spiking neuron model generates a
spike that is delayed with respect to the onset of the stimulation input Vin.
This type of response is called the spike latency [1,2]. The above occurrence
mechanism of the spike latency is qualitatively similar to that of Izhikevich’s
simple neuron model shown in Fig.3(c).

D. Rebound Spike: In Fig.2(d), there exists a resting state at first. Next an
inhibitory pulse input Vin is injected and the PWC analog spiking neuron model
generates a single spike. This type of response is called the rebound spike [1,2].
The above occurrence mechanism of the rebound spike is qualitatively similar
to that of Izhikevich’s simple neuron model shown in Fig.3(d).

E. Rebound Burst: In Fig.2(e), there exists a resting state at first. Next an
inhibitory pulse input Vin is injected and the PWC analog spiking neuron model
generates bursting spikes. This type of response is called the rebound burst [1,2].
The above occurrence mechanism of the rebound burst is qualitatively similar
to that of Izhikevich’s simple neuron model shown in Fig.3(e).

F. Depolarizing After-Potential: In Fig.2(f), there exists a resting state at
first. Next an excitatory pulse input Vin is injected and the stable equilibrium
point of the resting state loses the stability by a saddle-node on invariant circle
type border-collision bifurcation.1 Then PWC analog spiking neuron model gen-
erates a single spike and the model shows depolarized after-potential after that.
This type of response is called the depolarizing after-potential [1,2]. The above
occurrence mechanism of the depolarizing after-potential is qualitatively similar
to that of Izhikevich’s simple neuron model shown in Fig.3(f).

Table 1. Reproducabilities of typical neuron-like responses (i.e., neurocomputational
properties [1,2]) by the PWC analog spiking neuron model

Mixed mode Tonic spiking
Spiking frequency adaptation Tonic bursting See [13].
Spike latency This paper. Bistability
Rebound spike (*) Class 1 excitable
Rebound burst Resonator
depolarizing after-potential Integrator
Phasic spiking Threshold variability Unclear so far.
Phasic bursting See [14]. Accommodation
Class 2 excitable Inhibition-induced spiking
Subthreshold oscillation Inhibition-induced bursting

(*) The six neuron-like responses can be reproduced due to the generalization in this paper.
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The 20 Types of Neuron-Like Responses: The PWC analog spiking neuron
model can reproduce a variety of responses as shown in Table 1. The responses
explained as ”unclear so far.” in Table 1 will be investigated in a future paper.

4 Conclusions

We have proposed the generalized piece-wise constant (ab. PWC) analog spik-
ing neuron model. It has been shown that , thanks to the generalization, the
model can reproduce the typical neuron-like responses (i.e., mixed mode, spike
frequency adaptation, spike latency, rebound spike, rebound burst, depolarizing
after-potential), where the occurrence mechanisms of these neuron-like responses
have qualitative similarities to those of Izhikevich’s simple neuron model. Future
problems include: (a) more in-depth theoretical analysis of responses of the model
(i.e., reproduction of unclear neuron-like responses in Table 1), and (b) synthesis
of a network of the PWC analog spiking neuron model and investigation of its
applications.

The authors would like to thank Professor Toshimitsu Ushio of Osaka Uni-
versity for valuable discussions. This work is partially supported by KAKENHI
(21700253) and Center of Excellence for Founding Ambient Information Society
Infrastructure by Osaka University.
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Abstract. This paper proposes a new hardware system for visual selective 
attention, in which a neuromorphic silicon retina chip is used as an input 
camera and a bottom-up saliency map model is implemented by a Field-
Programmable Gate Array (FPGA) device. The proposed system mimics the 
roles of retina cells, V1 cells, and parts of lateral inferior parietal lobe (LIP), 
such as edge extraction, orientation, and selective attention response, 
respectively. The center surround difference and normalization for mimicking 
the roles of on-center and off-surround function in the lateral geniculate nucleus 
(LGN) are implemented by the FPGA. The integrated artificial retina chip with 
the FPGA successfully produces the human-like visual attention function, with 
small computational overhead. In order to apply this system to mobile robotic 
vision, the proposed system aims to low power dissipation and compactness. 
The experimental results show that the proposed system successfully generates 
the saliency information from natural scene. 

Keywords: Visual selective attention, bottom-up saliency map, neuromorphic 
silicon retina. 

1   Introduction 

The human visual system can effortlessly detect an interesting area or an object within 
natural or cluttered scenes through a selective attention mechanism. This mechanism 
allows the human vision system to effectively process visual scenes with a higher 
level of complexity. The start point of the human visual system is the retina.  

The retina can extract low level features like color, contrast and edge information. 
Those features are used to construct an input for selecting an interesting area in 
complex visual scenes through further processing. The silicon retina, as a 
neuromorphic device, can mimic the process of the human retina.  

On the other hand, there have been several studies about the selective attention 
which process stimuli from the retina to the visual cortex. Itti, Koch, and Niebur 
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(1998) [1] introduced a brain-like model in order to generate a saliency map (SM). 
Koike and Saiki (2002) [2] proposed that a stochastic winner take all (WTA) enables 
the saliency-based search model to change search efficiency by varying the relative 
saliency, due to stochastic shifts of attention. Kadir and Brady (2001) [3] proposed an 
attention model integrating saliency, scale selection, and a content description, thus 
contrasting with many other approaches. Ramström and Christensen (2002) [4] 
calculated saliency with respect to a given task by using a multiscale pyramid and 
multiple cues. Their saliency computations were based on game theory concepts. And 
Jeong et al. [5] introduced a dynamic saliency model which considers temporal 
dynamics of saliency degrees changing through time at each salient point. This model 
is based on a modified static saliency model which additionally considers symmetry 
information. Ban et al. [6] proposed an affective saliency model which considers 
psychological distance as well as visual features.  

Most of the selective attention models only utilized input images obtained from 
non-biological image sensor like a charge-coupled devices (CCD) or CMOS camera. 
In a recent paper, Indiveri (2008) [7] proposed a neuromorphic VLSI model for 
selective attention. Indiveri shows successful neuromorphic VLSI models of a 
selective attention system, which was applied to the visual tracking problem. They 
describe some examples of single-chip and multi-chip based selective attention 
system.   However, the image size of the system is only 32 by 32, and it is too small to 
perceive important attentive features in natural input scenes.  

Because our final goal is to make a mobile embedded system, the system needs to 
satisfy the following requirements: real-time computation, compact hardware, and  
low power consumption. In the present study, we developed a new neuromorphic 
selective attention system which satisfies the requirements by taking advantages of 
parallel computation of a field programmable gate array (FPGA) and a silicon retina 
which has 128 by 128 pixels and analog resistive networks.  

In Section 2, we present the proposed model in detail. Experimental results are 
described in Section 3. Discussion and conclusions follow in Section 4. 

2   Bottom-Up Saliency Model 

2.1 Selective Attention Model 

In the human visual processing system, there are two ways to recognize an object. 
One is the bottom-up saliency process and the other is top-down selective attention. 
The bottom-up saliency map (SM) model localizes the salient points of a natural 
scene based on data-driven processing. The top-down selective attention model which 
is concept-driven processing model based on pre-learnt information, performs a 
specific task such as object detection and recognition, preferable attention, and so 
forth. To make human-like selective attention model, both of the bottom-up SM and 
the top-down selective attention models are essentially needed. In our research, we 
want to implement a specific neuromorphic hardware system for mimicking human-
like selective attention function in a vision system. As the first step of the hardware 
implementation, we consider the bottom-up SM model. Like the human visual 
processing system, we utilize the intensity and the edge features as a low level inputs. 
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Then we use the center surround difference and normalization (CSDN) module which 
is based on the function of the lateral geniculate nucleus (LGN), to generate the 
conspicuity map using the on-set and off-surround mechanism. And those conspicuity 
maps make a bottom-up SM by the feature integration theory which occurs in laterial 
intral-parietal cortex (LIP) of human brain [8]. 

2.2 Simplified Bottom-Up Saliency Map Model  

For the compactness of the proposed system, we propose the simplified the bottom-up 
SM model for hardware implementation. The simplified bottom-up SM model utilizes 
intensity and edge information to generate the final saliency map. Figure 1 shows a 
simplified bottom-up saliency map model. 

 

Fig. 1. The simplified bottom-up saliency map model for hardware implementation using 
silicon retina chip 

From an input image, edge information has been extracted by applying a 3 by 3 
Sobel edge operator. Then, intensity (I) and edge (E) information are transferred to 

the (CSDN) module. The intensity and edge conspicuity maps ( I  and E ) are 
calculated by accumulating and normalizing each feature map. Finally, the SM is 
extracted by accumulating two conspicuity maps. Salient points are extracted by the 
inhibition of return (IOR) mechanism [8, 9]. 

The simplified SM model reflects the part of functions in the retina cells, the LGN, 
the LIP and visual cortex. Although the retina cells can process color opponency as 
well as extract edge and intensity information, in the proposed simplified bottom-up 
SM model, we do not consider color information because the obtained image from the 
silicon retina is a gray scale image. Therefore, the proposed model considers two 
feature bases such as the intensity (I) and the edge (E). Moreover, the proposed model 
considers the on-center and off-surround operation of the LGN and the ganglian cells 
by implementing the CSDN of Gaussian pyramid images with different scales from 0 
to n-th level, whereby each level is made by the sub-sampling of the n-th powers of 2. 
This reflects the non-uniform distribution of the retina-topic structure. Then, the 
center-surround mechanism is implemented in the model as the difference operation 
between the fine and coarse scales of the Gaussian pyramid images [8]. Consequently, 
two conspicuity maps are obtained by the Eqs.(1) and (2).  
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feature maps are computed because intensity and edge individually have 5 different 
scales (2 finer scales and 3 coarse scales) [8, 12]. Each feature map is combined into 

the corresponding conspicuity map as shown in Eq. (2) where I  and E  stands for 
intensity and edge conspicuity maps, respectively. These are obtained through across-
scale addition [5]. 
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Consequently, two conspicuity maps can be obtained by the center-surround 
difference and normalization (CSDN) algorithm [10]. A SM is simply generated by 
the summation of those two conspicuity maps as shown in Eq. (3).  

EISM +=  (3) 

The inhibition-of-return (IOR) process is applied by the brain for efficient information 
processing [8, 9]. The IOR function prevents repeated attention to on already-attended 
area, which is an efficient mechanism for effectively processing of complex visual 
scenes. To select the proper scale of the salient areas, an entropy maximization 
approach is considered, which is based on Kadir’s approach [3]. After masking this 
IOR region, the SM finds the next salient point that excludes the previous salient 
object. 

3 Hardware Implementation 

3.1   Field-Programmable Gate Array (FPGA) Implementation 

Figure 2 shows the overall architecture of the proposed model. We utilize the silicon 
retina and its resistive network. The silicon retina used here has 128 x 128 pixels, 
each of which is composed of an active pixel sensor (APS), resistive networks, and 
differential amplifiers (ASPECTUS-U, Neuralimage Co. Ltd). The resistive network 
of the silicon retina computes the multiple Gaussian filters efficiently and 
instantaneously and transfers it to the Field-Programmable Gate Array (FPGA, Xilinx 
X3CS400) block that is for implementing a bottom-up SM model. The FPGA receives 
multiple images with different Gaussian scales within a single frame because the 
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value of resistance Rs is controlled by the FPGA via a digital to analog (D/A) 
converter. An intensity pyramid block gets images with 5 different scales from fine to 
coarse. An edge pyramid block calculates edge information from each intensity 
pyramid image. The CSDN block computes a difference of center and surround 
contrast between coarse and fine images of the Gaussian pyramid image. Then, two 
conspicuity map blocks compute each conspicuity map by accumulating 4 feature 
maps that are the outputs of CSDN block. After that, a saliency map is computed by 
summation of the conspicuity maps in every location. Then the computed SM is 
transferred to a PC through the USB interface (I/F) block. Finally, a salient region is 
represented in the PC. The salient points are detected by the inhibition-of-return 
(IOR) function in the PC. The size of each salient area is determined by using the 
entropy maximization process of the saliency map [5]. 

 

Fig. 2. The block diagram of our proposed visual selective attention system using a silicon 
retina chip and FPGA for bottom-up saliency map model 

3.2   Modified CSDN Algorithm for FPGA 

When we check the computational load for the saliency map processing, the CSDN 
block takes too much time. To solve this problem, we use an FPGA to calculate the 
CSDN process. 

Due to small memory capacity of the FPGA block, the CSDN processing algorithm 
is modified in an effective way. The embedded hardware system including silicon 
retain chip contains two memories such as Block RAM (BRAM) and Static RAM 
(SRAM). The BRAM can store two 128 by 128 images and read/write the memory 
data simultaneously. And the SRAM can store 16 images. But, the SRAM only access 
memory one way at a time such as read or writes. While the BRAM has fast access to 
memory data, SRAM takes time to access its data. Considering the limitation of those 
memories, we modified the CSDN algorithm. Fig. 3 explains the modified CSDN 
algorithm for hardware implementation, which changes the input sequence so that the 
FPGA accesses two memory blocks with the smallest number of possible read and 
write. 
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Fig. 3. The modified CSDN processing, I0-I5: pixels data of intensity (or edge) Gaussian 
pyramid image, Coef1-4: Coefficient value for data normalization, |*|: arithmetical absolute 
operation 

3.3   Modified Normalization Algorithm for FPGA 

In FPGA, dividing operations are computationally inefficient and block many gates. 
So we changed the normalization process as shown in Eq. (7)  

ii
iiiN

minmax

255
)min()(

−
×−=  (7) 

where )(iN  represents a normalized value of input i . And imax  and 

imin represent maximum and minimum values of previous the frame, respectively. It 

takes additional computational load to find maximum and minimum values in Eq. (7). 
We utilize previous image’s value because the silicon retina’s frame rate is quite fast. 
In the FPGA, the value can be divided by 2’s power value. When we use 2’s power 
value for the difference between maximum and minimum values of intensity as a 
denominator, only 9 level result values are obtained. But, when we use an integer 
denominator for the difference between maximum and minimum values of intensity 
as a denominator in Eq. (7), we can obtain 30 levels of result values. To reduce 
division distortion, we programmed an integer division module. As a result, the 
division process converted into a multiplication process by utilizing Eq. (7). Then we 
can get a conspicuity map by summing 4 feature maps stored in SRAM. The saliency 
map is obtained by summation of intensity and edge conspicuity maps. Finally, the 
saliency map is transferred to PC via USB interface to extract saliency information.  

4   Experiments 

To evaluate our proposed model, we compared the bottom-up saliency results of the 
proposed system with those of the PC. Fig. 4 shows the example input images which 
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                                  (a)                                              (b) 
 

 
                                                    (c)                                  (d)                 (e) 

Fig. 4. Experimental results of proposed model, (a) original image, (b) Gaussian pyramid image 
(1st row: intensity, 2nd row: edge), (c) feature maps (1st row: intensity, 2nd row: edge), 
(d)Conspicuity maps (1st row: intensity, 2nd row: edge), (e) saliency map and its salient region 

   
                                          (a)                             (b)                              (c) 

Fig. 5. Comparison of the results for selective attention process using PC and FPGA (a) 
original image and its captured image by silicon retina chip (b) results by FPGA, (c) results by 
PC 

captures by silicon retina. And Fig. 5 shows the results using the FPGA and the PC, 
respectively. 

To compare the results of the selective attention processes for both the FPGA and 
PC, we used the same image which is extracted from the silicon retina. Even though 
some distortion is occurred in the processing, the results are almost the same in the 
data normalization phase. Also, we tested 20 times to measure the processing time. 
While the computation time for the saliency map process using the PC which has 
Pentium with dual core CPU and 2G RAM is around 10 msec and 40 msec for release 
mode and debug mode, respectively, the FPGA’s processing time is around 4 msec. 
According to the result, the FPGA processing time is faster than PC.  

We estimated and compared the power consumption of the proposed system and 
that of the system with a PC. While the power consumption of the silicon retina with 
FPGA was about 1.5 W, that of CPU alone in the PC was estimated to be about 49 W; 
this value was estimated using Sandra lite [10]. The power dissipation of the proposed 
system is much lower than that with a PC. 

5   Conclusion 

We proposed a hardware oriented vision system having a biologically inspired visual 
selective attention function. The proposed system was implemented based on a 
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neuromorphic silicon retina chip for obtaining visual stimuli. And we implemented 
the selective attention algorithm using the FPGA module. In FPGA, we simplified the 
bottom-up saliency map model for the compactness. We devised an efficient center-
surround processing algorithm for properly implementing the algorithm in a limited 
hardware system with low capacity memory units. We also reduced normalization 
distortion by employing an integer denominator. The preprocessing in the silicon 
retina and the parallel processing in the FPGA reduced the processing time as well as 
power consumption compared to the system with a PC. The selective attention results 
of the proposed system was similar to that of the original algorithm which uses a PC. 
As further work, we will implement higher level functions of the brain like top-down 
visual selective attention. And we are also considering applying the proposed system 
to real world applications like surveillance problem. 
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Abstract. Programming supercomputers correctly and optimally is non-
trivial, which presents a problem for scientists simulating large areas of
the brain. Researchers face the challenges of learning how to fully exploit
hardware whilst avoiding the numerous pitfalls of parallel programming
such as race conditions, deadlock and poor scaling. The SpiNNaker ar-
chitecture is designed to exploit up to a million processors in modelling
as many as one billion neurons in real-time. We present a programming
interface for the architecture to allow modelling of arbitrary neuron and
synapse dynamics using standard sequential C code, without concern for
parallel-programming techniques or interprocessor communication mech-
anisms. An example is presented in which SpiNNaker is programmed to
model multiple synaptic dynamics that are exchanged on the fly and the
results of the different synaptic efficacies are shown.

Keywords: neural simulation, event driven, parallel programming,
SpiNNaker, kernel, tasks, callbacks, C.

1 Introduction

Parallel computers are powerful tools for modelling large-scale, biologically-
plausible Spiking Neural Networks (SNNs) [4]. However, the energy requirements
of real-time brain-scale simulations in digital circuits [8] are prohibitively expen-
sive and are expected to remain so for some decades [6]. Neuromorphic engi-
neering [11] has produced analogue circuits which simulate neuron and synapse
dynamics with great speed and energy efficiency, but at the expense of model
adaptation in light of discoveries in ‘wet’ and computational neurosciences.

SpiNNaker is a digital many-core hardware architecture that aims to address
these issues using low-power, general-purpose processors. The SpiNNaker operat-
ing system kernel must abstract the details of the hardware to allow researchers
to easily simulate arbitrary neuron and synapse models whilst maintaining real-
time performance and power efficiency. To this end, inspiration is taken from
microcontroller kernels which operate under strict timing and energy require-
ments [5]. This paper describes event-driven computation as a solution to the
problem of large-scale parallel-programming, presents the SpiNNaker Applica-
tion Run-Time Kernel (ARK) and Application Programming Interface (API)
and shows their use in modelling a number of synaptic dynamics.

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 424–430, 2011.
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2 SpiNNaker

SpiNNaker is a massively-parallel computing architecture designed to model
billion-neuron, trillion-synapse SNNs in real-time. A SpiNNaker machine con-
sists of up to 216 multiprocessor chips (figure 1) containing eighteen low-power
ARM processor cores dedicated to simulation of up to 103 neurons and 106

synapses each [10]. Processors communicate neural spikes and other simulation
data via an on-chip router that also forms links with six neighbouring chips so
that any processor may communicate with any other in the machine.

Fig. 1. A SpiNNaker chip. Each processor has interrupt control and timer peripherals
and 32kB instruction and 64kB data memories. A shared 128MB off-chip memory is
accessed by DMA transfers. A packet-switched router handles communications between
processors on local and remote chips.

3 Event-Driven Neural Simulation

SpiNNaker applications are event-driven (figure 2) in that all computational
tasks follow from events in hardware. Neuron states are computed in discrete
timesteps initiated in each processor by a local periodic timer event. At each
timestep processors evaluate the membrane potentials of all of their neurons
given prior synaptic inputs and deliver a packet to the router for each neuron
that spikes. Spike packets are routed to all processors that model neurons efferent
to the spiking neuron. Receipt raises a packet event that prompts the efferent
processor to retrieve the appropriate synaptic weights from off-chip RAM using a
background Direct Memory Access transfer. The processor is then free to perform
other computations during the DMA transfer and is notified of its completion
by a DMA done event that prompts calculation of the sizes of synaptic inputs
to subsequent membrane potential evaluations.



426 T. Sharp et al.

Fig. 2. Events and corresponding tasks in a typical neural simulation

Each SpiNNaker processor executes an instance of the Application Run-Time
Kernel (ARK) which is responsible for providing computational resources to the
tasks arising from events. The ARK has two threads of execution (figure 3) that
share processor time: following events, control of the processor is given to the
scheduler thread that queues tasks; upon its completion, the scheduler returns
control to the dispatcher thread that dequeues tasks and executes them. In terms
of figure 2, for example, a timer event schedules a neuron update task that is
dispatched upon returning from the event.

Tasks have priorities that dictate the order in which they are executed by the
dispatcher. The scheduler places each task at the end of the queue corresponding
to its priority and the dispatcher continually executes tasks from the highest-
priority non-empty queue. To facilitate immediate execution, priority zero tasks
are non-queueable and are executed by the scheduler directly, precluding any
further scheduling or dispatching until the task is complete.

The SpiNNaker Application Programming Interface (API) allows a user to
specify the tasks that are executed following an event. The user writes call-
back functions in C that encode the desired tasks and then registers them with
the scheduler against particular events. The following example lists callbacks
to compute the Izhikevich equations (see [9] and [10] for details) on the timer
event, to buffer packets and kickstart DMA transfers on a packet event and to
start subsequent DMA transfers (conditional on receipt of further packets) and
process synaptic inputs on the DMA done event. Three variants of the timer
callback are provided which compute different dynamics of synaptic efficacy,
namely, current-based instantaneous spike response synapses and current- and
conductance-based synapses with first-order response dynamics [3, 1]. It should
be noted that these models serve only to demonstrate the API; readers are re-
ferred to the citations for an explanation of the neural activity itself.
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Fig. 3. Control and data flow between the scheduler and dispatcher threads

In the main function the timer callback of the first synapse model is registered
along with the packet and DMA done callbacks. A simulation of a single neuron
receiving input spikes every 16 milliseconds is run for 800 milliseconds. At t =
400ms and t = 600ms the timer callback registers a new callback in the scheduler,
which causes a new set of synaptic dynamics to be computed on subsequent timer
events. The code for functions provided by the API is not listed and for brevity
only excitatory synaptic inputs (buffers denoted epsp) are shown.

int main() {
// Call hardware and simulation configuration functions
...
// Register callbacks and run simulation
callback_on(PACKET_EVENT, packet_callback, PRIORITY_1);
callback_on(DMA_DONE_EVENT, dma_done_callback, PRIORITY_2);
callback_on(TIMER_EVENT, timer_callback_0, PRIORITY_3);
start(800);

}

void feed_dma_pipeline() {
// Start engine if idle and transfers pending
if(!dma_busy() && !dma_queue_empty()) {
void *source = lookup_synapses(packet_queue_get());
dma_transfer(..., source, ...);

}
}

void buffer_post_synaptic_potentials(synapse_row_t *synapse_row) {
for(uint i = 0; i < synapse_row_length; i++) {
// Get neuron ID, connection delay and weight for each synapse
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...
// Store synaptic inputs
neuron[neuron_id].epsp[connection_delay] += synaptic_weight;

}
}

void dma_done_callback(uint synapse_row, uint unused) {
// Restart DMA engine if transfers pending
feed_dma_pipeline();
// Deliver synaptic inputs to neurons
buffer_post_synaptic_potentials((synapse_row_t *) synapse_row);

}

void packet_callback(uint key, uint payload) {
// Queue DMA transfer and start engine if idle
packet_queue_put(key);
feed_dma_pipeline();

}

void timer_callback_0(uint time, uint null) {
if(time >= 400) callback_on(TIMER_EVENT, timer_callback_1, PRIORITY_3);
for(int i = 0; i < num_neurons; i++) {
uint current = neuron[i].epsp[time];
// Compute neuron state given input and deliver spikes. See Jin et al.
...
if(neuron[i].v > THRESHOLD){

send_mc_packet(neuron[i].id);
}

}
}

void timer_callback_1(uint time, uint null) {
if(time >= 600) callback_on(TIMER_EVENT, timer_callback_2, PRIORITY_3);
for(int i = 0; i < num_neurons; i++) {
uint current = neuron[i].epsp[time];
// Compute neuron state given input and deliver spikes.
...
if(neuron[i].v > THRESHOLD){

send_mc_packet(neuron[i].id);
}
// Add an exponentially decaying quantity to next timestep’s input
neuron[i].epsp[time + 1] += current * neuron[i].decay;

}
}

void timer_callback_2(uint time, uint null) {
for(int i = 0; i < num_neurons; i++) {
// Get synaptically induced conductance (scaled down)
int conductance = neuron[i].epsp[time] / 64;
// Compute current from conductance and membrane and eq. potentials
int current = conductance * (neuron[i].v - EQUILIBRIUM_POTENTIAL);
// Compute neuron state given input and deliver spikes.
...
if(neuron[i].v > THRESHOLD){

send_mc_packet(neuron[i].id);
}
// Add an exponentially decaying quantity to input at time + 1
neuron[i].epsp[time + 1] += current * neuron[i].decay;

}
}

The effect of each of the synapse models on the input terms and neuron
membrane potential is shown in figure 4. Spikes are clipped from the top of the
figure and synaptic currents are negatively offset for clarity. The instantaneous
synapse response elicits a brief spike in the membrane potential of the neuron
but does not provide enough drive to cause a spike. The first-order dynamics of
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the next synapse model cause the neuron to integrate significantly more current
and thus to spike. The neuron also spikes under the third synapse model and
interactions between the membrane potential and input current are visible, such
as where the membrane potential approaches 0 and the current term decreases
correspondingly.

Fig. 4. Membrane potential and input current traces for three synapse models

4 Conclusion

Parallel computers are powerful tools in neuroscientific research but program-
ming them is non-trivial. Researchers face two particular challenges to exploiting
supercomputers: the difficulty of parallel programming, in terms of both pro-
gram optimality and correctness; and knowledge of the numerous capabilities
and communication mechanisms of parallel computing hardware. The Applica-
tion Run-Time Kernel and Application Programming Interface presented in this
paper largely addresses these concerns; researchers use template programs and
implement just the sequential, standard C code required to compute neuron and
synapse dynamics or borrow from a repository of established models. Network
structure (the number of neurons and their connectivity) is then specified at a
desktop computer using PyNN [2] from which the simulation data structures
are compiled and loaded into the machine [7]. Parallelism is achieved transpar-
ently by executing sequential programs in numerous processors simultaneously
and interprocessor communication is handled in terms of neural spikes, which are
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transmitted by an API function call and received by a callback registered against
the packet received event in the ARK. Thus, a model is provided for exploit-
ing a massively-parallel computer for real-time simulation of large-scale spiking
neural networks without the otherwise major challenges of ensuring correctness
and optimality of large parallel programs.
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Abstract. Spontaneous facial expressions differ from posed ones in appearance, 
timing and accompanying head movements. Still images cannot provide timing 
or head movement information directly. However, indirectly the distances 
between key points on a face extracted from a still image using active shape 
models can capture some movement and pose changes. This information is 
superposed on information about non-rigid facial movement that is also part of 
the expression. Does geometric information improve the discrimination 
between spontaneous and posed facial expressions arising from discrete 
emotions? We investigate the performance of a machine vision system for 
discrimination between posed and spontaneous versions of six basic emotions 
that uses SIFT appearance based features and FAP geometric features. 
Experimental results on the NVIE database demonstrate that fusion of 
geometric information leads only to marginal improvement over appearance 
features. Using fusion features, surprise is the easiest emotion (83.4% accuracy) 
to be distinguished, while disgust is the most difficult (76.1%). Our results find 
different important facial regions between discriminating posed versus 
spontaneous version of one emotion and classifying the same emotion versus 
other emotions. The distribution of the selected SIFT features shows that mouth 
is more important for sadness, while nose is more important for surprise, 
however, both the nose and mouth are important for disgust, fear, and 
happiness. Eyebrows, eyes, nose and mouth are important for anger.  

Keywords: Facial expression, posed, spontaneous, SIFT, FAP. 

1   Introduction 

A machine vision system that can accurately discriminate spontaneous from posed 
expressions can be useful in ways similar to a polygraph. Spontaneous expressions are 
difficult to distinguish from posed ones and differ in subtle ways in appearance, 
timing and accompanying head movement [1]. In general, facial expression 
recognition (FER) can be reliably performed from still images with far less 
complexity. However, the timing and head movement can only be extracted from 
video, not from still images. The distances between key points on a face extracted 
from a still image can indirectly capture some movement and pose changes using 
active shape models (ASM). This information is superposed on information about 
non-rigid facial movement that is also part of the expression. 
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Relatively little research has been conducted on machine discrimination between 
posed and spontaneous facial expressions. These efforts mainly focus on smile [1],  
[2], [3], eyebrow action [4] and pain [5], [6]. For smile and eyebrow action, nearly all 
known approaches are designed based on the movements of facial points. Hamdi et al. 
[2] used eyelid movements and reported 85% and 91% accuracy in discriminating 
between posed and spontaneous smiles on the BBC and Cohn-Kanade databases, 
respectively. Michel et al. [3] proposed a multimodal system to discern posed from 
spontaneous smiles by fusing a set of temporal attributes of tracked points of face, 
head and body. 94% accuracy was the best result, obtained with late fusion of all 
modalities. Michel et al. [4] also proposed to use the temporal dynamics of facial 
points to distinguish between posed and spontaneous brow actions, and attained a 
90.7% classification rate. Littlewort et al. [5] employed a two-stage system to 
differentiate faked pain from real pain: a detection stage for 20 facial actions using 
Gabor features and a SVM classification stage, achieving 88% accuracy. Bartlett et al. 
[6] reported 72% classification accuracy of posed versus spontaneous pain through 
Gabor feature based facial action detection. Other facial expressions, such as anger, 
disgust, fear, sadness, and surprise have not been fully investigated in this context. 

Appearance features (e.g. SIFT and Gabor) are more suitable for capturing the 
subtle changes of the face; while geometric features (e.g. distance between 
landmarks) are more capable of representing shape and location information of facial 
components. Although the fusion of appearance and geometry leads to significant 
performance improvements on basic facial expression classification [7], it remains 
unclear whether such improvements are possible for posed versus spontaneous 
emotion discrimination as well. This paper addresses these areas. 

An automatic system to distinguish posed from spontaneous versions of six basic 
emotions using appearance (SIFT) and geometric (FAP) features is adopted to 
investigate recognition performance. Feature selection is performed using minimal 
redundancy maximal relevance (mRMR) and classification using a support vector 
machine (SVM). Scale-invariant feature transform (SIFT) has been shown a better 
recognition performance of facial expressions in previous work [8] than other 
appearance features, including LBP and HOG, while the distances defined based on 
facial animation parameters (FAPs) have also been demonstrated as a sparse, compact, 
yet information-rich representation of the facial shape [9]. But they have not been 
combined yet for discriminating posed versus spontaneous emotions. Appearance 
features are extracted locally around key points while distances between key points are 
used for the geometric feature set. They are therefore expected to not contain 
overlapping information. Intuitively, geometry is not expected to result in significant 
improvement in performance in this context because no temporal information is 
captured. This paper will compare the relative importance of the two types of features 
and those extracted from different regions on the face for each of six emotions. 

The rest of the paper is organized as follows. Section 2 presents the evaluation 
system. Section 3 gives the experimental results. Conclusions are drawn in Section 4. 

2   Evaluation Framework 

Fig. 1 shows the framework of the evaluation system. From an input image, the face 
region is detected using the widely used Viola-Jones detector, and 68 facial fiducial 
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points are detected using a well-trained active shape model (ASM). SIFT descriptors 
are extracted around each of 53 interior facial points. Feature vectors from all points 
are concatenated into a single vector representing appearance features. A subset of 
the most discriminative appearance features is selected using the mRMR algorithm. 
Geometric features composed of 43 distances defined using an active shape model 
(ASM) and FAPs are also extracted. The normalized appearance feature subset and 
geometric features can be used alone or combined through a feature-level fusion. A 
SVM with a radial basis function (RBF) kernel is used as the classifier for 
discriminating between posed and spontaneous versions of six basic emotions - anger 
(AN), disgust (DI), fear (FE), happiness (HA), sadness (SA) and surprise (SU). 

 

Fig. 1. Framework of the evaluation system 

2.1   Face and Fiducial Point Detection 

Once the face region is detected by the Viola-Jones detector, an ASM [10] is used to 
detect the fiducial points. To train the ASM, we collected 100 images from the 
internet with different natural emotions and different face poses ranging from -20 to 
20 degrees. Then 68 fiducial points as shown in Fig.2a are manually annotated with x 
and y locations. The trained ASM is expected to work well on faces with normal face 
movements. It has been observed that the points on the face boundary (Index from 1 
to 15 in Fig.2a) are not always accurately detected due to facial shape changes 
between subjects and facial movements (as shown in Fig.2b). Further, the regions 
around these points contain background information and do not provide reliable 
features. Therefore, only 53 interior points (Index from 16 to 68 in Fig.2a) are used to 
extract SIFT features. 

        

                                          (a)                                                  (b) 

Fig. 2. (a) 68 fiducial points for training ASM and (b) detection results with inaccurate 
boundary points 
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2.2   SIFT Feature Extraction 

SIFT [11] provides distinctive invariant features suitable for detecting salient key 
points and describing local appearance. The SIFT is known to be invariant to image 
scale and rotation, and robust across a substantial range of affine distortion, changes 
in 3D viewpoint, noise and illumination. SIFT features extracted around a small set of 
facial landmarks have been applied to describe local characteristics of the face, 
yielding promising results [12]. SIFT features around a number of points also helps to 
achieve a degree of tolerance to face movements and pose changes. 

Following the settings in [12], the SIFT descriptor is computed from the gradient 
vector histograms of the pixels in a 4×4 patch around each point of 53 interior points. 
Instead of setting a fixed orientation, we let the program compute the 8 possible 
gradient orientations. Therefore, each SIFT descriptor contains a total of 128 
elements. By computing one such descriptor at each point, we obtain a final feature 
vector with 6,784 elements.  

2.3   Geometric Feature Extraction 

Facial animation parameters (FAPs) [13] are defined in the ISO MPEG-4 standard 
(part 2, visual) to allow the animation of synthetic face models. FAPs contain 68 
parameters that are either high level parameters describing visemes and expressions, 
or low level parameters describing displacements of the single points of the face. 
Therefore, FAPs can provide a concise representation of the evolution of the 
expression of the face and can represent a complete set of basic facial actions. 
Furthermore, FAPs also can handle arbitrary faces through the use of FAP units 
(FAPUs), which are defined as the fractions of distances between key points. 

Geometric features include 43 distances between the 53 interior points. As listed in 
Table 1, these distances are calculated based on FAPs to allow the animation of face 
shape changes. Compared with facial movement vectors in multi-frames, distance 
features have the merit of being robust to pose changes, and do not require 
 

Table 1. Distances between facial points defined by FAPs 

No. Distance No. Distance No. Distance NO. Distance
3 Dy(52,58) 19 Dy(29,32) 33* Dy(32,27) 55 Dy(50,42)
4 Dy(65,42) 20 Dy(34,37) 34* Dy(37,17) 56 Dy(54,42)
5 Dy(62,42) 21 Dy(31,32) 34* Dy(37,18) 57 Dy(60,42)
6 Dx(49,42) 22 Dy(36,37) 34* Dy(37,20) 58 Dy(56,42)
7 Dx(55,42) 29 Dy(29,31) 34* Dy(37,21) 61* Dx(30,40)
8 Dy(66,42) 30 Dy(34,36) 35 Dy(28,22) 61* Dx(30,39)
9 Dy(64,42) 31 Dy(30,25) 36 Dy(33,16) 62* Dx(35,44)

10 Dy(61,42) 32 Dy(35,19) 37 Dx(30,25) 62* Dx(35,45)
11 Dy(63,42) 33* Dy(32,23) 38 Dx(35,19) 63 Dy(35,68)
12 Dy(49,42) 33* Dy(32,24) 51 Dy(52,42) 64 Dx(35,68)
13 Dy(55,42) 33* Dy(32,26) 52 Dy(58,42) - -

Note: Dx(M,N) and Dy(M,N) indicate the distances between two points indexed M and N in the 
horizontal and vertical directions respectively. M and N are based on the 53 interior points in Fig. 2a.  
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compensation for face movements. The distances defined based on FAPs have been 
demonstrated as a sparse, compact, yet information-rich representation of the facial 
shape [9]. Therefore, they are suitable for the proposed system. To allow for 
variations between faces, FAPUs are defined as the fractions of distances between key 
points to scale FAPs (i.e. 43 distances). 

2.4   Discriminative Texture Feature Selection 

We use the minimal redundancy maximal relevance criterion (mRMR) [14] algorithm 
to select a subset of the most discriminative features from the extracted SIFT features. 
The mRMR selects a subset of features that jointly have the largest dependency on the 
ground truth class and the least redundancy among the features, according to 
following equation: 
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Where σ  is set to 0.5. 

3   Experiments 

3.1   Database  

The natural visible and infrared facial expression (NVIE) database [16] is a newly 
developed comprehensive platform for both spontaneous and posed facial expression 
analysis. The spontaneous expressions are induced by film clips deliberately selected 
from the internet, while the posed ones are obtained by asking the subjects to perform 
a series of expressions. There are a total of 215 healthy students (157 males and 58 
females), ranging in age from 17 to 31. Among them, 105, 111, 112 subjects 
participated in the spontaneous database under front, left and right illumination 
respectively, and 108 subjects participated in the posed database. Both spontaneous 
and posed images with peak emotions are labeled with six basic emotions. 
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                         (a)                                                                     (b) 

Fig. 3. (a) Image samples excluded from the experiment because of inaccurate detection results 
by ASM. (b) Images samples of posed versus spontaneous emotions.  

Table 2.  Distribution of the used images over six emotions 

AN DI FE HA SA SU
Posed 593 578 609 607 581 604

Spontaneous 229 266 211 315 236 215  

In this paper, all posed peak visible images are used, while only spontaneous 
visible images with final evaluated annotations are used. Note that a part of 
spontaneous images have not been provided with final annotations by the time of 
writing this paper. After removing those failed during face and facial point detection, 
we get 3,572 posed and 1,472 spontaneous images. Fig. 3a shows samples of removed 
images due to inaccurate ASM detection results of facial points. As can be seen, the 
mouth region and the face boundary are less likely to be accurately detected by the 
ASM when big out-of-plane rotations of the face occur (i.e. pitch and yaw). Fig. 3b 
demonstrates samples of posed versus spontaneous emotions and Table 2 shows the 
distribution of the images over six emotions. 

3.2   Classification Performance  

We conducted subject-independent tests to obtain an average classification result over 
10 cross-validations. In each cross-validation, images of 10% subjects are randomly 
selected for testing and the images of 90% subjects left are for training. The process 
repeats 10 times to obtain average classification accuracy. Note that the emotional 
labels of each of the six basic emotions are assumed to be known before classifying 
posed versus spontaneous emotions using a SVM. 

Fig. 4 shows the accuracy of posed versus spontaneous classification of six 
emotions. As anticipated, fusion of SIFT and FAP features only leads to a marginally 
higher overall performance than using SIFT features only, for all emotions except for 
disgust. For disgust, inclusion of FAP features in fact leads to a lower performance 
than using SIFT features alone. The use of FAP features does not improve the 
performance, and this may be because FAP based distances have a limited capacity to 
capture the temporal information (e.g. movements) of facial expressions, while 
discrimination between posed and spontaneous emotions largely depends on such 
information as shown in previous studies [1], [17], [18]. The results agree with the 
claim in [18] that high-abstraction features extracted from video segments can capture 
more general physical phenomena than low-abstraction features in one frame. In 
addition, posed and spontaneous emotions in static images are more likely to have 
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Fig. 4. Classification accuracy for posed versus spontaneous versions of six basic emotions on 
the NVIE database. As can be seen, fusion of SIFT and FAP only leads to marginally higher 
overall performance than using SIFT features only. The accuracy of using FAP features alone 
can be observed from the third row in Table 3. For disgust, fusion is in fact catastrophic. 

Table 3. Posed/Spontaneous classification accuracy (%) + one standard deviation 

 AN DI FE HA SA SU 
SIFT+FAP 77.2±6.3 76.1±6.1 79.7±6.2 80.5±6.1 79.7±5.1 83.4±5.2 

SIFT 75.6±7.1 76.1±6.9 79.6±7.3 79.3±7.7 77.4±7.6 83.9±4.0 
FAP 71.2 ±4.9 69.7±6.0 76.2±4.0 65.6±5.8 68.7±4.8 73.3±6.3  

similar geometric distances, and their differences are mainly conveyed by subtle 
appearance features. It should be noted that a subset of facial points located by ASM 
without enough precision could also introduce noise to FAP features. 

The adopted system using SIFT+FAP or SIFT features obtains an accuracy of more 
than 74% for all emotions. Among the six emotions, surprise and happiness are the 
two easiest ones to be distinguished as posed or spontaneous, whereas disgust is the 
most difficult one. The results are similar to those obtained on recognition of six basic 
emotions, in which surprise and happiness are often the easiest emotions to recognize, 
while disgust is one of the most difficult ones. It also can be observed from Fig. 4 that 
anger, fear and sadness have a similar performance. 

Table 3 demonstrates the classification accuracy for posed versus spontaneous 
emotions based on 40 SIFT and 43 FAP features. Using SIFT+FAP features, the 
employed system obtains the highest accuracy of 83.4% when testing on surprise, and 
the lowest accuracy of 76.1% when testing on disgust. SIFT+FAP and SIFT have a 
similar performance for most of the six emotions, and they both outperform using 
FAP features alone. For anger, disgust, fear, and surprise, the performances of 
SIFT+FAP, SIFT and FAP are not statistically significantly different as observed 
when one standard deviation intervals are noted in Table 3. For happiness and 
sadness, the performance of SIFT+FAP is also similar to SIFT, but is one standard 
deviation more significant than FAP. This result again implies that geometric features 
play a less important role than appearance features on posed versus spontaneous 
emotion discrimination, and including geometric features leads to little performance 
improvements compared with using appearance features alone. 

3.3 Feature Importance Comparison  

To investigate the importance of different points in their contribution to 
discrimination, we display the distribution of the selected SIFT features over the 53 
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                            (a)                                                                     (b) 

Fig. 5. (a) Distribution of selected SIFT features over 53 points. The two rows contain the top 
40 and top 90 features selected by the mRMR in each of 10 subject-independent tests. Emotion 
class labels are given below. (b) The three top facial points selected for each of the six 
emotions. Index numbers are mapped to face locations in Fig. 2a. 

interior points as shown in Fig.5a. If more features are selected from a given facial 
point, that point may be considered more important and is marked by a bigger white 
circle. It should be noted that similar distributions have also been observed using 
different subsets of the NVIE data. 

We can observe that different facial elements play different roles in distinguishing 
different posed versus spontaneous emotions. The mouth appears to be more important 
for sadness, the nose region is more important for surprise, while both the nose and 
mouth are important for disgust, fear, and happiness. The eyebrows, eyes, nose and 
mouth all play a significant role for anger. The results are contrary to the findings in 
discriminating six emotions in thermal images [16], where the mouth region has the 
smallest impacts on all six emotions, and the nose has little impacts on sadness, 
surprise, fear, and happiness. However, one common point between our work and [16] 
is that the nose plays a significant role in classifying anger versus other emotions, and 
discriminating posed versus spontaneous anger. Similar importance of nose is also 
found for disgust. The important role of the nose in the evaluated framework contrasts 
with the common understanding that the nose is the relative expression-invariant facial 
region. Therefore, there appears to exist different important facial regions between 
discriminating posed versus spontaneous version of one emotion and classifying the 
same emotion versus other emotions. This is within our expectation as each emotion 
has its own discriminative facial regions when classifying it versus other emotions. 
However, discriminating posed versus spontaneous versions of the same emotion 
needs to depend on information in other regions. 

From Fig. 5a, we also can see that feature points on the eyebrows and eyes seem to 
provide few of the top 40 or top 90 features, for most of the emotions. This is 
probably due to the fact that about a half of the faces in the NVIE database have 
glasses, which occlude the useful information in the eyebrows and eyes. In addition, 
feature points on the mouth also have different distributions for different emotions. 
For instance, the points focus on the corner lip for fear, the top lip for happiness, and 
the middle lip for sadness. 

Fig.5b gives the three top facial fiducial points that contain the largest number of 
the selected features for each emotion. As can be seen, most of these points for six 
emotions are distributed on nose and the points indexed 42, 40, 47, 68 are shared by 
different emotions (e.g. the point 40 is shared by fear and surprise). Compared with 
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the top points for other emotions, the point 62 for sadness and the point 68 for 
surprise take a much larger proportion of the selected features. 

4   Conclusions 

A machine vision system for distinguishing posed and spontaneous versions of six 
basic emotions in static images is used to compare the performance of SIFT features 
from ASM based fiducial points, FAP distance features and their fusion. Experimental 
results show that appearance features play a significantly more important role than 
geometric features on posed versus spontaneous emotion discrimination, and fusion of 
geometric information leads only to marginal improvement over SIFT appearance 
features. This is owing to the fact that temporal information is not available in the 
geometric representation of still images. Among six emotions, surprise is the easiest 
emotion (83.4% accuracy) to be classified as posed or spontaneous, while disgust is 
the most difficult one (76.1%) using SIFT+FAP features. Our results find that there 
are different important facial regions between discriminating posed versus 
spontaneous version of one emotion and classifying the same emotion versus other 
emotions. In terms of providing the most relevant features for classification between 
posed and spontaneous emotions, the mouth is more important for sadness, the nose is 
more important for surprise, while both the nose and mouth are important for disgust, 
fear, happiness, and the eyebrows, eyes, nose, mouth are all important for anger. A 
significant proportion of the SIFT features selected by the mRMR for six emotions 
are distributed on the points in the nose region. Our future work will test the 
performance fusing SIFT features with temporal geometric features in video, and 
explore real world applications. 
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Abstract. Learning an inverse kinematic model of a robot is a well
studied subject. However, achieving this without information about the
geometric characteristics of the robot is less investigated. In this work,
a novel control approach is presented based on a recurrent neural net-
work. Without any prior knowledge about the robot, this control strategy
learns to control the iCub’s robot arm online by solving the inverse kine-
matic problem in its control region. Because of its exploration strategy
the robot starts to learn by generating and observing random motor be-
havior. The modulation and generalization capabilities of this approach
are investigated as well.

Keywords: Adaptive control, Feedback control, Inverse kinematics,
Neural network (NN), Reservoir computing (RC).

1 Introduction

Drawing a figure on a blackboard is a task which humans perform without con-
sciously thinking about how each joint of their arm should be positioned. For
robots like the iCub [1], this task is much more difficult. A robot needs to be able
to map a position from task-space to joint-space, which is called inverse kinemat-
ics. There are multiple positions in joint-space to reach a given task-space tar-
get. On the other hand, mapping positions from joint-space to task-space, called
forward kinematics, is a unique transformation. Solving the inverse kinematics
problem has been investigated extensively. Some approaches use analytical and
numerical methods to solve this problem [2,3]. More advanced techniques learn
inverse kinematics in different sub-regions of the task-space and use a weight-
ing approach to approximate the inverse kinematic over the entire task-space
[4,5]. Other techniques use a Recurrent Neural Network (RNN), to train on
forward kinematic data containing the positions in joint and task-space [6,7,8].
This removes the redundancy in the inverse transformation, because there are
no redundant examples given during training. However, these techniques learn
an attractor that is limited to the regions described by the training data and
although they posses generalization capabilities, learning the entire inverse kine-
matic model can not be claimed. The proposed controller learns to control the
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iCub’s arm online by creating a model based on previous actions and observa-
tions of the robot. It uses a Reservoir Computing (RC) network to acquire an
inverse kinematic model, but only in the visited regions of the arm. By doing
both the control an the updating of the model simultaneously, the desired con-
trol behavior can be acquired without the need of having any prior knowledge
about the robot.

The remainder of this paper is structured as follows: first, in Section 2, we
give a short introduction on Reservoir Computing and explain the training al-
gorithm. Next, in Section 3, the design steps of the controller are explained. To
demonstrate the controllers performance, we apply it on a kinematic control task
in Section 4. Finally, we draw our conclusions in Section 5.

2 Reservoir Computing

The RC network model used in this paper follows the Echo State Network (ESN)
approach [9]. An ESN is composed of a discrete-time recurrent neural network
(i.e., the reservoir) and a linear readout output layer which maps the reservoir
states to the desired output. For many applications, the dynamics of the reservoir
need to be tuned to match the intrinsic time scale of the input data. The system’s
dynamics can effectively be tuned by using leaky integrator neurons [9]. Their
states and the readout output are updated as follows:

x[k + 1] = (1 − γ)x[k] + γ tanh (Wr
rx[k] + Wr

iu[k] + Wr
b) (1)

y[k + 1] = Wo
rx[k + 1] + Wo

b, (2)

where u[k] denotes the input at time k, x[k] represents the reservoir state and
y[k] is the output. The weight matrices WΔ

∗ represent the connections from ∗
to Δ between the nodes of the network (where r, i, o, b denote reservoir, input,
output, and bias, respectively). All weight matrices Wr∗ to the reservoir are
initialized randomly, while all connections to the output Wo

∗ are trained us-
ing standard linear regression techniques. As non-linearity a hyperbolic tangent
function is used. After initialization, Wr

r is normalized by dividing it with its
largest absolute eigenvalue (spectral radius). For linear neurons the spectral ra-
dius should typically be close, but smaller than one. Because of this spectral
radius the system is operating at the edge of stability [9]. The leak rate γ in (1)
controls the time scale of the network [9,10]. Usually training Wo

∗ is done offline,
in batch mode. In this work, Wo∗ is trained online using Recursive Least Squares
(RLS). With each iteration the output weights are adjusted so that the network
converges to the desired output:

P[k] = P[k − 1]− P[k − 1]x[k]xT [k]P[k − 1]
(1 + xT [k]P[k − 1]x[k])

, (3)

with P[0] = I
α , x[k] the current states and α constant. P[k] is a running estimate

of the Moore-Penrose pseudo inverse (xT x + ρI)−1. The used training error is
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Fig. 1. (a) Illustration of a controller method described in the work of Jaeger [12].
During training, random θ(t) values are used to train the output weights of the net-
work based on the corresponding robot response y(t). (b) During testing, the trained
network is used to control the robot according to to the desired trajectory yd(t + 1).
(c) Schematic representation of the proposed controller. The dashed arrows represent
the output weights w which are trained. These are the same for both networks (weight
sharing). The optional limiter bounds θ(t) to a certain range. Afterwards, the bounded
values θ̃(t) drive the robot. The values θ̃(t− 1) are used as desired network output for
RC-network A which are used to train the weights w.

defined as the difference between the generated and desired output d[k]:

e = w[k − 1]x[k]− d[k] (4)
w[k] = w[k − 1]− eP[k]x[k]. (5)

When using RLS these output weights are rapidly and effectively modified. This
behavior satisfies the conditions necessary for the FORCE approach by Sussillo
and Abbott [11]. This approach allows learning with feedback of the actual
output (small errors included) instead of clamping the feedback to the correct
output (no errors) during training.

3 Design of the Controller

The goal of this work is to design a controller which can learn the inverse kine-
matics in the vicinity of the desired trajectory and without any prior knowledge
about the robot system. For most supervised learning techniques, training exam-
ples are generated by a teacher controller, observations in joint and task-space or
an actual inverse kinematic model of the robot. However, in this work no prior
knowledge or model is assumed.

Another approach to learn a good kinematic representation is to use a model
exploration strategy where random motor commands are generated and the cor-
responding robot response is observed. In the work by Jaeger [12], such a strategy
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is taken. Here, an RC-network is used which is trained offline by using random
values as training output and the plant response to these values as training in-
put. In this example, the feedback information y is presented to the RC-network
in 2 versions: the current feedback y(t) and a delayed version y(t − 1). Dur-
ing training, also the desired output, which are the random motor commands
θ(t), are delayed one time step before given to the RC-network. As a result,
the network learns to generate the previous output θ(t− 1), given the previous
(y(t − 1)) and current input (y(t)). After training the output weights (dashed
lines in Fig. 1(a)), the desired end-effector position yd(t + 1) is presented to
the input which was connected to y(t) during training. The actual end-effector
position on the other hand, is given to the reservoir input which was connected
with y(t − 1) during training. The output of the network θ(t) commands the
robot.

In this work we want to achieve similar results but in an online manner. The
advantage here is the ability of the controller to readjust the internal model of the
robot to unforeseen changes in the robot or its environment during control. As
shown in Fig. 1(c), a similar RC-network to the one described above (Fig. 1(a))
is used. This network, which we will call RC-network A, is trained online in
a supervised manner by using RLS. Below RC-network A we have a duplicate
network, RC-network B, with the same input, reservoir and output weights
(weight-sharing) as RC-network A. This network is connected to the robot in a
similar manner as described by Jaeger in Fig. 1(b). The output of this network
is not only connected to the robot but is also used (delayed by one time step)
as the desired output for training the output weights. The reservoir states are
initially the same for both networks and are randomly chosen according to a
normal distribution (N (0, 1)). This random initialization causes the robot to
move its arm and generating examples which are spread more evenly over the
solution space. Without this so called motor babbling the samples, used to model
the kinematics, would be clustered which leads to poor generalization. Because
the inputs are not the same for both networks, the corresponding states will
evolve differently. However, as RC-network A is converging to a more accurate
model, the inputs of both networks will become the same with a difference of 1
time step. Because of the desired trajectory in task-space and the current robot
feedback as input, RC-network B starts generating values which are in turn used
to command the robot. Such commands are limited to a certain range according
to the actuators specifications. For instance, when controlling an actuator the
amount of torque that it can deliver is limited. In Fig. 1(c) such limiting is
represented by a limiter which bounds θ(t) to θ̃(t). Delayed by one time step,
these values θ̃(t − 1) are given to RC-network A as the desired output. With
each iteration, the resulting output weights are used for RC-network B.

By applying this topology, RC-network A is learning the controller solely on
the generated examples during actual control. On the contrary, RC-network B
uses the trained parameters to improve the control of the robot based on both
the desired and actual robot response.
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Fig. 2. (a) This plot illustrates a generated trajectory after training (gray) together
with the desired trajectory (black). The dots on the generated trajectory are the sample
points. (b, top) Demonstrates the velocity modulation on target point reaching (100
time steps per target point) . (b, bottom) Generalization (dark gray) to different target
points (black dots). The circular dashed line represents the projection of the spiral on
the plain of the target points.

4 Robot Experiments

To evaluate the proposed control strategy we learn a kinematic model of the 7
degree-of-freedom (DOF) iCub robot arm. A“Webots” simulation model of the
iCub robot is used to do the experiments. Here Y1, Y2 and Y3 correspond to
respectively the Z-, X- and Y-axes of the robot’s frame of reference. Encoders
in each joint measure the angular positions. When a joint position is given to
the robot, an internal PID controller will generate the torque necessary to move
the joint to the desired position. Therefore, due to the dynamics of the robot, a
delay between the commanded and recorded position is observed.

4.1 RC-Network Setup

RC-network A and B are, except for their input, identical. For choosing the
number of neurons, a trade-off between execution speed and performance has to
be made. In our experiments we used 400 neurons. All the following parameters
are hand tuned. The connection matrix from input to the reservoir (Wr

i ) has
elements which are drawn from a normal distribution (N (0, 1.5)). The reservoir
has a connection matrix with values that are drawn from N (0, 1). Other prop-
erties of the reservoir are a spectral radius and a leak rate of 1. In this work
the leak rate will be used to modulate the velocity of the generated trajectory.
The connection of the bias to the readout layer is trained. The connection ma-
trix Wr

b from (1) is drawn from a standard normal distribution and scaled by a
bias-term of 0.5. The robot model is commanded by angular positions in degree.
The network will however, explore this range (within the boundaries set by the
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limiter) to find the correct angles. The introduced RLS-parameter α, defined in
Section 2, is set to 1. The initial output weights w(0) are normalized random
values (N (0, 1)).

4.2 Learning Kinematic Model

The desired spiral trajectory in task-space is similar to the one described in [7].
By connecting the proposed controller to the iCub simulation model, the con-
troller will initially drive the robot arm randomly. Thanks to the RLS learning
rule, fast adaptation of the output weights is achieved. As a results, fast learn-
ing of the kinematic model is acquired. After only 1000 time steps (time step
= 270 ms) the robot starts following this spiral trajectory. Most feedback con-
trollers use an error defined on the task-space to achieve the desired behavior.
Although the proposed controller is not designed to minimize this error in task-
space, it converges to the desired trajectory because the internal trained model
corresponds to that of the iCub’s arm. When such a model is achieved we could
choose to continue the training online, learning the inverse kinematics in newly
visited task-space regions. However, to evaluate the trained model at a certain
point in time we will stop the training by settingΔw = 0 in (5) and evaluate how
well it continuous to follow a desired trajectory without learning. In Fig. 2(a) we
show such generated trajectory of the iCub’s arm (gray), which needs to follow a
spiral trajectory similar (not the same) to the desired trajectory during learning.
As demonstrated, the learned inverse kinematic model corresponds well with the
iCub’s arm for the desired end effector positions. However, because of the phys-
ical limitations of the robot some desired trajectory points, especially the ones
closer to the robot (Y1 < −0.2), are unreachable by the robot.

4.3 Generalization

Next, we investigate the transient and generalization behavior of the learned
kinematic model. Instead of following a spiral trajectory we define some target
corner points that form a specific shape (e.g.: a square or a star). So 4 target
points for a square and 10 for a star. These points are all located on a plane per-
pendicular to the direction of the spiral. Each target point excites the network
for 100 time steps. Afterwards, the next target point is given to the network. In
other words, it is not necessary to follow a square or star trajectory, but the task
is to reach the target corner points of each shape. The target points forming a
square are located on the projection of the learned spiral data (dashed lines). As
shown in Fig. 2(b) (bottom, left) the desired target points are reached. However,
the generated movement between two different target points is demonstrating
transient behavior, that is, it does not follow a straight line (shortest path be-
tween target points) but rather according to an arc (dark gray). The acquired
kinematic model was learned by following a spiral trajectory, never reaching
other regions of the task-space, which explains the transient arc behavior of the
generated motion. The target points forming a star shape are, except for two,
not located on the projection of the spiral trajectory. Although the learned kine-
matic model is based on the data seen while following the spiral trajectory, the
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model is generalizing well to the other target points. Fig. 2(b) (bottom, right)
shows small deviations in the reached target points (black dots), but it illustrates
that the learned model generalizes well.

4.4 Modulation

The velocity at which each trajectory point is reached can be modulated after
or while training. We achieve this by changing the leak rate γ of the reservoir
states (1). As described before, changing γ ∈ [0, 1] effectively changes the time
scale of the system. Fig. 2(b) (top) demonstrates the effect of such modulation
for multiple γ’s after learning (Δw = 0) and for different target points (e.g.:
the target points forming the star shape). By decreasing γ, the distance between
each sample point will decrease as well. As shown in the top plot of Fig. 2(b),
the robot is unable to reach the target positions within 100 time steps when
using γ = 0.02.

5 Conclusion

We presented a novel controller based on a recurrent neural network, which is
able to learn the inverse kinematics of the iCub’s robot arm fast, without any
prior knowledge about the robot. By using an internal exploration approach, the
proposed system starts learning a model of the arm. Although there is no error
defined on the actual trajectory, the robot will eventually generate the desired
motion. The system only uses observations of forward kinematic motion gener-
ation to learn a kinematic model of the robot arm. Consequently, the controller
only observes a unique mapping of joint to task-space positions. Bad examples
due to redundancy in the inverse kinematics, are not observed and thus elimi-
nated in the actual control. Both generalization experiments demonstrate that
when online learning is discontinued, the learned inverse kinematic model is re-
stricted to the previously visited regions. Although generalizing well to unseen
task-space regions, the claim of learning a full kinematic model is only valid
when all possible end effector positions are visited during the online learning.
From our experiments transient behavior of the network emerged as arced mo-
tions between the different presented target points. Finally, we demonstrated the
velocity modulation of the controller and its effect on the resulting trajectory. In
future work the applicability of this control approach to more advanced control
tasks will be investigated and compared to classical control approaches.
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Abstract. The CodeBook is one of the popular real-time background
models for moving object detection in a video. However, for some of
the complex scenes, it does not achieve satisfactory results due to the
lack of an automatic parameters estimation mechanism. In this paper,
we present an improved CodeBook model, which is robust in sudden
illumination changes and quasi-periodic motions. The major contribu-
tions of the paper are a robust statistical parameter estimation method,
a controlled adaptation procedure, a simple, but effective technique to
suppress shadows and a novel block based approach to utilize the local
spatial information. The proposed model was tested on numerous com-
plex scenes and results shows a significant performance improvement over
standard model.

Keywords: Codebook, Video Segmentation, Background Subtraction,
Mixture of Gaussians, On line Learning, Online Clustering.

1 Introduction

Detection of moving (foreground) objects in a video is a fundamental task in
most of the computer vision applications, such as video surveillance, activity
recognition and human motion analysis in sports video sequences. This is a
difficult task due to many challenges in realistic scenarios which include irregular
motion in background,illumination changes, objects cast shadows, changes in
scene geometery and presence of noise in training data, etc. [1, 2, 3].

To address the above-mentioned issues, a large number of research papers
have been published in the previous decade [6,7,8,9,10,11,12,5]. Amonge these,
the Mixture of Gaussians (MoG) exhibits a better ability to deal with gradual
illumination changes due to better clustering capabilities. Since the introduction
basic (MoG) [6] background model in 1999 numerous improvements [15, 2, 16]
have been proposed. However, despite all of its enhancements its performance is
still not satisfactory for some complex scenes especially those with quasi-periodic
motion in the background and sudden illumination changes. Also, MoG is a
parametric model and its parameters need to be hand-tuned for each particular
scene, which makes it unsuitable for real-time applications [5, 10]. Furthermore,
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the temporal distribution of the pixels suggests that it is closer to the cylindrical
model rather than Gaussian [5,10]. Hence, technically MoG is not a good choice
for modeling in this case.

The CodeBook model [5, 10] and its enhancements [10, 1, 17] perform better
than other state-of-the-art methods both in-terms of segmentation accuracy and
processing time. The cylindrical colour model and novel matching criteria are
some of its distinguished features. However, according to the reported results
[10,1,17] it does not achieve satisfactory results for some of the dynamic scenes
like sudden illumination changes due to lack of automatic parameters selection
mechanism. Thus, there is a need of further investigation in this regard to devise
an automatic mechanism for optimal parameters selection. To the best of our
knowledge no study exists on the investigation of how different configurations of
the CodeBook parameters affect its performance.

In this paper we present several enhancements over basic CodeBook model
which are, a robust statistical parameter estimation method, a controlled adap-
tation procedure, a simple, but effective technique to suppress shadows and a
novel block based approach to utilize the local spatial information. The pro-
posed model was tested on numerous complex scenes and result shows a signifi-
cant performance improvement over standard model in terms of computational
complexity, segmentation accuracy and memory efficiency.

The rest of the paper is organized as follows. In Section 2 we will review some
related work, while Section 3 is an elaboration of the proposed approaches. The
experimental results and analysis are presented in Section 4. Finally, we conclude
this paper and propose possible future extensions in Section 5.

2 The CodeBook Model

In the basic Codebook background model, a Codebook (M) containing one or
more codewords (ci) is constructed for each pixel. Each codeword contains RGB
vector Vi =(Ri, Gi, Bi) and a six-tuple auxi = {Ǐ, Î , f, λ, p, q} where Ǐ and Î
are the minimum and maximum brightness, f is the frequency with which it
occurred, λ is longest interval of the time during which it is not re-occurred and
p and q are the first and the last time when codeword was matched.

Let’s suppose X = {x1, x2, x3, ......, xN} is a training sequence containing N
RGB vectors and C = {c1, c2, c3, ..., cL} represents the codebook containing L
codewords. In the training phase, try to find a matching codeword cm based
on color distortion and brightness bound as defined in [5]. If a match is found,
update the matching codeword cm using (1) and (2) as follows.

Vm = α(Xt) + (1− α)Vm. (1)

σ2
m = α(δ2) + (1− α)σ2

m. (2)

Here, α is adaptation rate (usually between 0.0 and 1.0), δ is a color distortion [5],
Vm is RGB intensity vector and σ2

m is global color distortion. If no matching
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codeword is found create a new codeword and add it into M . The Codebook
obtained in the previous step may become large due to noisy training sequence.
Thus, at the end of initial training filter out codewords having large λi value.

The simple Codebook model is sufficient enough to model a scene where ge-
ometery of the scene does not changes over the time. However, in reality scenes
may change after the training. For instance, a car parked in the parking starts
moving, or sun comes out, etc. Therefore, to cope with these types of situations,
a layered CodeBook model [5] was proposed by introducing an additional layer
called the cache Codebook (H). In layered model, during the classification, if a
matching codeword is found, classify this pixel as a background and update it
using (1)and (2). Otherwise, classify it as foreground, create a new codeword,
and place it in cache CodeBook H . Then move the codewords staying longer
than some time in cache to the permanent codebook. After that, filter out both
permanent and cache codebook (for details refer to [5]).

3 The Proposed Model

Although CodeBook has achieved better performance than other state-of-the-
art models but still has unsatisfactory results for some complex scenes such as
irregular background motion and sudden illumination changes. One of the major
reasons leading to its degraded performance is its lack of automatic parameters
selection mechanisim. The parameters controlling the behavior of this model are;
Firstly, Tdel, the thresholds used to filter out noisy codewords . Secondly, Tadd, a
threshold used for moving codewords from cache to main codebook. Thirdly, ε1
and ε2 are color distortion thresholds used in training and segmentation phase
respectively. Fourthly, α, a learning rate. However, these pre-defined fixed values
are not always adequate.

In-depth analysis of different scenes revealed that mostly background code-
words have less variance than foreground codewords. As it can be seen from
Fig.1, the first (background) codeword has much less variance compared to
other foreground codewords. This motivated us to compute a variance σ2

i for
each codeword and use this as a criterion to refine codebooks as follows.

σ2
m,t = α(Vm,t −Xt)2 + (1− α)σ2

m,t−1. (3)

Although using the variance as a criterion for refining CodeBook performs well
for most of the cases, still there are some rare scenarios where background code-
words may have high variance such as reflecting surfaces in the background or
irregular motions. As it can be seen from the Fig.2, a pixel at the tip of the branch
of the tree experienced an irregular motion due to which it has background code-
word with high variance. Similarly, in some rare cases some foreground pixels
may have low variance. For example, some smooth colored big object moving
very slowly in video.To handle these cases we have introduced Min, Max bound
along with the variance as follows.

ΘM (cx) =

{
true, if ((varx>2.5)∧((p−q)>Tdel−min))∨((p−q)>Tdel−max))

false, otherwise
(4)
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 Codeword1 Codeword2 Codeword3 Codeword4 

 Y Cr Cb Y Cr Cb Y Cr Cb Y Cr Cb 
Variance 0.713 0.444 0.466 5.369 4.749 5.342 4.472 4.95 5.41 4.32 4.356 4.41 

 BoxMin 250 124 126 85 73 215 45 45 80 70 70 180 
BoxMax 255 130 130 95 80 225 55 55 90 80 80 190 
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The graph shows the temporal distribution of this pixel.   

Fig. 1. Example demonstrating the usefulness of variance for differentiating between
foreground and background codewords

         

 Codeword1 Codeword2 Codeword3 Codeword4 

 Y Cr Cb Y Cr Cb Y Cr Cb Y Cr Cb 
Variance 5.044 4.116 4.979 141.5 121.5 122.3 6.652 2.743 3.469 4.811 2.445 4.587 
 BoxMin 210 114 128 4.877 4.026 4.442 121 115 129 149 114 121 
BoxMax 227 121 142 136 120 119 144 122 140 172 120 138 
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Frame  1 

 
 

The graph shows the temporal 
distribution of this pixel.  

Fig. 2. Example demonstrating some rare cases where background codewords have
high variance

ΘH(cx) =

{
true, if ((varx>2.5)∧((p−q)>TH−min))∨((p−q)>TH−max))

false, otherwise
(5)

Φ(cx) =

{
true, if ((varx ≤ 2.5) ∧ (λ > Tadd−min)) ∨ (λ > Tadd−max)

false, otherwise
(6)

Here,ΘM (cx) is a function for deleting codeword cx fromM ,ΘH(cx) is a function
for deleting codeword cx from H , while Φ(cx) is a function for moving codeword
cx from H to M . The max/min thresholds are pre-selected fixed values which
keeps the model simple.

Furthermore, in original models codewords are adopted as shown in (1) and
(2) and parameter α is controling adaptation speed, but finding an optimal α
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value for particular scene is a hard task. In this regard, we have formulated an
automatic and adaptive method for the selection of α for each particular scene.
we observed that frequency of change can be used to find the dynamics of scene
because complex scenes have high frequency of change, while on the other hand
simple scenes have low frequency of change. Thus, we can model α using the
fluctuation frequency as follows:

fn =

{
1, if δn > ϕ

0, otherwise
(7)

Fn,t = (1− β)Fn,t−1 + βfn (8)

αn,t =

⎧⎨⎩0.9αn,t−1 + 0.1Fn,t

N , if 0 ≤ αn,t−1 ≤ 1,

αn,t−1, otherwise
(9)

Here f is short-term, F is long-term frequency of pixels intensity fluctuation and
δn is the absolute difference of pixel values in consective frames. Moreover, we
have introduced controlled adaptation mechanism i.e. codewords will be adopted
only when it is required as follows.

Gc =
∑N

1 (FN,t)
N

(10)

Here, F is long-term pixels frequency of change and N is normalization constant.
If Gc is greater than threshold for certain period of time, it will be considered as
complex scene and will be adopted accordingly.

In [18] a spatial CodeBook was proposed where the codebooks were con-
structed for individual pixels, but during the background segmentation phase
instead of checking it in only its own codebook the pixel was also checked against

1: Initialize L to 0 and Mb to ∅.

foreach Pixel in block b do.2:

Xt ← (R,G, B), I ← √
R2 + G2 + B2.3:

Try to find a codeword cm in Mb matching to Xt4:

if Found then5:
Update the codeword cm using (1) and (2)6:

else7:
Increment L and create new codeword cL by setting,8:
Vm ← (R, G, B) and auxL ← 〈I, I, 1, t − 1, t, t〉9:
Add cL in Mb10:

end if
end

foreach Codeword ci in Mb do

11:

Set λi ← max{λi, (N − qi + pi − 1)}
end

1 :2

1
1

1

3:
4:

5:

Algorithm 1. Block Based CodeBook Construction (Proposed)
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1: During the training phase a codebook Mb was obtained by applying
algorithm I.

2: Initialize L to 0 and Hb to ∅,
3: foreach Pixel in block b do
4: Try to find a matching codeword in Mb,
5: If match occurs with any of the codeword in Mb, classify this pixel as as

background and update matching codeword by using (1) and (2).
6: Otherwise, classify it as foreground and Try to find a matching codeword in Hb.

If found update it using (1) and (2). Otherwise create a new codeword and add it
to Hb.

7: end
8: Clean Hb by using (5).
9: Move the cache codeword into Mb staying in Hb for longer than some time,

using (6).
10: Clean Mb by using (4).
11: Repeat the process from step 4 for each incoming datum.

Algorithm 2. Block Based Layered CodeBook Model (Proposed)

the codebooks of neighboring pixels. In contrast, We have also introduced a novel
block based CodeBook model in which codebook were constructed for 3X3 non-
overlapping blocks instead of individual pixels. In this model each of the nine
pixels in the block were used as training data instead of using global features
for block. In this way many benefits can be achieved. Firstly, there will be fewer
codewords which in return means less memory and less computation. Second,
we are also able to exploit local spatial dependency between neighboring pixels
for better segmentation result. The details are presented in Algorithm 1 and 2.

In Algorithm 2, during Step 7, each codeword in H is evaluated using (5), if
ΘH(cx) is true codeword will be deleted. Also, in step 8 of Algorithm 2, each
codeword in H is evaluated using (6), if Φ(cx) is true codeword will be moved
from H to M . Furthermore, in step 9, each codeword in M will be evaluated
using (4), if ΘM (cx) is true codeword will be deleted from M .

4 Experimental Results and Analyses

For the validation of proposed model, we have selected Microsoft’s Wallflow-
ers data-set which contain several challenging benchmark indoor and outdoor
scenes [19]. Furthermore, we have compared our model with state-of-the-art stan-
dard CodeBook (CB) [5] and Mixture of Gaussians (MoG) [6]. The parameters
settings for MoG were α = 0.01, ρ = 0.001, K = 5, T = 0.8 and λ = 2.5σ. Most
of these parameters were taken from some of the previous studies [6,2,5,21,22].
For original CodeBook model, the authors in the original paper did not mention
any specific value for the parameters, but in [21] the authors suggested some
parameter values α = 0.01, β = 1.15, ε = 10 Tadd = 80, Tdel = 100, TH = 50 and
TM = (N/2). For the proposed models all the other parameters are same except
Tadd−min = 25, Tdel−min = 25 and TH−min = 25. In most of our experiments,
unless otherwise stated, we have used same parameters setting all experiments.
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We have used YCrCb color space instead of RGB color space, because during
the experiments it has been found that some shadows can be suppressed by set-
ting smaller threshold for Y component as compared to Cb and Cr. Therefore,
for Y component we used threshold value ε=3 instead of 10. More than 2-5% im-
provement in segmentation accuracy has been achieved by applying this simple,
but effective heuristic.
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Fig. 3. Segmentation results on Microsoft Wallflower data-set. The columns shows
different data-sets while background modeling techniques are represented on rows.
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Fig.3 and Fig.4 presents both qualitative and quantitative results (precision,
recall and F -measures). As you can see in the Fig.3 and 4 all CodeBook family of
background modeling techniques performed better than MoG for almost all the
scenes. On the other hand, within the CodeBook family of background models,
comparatively similar result has been achieved for WavingTrees, BootStrap and
Camouflage scenes. Furthermore, our proposed models achieved significantly bet-
ter results for all four types of different challenging scenes, whereas the standard
CodeBook model failed in case of sudden illumination changes (LightSwitch).

 

Fig. 4. Quantitative results for each model on different data-sets in the form of F-
Measure F0 (background) and F1 (foreground)

The LightSwitch is comparatively stable scenes with certain sudden illumi-
nation changes. The standard CodeBook model fails for this data-set because
it cannot differentiate between the stable and complex scenes. Our proposed
models with a controlled adaptive learning mechanism seemed to have coped
well with this type of situation. The proposed spatial model performed better
than other models for some scenes, but slightly degraded performance has been
experienced in case of BootStrap because pixels at the contours of the objects
was wrongly classified due spatialy independency. Therefore, it is concluded that
in the case of stable scenes spatial information is not always useful.

Although achieving limited improvement on segmentation accuracy for some
video scenes, our proposed model performed significantly better than standard
CodeBook model on speed and memory efficiency. Both implemented in C++
and running on a PC with a 2.26 GHz Quad core CPU, the standard Code-
Book model goes as fast as 30 frames/sec, while the proposed model reaches 35
frames/sec. The size of the frames used for these experiments were s 320× 240.
The proposed models achieved a better segmentation accuracy and computa-
tional performance because of better adaptation mechanism which helps keep a
very compact codebook.
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5 Conclusion

In this paper we have presented an improved CodeBook background model for
moving object segmentation in video by introducing several enhancements. With
the introduction of simple but effective techniques significant improvements has
been achieved in terms of segmentation accuracy, processing time and memory
efficiency. The results are encouraging, but there are still some issues left un-
addressed. For instance the color based CodeBook model cannot differentiate
between background and foreground pixels if they both have similar colors. This
will be one of our future directions.
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Abstract. In order to overcome the discontinuity in clustering segmentation, a 
novel color image segmentation algorithm is proposed, which is based on seeds 
clustering and can locate the seeds of regions quickly. Firstly, the image is 
divided into a series of non-overlapping blocks with the size of n×n pixels in 
HSI color space. For each block, the centroid pixel of salient homogeneous 
region is selected as a feature point of the block. Secondly, based on the 
principles of color similarity centroids are clustered to obtain the clustered 
centroids as seeds for region growing. Finally, invalid and noisy regions are 
merged to get the complete segmentation results. Comparing with other 
segmentation algorithms, the experimental results demonstrate that the 
proposed method can accurately segment regions and objects, it outperforms 
other methods in terms of human visual perception. 

Keywords: color image, image segmentation; seeds clustering; region growing; 
region merging. 

1   Introduction 

In computer vision, image segmentation is the basis of the image analysis and 
understanding. It is widely used in image retrieval, medical image analysis, target 
location and other fields. Extraction of high-level semantics of images requires 
obtaining accurate low-level segmentation features, so obtaining clear and accurate 
outline of goals and objects in the image is important. According to the theoretical 
basis for segmentation, existing color image segmentation methods can be divided 
into the following types: Region-based methods, boundary detection, thresholding and 
clustering [1-5]. Each method has its advantage for certain images or applications. 
Recently, most popular image segmentation methods integrate multiple technologies 
to achieve satisfactory results [6, 7]. 

The region growing method is relatively stable for segmentation and can meet with 
the needs for many real applications. Many region growing algorithms derive from 

                                                           
* Corresponding authors. 
 



460 H. Sima, L. Liu, and P. Guo 

the classic algorithms SRG (Seed Region Grow) [8]. It selects seed points in gray 
level image, and the algorithms will generate different results with the different 
growing order. A. Mehnert improved SRG by taking parallel computing approach, to 
eliminate the dependency of growing order [9]. J. Fan et al [10] proposed a hybrid 
method of edge extraction and seed growth. It detects the boundary in the YUV color 
space, and chooses the regional centroids of boundary as the seed. Shih. F. Y. et al 
[11] merge adjacent pixels based on pixel similarity in YCrBr space, obtain many 
different pixels sets as initial seeds, and merge regions based on adjacent and 
homogeneous after growing. Ye et al [12] take incremental growing model to form 
the initial image partition by connectivity of similar color pixels, and automatic merge 
the initial partitions according to color and spatial information. In addition to regional 
growing algorithm, most popular image segmentation methods integrate multiple 
technologies in order to achieve satisfactory results. In JSEG algorithm [13], image 
was segmented by preliminary multi-scale clustering, then grows regions by selected 
seed pixels. The segmentation result is influenced by the scale and complicated 
process.  

To integrate the advantages of clustering and region growing, we propose a color 
image segmentation algorithm in HSI space. In this algorithm, an image is divided 
into non-overlapping mini-blocks with the size of n×n at first. In each block, the 
centroid of homogeneous region is extracted as a sub-block feature. Then centroids 
are clustered based on the principles of color similarity and clustering centroid sets 
are obtained as seeds for region growing. Finally, invalid and similar regions are 
merged to obtain segmentation results. This proposed algorithm is called as BCRG 
(blocks clustering and region growing). Compared with other segmentation 
algorithms, segmentation results demonstrate that the proposed algorithm has the 
good performance on getting accurate regions in accordance with the results of visual 
perception. The outline of the proposed algorithm is shown in Fig.1. 

 

Fig. 1. Outline of the image segmentation algorithm 

2   Image Segmentation Algorithm Based on Seeds Clustering 

2.1   Selected Seeds of Blocks 

For an image, the color difference is the key factor that brings the visual difference 
between different objects. In order to localize the seeds of image regions accurately, 
let Hue component be the main basis for seed selection of regions. Firstly, the image 
is divided into a number of n×n pixels independent regional blocks. The represent 
pixels are selected as the seeds from blocks for future growth: 
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(1) Compute the statistic  pixels distribution of Hue in a selected block;  
(2) Calculate pixels number N [p] according peak values of hue in a block; choose 

interval (-δ <Hmax (p)<δ) in which it contains maximum pixels Hδ ; 
(3) Define pixels Hδ as homogeneous pixels whose hue value in the interval in the 

block, homogeneous pixels assemble a small region R represented the block; 
(4) Obtained the centroid of the region R as the color of feature points of given 

block; 

All centroids obtained in this process represent the color feature of each block, which 
are the seeds for region growing in next step. The centroid located approach of blocks 
is illustrated in Fig.2.  

 

   
      (a)                            (b)                            (c) 

Fig. 2. Display feature point selection of blocks. (a) a selected block, (b) the statistics color 
distribution of all pixels in the block, (c) white pixels show the centroid of the given block. 

2.2   Seeds Dynamic Clustering 

Regional seed pixels should satisfy two constraints [14]. First, the pixels should be 
similarity with neighboring pixels. Second, the seeds of different regions are not 
adjacent. The centroids satisfy the first constrains. Next, clustering centroids 
accordance can satisfy the second constraint. All centroids are aggregate into the 
seeds of different regions. In order to achieve better segmentation, we proposed a 
dynamic division method. The seeds are divided into 12 intervals by Hue circle, 
which is shown in Fig.3. And the cluster number is adjusted dynamically during the 
clustering process.  

 

Fig. 3. Division of Hue space 

Based on the hue division, seed pixels of the image are classified into 12 intervals 
as initial cluster. The introduction of a priori knowledge to clustering can speed up 
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brightness and saturation component. 8 connected constraints are taken to guide the 
growth of new pixels: If the similarity of an expected pixel in eight-neighbor is higher 
than given threshold, it is identified belonging to the region. When pixel was merged 
in, the records of the area size will be update: the variable reg_size plus 1. New pixels 
are continuing merged until there are no satisfied pixels. The regional feature values 
updated as follows: 

         

( ) ( ) ( )
' , ' , '

_ 1 _ 1 _ 1

H n ew H S n ew S In ew I
H S I

reg size reg s ize reg size

+ + += = =
+ + +

.     (3) 

The similarity between the pixels during region growing is calculated by follows: 

               2 2( ) ( )
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,                  (4) 
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i
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.               (5) 

In which σs and σi represent variance of intensity and saturation components in 
Seed(i), respectively, when using Gaussian function computes similarity to the 
normalized variables. The maximum similarity within the class is taken as threshold 
calculated as formula (6).  

                        t

i
S = ( ) ( )tM a x S t seed i∈ .                      (6) 

The descriptions of growing approach are as follows: 

(1) Select the pixels set seed (i) for the growth; 

(2) Calculate similarity of neighborhood pixels, if S[j] < St

i
, merge pixel (j) in to 

Region (i), until no new pixel satisfy the constraints; 
(3) Classified pixels with no minimum in accordance with the principle of similarity 

classes are merged into adjacent cluster; 
(4) When all pixels are classified terminate running algorithm, otherwise return  

to (2). 

          
Fig. 5. The illustration of region merging 

2.4   Merging Unnecessary Regions 

Clustering process will generate some small sets of isolated pixels and produce 
corresponding regions during growing. These small regions located in the outline of 
other regions are unnecessary for the segmentation. Adhere to the two principle of the 
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process of merging, space adjacent and color similar, these regions can be eliminated. 
First calculate the closed regions, if the color difference between two areas is less than 
a particular value, then merge them; Second, check all the number of pixels within a 
region, if the number of pixels in the proportion is less than a certain percentage in the 
image, merge the region to adjacent regions with the highest similarity. The 
segmentation and image after region merged are shown in Fig.5. 

3   Experimental Analysis 

In order to verify the effectiveness of the proposed algorithm, we select 50 color 
images from the experimental database with uniform resolution 384×256 pixels. These 
images include different types of images, such as landscapes, animals, people and 
architecture with different scale of goals in the images. The Block-scale parameter is 
set to n = 9. In Fig. 6, it shows 8 typical images from test results of segmentation.  

The time complexity of the algorithm can be analyzed on considering two parts of 
the seed positioning and growing. The time complexity of computing the block 
centers is O(n), complexity of iteration for locating cluster centers is O(nlog(n)), the 
time complexity of growing is O(n), the overall time complexity is approximately   
O (n + nlog (n)). Compared with previous algorithms, this seed selection algorithm 
has two advantages: (1) using blocks feature for dynamic clustering can obtain more 
reasonable region than clustering pixels; (2) the seed is the pixel group gathered from 
represent region, pixel group of more than a single pixel regional representation can 
speed up the growth compared the pixel-based representation.  

 

Fig. 6. Some segmentation results from test database 

Here, for comparison, we select four different types of segmentation algorithms, 
including the classic normalization cuts (N-Cuts) algorithm [14], JSEG segmentation 
algorithm [13], the active contour algorithm (ACM) [15] and regional boundaries 
algorithm (LESBR) [16]. In Fig. 7, it shows the segmentation results of five 
algorithms with three type images (flowers, landscape, and horse). The lines in 
images represent the segmentation results by an algorithm. The segmentation results 
shown in Fig.7 from first row to the fifth row are our proposed BCRG algorithm, 
normalized cut algorithm, JSEG algorithm, ACM algorithm and LESBR segmentation 
results, respectively. From Fig. 7, it can be seen that the proposed BCRG algorithm 
shows an ideal segmentation. Comparing with other segmentation algorithms, the 
experimental results demonstrate that the BCRG algorithm can segment regions and 
objects accurately, it outperforms other methods in terms of human visual perception. 
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4   Conclusions 

In this paper, a novel color image segmentation algorithm based on seeds clustering is 
proposed, which combines advantages of region growing and clustering, adopts 
dynamic clustering of image block feature for seed position, grows and merges in HSI 
space. Experimental results show that the algorithm has good performance in different 
types of color image. The segmentation regions meet the requirements of human visual 
perception. Comparing with the classical region growing segmentation algorithm, 
BCRG algorithm can obtain the target and background accurately in the different types 
of images. In the future work, we will focus on introducing complex textures into the 
algorithm in order to improve the accuracy and applicability of segmentation 
algorithms. 

Algorithm flowers landscape horse 

BCRG 

 

 

 

 

 

NC 

JSEG 

 
 

ACM 

LESBR 

Fig. 7. Comparison of 5 segmentation algorithms with flower, landscape and horse image 
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Abstract. Recently support vector machines (SVMs) combining spatial
pyramid matching (SPM) kernel have been highly successful in image an-
notation. And linear spatial pyramid matching using sparse coding (Sc-
SPM) scheme was proposed to enhance the performance of SPM both in
time and annotation accuracy. However, both of these algorithms suffer
from expansibility problem, and ScSPM needs quite a long time for code-
book construction. In this paper, we proposed an adjusted framework
for the ScSPM algorithm, which applies multi-level affinity propagation
(AP) algorithm to the codebook construction process (AP-ScSPM). This
novel approach can remarkably reduces the time complexity of codebook
construction process. Furthermore, as AP algorithm can automatically
determine the representative vector number, the expansibility of the algo-
rithm is improved. By a series of experiments, we find that the proposed
framework greatly reduces the time of codebook construction process and
has the same performance in terms of annotation accuracy with ScSPM.

Keywords: Image annotation, Affinity propagation, Spatial pyramid
matching, Scale invariant feature transform.

1 Introduction

In recent years, contend-based image annotation has been the subject of a sig-
nificant amount of research. Various methods have been proposed [1][2][3][4][5],
and the bag-of-features (BoF) [6] model has been extremely popular in image
annotation. The model treats an image as a collection of unordered appearance
descriptors extracted from local patches, quantizes them into discrete “visual
words”, and then computes a compact histogram representation for semantic
image classification, e.g. object recognition or scene categorization [6].

As the BoF approach discards the spatial information of local descriptors, the
descriptors’ representation power is limited. Based on the BoF model, an exten-
sion called spatial pyramid matching (SPM) [1] was proposed and has made a
remarkable success on a range of image classification benchmarks like Caltech-
101 and Caltech-256, and was the major component of the state-of-the-art sys-
tems [6]. However, as the SPM model use the nonlinear SVM as classifier, great
� Corresponding author.
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computational and memory complexity in the training phase need to be paid,
which will limit the application of this model in real-world. To solve this prob-
lem, an extension of the SPM approach, named Linear Spatial Pyramid Matching
Using Sparse Coding (ScSPM) [6] was proposed.

In the ScSPM, a spatial-pyramid image representation based on sparse coding
(SC) of scale invariant feature transform (SIFT) features, instead of the k−means
vector quantization (VQ) in the traditional SPM was proposed. The ScSPM ap-
proach is naturally derived by relaxing the restrictive cardinality constraint of
VQ. Furthermore, unlike the original SPM that performs spatial pooling by com-
puting histograms, the ScSPM method uses max spatial pooling which is more
robust to local spatial translations and more biological plausible [6]. As to the
classifier, the ScSPM use simple linear SVMs instead of nonlinear ones which
dramatically reduces the training complexity to O(n), and obtains a constant
complexity in testing, while still achieving an even better classification accuracy
in comparison with the traditional nonlinear SPM approach [6]. But in the Sc-
SPM algorithm, there are still two disadvantages: 1) The codebook construction
process is time consuming; 2) The codebook size is empirically pre-settled, and
the expansibility of the ScSPM algorithm is limited.

In this work, multi-level AP algorithm is applied to train the codebook used
in ScSPM algorithm. The performance of the ScSPM and the AP-ScSPM is
studied in this paper. In Section 2 the feature used in the work is discussed and
the codebook construction technique is presented in details. The experiment
details are given in section 3. Finally, conclusion is given in Section 4.

2 Feature Extraction

According to reference [1], all images can be represented by a bag of feature
vectors. And if a codebook can be used to classify those feature vectors, the image
can be then presented by a single histogram vector. In [1], k−Mean algorithm
was used to train the codebook, and in [6], sparse coding algorithm and spatial
pooling methods are chosen. In this work, AP algorithm is used to train the
codebook, and the spatial pooling idea is kept when coding the SIFT features
(the same as that in [6]). The advantage of this framework will be discussed in
section 3.

2.1 Multi-level AP Framework for Codebook Construction

As discussed above, the codebook plays a very important role in the feature
mapping process. In our study, we find that cluster centers can be used for code-
book construction. And with the application of AP algorithm [8], the codebook
construction process is faster than that in [6].

What is more, compared with other clustering method, AP algorithm is robust
to the initial value, it can automatically determine the cluster number based on
the data’s distribution feature, and also can adjust the cluster result based on
the user’s interest by tuning the preference parameter P of the algorithm [8][9].
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AP algorithm is based on graph theory, and the time complexity increases
rapidly with the raise of the number of data. One possible solution for this
problem when dealing with large data set is to divide the data set into small
subsets and hieratically apply AP algorithm to pick the representative data
in each subset. In this work, both two-level and three-level AP frameworks (as

Fig. 1. Multi-level AP cluster framework for codebook construction

shown in Fig. 1) for codebook construction are studied and the results are shown
and analyzed in section 3.

In Fig. 1, first, AP is used to select feature vectors from each training image;
then apply AP to select representative vectors for each class. In the two-level
framework, those selected vectors from each class are put together to form the
codebook. As for the three-level AP framework, another AP algorithm is added
to compress the codebook size. According to the experiment results, those two
framework can remarkably reduce the time complexity of codebook construction
process with good annotation accuracy.

3 Experiment

To investigate the performance of the proposed framework for codebook con-
struction used in ScSPM, we do experiments on two image datasets and study
the performance of both ScSPM and AP-ScSPM.

3.1 Summary of Experiments

In the experiment, two image datasets are used: thirteen scene categories and
Caltech-101. For the thirteen scene categories, 13 classes with 2926 images are
used. And for the Caltech-101 dataset, 40 classes with 2643 images are selected.
Furthermore, the 40 classes are randomly divided into two subsets with 20 classes
each. In the following part, we refer these three datasets as Caltech-101-40,
Caltech-101-20-a and Caltech-101-20-b. In all those datasets , most images are
medium resolution , i.e. about 300× 300 pixels.
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For the ScSPM, 200,000 patches are randomly chosen for codebook construc-
tion, and the codebook size is set to 1024. For the AP-ScSPM, different number
of images, 25 and 30 are tried in the experiment, for each class are investigated
to train the codebook. And both two-level and three-level AP framework are
studied. For these two algorithms, 25 or 30 images are randomly chosen from
each class, respectively, for SVM training and the rest for testing.

In the following part, both the algorithm time complexity and expansibility
are recorded and analyzed. In the tables, the time is recorded in H (hour): m
(minute): s (second) format and the annotation accuracy is an average value
over five runs. The label “30-LVL2” means 30 images are randomly selected for
codebook construction in AP-ScSPM, and a two-level AP framework is used, and
so on. The record in table 2 and 5 is from experiments run on one computer, the
rest are from experiments run on another one.

3.2 Algorithm Description

In this section, the proposed multi-level AP framework for codebook construction
process is presented in details.

Consider an image database T = {I1, I2, ..., IN} and a semantic label vocab-
ulary L = {w1, w2, ..., wN}. In the training phrase, a training set D={(I1,W1),
..., (IN ,WN )} of image-caption pairs is assumed, where Ii ∈ T and Wi ⊂ L.

i. For each semantic class wi ∈ L, randomly select ni training images as subset
wsi.

ii. For each image in WS={ws1, ws2,..., wsN},split it into overlapping patches
with the size 16× 16, and get a SIFT descriptor from each patch.

iii. For SIFT feature vectors from each image, apply AP algorithm to select
representative vectors VIi.

iv. For the training vectors of each class VTi={VI1, VI2,..., VIni}, pick the
cluster centers VCi with AP algorithm.

v. In the two-level AP framework, put together all the cluster centers of each
class to construct the codebook V={VC1, VC2,..., VCN}. As for the three-
level framework, AP algorithm is applied to V, and a codebook with smaller
size is generated.

3.3 Time Cost and Annotation Accuracy Analysis

In this work, the performance of the ScSPM and the AP-ScSPM are investigated.
The performance of AP-ScSPM using different image numbers for traing and
different levels of AP algorithm for vector quantization on dataset Caltech-101-
20-a is recorded in table 1. As we can see that in AP-ScSPM, very little images
are required for the codebook construction (about 25 images for each class). And
in the three-level AP framework, the codebook size is reduced to a very small
level. All the unimportant vectors are cut away, the dimension of the histogram
vector for each image is largely reduced. As a result, less time is needed for SVM
training. And at the same time, the average accuracy for image annotation of
the AP-ScSPM algorithm stay at a high level.
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Table 1. Comparison annotation performance using different image numbers and dif-
ferent levels of AP algorithm for codebook construction on Caltech-101-20-a dataset

Variable 30-LVL2 30-LVL3 25-LVL2 25-LVL3

Codebook Construction Time 68m4s 74m26s 56m26s 59m51s
Codebook Size 128 × 1562 128 × 191 128 × 1426 128 × 162

Sparse Coding Time 39m38s 23m11s 35m9s 21m25s
ScSIFT Dimension 1 × 32802 1 × 4011 1 × 29946 1 × 3402

SVM Training Time 2m44s 28s 2m41s 23s
SVM Testing Time 1s 1s 1s 1s
Average Accuracy 0.843894 0.820849 0.843091 0.817134

Standard Deviation 0.013249 0.056145 0.013011 0.00494

Table 2. Comparison annotation performance using different framework on
SceneClass-13 image dataset

Variable ScSPM AP-ScSPM-LVL2 AP-ScSPM-LVL3

Codebook Construction Time 27h1m4s 3h6m26s 5h43m22s
Codebook Size 128 × 1024 128 × 1706 128 × 129

Sparse Coding Time 3h20m38s 3h52m9s 2h24m
ScSIFT Dimension 1 × 21504 1 × 35826 1 × 2901

SVM Training Time 1m9s 3m44s 10s
SVM Testing Time 1s 1s 1s
Average Accuracy 0.794337 0.798154 0.756115

Standard Deviation 0.011569 0.013385 0.006178

From table 1 to table 5, the performance for both ScSPM and AP-ScSPM on
different datasets is recorded. From the tables we can see that, on all datasets
tried in the experiments, the codebook construction time of AP-ScSPM is far
more shorter than that of SPM and both algorithm can achieve high annotation
accuracy. Meanwhile, the three-level AP-ScSPM algorithm can reduce the com-
plexity of the codebook remarkably and SVM training time with very little cost
of annotation accuracy.

In the ScSPM codebook training process, the codebook is initialized by
k−Means algorithm which is sensitive to the initial value and unstable. So it-
eration process is necessary for a stable codebook, which will take a long time.
For example, in the code of [6], 50 cycles are used and this will take about 16
hours to obtain a stable codebook using dataset Caltech-101-20-a. However, if
multi-level AP algorithm is used, the construction time will be reduced to about
1 hour with only a tiny drop in annotation accuracy.

3.4 Algorithm Expansibility

As discussed in [6], the codebook size in ScSPM is experientially settled by the
author. As the data increase, this value must be experientially resettled and the
codebook must be construction again, which seriously limit the expansibility of
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Table 3. Comparison annotation performance using different framework on Caltech-
101-20-a image dataset

Variable ScSPM AP-ScSPM-LVL3

Codebook Construction Time 16h34m27s 59m51s
Codebook Size 128× 1024 128 × 162

Sparse Coding Time 30m38s 21m25s
ScSIFT Dimension 1 × 21504 1 × 3402

SVM Training Time 1m56s 23s
SVM Testing Time 1s 1s
Average Accuracy 0.845240 0.817134

Standard Deviation 0.012530 0.00494

Table 4. Comparison annotation performance using different framework on Caltech-
101-20-b image dataset

Variable ScSPM AP-ScSPM-LVL3

Codebook Construction Time 18h26m32s 1h15m28s
Codebook Size 128 × 1024 128 × 240

Sparse Coding Time 53m57s 33m28s
ScSIFT Dimension 1 × 21504 1 × 5040

SVM Training Time 2m13s 32s
SVM Testing Time 1s 1s
Average Accuracy 0.746360 0.732775

Standard Deviation 0.011988 0.019220

the algorithm. However, with the application of AP algorithm, the codebook size
can be automatically decided by the algorithm itself based on the data feature
as shown in the tables bellow.

With the increase of class number, the size of the codebook become larger and
larger. Though this makes sense, the large size codebook will significantly slow
down the sparse coding, SVM training and testing process. One possible solution
for this problem is to use the three level AP framework to train the codebook.

Table 5. Comparison annotation performance using different framework on Caltech-
101-40 image dataset

Variable ScSPM AP-ScSPM

Codebook Construction Time 14h37m5s 6h3m24s
Codebook Size 128 × 1024 128 × 388

Sparse Coding Time 4h52mm15s 3h35m27s
ScSIFT Dimension 1 × 21504 1 × 8148

SVM Training Time 16m15s 3m23s
SVM Testing Time 1s 1s
Average Accuracy 0.757612 0.738709

Standard Deviation 0.015682 0.010446
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From records in the table, it can be found that the three level framework can
efficiently shrink the codebook size with little cost of annotation accuracy. Ac-
cording to the experiment, with the three level AP framework, the codebook size
is about ten times the number of classes.

4 Conclusion

This paper studies the performance of ScSPM algorithm and proposed an
improved codebook construction process technique based on AP algorithm for
ScSPM algorithm. Compared with the other codebook construction process
in [6], the proposed framework shows great advantages:

a. The proposed scheme can remarkably reduce the codebook construction time
with only a tiny cost of annotation accuracy.

b. As the AP algorithm can automatically determine the quantization vector
number, the size of codebook used in ScSPM can be self-adjusted by the
algorithm base on the data. In this sense, the expansibility of the algorithm
is enhanced.

c. With multi-level AP algorithm, the size of the codebook can be maximally
reduced with acceptable drop in annotation accuracy. And the shrink of
codebook size will shorten the SVM training time.

In this work, traditional AP algorithm is used to train the codebook. As it is
known, the performance of AP algorithm is controlled by the input “Similarity”
and “Preference” matrix as well as some other parameters. In the future, by
adjusting those parameters, the performance of AP-ScSPM framework maybe
enhanced.
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Abstract. This paper proposes an airport detection and recognition method for 
remote sensing image based on visual attention mechanism. Considering the 
disadvantage in traditional methods by which the remote sensing images are 
analyzed pixel by pixel, we introduce visual attention models into airport 
detection and improve the efficiency of automatic target detection greatly. 
Firstly, Hough transform is used to judge the existence of an airport and then 
the improved graph-based visual saliency (GBVS) visual attention model is used 
to extract regions of candidates (ROCs). According to the scale-invariant 
feature transform (SIFT) feature extracted from ROCs and classified by HDR 
tree, the airport areas are recognized. Experimental results show that the 
proposed method has faster speed, higher recognition rate and lower false alarm 
rate than other current methods, and is robust against white noise.   

Keywords: Visual attention, Airport detection, SIFT feature, HDR tree, Hough 
transform. 

1   Introduction 

Recently, the automatic detection and recognition of targets in remote sensing images 
becomes more and more important, especially for airports, which are substantial 
objects in martial and civil area. However, the complex background of airports brings 
much difficulty to the detection. We summarize the keypoints in airport detection as 
follows: First, since airports locate in urban or suburban region, buildings, mountains, 
roads and some other natural or artificial objects always have similar features with 
airports, so we must find some unique and robust features to describe airports. Second, 
the basic feature of an airport is its runway, which consists of one or more straight lines, 
and has the stated length, width and intensity. At last, remote sensing images usually 
have large numbers of pixels, so we should pay attention to the complexity of methods 
in order to meet real-time processing request. 

Previous works on airport detection can be mainly classified into two kinds [1]: edge 
detection-based and image segmentation-based. The former focused on the runway, 
using edge detection operation on an image and then finding straight lines by Hough 
transform [2] to locate the airport [1][3][4]. In [3], after the edge detection, the 
algorithm removed short or curled edges, then found long straight lines by Hough 
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transform and brought the region around the each line into SVM to recognize. However 
the latter concentrated on the textural difference between airports and surrounding, and 
applied image segmentation to extract ROCs [5]-[7]. The approach in [5] proposed in 
2011 was a typical segmentation-based method and produced good results. It combined 
segmentation result and density of SIFT points to find ROCs, and then judged the 
location of the airport by statistical characteristics in ROCs such as mean, variance and 
moments. 

There are both advantages and disadvantages in above methods. The edge 
detection-based method is simple and fast, but easily disturbed by the background. 
Besides, only using Hough transform to locate airports is not exact because the length 
of detected lines usually cannot match well with the one of runways. In contrast, the 
image segmentation-based way can locate the airport area suitably and reduce the 
influence of background. However, since the segmentation is executed pixel by pixel, 
this method is very slow and sensitive to parameters. Moreover, whether the selected 
statistical characteristics are robust to affine transformation is also a problem. In 
addition, it is noticeable that the false alarm rate of detection was not mentioned in most 
of previous works. In fact, it is important in practical applications that do not miss 
existing targets in images and do not recognize false targets. 

Visual attention [8] is one of the most important parts of consciousness, and has been 
widely used in pattern recognition field and has received good results in processing of 
natural images. With the aid of visual attention, we can find salient objects quickly, 
which is different from machines. The visual attention mechanism consists of two 
processes: bottom-up and top-down. Bottom-up is the course which obtains a saliency 
map from an input image. It only relies on the input data. Nevertheless top-down has 
relation with one’s knowledge and judgment, and it can modulate the saliency map 
generated by bottom-up attention. Because an airport has much difference with its 
circumambiency, we consider it to be salient. Therefore we introduce the visual 
attention mechanism into the detection of airports to extract ROCs. By this means, we 
overcome the disadvantage of low speed caused by pixel-to-pixel analysis and the 
problem of imprecise location of airports, and we can improve the efficiency of 
detection much without reducing detection accuracy. 

Up to now, lots of visual attention models have been proposed such as NVT [9], STB 
[10] and AIM [11], but they are difficult to apply in real time due to the high 
complexity. Later, models in frequency domain, for example, SR [12], PFT [13] and 
PQFT [14], were proposed by Hou and Guo. However, these above models can receive 
preferable results on natural images but not for more complicated remote sensing 
images. In contrast, GBVS [15] is competent for target detection in complex 
background although with the shortcoming of low speed. 

In this paper an improved GBVS model is suggested to speed up its computation and 
to be more suitable for airport detection. To be more specific, we use the improved 
GBVS algorithm to compute the saliency map of the input image and locate ROCs 
according to the map. Then we extract SIFT [16] feature on ROCs and take them into 
trained HDR [17] tree to classify. Finally we ensure the position of the airport among 
all the ROCs by the number of SIFT features which belong to airport in each ROC and 
the order of saliency.  
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2   Improved GBVS Model 

The GBVS is derived from the NVT model. It constructs a Markov chain on the image 
and computes the equilibrium distribution of the chain to get the saliency map. It can be 
described as follows: 

Step 1: Obtaining the Intensity Channel 

Given an image I , use the Gaussian pyramid low-pass filters to process it. Each layer 
of the pyramid is a 2-D Gaussian low-pass filter G  showed in (1): 

                          

2 2

2 2

1
( , , ) exp

2 2

x y
G x y σ

πσ σ
 += − 
 

,                        (1) 

where ( , )x y  represents the position of a pixel in I  and σ  is called the scale 
parameter. The larger σ  is, the larger the range of smoothing. To build the pyramid, 
the original image is filtered and down-sampled again and again along with decrease of 
σ . As a result, a group of filtered results under different scales can be obtained and 
defined as the intensity channel. 

Step 2: Obtaining the Orientation Channel 

Like step 1, use the Gabor pyramid filters instead of the Gaussian to get the orientation 
information. The Gabor filter H  is described as (2): 
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here σ  is the scale parameter, f  is the frequency of the sine wave and θ  is the 
orientation. Generally, the value of θ  is 

3
0, , ,

4 2 4

π π πθ  =   
.                                   (3) 

It means that the filters act in four directions. So four groups of results are produced and 
called the orientation channel. 

Step 3: Computing the Feature Map 

Denote any result map at all the scales of two channels as M . The dissimilarity d  of 
two pixels ( , )M i j  and ( , )M p q  in a map can be defined as: 

                            

( , )
(( , ) || ( , )) log

( , )

M i j
d i j p q

M p q
= .                          (4) 

According to (4), the dissimilarity between any two pixels in M  can be calculated. 
Then a fully-connected directed graph can be constructed on M . Each node of the 
graph is a pixel in M  and each edge of it is the weight w  between two pixels which is 
assigned by (5): 
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From (5) it is known that the weight w  is determined by the distance and dissimilarity 
of pixels. Now a Markov chain is defined on the graph and the equilibrium distribution 
of it is calculated, which is the principal eigenvector with the largest eigenvalue of the 
weight matrix. The result is regarded as the feature map. 

Step 4: Creating the Saliency Map 

After getting all the feature maps in each channel, sum them together and normalize it. 
So there is a normalized map in intensity and orientation channel respectively. 
Eventually combine these two channels together as the saliency map. 

The main problem of GBVS is speed which is mentioned in [13] and [14]. To solve 
this problem and aim at the airport detection, we improved the GBVS model as follows: 

(1) Airports always have special size and there is not much difference in the size of 
different airports. So we use only two scales in GBVS, which is enough. 

(2) An airport has better directivity thanks to its runway. To catch this feature, we 
increase the number of direction of Gabor filters from 4 to 8.  

(3) We do the Hough transform on the original image and treat the result as an extra 
channel which will add into the model. We mark the detected lines with ‘1’, others with 
‘0’, and filter it with Gaussian filters. The result is called the Hough channel and is 
summed and normalized with the other two channels. 

(4) In order to exclude the interference from darker objects such as rivers and gorges, 
we multiply the saliency map with the original image I  and set the result as the final 
saliency map. This operation can highlights an airport because airports in remote 
sensing images usually have higher brightness. Maybe this step belongs to the 
top-down process. 

3   SIFT Feature 

The selection of features used to describe a region is a key problem in pattern 
recognition. Familiar features are mainly based on statistics, such as mean, variance 
and moments. But some of them lack uniqueness, some are sensitive to affine 
transformation, and some others have high complexity which does not suit for rapid 
detection. SIFT was used to locate airports in [5] and received ideal results. So, we 
adopt this strategy in our method. 

SIFT [7] was proposed by D. G. Lowe in 2004. It finds extremes in an image and 
creates feature vectors according to the information provided by the extreme and its 
surrounding. Compared with other features, SIFT is robust to affine transformation and 
fast. Details about SIFT can be found in [7]. In the course of SIFT extraction, the 
applications of different scales and rotation of the coordinate axis guarantee the 
invariance to affine transformation. We find that if we extract SIFT feature on airports, 
the keypoints often fall on the corner or junction of runways. By this token, the use of 
SIFT catches the basic feature of airports well. 

4   HDR Tree 

For target recognition, selection of classifier and training templates are indispensable. 
SVM is a general method which was used in [3] and [5] to recognize airports. However, 
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here we use HDR [17] tree instead. HDR tree is a kind of memory tree in which 
learning and search are very quick. Compared with SVM, HDR tree also possesses high 
speed in recognition of targets. And what is more, it can update its structure when new 
samples input without training all the samples again like SVM. The details of HDR tree 
was presented in [17]. When a new sample comes, it will find the leaf node which is 
most similar to it and be combined with the node. The node will split if necessary. 

5   Airport Detection Based on Visual Attention 

We use the improved GBVS model to extract ROCs and recognize airports with SIFT 
feature and HDR tree. This procedure can be shown as follows: 

Step 1: Training 

We select some images from our data set and extract SIFT features of them as training 
samples. We label the sample into two kinds: ‘1’ means it belongs to airport and ‘0’ 
points to non-airport class. Then we take the labeled samples into HDR tree for 
training.  

Step 2: Preprocessing 

For an input image, we should judge whether it contains an airport first in order to 
reduce unnecessary analysis. This is done by using Hough transform to the binary map 
of the image. If there is any detected line long enough, we will compute the saliency of 
the image; otherwise we will discard it directly. It is noticeable that Hough transform is 
used to make sure the existence of an airport but not to locate an airport as in [3]. 
Besides, the results of Hough transform will be directly brought in to the improved 
GBVS model. 

Step 3: Creating a Saliency Map 

Use the improved GBVS model to obtain the saliency map. 

Step 4: Locating ROCs 

We note the maximum value of the original saliency map is oI  and the maximum 

value of the current saliency map is cI . At the beginning cI  is equal to oI . Started 

from the brightest pixel in the saliency map, the region is growing to adjacency until the 
value of the edge pixel is smaller than α×cI . α  is a parameter valued in the range of 

[0, 1]. Then we draw the external rectangle of the grown region and treat the area in it as 
a ROC. After this, we set the pixel values in the ROC to zero and find the maximum 
value cI  of the current map. If cI  is below α×oI , all the ROCs have been extracted 

and go to the next step; otherwise a next ROC is computed as before. 

Step 5: Recognition 

Extract SIFT features on each ROC and recognize them by HDR tree. Then each SIFT 
feature vector has a label ‘0’ or ‘1’. Compute the feature rate of each ROC by (6): 
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= the number of label '1'
Feature rate

the total number
.                            (6) 

Step 6: Make Sure the Airport Region 

Now each ROC has two attributes: the saliency order and the feature rate. We obtained 
the airport region in the following rule: If there is a ROC and the corresponding feature 
rate of which is higher than a threshold β , it will be considered as the airport region; 
otherwise we pay attention to the ROCs one by one according to the saliency order. If 
there is one or more feature vectors labeled ‘1’, it will be defined as the airport area 
without considering the latter ROCs. 

The flow chart of our method is showed in Fig. 1. 

 

Fig. 1. The flow chart of the algorithm 

6   Experimental Results 

We demonstrate the performance of our method using a set of data which comes from 
Google Earth. The data in Google Earth are combination of aerial photographs and 
satellite images which are mainly collected by Landsat-7. For our experiments, we 
choose 200 color images in 30m×30m resolution with the size of 400×400, and half of 
them contains an airport. We change all of the images into gray and take 7 of them as 
training set while others for test. The environment of our experiments is MatlabR2008a 
in such computer as Inter Core2 2.53GHz CPU and 2G Memory. 

Our method of airport detection can be divided into four main phases: original map, 
saliency map, ROCs and the final recognized area. An example of this process is shown 
in Fig.2. We choose the parameters as 0.35,  =0.2α β= . 

From Fig. 2 we can find that although rivers are selected as ROCs together with the 
airport, they can still be distinguished from the airport well through SIFT feature. Some 
results of airport detection are presented in Fig. 3. Fig. 3 illustrates that our method can 
locate airports among many kinds of interferers such as mountains, clouds and coast. 
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                        (a)                               (b) 

      

       (c)                            (d) 

Fig. 2. Results step by step: Jinan, China (a) Original map; (b) saliency map; (c) ROCs; (d) 
airport region 

       

         (a)                               (b)                              (c) 

       

         (d)                               (e)                              (f) 

Fig. 3. Some examples: (a) Chengdu, China; (b) Dalian, China; (c) Lasa, China; (d) Nisi, France; 
(e) Zagreb, Croatia; (f) Indiana, USA 
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In addition, we show some failure detection cases in Fig. 4. It can be obtained that 
long and straight roads which have similar features with airports will disturb our 
detection in spite of the training of airports. 

      

                (a) Houston, USA                   (b) Beihai, China 

Fig. 4. Two failure examples: (a) Houston, USA; (b) Beihai, China 

We compared with the approaches proposed in [3] and [5]. The parameters in [5] are 
selected as R=80 and S=3. R means the radius of the SIFT cluster and S is the minimum 
number of keypoints in one cluster. Our data set is tested by the above three methods 
and 30 images are chosen as training set for approaches in [3] and [5] to obtain best 
results. We analyzed the performance in three aspects: the recognition rate, the false 
alarm rate and time consumption. The results are shown in Table 1. 

Table 1. Comparison between three methods 

Methods The recognition rate The false alarm rate Time 
Literature [5] 66% 28% More than 10min 
Literature [3] 65% 18% 2.43s 

Ours 91% 10% 2.59s 

Table 1 show that our method has obvious advantages relative to the others. The 
problems of [5] and our difference from it can be summarized as follows: First, it is 
difficult to find a fixed value of parameters R and S which are suitable for different size of 
airports, but our method is robust to the size change because it is based on the scale-space. 
Second, the segmentation method which is adopted to extract ROCs in [5] consumes a 
mass of time and by contraries the improved GBVS model is computed quickly. At last, 
the texture feature used for recognition is not robust to affine transformation, especially 
for the Zernike [18] moment. The application of higher order of Zernike moment will 
solve this problem but with the shortcoming of low speed. However we use SIFT feature 
to recognize airports without consideration of this. In addition, the main trouble of [3] is 
that it is difficult to detect inclined airports which are not vertical and horizontal to the 
coordinate axes, but our Gabor filters avoid this problem. 

Receiver operating characteristic (ROC) curve is recently used to evaluate  
the efficiency of detection. The x-axis of the curve is the false positive rate (FPR) and 
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the y-axis is the true positive rate (TPR). The larger the ROC area is, the better the 
efficiency is. So we plot ROC curves of the above three methods in Fig.5 (a). As can be 
seen, our method has largest ROC area comparing to [5] and [3]. 

 
        (a)                                             (b) 

Fig. 5. (a) The ROC curve of the methods; (b) The recognition rate under noise 

Additive noise is inevitable in remote sensing images, so we added white Gaussian 
noise on test images and discuss the performance under noisy data. The SNR is 
increased from 0dB to 30dB, and the curve of recognition rate versus the SNR is plot in 
Fig. 5 (b). The recognition rate of our method becomes steady after 15dB and higher 
than the others. Besides, the algorithm in [3] is less influenced than the one in [5] 
because when the power of noise is not too large, the influence of noise is limited for 
the detection of long straight lines which is used to locate airports. 

7   Conclusions 

This paper introduced visual attention mechanism into detection of airport target in 
remote sensing images, and proposed a new method to detect airports from remote 
sensing images which is based on computational model of visual attention. Through 
this method, the shortcoming caused by pixel-to-pixel analysis in traditional methods is 
overcome and the efficiency of detection is improved a lot. Experimental results show 
that our method has faster speed, higher recognition rate and lower false alarm rate than 
the previous works. It should be very useful in real-time target detection, especially 
when the background is complicated. 
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Abstract. Visual recognition by animals significantly outperforms man-
made algorithms. The brain’s intelligent choice of visual features is con-
sidered to be underlying this performance gap. In order to attain better
performance for man-made algorithms, we suggest using the visual fea-
tures that are used in the brain in these algorithms. For this goal, we
propose to obtain visual features correlated with the brain activity by
applying a kernel canonical correlation analysis (KCCA) method to pairs
of image data and neural data recorded from the brain of an animal ex-
posed to the images. It is expected that only the visual features that are
highly correlated with the neural activity provide useful information for
visual recognition. Applied to hand-written digits as image data and ac-
tivity data of a multi-layer neural network model as a model for a brain,
the method successfully extracted visual features used in the neural net-
work model. Indeed, the use of these visual features in the support vector
machine (SVM) made it possible to discriminate the hand-written digits.
Since this discrimination required to utilize the knowledge possessed in
the neural network model, a simple application of the usual SVM with-
out the use of these features could not discriminate them. We further
demonstrate that even the use of non-digit hand-written characters for
the KCCA extracts visual features which enable the SVM to discrimi-
nate the hand-written digits. This indicates the versatile applicability of
our method.

Keywords: Brain-based visual recognition algorithm, Kernel canonical
correlation analysis, Multi-neuron activity, Visual features.

1 Introduction

The visual recognition of specific and generic objects by machines would have
wide applications for car-mounted pedestrian detectors, surveillance systems,
and vision-based robotics, etc. However, in order to design a high-performance
visual recognition algorithm, a proper choice of visual features is essential. We
assume that the animal’s brain uses the useful visual features for their visual
recognition so that they can fulfill complex visual recognition effortlessly. Hence,
we suggest using such visual features in the visual recognition algorithm. Recent
advances in neuroscience have allowed the recording of neural activity data from
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large neural populations of a brain of a living animal with high spatio-temporal
resolution [1,2,3]. To extract the visual features that the brain of the animal uses
from the neural activity data taken with these recording techiniques, we propose
a concrete method to achieve this for given brain activity data. The extracted
features are then incorporated into visual recognition algorithms.

To evaluate the potential of our method, we applied our method to activity
data recorded from a model brain, an artificial neural network (ANN) that dis-
criminates illegible hand-written digits. Our method successfully extracted the
visual features used in the ANN from the simulated neural activity data. Indeed,
a visual recognition algorithm based on the support vector machine (SVM) that
incorporated the extracted features showed an almost perfect performance in a
task which required the use of the visual features that the ANN used. In con-
trast, the usual SVM performed at a nearly chance-level success rate. The neural
activity data recorded from an ANN, although they are artificial, share several
important characters with the real neural data. Especially, both our ANN and
the real brain represent each visual information as the distributed population
activity, not as the single neuronal activity (see [4]).

In our method, we utilize neural activity data aiming at best possible extrac-
tion of the useful visual features used in an animal’s brain. There are several
factors worth noting to achieve this goal. First, since experimental observations
suggest that various visual features are represented by neural population activity
[4], we need to extract the visual features from population activity data. Next,
we need to read off the nonlinear relationship between images and neural activ-
ity because of the nonlinear correspondence between images and neural activity
representing the images [5]. Moreover, we should express the visual features with
a nonparametric formularion because it is difficult to express high-level visual
features characterizing objects or object categories. In contrast, low-level phys-
ical visual features, e.g. orientation and scale of edge, are well expressed by
simple functions like the Gabor function [6]. Here, we adopt a kernel canonical
correlation analysis (KCCA) method [7,8] to extract useful visual features from
paired data of images and neural activities. KCCA fits the requirements noted
above. KCCA has wide applications in various fields [9,10] including neuroscience
[11,12,13]. Finally, these extracted visual features are used in kernel-based visual
recognition algorithms like SVM. In contrast to our method, existing methods
[14,15,16] that use neuroscientific knowledge to develop visual recognition algo-
rithms extract only the low-level features from neural data or try to mimic the
qualitative aspects of the brain such as a rough architecture of the information
processing.

In section 2, we first overview our method, explain KCCA, and provide a
special kernel playing a main role to provide the visual features that a brain
uses to visual recognition algorithm. In section 3, we illustrate a framework to
evaluate our method, discuss the problem that we call ignorance of variation
encountered in real-world applications of machine learning, and show how our
method can overcome this problem. Section 4 is devoted to summarize the result,
implications, and future directions of our method.
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Fig. 1. Proposed Method. Apply KCCA to correlate images with neural activities
recorded from a brain of an animal exposed to the images for construction of an NC
kernel.

2 Methods

Visual features that correlate well with the neural activity are assumed to be the
ones that the brain uses, while visual features that are poorly correlated with
neural activity are what the brain is likely to neglect. Our strategy to identify
useful visual features is therefore to correlate images (Fig. 1, lower left) with the
neural activity elicited when an animal is exposed to the images (Fig. 1, lower
right). To a given set of N images, X = {x1, · · · ,xN}, and a corresponding set
of the neural activities, Y = {y1, · · · ,yN}, both in vector representations, we
apply a kernelized version of canonical correlation analysis (CCA) to identify
visual features that correlate well with neural activity. CCA is a linear multi-
variate statistical method to identify pairs of vectors, {(u(j),v(j))}j such that
the projections of {x1, · · · ,xN} onto u(j) defined with fu(j)(x) = u(j)Tx are
highly correlated with the projections of {y1, · · · ,yN} onto v(j) defined with
gv(j)(y) = v(j)Ty.

A kernelized version of CCA, called KCCA [7,8], identifies such correlated
pairs of projections in the high dimensional visual and neural spaces (Fig. 1, mid
left and mid right, respectively), so that it can account for possible nonlinear
correlations between the pair of the original data. The left and right gray planes
in Fig. 1 represents the subspaces spanned respectively by the identified vecrors
{u(j)}j=1,2,··· and {v(j)}j=1,2,··· in high dimensional spaces. Those set of vectors
respectively represent useful visual features and the neural representation of the
visual features in the high dimensional spaces.

Considering the theory of reproducing kernel Hilbert space [8], the projection
in the high dimensional visual space is rewritten as fα(x) =

∑N
n=1 αnkX(x,xn)

with kernel funciton, kX(x,x′). Similarly, we have gβ(y) =
∑N

n=1 βnkY (y,yn),
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for the projection in the high dimensional neural space. We used the standard
Gaussian kernel for kX(x,xn) and kY (y,yn) because of its universal capability
in function approximation [17]. Therefore, our task in this formulation is to find
(α,β) instead of (u,v). To find (α,β), we maximize the regularized correlation:

max
α,β

αTKXKY β√
αT(K2

X + ζxKX)α
√

βT(K2
Y + ζyKY )β

with KX and KY being the Gram matrices for kX(x,x′) and kY (y,y′), and
ζx and ζy being regularization parameters to avoid overfitting. The maximiza-
tion problem is known to be equivalent to the generalized eigenvalue problem:(

0 KXKY

KYKX 0

)(
α
β

)
= λ

(
K2

X + ζxKX 0
0 K2

Y + ζyKY

)(
α
β

)
. A jth eigenvec-

tor (α(j)T
,β(j)T

)T defines the jth pair of visual and neural canonical variables,
fα(j)(x) =

∑N
n=1 α

(j)
n kX(x,xn) and gβ(j)(y) =

∑N
n=1 β

(j)
n kY (y,yn). All the vi-

sual (neural) canonical variables are constructed to be mutually uncorrelated.
We selected only pairs of canonical variables of which the correlation value is
greater than 0.7 to obtain highly correlated pairs of the visual and neural canon-
ical variables. The correlation value was calculated with the data set without the
data used to solve the above generalized eigenvalue problem to avoid obtaining
wrongly high values due to the overfitting. The resultant d pairs of visual and
neural canonical variables, {(fα(j)(x), gβ(j)(y))}j=1,··· ,d represent highly corre-
lated pairs of the visual features and the neural representations of them.

Our idea is that the visual features that correlate well with the neural activity
are used in the brain. Such visual features must be useful for visual recognition.
Therefore, we call such visual canonical variables {(fα(j)(x)}j=1,··· ,d the useful
visual features. Our proposal is to perform visual recognition with the SVM or
other kernel-based algorithms not within the entire feature space but in the re-
stricted space spanned by useful visual features. We naturally expect that the
visual discrimination in this space performs better.

Neural Coding Kernel
The restriction to the useful visual features implies the use of a special ker-
nel function that represents the similarity between images x and x′ by the
similarity in the space spanned by d useful visual features, {fα(j)(x)}j=1,··· ,d.
We call this kernel Neural Coding (NC) kernel or kNC (Fig. 1). Here, q(x) =
(fα(1)(x), · · · , fα(d)(x))T represents the mapping of images to the space spanned
by the useful visual features, where we expect that visual discrimination is effi-
cient. Specifically, the NC kernel is defined as,

kNC(x,x′) ≡ exp(−|q(x)− q(x′)|2
2σ2

). (1)

An NC kernel accounts for the brain-based similarity of images so that this ker-
nel function makes kernel-based algorithms such as SVM closer to the brain.
Although we used the Gaussian kernel, exp(− |•|2

2σ2 ), to represent the similarity
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Fig. 2. Neural activity recorded from ANN. (A) Feedforward architecture of the
ANN illustrating where a kNC-constructing image comes in and which neural activity
is recorded. Each number represents the number of neurons in each layer. (B) Neural
activity recorded from the third layer of the ANN. Each row represents in color code
the activity of each neuron in the third layer for presented normal and distorted digits,
20 different images per digit. Digits described at upper-side are probided to the ANN.

between q(x) and q(x′) (see (1)) in the present study, arbitrary positive semidef-
inite kernels (e.g. linear kernel, polynomial kernel, etc) can be used.

3 Evaluations of the NC-Kernel Method

Visual Recognition Task
Here, we used a model brain to test how our method of extracting visual features
used in the brain worked. As a model brain, we used a four-layer (196-160-
80-10 neurons) ANN model (Fig. 2A) with regularization [18]. Our ANN had
been trained well to perform difficult multi-class discrimination of hand-written
digits (‘0’ to ‘9’) at a high success rate. The ten neurons in the ANN’s output
(fourth) layer were intended to address which digit was provided to the input
layer. For example, when a hand-written digit representing ‘5’ was shown to the
ANN, the fifth but not other output neurons was activated. The hand-written
digits consisted of normal (Fig. 3, left upper) and distorted digits (Fig. 3, left
lower). We confirmed that the ANN correctly discriminated digits in both types
(Table 1, ‘ANN’). Hand-written digits were 196-pixel images which had been
downscaled from the original digit images stored in the ETL6 database of the
Electrotechnical Laboratory in Japan (http://www.is.aist.go.jp/etlcdb/).

We first asked whether or not the usual SVM based on the standard Gaus-
sian kernel showed good performance for discriminating a target digit (e.g. ‘5’)
from non-target digits (e.g. digits except ‘5’). Normal digits were used for train-
ing (100 positive and 100 negative samples), while distorted digits were used
for the test (60 positive and 60 negative samples) (Table 1, ‘SVM’). The very
low pixel-based similarity between normal and distorted digits (see Fig. 3, left)
made the usual SVM with the Gaussian kernel performed only at a near-chance
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Fig. 3. Examples of hand-written characters. Digits (left, shown with original
resolution) and hiragana (right, shown with downscaled resolution).

Table 1. Hand-written character image sets used in each procedure

ANN
training

ANN
test

KCCA*1 SVM*2
training

SVM*2
testdigits hiragana

normal
digits

distorted
digits

hiragana
 

*1 These left and right columns correspond to Fig. 4A center and right, respectively.
*2 SVM here represents either the one based on the Gaussian kernel or the NC kernel.

level (Fig. 4A). This result suggests that additional information is required to
successfully perform this discrimination. Therefore, we aimed to extract useful
visual features as the additional information from the ANN using KCCA.

To extract visual features which were used in the ANN and to construct a
NC kernel out of them, we first needed to prepare images to be shown to the
ANN for us to record its neural activity. We call such images kNC-constructing
images, for which we used hand-written digits or Japanese characters, hiragana,
in this study (Fig. 3). We recorded the neural activity at the third layer of ANN
(Fig. 2A). We constructed a NC kernel by applying KCCA to pairs of images
and the corresponding neural activities recorded from the ANN that received
the image. Fig. 2B shows the neural activity we observed when the digits were
input to the ANN as kNC-constructing images. The observed neural activity was
a distributed representation among the neural population, similar to what has
been observed in the real brain [4].

Evaluation of our Method
In our evaluation of our method, we asked if useful visual features were efficiently
extracted from the ANN so that they improved the performance of the SVM. We
first used both normal and distorted hand-written digits as kNC-constructing im-
ages (Table 1, left of ‘KCCA’). As a result, the KCCA, through linearization in
the high dimensional spaces, successfully identified high correlation between the
visual and neural canonical variables, fα(j)(x) and gβ(j)(y). These obtained linear
correlation (Fig. 4B, left) was originally nonlinear between the lower two spaces
in Fig. 1. The extracted visual features were used to define the NC kernel as in



A Method to Construct Visual Recognition Algorithms 491

Fig. 4. Evaluation of our method. (A) Accuracy rate for solution of a discrimi-
nation task by SVM. (B) High correlation between visual and neural canonical vari-
ables, meaning successful identification of the relationship between images and neural
activities.

(1). The SVM based on the NC kernel achieved a success rate of 96% in compari-
son with the poor success rate of 51% achieved by the usual SVM (Fig. 4A). This
evaluation with the ANN shows that our framework works well.

This high performance of the NC kernel-based SVM is understandable because
the NC kernel was constructed by using the digit image set which covered the
full variation of distorted digits used at a test (Table 1). However, we usually
do not know in advance the range of variations in images which the SVM is
supposed to handle at a test in future. We call this problem the ignorance of
variation: an issue that frequently exists in real-world applications of machine
learning. Thus we next asked if effective NC kernel could be constructed by using
non-digit images as kNC-constructing images.

Specifically, we asked if the use of hand-written Japanese characters, hira-
gana (Fig. 3, right), as kNC-constructing images (Table 1, right of ‘KCCA’)
would extract visual features that are useful for the digit discrimination. The
hand-written hiragana characters were taken from the ETL7L database of the
Electrotechnical Laboratory in Japan and were downscaled to 196-pixel. We ap-
plied the various transformation (reflections across vertical, horizontal and/or
diagonal axes) to the hiragana characters to increase their variation. However,
in order to make the hiragana characters really different from the distorted dig-
its, we never applied the same distortion to hiragana as what we applied to the
digits to obtain the distorted digits in Fig. 3 (lower). Our purpose here is to see
if non-digit characters are usable in extracting useful visual features. Therefore,
we needed to discard a hiragana characters that accidentally resembled to one of
the digits. We thereby discarded a hiragana character if the activity elicted at the
final fourth layer, (n0, n1, · · · , n9), showed one-component dominance, namely
only one of njs is greater than 0.8 while all the other njs are less than 0.2. Even
with such hiragana characters that were carefully selected to be distant enough
from digits, the NC kernel-based SVM achieved about 93% of an accuracy rate
(Fig. 4A, see Fig. 4B, right). We note that hiragana characters were neither used
in the ANN training/test nor SVM training/test (Table 1). These simulation
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results suggest that images not specific to the prospective visual discrimination
task, such as hiragana characters, can be used as kNC-constructing images.

4 Discussion

In this study, we proposed a method to extract useful visual features using
KCCA from the neural activity data recorded along with corresponding image
data, and to represent the set of useful visual features as an NC kernel that
can be used in the kernel methods. We showed that the visual features useful to
the visual recognition task were actually transferred from an ANN to the SVM
via the NC kernel. Importantly, to improve the SVM discrimination of some
data set with this method, the kNC-constructing images should not necessarily
coincide with the data set to be discriminated. In fact, we demonstrated that
kNC constructed from a set of hiragana characters dramatically improved the
discrimination performance of digits.

The visual recognition by an animal is much more flexible and accurate than
the one by the ANN used in this study. However, the ANN and the brain of
the animal share the properties that are related to the success and failure of
the extraction of useful visual features: nonlinearity in information processing
[5] and distributed nature of the information representation [19]. Our results
demonstrated that KCCA is a suitable tool to extract information from such
nonlinear and distributed activity data since the KCCA is designed to extract
“many-to-many” nonlinear correlations.

As other nonlinear kernel-based methods, explicit representations of the ex-
tracted features are difficult in our method (pre-image problem). However, our
method is meant to provide an improved visual discrimination algorithm without
knowing the explicit representations of the features.

We showed that a set of hiragana characters worked well as kNC-constructing
images, which we consider was because hiragana characters partially share vi-
sual features with digits. When we apply the present method to the data from
real neuroscientific experiments using animals, what type of images can we use
as kNC-constructing images? We expect that good candidates are the so-called
natural images [20] for the following reason. First of all, we note that images
whose recognition can be improved by the present method are by definition of
the method restricted to the objects that animals can recognize. Very strange
images that never resemble to any existing object in nature and cannot be guar-
anteed to be recognizable by animals are out of the scope of the present method.
What then are the characteristics of an object recognizable by animals? We con-
sider that such a recognizable object, even if it is man-made, should share visual
features with natural images such as scenes of forest, mountains, crops etc. It
is because animals generalize their evolutionary and developmentally acquired
ability to recognize natural images to the recognition of the object in question.
Because of such shared features supposedly included in the natural images, we
expect that the use of the natural images as kNC-constructing images improves
the performances of the object recognition algorithms, just as the use of hiragana
characters improved the performance of the digit discrimination algorithm.
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In contrast to our idea of using KCCA to extract nonlinear correlation be-
tween images and multi-neuron activity, Nishimoto et al. used a nonlinear fitting
method to study the correlation between images and single-neuron activity [21].
Instead of designing a novel visual recognition algorithm, Fujiwara et al. aimed
to construct a good brain machine interface to predict what human saw from
his/her fMRI signals, and used a Bayesian CCA to find a good basis for visual
image reconstruction [22].

Our method is versatile in two ways. First, the NC kernel is applicable to
arbitrary kernel methods. Second, once a NC kernel is identified from natural
images, it can be used to process a variety of images as long as their features are
shared with natural images.

Although so far we tested our method on simulated data, we will test our
method on neural data taken in our own laboratory or other laboratories in
near future. For our method, the neural activity is supposed to be recorded from
the brain of a living animal or human subject exposed to the natural images.
Among several possible recording techniques, functional MRI [1] by which we
record the neural activity from whole brain of an animal or human subject safely
is promising. Another possibility is voltage-sensitive dye imaging [2] by which
the neural activity is recorded from wide range of the brain at high temporal
resolution with reasonable spatial resolution, although this technique cannot be
applied to human subjects. In vivo two-photon Ca2+ imaging [3] is also a good
possibility, which enable us to record neural activity at cellular-level spatial
resolution although the spatial range recorded simultaneously is limited.

Additionally, there are several options for relevant recording areas of the brain.
Generally, neurons sitting earlier in the brain visual pathway process localized
and physical (e.g. orientation and spatial frequency) features, while neurons sit-
ting later in the visual pathway process more global and abstract (e.g. object cate-
gory) features. Therefore, we expect that resultant NC kernels will vary according
to the difference in recording techniques and areas. In order to construct the visual
recognition algorithm with the broadest utility, we may think of synthesizing an
optimized kernel from multiple NC kernels constructed by different sets of record-
ing data. This approach uses the framework of multiple kernel learning [23].

Acknowledgments. The present authors thank Dr.Hideaki Shimazaki of
RIKEN BSI for his helpful comments on the manuscript.
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Abstract. In the context of a Fuzzy-Genetic system, auto-calibration
of colour classifiers, under spatially varying illumination conditions, to
produce near perfect object recognition accuracy requires a balancing act
for the fitness function. One general approach would be to maximise the
true positives while minimising the false positives. This has been found
effective in the presence of large amount of noise. However, experiments
show that this fitness function needs improvement for cases where there
are target colours with similar hues. In this paper, we present an exten-
sion to our fuzzy-genetic colour contrast fusion algorithm, now utilising
a fitness function that detects clusters of false positives, and limits the
search space for finding the properties of the colour classifier. We tested
the performance of the auto-calibrated colour classifiers by subjecting
them to object recognition tasks in the robot soccer domain, under vary-
ing illumination conditions, until we find its limits. It was observed that
the accuracy of the object recognition began to degrade, on the aver-
age, at illumination settings that are either about three times brighter
(starting from 797.4 lux), or two times darker (less than 138 lux) than
what it was trained for (average of 285.47 lux). Otherwise, near perfect
recognition accuracy is achieved.

Keywords: Colour Classification, Fuzzy Hybrid, Genetic Algorithm.

1 Introduction

Auto-calibration of colour classifiers to discriminate colours of similar hues, to
produce near perfect object recognition accuracy still remains a challenge [14].
We investigated several candidate colour classifiers, automatically produced by
the Fuzzy Colour Contrast Fusion with Heuristic-Assisted Genetic Algorithm
(FCCF-HAGA) [14] for competing colours, such as pink, red and orange, and
observed that there are some better candidate colour classifiers that were gener-
ated by the same algorithm, but not ranked best by the fitness function. In terms
of colour-based object recognition tasks, we found that the fitness function over-
looks the best classifier because it does not penalise unwanted ambiguous colour
formations. In the light of this problem, we devised a new fitness function that
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employs false positive cluster analysis. Using the robot soccer platform [7] as our
test bed, our experiments gave us near-perfect object recognition results, within
the illumination levels of the training set. In addition, the proposed classifier has
proven effective, also with near perfect results for illumination conditions even
outside the range of the training set by 73% increase in brightness, in lux units.

2 Review of Related Works

There has been an influx of interest in colour-based object recognition research
as technology paved the way for fast image capturing devices to be readily ac-
cessible. Pixel-by-pixel classification techniques are usually employed as a colour
pixel provides a convenient, constrained and a fixed dimensional space, suitable
for supervised classification techniques. It is however identified that spectral in-
formation alone would not suffice for solving segmentation problems such as
identifying burned forest, roads and golf courses [8,5]. Therefore, a combina-
tion of spatial neighbourhood information, as well as arithmetic combination of
spectral components would help solve complex segmentation problems [8,15].

Previous works combining Fuzzy Logic and Genetic Algorithms [6,11] for
colour calibration usually involves finding the best parameters for the mem-
bership functions, using a traditional zero-order Sugeno fuzzy inference system.
In this paper, on the contrary, we are using Fuzzy Logic techniques for colour
correction purposes and Genetic algorithm for extracting the rules and the prop-
erties of the membership functions. Moreover, we employ an unorthodox fuzzy
architecture based on the works in [9,10]. There has been researches that con-
sidered the spatial relationship between colour classes in a single colour space to
discriminate them effectively [1,3]. Colour drifting as a result of changes in the
illumination is tracked down to define a cluster of colours as a target colour clas-
sifier. In the proposed algorithm, we actually manipulate the colour information
to fit into a pie-slice decision region in a 2-D colour space [10]. We also inspected
multiple colour spaces to extract the best one for each target colour [14].

Colour resolution reduction has been applied as a preprocessing step for most
colour image quantisation problems [16,12]. In [13], it was shown that a GA-
based technique for exploring variable colour depths is effective not only for
colour quantisation but also for reducing space requirements, and improving
colour classification accuracy.

Colour segmentation is still regarded as an open issue and worthy of consid-
eration [4]. Finding the colour patches robustly under changing illuminations is
vital to precise robot navigation. In the robot soccer game, the camera is in fact
the only source of input from the environment. The complete game strategy de-
pends on the accuracy of robot recognition and heading angle calculations of the
vision system. CMVision [2] is one example of a widely used colour classification
algorithm based on threshold selection in the YUV colour space.
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3 FCCF-HAGA Algorithm

The algorithm is mainly an extension of the works in [13,14]. The hybrid algo-
rithm searches for the best FCCF colour classifier with Variable Colour Depth
(VCD) and Multiple Colour Spaces (MCS) using HAGA. The principal con-
tributions of this paper are the introduction of the target colour angle range
approximation algorithm and the false positive cluster analysis algorithm. The
former reduces the search space of the calibration process, while the latter im-
proves the colour discriminability of competing colours with similar hues.

All these new ideas and algorithms are integrated into a newly-improved
FCCF-HAGA, as illustrated in Figure 1.
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Fig. 1. Architecture Diagram of FCCF-HAGA Colour Classifier Extraction Algorithm

3.1 Target Colour Angle Range Approximation

After investigating multiple colour spaces, we noticed that most target colour
pixels are loosely clustered as the hue of target colours usually change smoothly.
In the FCCF-HAGA algorithm, finding the optimal pie-slice decision regions
and contrast angles are the most important tasks. We can reduce the search
space significantly if we can set some limitations on the aforementioned angles.
We present a histogram-based approach for estimating the limits of the angles
(Algorithm 1). This algorithm builds an angle histogram corresponding to all
chromatic target colour pixels. By anchoring from the peak in the histogram,
we expand the selection of angles until we find a point that contains less than
half the value of the peak. This is done on both left and right directions. This
defines the upper and lower bounds of the angle search space.

3.2 False Positive Cluster Analysis Algorithm

From a pool of candidate colour classifiers, representing different colour spaces,
extracted using the fitness function in [14], we found that some of the top-
ranked classifiers performed less effective than those with slightly lower scores.
Further analysis revealed that the fitness function needs to take into account
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Algorithm 1. Approximating the Range of Angles for the Target Colour

input : Pixels in target area
output: Lower and upper bound of angle search range

AH[1 to a]: Angle histogram is divided into 360
a degrees;

foreach p ← every target n pixel do
if p is chromatic then

A = Angle of target pixel in colour space;
b = Histogram position of angle A;
AH[b] = AH[b] + 1;

AHmax = l = r = Position of maximum value in AH[1 to a];
repeat

decrease l;
if l < 1 then

l = a;

until AH[l] is less than 1
2 of AH[AHmax] AND not l = AHmax ;

repeat
if r > a then

r = 1;

until AH[r] is less than 1
2 of AH[AHmax] AND not r = AHmax ;

Astart = l 360
a = Lower bound of angle search range;

Aend = (r − 1) 360
a = Upper bound of angle search range;

the clustering of false positive pixels. To overcome this problem, we devised a
new fitness function that penalises the formation of false positive clusters, while
maximising the true positives. Eqn. (1) is the new improved fitness function
based on [14]. The true positive score was empirically derived to define a function
that gradually increases the rewards when the true positive ratio approaches 0.3.
It also increases more rapidly when the false positive ratio is lower than 0.1. On
the other hand, the false positive score was based on [14], with the penalising
factor added. In the worst case scenario, when k = c, the false positive score
is halved. The final fitness is simply an average of the true positive and false
positive scores.

x =
true positive pixels count within the target area

total pixels in the target area

y =
false positive pixels outside target area

total pixels outside the target area

true positive score =
1 − 1

1+e−75(x−0.05)

1 + e−10(y−0.4)

z = average number of pixels within a cluster of true positives

c = number of false positive clusters(FPC)

k = number of FPC whose total pixel count is >
1

2
z

false positive score =

(
(1 − k

c )

2
+ 0.5

)
1

e−7(y−0.7)

fitness =
true positive score + false positive score

2

(1)
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4 Experiments

We have conducted two main experiments to characterise the efficacy of the
algorithms. The first one is to extract the best colour classifiers for each of the
5 competing algorithms. Secondly, we have utilised the extracted classifiers to
evaluate their efficacy in robot tracking.

4.1 Experiments Setup

The experiment was conducted in a controlled environment, meeting the stan-
dards of the FIRA robot soccer platform as shown in Figure 2. Multiple sets
of adjustable lightings are used to produce an exploratory space with spatially
varying illumination conditions. Using a Minolta CL-200 Chroma Metre, the il-
lumination of the surface of the playing field was quantified in terms of the CIE
1931 X, Y, Z tristimulus values. The points of measurements were taken from
9 different sections in the playing field, as illustrated in Figure 3. An illumina-
tion distribution described in Table 1. A Prosilica GC-650 digital camera, with
4.5mm / F1.4 lens was used in all of the experiments. It was configured with an
exposure time setting of 20ms.

Fig. 2. Experi-
ment Environment

Fig. 3. Illumination Mea-
surement Points

4.2 Automated Colour Classifier Extraction

Four main algorithms were used to extract the best colour classifiers. Two static
images, with spatially varying illumination condition (Figure 4), were used for
training and validation sets by the classifiers. In addition, as depicted in Figure 4,
there are 6 target colours to be tracked (green, light blue, orange, pink, red and
yellow). For each of the algorithms, we have extracted 6 sets of colour classifiers
corresponding to the target colours. We have labelled these extracted sets of
colour classifiers as follows:
– FCCF-HAGA-A : extracted using the newly proposed FCCF-HAGA algorithm.
– FCCF-HAGA-B : extracted using the former FCCF-HAGA algorithm described

in [14].
– FCCF-HAGA-C : extracted using FCCF-HAGA-B but ranked manually with the

aid of a method discussed in 3.2.
– CMVision-GA : extracted using an algorithm described in [2], and calibrated by

a Genetic Algorithm with a fitness function defined in Eqn. (1).
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(a) Training Set (b) Validation Set

Fig. 4. Robot Soccer Playing Field under Spatially Varying Illumination

4.3 Robot Tracking

In order to compare the performance of the different algorithms to be analysed,
we have recorded several videos of a moving robot, using an overhead camera,
while it traverses the standard robot soccer playing field. Six videos serve as the
test sets, designated as Video (A) to (F). Video (A) and Video (B) were taken at
the same lighting conditions as the training and validation sets. Table 1 show the
detailed illumination quantification of the videos used for testing. Some frames
were skipped during the recording process due to the limitations our hardware.

Table 1. Illumination Quantification of the Scenes in the Videos

Training Setting Validation Setting Test Setting
Measured Video (A) Video (B) Video (C) Video (D) Video (E) Video (F)

Point X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z
A 496.3 500.1 250.7 251.2 252.1 125.5 250.7 251.5 151.2 27.5 27.3 10.6 811.1 816.1 400.6 1009 1009 522
B 311.3 312.9 154.7 359.0 361.1 182.2 310.6 312 187.8 38.6 38.4 15.6 780.5 785 384.4 1086 1091 568
C 195.2 194.5 195.7 511.3 514.4 262.0 248.9 249.3 149.7 72.2 71.9 31.8 862.2 865.8 426.9 1060 1065 548
D 404.4 406.7 202.2 259.8 260.9 129.9 261.6 262.6 157.3 34.7 34.4 13.5 781.5 785.8 383.9 1044 1051 545
E 205.8 205.2 99.3 364.8 366.7 185.0 329.1 331.5 199.2 47.3 46.7 19.5 766.5 770.7 376.6 1095 1103 576
F 182.6 182.7 89.3 516.5 520.7 265.8 261.7 263.7 157.6 78.1 77.4 34.8 848.5 851.6 420.3 1116 1125 582
G 413.8 416 206.8 257.3 256.3 127.9 228.9 230.2 137.1 36.5 36.3 14.3 728.5 732.4 356.6 955.2 960.3 492.8
H 210.8 210.9 102.5 369.1 369.0 187.0 287.5 288.8 173.2 49 48.4 19.6 736.4 738.1 360.6 1008 1012 525
I 138.3 138.4 66.6 516.0 519.2 266.2 226.4 226.7 135.1 77.7 76.5 33.2 828.8 831.1 410 1056 1058 545

Min 138.3 138.4 66.6 251.2 252.1 125.5 226.4 226.7 135.1 27.5 27.3 10.6 728.5 732.4 356.6 955.2 960.3 492.8
Max 496.3 500.1 250.7 516.5 520.7 266.2 329.1 331.5 199.2 78.1 77.4 34.8 862.2 865.8 426.9 1116 1125 582

Average 284.28 285.27 151.98 378.33 380.04 192.39 267.27 268.48 160.91 51.29 50.81 21.43 793.78 797.40 391.10 1047.69 1052.70 544.87

5 Results and Discussion

5.1 Colour Classification Results

For each target colour, the automatic colour classifier extraction system was run
until it meets either a fitness value of 0.95 or a convergence rate of 0.99. The
termination condition is based on a review of the fittest chromosomes from the
last 20 generations. The details of the extracted colour classifiers are shown in
Table 2. It can be seen that the best classifiers automatically selected come from
different colour spaces. The colour depth indicates how many bits were used
to represent each of the colour channels. On the other hand, the contrast rules
indicate the fuzzy contrast operator and level of operation used. For example,
(-1, 2, -1) means apply the fuzzy degradation operation once on the red and
blue channels, while fuzzy enhancing the green channel twice. The actual colour
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classification results for the 6 target colours are depicted in Figure 5. It is evident
from the figure that there are no longer noticeable concentration of false positive
clusters.

Table 2. FCCF-HAGA Extracted Colour Classifiers

Classifier Fitness Colour Colour Depth Contrast Rules Classifier Fitness Colour Colour Depth Contrast Rules
Name Score Space (R,G,B) (R,G,B) Name Score Space (R,G,B) (R,G,B)

Green 0.915 AB 6,6,8 0,0,0 Light Blue 0.81 RG 8,6,5 -1,0,0
Orange 0.894 C1C2 8,8,5 0,1,0 Pink 0.923 CM 5,7,7 -1,0,0

Red 0.921 C1C2 7,7,7 -1,2,-1 Yellow 0.908 AB 7,6,7 1,3,1

(a) Green (b) Light Blue (c) Orange (d) Pink (e) Red (f) Yellow

Fig. 5. Colour Classification Results for the 6 Colour Targets. Red Pixels: True Posi-
tives; Yellow Pixels: False Positives; Green Pixels: True Negatives.

5.2 Colour Classification Algorithm Comparisons

Table 3 depicts the detailed comparisons of the colour classifiers systems de-
scribed in 4.2. The scores were calculated by the newly introduced fitness func-
tion, except for the scores enclosed in parenthesis, which are calculated by the
fitness function in [14]. From the results in FCCF-HAGA-B, we can see that
most of the new fitness values are much lower than that of the original ones
(parenthesised ones). This is due to the penalty imposed on the formation of
false positive clusters. It is worth-noting that with the introduction of the new
fitness function on FCCF-HAGA-B gave a boost on it’s performance, also agree-
ing with the manually selected classifiers of FCCF-HAGA-C. However, when the
new fitness function was employed in combination with the thresholding classi-
fier algorithm of CMVision-GA, it still failed to isolate red from pink and orange,
even after many attempts (see Figure 6). This clearly indicates the limitations
of the simple thresholding algorithm of CMVision-GA. Using an Intel 2.8 GHz
i7 CPU, the average time to perform colour extraction per colour are as follows:
353sec. (FCCF-HAGA-A), 542sec.(FCCF-HAGA-B), 431sec.(FCCF-HAGA-C)
and 614sec.(CMVision-GA) seconds respectively.

5.3 Robot Tracking Test Results

We fed the video frames into our robot tracking algorithm, with the extracted
colour classifier sets found in 5.2. The tracking algorithm involves Green, Light
Blue, Pink and Red classifiers only to track the robot, therefore Orange and
Yellow colour targets were not classified anymore in the process. We measured
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the tracking accuracy by considering the calculated position and heading angle
of the robot as compared to standard values based on human visual judgement.
We sampled 100 frames from the videos (Table 4) to accomplish this. The error
corresponding to the calculated positions and heading of the robot as it traverses
the field is based on a Euclidean distance and heading angle measurement. Out
of 100 frames, for FCCF-HAGA-A, within a tolerance of 2.5 pixel units, the
accuracy is 99%, with a standard deviation of 0.676 and heading angle within a
tolerance of ±7 degrees, the accuracy is 92%, with a standard deviation of 3.04.
The rest of the results is as follows: FCCF-HAGA-B: 86% accuracy, std. devi-
ation of 1.703 in position and 87% accuracy, std. deviation of 27.75 in heading
angle; FCCF-HAGA-C: 99% accuracy, std. deviation of 0.682 in position and
88% accuracy, std. deviation of 3.31 in heading angle; CMV-GA: 93% accuracy,
std. deviation of 0.823 and 91% accuracy, std. deviation of 3.37 in heading an-
gle; Table 4 details the robot tracking results, with an indication of the general
illumination condition measured in lux units. The percentage error of the cal-
culated robot’s position and heading angle is also reported. Figure 7 shows an
example of the robot tracking results, as the robot traverses a darker to brighter
illuminated area. It is worth noting that the object tracking algorithm employed
in the experiments is able to recover from misclassifications of colour patches. It
tracks 4 colour patches depicting a robot. Because of this, it is not obvious to
see that CMV-GA actually fails to distinguish pink from red, but the tracking
algorithm still finds the robot. The recorded average processing time per frame
was 7 ms (without the image acquisition time). All experiment results (videos)
are available at http://cvlab.massey.ac.nz.

Table 3. Colour Classifier Comparisons. Score: Fitness values, scores in parenthesis
correspond to the old fitness function score; TP: number of true positive pixels; FP:
number of false positive pixels.

Classifier FCCF-HAGA (A) FCCF-HAGA (B) FCCF-HAGA (C) CMVision-GA
Score TP FP Score TP FP Score TP FP Score TP FP

Green 0.915 946 547 0.923 (0.923) 968 1126 0.923 (0.923) 968 1126 0.89 899 1159
Light Blue 0.81 800 1000 0.653 (0.891) 926 2428 0.653 (0.891) 926 2428 0.691 980 5644

Orange 0.894 1020 1234 0.695 (0.921) 1101 2484 0.867 (0.866) 996 874 0.744 806 478
Pink 0.923 996 1529 0.684 (0.926) 1000 1021 0.684 (0.926) 1000 1021 0.872 887 654
Red 0.921 1126 1487 0.683 (0.921) 1146 2885 0.915 (0.915) 1111 1579 0.729 1145 5174

Yellow 0.908 856 1433 0.676 (0.916) 875 1752 0.676 (0.916) 875 1752 0.86 775 606

Table 4. Comparisons of Robot Tracking Performance Utilising the Colour Classifier
Sets

Video (A) Video (B) Video (C) Video (D) Video (E) Video (F)
Average Average Average Average Average Average
285.47lux 380.17lux 268.48lux 51.29lux 797.4lux 1052.7lux

(Dim) (Average) (Dimmer) (Darkest) (Bright) (Brightest)
Classifier Sets Tracking Rate Tracking Rate Tracking Rate Tracking Rate Tracking Rate Tracking Rate

FCCF-HAGA (A) 100.00% 100.00% 100.00% 0.31% 100.00% 6.87%
FCCF-HAGA (B) 100.00% 99.90% 100.00% 41.82% 99.81% 35.48%
FCCF-HAGA (C) 100.00% 99.90% 100.00% 26.73% 99.81% 29.27%

CMV-GA 98.69% 100.00% 100.00% 0.31% 99.42% 40.13%
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(a) Pop. 100 (b) Pop. 150 (c) Pop. 200 (d) Pop. 300

Fig. 6. Colour Classification Results for Red using CMVision-GA Classifier with Differ-
ent Population Parameters. Red Pixels: True Positives; Yellow Pixels: False Positives;
Green Pixels: True Negatives; Blue Pixels: False Positive Clusters.

Fig. 7. Robot Traversal of a Spatially Varying Illumination Field. (Above) Consol-
idated Sequences of Robot’s Motion, (Below) Robot Tracking Results. White circle
denotes the recognised robot and the white line segment denotes the calculated robot
heading angle.

6 Conclusions

We have devised a new fitness function for a Heuristic-Assisted Genetic Algo-
rithm that works with the Fuzzy Colour Contrast Fusion algorithm [14]. The
new fitness function penalises the formation of false positive clusters as we have
observed that robot tracking tasks are adversely affected by them. Thorough
experiments using the robot soccer domain were conducted to compare the re-
sults of the proposed system against the algorithms described in [14], [2] and
manually selected colour classifiers. The proposed system was capable of isolat-
ing all target colours effectively, as compared to the thresholding algorithm of
CMVision which failed isolating red from pink and orange. The colour classi-
fiers were trained on static images, but were tested on recorded video sequences
of a moving robot traversing a field with spatially varying illumination condi-
tions. The results of the experiments demonstrated that the new system achieved
near-perfect robot tracking results, within the range between 138.4 lux and 865.8
lux. These test scenes were two times darker and three times brighter than the
average illumination level for which the system was trained for.
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Abstract. We proposed in this study the simple analog-digital circuits for 
detecting motion direction based on information processing of the vertebrate 
retina.  The array of the circuits was applied to the mobile robot.  The test 
circuit was fabricated by discrete metal oxide semiconductor (MOS) transistors 
on the breadboard.  The measured results of the test circuit showed that the unit 
circuit can output the motion signal.  The motion sensor for detecting the 
movement direction constructed with array of the unit circuits was connected 
with the microcomputer introduced in the mobile robot.  It was clarified that 
the proposed circuits can control the mobile robot.     

Keywords: analog circuit, digital circuit, mobile robot, vision chip. 

1   Introduction 

High speed and compact image processing system is needed for robotics vision and 
other systems.  However, it is difficult to realize the high speed processing system.  
The typical image processing system is constructed with the image sensor and 
Neumann-type computer.  Since the computer process the information in time 
sequential way, it is difficult to realize the high speed processing system by using the 
typical image processing system.  The vertebrate retina is preprocessor for the image 
processing in the brain.  The retina has the functions such as the edge detection and 
the generation of the motion signal.  The retina can perform the high speed 
processing since the nerve cells in the retina perform information processing in 
parallel. 

Many researchers proposed the motion detection circuit by mimicking the 
information processing of the retina and brain [1]-[8].  The circuits are characterized 
by high speed processing.  Researchers tried to apply these circuits to the system 
such as the robot, target tracking and other systems.  However, these circuits have a 
problem of incorrect operation by device mismatches due to use the analog 
technology.  And, there is also problem of low resolution.  Thus, it is difficult to use 
these analog circuits to the application systems.  

Digital circuits for motion detection were proposed based on the biological vision 
system [2],[9].  There is no problem of incorrect operation.  However, there is the 
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problem of the complex structure by using digital technology.  If the simple digital 
circuit for motion detection is proposed, it is able to apply it to many systems. 

Such motion detection circuits are needed for the robotics vision and other 
application systems.  It is necessary to propose the application systems using such 
circuits. 

In this study, we tried to propose the simple analog-digital circuits for detecting the 
motion direction by mimicking the vertebrate retina.  The measured results of the test 
circuit showed that the unit circuit can generate the motion signal.  The motion 
sensor for detecting the movement direction constructed with array of the unit circuits 
was connected with the microcomputer introduced in the mobile robot.  The 
measured results showed that the proposed circuits can control the mobile robot.  

2   Motion Detection Circuit 

2.1   Motion Detection Model 

Figure 1 shows the model for generating a motion signal based on information 
processing of the vertebrate retina [6],[7]. Figure 1(a) shows the relationship between 
one photoreceptor P (input part) shown by a gray square and an edge of the projected 
image. The edge moves toward the right hand side with a constant velocity v. 

Figure 1(b) shows the transient response of the model for generating a motion 
signal.  When the edge of the object moves on the P, the edge signal Va is generated, 
i.e. Va becomes the constant value Vcon.  After time td, the signal Vb is generated, i.e. 
Vb becomes Vcon.  The sum of Va and Vb is the output signal Vo1 of the model.  These 
pulsed signals are motion signals.  In this study, the positive pulsed signal is the 
motion signal.  The signal Vout is generated when the object moves on the P. 

In the retina, the photoreceptors are arrayed in one- and two-dimensionally [6],[7].  
As the example, the one-dimensional array of photoreceptors is shown in Fig. 1(c). 
This array detects the movement direction of the object.  Each signal from the cell is 
generated when the object moves on P.  Since the signal from each cell is integrated, 
the output signal is large when the object moves on the right or left hand side.  By the 
array of the cells, the movement direction of the object can be detected. 

2.2   Unit Circuit 

Figure 2 shows the unit analog-digital circuit for motion detection based on the model 
in Figs. 1(a) and (b).  The unit circuit is constructed with the edge detection circuit 
[6]-[8] in Fig. 2(a) and the circuit for generating the motion signal in Fig. 2(b).  The 
circuit in Fig. 2(a) is connected with the circuit in Fig. 2(b).  The edge detection 
circuit is realized by the analog technology.  The circuit for generating the motion 
signal is realized by the digital technology.  

The NOT circuit consists of two metal oxide semiconductor (MOS) transistors.  
The NOR circuit consists of four MOS transistors.  The circuit is constructed with six 
MOS transistors.  The proposed circuit is simple structure as compared with the 
previous circuit [1]-[9]. 
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Fig. 1. Model for generating a motion signal. (a) Relationship between a photoreceptor and the 
edge of the object. (b) Transient response of the model. (c) One-dimensional array of 
photoreceptors. 

 

Fig. 2. Unit circuit for motion detection. (a) Edge detector. (b) Circuit for generating the motion 
signal. 

In this circuit, the constant voltage Vth is set.  The constant current Ith is generated 
by Vth.  The photodiode PD corresponds to the photoreceptor P in Fig. 1.  The 
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voltages Va, Vb and Vout in Fig. 2(b) correspond to the signals Va, Vb and Vout in Fig. 1, 
respectively.  When the object is projected on PD, Va becomes about the supply 
voltage VDD (= Vcon).  Vb becomes about VDD (= Vcon) after the time td with capacitor 
C.  As shown in the truth table, the output voltage Vout showed VDD for td.  Thus, Vout 
showed the pulsed voltage as well as the model in Fig. 1 when the edge of the object 
moves on PD.   

There is the problem of the incorrect operation by device mismatches because 
previous circuits are realized by only analog technology. The proposed circuit does 
not have problem of incorrect operation since the proposed circuit is realized by the 
digital technology.   

3   Connection with Motion Sensor and Mobile Robot 

It is necessary for robotics vision to detect the motion of the object in real time.  We 
tried to connect the motion detection circuits with the mobile robot.  The 
microcomputer is introduced in the mobile robot. 

Figure 3 shows the connection with the motion sensor and the microcomputer in 
the robot. The array of the unit motion detection circuits in Fig. 2 is utilized as the  
 

 

Fig. 3. The connection with the motion sensor and the microcomputer in the robot 
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motion sensor. The function of the one-dimensional array is equal to that in Fig. 1(c).  
Each array can detect the motion direction by using the output voltage V1-V8. Since it 
assumed that the sensor can capture the object in the center of the sensor by using the 
function of the target tracking [10],[11], we use such array in Fig. 3 i.e. the array in 
the radial pattern.  It is able to detect the motion direction by using the array of the 
unit circuits. 

The microcomputer is introduced in the mobile robot.  Each motion signal V1-V8 is 
input to the input ports (node 1-8) of the microcomputer.  The mobile robot is 
controlled by using the input signals and the robot works by the program.  It is able 
to control the mobile robot by using the signals of the motion sensor. 

4   Experimental Results 

Figure 4 shows the photograph of the fabricated system.  The test circuit of the 
motion detection circuit in Fig. 2 was fabricated and measured.  The analog part of 
the test circuit was fabricated on the breadboard with the discrete MOS transistors 
(nMOS: 2SK1398, pMOS: 2SJ184, NEC).  The digital part was fabricated by the 
field programmable gate array (FPGA).  Vth and VDD were set to 1.6 V and 5 V, 
respectively.  C was set to 4.7 μF.  

 

Fig. 4. Photograph of the fabricated system 
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Fig. 5. Measured results of the test circuit 

The system was constructed with the motion sensor for detecting the motion 
direction constructed with the array of the proposed circuits and the mobile robot 
(ROBONOVA-I, Hitec Multiplex Japan).  The microcomputer (MR-C3024) is 
introduced in the robot.  In this experiment, we programmed that the robot raises its 
hands to the movement direction. 

In this measurement, the light was provided as the object for the checking of the 
operation of the unit circuit. Figure 5 shows the measured results of the test circuit.  
When the object moves on PD, the circuit output the pulsed voltage as well as the 
model in Fig 1(b). The unit circuit can generate the signal in all measurement.  
The previous circuit does not often generate the signal by device mismatches. Thus, 
the unit circuit can generate the motion signal although the structure of the circuit is 
simple. 

Figure 6 shows the measured results. In this measurement, the light was also 
provided as the object. The robot raised its hands to the movement direction when the 
light moved on the motion sensor. The robot could operate by using the motion 
signal. Thus, it was clarified that the array of the motion detection circuit can control 
the mobile robot.   

In this measurement, the real image was not provided since the number of unit 
circuits constructed with the array is small. The array of the edge detection circuits 
utilized to the unit circuit can generate the edge signal even if the real image is 
provided on the array [12],[13]. Thus, the motion sensor can detect the motion 
direction although the real image is provided.   

 



512 K. Nishio and T. Yas

Fig. 6. 
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Abstract. A new color image segmentation algorithm based on the in-
tegration of spatial information into finite generalized Dirichlet mixture
models is presented. The integration of spatial information is done via the
consideration of image pixels neighborhoods. The segmentation model
presented is learned using maximum likelihood estimation within an ex-
pectation maximization (EM) optimization framework. The obtained re-
sults, evaluated quantitatively, using real images are very encouraging
and are better than those obtained using similar approaches.

Keywords: Image segmentation, mixture models, spatial information.

1 Introduction

Image segmentation has received a great deal of attention in the image processing
literature. This is an important first step for a variety of image analysis and
computer vision tasks such as content-based image retrieval [1]. The main goal
is to divide up images into homogeneous regions which can be viewed essentially
as an unsupervised learning problem [2,3]. The application of statistical models
to the image segmentation problem has been a topic of much interest and several
approaches and methodologies have been proposed. In particular, finite mixture
models have received a lot of attention because they offer an efficient approach
to the unsupervised learning (or clustering) problem [4,5]. The direct application
of finite mixture models suffer, however, from a well-known deficiency namely
the lack of the spatial information (i.e. the spatial relations between the pixels
to cluster are generally not taken into account).

There is a vast body of literature on various spatial integration models for
the image segmentation problem. For instance, the spatial knowledge has been
used in [6] for the segmentation of Landsat images, in [7] for the segmentation
of medical images, and in [8] for the segmentation of color textures. Attempts
to overcome the lack of spatial information have chiefly centered on the con-
sideration of pixel’s neighborhood during the segmentation process [9,10]). For
instance, when a finite mixture model is considered for segmentation, it is rea-
sonable to assume that two neighbors will be in the same region as done in [11].
The work in [11] has been based on the assumption that the image regions follow
Gaussian distributions which is actually very restrictive as previously shown by
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several studies (see, for instance, [12,5,13]). Thus, the goal of this paper is to
propose an alternative statistical framework where generalized Dirichlet (GD)
distributions, which offer both flexibility and ease of use, are considered. Within
the proposed framework, the spatial information is integrated and used as do-
main knowledge prior information to determine the accurate number of image
regions during the segmentation process. In the following section, we first discuss
our segmentation statistical framework and then a complete learning approach
to estimate its parameters is given. Section 3 is devoted to the presentation of our
experimental results. Finally a conclusion is given and future research directions
are proposed in Section 4.

2 The Segmentation Model

Let X be an image represented by a set of pixels X = {X1, . . . ,XN} where
each pixel is denoted by a random vector Xn = (Xn1, . . . , XnD) and N is the
number of pixels. Now if the random vector X follows a GD distribution with
positive parameters α = (α1, β1, . . . , αD, βD), the joint density function is given

by [14,15,5]: p(X|α) =
D∏

d=1

Γ (αd+βd)
Γ (αd)Γ (βd)X

αd−1
d

(
1−

d∑
i=1

Xi

)γd

, where
D∑

d=1

Xd <

1 and 0 < Xd < 1 for d = 1, . . . , D and γd = βd − αd+1 − βd+1 for d =
1, . . . , D − 1 and γd = βd − 1. Generally, an image is composed of different
regions. Thus, it is appropriate to describe it by a finite GD mixture model
with M components: p(X|Θ) =

∑M
j=1 Pjp(X|θj), where {Pj} are the mixing

proportions which are positive and sum to one, p(X|θj) is the GD distribution,
θj = (αj1, βj1, . . . , αjD, βjD), and Θ = (P1, . . . , PM , θ1, . . . , θM ) is the set of
all mixture parameters.

Segmentation can be viewed as the spatially coherent clustering of image
features (e.g, color, texture), yet it is clear that a mixture model does not take
into account the spatial information. In order to overcome this problem, we
adopt the approach proposed in [11]. This approach can be explained as follows.
For each pixel Xn ∈ X (we don’t consider the boundary pixels which number
is negligible as compared to the whole image pixels), there is an immediate
neighbor X̂n ∈ X which is supposed to have arisen from the same cluster of
Xn, we call it the peer of Xn. Since it is supposed that the peers stay in the
same clusters, this spatial information can be used as indirect information for
estimating the number of clusters. In this scenario, if a larger value is assigned to
M , there would be a conflict with the indirect information, provided by the pixels
spatial repartition, of M , which means that a true cluster is wrongly divided into
two sub-clusters. These two sub-clusters have then to be merged to form a new
cluster which related parameters have to be estimated again. In this case, one of
the clusters’ mixing probabilities will drop suddenly and approaches zero, that
can be neglected easily, so the number of clusters will gradually decrease to reach
the true number of clusters (i.e. image regions).

Let X and the set of peers X̂ = {X̂1, . . . , X̂N} be our observed data. The set
of group indicators for all pixels Z = {Z1, . . . ,ZN} will form the unobserved
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data, where Zn = (zn,1, . . . , zn,M) denotes the missing group indicator and zn,j

is equal to one if Xn and X̂n belong to the same cluster j, or zero, otherwise.
The complete data log-likelihood is given by

L(X , X̂ ,Z|Θ) =
N∑

n=1

M∑
j=1

zn,j(2 logPj + log p(Xn|θj) + log p(X̂n|θj)) (1)

An important property of the GD mixture, previously shown in [5], is that the
problem of estimating its parameters can be reduced to estimation of the param-
eters of d Beta mixtures by using the following transformation: T (Xnd) = Xnd

if d = 1 and is equal to Xnd

1−Xn1−...−Xnd−1
, otherwise. Indeed, in the constructed

vector W n = (Wn1, . . . ,WnD), each Wnd, d = 1, . . . , D, has a Beta distribution
with parameters αnd and βnd [5]. According to this property, the estimation
problem is reduced to the optimization of

L(W , Ŵ,Z|Θd) =
N∑

n=1

M∑
j=1

zn,j(2 logPj+log pbeta(W nd|θjd)+log pbeta(Ŵnd|θjd))

(2)
where pbeta denotes the Beta distribution, W = (W1d, . . . ,WNd), 0 < d < D,
θjd = (αjd, βjd) and Θd = ({Pj}, {θjd}). The most popular algorithm to esti-
mate the parameters of a finite mixture model is the EM algorithm which can be
done iteratively via 2 different steps: the expectation (E) step and maximization
(M) step. In E-step, the conditional expectation of L(W , Ŵ,Z|Θd) is calculated:

Q(W , Ŵ , Θd) =
N∑

n=1

M∑
j=1

pbeta(j|W nd, Ŵ nd,θjd) (3)

× (2 logPj + log pbeta(W nd|θjd) + log pbeta(Ŵ nd|θjd))

where pbeta(j|W nd, Ŵ nd,θjd) is the posterior probability that W nd and Ŵ nd

are assigned to cluster j:

pbeta(j|W nd, Ŵ nd,θjd) =
Pjpbeta(W nd|θjd)Pjpbeta(Ŵ nd|θjd)∑M

j′=1 Pj′pbeta(W nd|θj′d)Pj′pbeta(Ŵ nd|θj′d)
(4)

Then, in M-step, Q(W , Ŵ, Θd) is maximized which gives us the following for Pj :

P
(k+1)
j =

1
N

N∑
n=1

pbeta(j|W nd, Ŵ nd, θ
(k)
jd ) (5)

As for the θjd parameters, we shall employ a Newton-Raphson approach:

θ
(k+1)
jd = θ

(k)
jd −H−1(θ(k)

jd )× (
∂Q(W , Ŵ , θ)

∂θjd
) (6)
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where H is the Hessian matrix, which requires the calculation of the second
and mixed derivatives of Q(W , Ŵ , Θd) which can be straightforwardly done in
the same way as in [5]. Having the required estimation equations in hand, the
proposed segmentation algorithm can be summarized as follows:

1. Choose a large initial value for M as number of image regions (this value
should be larger than the expected number of the regions in the image).

2. Initialize the algorithm using the approach in [5].
3. Use the image data points and related peer points to update generalized

Dirichlet mixture parameters by alternating the following two steps:

– E-Step: Compute the posterior probabilities using equation 4.
– M-Step: Update the mixture parameters using equations 5 and 6.

4. Check the Pj values. If a value is close to 0 its related cluster should be
removed and the number of clusters, M , should be reduced by 1.

5. Go to 3 until convergence.

Since for each pixel (r, c) there are 4 main neighbors that are likely to be in the
same region, we can use one of them as the corresponding peer of the pixel. In
our experiments, we shall use the pixel (r+ 1, c) as the corresponding peer. It is
noteworthy that the proposed algorithm is different from classic approaches for
mixture learning which are generally composed of two components: a parameters
estimation algorithm and a criterion for comparing models where each model is
characterized by a certain number of components. In our case here the selection of
the number of image regions is done simultaneously with the estimation process.

3 Experimental Results

In this section, we demonstrate the performance of our approach as compared to
[11]. We considered also the case where the Dirichlet [12] is considered instead
of the GD. We also examine the influence of the color space choice. In par-
ticular, we compare two color spaces namely the RGB normalized color space
which rgb planes defined by [16]: r(R,G,B) = R

R+G+B , g(R,G,B) = G
R+G+B ,

b(R,G,B) = B
R+G+B and the l1l2l3 color space defined by [16]: l1(R,G,B) =

(R−G)2

(R−G)2+(R−B)2+(G−B)2 , l2(R,G,B) = (R−B)2

(R−G)2+(R−B)2+(G−B)2 , l3(R,G,B) =
(G−B)2

(R−G)2+(R−B)2+(G−B)2 . The rgb and l1l2l3 have been shown to outperform the
widely used RGB space [16]. To have a fair comparison, in all cases (i.e. Gaus-
sian, Dirichlet and GD mixtures), the initial value of M is set to 30.

In addition to the famous Baboon image, which is widely used to evaluate
image segmentation algorithms, we have employed our approach on 300 images
from the well-known publicly available Berkeley segmentation data set [17]. This
database is composed of a variety of natural color images generally used as a
reliable way to compare image segmentation algorithms. Figure 1 shows a com-
parison between the segmentation results obtained by our approach and the tech-
nique developed in [11] when we consider the rgb color space. Figure 1(a) shows
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the original Baboon image, while figures 1(b), 1(c) and 1(d) show the results
obtained with the Gaussian, the Dirichlet and the GD mixtures, respectively.
The algorithm in [11] selected 12 regions for the baboon image while 4 regions
are considered with both the Dirichlet and GD mixture models. As the figure in-
dicates, in addition to the less number of regions preferred by our algorithm, the
regions provided are more meaningful. In this image the nose of baboon is almost
composed of two clear regions while the hair is divided to light and dark regions.
The images in figure 2 are chosen from the Berkeley database. The estimated

(a) (b) (c) (d)

Fig. 1. Baboon segmentation in the rgb space. (a) Original image, (b) Using the Gaus-
sian mixture (M = 12), (c) Dirichlet mixture (M = 4), (d) GD mixture (M = 4).

number of regions, in these images when considering the rgb color space, selected
by the Gaussian, the Dirichlet and the GD mixtures are mentioned in the related
images sub-captions. According to this figure we can see clearly that Dirichlet
mixture-based segmentation algorithms generate both quantitatively (less and
better regions) and qualitatively (more meaningful) better results when com-
pared to the Gaussian mixture. The GD outperforms generally the Dirichlet as
shown, for instance, in figures 2(g) 2 (h) which is actually expected since the
Dirichlet is just a special case of the GD when βd = αd+1 + βd+1. Evaluating

(a) (b) M = 6 (c) M = 3 (d) M = 3

(e) (f) M = 8 (g) M = 4 (h) M = 4

(i) (j) M = 4 (k) M = 3 (l) M = 3

(m) (n) M = 7 (o) M = 3 (p) M = 3

Fig. 2. Examples of images segmentation results in the rgb color space. (a,e,i,m) Orig-
inal images from the Berkeley Database. (b,f,j,n) Segmentation results using the Gaus-
sian mixture. (c,g,k,o) Dirichlet mixture. (d,h,l,p) Generalized Dirichlet mixture.
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segmentation results is an important problem and several quantitative evalua-
tion measures have been proposed in the past (see, for instance, [18,19,20,21]. In
our case we have used the Normalized Probabilistic Rand (NPR) index, proposed
in [21], as a neutral scale for quantitative comparison between image segmen-
tation algorithms. The NPR index has a value between -1 to 1 where a higher
value shows better segmentation results. The calculation of the NPR index re-
quests the availability of a hand-labeled segmentation used as a ground truth to
score the segmentation algorithm. The Berkeley database has provided at least 5
ground truth segmentation results for all its 300 natural public images. Because
of the ”expensive” calculation of NPR Index [21], we have calculated the NPR
index for a reasonable number of images. The results indicate that the Dirichlet
mixture has a sample mean of 0.5376 for NPR index for some randomly selected
images, the GD algorithm has a sample of 0.5523 for the same images, while
the Gaussian mixture-based algorithm has a sample mean equal to 0.2667. In all
cases we have considered the rgb color space. Figure 3 shows some of the original
images used to calculate the NPR index, the Gaussian mixture’s segmentation
results, and our segmentation results. It shows also five ground truth segmenta-
tions, from Berkeley database, for each selected image. The NPR index for each
algorithm is mentioned in the images sub-captions. Figure 4 illustrates the effect

NPR=0.4511 NPR=0.6722 NPR=0.6761

NPR=0.2978 NPR=0.3213 NPR=0.4913

NPR=0.3996 NPR=0.5712 NPR=0.5744

NPR=0.2871 NPR=0.5411 NPR=0.5588

Fig. 3. Examples of images used to calculate the NPR index of each segmentation
approach in the rgb color space. Column 1: the original images. Column 2: the seg-
mentation results using the Gaussian mixture. Column 3: Dirichlet mixture. Column
4: Generalized Dirichlet model. Columns 5, 6, 7, 8 and 9: Ground truth segmentations.

of choosing the l1l2l3 color space on the segmentation of the Baboon image. Ac-
cording to this image, the new color space has improved the segmentation result
in the case of the Gaussian mixture by decreasing the number of regions to 10
as compared to the 12 regions found when the rgb color space has been consid-
ered. Changing the color space has provided smoother results in the case of the
Dirichlet and GD mixtures while keeping the same number of regions. Figure 5
displays the segmentation results in the l1l2l3 color space when considering the
images from the Berkeley database. The NPR index values are mentioned in the
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(a) (b) (c)

Fig. 4. Baboon segmentation in the l1l2l3 space. (a) Using the Gaussian mixture (M =
10), (b) Dirichlet mixture (M = 4). (c) Generalized Dirichlet mixture (M = 4).

sub-captions. As we can see from this figure, choosing the l1l2l3 space provides
generally smoother and more meaningful regions.

NPR=0.4777 NPR=0.6783 NPR=0.6822

NPR=0.3101 NPR=0.3556 NPR=0.5081

NPR= 0.4015 NPR=0.5817 NPR=0.5823

NPR= 0.3092 NPR=0.5553 NPR=0.5595

Fig. 5. Segmentation in the l1l2l3 color space. column 1: Using the Gaussian mixture
model. Column 2: Dirichlet mixture. Column 3: Generalized Dirichlet mixture.

4 Conclusion

An important problem in computer vision is that of segmenting images into
homogeneous regions. We tackle this problem, in this paper, by using maxi-
mum likelihood estimation of generalized Dirichlet mixture models augmented
with spatial information via the incorporation of a physical constraint of the
segmentation problem namely neighboring pixels are supposed to belong to the
same region. The proposed method is illustrated by the segmentation of several
challenging images and is shown to achieve significant performance gains over
previously proposed comparable approaches.
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Abstract. We propose a motion detection model inspired by hippocam-
pal function and its FPGA implementation. The proposed model detects
the motion of edges extracted from monocular image sequences. The mo-
tion is detected on segmented 2D maps without image matching, which
allows the model to operate with higher speed than the video rate. We
introduce gating units into our original CA3-CA1 model to improve the
detection rate, where CA3 and CA1 are the names of hippocampal re-
gions. We have evaluated the performance of our model by using artifi-
cial and real image sequences. The results show that the proposed model
can achieve high detection rate. We have implemented the model into an
FPGA, by which we can achieve motion detection within 1.0 msec/frame
with power dissipation of about 1.4 W when 64 × 60 segmented blocks
are used for 320 × 240 pixel images.

Keywords: edge-based motion detection, time-to-travel, approaching
object detection, FPGA implementation.

1 Introduction

Motion detection is one of the key issues in collision warning systems for vehicles
or mobile robots. There have been many advances that work by analyzing two-
dimensional image motion, which is known as optical flow field [2,7]. Among
these, gradient models and block matching models have been popular and have
been implemented in OpenCV [9]. However, these still have problems to improve
the detection accuracy as well as to reduce the computational cost.

In our research, we aim to propose a collision warning system that can run in
high speed and low computational cost. We have proposed such a system inspired
by the neuronal propagation in the hippocampus in the brain [5]. The system
treats edges extracted from monocular image sequences, and detects motion of
the edges without image matching, by using a so-called CA3-CA1 model [12,3].
Here, CA3 and CA1 are the names of hippocampal regions. We used this CA3-
CA1 model to detect moving edges as a spatiotemporal pattern, which is essential
in the fuzzy-based danger evaluation in our system [5].

The motion detection algorithm of the CA3-CA1 model is similar to those
of time-to-travel models which treat particular image features and measure the

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 522–529, 2011.
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CA3

CA1

DG

neuron

CA2

Fig. 1. Hippocampal formation

time that a feature takes to travel between two fixed locations [4,8]. The mea-
sured time is called travel time in this paper. Time-to-travel models were mainly
proposed for applications in some simple situations, e.g. the camera is stationary
or there is few moving objects in a simple background.

In this paper, we introduce gating units into the original CA3-CA1 model, and
use the function of gating units to reduce mismatching and improve the detection
rate in complicated situations. Then, we propose an FPGA implementation of
the proposed model for high-speed and low cost processing. We evaluate the
performance of the proposed model by using artificial and real image sequences.

2 Proposed Model for Motion Detection

A basic motion-detection model named CA3-CA1 model [12,3] has been
proposed inspired by the neuronal propagation in the hippocampus. The hip-
pocampus is known as an area of the brain related with memory function. The
hippocampal formation consists of two principal regions: the dentate gyrus (DG),
and the cornu ammonis (CA), where CA are usually divided into CA1, CA2 and
CA3 by the anatomical difference, as shown in Fig. 1. It is verified that the
CA3-CA1 model can successfully detect motion of edges and is useful for colli-
sion warning in simple situations [5]. However, the CA3-CA1 model has a trouble
with motion detection in complicated situations.

In order to improve the model, we reviewed the neuronal propagation in the
hippocampus. According to [1,6], CA2 neurons receive inputs in parallel with
DG, and send inhibitory signals to CA1 neurons. Another research [10,11] in-
dicated that the propagation between CA3 and CA1 is in two pathways: one
is fast propagation in a CA3-CA1 pathway, the other is slow propagation in a
CA3-CA2-CA1 pathway, where CA2 neurons can function as a gate. We took
some hints from these knowledges to improve the original model.

The proposed model is shown in Fig. 2. In this model, four kinds of 2D maps
are employed: Actual image (AC) map, CA3 map, CA1 map and GU map. The
AC and CA3 maps are divided into two submaps with different map-divisions,
and each CA3 submap is related to two corresponding CA1 submaps that de-
tect motion of edges in opposite directions in horizontal and vertical directions,
respectively. These maps were divided into pieces based on a specified method,
where a piece of them is called a unit.
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Fig. 2. Proposed motion detection model: (a) model structure and (b) unit connection
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Fig. 3. Motion detection using the proposed algorithm: (a) inputs of AC units, (b)
truth table to determine GU value, (c) operation in original algorithm, (d) and (e)
operation in proposed algorithm

We introduce gating units (GU) into the model, and assume that each GU
receives an excitatory input from the corresponding CA3 unit and an inhibitory
input from the backward neighboring AC unit, which means that GUi receives
an inhibitory input from ACi−1. Each GU sends an inhibitory input to the
corresponding CA1 unit.

The proposed algorithm is shown in Fig. 3. The value of GU is binary. CA3
has either a strong firing value (S) higher than the GU value or a weak firing
value (W) lower than that. At the first firing time, a CA3 unit is set to the strong
value, and this value will decay to the weak value before the next sequence is
input. After a CA3 unit receives a firing signal, it immediately fires and sets the
neighboring CA1 units to decay from the initial value to zero. GU functions as
a gate in the motion detection procedure. If a GU is inhibited, its corresponding
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CA1 unit can remain decaying, otherwise the CA1 unit turns to be inhibited
and stops decaying to hold its value for motion detection.

Therefore, when a CA3 unit fires for the first time, a motion vector is detected
irrespective of the corresponding GU state, if one of its corresponding CA1 units
is in the decaying state. In contrast, when a CA3 unit fires after the first time,
the CA3-GU-CA1 pathway is shut off if the corresponding GU is inhibited, and
no motion is detected in this pathway.

In our model, the velocity of a moving edge is calculated by the detected travel
time, as shown in Eq. (1), because the distance (D) between two neighboring
units is predefined. Therefore, it is important to detect the travel time accurately.

v =
D

travel time
=

D

(CA1 Initial Value− CA1 Value)/Decay coefficient
(1)

Fig. 3 shows an example of motion detection in a complicated situation. In
applications to collision warning systems for vehicles or mobile robots, because
the background and moving objects produce different optical flows in the image,
there must be a moment at which two neighboring CA3 units are in the firing
state simultaneously. The motion detection using original CA3-CA1 model has
a trouble in such situation, as shown in Fig. 3(c). This problem becomes critical
when the background is complicated or a few moving objects exist in the image.

In the example shown in Fig. 3, an edge is moving from ACi−1 to ACi while
another edge is moving into ACi. If using original CA3-CA1 model, false motion
is detected at t = t2 when these two edges slightly moved inside of ACi−1 and
ACi, respectively. Furthermore, because CA1i is reset to the initial value after
the detection at t = t2, the actual travel time (t3 − t1) can not be correctly
detected at t = t3, as shown in Fig. 3.

In contrast, the proposed model can successfully detect motion at t = t3
without an error at t = t2, as shown in Fig. 3(d). Although GUi fires at t = t1,
this has no effect on motion detection in discrete-time calculation, because CA1i

is still in the initial state. Fig. 3(e) shows motion detection by using strong firing
of CA3 units. In this case, although GUi+1 has an inhibitory input from ACi, a
motion vector is detected by strong firing of CA3i+1.

As a summary, the proposed model detects motion by using not only the
corresponding AC unit but also the neighboring AC units to stop the decay in
the CA1 unit. Therefore, the proposed model can detect motion more robustly
than the original one, so that it can reduce the false detection rate.

3 FPGA Implementation

We have implemented the proposed model in an FPGA in order to develop a
high-speed and low-cost motion detection system. We have implemented the
CA3-GU-CA1 network in an FPGA, and implemented the AC map in software
because the AC map has a large amount of input data and low computation
complexity.
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Fig. 4. Digital circuit for FPGA implementation

In our FPGA architecture, we composed CA3, GU and CA1 maps with em-
bedded memory blocks because the utilization of memory blocks can significantly
reduce the complexity of digital circuits, so that we can reduce the utilization
of LUTs in the FPGA. We designed a row-by-row parallel processing circuit for
each CA3/GU/CA1 submap by using the embedded memory blocks.

The proposed digital circuit for FPGA implementation is shown in Fig. 4.
We used a common counter for the decaying signal generator to measure travel
time. REG-SF and REG-WF in Fig. 4 indicate the strong and weak firing value
of CA3 units, respectively. The specifications of the implemented model and the
implementation results are shown in Table 1 and Table 2, respectively.

The maximum frequency of operation is 120.57 MHz, and the processing time
is less than one msec/frame when the FPGA operates at 48 MHz. The power
dissipation is about 1.4 W according to the power analysis by the EDA software
of Altera Quartus R©II 9.0.

Table 1. Model Specifications

Image size 320 × 240 pixels (W × H)

Number of submaps CA3 : 2, GU : 4, CA1 : 4

Number of units 64 × 60 units/submap

CA1 decay steps 64 steps

Sampling frequency 30 fps 240 fps

Detection range 2–120 km/h 15–960 km/h

4 Performance Evaluation

Let us denote the number of units in the cases shown in Table 3 by TP , FP , FN
and TN , respectively. The evaluation indicators of our simulation were defined
as follows:

Precision Rate =
TP

TP + FP
, Recall Rate =

TP

TP + FN
. (2)
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Table 2. Device Utilization for Altera EP2S60F672C

Resource Used Avail Utilization

LUTs 13201 48352 27.30 %
Registers 5484 48352 11.34 %
Memory Bits 270336 2544192 10.62 %

Table 3. Denotations of Evaluation Indicators

Results
Edges moved to a neighboring unit

Yes No

Motion Detected True Positive (TP ) False Positive (FP )

No Motion Detected False Negative (FN) True Negative (TN)

These two evaluation indicators are important to our model because our model
detects motion only when an edge moved from a unit to its neighboring one using
sparse data (edge image). Precision rate indicates how well the detected motion
can be trusted, and Recall rate indicates how well our model detects occurred
motion.

We first evaluated the performance of our proposed model by using artificial
image sequences, because it is difficult to obtain such real image sequences that
contain ground truth of optical flows of the same scenes in different frame rates.
We used a picture shown in Fig. 5(a) as a stationary background, and used two
cubes shown in Fig. 5(b) as a receding object RO and an approaching object
AO moving at a speed of vZ = ±80km/h, respectively.

The simulation results are shown in Table 4. We verified that the recall rate of
the proposed model reaches about 99 %, which is much better than the original
model. The precision rate was about 81 % at 30 fps, and it was achieved to about
86 % at 240 fps. Furthermore, using a high frame rate can reduce quantization
errors in time, which contributes to accurate travel time detection and velocity
calculation according to Eq. (1).

Simulation results using real image sequences are shown in Fig. 6. In this simu-
lation, we saved motion detection results for five frames, and used a

(a) (b)

Z
0
=40 m

AO

2 m

2 m RO

Fig. 5. Simulation patterns used in the artificial image sequences: (a) a picture and its
edge image used as a stationary background, (b) patterns of two moving objects
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Table 4. Evaluation Results Using Artificial Image Sequences

Model Frame Rate Precision Recall

Original
30 fps 85.5 % 75.4 %

240 fps 86.9 % 78.0 %

Proposed
30 fps 80.9 % 99.1 %

240 fps 86.0 % 98.4 %

(a) (b) (c)

(d) (e) (f)

Fig. 6. Simulation results using real image sequences: (a), (b) input images of frames
#39 and #43, (c) edge image of frame #43 by using Canny edge detection, (d) super-
imposed results of motion detection for consecutive five frames, (e), (f) results after
simple post-processing, and (f) magnified view of the vehicle regions

morphological filter to delete isolated results in each frame. By Fig. 6(e) and
(f), we verified that motion of approaching objects is successfully detected, and
false positive results can be partly deleted by the simple morphological filter.
This post-processing can be improved by using motion analysis. Therefore, the
proposed model can be applied to high-speed detection in complicated situations
after we improved image feature detection and the post-processing.

5 Conclusion

In this paper, we proposed a motion detection model and its FPGA implemen-
tation inspired by the neuronal propagation in the hippocampus in the brain.
We introduced gating units into the original CA3-CA1 model to improve the
detection rate (recall rate), and implemented the proposed model in an FPGA.
Performance evaluation results using artificial image sequences showed that the
detection rate of moving edges was significantly improved. We also presented
simulation results using real image sequences with a simple morphological filter
to filter out the origins of false positive results in the post-processing. In future
work, we will improve image feature detection and the post-processing.
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Abstract. This paper presents a neural network based novel automated system 
that can analyze vehicle mounted video data for improving road safety. There 
are video data collection systems currently available although no tools exist 
which could be used to automatically analyze vehicle mounted video data and 
estimate future crash sites. The main aim of the research presented in this paper 
is to develop a technique to segment roadside data obtained from vehicle 
mounted video into regions of interest, classify roadside objects and estimate 
the risk factor based on roadside conditions and objects for various crashes. A 
clustering technique for segmentation of roadside frames into regions of interest 
and a neural network to classify the regions of interest into objects are 
investigated. The preliminary segmentation and classification results on a small 
dataset taken from Transport and Main Roads’ vehicle mounted video data 
collection are promising.  

Keywords: Neural Networks, Segmentation, Road Safety. 

1   Introduction 

The Transport and Main Roads (TMR) in Australia collects a variety of data [1-3] to 
record and ascertain the status of road safety and condition, and uses these data 
extensively for guiding and justifying road maintenance and capital expenditures. 
Vehicle mounted video is collected over every state road annually, and has the 
potential to provide a range of value-added products through advanced image analysis 
and recognition. There are a range of benefits to TMR from extraction of road defects 
and risk factors from vehicle mounted video using an automated system. 
Unfortunately video data is only partially integrated with road management and 
safety. The potential exists for application of computer processing and analysis of 
video to automate data collection for improving road safety. 

The statistical data relevant to road safety from report [1] produced by Transport 
and Main Roads show that the 36.3% road fatalities were from hit object type crashes, 
17.2% were from head-on type crashes and 14.8% were from angle type crashes. 
Many of these crashes could be avoided if appropriate sections of roads and risk 
factors (e.g. objects within clear zone, inappropriate shoulder width, missing sign, 
etc.) could be identified and fixed. Therefore, collecting information on the road and 
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roadside is becoming increasingly important for assessments of road safety risk. 
Currently, collection of information on key risk factors can be a time consuming task 
and contain some degree of subjective assessment. Collection of data in an automatic 
way using advanced segmentation, identification and risk factor estimation techniques 
would improve the degree of accuracy and create safer roads with fewer fatalities.  

The traditional road safety approach uses crash history as the basis for assessing 
risk [2-3]. This type of traditional approach has been highly successful in many 
countries including Australia but the problem is that many crashes occur at places 
with no previous crash history. Therefore, recently there has been a move towards an 
additional risk assessment approach based on the risk inherent in road and roadside 
features. This type of approach is growing because of the following three reasons: (1) 
Australia has adopted the safe system approach, intended to understand and address 
road safety risk by taking a total view of road safety factors that minimize the number 
of serious injuries and deaths (e.g. address all locations where serious crashes may 
occur, not just locations where crashes have previously occurred). The components of 
the safe system are: safer users, safer roads and roadsides, safer vehicles and safer 
speeds (2) Road authorities must know where risks lie on their roads for legal 
liabilities. (3) The decreasing number of treatable crash black spots.  

Most commercially available systems employing vehicle mounted sensors are 
intended for surveying and road design, measuring the 3D shape of the road and 
environment with great precision. However, they are unable to extract road 
characteristics and objects on roads. Intelligent traffic systems are aimed at easing 
traffic congestion in urban streets by redirecting the individual motorist into 
alternative less trafficked routes. Other specialist vehicles employ a range of physical 
sensors to determine characteristics such as pavement depth. These vehicles are 
expensive to employ, rarely available, and do not address many of the daily concerns 
of road maintenance and safety. 

In the past few decades, the research with roadside data has been conducted. 
Although it was mainly focused on road sign detection and classification, number 
plate recognition, painted road object recognition and road crack identification [4-22]. 
A number of techniques [4-6, 20-22] for segmentation and extraction of signs has 
been proposed and investigated. The techniques for extracting symbols, characters 
and text on road signs [16-17] have also been proposed and investigated. A review of 
recent literature [4-22] showed that there has been a lot of research with some success 
in particular road sign recognition, however there has been very little research 
conducted to automatically extract all types of features and objects from roadside 
video data for improving road safety and no attempts have been made to develop an 
automatic data analysis technique to identify sections of roads where a crash may 
occur. This paper proposes and investigates a new idea of using and analyzing video 
data for roadside objects and automatically identifying risk factors for all roads and 
locations where a fatal or serious crash may occur.  

This paper is organized as follows. Section 2 presents the proposed approach. 
Section 3 describes the experimental setup used for evaluating the proposed approach. 
Section 4 presents some preliminary experimental results and discussion. Finally, 
Section 5 concludes the paper.  
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2   Proposed Approach 

The proposed approach is based on novel techniques proposed in this paper and our 
previous research [13-14, 24-30]. The approach consists of three major parts. The first 
part (Task 1) is to segment road and roadside data into regions of interest such as 
signs, trees, pedestrian, etc. so this part is focused on development of appropriate 
segmentation technique. The second part (Task 2) is to identify the segmented regions 
into one of the objects or features so this part is focused on development of 
appropriate classification technique for identification of the segmented objects and 
features. The third and final part (Task 3) is to estimate the risk factor and crash type. 
An overview of the proposed approach is presented in Fig. 1 below and described in 
the following sections. 

 

Fig. 1. An overview of the proposed approach 

2.1   Pre-processing of Data 

Pre-processing involves standard steps for conversion of video data into a series of 
image data, normalization of colours and other operations to enhance uniformity of 
image data. A comparative analysis of various colour formats has shown [6, 27, 30] 
that HSV colour space is most suitable format as it has minimum variance under 
lighting and other environmental conditions so in this research HSV colour space is 
used. 

2.2   Segmentation of Data into Regions of Interest (ROI) 

Segmentation of road and roadside video data is one of the most important steps in 
identification of various features and hazardous roadside objects. Segmentation step 
groups the data into following regions of interest (road signs, lane width, shoulder 
width, clear zone width, road surface condition, separation of opposing traffic flow, 
delineation, overtaking opportunities/facilities, street lighting, access points, sight 
distance, etc.). The regions with these features and objects are considered as regions 
of interest. These regions are considered regions of interest because various studies 
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[1-3] conducted by ARRB on behalf of Austroads has identified that these roadside 
features significantly contribute to road safety risk. 

Research into segmentation of roadside data has been conducted in the past [3-9, 
18-22], however as mentioned in previous sections, the major focus has been on the 
recognition of traffic signs. Some researchers used segmentation combined with shape 
classification to detect and classify traffic signs. K-means clustering techniques based 
on colour feature have been frequently used to segment data into regions not only in 
traffic sign recognition research but also in other pattern recognition areas such as 
medical imaging [23, 26, 29]. In this research, we deal with many more objects and 
features than just traffic signs so the segmentation task is very challenging. The new 
approach is based on fusion of (1) colour feature (2) texture feature and (3) 
hierarchical clustering. The fusion of colour and texture is appropriate as we are 
dealing with road signs and vegetation (road side trees, etc.) for finding various 
features (e.g. clear zone width, shoulder width, etc.) which have specific colours and 
textures. The goal of hierarchical clustering is to group data into clusters of similar 
colour, texture and distance from centre with locally connected pixels. We use top to 
bottom approach which means finding a large cluster and then dividing it into sub 
clusters to avoid situations like having many objects (e.g. road signs) in a single 
cluster. Ideally each cluster represents a single roadside object or feature. We have 
recently developed a soft clustering based neural network approach and we use this 
approach from our previous research [13-14, 24-30] to cluster roadside data into 
regions mentioned above. 

Segmentation Approach 

 

Fig. 2. Segmentation approach 

2.3   Classification of Roadside Objects and Features 

Most of research on roadside object classification has been focused on sign 
classification and road cracks. The decision trees [10], likelihood-based classifier 
[11], and MLP based neural networks [12-13, 18] have been applied. MLP based 
neural networks achieved over 95% classification accuracy for road signs. Our recent 
research [24-25] showed that neural network based ensemble can produce very good 
accuracy. This research have difficult to classify road objects and features under 
varied conditions, so we focus on evaluating three major classifiers such as SVM, 
MLP and neural ensemble classifiers which have produced highest accuracy on 
benchmark datasets in our recent research [24]. A single tier and a two tier 
classification systems are designed and investigated as shown below. 
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Single Tier Classification System 

 

Fig. 3. Single tier classification approach 

Two Tier Classification System 

 

Fig. 4. Two tier classification approach 

2.4   Estimation of Risk Factors for All Crash Types 

This task focuses on developing a technique to estimate a risk factor for all crash 
types. Before we start this task, we need to solve two problems as follows. Firstly, we 
need to know the crash types which we have to deal with and secondly we need to 
know the features associated with each crash type. The first problem has been solved 
as various research reports including TMR’s report [1-3] and our recent 
research/discussions have analysed key crash types. It has been identified that the key 
crash types which are likely to result in high severity outcomes are run-off-road, 
head-on, intersection, pedestrian and motorcyclist/cyclist. The second problem is very 
challenging as features for each crash type are not very well defined. We tackle this 
problem in two ways. The first approach is to investigate and analyse roadside objects 
and features and define rules for each crash type which will allow us to estimate a risk 
factor for new data. The second approach is to design a neural network and train it 
with known crash data. A neural network is chosen because it has shown [24] better 
generalisation accuracy which might produce better accuracy on unseen crash data.  
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3   Experiments and Discussion 

The database for experiments has been taken from the collection of vehicle mounted 
video by Transport and Main Roads (TMR) and some other video data taken around 
our university. Each year, the entire State Road system is recorded with a vehicle 
mounted video.  In addition, a number of specialist vehicles are employed to gather 
more detailed engineering data, including laser-based imaging and road deflection 
data. The video data has been converted into frames and then each frame is processed 
and used for segmentation and classification. 

This research is at its early stage so at the moment we have only conducted some 
preliminary experiments on segmentation of regions of interest and classification. The 
segmentation results are shown in Fig. 5 below.  

 

    
 

   
 

   

Fig. 5. Segmentation results 

The analysis of segmentation results showed that the proposed approach is able to 
identify the regions of interest. As shown above, signs, lanes and vegetation have 
been clearly identified. The regions of interest were trained using neural network for 
the following categories: vegetation, sky, white [road/road sign background], white 
[road sign back, road line marker], white [footpath, on road signs], road sign 
[yellow/yellow vegetation], road sign [red], etc. The classification accuracy on a 
small number of ROIs mentioned above was very good. All ROIs have been classified 
correctly but it should be noted that the experiments are very small and more 
experiments are currently being conducted on a large database taken from TMR.    
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4   Conclusions 

We have proposed a neural network based automated system using vehicle mounted 
video data for identifying sections of roads where a crash may occur. A technique 
based on hierarchical clustering for segmentation of roadside data into regions of 
interest has been investigated. A neural network based classification technique has 
also been investigated. The preliminary segmentation and classification results are 
promising and some results are presented in this paper. The results presented in this 
paper are based on a small database. In future research, we will focus on conducting 
experiments for segmentation, classification and estimation of risk factor on a large 
database.  
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experiments.  
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Abstract. This article proposes a scheme for automatic recognition of
Bangla text extracted from outdoor scene images. For extraction, we
obtain the headline, then apply certain conditions to distinguish between
text and non-text. By removing the headline we partition the text into
two zones. We further observe an association among the text symbols in
these two different zones. For recognition purpose, we design a decision
tree classifier with Multilayer Perceptron (MLP) at leaf nodes. The
root node takes into account all possible text symbols. Further nodes
highlight distinguishable features and act as two-class classifiers. Finally,
at leaf nodes, a few text symbols remain, that are recognized using MLP
classifiers. The association between the two zones makes recognition
simpler and efficient. The classifiers are trained using about 7100 samples
of 52 classes. Experiments are performed on 250 images (200 scene images
and 50 scanned images).

1 Introduction

Automatic recognition of text symbols in a natural scene image is useful to the
blind and foreigners with language barrier. Such a recognition method should
also employ an extraction of text portions from the scene images. Extraction
and recognition of texts from outdoor images captured by such devices is a
challenging problem now-a-days due to variations in style, color, background
complexity etc. In this article our goal is twofold. One of our preliminary task is
to extract the possible text symbols from an input scene image. This has been
an issue of interest for many years. Earlier, Jung et. al. [1] employed a multi-
layer perceptron classifier to discriminate between text and non-text pixels. A
good survey of existing methods for detection, localization and extraction of
texts embedded in natural scene images can be found in [2]. Considering Bangla
script, Bhattacharya et. al. [3] proposed a scheme based on analysis of connected
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components for extraction of Devanagari and Bangla texts from camera captured
outdoor images. For this purpose the headlines were detected using morphology.
We here use this scheme to obtain possible headlines. Afterwards, the text
symbols attached/unattached to the headlines are extracted using certain shape
and position based purifications.

The recognition issue also draws interest of many scientists. Pal and
Chaudhuri [4] present a detailed review on recognition of Indian script. However,
all the efforts are still done using scanned documents. To the best of our
knowledge no recent works exist that deals with Bangla text separation and
recognition from natural scene images.

The headline detection eventually leads us to the zone detection. In Fig. 1 we
have shown all the zones.

Fig. 1. Illustrate the zones of Bangla Script

In this paper, we merge the middle and the lower zones to form the middle-
lower zone. This zone has an association with the upper zone as will be seen
later. For recognition in middle-lower zone, we use a decision tree model. At
each internal node of this tree, one criterion is evaluated that splits the current
set of text symbols into two halves. The leaf nodes, finally, encounter only a
few classes and the MLP is used for classification. The association between two
zones boost the recognition performance. Our experiments are performed on
a laboratory made dataset consisting of both scene and scanned images. The
experimental results establish satisfactory performance of our methods.

1.1 Contributions

In this paper we propose a system for extraction and recognition of Bangla text
symbols from scene images. The proposed system works in three steps. Initially
headlines are detected using mathematical morphology [3]. In the next step,
we propose some criteria on the basis of which text symbols are isolated from
non-text. These criteria can be applied to scanned images as well, with equal
performance, as we show later. The final step of our system is the proposed
decision tree classifier. This decision tree automatically recognizes text symbols
based on some pre-defined conditions. To boost the recognition performance, we
further consider association among text symbols in different zones of a word.
These associations lead to small groups of symbols, that are easily recognizable.
Such a script based boosting has not yet been done, to the best of our knowledge.
Moreover, the proposed system is robust to perspective distortion and image
skew at least up to an acceptable level. Also, this system can be extended to
scanned documents. In fact, our experiments include scanned documents along
with scene images.
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2 Headline Based Text Symbol Extraction

In Bangla script, the headline connects most of the text symbols in a word. To
detect possible headlines, we apply mathematical morphology based headline
detection method reported by Bhattacharya et al [3]. The following subsection
describes the procedure to separate text and non text portions.

2.1 Separation of Text Portions

We first proceed with headline attached components. The following criteria are
used to identify text portions. All the concerned connected components are
subjected to these criteria in the same sequence as given. Note, the thresholds
may differ if the sequence is altered.

1. Boundary attached components : Generally text like patterns are not attached
with boundary of the image. So, we first remove all boundary attached
connected components using morphological reconstruction.

2. Elongatedness ratio (ER): This was used by Roy et. al. [5]. Empirically it is
found that a component with ER value greater than 5 is a text symbol.

3. Number of complete lobes : Using Euler number complete lobes can be
obtained. Found empirically, a text symbol has less than 9 complete lobes.
We simply use lobe, hereafter, since all concerned lobes are complete.

4. Aspect ratio: We found by experiments, that the aspect ratio (height/width)
of a non-text become less than 0.3 or greater than 2.0.

5. Object to background pixels ratio (r): Due to the elongated nature of Bangla
script, only a few object pixels fall inside text bounding box. On the other
hand, elongated non-texts are usually straight lines, so, contribute enough
object pixels. We observe 0.3 ≤ r ≤ 3 could identify text symbols.

All the headline attached text symbols are therefore separated.
However, in Bangla, some text symbols do not meet the headline. Now we

consider such components. These components, though not connected, must be
close to one/more of already detected text symbols. Then, if we increase the area
of the bounding box enough, the possible text symbols may lie inside it. With
this view, we increase the width of the bounding box by its height and the height
by an empirical threshold. The components inside this modified bounding box
are subjected to the previous criteria.

2.2 Headline Removal and Zone Detection

We need to remove the headlines to isolate a text symbol. Sometimes a major
part of a symbol may be joined with the headline. If the headline is removed
totally, these symbols become broken. Instead, we examine all the pixels over
the headlines. Let such a pixel pi (the ith pixel) belongs to a component CCj .
Let vi be the vertical run length of pi at the ith position considering only
the corresponding component CCj . We experimentally set the thickness of the
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headline to be H (say). Now, if vi ≤ H , we can conclude that pi is a pixel solely
from the headline and thus removed.

In previous studies [6], the headline was used to partition a Bangla word into
three zones as in Fig. 1. However, to obtain the lower zone, one may need to
identify the “Base Line” (Fig. 1). This leads to additional tasks. Here, we drop
detecting lower zone and proceed with the upper and the middle-lower zones (the
latter being the portions below the headline). The symbols in different zones
are shown in Fig. 2(a),(b) with class numbers (serial numbers). The numbers
in brackets indicate the total number of samples of the corresponding class in
our dataset. The three classes: 46, 47 and 48 have lower zones text connected
with middle zone text symbols. Let us term these as “composite” symbols. We
consider only three lower zone components, � , � and � . Fig. 2(c) describes how
a lower zone symbol is connected with a middle zone symbol.

3 Association between Upper and Middle-Lower Zones

The two zones produced by removing the headline play an important role during
recognition. The upper zone contains some specific text symbols. So recognition
in the upper zone has a high accuracy. On the other hand, middle-lower zone
consists of a large symbol set, so vulnerable for recognition. However, once the
upper zone symbol is identified, we could make an assumption about middle
zone symbols. Thus, the initial set may be reduced. This assumption is based
on prior knowledge about Bangla language. In Bangla, we only have certain
pre-defined middle zone symbols for a particular upper zone symbol. Moreover,
upper zone symbols exists frequently in Bangla text. So, this very association
greatly improves the accuracy of our recognizer. Of course, if all texts are present
inside middle-lower zone we could not apply this association. Considering the
upper zone text symbols from Fig. 2(b) the corresponding possible middle-lower
zone text classes are enlisted in Table 1.

Table 1. Association between upper and middle zone text symbols

Upper zone
49 50 51 52

text class

Middle zone 2-5, 21,
43 43

2, 11, 13, 16, 18, 19,
text class 22, 43, 44 21-33, 35-38, 40, 41

4 Bangla Text Recognition

The middle-lower zone text symbols may be partitioned into two. One of them
consists of all the composite text symbols. The study by Parui et. al. [7] described
a method to filter out and recognize lower zone symbols from a composite symbol.
After its application, only the middle zone symbols remain. The upper zone
symbols are subjected to MLP classifier directly, while a decision tree is applied
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Fig. 2. Text components in (a) middle-lower and (b) upper zone. (c) First column
shows composite texts and corresponding lower zone symbols are in third column.
Serial numbers indicate class numbers.

to the middle zone symbols to form small groups. MLPs are then applied to each
such group. For MLP we use the wavelet feature described by Bhowmik et. al.
[8].

4.1 Decision Tree Classifier for Middle Zone Symbols

The decision tree evaluates one criterion at each internal node that
deterministically splits the current set of text symbols into two subsets.
Proceeding this way, each leaf node finally contains a small group of symbols.
For each such group, an MLP classifier is used. Before describing the tree, let
us concentrate on the leaf level subsets (groups) resulting from of the decision
tree. Table 2 suggests, Most of such groups are small. So we could build efficient
classifiers. In practice, we could use the association method (section 3) to make
the groups even smaller. For example, when class 49 is present at the upper zone,
only the classes 2, 3, 4, 5 and 44 are candidates from Group A.

Let us now present the decision tree model in Fig. 3. Each criterion is given
a number and described below.

1. This criterion checks if any lobe exists in the text symbol.
2. This criterion checks the existence of vertical line (VL) in the text

symbol. The VL is found by applying morphological operations with linear
structuring element having 90% height of the concerned component image.

3. This criterion compares if the lobe width is less than a threshold T1 = 7.
4. Eliminating the upper zone, the text symbol � results only a lobe. By

applying a threshold T2 = 0.88 this criterion separates out � .
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Table 2. The groups obtained from decision tree

Group A B C D E F G H I J K L M N O P Q R S

Class
2-5, 8, 9,

20 22 17
15, 7, 21,

37
10,

43 6
13, 23, 16 27,

11 29
12, 14,

1
28,

18, 24, 32, 39 30 26 19 35, 36, 31, 25, 34 33
42, 44, 45 38, 40 41

5. This criterion finds text symbols (e.g. Group L) with rightmost VL.
6. Some text symbols (e.g. Group N) has a wide lobe comparable to the width

of the component. This criterion decides if the lobe width is only a threshold
(T3 = 1.35) less than the component width.

7. Using a threshold T4 = 18 indicating component height, the lobe may be
vertically at the lower or upper halves. Two separate groups can be formed.

8. We trace the contour of the VL, and check if exactly one other component
is connected with the VL. To cope perturbations, such a component must
have at least a 20 pixel run, connected with the VL. We further use the term
“connectivity” to denote number of components connected with the VL.

9. Certain groups can be formed if left connectivity is one.
10. We check the number of VLs in this criterion. The second VL is, however,

smaller than the first. So, we use a shorter (80% of component height)
structuring element.

11. Group J is only a VL. So this is sufficient criterion to separate.
12. Only one component (CC) is connected with VL. We trace the boundary

contour on which we meet the first pixel of this component. This criterion
checks if the position of this pixel is only a threshold (T5 = 0.5) high from
the bottom of the VL.

13. Some components has solid lobes (e.g. Group R, S). To separate those
components this is the correct criterion to be checked.

14. With T6 = 7 we determine the position of the solid lobe.

5 Results and Discussions

Our dataset consists of 200 images captured by a digital still camera (14.1MP).
Along with it we also have 50 scanned document images. First, we present the
text extraction results. Consider the “X-Ray” image (Fig. 4(a)) as an example.
The headline (Fig. 4(d)) attached components are shown in Fig. 4(e). Comparing
this with Fig. 4(a), we notice that all but three text symbols are present. Next,
after eliminating boundary attached components we can remove blob at the
top of the image (Fig. 4(f)). The ER and counting the number of lobes have no
effect on this image. Further, we can filter out the box like non-text, surrounding
the text portion, by testing the aspect ratio (Fig. 4(g)) and the arrow like
components using ratio r (Fig. 4(h)). Afterwards, Fig. 4(i) gives the results of
the identified headline unattached text symbols. It may be noted that the text
symbols absent in Fig. 4(e) are now identified successfully. Finally, the symbols
after removing the headlines are shown in Fig. 4(j). Note that we have only
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Fig. 3. The decision tree for middle zone symbol recognition

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. (a) Input “X-Ray” image, (b) binary image, (c) after removing too small and
large components, (d) the headlines and (e) attached components, (f) after removing
boundary attached components, (g) after testing aspect ratio, (h) after testing ratio r,
(i) headline unattached components, and (j) after removing the headlines

(a) (b) (c)

Fig. 5. (a) Input “Water” image, (b) its text portion, and (c) after headline removal
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� and text symbols in the upper zone. Moreover, this particular image has
compound characters � and � . Such characters are beyond our present study. In
the next example, we highlight an important aspect of our dataset. In Fig. 5(a),
we show the “water” image. This image has perspective distortion. Though we
do not apply any perspective correction procedure, our algorithms extract text
symbols successfully (Fig. 5(b)). The headline removal also works satisfactorily
as presented in Fig. 5(c). The precision and recall values of the text extraction
algorithm based on 250 images, are respectively 70.7% and 73.3%.

A B C D E F G H I J K L M N O P Q R S

90

92

94

96

98

100

# Groups

G
ro

up
 F

or
m

at
io

n 
ac

cu
ra

cy
 (%

)

Upper zone absent

Upper zone present

Fig. 6. Group formation accuracy depending presence/absence of upper zone

We now apply the work of [7] to all middle-lower zone text symbols. Besides,
the upper zone symbols are recognized separately, using MLP. The lower zone
classes 46, 47 and 48 give recognition accuracies 98.56%, 96.47% and 97.33%
respectively. On the other hand, for the upper zone classes 49, 50, 51 and 52
the recognition accuracies from MLP are 99.33%, 97.56%, 98.67% and 99.5%
respectively. In Fig. 6, we describe how accurately a group is formed depending
upon the upper zone is absent/present. Note that the presence of upper zone
makes most groups to form more accurately. The groups are produced by the
decision tree, so Fig. 6 measures the reliability of the decision tree. Finally,
we put the recognition accuracy of all the middle zone symbols in Table 3. This
results include the error produced by all previous operations. Note that accuracy
is higher if some upper zone symbol is present. The association reduces the size
of the groups even to a singleton. Since the MLP in upper zone performs well,
the final recognition becomes satisfactory.

6 Summary and Future Scope

This article proposes a recognition scheme of Bangla text symbols embedded in
outdoor natural scene images. Our method introduces a decision tree classifier
based on structural and topological features. This tree produces small symbol
groups, well recognized by MLP. A script based boosting is proposed to improve
recognition accuracy. The proposed scheme is very efficient in terms of time and
is extendable to printed scanned documents. Future studies may aim at the use
of probabilistic scoring at the internal nodes instead of a deterministic decision.
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Table 3. Recognition (in %) of the middle zone text symbols
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1 - 99.6 10 - 91.7 19 98.2 88.5 28 90.2 89.3 37 91.5 90.9

2 99.7 97.5 11 95.3 93.1 20 - 98.7 29 94.5 93.2 38 97.2 96.7

3 99.7 - 12 - 84.5 21 98.7 97.9 30 100 99.3 39 - 99.7

4 93.7 90.1 13 90.7 90.7 22 99.0 98.3 31 88.3 88.3 40 98.2 97.0

5 98.3 - 14 - 86.3 23 97.4 95.7 32 96.4 93.3 41 82.1 82.1

6 - 94.2 15 - 100 24 96.1 92.5 33 90.6 87.5 42 - 99.1

7 - 99.7 16 100 98.0 25 97.0 86.2 34 - 87.3 43 95.6 94.3

8 - 95.7 17 - 95.8 26 98.4 97.3 35 97.4 96.2 44 99.3 98.5

9 - 98.3 18 98.7 92.3 27 87.4 87.4 36 97.4 97.2 45 - 95.4
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Abstract. This paper proposes an intelligent system that is capable of
automatically detecting license plates from static images captured by a
digital still camera. A supervised learning approach is used to extract
features from license plates, and both global feature and local feature
are organized into a cascaded structure. In general, our framework can
be divided into two stages. The first stage is constructed by extracting
global correlation features and a posterior probability can be estimated
to quickly determine the degree of resemblance between the evaluated
image region and a license plate. The second stage is constructed by
further extracting local dense-SIFT (dSIFT) features for AdaBoost su-
pervised learning approach, and the selected dSIFT features will be used
to construct a strong classifier. Using dSIFT as a type of highly distinc-
tive local feature, our algorithm gives high detection rate under various
complex conditions. The proposed framework is compared with existing
works and promising results are obtained.

Keywords: AdaBoost, Intelligent system, License plate.

1 Introduction

License Plate Recognition (LPR) has been widely adopted into numerous appli-
cations such as traffic law enforcement, unattended parking, security control and
stolen vehicle verification. License Plate Detection (LPD), as the most crucial
step in a LPR system, has attracted the attention of many researchers. Factors
contributing to the complexity of LPD systems include but are not limited to
moving camera (causing degenerated image quality and varied viewing angles),
changing illumination, customized license plates (with various sizes, aspect ra-
tios, colors, fonts and formats) and complex background.

LPD methods proposed in recent years can be divided into two categories,
methods based on template matching techniques and methods based on machine
learning algorithms.

In [1], with a pre-defined threshold value, vertical edge density image is fil-
tered using a license plate pattern match filter. Locations of license plates can
then be found from the filter output. In [2], Hue, Saturation, and Intensity (HSI)
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color features are used to identify potential license plate regions before geomet-
rical properties of license plates are used to classify those potential license plate
regions. In [3], candidate license plate regions are obtained based on clustering
Harris corners. These candidate regions are then classified based on statistical
features. [1], [2] and [3] can be categoried into template matching based methods.

In [4], Zhang et al. proposed a six-layer cascade constructed by thresholding
global statistical features and boosting local Haar-like features. In [5], AdaBoost
Classifier based on Haar-like features are used in concatenation with Support
Vector Machine (SVM) classifier based on Scale-invariant Feature Transform
(SIFT) features to increase the performance of the license plate detector. In [6],
multiple features based on both saliency features (including character saliency,
window saliency and entropy saliency) and non-saliency features (such as char-
acter quantity, overlap, aspect ratio and location) are combined with a Bayes
Classifier to produce classification results. [4], [5] and [6] are learning based
methods.

In this paper, we are going to follow the cascaded framework proposed by [4],
where a two-stage cascade framework is constructed based on both global fea-
ture and local feature. However, differently from [4], we use features that are
more salient and our experimental results prove that using these features, better
performance can be achieved with a lot fewer features needed. As a result, the
time needed to train a classifier that is comparable to (in fact better than) [4]
has been greatly reduced, and details will be reported in Section 3.

Compared with the method reported in [4], our contribution can be sum-
marised as follows.

Firstly, compared to [4], the global features that we use are more salient. Not
only the global feature descriptors themselves are more discriminative, but also
the classifier has been enhanced. With more details, a Bayes Classifier is used
to substitute the classifier based on a threshold value and a pairwise histogram
distance measurements is used to substitute the distance of the averaged gradient
magnitudes.

Secondly, with a higher detection rate and a lower false positve rate, the
overall complexity of our approach is much less compared to that of [4]. We use
dSIFT as weak features in this paper. The dSIFT features are much stronger
than Haar-like features, so the number of dSIFT features needed to perform a
good classification is far fewer. The details will be reported in Section 3.

Thirdly, the dSIFT features are extracted for multiple grids of different den-
sities on an image. Thus, they can tolerate the changes of scales of the image.
The dense grids can locate fine texture information and the sparse grids can lo-
cate coarse texture information. Therefore, our approach does not require scale
normalisation during training process.

Fourthly, we use the Soft Cascade approach being reported in [7]. Comparing
with the traditional Viola-Jones Cascade being used in [4], the Soft Cascade is
advantageous.

The rest of this paper is organized as follows. Section 2 introduces the en-
hanced global features using a Bayesian Model. Section 2 also introduces the
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integration of local features using a supervised learning method. Section 3 pro-
vides experimental results, and Section 4 concludes this paper.

2 LPD with Cascaded Global and Local Features

2.1 Overview of the Proposed Framework

Figure 1 gives an overview of the proposed framework. The results from the first
stage will be used as input for the second stage, where true positive samples
are considered as positive samples and false positive samples are considered as
negative samples.

Fig. 1. Overview of the Framework

2.2 Probability Density Estimation of Global Features

As mentioned in Section 1, in this paper, the global features are more salient
compared to those being used in [4]. In [4], the average value of gradient magni-
tude is being used as a primary criteria to measure the resemblance of a detection
window with a license plate. In this paper, instead of calculating the average, a
histogram will be constructed to better distinguish a license plate from a non-
license plate.

Exploring Sub-block Correlations with Histograms. One global feature
descriptor as proposed in [4] is represented by

DG =
1
N

∑
i

∑
j

G(i, j). (1)

Another is represented by

VG =
∑n

i=1 |gi − g|
n · g . (2)
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In (1), DG is in fact the averaged gradient magnitude for the detection window.
Also, in [4], the detection window was divided into 12 sub-blocks as illustrated
in Figure 2. In (2), gi is defined as the mean value of the gradient strength at
sub-block i, and g is defined as the mean value of the gradient strength of the
whole detection window. In fact, g is equal to DG. n is the total number of
sub-blocks.

Fig. 2. Dividing the detection window into 12 sub-blocks (Image courtesy of [4])

In this paper, we are going to use a new feature based on correlating the
histogram distance features being proposed in [8] as our global feature. There two
benefits using histograms, as pointed out by [8]. One is that histograms provide
more detailed information, and the other is that with the approach reported
in [9], histograms can be computed linearly, which is a precious computational
advantage.

Combining the features presented in [4] with those presented in [8], we can
construct a new feature based on correlated histogram distances. The new global
feature is extracted by first calculating a histogram for each sub-block as illus-
trated in Figure 2 (with n sub-blocks, we have n histograms), then exploring
correlations between histogram distances (for a detection window with n sub-
blocks, the number of pairwised histogram distances is C2

n). In another word,
we can construct a 1

2 × n × (n − 1)-Dimensional global feature vector for each
sample. The global feature for a sample with n sub-blocks can be represented by

V = {D1, D2, ..., D 1
2 n(n−1)}. (3)

Each dimension of the proposed global feature V in (3) is represented by

D =

∑N
j=1(f [j]− g[j])k∑N

j=1(f [j]k + g[j]k)
. (4)

In (4), N is the total number of bins defined for the histograms. For instance, if
we are going to use the pixel intensity values in each sub-block to construct the
histogram, for each sub-block, the maximum number of bins of the corresponding
histogram is 256. f [·] and g[·] are the histograms calculated from two distinct
sub-blocks as illustrated in Figure 2, and f [j] and g[j] corresponding to the j−th
bins of histograms f [·] and g[·], respectively. Note that here j is corresponding to
bin index of the histograms, not the index of the sub-blocks. k is the exponential
factor that defines a family of normalization schemes (distances measurements)
between any two distinct sub-blocks. In [8], k is equal to two.



Learning Global and Local Features for License Plate Detection 551

Constructing a Bayes Classifier. Based on our observation that those 1
2 ×

n×(n−1) global features comply with the naive Bayesian assumption, so a Bayes
Classifier can be constructed. This classifier will assign a new observation to its
most probable class based on its responses of histogram distances. Note that an
optimal classifier can be built in a variety of situations where the assumptions
are wildly violated [10]. As a typical assumption for continuous data, we assume
that those 1

2 × n× (n− 1) global features are in Gaussian distribution.
Here, we use Bayes Classifier mainly because compared to the threshold clas-

sifier, the Bayes Classifier can give a better classification result based on our
experiments. Moreover, the Bayes Classifier is computationally cheap and it
gives more flexibility compared to a threshold value based classifier. Details of
the experimental results will be reported in Section 3.

Although the Bayes Classifier can give a better classification than that of
the threshold classifier in our experiments, it is not powerful enougth to solve
the entire problem of identifying the license plates from static images in our
case. The classification results of the Bayes Classifier still contain some false
positive detection windows. Subsequently, a second stage with local features will
be needed.

2.3 Learning Local Features

Dense-SIFT (dSIFT) features were used for gender recognition on face images
in [11]. In the paper, the dSIFT features, instead of the SIFT features, were
used to address the problems caused by small image sizes, missing texture and
poorly illuminated faces. We choose the dSIFT as the local features because, in
our case, we have faced the same problems as mentioned in [11].

Compared with the SIFT algorithm, which only extracts scale invariant key-
points from an image, dSIFT algorithm first divides an image into a dense grid,
then extracts keypoints from the square patch around each grid point. The num-
ber of neighborhood pixels around a grid point is determined by patch size p,
which is the length of the square patch. In this way, even for images which are
small, with simple texture information, and poorly illuminated, dSIFT can al-
ways extract a number of keypoints. As a contrast, SIFT may not be able to
extract any keypoints from such images. In dSIFT features, each keypoint cor-
responds to one grid point. In this paper, we use three different levels of patch
sizes. The details will be explained in Section 3.

A sample image of size M ×N can be represented by a dSIFT image of size
M ′ ×N ′ as shown in (5). Note that for adjacent keypoints having the same
patch size, their patches overlap each other by p× (p−1) pixels, so, M ′ = M −p
and N ′ = N − p.

DS = {KP1,KP2, ...,KPM ′×N ′}. (5)

The i-th keypoint KPi on the dSIFT image DS is represented by a 128-D feature
vector as:

KPi = {d(1)
i , d

(2)
i , ..., d

(128)
i }, (1 ≤ i ≤M ′ ×N ′). (6)
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Applying the Linear Discriminant Analysis (LDA) dimensionality reduction, the
dimension of the dSIFT feature at each key point is reduced to one [12]. The
keypoints on the grid are regarded as weak features, and their corresponding 1-D
keypoint descriptor values are used in a simple threshold function for AdaBoost
Algorithm to select the most salient weak features.

As we are using three different levels of patch sizes, a pyramid of grids can
be built for each training sample. Pyramids of all training samples are fed into
an AdaBoost Supervised Learning Algorithm to train an AdaBoost Classifier at
the second stage. The AdaBoost Algorithm is used to select the most salient
keypoints from pyramids of keypoint grids. Figure 3 gives an illustration.

Fig. 3. Selecting most salient keypoints. White dots are the selected keypoints, and
black regions are the dSIFT patches for those keypoints.

The local feature being used in this paper is not as weak as the Haar-like fea-
ture, so the number of features needed to be selected by the AdaBoost Classifier
is considerably fewer, and thus the degree of complexity of the detector can be
significantly reduced. Details can be found in Section 3.

3 Experiments

3.1 Improved Global Features

We used 300 positive samples and 300 negative samples to compare the saliency
of the new global feature with that of the Density Variance feature. In order
to compare the new global feature with the Density Variance feature, we divide
the positive samples and negative samples into 12 sub-blocks in the same way
as shown in [4] (see Figure 2).

The gradient magnitude histogram of each sub-block is compared with that
of every other sub-block. As we have 12 sub-blocks for each sample (n = 12),
we can construct a feature vector of 66 (C2

12 = 12×11
2×1 = 66) dimensions, so that

a Bayes Classifier can be built. Although in theory those 66 features should
be independent of each other to construct an optimal classifier, in practice,
the overall Bayes Classifier is robust enough to ignore serious deficiencies in its
underlying naive probability model [13].
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The experimental results listed in Table 1 prove that the Bayes Classifier
together with new global feature gives a better classification result than the
Density Variance feature with a threshold classifier.

Table 1 gives an overview of the comparison between the new approach with
the previous work. As the Density Variance feature is a scalar value, the Bayes
Classifier can not be used. In contrast, as the new global feature is a 66 di-
mensional feature vector, a threshold classifier can not be applied directly. From
Table 1, we can see that the new global feature together with the Bayes Classifier
can further improve the classification result.

Table 1. Performance Comparison on Global Features

Methods Min. # of Wrongly Classified Samples

Density Variance + Threshold Classifier 60 out of 600
Correlated Histogram + Bayes Classifier 47 out of 600

For [4], the Density Variance Feature can be visualized from Figure 4a. In
particular, when the threshold value is equal to 0.2236, this classifier gives the
optimal performance of 90% accurate classification. The relationship between
threshold value and the classification accuracy can be found from Figure 4b.

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample Index

D
e
n
s
i
t
y
 
V
a
r
i
a
n
c
e
 
F
e
a
t
u
r
e
:
 
V
g

(a) Density Variance Distribution (first
300 are positive samples)

0.06 0.26 0.46 0.66 0.86 1.06 1.26
50

100

150

200

250

300

Threshold Value

#
 
o
f
 
W
r
o
n
g
l
y
 
C
l
a
s
s
i
f
i
e
d
 
S
a
m
p
l
e
s

(b) Classification Results vs. Threshold
value

Fig. 4. Finding an optimal threshold value

In our case, the optimal value for k defined in (4) is 2.3. Figure 5 gives the
detailed information.

One explanation for the high accuracy reported in Table 1 is that the Bayes
Classifier can give a correct classification as long as the correct class is more
likely than any other classes. Hence, the class probabilities do not have to be
estimated very well.
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Fig. 5. Classification results according to k

3.2 Stronger Local Features

As mentioned in Section 1 and Section 2.3, the overall complexity of the detector
is reduced to a much smaller degree due to the more salient dSIFT feature being
used as our local feature. In [4], the total number of weak features needed to
construct a strong classifier is approximately 4000, and the number of stages
needed for AdaBoost training is at least 10. In addition, for each stage, the
nubmer of iterations varies from a few dozens to a few thousands, and in each
iteration, one weak feature is needed to be selected from a hundard thousands of
Haar-like features. In contrast, in our case, the number of weak features needed,
the stages, the number of iterations in each stage and the weak feature pool are
all significantly smaller. Details can be found in Table 2.

Table 2. Comparison of Detector Complexity on Local Features

Methods [4] & [14] This paper

# of Features Selected ≈ 4000 10
# of Stages Needed > 10 1
# of Iterations in One Stage > 3000 10
# of Features Evaluated > 100000 < 1000

With a much smaller number of salient features selected, the overall com-
plexity of the detector can be greatly reduced. Moreover, with a much smaller
number of features being evaluated, the AdaBoost training process can be made
much faster.

3.3 Experimental Results

In the experiments, we tested our classifier on the dataset used in [4] and [14]. Of
all 460 vehicle images with 474 license plates, 300 images are used for training,
the rest 160 images with 169 license plates are used for testing. Some examples
of the license plates are shown in Figure 6.

As mentioned in Section 2.3, we use three different levels of dSIFT patch
sizes, which are 8, 12 and 16, and the corresponding neighborhood pixels around
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Fig. 6. Some examples of the license plates used in our experiments

a keypoint are 64, 144 and 256 respectively. The total number of weak features
for AdaBoost algorithm is approximately three times of the sample sizes. The

Table 3. Performance Comparison with Existing Work �

Methods [4] [14] This approach

# of detected license plates 158 163 162
# of false positive regions 8 8 4

� Dataset: We use the same dataset as used by [4] and [14]. The dataset contains 160
vehicle images with a total of 169 license plates.

experimental results prove that our method can achieve a comparable detection
rate and a lower false positive rate compared to previous works.

In [4], the time needed to train a reasonably good detector was approx-
imately 100 hours on a 2.8GHz CPU and OpenCV (Visual Studio C++)
environment. In this approach, we can train a comparative detector on a 3.16GHz
CPU and Matlab environment within 15 hours [15]. Given that both exper-
iments are conducted on a single thread process, in our case, the computa-
tional advantage brought by a faster CPU is limited. Moreover, in terms of
compiling and execution speed, Matlab is generally considered as less efficient
than C++.

4 Conclusion

In conclusion, we have presented an improved license plate detection system
based on the framework given by [4]. Dense-SIFT descriptors are used as Lo-
cal features and correlated histogram distances are used as global features. The
global features together with the Bayes Classifier being constructed can be used
to quickly evaluate the detection windows such that only those promising detec-
tion windows are subjected to further feature extraction and classification based
on dSIFT features and AdaBoost Classifier. Our experiments based on the same
dataset as [4] and [14] have demonstrated a comparable detection rate as [14]
and a better false positive rate compared to those reported in both [4] and [14].
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Abstract. In this paper, we propose an intelligent video camera system for 
traffic surveillance, which can detect moving objects in road, recognize the 
types of objects, and track their moving trajectories. A dynamic saliency map 
based object detection model is proposed to robustly detect a moving object 
against light condition change. A Gaussian mixture model (GMM) integrated 
with an Adaboosting algorithm is proposed for classifying the detected objects 
into vehicles, pedestrian and background. The GMM uses C1-like features of 
HMAX model as input features, which are robust to image translation and 
scaling. And a local appearance model is also proposed for object tracking. 
Experimental results plausibly demonstrate the excellence performance of the 
proposed system. 

Keywords: Video surveillance system, Dynamic saliency map, AdaBoost, 
Gaussian mixture model, Object tracking. 

1   Introduction 

Due to the increase of crimes and accidents, the needs for video surveillance systems 
are rapidly increasing. Nowadays, many CCTVs have been installed for monitoring 
and surveillance. However, most of CCTVs are usually controlled by human 
operators or fixed at. Hence an automatic intelligent video surveillance system 
without manual control is necessary to be developed. 

In the field of computer vision, many studies for video surveillance have been 
conducted [1-3]. The Adaboost approach using Haar-like features is one of the state-
of-the-art object detection algorithms [4], which is generally implemented using a 
simple feature extraction method based on many weak classifiers. However this 
approach is not suitable for detecting various objects and needs large amount training 
sets. Histogram of oriented gradient (HOG) also shows excellence in detecting 
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humans [5]. However, the human detection using HOG might be difficult since 
humans can change their poses, walking and  directions and wearing various clothes. 
HOG can be simply used to detect humans using a simple classification algorithm 
such as linear support vector machine (SVM). Instead computational load for this 
approach is too heavy to implement in a real time embedded system. As well, the 
traffic surveillance system should be working in real time usually implemented in an 
embedded system. Thus, a low computation load is considered as an essential 
property together with high accurate operating performance for the traffic surveillance 
system. 

Therefore, we propose a novel video surveillance system having both a low 
computation load and a high accuracy. The proposed surveillance system consists of 
three models such as a moving object detection model, an object classification model 
and an object tracking model. In order to detect moving objects such as vehicles and 
pedestrians in a road, a background subtraction method or mixture of Gaussians 
(MoG) can be used [6] for foreground discrimination from backgrounds. The MoG is 
one of the most popular algorithms and plausibly copes with multimodal background 
distributions. In the proposed system, we adopt the dynamic saliency map (dynamic 
SM) based foreground detection method [7] since the dynamic SM has a robustness 
against light condition changes occurring in outdoor environments. Moreover, the 
dynamic SM model successfully pop-outs the moving objects by considering 
changing dynamics of SM. As the verification step, the system utilizes the global and 
local features of object images and performs object classification by the boosted 
Gaussian mixture model (boosted GMM) classifier [8]. This object classification 
process is considered since the detected foreground may not be the exact object’s 
region and may include background. For the boosted GMM model, C1-like features 
of HMAX model are used as input features, which are robust to object translation and 
scaling. The boosted GMM model classifies vehicles, pedestrians and backgrounds. 

Moreover, we propose a novel tracking approach based on a local appearance 
model for successfully tracking of moving objects, which is needed to play a role for 
locally detecting objects in various situations such as stop and/or occlusion of moving 
objects. The local appearance model also plays an important role for adaptively 
tracking objects in case moving objects’ shapes and sizes are changed during moving 
on the road. For satisfying these purposes, the local appearance model is adopted for 
an object tracking method among many well known tracking algorithms. 

This paper is organized as follows; in section 2, we describe the proposed video 
surveillance system. In section 3, experimental results and discussion will be 
described. Finally, conclusion and further works are discussed in section 4. 

2   Proposed System 

The proposed system consists of three main steps; moving object detection, object 
recognition and object tracking. In the moving object detection part, the system 
localizes moving object candidate regions by a dynamic saliency map. Then the 
system identifies whether the regions are interesting objects such as vehicles and 
pedestrians or not. Finally, object tracking is performed to track moving objects and 
improve interesting object detection rate. 
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2.1   Moving Object Detection 

The proposed moving object detection model is based on the dynamic SM based 
detection model [7]. The dynamic SM is based on successive static SMs obtained 
from a time sequence of input scenes. The entropy through time is used to analyze the 
dynamic characteristics of successive static SMs. With respect to the first frame at 
time, τ , the most appropriate scale Xs for each area centered at location X is obtained 
which considers spatial dynamics at each location. The probability mass function of a 

dynamic scene ),,( tnXXD s
PH Δ+τ  is obtained from the histogram of the entropy 

values for a sequence of static SMs in (n+1) frames from τ  to tnΔ+τ  where n is 
the number of continuous frame and tΔ  denotes the sampling time. The entropy 
value at location X is calculated from the histogram of pixel values of the local area 
centered at X with size Xs in a static SM. By using the probability mass function for a 
dynamic scene, the time varying entropy is calculated using Eq. (1). 


∈

Δ+Δ+−≡Δ+
Dd

tnXXDtnXXDsD ss
PHPHtnXXT ),,(2),,( log),,( τττ  

(1)

The entropy value DT  at each pixel X represents a fluctuation of visual information 

with time, from which this model generates a dynamic SM. And a dynamic SM is 
normalized between 0 and 1 for candidate localizing process. To localize a moving 
object candidate area, the dynamic SM is binarized with a threshold. After isolating 
blobs in the binarized dynamic SM using morphological closing, moving object 
candidates are localized using a labeling method. 

2.2   Object Recognition 

The object candidate regions detected by the moving object detection model may be 
translated or not exactly fitted to the real object regions. Therefore an object 
recognition module is implemented using a GMM, in which the C1 features of the 
Hierarchical MAX (HMAX) model [9] are used as the input features. The C1 features 
have scale and translation invariant property. Each GMM is established for each 
object class and the greedy learning algorithm and partial EM are considered to train 
the GMM [10]. Moreover, the Adaboost algorithm is applied to the GMMs to achieve 
a higher accuracy of classification [11]. 

In the proposed model, we use C1-like features based on the C1 features. The main 
difference is that we use edge orientation information based on the Sobel operator 
instead of using Garbor filters, which can reduce the computation time. The edge 
orientation features are relevant to the S1 features of the HMAX model. 

As a learning algorithm of a GMM, the EM algorithm is generally used [12]. The 
EM algorithm is known to converge to a locally optimal solution. However, it does 
not guarantee a globally optimal solution. Therefore we use the greedy learning 
algorithm with the partial EM searches for efficient learning. After training a GMM 
for an object, the GMM can estimate the probabilities for the inputs. A higher 
probability means that the input is likely to belong to the learned class. Since the 
learning of each GMM is performed for each different class, the GMM by the specific 
class learning may have poor classification accuracy when the objects in different 



560 W. Lee et al. 

classes are very similar to each other. To solve this problem, we applied the Adaboost 
algorithm to efficiently collect each GMM for constructing a strong classifier. As a 
weak learning algorithm for the Adaboost algorithm, we built a simple classifier using 
a component of GMMs with a threshold which is determined experimentally. 

Thus, we construct the clusters of boosted GMM classifiers for 2 object classes 
such as vehicles and pedestrians. Each cluster has 4 boosted GMM classifiers of 3 
global feature bands and 1 local feature. Outputs of boosted GMM classifiers for each 
object class are summed and the classification result is obtained by the maximum 
value between clusters. If outputs of boosted GMM classifiers are lower than a 
threshold, the classification result is considered as backgrounds. Accordingly, the 
proposed boosted GMM module classifies three object classes such as vehicles, 
pedestrians, and backgrounds. 

2.3   Object Tracking 

The dynamic SM based detection model is designed to detect moving objects. It 
cannot detect still objects because still objects do not have dynamic characteristics. 
Thus we solve this problem with the object tracking algorithm with the local 
appearance model. Objects cannot be created in the middle of the road but move in 
from other places. Hence the proposed system tracks objects entering to and leaving 
the monitored scene. 

2.3.1   Local Appearance Model 
To track objects the proposed system utilizes the local appearance feature from an 
object image. As features, we use a color histogram to represent the color appearance 
and the cell matching score to represent the shape of the object. The color histogram 
has 24 bins (8 for each RGB channel) and to avoid the aliasing, adjacent bins are 
increased by 0.5 when the center bin is increased by 1. The color histogram is 
normalized by Eq. (2). 
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The correlation of two histograms is calculated by the Pearson product moment 
correlation coefficient equation shown in Eq. (3). 
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where n is the dimension of vectors (n is 24). Also x means an object region in a 
previous frame and y means an object region in a current frame. 

To compute the cell matching score, we convert the object image to gray scale and 
divide into several sub regions, in our implementation, the number of sub-regions is 
6×8. The procedure is described in Fig. 1. In each sub region, mean and variance of 
pixels are obtained. Comparing mean and variance values with the other object image, 
we can set matching cells by Eq. (4). 
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The cell matching score, m_score is computed by Eq. (5) and the similarity S between 
two object regions is computed by Eq. (6). The proposed system creates the similarity 
matrix between objects in previous frame and current frame and tracks objects by 
finding maximum S and linking. 
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The local appearance model is also utilized for detecting objects. When an object is 
moving it can be detected but when it stops moving temporally it disappears. 
Therefore the proposed system scans to detect unlinked objects near their locations 
and can find stopped objects or temporally occluded objects. The scanning method is 
a sliding window around the object’s location and the detected position of the object 
is the position of maximum S and the size is the same as the previous size.  

 

Fig. 1. The procedure of computing the similarity between two objects 

3   Experimental Results 

To evaluate the proposed system, we ran the system on our test bed. In the test bed, 
there are three IP cameras. Each camera captures different points of view but they aim 
at the same intersection. We also use our video datasets recorded under multiple 
circumstances. The datasets include three different weather videos and successive 800 
frames of each dataset are used to evaluate the detection performance. Fig. 2 shows 
examples from our dataset and table 1 shows the experimental result of the dynamic 
SM based object detection model in different datasets. 
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Fig. 2. Examples of the datasets for evaluating the detection model 

Table 1. The experimental results of the proposed moving object detection model 

 # of total objects Detection accuracy False alarm rate 

Video dataset 1 1149 93.04% 22% 
Video dataset 2 1681 90.12% 47% 
Video dataset 3 1092 94.96% 21% 

 
Dataset 2 is the worst in the whole dataset, because it included many complex 

scenes with strong shadow effects. Furthermore, dataset 1 was recorded in rainy 
conditions. However, the moving object detection model shows a high accuracy of 
more than 90% in all the datasets. Although those results show a few false alarms of 
more than 20%, the proposed system can discard the unexpected candidates by a 
posterior process using the object identification model. 

To test the object identification performance, we use official object database 
including CBCL vehicles, CBCL pedestrians, Caltech vehicles, Daimler pedestrians 
and some background images collected from Caltech database [13-14]. We also tested 
for object images from the ABR dataset which was recorded at our institution. In each 
dataset, 300 object images per class are used to train the recognition model (100 for 
creating a codebook, 200 for training a classifier) and 200 images per class are used to 
measure classification accuracy of the proposed model. Table 2 shows the comparison 
of experimental results of the proposed model and our previous model for the datasets 
[15]. The proposed model has similar accuracy for vehicles and pedestrians, but 
higher performance for background images on average. Moreover, computational 
speed is much faster than the previous model, in which the proposed model takes 
64msec on average, while the previous model takes 137 msec for the 78x78 size 
object images (Intel Core2Quad 2.4GHz). 

We use the CLEAR MOT metrics for evaluating object tracking performance of 
the proposed model [16]. Videos from the three IP cameras are used and each video 
has about 1800 successive frames. Although the view-points and moving directions of 
objects are various as shown in Fig. 3, the proposed tracking algorithm works well 
and the precision score (intersection of overlapped bounding boxes) and accuracy 
score (false-negative, false-positive and number of ID switches) are shown in table 3. 

In testing experiments, up to four objects simultaneously appear in an input scene 
and the proposed surveillance system operates in approximately 10 frames per second 
(Intel Core2Quad 2.4GHz). 
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Table 2. The experimental results of the proposed object identification model 

  Vehicles Pedestrians Background 

Object 
dataset 1 

Proposed Model 98.5% 99.5% 88% 
Previous Model 98.5% 99% 75.5% 

Object 
dataset 2 

Proposed Model 97.5% 99% 74.5% 

Previous Model 100% 94.5 79.5% 

Object 
dataset 3 

Proposed Model 96% 98.5% 72% 

Previous Model 99% 97% 62.5% 

Table 3. The experimental results of the proposed object tracking model 

 Prec. Accur. F. Neg. F. Pos. ID Sw. 

IP camera 1 81.8% 75.7% 22.6% 1.7% 3 

IP camera 2 78% 70% 22.9% 7.1% 1 

IP camera 3 76.7% 76.2% 17.2% 6.6% 13 

 

 

Fig. 3. The examples of multi object tracking 

4   Conclusion 

We proposed a series of computer vision algorithms for a video surveillance system. 
Since the system was developed for implementation in an embedded system, we 
consider the trade-off between accuracy and computational load. The dynamic SM 
based moving object detection model is robust to change of environment and noise. 
And the object identification model using the global/local feature and the boosted 
GMM shows high performance on multi-class object recognition problem. The 
proposed object tracking mechanism makes the system complete, compensating for 
the limitation of the detection algorithm. And the tracking algorithm enables the 
function of the system to be extended, for example, to accident detection. 

In future work, we plan to improve the tracking performance and develop an 
incremental learner for multi-class object recognition model. 
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Abstract. The paper presents a contour-based method for large scale
image retrieval. With the contour saliency map of the object, it could ad-
dress the shift-invariance problem, and with hierarchical and multi-scale
feature extraction, it is able to deal with the scale-invariance problem to
a certain extent. Different from existing algorithms, the features used in
the retrieval system contain not only local information, but also global
information of the object. By taking advantage of this characteristic, we
could build a hierarchical index structure which helps to fast retrieval
of the large scale database. Furthermore, our method allows two kinds
of query image: a hand-drawn sketch or a natural image. Thus it is pos-
sible to refine the search results by choosing one image from the list of
previous sketch retrieval results as the new query. It brings the better
interactive user experiment and the convenience for those who aren’t
good at drawing. The experiment results verify the performance of our
method on a database of four million images.

Keywords: shift-invariance, contour saliency map, hierarchical struc-
ture, global-to-local feature, orientation information.

1 Introduction

Contour is a very important channel for human being to recognize or distinguish
the objects from an image or a scene. Image retrieval based on contour has
been attracted great attention in the data mining society [1], but most of works
mainly dealt with image retrieval in small database [2][3][4]. And in large scale
database, Eitz [5] presented a method that divides an image into a fixed number
of cells, and each cell corresponds to a structure tensor descriptor which stores
the main direction of the gradients of the cell. Different from Eitz’s method
which hasn’t index structure and must scan the whole database for each query,
Cao [6] presented an index-able oriented chamfer matching method. But both
their works have the same limitation that the shift-invariance problem still exists
in their retrieval system. The objects in the query image and in the retrieved
image must have the same position, this property will reduce dramatically the
recall rate in image retrieval. And in most of situation, the users usually only
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mind whether they could search the object they wish, and don’t care where it is
in the image.

To address this issue, we propose a shift-invariance method for large scale
image retrieval. It comes from the fact that when human beings see an image,
they usually look through the whole image for a short while and then focus their
eyes on the salient place of the image, as shown in Fig. 1(a). That means in
most of time, people only pay attention to a local part of an image instead of
the whole image. So different from existing algorithms, we don’t extract features
on the whole image, instead, we first find the saliency map of the object which
is usually a local part of the image, and then extract features on the part.

Feature

(a) Image processing of human visual system.

Image

Object
Location

Clear
Orientation

Feature
Hierarchical
Orientation
Abstraction

Multi-Scale
Feature

Abstraction

(b) Framework of feature extraction.

Fig. 1. Framework of feature extraction by simulating human visual system

Another contribution is a contour-based image retrieval prototype system for
the database including more than four million images. With hierarchical and
multi-scale feature extraction, we could easily obtain not only the position of
the object but also the global-to-local orientation features, which brings two ad-
vantages: shift-invariance and scale-invariance to a certain extent. These cannot
be achieved by most existing retrieval systems. Moreover, the system provides
users two query methods: a hand-drawn sketch or a natural image, as shown in
Fig. 2. If you are a good painter, you could draw a sketch whatever you imagine,
but if the sketch doesn’t like what you imagine very much, you can select a
natural image which is most similar to what you wish from the list of retrieval
results and then make the second retrieval to achieve satisfactory images.

2 Feature Extraction

Fig. 1(b) demonstrates the basic framework of feature extraction of our method.
By simulating hierarchical information processing of human visual system, it
could obtain a contour saliency map of the object in an image, and at the same
time, it could still extract clear orientation information of an object. With the
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Fig. 2. Illustration of interactive retrieval process. After querying with a hand-drawn
sketch, the users could choose one result image as a query and make the next retrieval.

F = {F1, F2, F3, F4,...}

H3

H2

H1

L3

L2

L1

( IV )

( II )

( III )

( I ) DO1 DO3 DO2 DO4

CO1 CO3 CO2 CO4

S

Fig. 3. Details of feature extraction. (I) Hierarchical orientation extraction. (II) Object
location. (III) Clear orientation. (IV) Multi-scale feature extraction.

two above mentioned, we can easily know the object’s position and contour
orientation information. And then, by multi-scale feature extraction, we can
obtain the global-to-local feature of the object.

It is well known that human visual system processes the image with hierar-
chical structure. According to this, hierarchical difference image DOj and the
contour saliency map S are computed from an image as:

S =
N∑

j=1

DOj =
N∑

j=1

(
M∑
i=1

[max
k
{DHiOj}]m×n

)
(1)
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where DHiOj is the difference image of the ith level and the jth orientation, as
shown in Fig. 3. And the size of DHi−1Oj is lower than the size of DHiOj by two
times. k is the red, green, blue color channel, and maxk{·} is the maximum of
difference image among the three channels. [·]m×n means scaling the difference
image proportionably to the maximum size m×n. S is the contour saliency map
of an image and is normalized to between 0 and 1. In Fig.3, M = 3, and N = 4,
Oj denotes 0, π/4, π/2, and 3π/4 orientation respectively. Because the minimum
resolution of images for human beings is 32×32 [7], we set the maximum size of
DH1Oj is 32×32, and then m×n is 128×128.

Sx = arg max
x
{sum(�S�Ts)x � gx}, Sy = arg max

y
{sum(�S�Ts)y � gy} (2)

where �·�Ts denotes the value greater than Ts, in our experiment, Ts = 0.25.
sum(·)x and sum(·)y are the sum along the axis x and the axis y respectively, g
is the Gaussian kernel, and � denotes convolution. (Sx, Sy) are coordinates of the
maximum convolution value in the saliency map, and they denote the centroid
of the object in the image.

From Fig. 3 we can see, DOj cannot represent contour orientation informa-
tion of the object clearly. Considering 0 and π/2, π/4 and 3π/4 are orthogonal
respectively, we make the following operation:

CO1 = �DO1 −DO3�0, CO3 = �DO3 −DO1�0
CO2 = �DO2 −DO4�0, CO4 = �DO4 −DO2�0 (3)

where COj denotes clear orientation map.
The final feature of an image is:

FLpOjt =
∑

COj (xLpt, yLpt, rLp) ·G(rLp) (4)

where FLpOj t denotes the tth feature of the Lpth level and the Ojth orientation,
and G(rLp) is the Gaussian kernel which radius is rLp , and COj (x, y, r) is the
region of the clear orientation map which centroid is (x, y) and the radius is r,
and rLp = 2rLp+1 , rL3 = 32. When p = 1, t ∈ {1}, and when p = 2, t ∈ {1,
2, ..., 8}, and when p = 3, t ∈ {1, 2, ..., 64}. So the feature F = {FLpOj t} has
1× 4 + 8× 4 + 8× 8× 4 = 4 + 32 + 256 = 292 dimensions. And finally, values of
the feature are normalized to between 0 and 1.

So the similarity measure of two images is given by:

Dist(F, F
′
) = sim

(
{FLpOj t}, {F ′

LpOjt}
)

(5)

where sim (·) could be any similarity measure, for example, Euclidean distance
or cosine similarity.

Fig. 4 is the histogram of average value of feature F from 100 thousand images.
Region L1 denotes the first 4 values of F , and region L2 denotes the following
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L1

L2

L3

L3

L2

L1

Fig. 4. Histogram of average feature values from 100,000 images. The first 4 values of
F belong to region L1, the first 5 to 36 values of F belong to region L2, and the rest
256 values of F belong to region L3.

32 values of F , and region L3 denotes the rest 256 values of F . L1, L2, L3 are
corresponding to L1, L2, L3 in Fig. 3. From Fig. 4, we can see the step-by-step
descending trend of F . That is why we call F the global-to-local feature. Values
from L1 to L3 denote the information which is from global to local respectively, so
values in L1 will occupy a large proportion in distance computing of equation(5).
If objects in two images are very different in contour, the difference of values in
L1, L2, L3 must be all large, and as a result the similarity score in equation(5)
is very low. But if two objects are only a little different, in other word, they
should have almost the same global information and are just different in local
parts, then only some values’ difference in L3 (maybe still in L2) is large, but in
L1 must be small, and finally the similarity score in equation(5) is high.

3 Index Structure

Our feature contains an object’s global-to-local information, so we select only
the first 36 values of F which belong to region L1 and L2 as shown in Fig. 4
and include most of important information of the object. And for each value,
we separate it into some parts, and for each part, there is a corresponding in-
verted list of images, as shown in Fig. 5. With the index structure, we could
select top N1 (� T ) candidate results from the database quickly, and then,
we select top N2 results from N1 candidate results with similarity measure of
first 36 values of F . Finally, we rank the N2 results with similarity measure of
all values of F and take them as the finally retrieval results. Thus we could
build a hierarchical top-down retrieval structure. In our experiment, T = 50000,
N2 = 2000.
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0.27 0.16   ...

{..., IMG ID i, ...} {..., IMG ID j, ...}  ...
U U

......

Feature ......

0

1

Inverted List
N1 Results

N2 Results

Retrieval Results

Query Image

Database

User

Interface

T

Fig. 5. Index process of database. For each query, N1 results are first selected from 4
million images by inverted files, and then top N2 results are selected from N1 results
with similarity measure of first 36 values of F , and final results are from N2 results
with similarity measure of all 292 values of F .

4 Experiment

To evaluate our retrieval method, we built a prototype system which database
has more than 4 million Flickr images and run it on the server with 2 Intel Xeon
2.4GHz Quad Core processors and 8GB memory. Because the feature of an image
has only 292 dimensions, and it takes less than 2KB memory per image, and the
memory cost of our system including features of the database and the inverted
file is not more than 7GB in total. So a normal server is powerful enough for our
system. The average retrieval time is about between 2 and 3 seconds.

Fig. 6. Some examples of shift-invariance. Top row: the original image. Middle row:
corresponding contour saliency map S and the centroid of the object (Sx, Sy) (red
point). Bottom row: Canny edge detection.

To better explain why our method could deal with the shift-invariance prob-
lem, we display some examples and the corresponding contour saliency maps
in Fig. 6. Our method extracts contour information of the object clearly, and
further, obtains the centroid of the object. It is hard to be achieved by existing
edge detection methods, e.g. Canny edge detector [8], as shown in the bottom
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(a) A hand-drawn sketch as a query image

(b) A natural image as a query image

Fig. 7. Some example queries and their top 20 retrieval results from the database of 4
million images

row of Fig. 6. And for most of saliency detection methods [9][10], it is still hard
to be achieved. Because existing methods are almost based on information max-
imization [11], and if there are lots of contours having the same orientation in
the image, these contours would be not salient in the saliency map.

Because no existing algorithm or image database is available for us to compare
the performance, we just display the retrieval results from hand-drawn sketch
and natural image as the query respectively, as shown in Fig. 7. From the results,
we can see our method is shift-invariance. And for similar objects with different
scales, their proportion of global feature at four orientations would be almost
same, thus their similarity score in equation(5) will be high. So our method deals
with the scale-invariance problem to a certain extent.
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5 Conclusion

We propose a simple and efficient contour-based method for large scale image
retrieval. With hierarchical top-down index structure, our method can search
the results from 4 million images quickly. Furthermore, it can use not only a
hand-drawn sketch but also a natural image as the query image, which brings
better interactive query method and the convenience for the users who don’t do
well in drawing. And our retrieval method is shift-invariance and scale-invariance
to a certain extent, which could not be performed by any existing system having
been published.
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Foundation of China (Grant No. 90920014) and the NSFC-JSPS International
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Abstract. In this paper, the three-dimensional surface shape measurement 
system with the temperature information is introduced. The measurement is 
established using a three-dimensional surface measurement system and a 
thermography. The measurement system is composed of CCD camera, a laser 
and thermography. The laser is projected to the object and the laser streak 
image appeared on the surface of the object is observed by a CCD camera and a 
thermography. The streak image recorded by the CCD camera is used to 
reconstruct the object shape on a computer, and the corresponding temperature 
data obtained by a thermography is allocated to the reconstructed surfaces of 
the object on a computer. The obtained data can be used for a quantitative 
analysis of a heat radiation considering the area and the roughness of the heat 
source object. Experimental result shows the feasibility of our system. 

Keywords: Image processing, Calibration, three-dimensional measurement, 
Temperature, CCD, Computer vision, Matrices, Thermal-image, Thermography.   

1   Introduction 

This paper proposes the system that measures the three dimensional shape with its 
temperature distribution of an object using a CCD and a thermography. A 
thermography is utilized in various fields such as medical and engineering fields, 
since it measures the surface temperature of the object instantaneously without 
contacts to the object. However, the recorded image by the thermography is generally 
in two dimensional and the quantitative information such as area size and roughness 
of the heat source object cannot be obtained. As the size of the object appeared in the 
thermal image is varied depend on the distance of the object from the thermography, 
qualitative analysis between the temperature and the position cannot be carried out. 

In this paper, the three-dimensional thermal-sensing system is introduced. Laser slit 
ray is projected on the surface of the object. The CCD camera records the streak of the 
laser appeared on the surface of the object and the thermography records the thermal-
image of the object simultaneously. The points on the laser streak are triangulated and 
the three dimensional position of these points in a world coordinates are calculated [1]-
[5]. The arrangement between the CCD camera and thermography are calibrated in 
advance and the relation between the CCD camera coordinate system and the 
thermography coordinate system is formulated in the conversion matrices [6]-[8]. Once 
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the three-dimensional position is measured, the corresponding temperature is allocated 
from the thermal-image using the conversion matrices. Since the quantitative data of 
the position with the temperature is measured using our system, the obtained data can 
be used for an analysis of a heat radiation considering the area and the roughness of the 
heat source object.  

Calibration is an important task in three-dimensional measurement since it 
influences the measurement accuracy. Generally, calibration process is complicated 
and is not unified in three-dimensional measurement system. In the proposed system, 
the relation between CCD coordinates and thermography coordinates have to be 
determined precisely on the calibration process since it influences the allocation 
accuracy of the temperature to the surface of the object. The suitable calibration 
method for a CCD and a thermography is proposed in this paper. 
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Fig. 1. Measurement system 

2   Measurement System 

The three-dimensional surface shape measurement system with the temperature 
information is established using a three-dimensional surface measurement system and 
a thermography. The measurement system is shown in Fig.1. The three-dimensional 
surface shape measurement system is composed of a CCD camera and a laser 
projector [9]-[10], [13]. The three-dimensional surface shape is reconstructed using 
active triangulation method, and the corresponding temperature data obtained by a 
thermography is allocated to the reconstructed surfaces of the object on a computer 
[11]-[12]. The slit laser projector equipped on the Z-axis stage is controlled by 
computer. The laser streak appeared on the surface of the object is recorded by the 
CCD camera, and the three-dimensional surface shape measurement of the object is 
established by analyzing the laser streaks. The thermography records the thermal 
images simultaneously and the thermal data is allocated to the surface data using the 
conversion matrices. 
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Fig. 2. Flow of the measurement 

Fig.2 shows the flow of the measurement. The laser slit ray is projected on the 
surface of the object. The laser appeared on the surface of the object is captured by 
the CCD camera. The image of the laser streak is sent to the computer and the 
computer calculates the position of the points on the laser streak. The image of the 
object is captured by the thermography simultaneously and the thermal data is 
allocated to the positional data using a conversion matrices. The position of the laser 
projector is changed and the above procedure is repeated until the laser reaches at the 
edge of the object. 

3   Measurement Principle  

The three-dimensional surface shape is measured using the method of active 
triangulation. The slit laser projected on the surface of the object is observed by CCD 
camera and these images are analyzed using image processing technique. The 
corresponding temperature data obtained by a thermography is allocated to the 
reconstructed surfaces of the object simultaneously on a computer. 

Fig.3 shows the relation between camera coordinate system and world coordinate 
system. A measurement point is located as the intersection between the laser plane 
and the straight line from a camera focus. 

 
 

Projection of a laser slit to the measuring 
Object from the start position on the z-stage 

Capturing the laser streak image by a 
CCD camera 

Calculation of the position of the points on the laser streak in the 
world coordinate system 

Allocating the thermal data to the measured 
Position using conversion matrices 

Change the position of a laser projection 
along the z-stage 
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Fig. 3. The relation between camera coordinate system and world coordinate system 

3.1   Calibration of a Camera and a Thermography 

In order to measure the shape of the object with the temperature, the calibration of the 
CCD camera and the thermography have to be carried out in advance [15]. A standard 
cube which has filaments at the each corner is used in order to match the coordinates 
among the CCD camera coordinate system, the thermography coordinate system and 
the world coordinate system. Since the filament generates the light and the heat, the 
image can be recorded by both the CCD and the thermography. 

Laser projector 
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Thermography 

CCD camera  

Scanning 
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Fig. 4. The calibration setup 
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Setting the Standard cube with 
filaments at the corner 

Capturing the image of the 
standard cube by the CCD camera 

    Capturing the image of the 
standard cube by the thermography 

 Detection of the 
position of filaments set 
at the corner of the cube 

Detection of the position 
of filaments set at the corner 
of the cube 

Generation of the relation 
matrix between the CCD 
coordinates and the world 

coordinates 

Generation of the relation matrix 
between the thermo-image 
coordinates and the world 

coordinates 

Generation of the conversion 
matrices from world coordinates to 

thermo-image coordinates 
 

Fig. 5. Flow of the calibration procedure 

The calibration setup is shown in Fig.4. The standard cube is set along the z-stage 
direction to be adjusted with the laser slit plane. The image of the standard cube is 
recorded simultaneously by the CCD camera and the thermography is used to 
determine the calibration parameters. Fig.5 shows the flow of the calibration 
procedure of the proposed system. The image of the standard cube with filament 
marker is captured simultaneously by both the CCD camera and the thermography. 
The position of the filament marker is detected on CCD image and the thermo image 
respectively. As the positions of the filament makers are already known in the world 
coordinate system, the relation matrices between coordinate systems can be generated 
using the positions of the markers. After determining the relation matrices among the 
world coordinate system, CCD coordinate system and thermography coordinate 
system, the conversion matrices from the world coordinate system to the thermo-
image coordinates can be generated. The correspondence between three dimensional 
position of the object and the thermal data can be found using the conversion matrices 
and it is used for the allocation of the thermal data to the reconstructed shape of the 
object on the computer. 

The relation between the CCD camera coordinates (u, v) and the world coordinates 
(x, y, z) fixed on the standard cube is as follows. 
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Where k11 to k33 are parameters that consider the rotation, scale and displacement 
between camera coordinates and world coordinates. These parameters are determined 
by feeding some corresponding positions between camera coordinates and world 
coordinates. In our system, the corners of the cube where the filament marker is set 
are used for the feeding points. k11 to k33 are determined by feeding over 6 
corresponding points to equation (1). Laser projector moves along the Z-axis by every 
1 mm and z coordinate is indicated for the amount of movements of the Z-axis stage. 
After all, the function for the world coordinates is as follows. 
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Where, (u, v) is the CCD camera coordinate. All points on the laser steaks are 
converted to the world coordinates and the shape of the streak appeared on the surface 
object is estimated. The whole shape of the object is reconstructed by accumulating of 
the points in the laser streaks appeared on the surface of the object [14].  

The relation between the thermal-image coordinates (us, vs) and the world 
coordinates(x, y, z) is also as follows. 
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These parameters can be determined in a same way with the CCD camera one. The 
data in the thermo-image is allocated to the surface data using equation (3). 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Measurement accuracy 
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4   Experiment 

4.1   Performance of the System 

Since the size of the object appeared in the CCD camera image is varied depend on 
the distance of the object from the CCD camera and the quantitative measurement is 
established from images, the distance of the object form the CCD camera influences 
the measurement accuracy. Therefore, the accuracy of the measurement was evaluated 
on changing the distance of the object from CCD camera. Fig. 6 shows the 
measurement accuracy in this experiment. When the distance of the object from CCD 
camera was not over 800mm, the error was less than 1mm. 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Thermal image (2D) 

        (a) Reconstructed human face on the computer (3D) 

(b)The three-dimensional thermal image   (c) Magnified human face in triangle meshes   

Fig. 8. Measurement result 
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4.2   Result of the Measurement 

Thermograph is utilized in various fields, not only engineering fields but also medical 
care, etc. The measurement result of a human face is introduced for one of the 
examples of 3D temperature measurement. 

Fig.7 shows the two dimensional thermal image and Fig.8 (a) shows 3D 
reconstructed face using CCD camera and laser projector. The allocated results of 
thermal data on 3D reconstructed shape are shown in Fig.8 (b) (c). Though Original 
2D image has not the quantitative area information such as a size and position of a 
heat source, the 3D thermal data includes the quantitative position information. The 
quantitative information can be utilized for the analysis of the heat radiation. 

5   Conclusion 

The three-dimensional surface temperature measurement system was introduced in 
this paper. The system measures the 3D shape of the object and the surface 
temperature of the object is allocated simultaneously on the computer. The obtained 
data can be used for a quantitative analysis of a heat radiation considering the area 
and the roughness of the heat source object. Generally, two dimensional images 
recorded from different angles cannot be connected each other, but the 3D shape data 
can be connected by adjusting the coordinates on a computer. Therefore, a high 
resolution model can be reconstructed by connecting the 3D data obtained from 
different angles.  
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Abstract. This paper proposes a Markov Random Field model for im-
age segmentation based on statistical characteristics of contours. Differ-
ent from previous approaches, we use Gestalt Laws of Perceptual Orga-
nization as natural constraints for segmentation by integrating contour
orientations into segmentation labels. The basic framework of our model
consists of three modules: foreground/backgraound separation, attentive
selection and information integration. This model can be realized for
both automatic and semiautomatic image segmentations. Our algorithm
achieves smooth segmentation boundaries and outperforms other popu-
lar algorithms.

Keywords: Markov Random Field, Image segmentation, Contour,
Gestalt Laws of Perceptual Organization, Saliency.

1 Introduction

Image understanding is the ultimate goal for computer vision research. Ev-
ery digital image is a set of pixels representing colors and these pixels can
make sense only when placed together sequentially. A fundamental step for
image understanding is to separate objects of interest from others, i.e. fore-
ground/background separation(FBS). FBS is the foundation of multiple visual
perceptual abilities. Since FBS raises image representation up to the object level,
as for human being, the cerebrum needs much less space to store dynamic visual
stimulus [1].

The principal difficulty of FBS lies in the image ambiguity. Since retina images
and digitals image can only provide very limited amounts of information, it is
difficult to accomplish a seemingly easy task, for example, to understand simple
images. Helmholtz has already pointed out the key role of unconscious inference
in vision: an image can be successfully analyzed and interpreted only when image
information and related prior knowledge are both utilized [2].

A important sort of prior knowledge for FBS is known as Gestalt Laws for
Perceptual Organization (GLPO). GLPO suggests that the cerebrum tends to
interpret perceived information as simple whole forms and the whole is greater
than the sum of its parts, which was initially brought forward by Psychologist

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 582–591, 2011.
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Ehrenfels [3]. Neurophysiologic experiments have revealed that FBS includes
three major steps [4]: image edge detection; global information integration and
pre-attentive foreground selection. Obviously, GLPO functions mainly in the
middle stage. Nevertheless, for lack of computational model, there has been no
answer to the question ”how is the whole-form realized in the cerebrum which is
a parallel distributed organization?”, which limits GLPO research to qualitative
analysis only. Malik and several fellows in Berkeley studied GLPO based learning
algorithms and applied them to edge detection [5,6] and contour completion [7].
Elder and several fellows in York University studied the ecological statistics
of GLPO of contours using similar approaches [8]. Both Elder’s and Malik’s
models are based on Canny edge detector, therefore they can only show the
saliency of each line segment constructed by Canny edges but yet cannot solve
problems such as missing or inaccurate Canny segments. Although Malik, Elder
and many other researchers have made outstanding contributions to establishing
global optimized computational models, few is biologically feasible. Sokolov et al.
proposed two hypotheses on the neural basis of GLPO [9] arguing that GLPO
may result from either the hierarchical organization of visual system or the
synchronous vibration of neural dynamic system. In recent years, Ehrenstein
and several neurobiologists have inclined to believe that GLPO results from the
hierarchically organization of the visual receptive field. [10].

In this paper, we establish a mathematical framework of FBS mechanism for
visual cortical areas V1 and V2. The current work mainly focuses on three as-
pects: (1) We explore how FBS can be accomplished in the middle layer through
basic neural computations. The computing procedure should be largely consis-
tent with the neural computational mechanisms and should be extendible (2)
We propose a computational model in accordance with physiologic experiment
for FBS. The model should be able to optimize global information via local com-
puting. (3) By quantitatively describing GLPO in the probability space, we fully
integrate the underlying constraints into the design of our MRF model.

The remainder of this paper is organized as follows: Section 2 introduces the
design of our MRF model and the solution; Section 3 specifically discusses the
determinations of the objective functions of the MRF by quantitatively analyz-
ing GLPO in probability space; Section 4 illustrates a group of experimental
results obtained by automatic segmentation algorithm and that by semiauto-
matic algorithm; and finally Section 5 concludes this paper.

2 The MRF Model and Its Solution

Since FBS is a strongly subjective problem, in recent years, there have been an
increasing number of image segmentation algorithms aided by manual interven-
tions. An manual-intervention-aided algorithm requires a user either to initially
label a few sample points of an image [11] or to segment image pairs at one
time [12]. This kind of design approaches provides a feasible solution for im-
age segmentation tasks. In the current work, we use two approaches to guide the
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extraction of a foreground: (1) The attentive selection based automatic FBS uses
the spectral residual approach [13]. The automatic algorithm first computes the
saliency map of an image and then determines the segmentation through the
inferential process of our MRF model. (2) The semi-automatic FBS uses user-
stroke. First a user draws strokes on the image to decide the labels (foreground
or background) of certain pixels; then the segmentation is also generated through
the inferential process of our MRF model.

Each of the two approaches corresponds to a distinct realization of attentive
selection which is a function of V4. The automatic algorithm determines the
positions of objects in the foreground by locating high frequent signals while
the semi-automatic one by letting the user decide partially. Suppose that the
attention saliency of V4 is spatially independent and the two hypotheses just
mentioned about foreground saliency are true, then a abstract FBS task turns
to such a mathematical problem: given an image I (x, y) on grid Ω and the prob-
abilities of pixels being labeled as foreground, the algorithm should determine
the label of each grid in Ω and find the set R ⊂ Ω of the image foreground. Nat-
urally, there are three requirements for foreground and background labels: (1)
The probability P ((x, y) ∈ R) of a pixel being labeled as foreground should be
consistent with the constraint condition or the foreground saliency determined
by the user stroke. (2) The location of the contour curve ∂ of R should be where
the grayscales or the textures changes greatly. (3) ∂ should accord with the sta-
tistical properties of natural contours, such as closure, continuity, smoothness
and etc.

(a) 10 kinds of labels (b) A possible segmentation

Fig. 1. Label definitions and an example of label distribution. The contour labels are
marked by the corresponding directions. The foreground label is marked by red color
and the background label by blue color.

Equally, associate every pixel with a label L (x, y) defined on Ω. Unlike pre-
vious work, we define 10 labels (Fig.1). Each pixel may not just be specified
as foreground or background but as contour. Contour labels are defined by 8
directions with equal intervals. Given a contour curve, the label of each point is
determined by the clockwise tangent direction of the curve at that point. As a
representation of the segmentation, it is redundant to label the contour with its
local directions, nevertheless, that helps to encode GLPO into the corresponding
objective function of the MRF.

An MRF is a set of random variables with spatial correlations. Hammersley
and Clifford have proven that the probability density of an MRF can be written
as the product of several marginal probabilities [14]
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P (X) =
∏
C

P (XC) (1)

where XC is the set of the random variables in the Cth clique of the field(a
graph). In order to simplify the MRF, we only consider low-order statistical
correlations, i.e. the relation between two variables, then (1) can be rewritten as

P (X) =
∏

i

P (xi)
∏
i,j

P (xi, xj) (2)

where xi denotes the ith variable in the field. Let Φ (X) = − log2 P (X |S,K),
φ (xi) = − log2 P (xi|si) and ϕ (xi, yi) = − log2 P (xi, yi|κi, κj). Then we have

Φ (X) =
∑

i

φ (xi) +
∑
i,j

ϕ (xi, xj) (3)

The data cost
∑
i

φ (xi) measures the data-driven parts in the inferential process

and attention-controlled part in the FBS model. The smoothness cost
∑
i,j

φ (xi, xj)

measures the fitting degree between the values (the labels) of two variables and
the prior knowledge and reflects the statistical laws driven by GLPO in the
FBS model.

Fig.2 shows the structure of our network model. The primary inferential struc-
ture consists of variables and the connections between them. The solid circles
represent the labels assigned to the variables(pixels) and subject constraint from
the foreground saliency of V4, namely the data cost. The solid squares between
solid circles represent the smoothness cost controlled by GLPO. It is worth not-
ing that GLPO are not completely independent of the input images, e.g. from
the discussion coming in Section 3 it can be seen that the law of similarity is
driven by edge saliency as well as other features.

There are three sorts of methods for solving discrete MRF: Iterative Condi-
tional Mode, Message Passing and Binary Optimization. Among them, the latter
two usually perform better in optimizations for visual applications. As for our
model, Message Passing is more preferable since its computational mechanism

Fig. 2. The MRF model for image segmentation in this paper
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is in accordance with the neural computational mechanism [15,16]; more impor-
tantly, when there exist multiple solutions for one image Message Passing can
usually find all of them while Binary Optimal can find only one. As a Message
Passing based method, the tree-reweighted belief propagation algorithm [17] it-
eratively updates the information that each node will send to every one of its
neighboring nodes by

ms,t (k)← min
j∈L

⎧⎨⎩φs (j) +
∑

u∈Nsu�=t

mu,s (j) + ϕs,t (j, k)

⎫⎬⎭ (4)

where φs (j) denotes the data cost of node s being labeled as j and ϕs,t (j, k)
denotes the smoothness cost of a pair of nodes s and t being labeled as j and k
respectively. When the iteration converges, compute the message that each node
receive:

bs (k)←
∑
t∈Ns

mt,s (k) (5)

where Ns denotes the set of all neighboring nodes of s. Finally all the labels are
given by

ls = min
k∈L

bs (k) (6)

In order to make each node affect the solutions of other nodes as much as possible,
the variables are sorted according to the uncertainties of their solution selections.
The higher uncertainty, the later update and the more information. In our MRF
model, the uncertainty is measured by

UCi =

∑
k

bs (k) exp (−bi (k))∑
k

exp (−bi (k))
+ log2

∑
k

exp (−bi (k)) (7)

which has a form similar to information-entropy.
The experiments reveal that the pixels closer to the user stroke subject to

more constraints; the corresponding uncertainties are lower and the information
is therefore earlier updated. The solutions can be selected more easily for pixels
on clearer edges and the information is updated relatively earlier. On the con-
trary, at corners and discontinuous positions, ambiguities are higher and labels
cannot be determined until the algorithm converged. This maximum-constraint-
first mechanism concentrates the more computational resources to the most cru-
cial variables and labels and consequently improves the validity and proficiency
of the FBS. In the following section, we discuss the quantitative descriptions of
GLPO and utilize them to explicitly determine the cost functions which defines
our MRF model.

3 The Cost Functions and the Quantitative Analysis of
GLPO

In this paper, we define the data cost by

φ(li) = − log2 P (li|sj) (8)
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where si denotes the saliency of a pixel. According to Bayes’s formula, the con-
ditional probability P (li|sj) is given by

P (li|sj) =
P (sj |li)P (li)∑

k

P (sj |lk)P (lk)
(9)

The prior probability P (li) can be obtained through non-parametric statistics
and P (sj|li) from exponential regression estimations. The saliency map of an
image is computed by the algorithm proposed in [13].

The smoothness cost can be defined in multiple ways according to different
needs. Considering the position proximity between a pair of pixels, we first define
smoothness cost by the joint distribution of label given the neighborhood

ϕ(li, lj) = − log2 P (li, lj |Nx,y) (10)

where Nx,y denotes the union of the neighborhoods of the two pixels. For GLPO,
the law of continuity holds that points connected by straight lines or curves are
seen as following the smoothest path. The law of closure holds that things are
grouped together if they seem to complete certain entity. In our model, the
closure of a foreground contour is determined by the labels of the foreground
and the background: the pixel at the direction indicated by the label of a pixel
on the contour is usually on the contour too; and the direction also determines
the labels of the pixels beside.

We define co-occurrence matrixes of label to collect statistics from the Berke-
ley image data set and use the obtained matrixes to determine P (li, lj |Nx,y). It
is observed in the experiments that for almost every (x, y), P (li, lj|Nx,y) concen-
trates at continuous directions, which well reflects the law of continuity. Kovács
et al have pointed that this constraint can greatly increase the robustness of
FGS [18].

The saliency proximity is also a reasonable consideration for our model. The
law of similarity holds that similar items tend to be grouped together. Accord-
ingly, we define another form of smoothness cost by the joint distribution of the
label given the saliency

ϕ(li, lj) = − log2 P (li, lj|sm, sn) (11)

According to Beyes’s formular, we have

P (li, lj |κm, κn) =
P (κm, κn|li, lj)P (li, lj)∑

u

∑
v
P (κm, κn|lu, lv)P (lu, lv)

(12)

where κ denotes the Gaussian curvature of I(x, y) at a point. P (li, lj) can also
be obtained through non-parametric statistic and P (sm, sn|li, lj) can be approx-
imated by scale mixtures of Gaussians. More details about this algorithm can
be found in literature [19].

It is worth noting that even though different laws in GLPO and prior condi-
tions determine distinct characteristics of the label distribution, all the
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probabilities defined above will superimpose in a linear way when substituted
into (3). This is highly consistent with the conclusion that individual laws of
GLPO are independent.

4 Experimental Results

All Tests of our algorithm were performed on the Berkeley image segmentation
data which provides 200 images with approximately 1000 labels each. We simu-
late the function of V1 using the edge detection algorithm proposed in [5]; model
the pre-attentive selection of V4 by spectral residual for automatic segmentation
and by user stroke for semiautomatic segmentation.

First we compare our automatic segmentation with Normalized Cuts which is
a multi-scale spectral segmentation algorithm [20]. The comparative results are
illustrated in Fig.3. Obviously, our algorithm does not just generate smoother
segmentation boundaries but highlight the foregrounds of images with complex
textures more clearly. This should be attributed to the fact that spectral seg-
mentation based algorithms can only classify pixels into clusters rather than
picking foregrounds out of the clusters. What’s more, the control of spectral
segmentation algorithm over shapes is limited to the topological structure of an
MRF model, nevertheless the statistical properties of contours ensured by such
structure are somehow different from those of natural contours. Our approach

Fig. 3. Automatic FBS. From the left to the right are original images, the significant
patterns, Normalized Cuts segmentations and ours.
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makes the foreground contours more natural through modeling the statistical
properties of contours according to GLPO.

We also compare our algorithm with several others for semiautomatic seg-
mentation. We design a simple interactive system to receive a user’s strokes.
When the system starts, it shows several images to the user. After the user out-
lines the foreground/background, the system will automatically perform edge
detections and FBS and then display the results. The user may add, remove
or modify a stroke according to the current result for possible improvement.
The final segmentations obtained with our approach and those with the Grab-
cut [21]+Lazy Snapping [11] are shown in Fig.4. Since our approach optimizes
marginal smoothness, it generates smoother segmentation boundaries.

Fig. 4. Semiautomatic FBS. From the left to the right are original images, Grab-
cut+Lazy Snapping based segmentations and ours.

5 Conclusions

In this paper we propose a FBS model based on MRF and GLPO. Compared
with previous segmentation algorithms, our model is more robust and results in
smoother segmentations. Related neurophysiologic discoveries has verified that
the segmentation mechanism in the visual cortex is guided by edge detection,
indicating that the current approach is more deeply rooted in physiology. By
quantitatively analyzing GLPO and integrating the corresponding constraints
into the definition of our MRF, we improve the segmentation mechanism with
the natural statistical properties of contours.
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Unlike most other segmentation algorithms, the principal purpose of the cur-
rent study is to establish a physiologically and computationally feasible model as
the foundation for future research on neural vision, machine vision and cognition.
Since our algorithm has a practical significance for engineering computation, it
is necessary to further analyze the connections and differences between other
algorithms and ours.

(1)The computing processes of spectral segmentation based approaches such
as [20] differ much from that of our approach. In terms of computational theory,
the spectral approaches consider more about the distances between neighbors
or pixels but little about the features of contours. This is the main reason why
they cannot achieve smooth segmentations sometimes. Moreover, a wrong esti-
mation of the number of clusters often leads to undesirable segmentations, which
explains why spectral algorithms cause over-segmentations occasionally. Our al-
gorithm is guided by a user’s strokes or the saliency map of an image, the final
segmentation is therefore more natural to the eyes.

(2)The MRF model based on Scale Mixtures of Gaussians has a structure
similar to that of our model. Like spectral segmentation, MRF based approaches
do not consider the effects of edges, therefore previous MRF models can hardly
be combined with GLPO. This also accounts for the rough boundaries obtained
with Gaussian mixture model based approaches.

(3)Learning based segmentation approaches have explored the statistical prop-
erties of GLPO earliest. Nevertheless, since most of them carry out the inferential
process of GLPO on the basis of filtering pseudo edges only, this sort of algo-
rithm yet cannot solve the problems caused by edge detectors, such as undetected
edges, inaccurate localizations and other sort of errors.

Neuroscientists tend to believe that there exists a fast color segmentation
system guiding FBS tasks [22]. One of the system’s main functions is to make
the MRF model to concentrate computational resources on more valuable part.
Another function is to increase the information bandwidth of MRF model and
the computing speed with subpixel-level presentations of images. The design and
the realization of this system will be explored in our future work.
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Abstract. Inspired by Weber’s Law and the biological model of
synergistic center-surround receptive field, this paper proposes a center-
surround hypothesis for saliency detection. Specifically, this detector de-
fines two types of salient stimuli. One type is local stimulus represented as
a set of differential excitation of gradient orientation for each pixel. The
other type is global stimulus, which is the relative intensity differences
of center region against the overall mean. Then a center-surround model
with ring topology structure is designed to extract salient responses of
these two types of stimuli. For a given color image, these salient responses
are computed on each color channel separately, and then combined lin-
early to get the final saliency map. Comparison experiments demonstrate
this detector not only can generate high quality saliency maps with the
same resolution as the input image, but also has stronger response in
activation regions and better inhibition performance in other regions.

Keywords: Visual salience, Center-surround hypothesis, Weber’s law,
Local stimulus, Global stimulus.

1 Introduction

Saliency mechanism plays an important role in visual selective attention. It may
provide a rapid and effective strategy to reduce the computational complexity of
visual processing. Most bio-inspired saliency models rely on bottom-up or top-
down processing. The former is based on the feature integration theory and the
center-surround hypothesis. The representative works are those by L. Itti et al.
[1]. The latter is a goal-directed saliency analysis and requires the prior knowl-
edge of the task [2]. Alternative integrated models of top-down and bottom-up
attention have also been proposed [3]. However, these models have shortcomings
of low resolution, poorly defined object boundaries, and expensive computation.

Recently, some simple and effective saliency models are proposed. R. Achanta
et al. presented a fast salient region detection method based on low-level features
of luminance and color [4]. R. Achanta et al. also introduced a higher precision
salient region detector based on frequency-tuned [5]. V. Gopalakrishnan et al.
� Corresponding author.
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present a color and orientation distribution based salient region detection frame-
work [6]. In frequency domain, Q. Zhang et al. integrated local saliency, global
saliency and rarity saliency into a framework [7]. D. Gao et al. proposed a dis-
criminant saliency detector [8]. These models are usually pure computational
ones, and are inspired by the biological concept of center-surround contrast, but
are not based on any biological model.

We introduces a novel center-surround hypothesis for bottom-up saliency de-
tection. It is inspired by a biological model and Weber’s Law in psychophysics.
Compared with other saliency models, our main contributions are followed:

a) We define two types of visual salient stimuli followed Weber’s Law. One type
is differential excitation of gradient orientation, which represents the property
of local stimuli. The other type is relative intensity differences of center region
against the overall mean, and it shows the property of global stimulus.

b) Inspired by a center-surround pattern of biological vision, we design a
center-surround architecture which has ring topology structure composed of a
center cell and its surround cells. Moreover, we extract center-surround interac-
tions from salient stimulus image rather than original image.

c) In order to obtain the final visual saliency map, we propose a linear combi-
nation strategy to integrate all salient stimulus responses of each color channels.

2 Weber’s Law Based Visual Salient Stimuli

2.1 Local Salient Stimulus

Based on the Weber’s Law and the fact that human vision is sensitive to the gra-
dient magnitude and orientation, we define a local salient stimulus represented
as a differential excitation vector of gradient orientation for each pixel.

Let I(u0, v0) be the intensity of current pixel (u0, v0), then the differential
excitation of horizontal gradient εh (u0, v0) can be formulated as followed.

εh (u0, v0) =

⎧⎪⎨⎪⎩
|I(u0+1,v0)−I(u0,v0)|

I(u0,v0)
u0 = 0

|I(u0+1,v0)−I(u0−1,v0)|
I(u0,v0) 0 < u0 < width− 1

|I(u0,v0)−I(u0−1,v0)|
I(u0,v0) u0 = width− 1

(1)

A similar computation is used for the differential excitation of vertical gradient
εv (u0, v0). Then, differential excitation of any gradient orientation εθ (u0, v0)
can be formulated as

εθ (u0, v0) = εv (u0, v0) · sin (θ) + εh (u0, v0) · cos (θ) (2)

Let K be the number of bins in gradient orientation histogram. The local salient
stimulus slocal (u0, v0) of current pixel can be defined as a differential excitation
vector of its quantized gradient orientation, i.e.

slocal (u0, v0) = [εθ0 (u0, v0) , εθ1 (u0, v0) , · · · , εθK (u0, v0)]
T (3)
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Therefore, the local stimulus images can be constructed by local salient stimuli
of all pixels.

slocal = [εθ0 , εθ1 , · · · , εθK ]T (4)

where εθk
is differential excitation vector of all pixels with gradient orientation

θk.

Fig. 1. Simplified compartmental model and the proposed computational model

2.2 Global Salient Stimulus

Global salient stimulus is determined by the global contrast between center re-
gion and image background. In our works, the whole image mean is considered
as image background, and the global saliency stimulus is defined as the inten-
sity distance between the center region of center-surround architecture and the
whole image mean. So the global saliency stimulus of current pixel (u0, v0) can
be formulated as followed.

Sglobal (u0, v0) =
∥∥g (u0, v0, σ)− μ2

∥∥
2

(5)

where μ is the whole image mean, g (u0, v0, σ) represents the center region with
Gaussian scale σ. More details can be referred to the section 3.

3 The Proposed Center-Surround Hypothesis

3.1 Topology Structure of Center-Surround Profile

Here we are mainly inspired by two research results in cognitive neuroscience.
The first is the compartmental model of the cone-H1 cell network, which had
been used to simulate the synergistic center-surround receptive field of monkey
H1 horizontal cells [9]. A simplified compartmental model is shown in Fig.1(a).
The second is the resolution hypothesis in visual attention [10]. The experimental
evidences suggest that attention mechanisms can actively enhance the spatial
resolution at the attended location. Moreover, the attention dynamics can be
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demonstrated by a processing of multiple spatial resolutions with visual search
of hierarchical patterns.

Based on the above two neuropsychological evidences, we design a center-
surround computational model with ring topology structure by extending the
biological compartmental model to the salient stimulus images. The illustration
of the ring topology structure of proposed center-surround profile is shown in
Fig.1(b). The pixels of salient stimulus image can be regarded as the cone array
in Fig.1(a). The hypothetical H1 cell with circular profile can be generated by
convoluted with a Gaussian function. Gaussian scale σ determines the spatial
resolution of center and surrounds regions.

3.2 Center-Surround Hypothesis and Interaction

According to the center-surround mechanism, we suppose there have statistically
significant responses of differential excitation when center-surround organiza-
tion is on or near the salient location. Similar statistical suppositions have been
discussed in many recent literatures [2,4]. Our framework of center-surround
hypothesis and interaction are shown in Fig.2.

Assume there are N hypothetical H1 cells (small blue solid circular points)
on the surrounds. ln (u0, v0, r) is the location of the nth hypothetical H1 cell on
the surrounds circle with radius r. The convolution result glocal between local
stimulus images slocal and Gaussian function G (σ) can be written as

glocal (σ) = slocal ∗G (σ) = [εθ0 (σ) , · · · , εθK (σ)]T (6)

εθk
(ln (u0, v0, r) , σ) is the value of the kth bin in histogram of the nth sur-

round cell. For simplicity, we denote εθk
(ln (u0, v0, r) , σ) as εθk

(ln). The center-
surround interaction of current pixel (u0, v0) is

L (u0, v0) =
[
ηT
1 , η

T
2 , · · · , ηT

K

]T
, where ηk =

[
εθk

(u0, v0,) ,
εθk

(l1) , · · · , εθk
(lN )

]T
(7)

We propose the local saliency decision by variance analysis of gradient orienta-
tion histogram. Let νk be the variance of vector ηk. The local saliency decision
Slocal (u0, v0) can be defined as a linear combination of all νk.

Slocal (u0, v0) =
1
K

∑
k

vk, and

⎧⎪⎨⎪⎩
vk =

∑
1≤n≤N

(εθk
(ln)− μk)2 p (σn)

μk =
∑

1≤n≤N

εθk
(ln) p (σn)

(8)

where μk is the mean the vector ηk. p (σn) is the probability of the nth cell.

p (σn) =

∑
1≤k≤K

εθk
(ln)∑

1≤n≤N

∑
1≤k≤K

εθk
(ln)

(9)
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Fig. 2. Framework of center-surround hypothesis and interaction

4 Linear Combination Strategy

4.1 Framework of our Saliency Decision

The framework of our complete saliency decision algorithm is shown in Fig.3.
Firstly, low-level color features are extracted. Since perceptual differences in
CIELAB color space are approximately Euclidian [4,11], we use the L*a*b color
features. Then we compute the responses of local and global salient stimuli of
each color channel, respectively. Local saliency represents the difference between
a region and its surroundings. However, it is not sufficient to make decision with
only local saliency, because high local saliency values may lie in some global
texture regions. Global saliency can not only provide global constrains, but also
reduce the effect of background. Finally, we generate the final saliency map by
a linear integration strategy of local and global saliency.
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4.2 Linear Combination Strategy

For CIELAB color space, the global saliency decision vector and the local saliency
decision vector of pixel (u0, v0) can be formulated as followed.⎧⎨⎩Sglobal (u0, v0) =

(
Sl

global (u0, v0) , Sa
global (u0, v0) , Sb

global (u0, v0)
)T

Slocal (u0, v0) =
(
Sl

local (u0, v0) , Sa
local (u0, v0) , Sb

local (u0, v0)
)T (10)

The idea of our integration strategy of local and global saliency is to enhance the
response of local contrast, and to inhibit the response of background. Therefore,
we consider the global saliency as global constrains for local saliency. Then the
weighted local saliencies of different color features are linearly combined. The
final saliency map can be expressed as

Sfinal (u0, v0) = ST
global (u0, v0) · Slocal (u0, v0) (11)

In fact, our combining strategy is a soft-decision integration strategy. That is,
we do not perform binary threshold operation during the integration process, as
shown in Fig.3. As anticipated, the local saliencies have strong responses at some
global edges. The global saliencies can weaken the responses of global texture
regions. Therefore, the saliency weighted by global saliency can effectively inhibit
the effects of global texture and background. It should be noted that the salient
maps shown in Fig.3 are not actual values in whole saliency calculation process,
and they are normalized to [0,255] only for show.

Fig. 3. Framework of complete saliency detection algorithm
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5 Experiments and Discussion

The experiments are performed on images from iLab image database at USC1

and from MSRA Salient Object Database [12]. The saliency detection results
of our method are compared with those of Itti’s model [1], R. Achanta’s global
saliency detector [5] and E. Rahtu’s salient region detector [13]. The saliency
maps of Itti’s model are generated using Great Matlab Saliency Toolbox2.
Achanta’s global results are produced using the their program3. The binary
saliency regions of Rahtu’s are generated using his program4. The parameters
of our method are N = 8, K=8, and the binary threshold is set to 0.1 with the
saliency value range of [0, 1]. Comparison results are shown in Fig.4.

Obviously, Itti’s model can only give the rough location of salient regions and
cannot extract exact boundaries of salient regions. Achanta’s and Rahtu’s meth-
ods can get salient regions, but are very sensitive to the complex background
with high contrast, even may extract incorrect salient regions in some cases.
This can be seen especially from their results in the 1st, 4th, 6th, 9th columns.
Since combining local and global saliency decisions, our method can extract

Fig. 4. Comparison results on images from iLab and MSRA Database

1 http://ilab.usc.edu/imgdbs/
2 http://www.saliencytoolbox.net/
3 http://ivrg.epfl.ch/supplementary{_}material/RK{_}CVPR09/
4 http://www.ee.oulu.fi/~erahtu/
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more exact salient regions and preferably inhibit the saliency values at the non-
salient regions. This can be seen evidently from the binary threshold selection.
Compared with the threshold 0.7 in Rahtu’s method, our threshold is only 0.1.
This means the saliency values at the non-salient regions have been inhibited
strongly.

6 Conclusion

In this paper, we firstly define two types of salient stimuli followed Weber’s
Law. One type is local stimulus, and the other type is global stimulus. Then a
center-surround computational model with ring topology structure is designed to
extract salient responses. Finally, we discuss a soft-decision integration strategy
of local and global saliency in CIELAB color space. Experiments demonstrate
our method has stronger response in activation regions and better inhibition
performance in other regions.

Acknowledgments. This work is supported by the National Natural Science
Foundation of China (No.60902077) and Zhejiang Provincial Natural Science
Foundation of China (No.Y1091074, Y1100803).
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Abstract. In the real world, the biological visual system is more efficient than 
the machine visual system in analyzing visual information. Physiology theories 
show that this efficiency owes to the multi-layer neural network in human 
visual system, in which every layer accomplishes different tasks and is related 
with other layers. The low-level stages of the human visual system, especially 
the retina, can provide certain scale information for the high-level stages of 
visual system through using the non-classical receptive field (nCRF) 
mechanism. This mechanism that the nCRF size can be adjusted automatically 
by ganglion cell (GC) can achieve a multi-scale image analysis. The results, 
reflecting the distribution of the image information, can be shared by several 
algorithms or processes solving different visual tasks, such as contour detection 
and image segmentation. A model of multi-scale image analysis based on GC 
has been proposed in this paper, which retains the key information and reduces 
the redundancy information for the further stages of the visual system. 
Experimental results on N-cut and contour detection show that this multi-scale 
image analysis model provides distinctive improvement for these image 
processing tasks.  

Keywords: multi-scale, image analysis, contour detection, nCRF mechanism. 

1   Introduction 

In recent decades, multi-scale image analysis has become one of the most effective 
approaches to extract useful information from images and is widely applied in image 
denoising, contour detection, image segmentation, object recognition and many other 
tasks [1-6]. However, most of the multi-scale transforms such as cosine transform and 
wavelet transform cannot meet all of the five requirements – multi-resolution, 
locality, orientation, anisotropy and critical sampling, which should be met by an 
optimal image analysis, according to the physiology studies [7]. Fortunately, the 
human visual system is able to satisfy all the requirements, which gives us a great 
inspiration for designing a physiologically plausible multi-scale analysis model. 

In the human visual system, a pyramid hierarchical structure, information is mainly 
processed from the retina through the lateral geniculate nucleus to the visual cortex. 
As the first stage of information perception and transformation in system, the retina 
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obtains illumination, color and spatial information and transfers them to higher 
processing phases. Ganglion cells are the final output neurons of the vertebrate retina. 
Since 1960s, many researchers [8, 9] have found that a large-scope area beyond the 
classical receptive field (CRF) of a ganglion cell, named non-classical receptive field 
(nCRF), can exert modulatory effects on the response of the stimuli in the CRF. Light 
spot stimuli in nCRF cannot cause a direct reaction of the cell, but they can facilitate, 
inhibit or disinhibit the behavior of that cell. Li Chaoyi et al. studied the nCRF spatial 
summation property of disinhibitory of cat retinal ganglion cells [10]. They found that 
disinhibitory nCRF can not only enhance the border contrast but also compensate the 
loss of low-frequency which was caused by the antagonistic center/surround 
mechanism of the CRF. So, nCRF mechanism plays an important role in transmitting 
the image information of luminance contrast and luminance gradient in local area 
[11]. Likewise, there are also nCRFs of majority neurons in the primary visual cortex 
(V1), which allows neurons to integrate information to participate in many complex 
perceptual tasks such as contour integration and surface segmentation [12-14].  

Based on the insight of nCRF multi-scale analysis and inhibition mechanism, 
several biology-based image processing models have been presented recently [15-18]. 
Although, these models have good performance in some aspects compared to 
traditional image processing approaches, there are still some shortages in practice. 
These models only involve nCRF mechanism in V1, ignoring the function of retina in 
the procedure of information processing. For example, Grigorescu et al. in [15] 
proposed a model of contour detection in which many parameters are to be set 
experimentally. In the model, a parameter-- standard deviation of the Gaussian factor, 
is closely relative to every given image and is difficult to be pre-set. In recent, many 
researchers [19-21]have proposed some multi-scale contour detection models as well 
that can improve results to certain extent, but the pre-estimation of scale needs prior 
knowledge about the image and is a difficult task. 

To overcome the problem of parameters selection, this paper proposes an nCRF 
multi-scale analysis model involving cortical cells and retinal cells that transmit scale 
information to higher layers of the visual system. This model is able to solve the 
problems mentioned above. To prove that our model can facilitate image analysis, 
two experiments are designed. (1) N-cut[22] segmentations on images that are 
preprocessed by our model are comparable to N-cut segmentations on original 
images. Experimental results show that the multi-scale image analysis model can 
exhibit stable improvement for image segmentation based on N-cut. (2)  Contour 
detection approach involving our model of nCRF of ganglion cells, simple cells and 
complex cells is compared to the model in [15]. 

This paper is organized as follows. Section 2 presents our multi-scale image 
analysis model based on multi-level nCRF, which describes the computation model of 
biological visual system for excitability and inhibition actions in transmission process 
from low visual system--retina to high visual system. Experimental results on  
the contour detection and N-cut from above scheme are presented in Section 3. In 
section 4, a summary of the results and a conclusion are given. 
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2   Algorithm 

Fig. 1 depicts the structure of retinal ganglion cell RF (including nCRF), in which  
the RF of ganglion cell embodies CRF (CRF center and CRF Surround) and nCRF. 
The width of ring-formed nCRF is larger than the radius of CRF, as shown in Fig. 1. 
In section 2.1, the response of GC is calculated using a 3-Gaussian model. Section 2.2 
describes the algorithm of dynamically adjusting the size of RF and RFs of different 
size in line with different scales of wavelet transform as well. Taking the response and 
size of RF as input, a contour detection model based on multi-layer nCRF in human 
visual system is addressed in section 2.3.  

 

Fig. 1. The structure diagram of GC’s RF. The RF contains three parts—the CRF center, the 
inner circle area, the CRF surround, the intermediate annulus, and the nCRF, the extern ring 
area. Small circles on nCRF are subunits of the nCRF.  

2.1   Response of GC  

According to the neuroscience, the response of GC to stimuli within RF can be well 
described by a 3-Gaussian function[23].The detailed procedure of computation can be 
expressed as follow: 

( )2( , ) ( ( , )* )( , ) log 1 ( , )* ( , )CRF nCRFGC x y I x y W x y I x y W x y= + +    (1) 

where ( , )GC x y  is the response of a ganglion cell; ( , )I x y  is the image stimulus 

within RF; 
CRFW  and 

nCRFW  are the weighting functions of the CRF, and the 

disinhibitory nCRF, respectively. They are defined as: 

2 2 2 2
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1A , 2A and 3A  are the sensitivity of the CRF center, the CRF surround and the 

nCRF respectively. 1σ , 2σ  and 3σ  are the radii of the CRF center, the CRF 

surround and the nCRF respectively and can be adjusted adaptively according to the 

stimulus; 0x and 0y  are the center coordinates of the RF. In actual computation, 

3σ = 4 2σ , 2σ = 5 1σ , 1A = 1, 2A =0.18, 3A =0.05 according to the physiology 

theory [24].  

2.2   Size of RF 

A mathematical model is shown in Fig. 2. The philosophy of this model is as follows: 
when a RF receives a uniform stimulus, the RF expands continuously; otherwise, the 
RF shrinks drastically. As the nCRF consists of many sub-regions, each of which has 
its own stimulus unit. The variance of stimulation in each sub-region is calculated. It 
is used to judge whether the stimulus is homogeneous and then decide to make the RF 
expand or shrink. The size of RF, radius of RF, is determined and transmitted to a 
later processing stage.  

 

Fig. 2. Self-adaptive model of RF 

2.3   Multi-scale Contour Detection Algorithm 

In computer vision and image processing, detection of edges and contours are 
important tasks in object recognition and other applications. Here, we proposed a 
model involving retinal GCs, cortical simple cells and complex cells. The model 
provides multi-scale analysis and achieves contour detection efficiently on a wide 
range of images adaptively. This model can address efficiently the problem of 
choosing an appropriate scale in [15]. Fig. 3 shows the schematic drawings 
illustrating the general flowchart of the proposed model for multi-scale contour 
detection. Unlike previous techniques based on nCRF, this system does not need to 
specify the value of the standard deviation σ --scale parameter and know any other 
prior information.  
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Fig. 3. The proposed model--multiscale contour detector based on nCRF. (A) Original image. 
(B) DRF which is computed by the algorithm—self-adaptive RF in section 2.2. (C) Contour 
map at fine scale is computed by the algorithm in [15] with the parameter σ  which is equal to 
the minimum value of size of RF in DRF. (D) Contour map at medium scale with the medium 
scale σ . (E) Contour map at coarse scale with the maximum scale σ . (F) Final contour map 
which is combined by the series of contour maps at different scales.  
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In short, given an original image (Fig. 3A), distribution of RF can be calculated 
from the algorithm described in section 2.2, the darker pixels in Fig. 3B representing 
the finer scale, similarly, the brighter the coarser. Contour detectors [15] with 
different scales are used to extract a series of contour maps (Fig. 3C, D, E). Some 
object contours or parts of them which are missing for some coarse-scale detectors are 
well detected for other fine-scale detectors. Likewise, many tiny edge details that are 
not object contours and are obtained by fine-scale detectors can be ignored by coarse-
scale detectors. This observation suggests that the combination of the series of 
contour maps at different scales will retain all object contours and suppress minor 
edge details. A series of contour maps can be extracted by the algorithm [15], and the 
next step is to combine the contour maps. Carefully observing the Fig. 3B, we can 
find that the regions in which object contours exist are darker than the regions in 
which tiny edges exist. Thus, according to the distribution of size of RF in DRF, we 
can construct the combiner that selects parts from the fine-scale contour maps in dark 
regions of DRF and chooses parts from the coarse-fine contour maps, producing the 
final contour map.  

In previous works [15, 18, 23, 24], the models detected object contours through 
selecting the best result from many contour maps at different scale. Comparing to our 
model, other models cost lots of manual labor and require selecting an appropriate 
scale that is difficult to pre-estimate. In our approach we apply an N-level multi-scale 
analysis in order to remove the littery texture still present in contour map at fine scale 
and retain salient object contours in contour map at coarse scale. Object contours are 
present continuously at fine scales, while texture disappears at coarse scales. So, we 
can combine a series of contour maps at different scales. The final contour map is 
composed by the corresponding parts of the series of contour maps at different scales 
according to the brightness in DRF. For example, parts of the contour map at fine 
scale that is dark in the same regions of DRF, are retained to compose the according 
parts of the final contour map. However, parts of contour map at coarse scale that is 
bright in DRF are reserved to compose the final contour map. 

3   Experimental Results 

This section presents some experimental results. GCs construct the distribution of 
different-size RFs according to the input image. The response and size of GCs are 
used for image segmentation and contour detection. 

3.1   Distribution of RFs and Segmentation on GC 

Fig. 4 displays the distribution of the RFs of different size. From Fig. 4, we can 
observe that small RFs mainly cover the contours, and large-size RFs gather together 
on the texture and roughly unchanged area. This result shows that RFs in GC layer 
can obtain the scale information and variation of color or intensity. 

Through the 3-Gaussian model operating, the RFs in GC layer can also highlight 
the object while suppressing the background, which can be proved by the N-cut 
results, as Fig. 5.  
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Fig. 4. Distributions of RFs with different scales consist with the Wavelet Transform. Red 
circles denote RFs with different scales. (a) Original image. (b) Result of wavelet transform. (c) 
Distribution of minimum-size RFs, which represents details of the face. (d) Distribution of 
medium-size RFs, which closely matches the middle level wavelet transformation. (e) 
Distribution of large-size RFs, which closely matches the third level wavelet transformation. (f) 
Distribution of full-size RFs, which represents the background of the image. 

    

Fig. 5. Results of testing N-cut on outputs of GC and original images. Left column is the 
original images; middle column is N-cut on output of GC and right column is N-cut on original 
image. Green ellipses mark the unsatisfied segmentations.  

The N-cut [22] results are shown in the middle column, executing N-cut algorithm 
on the response of GC. The original images are shown in the left column. The results 
of running N-cut on the original image are shown in the right column. The green 
ellipses mark the specific places in which the segmentations are improved by our 
model. This two comparative experimental results show that the nCRF model can 
facilitate image segmentation, specially, in separating object from background. 



608 H. Wei, Q. Zuo, and B. Lang 

3.2   Contour Detection 

In the experiment of contour detection, we compare the results of our model with the 
model in [15]. The first and second rows list the original input images and 
corresponding ground truth images in Fig. 6, respectively. The third and fourth rows 
show the best results of the contour detectors with the anisotropic inhibition [15] and 
our contour model, respectively. These images used in the experiment are acquired 
from the web site: http://www.cs.rug.nl/~imaging/databases/contour_database/.  

 

Fig. 6. Comparison of contour detection results for different schemes. From top to down, the 
above images are the original images, the corresponding ground-truth contours, the best contour 
maps in [15] and our results, respectively. 

The proposed multi-scale contour detector contributes to a better contour detection 
mainly by applying different scales inhibition to different contexts such as fine scale 
on object contours and coarse scale on texture edges. The results clearly show that our 
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computational model suppresses the edges originating from textural regions much 
more effectively than the inhibition-based model [15]. Our results are of fewer trivial 
edge fragments in the textural regions of the images shown in Fig. 6. In addition, our 
model produces a result that is quite close to the ground truth for the rhinoceros image 
shown in the first column of Fig. 6. 

Note: In the third row, the goat, elephant and hyena contours are from the paper of 
Grigorescu et al. [15] and the rino contour is from their given website: 
http://matlabserver.cs.rug.nl/edgedetectionweb/web/index.html. 

4   Conclusions 

The multi-scale image analysis model presented in this paper can obtain scale 
information and illumination intensity from fine scale to coarse scale using the nCRF 
mechanism. We show that an adaptive algorithm that attempts to find different scale 
information for natural scenes will develop a family of localized, bandpass non-
classical receptive fields, similar to those found in the ganglion cells. According to the 
results, it can be concluded that in some high-level image process tasks, such as 
contour detection and image segmentation, this model plays a very useful role in their 
performance improvement.  
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Abstract. We propose a neurally inspired model for parallel visual pro-
cess for recognition and detection. This model is based on the Gabor
feature explicit representation construction. An input image is decom-
posed of different scale features through the low-pass filter. Nevertheless,
recycling and overlapping again the scale features, the most likely object
stored in memory can be detected on the input image. This is done
by scale feature correspondence finding. Simultaneously, Gabor feature
representations stored in memory are also constructed by selecting the
most similar scale features to the input. We also test a recognition abil-
ity of our model, using a number of facial images of different persons.
Distortion invariant recognition is also demonstrated.

Keywords: Visual Object/Face Recognition and Detection, Gabor
Feature Representation Construction.

1 Introduction

In research fields of image recognition and pattern recognition, there were many
developmental systems for object recognition and object detection, which have
so far been proposed. The representative ones are the scale invariant feature
transformation (SIFT) feature detection [1] and the adaboost for face detection
developed by Viola and Jones [2], which have high potentials toward real appli-
cations onto various technological aspects, because they possess many of high
vision processing techniques. However, they are loosely in neural style.

Progress of neuroscientific knowledge about the visual information process-
ing is expected as essential for more advanced technology innovation for future
computer vision. The vision process in the brain is very complicated and sophisti-
cated. It is extraordinarily difficult to solve and understand the vision mechanism
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only with cultivating wisdoms until now. We will have to extract a not-so-simple
but central mechanism from complicated vision processing in the brain, in order
to redevelop the core vision process on computers, or on hardware.

One of neurophysiologically plausible and advanced recognition systems is
the HMAX model proposed by Riesenhuber and Poggio [3]. The basic HMAX
model consists of a hierarchy of five levels, from the S1 layer with simple-cell
like response properties to the higher layer with view-tuned cell like response
properties for shape tuning and invariance. It is a very similar computational
model of object recognition in cortex to the Neocognitron [4]. Though the HMAX
model would rather be physiologically plausible, but it has also a heavily com-
putational cost problem. Thus, the HMAX model might still be unsuitable for
practical application to industrials.

In recent years, propaganda for “Vision Reconstruction” is being spread. The
propaganda is based on a physiological percept representation concept [5]. This
conceptual idea is even taken into account the practical application in the near
future.

But the original concept of the Vision Reconstruction follows the Dynamic
Link Architecture (DLA) [6] with the help of a concrete application, a face
recognition system that has been highly successful in industrial applications.
The main mechanism in the DLA is to achieve object recognition by constructing
segmentations of the representation stored in memory. This was established with
a correspondence-based recurrent network model [7]. In this network model,
a so-called macrocolumnar model for representing cortical activity dynamics
is employed, supporting functionalities of recognition and detection for object.
However the network model is very complicated and gets easily into difficulties
to understand the mechanism. There are still ample rooms to discuss about
developmental improvement toward the practical application.

In this work, with full use of neuroscientific knowledge, we propose an im-
proved version of elastic graph matching for simultaneous object recognition
and detection, extracting the essences from the aforementioned recurrent net-
work model. Then, we will test the system ability and discuss improvements or
advantages of the system proposed here, toward the implementation into digital
hardware circuits.

2 System Design Concept

In order to model a concept of “Gabor Feature Construction” proposed in this
work, we shall begin with by explaining a system for simultaneous detection and
recognition of a single object (or, multi objects), which is in a neural style.

2.1 Input Signal

Firstly, let us assume that visual information on the retina incoming from eyes
are established by a number of overlapping filters that are selectively set up with
different ranges of spatial frequency and orientation. This assumption is based
on both results of physiological experiments and image processing theory.
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Fig. 1. Multi-scale Gabor filter decomposition. The high spatial frequency elements of
visual input information are sequentially removed with a low-pass Gabor filter in the
bottom-up flow.

In physiological experiments for receptive field, it is already found that neu-
rons being tuned to high spatial frequencies have narrower tuning range than
neurons being tuned to low spatial frequencies. Also, the receptive field struc-
ture, which can often be called a Gabor function, was observed as constructed by
multiplying a global sinusoidal grating by a bell-shaped Gaussian envelope [8].

Such overlapping filters are, of course, widely acceptable as a series of multi-
scale transforms in applications to signal and image processing. In signal analysis
by using a multi-scale transform of Gabor function, the signal (namely, visual in-
formation) presents a set of features and structures occurring at different spatial
frequencies of Gabor function [9].

Furthermore, vision of the human eyes can be conceived to be achieved through
low pass filter processing [10]. Once an input image about some environmental
scene is received on a retina, the highest spatial frequency component of the
Gabor filter is sequentially discarded in bottom-up flow as shown in Fig. 1. The
prospective discarding spatial frequency elements may be stored in another area
through another pass in the visual cortex. The inferior temporal (IT) cortex can
be considered as one of candidates.

2.2 Memory Representations and Recognition

Next, we consider memory representation of visual image projected on a retina.
Just as mentioned before, probably, an input image may be dispersed in fine
pieces of the scale and orientation, through dynamically continuous low-pass
filters. Each of the pieces will then be stored as memory in different higher areas
of a visual cortex.

Modeling of such memory storage of Gabor feature representations is sig-
nificantly seen in developmental face recognition systems using Elastic Bunch
Graph Matching. The main concept is given by the following: We may easily
memorize apparently unique parts of a face such as a tip of a nose, eyes, ears,
etc. The different facial parts of each person, which can sometimes be called the
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Fig. 2. A correspondence based recognition concept. Input signals (I) or representa-
tions stored in memory (M) are broken up in fractions, in terms of a spatial frequency
level of Gabor feature. For each spatial frequency level, correct or wrong correspon-
dences are found between the I and M . Here let us assume that graphs are set up
within color squares.

fiducial points, may separately be stored as feature representations in memory.
Furthermore, the feature representation of each fiducial point represents a set of
orientation and spatial frequency components of the Gabor filter.

The stored memory representations are completely disconnected, in terms of
Gabor filters, facial parts and their personality. But, such disconnected Gabor
feature representations for each fiducial point will be integrated again once the
fiducial point on a face, perceived on a retina, looks for and finds the most likely
Gabor feature in memory. The input face can therefore be recognized as it is
once complete reunion of fiducial points of the input face is achieved in memory
representations.

In description of stored memory representations, not only aforementioned face
graphs, but also square grid ones (such as Elastic Graph Matching (EGM))
should be employed. In any case using square grid graphs, recognition would
be succeeded when each grid on the memory graph can detect the most similar
feature on the corresponding grid on the input graph (Fig. 2).

This correspondence finding is one of the philosophies of the dynamic link ar-
chitecture, which can sometimes be called as “graph topology preservation” [6].
The graph topology preservation means that all potential correspondences are
established by correct links between two graphs when a set of links are consis-
tently preserved with the topology, giving high similarities.

Unfortunately, in realistic application, such graph topology preservation can
difficultly be seen. Nevertheless, a set of links takes incorrectly the high sim-
ilarities. It is wrong correspondence. We may have to be always care of such
correspondence problem [7].

2.3 Gabor Filter Construction: Additional Object Detection

We will have to know an additional mechanism how to detect a retinal position
of an input object recognized as one of objects stored in memory. Let us assume



Visual Construction for Object Recognition and Detection 615

Fig. 3. A correspondence based object detection concept. Correct scale feature corre-
spondence is found between Input and Memory, in order to detect the most suitable
region for memory representation on the RF of each spatial frequency level. This is
done in the top-down as well as in the coarse-to-fine.

that as mentioned in Sects. 2.1 and 2.2, input signals and memory representations
are respectively decomposed of the different spatial frequency levels.

As the first step, the lowest spatial frequency level Gabor feature for memory
representations is wandering around receptive fields (RFs) for the same lowest
level of input signals, to search the position that has the most similar feature to
the one for memory representations. In order to find such a position, a neural
inspired version of the so-called maximum operation is employed, which is under
an assumption that neurons in a layer compete with each others for activation.
We will thoroughly explain the maximum operation method in the next section.

Once the most suitable position for similarity to memory feature representa-
tion is detected, it is projected to the corresponding position on a RF for the
next lower level. Analogous to the lowest level case, the most appropriate posi-
tion must be found by the similarities to memory feature with the next lowest
levels. Such top-down detection process must be repeated until being projected
to the retina (see, Fig.3).

We should not here forget reusing input signals for the sake of integration of
the feature pieces into a whole explicit representation for the Gabor feature. It is
also analogous for the corresponding memory representation. What we address
is Gabor feature construction for both the memory representation and input
signal, achieving simultaneous visual object recognition and detection.

3 A Network Model and Simulations

We propose a neural style of Gabor feature construction model for parallel pro-
cessing of object recognition and detection, which is grounded on the neural
concept mentioned in Sect. 2. If we straightforwardly model the neural concept
in Sect.2, one can easily expect that there is heavily computational cost for Ga-
bor filtering, because as the Gabor kernel size is bigger, in addition, an image
size is also larger, naturally, it takes a longer and longer time to filtering an im-
age. In order to escape from such a heavily computation cost problem, a Gabor
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pyramid method is employed. The essence of the Gabor pyramid utility is the
scale Gabor feature correspondence.

3.1 Gabor Wavelet

A Gabor feature can be extracted at a pixel position p = (x, y) on a natural
grayscale image through convolutions of the image F with a family of Gabor
functions ψr(p). r (= 0, . . . , 7) is an orientation parameter. The Gabor feature
consists of 8 different orientation components. Each orientation component is
given by a convoluted value (Ĵr):

Ĵr(pl) =
∫
F (pl − p̂l)ψr(pl − p̂l)d

2p̂l, (1)

ψr(p) =
|kr|2
σ2

exp
(
−|kr|2|p|2

2σ2

)[
exp (ikr · p)− exp

(
−σ

2

2

)]
. (2)

r is explicitly given as described below in (3). σ = 2π. The wave number vector
kr can be expressed as

kr =
(
kr,x

kr,y

)
=
(
k cosφr

k sinφr

)
, k =

kmax

k0
, φr =

π

8
r, (3)

where kmax = π/2 and k0 =
√

2. One orientation component Jr in the Gabor
feature takes a real part of Ĵr:

Jr(p) = Re
(
Ĵr

)
. (4)

3.2 Scale Feature Correspondence Findings

Let us consider kmax/k
l
0 where l (= 0, 1, 2, 3, 4) is a spatial frequency parameter.

This enables us to control the kernel size of the Gabor function. The kernel
size is bigger when the spatial frequency parameter is larger. We prepare one
image with a certain original size I0. Then, the original image is continuously
down-sampled with [1/k0]2l. Let each down-sampled image be Il.

For the spatial frequency level l of the Gabor filter, we obtain the Gabor
feature set JI0(kl

0) when the image I0 of the original size is used. Meanwhile we
also get the Gabor feature set JIl(0) for the level l = 0 with the rescaled image
Il. They have scale correspondence with each other as follows:

JI0(kl
0) ≈ JIl(0). (5)

The scale feature correspondence is already founded as the multi-scale in scale-
space approaches [11]. As shown in (5), an original size image, Gabor-filtered
with an individual spatial frequency level, is approximated to the correspond-
ingly sub-sampled image smoothed with the low-pass filter. This is well-known
as used, not only for effectively reducing computational costs in the Gaussian
filtering or its Laplacian, but also for stored memory feature size [12].
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3.3 Elastic Graph Matching

A number of natural grayscale images of different object with an arbitrary pixel
are prepared in memory (Mg

0 ). The size of each image is rescaled with (1/k0)2l

(called Mg
l ). A square graph of (2N+1)× (2N+1) nodes is set on each rescaled

image (Here N = 4). It is notices that pixel position for each node is also rescaled
with (1/k0)2l.

Let us define an energy function El between two graphs of the input and
model images:

El(p̂l) =
∑

pl∈ℵl

es
pl

(p̂l)− λde
d
pl

(p̂l), (6)

es
pl

(p̂l) =
∑

r J
Il
r (p̂l) · JMl

r (pl)√∑
r

(
JIl

r (p̂l)
)2∑

r

(
JMl

r (pl)
)2 , (7)
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Here ℵl is a set of all nodes on the graph. es
pl

(p̂l) is the similarity term between
Gabor features for the node p̂l and pl on the images Il and Ml. ed

pl
(p̂l) represents

the elasticity of the graph on the image Il. λd is a constant parameter for the
graph elasticity. ℵpl

is a set of nearest neighbor nodes p′l for pl. DMl

pl,p′
l

and

DIl

p̂l,p′
l

are the Euclidean distance between nodes pl (or p̂l) and p′l on the graph

of the image Ml (or Il). AMl

pl,p′
l

and AIl

p̂l,p′
l

take a vector form consisting of 4
elements. One element represents an angular between two nearest neighbors on
each quadrant, centered at pl.

We realize that nodes are wandering more rapidly around the most appro-
priate position on the graph. For this, we employ the method of maximum
operation. It is assumed that neurons in a layer compete with each others
for activation. In our maximum operation method, a search region with R =
(2q + 1) × (2q + 1) centered at each node pl are prepared (q = 4). In search
region, each node surveys to find its pixel position p̄l that the energy function
El(p̂l) takes the maximum value:

p̄l = max
p̂

l
∈R
{El(p̂l)}. (9)

3.4 Simulations

If each node on a model image detects the most likely pixel positions on the
lowest resolution image I4, the positions are normalized for the next higher
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Fig. 4. Distortion invariance recognition is successfully achieved by Gabor filter
construction model

Table 1. A recognition ability of the Gabor filter construction model by using 6 facial
images of different persons (M). Subscripts of I mean a scale parameter controlling
the size of an input image.

resolution image I3 to set up again with the search region. Then, it starts again
to calculate E3 for finding the most likely pixel position. It is repeatedly done
until the input image with the original size I0. This is shown in Fig.4. In Fig.4,
distortion invariant recognition is carried out.

In Table 1, we can test a recognition ability of constructed Gabor filter model
proposed in this work, using 6 facial images of different persons. When a model
image M6 is used as an input image, this case gets the highest similarities,
compared to the cases using the other model images as the input.

4 Discussion

One can already see that in a constructed Gabor feature model proposed here,
there are still ample discussions about how to improve and develop the model
toward practical application in the near future. For example, the constructed
Gabor feature model possesses the important functionality of translation invari-
ance in this work. In addition, another important functionality, namely, the size
and rotation invariance will have to be employed for creating full invariant visual
object recognition system. A Gabor feature decomposition algorithm, proposed
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by Sato et al. [13] is a powerful and helpful tool to developmental full invariant
recognition system. At this moment, we should keep in mind for comparing the
SIFT feature detectors.

The main concept of the Gabor pyramid technique must be “finding scale
feature correspondences.” The scale feature correspondence finding provides us
with fruitful advantages, mainly, computational cost reduction, which has been
well-known in using Laplacian or Gaussian filters [11]. However, we have to be
aware that memory size reduction must also be significant. This is because if
we implement conventional EGM and EBGM onto computers, 8 different orien-
tations and 5 different spatial frequencies of Gabor filters are necessary for one
256× 256 pixel size image. We had to prepare 256× 256× 40(= 2621440) mem-
ory size per one image on the database. However, if applying Gabor pyramid
to EGM and EBGM, we use a down-sampling size image for each scale. Since
total memory size is (256× 256+ 180× 180+ 128× 128 + 90× 90 + 64× 64)× 8
(= 1012128), we can remove size redundancy with around 38.6%.

The memory size reduction will have the greater value when Gabor pyramid
technique is implemented into a digital hardware circuit of an FPGA. Because
the conventional EGM utilizes 5 different spatial frequencies of the Gabor func-
tion, the FPGA circuit can easily be expected to need at least 5 blocks for a
Gabor function. However, if taking into account the Gabor pyramid, we need
only one block for a Gabor kernel with the standard level, plus to one logic
circuit for down-sampling. Another merit is an expectation that the object de-
tection accuracy may be better, compared to the case with no reduction memory
size. In any case, we will have to discuss more Gabor pyramid implementation
into FPGA, because the FPGA implementation has high potential to practical
applications such as robot vision, environmental surveillance systems and so on.
Also, it has great and innovative expectations of the real time robot vision.

5 Conclusion

In this paper, we propose a neurally inspired model for visual object recognition.
This model is based on the Gabor feature explicit representation construction.
An input image is decomposed of different scale features through the low-pass
filter. Nevertheless, recycling and overlapping again the scale features, a model
object can be detected on the input image by finding scale feature correspondence
to the memory representations. Simultaneously, Gabor feature representations
stored in memory are also reconstructed by selecting the most similar scale
features to the input. Also, we discuss about how to implement our Gabor feature
construction model into the FPGA, which will furthermore be implemented into
practical application in the near future.
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Abstract. This paper presents a method for multiview range image registration
to fuse 3D surfaces in range images taken from around an object by a laser range
finder (LRF). The method uses competitive associative net (CAN2) for learning
piecewise linear approximation of surfaces in the LRF range image involving var-
ious noise, and then executes pairwise registration of consecutive range images
approximated by piecewise planes. To reduce the propagation error caused by
the consecutive pairwise registration, the method introduces leave-one-image-out
cross-validation (LOOCV) and tries to minimize the LOOCV registration error.
The effectiveness is shown by using real LRF range images of several objects.

Keywords: Multiview range image registration, LRF range images, Competitive
associative nets, Leave-one-image-out cross-validation.

1 Introduction

This paper describes multiview range image registration to fuse three-dimensional (3D)
surfaces in range images taken from around an object by the laser range finder (LRF).
Here, the LRF range images are characterized as involving lack of data called black
spots, quantization errors owing to the range (distance) resolution (e.g. 10mm), and a
large number of data owing to high angular resolution (e.g. 0.25◦). To deal with such
data, we have developed a plane extraction method using CAN2 (competitive associa-
tive net) [1], where the CAN2 is an artificial neural net for learning piecewise linear
approximation of nonlinear functions and provides several advantages such as data
compression, noise reduction, availability of approximated piecewise plane segments
for processing LRF range images. We have utilized these advantages in range image
registration [2] using particle filter (PF) and loop-closing for reducing the propagation
error caused by the pairwise registration applied to consecutive images. From the sur-
veys of range image registration [3,4], our method is classified into statistic techniques
for cycle minimization studied for SLAM (simultaneous localization and mapping)
problems [4], where, however, not the PF but some Gaussian filters are only mentioned
so that our method has to be analyzed from various points of view.

Although the above our method seems to work well, this paper presents a new mul-
tiview registration method using the CAN2 and leave-one-image-out cross-validation

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 621–628, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. (a) The LRF with the stepping motor and (b) the LRF coordinate system

(LOOCV) error. From the survey [4], the present method is closely related to the
metaview strategies of analytic techniques for cycle minimization to reduce the
propagation error. The conventional metaview methods incrementally register and merge
the consecutive images into a metaview, while the present method generate all
LOOCV metaviews, and tries to reduce the registration error between every pair
of LOOCV metaview and the remaining image. Here, the correspondence of points
on the LOOCV metaview and the remaining image is checked by means of the distance
and the orientation of the tangent planes at the points, which is easy to be implemented
with the range images represented by the piecewise planes obtained by the CAN2.

In the next section, we show the present method for multiview registration using
CAN2 and LOOCV error, and then the effectiveness of the method is evaluated in
Sect. 3.

2 Range Image Registration Using CAN2 and LOOCV Error

2.1 LRF Range Data

The SICK LMS200 is used as a LRF for scanning the horizontal 2D plane to mea-
sure the distance to an object and a suspension unit for rotating the LRF vertically
by means of a geared stepping motor (see Fig. 1(a)). The yaw and pitch angle resolu-
tions are 0.25◦ and 0.05◦, respectively, and the range (distance) resolution is 10mm.
Let Z[polar]t = {p(i)

[polar]t = (θ(i)t , φ
(i)
t , r

(i)
t ) | i = 1, 2, · · · } denote the tth range im-

age taken from around an object, where θ(i)t , φ(i)
t and r(i)t , respectively, are the yaw

and pitch angles and the range of the ith scan data (see Fig. 1(b)), and t ∈ I img =
{1, 2, · · · , L}. From Z[polar]t, we have the Cartesian data as p

(i)
[s]t = (x(i)

[s]t, y
(i)
[s]t, z

(i)
[s]t)

T

= r
(i)
t (sin θ(i)t , cos θ(i)t sinφ(i)

t , cos θ(i)t cosφ(i)
t )T , where the subscript [s] indicates the

scan center coordinate system because the z-axis of p
(i)
[s]t directs to the center of the LRF

scan. We denote this dataset as Z[s]t = {p(i)
[s]t = (x(i)

[s]t, y
(i)
[s]t, z

(i)
[s]t)

T | i = 1, 2, · · · }.
The registration from the tth image to the (t − 1)th image is executed by the

transformation p
(i)
[s]t−1,t = R[s]t−1,tp

(i)
[s]t + t[s]t−1,t, where the parameter

ut = (R[s]t−1,t, t[s]t−1,t) consists of the rotation matrix R[s]t−1,t and the translation
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vector t[s]t−1,t. By means of applying this relation recursively, we can transform p
(i)
[s]t

to the 1st LRF coordinate system as p
(i)
[s]1,t = R[s]1,tp

(i)
[s]t + t[s]1,t, where

xt = (R[s]1,t, t[s]1,t) = (R[s]1,t−1R[s]t−1,t, t[s]1,t−1 + R[s]1,t−1t[s]t−1,t). (1)

indicates the pose, or the orientation R[s]1,t and the position t[s]1,t, of the tth LRF w.r.t.
the 1st LRF coordinate system, and ut indicates the movement of the LRF.

2.2 Piecewise Planes Approximated by the CAN2

In order to utilize a mapping from (x, y) position to z position, we rotate p
(i)
[s]t to

p
(i)
[o]t � R[o,s]tp

(i)
[s]t ≡ RP (−φ(0)

t )RY (−θ(0)t )p(i)
[s]t, (2)

on the coordinate system whose z-axis directs to the object center, where RY (−θ(0)t )
and RP (−φ(0)

t ) denote the yaw and the pitch rotation matrices.
We use CAN2 withN units for each tth range image. The jth unit has a weight vector

w
(j)
[o]t = (w(j)

[o]t,1, w
(j)
[o]t,2)

T and an associative matrix (row vector) M
(j)
[o]t = (M (j)

[o]t,0,

M
(j)
[o]t,1,M

(j)
[o]t,2). After learning Z[o]t = {p(i)

[o]t = (x(i)
[o]t, y

(i)
[o]t, z

(i)
[o]t)

T |i = 1, 2, · · · } as

a function y = f(x) for x = (x(i)
[o]t, y

(i)
[o]t)

T and y = z
(i)
[o]t, the CAN2 divide the input

space into Voronoi regions V (j)
[o]t = {x|j = argmin

i
{‖x − w

(i)
[o]t‖} for j ∈ ICAN2 =

{1, 2, · · · , N}, and performs linear approximation y = M
(j)
[o]tx in each region. As a

result, the range image is divided into piecewise planes given by (n(j)
[o]t)

T p[o]t = α
(j)
[o]t,

where the normal vector n
(j)
[o]t = (n(j)

[o]t,x, n
(j)
[o]t,y, n

(j)
[o]t,z)

T and the distance to the origin

α
(j)
[o]t are given by

((n(j)
[o]t)

T , α
(j)
[o]t) =

(−M (j)
[o]t,1,−M (j)

[o]t,2, 1,M
(j)
[o]t,0)√

(M (j)
[o]t,1)

2 + (M (j)
[o]t,2)

2 + 1
. (3)

Here, note that n(j)
[o]t,z > 0 or the normal vector directs forward from the tth LRF. We

use ZCAN2
[o]t = {q(j)

[o]t = (w(j)
[o]t,M

(j)
[o]t w̃

(j)
[o]t)

T |j ∈ ICAN2} for registration as follows.

ROI for Registration: From ZCAN2
[o]t , we remove the following data and obtain the

ROI (Region of Interest) dataset ZROI
[o]t = {q(j)

[o]t|j ∈ IROI
[o]t }.

(i) (Remove floor) By means of the plane extraction method using the CAN2 [5],
we extract the floor plane from ZCAN2

[o]t , and remove the data within the distance

dfloor(= 30mm) to the floor.
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(ii) (Remove jump edge) The data on the jump edge hold (n(j)
[o]t)

T q
(j)
[o]t = 0. So, we

remove the data with |(n(j)
[o]t)

T q
(j)
[o]t|/‖q(j)

[o]t‖ < cos(π/2 − ψje), where ψje(= 5◦)
indicates allowable error.

(iii) (Remove unreliable piecewise planes) We remove the data in the Voronoi region
of the unit which involves less than 4 data because the plane is unreliable.

Let us consider the registration of the cth image ZROI
[o]c to the r(= c− 1)th image ZROI

[o]r ,
where c and r represent the current and reference images, respectively.

2.3 Pairwise Registration Using Planes Extracted by the CAN2

Suppose the plane extraction method [5] extracts the centers ζ
(j)
[o]c and the normal vec-

tors ν
(j)
[o]c of plane surfaces on the object for c ∈ I img, and there is a common plane

surface on both cth and r(= c − 1)th images. Then, an adequate transformation for
registration is supposed to be obtained by the following steps, where let us suppose that
the jth plane in the cth image corresponds to the sj th plane in the rth image.

[Algorithm: Pairwise Registration]
Step 1. (Coarse registration) For each correspondence sj , we obtain the yaw angle

of corresponding planes by θ(sj)

[s]r,c := atan2(ν(sj)

[s]r,z, ν
(sj)

[s]r,x) − atan2(ν(j)
[s]c,z, ν

(j)
[s]c,x).

where ν
(j)
[s]t = (ν(j)

[s]t,x, ν
(j)
[s]t,y, ν

(j)
[s]t,z) is the normal vector represented by the scan

center coordinate, and atan2(z, x) gives the angle of the point (x, z) from the pos-
itive x-axis. Then, the transformation of the points in the cth image to the rth
image, q

(j)
[o]r,c := R[o]r,cq

(j)
[o]c + t[o]r,c, is obtained, where (R[o]r,c, t[o]r,c) :=

(R[o,s]rRY (θ(sj)

[s]r,c), ζ
(sj)

[o]r −R[o]r,cζ
(j)
[o]c).

Step 2. (Obtain ROI) We transform the cth data points q
(j)
[o]c ∈ ZROI

[o]c to the rth coor-

dinate system as q
(j)
[o]r,c := R[o]r,cq

(j)
[o]c + t[o]r,c. and let q

(lj)

[s]r be the closest point

on the rth image, and ZROI
[o]r,c := {q(j)

[o]r,c|j ∈ IROI
r,c } be the set of q

(j)
[o]r,c holding

‖q(j)
[s]r,c − q

(lj)

[s]r ‖ ≤ dROI and
(
n

(j)
[s]r,c

)T
n

(lj)

[s]r ≥ cosψROI, where dROI and ψROI

are thresholds.
Step 3. (Evaluate the registration) We obtain the squared error given by

(ΔZr,c)2 =
〈
‖q(j)

[o]r,c − q
(lj)

[o]r‖2
〉

q
(j)
[o]r,c

∈ZROI
[o]r,c

. (4)

Here, the angle brackets 〈·〉 indicate the mean and the subscript indicates the range
of the mean. After obtaining (ΔZr,c)2 for all correspondences sj , let (R̂[o]r,c, t̂[o]r,c)
be the transformation which achieves the smallest (ΔZr,c)2.

The result of the above (coarse) pairwise registration is fed to the multiview registration
to be refined as shown in the next section.
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2.4 Multiview Registration Using LOOCV Error

From (R̂[o]r,c, t̂[o]r,c) via Eq.(1) and (2), all LRF poses
(
R̂[s]1,c, t̂[s]1,c

)
on the scan

center coordinate system of the 1st LRF are derived for c = 2, 3, · · · , L, consecutively.
However, they involve propagation error, and we employ the following method to re-
duce the LOOCV registration error.

[Algorithm: Multiview Registration]

Step 1. (Coarse Registration) Let (R[s]1,c, t[s]1,c) := (R̂[s]1,c, t̂[s]1,c) for all c ∈ I img.

Step 2. (Obtain ROI) We obtain q
(j)
[s]1,c := R[s]1,cq

(j)
[s]c + t[s]1,c for all j ∈ IROI

[o]c in the

cth image, and let q
(lj)

[s]1,c̄ be the closest point for all c̄ ∈ I img\{c} and ZROI
[s]1,c :=

{q(j)
[s]1,c|j ∈ IROI

1,c } be the set of q
(j)
[s]1,c holding ‖q(j)

[s]1,c − q
(lj)

[s]1,c̄‖ ≤ dROI and(
n

(j)
[s]1,c

)T
n

(lj)

[s]1,c̄ ≥ cosψROI for the thresholds dROI and ψROI.

Step 3. (Refine transformation) In order to improve the accuracy, we obtain the point

ξ
(lj)

[s]1,c̄ := q
(lj)

[s]1,c̄ +
(
α

(lj)

[s]1,c̄ − (n(lj)

[s]1,c̄)
T q

(j)
[s]1,c

)
n

(lj)

[s]1,c̄ which is on the tangent plane

of q
(lj)

[s]1,c̄ and closest to q
(j)
[s]1,c, and introduce

η
(lj)

[s]1,c̄ :=

{
ξ

(lj)

[s]1,c̄ if ‖q(j)
[s]1,c − q

(lj)

[s]1,c̄‖ ≤ dp2pl,

q
(lj)

[s]1,c̄ otherwise,
(5)

where dp2pl indicates a threshold to use point-to-plane distance. Now, we introduce
the registration error given by〈

(ΔZc,c̄)2
〉

c∈Iimg =
〈
‖ΔRc q

(j)
[s]1,c +Δtc − η

(lj)

[s]1,c̄‖2
〉

q
(j)
[s]1,c

∈ZROI
[s]1,c

,c∈Iimg
. (6)

This indicates the LOOCV MSE (mean-square-error) of the current registration
with (ΔRc, Δtc) = (I ,0). From the ICP (iterative-closest-point) methods, the

error is expected to be reduced by (ΔRc, Δtc) :=
(
U cV

T
c , η

(lj)

[s]1,c̄−ΔRcq
(j)
[s]1,c

)
,

where U c and V c are the left and the right singular matrices of the cross-covariance

matrix of η
(lj)

[s]1,c̄ and q
(j)
[s]1,c with the mean vectors η

(lj)

[s]1,c̄ and q
(j)
[s]1,c, respectively.

We update the transformation as (R[s]1,c, t
(j)
[s]1,c) := (ΔRcR[s]1,c, ΔRct

(j)
[s]1,c +

Δtc) for all c and repeat Step 2 and 3 until convergence.

3 Experimental Results and Remarks

In order to examine the effectiveness of the present method, we have first conducted
an experiment using four range images taken from around a rectangular box on the
floor. The result is shown in Fig. 2, where we use the 1st image as the 5th image to
examine the propagation error. From (a), (b) and (c), we can see the performance
of the pairwise registration. Namely, from (a), we can see the propagation error as the
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Experimental result using four range images taken from around a rectangular box. We use
the CAN2 with N = 2000. (a),(b) and (c) indicate the result of the pairwise registration. (a)
shows the over-head view, where the arc-heads colored black, red, green, blue and pink indicate
the registered poses of the tth LRF for t = 1, 2, 3, 4, 5, respectively, and the dots indicate the
LRF data points, where we use the 1st image as the 5th image to examine the propagation error.
(b) shows the perspective view. (c) shows the top, front and side view of the registered object,
where the range data are digitized into 10mm3 cubic volumes in the 1m3 cubic area involving
the object, and the numbers of the data in the volumes are summed up orthogonally to each view,
respectively. (d), (e) and (f) show the result of multiview registration.

difference of the 1st and 5th LRF poses, or the black and the pink arc-heads. We can
also see the propagation error in the top view of (c). From (d) obtained by the multiview
registration, we can see that the pink poses for t = 5 goes to almost at the origin
(x, y, z) = (0, 0, 0), which indicates the propagation error is reduced. The reduction of
the propagation error can be seen in (f).

We have conducted experiments for two other objects, which we call box-on-box and
doll-on-box as shown in Fig. 3. We can see that the propagation error of the pairwise
registration is reduced by the multiview registration.

From the thick edges of the three side views, we have estimated the size of boxes
and show the result in Table 1. Considering that every surface of the boxes has 10mm
quantization error, we can say that the estimated values are almost accurate.

In Fig. 4(a), we show the LOOCV RMSE vs. the number of iterations. We can see
the reduction of the registration error by means of the point-to-plane technique. Note
that the RMSE is not as small as the one (below 5mm) shown in [3]. It is supposed
to be owing that our data involve 10mm quantization error of the LRF. Furthermore,
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236mm 314mm

220mm

400mm484mm

178mm

(a) (b) (c)

(d) (e) (f)

Fig. 3. Experimental results for box-on-box object ((a), (b), (c)) and doll-on-box object
((d),(e),(f)). The results of pairwise registration are shown in (b) and (e), and those of multiview
registration are shown in (c) and (f).

Table 1. Actual and estimated size (Depth, Width and Height) of boxes. The unit of actual and
estimated sizes are [mm] and [pixel/10mm], respectively.

box box-on-box doll-on-box
box size D W H D W H D W H D W H
actual 175 485 396 236 314 220 400 484 178 238 322 161

estimated 18-20 45-46 40-41 23-24 32-33 22-23 40-41 49-50 19-20 25-26 34-35 17-18

our multiview registration has failed with dp2pl = dROI (= 50mm) for box-on-box
and doll-on-box objects, which is also supposed to be owing to the quantization error.
Actually, in order to overcome this problem, we have introduced dp2pl smaller than
dROI to use point-to-plane distance for accuracy and point-to-point for stability.

In Fig. 4(b) and (c), we show some results related to the CAN2, where the original range
image data points p

(i)
[o]t are compressed into the points q

(j)
[o]t by the batch learning method

of the CAN2 [6] and they are classified into the points on several planes by the plane
extraction method [1], and then they are used for obtaining the ROI and the registration.

The LOOCV is known to require a large computational cost in general, but in this
application, most of the computational cost is used for the learning of the CAN2 to
learn piecewise linear approximation of the range image, and the computational cost of
the multiview iterations vs. the total cost is 20s/408s, 27s/380s and 36s/653s for box,
box-on-box, and doll-on-box objects, respectively.
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Fig. 4. Performance of registration. (a) The LOOCV RMSE vs. the number of iterations through
multiview registration. The LOOCV RMSE is obtained by the root of the LOOCV MSE given
by Eq.(6), where dp2pl = 0 for the point-to-point only (p2p) and dp2pl = 40mm for the point-
to-plane (p2pl) in Eq.(5), dROI = 50mm and ψROI = 25◦. (b) shows an example of the original
15027 range data points p

(i)
[o]t of the doll-on-box object, and (c) depicts the points q

(j)
[o]t on the 4

extracted planes (1112 colored points) and the points in ZROI
[o]t (773 black points).

The present LOOCV based multiview registration is supposed to be possible ow-
ing mainly that Step 2 of the multiview registration algorithm utilizes the orientation
threshold ψROI as well as the distance threshold dROI to check the point to be corre-
sponded, while the most of the conventional registration methods seem to use only the
distance threshold.

4 Conclusion

We have presented a multiview registration method using CAN2 and LOOCV regis-
tration error to fuse 3D surfaces of range images taken from around an object by the
LRF. The effectiveness is shown and examined through the experimental results with
real LRF range images. We would like to evaluate the present method much more on
accuracy, robustness, and other performances compared with other methods.

This work was partially supported by the Grant-in Aid for Scientific Research (C)
21500217 of the Japanese Ministry of Education, Science, Sports and Culture.
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Abstract. Pedestrian tracking in multi-camera is an important task in intelligent
visual surveillance system, but it suffers from the problem of large appearance
variations of the same person under different cameras. Inspired by the success of
existing view transformation model in multi-view gait recognition, we present a
novel view transformation model based approach named shared dictionary learn-
ing with group sparsity to address the problem. It projects the pedestrian ap-
pearance feature descriptor in probe view into the gallery one before feature
descriptors matching. In this case, L1,∞ regularization over the latent embedding
ensure the lower reconstruction error and more stable feature descriptors gener-
ation, comparing with the existing Singular Value Decomposition. Although the
overall optimization function is not global convex, the Nesterovs optimal gradient
scheme ensure the efficiency and reliability. Experiments on VIPeR dataset show
that our approach reaches the state-of-the-art performance.

Keywords: multiview learning, dimension reduction, stochastic neighbor em-
bedding, image retrieval.

1 Introduction

Recognizing humans at a distance is not only a popular topic in computer vision com-
munity, but also very important in intelligent visual surveillance applications. However,
this task is very challenging since there are tremendous variations in appearance and
structure under different illumination, poses, occlusions and viewpoints [1,2,3]. The
complex intra-class variations are difficult to model and lead to recognition failures.
Besides, in uncontrolled scenarios, people may carry bags or exhibit other unexpected
noises, which further deteriorate performance.

In this paper, we study human recognition in the multi-view setting. It refers to iden-
tifying a person across different viewpoints. This problem arises in numerous computer
vision scenarios, such as pedestrian re-identification, multi-camera tracking, etc. The
major issue is how to learn a view invariant representation while preserving discrimina-
tive information for accurate recognition. One paradigm is to use features such as Self

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 629–638, 2011.
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Fig. 1. Illustration of the multi-view human recognition system. Learned SDL-GS model is used
to estimate data in unseen views given probe samples. In each unobserved view, the Nearest
Neighbor (NN) rule is used as a classifier to retrieve samples in the gallery set.

Similarity Plots (SSP) [4] and flow fields gait representation [5]. Color histograms and
texture filters are used in [6,7,5] to recognize pedestrian across different views. How-
ever, much discriminative information is lost in the process to achieve viewpoint invari-
ance. For controlled scenes, viewpoint differences can be handled by view synthesis
using planar imaging geometry or self calibration [8]. But this requires explicite knowl-
edge of the scenes, which is unknown in most practical cases. Dikmen [7] proposed to
learn a suitable metric where variations caused by view changes are offset by supervised
learning. While label information is very important for recognition [5], neglecting the
relationships between views is prone to sub-optimal solutions since conflicting views
may be forced together simply because they are labeled as similar. Moreover, View
Transformation Models (VTM) based on linear factorization [9,10] and Gaussian pro-
cesses [8] also demonstrate satisfactory performance in multi-view gait recognition.
However, these techniques are sensitive to noise and are likely to overfit in cases of
small training sets.

When inferring the sparse latent embedding, traditional sparse coding techniques
suffer from random locations of non-zero coefficients. We propose to use l1,∞ regu-
larization on the latent embedding for group sparsity effect. Instead of being randomly
distributed, the locations of non-zero coefficients will tend to cluster into groups. Such
effect is resistant to noise disturbance and leads to improved recognition performance.
Moreover, learning and inference in our approach only consists of convex optimization,
which can be efficiently solved by Nesterov’s optimal gradient scheme. Fig. 1 illustrates
the mechanism of our approach at recognition time.

The contributions of our work are three-fold: 1) SDL-GS is capable of accurately es-
timating test samples in unseen views, so as to handle large variations; 2) Group sparsity
leads to stable latent embedding and increases recognition performance significantly; 3)
The computation of SDL-GS only consists of convex optimization and can be carried
out efficiently with global optimum guarantee.
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The remainder of the paper is organized as follows. In Section 2, we present our
multi-view dictionary learning formulations. Group sparsity with l1,∞ norm regulariza-
tion is introduced in Section 3. In Section 4, we evaluate our approach on VIPeR [6].
Finally, we conclude the paper in Section 5.

2 Shared Dictionary Learning with Group Sparsity

In this section, we first briefly review sparse coding techniques. Then we introduce our
dictionary learning algorithm for problems with multiple views.

2.1 Sparse Coding

Recently, sparse coding or sparse representation is very popular within the face and ob-
ject recognition communities[11]. It is reported that the reconstruction error of sparse
coding is much lower than that of Singular Value Decomposition (SVD). Besides,
sparse coefficients can be less sensitive to noise and occlusion [12]. But sparse cod-
ing has its drawback that the positions of non-zero coefficients in descriptor vectors are
not stable, which leads it may not be robust enough.

Specifically, let xi ∈ R
d denote the i-th input data, which can be vectorized image

pixels or extracted features. And denote D ∈ R
d×k as the dictionary matrix. We seek a

sparse latent embedding to represent xi,

αi = arg min
α

‖xi −Dα‖2 + λ‖α‖1 (1)

where ‖α‖1 =
∑k

j=1 |αj | is the l1 norm and λ is the coefficient that balances the
trade-off between the reconstruction error term and the regularization term.

2.2 Multi-view Dictionary Learning with Shared Latent Embedding

In our multi-view dictionary learning approach, we assume the sparse latent embedding
is shared across all views, and each view-specific dictionary is responsible for generat-
ing the corresponding data samples.

This generative model provides a straightforward way of estimating unseen
views given a subset of observed views. And our sparse dictionary-based approach
can significantly reduce reconstruction error on unseen views and improve recogni-
tion accuracy compared with simple factorization approaches such as Singular Value
Decomposition [9].

In details, given N data, each with V views, the goal is to learn V view-specific
dictionaries that fit the data well. Let xv

i denote the i-th data in the v-th view and Dv

denote the dictionary for the v-th view. The dictionary learning approach is formulated
as the following problem

min
Dv ,αi

1
V

V∑
v=1

N∑
i=1

‖xv
i −Dvαi‖2 + λ

N∑
i=1

‖αi‖1 (2)

s.t. ‖dv
j‖ ≤ 1, 1 ≤ j ≤ k

where dv
j is the j-th column of Dv. Note that αi is shared across all views.
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We denote the approach characterized in Eq. 3 as Shared Dictionary Learning with
Sparse Coding (SDL-SC). SDL-SC is solved by alternating optimization. Fixing αi’s,
solving Dv is a quadratic programming problem and can be efficiently solved by Block
Coordinate Descent [13]. Given Dv , solving αi’s is traditional sparse coding and can
be efficiently carried out by approaches like LARS/Lasso [14] or feature-sign [15].

2.3 Inference on the Latent Embedding

Once we have learnt the set of dictionaries {Dv}Vv=1, we infer the shared latent embed-
ding for a new test sample x̂v

i by solving the following problem

α̂i = argmin
α̂

1
V

V∑
v=1

‖x̂v
i −Dvα̂‖2 + λ‖α̂‖1 (3)

In some scenarios, only a subset of views V are available and we would like to recon-
struct other views from the given data. This can be done by first inferring the latent
embedding α̃i from the given views x̂v

i , v ∈ V

min
α̃i

1
|V|
∑
v∈V
‖x̂v

i −Dvα̃i‖2 + λ‖α̃i‖1 (4)

where |V| is the cardinality of the set V .
Then data in the unseen views can be estimated through x̃v

i = Dvα̃i, where v /∈ V .

3 Group Sparisty Induced by l1,∞ Norm

One problem with sparse coding is that the locations of non-zero coefficients of latent
embedding are sensitive to noise – two similar data samples may have quite different
sparse coding coefficients, thus making the sparse coding scheme unstable for similar-
ity measure. Recently, Huang [16] proposed a dynamic group sparsity algorithm that
can incorporate the prior of clustering trend of non-zero elements. Their approach is a
greedy sparse recovery algorithm, with iterative pruning.

We introduce a group sparsity formulation with l1,∞ norm regularization. Compared
with the pruning approach, our convex alternative is much simpler to implement and
can take advantage of any existing convex optimization solvers. More importantly, our
approach does not require any knowledge about the locations or sizes of the group
clusters and can achieve superior results than traditional sparse coding techniques in
almost all tasks.

Our formulation is similar to group sparse coding [17]. However, our approach
adopts l1,∞ norm regularization, which is reported to exhibit better performance than
l1,2 norm [18]. Jia [19] also proposed a factorized multi-modal learning framework that
places group sparsity constraints on the dictionaries. While these constraints are sensi-
ble on multi-modal data where data from different modalities are drastically different,
we have observed better performance by simple norm constraints for multi-view data
where different views have much in common.
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3.1 Convex Group Sparsity

In order to faciliate the use of l1,∞ norm, we first represent data in matrix form. Let
Xv = [xv

1,x
v
2 , · · · ,xv

n] and α = [α1,α2, · · · ,αn]. The dictionary learning problem
is thus reformulated as

min
Dv,α

H(Dv,α) =
1
NV

V∑
v=1

‖Xv −Dvα‖2Fro + λ‖α‖1,∞ (5)

s.t. ‖dv
j‖ ≤ 1, 1 ≤ j ≤ k

where ‖·‖Fro is the Frobenius norm. The l1,∞ norm is defined as ‖α‖1,∞ =
∑k

i=1

maxj |αj
i |, where αj

i is the (i, j)-th element in α.
The property of l1,∞ norm naturally leads to entire rows of α to be zeroed out.

Therefore, the locations of non-zero elements will cluster into groups instead of being
randomly distributed. Such grouping effect is observed to bring significant performance
boost compared with traditional sparse coding scheme.

Algorithm 1. Multi-view Shared Dictionary Learning

Input: X = {X1, · · · ,XV }.
Output: D = {D1, · · · ,DV }.
Initialize: α0 ∈ R

k×N , Xcat =
[
X1; · · · ; XV

]
.

Iterate for t = 0, 1, 2, . . . until convergence:

1. For v ← 1 to V do

Dv
t = arg min

Dv
‖Xv − Dvαt‖2

Fro , s.t. ‖dv
j‖ ≤ 1

End for
2. Concatenate dictionaries vertically

(Dcat)t =
[
D1

t ; · · · ; DV
t

]
3. Compute αt+1 by using Algorithm 2

αt+1 = arg min
α

1

NV

∥∥Xcat − (Dcat)t α
∥∥2

Fro
+ λ‖α‖1,∞

The optimization of (SDL-GS) is solved by alternating optimization. At every it-
eration, we 1) solve each view-specific dictionary Dv with fixed α by using Block
Coordinate Descent [13] and then 2) compute α by using Nesterov’s optimal gradient
scheme as in Algorithm 2.

We adopt a window based stopping criterion: for a given window size h, at every
iteration t, we calculate the following ratio
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r =
maxWt −minWt

maxWt

where the set Wt = {Ht−h+1, · · · , Ht} consists of history objective values in a win-
dow. If r < θ, where θ is a predefined value, the algorithm stops iterating.

We illustrate the detailed procedures in Algorithm 1. SDL-SC as in Eq. 3 is solved
similarly, but with l1 norm over α, thus more sensitive to noise.

3.2 Nesterov’s Optimal Gradient Scheme for l1,∞ Regularization

Now, we present an accelerated gradient descent methhod [20] to solve the convex l1,∞
regularization problem

min
α

F (α) = f(α) + Ψ(α)

=
1
NV

V∑
v=1

‖Xv −Dvα‖2Fro + λ‖α‖1,∞ (6)

In order to apply Nesterov’s optimal gradient scheme, we first need to define the proxi-
mal function and the generalized gradient mapping

QL(α,αk) = f(αk) + 〈∇f(αk),α−αk〉
+
L

2
‖α−αk‖2Fro + λ‖α‖1,∞ (7)

qL(αk) = argminαQL(α,αk) (8)

where L is the a positive constant.
The proposed algorithm then alternately updates 1) a latent embedding matrix se-

quence {αk} by generalized gradient mapping and 2) an aggregation matrix sequence
{βk} by linear combination of {αk}

αk+1 = qLk+1(βk) (9)

βk+1 = αk+1 +
ck − 1
ck+1

(αk+1 −αk) (10)

where {ck} is a scalar sequence and Lk is adjusted in every iteration.
The detailed description of Nesterov’s optimal gradient is illustrated in Algorithm 2.

The stop criterion is the same as used in Algorithm 1. Computing qL(βk) in Algo-
rithm 2 can efficientlybe done by projection onto the l∞ ball. [18].

4 Experiment

In this section, we demonstrate the effectiveness of the proposed SDL-GS algorithm on
a VIPeR dataset[6], comparing with the state-of-the-art approaches. VIPeR dataset is
most popular Multi-view camera tracking public available dataset. This dataset contains
632 unique pedestrians and a total of 1264 images with two views per pedestrian.
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Algorithm 2. Nesterov’s Optimal Gradient Scheme

Input: λ, L0, η, Xcat ∈ R
D×N , Dcat ∈ R

D×k, where D is the concatenated feature dimension
as in Algorithm 1.
Output: α ∈ R

k×N .
Initialize: α0, β0 = α0, c0 = 1.

Iterate for k = 0, 1, 2, . . . until convergence of αk:

1. Set L̄ = Lk

2. While F (qL̄ (βk)) > Q (qL̄ (βk) , βk)

L̄ = ηL̄

End while
3. Set Lk+1 = L̄ and update

αk+1 = qLk+1(βk)

ck+1 =
1 +
√

1 + 4c2
k

2

βk+1 = αk+1 +
ck − 1

ck+1
(αk+1 − αk)

Implementation Details and Evaluation. Experiments on this dataset are carried out
in two aspects: 1) to compare SDL-GS with other factorization models, such as SVD
and SDL-SC; 2) to compare our approach with other paradigms, such as AdaBoost and
metric learning. All the algorithms are evaluated in terms of the Cumulative Matching
Characteristic (CMC) curve, the same as in [6].

The images in the VIPeR dataset are 128 pixels high and 48 pixels wide. We ex-
tract color histograms from 8 × 8 pixels blocks. The blockes are densely collected
from a regular grid with 4-pixel spacing in the vertical direction and 8-pixel spacing
in the horizontal direction. The blocks are overlapped, with a step size of 4 pixels. We
use RGB and HSV color spaces and extract 8-bin histograms in each channel. The
all the histograms over the grid are concatenated to represent an image. The feature
vector size is 2232 for both RGB and HSV. We also adopt other shape and texture fea-
ture descriptors, including dense SIFT descriptors [21] and dense Local binary pattern
(LBP) descriptors[22]. The blocks used in these features is 8 × 8 pixels with 4 pixels
spacing. We concatenate all the feature descriptors together and then apply Principal
Component Analysis (PCA) to obtain 60-dimension low-dimension representation. The
reduced features are normalized to unit vectors.

Since our view transformation model need to be trained on each combination of
probe view and gallery view, we separate datasets into training set and testing set in
each subsets. We learn each VTM respected to the different combinations of probe and
gallery views, and calculate the cumulative recognition rates based on matching re-
sults from each view transformation model. After transform, we conduct the template
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matching between transformed data and gallery data to obtain the matching scores. The
people number distribution of different combinations of probe viewpoints and gallery
viewpoints are not balanced. We directly employ template matching on those combina-
tions that contains only 1, 3 or 4 pairs data (e.g. probe view is 90 degree while gallery
view is 0 degree, probe 45 and gallery 45).Since there are some result variations in split-
ing training sets and testing sets, we report the average performanec of the approaches

Comparison within Factorization Models To validate the effectiveness of proposed
approach, we compare with the other factorization approaches, SVD and SDL-SC, on
each subsets of VIPeR dataset. In each subset, the probe data all come from the same
viewpoints while gallery data are collected in the same way. We select the half of the
data to constitute the training set while half of the data to constitute the testing set.
Recognition rates at different retrieving ranks are presented in Table 1. And SDL-GS is
superior than sparse coding but some times it is comparable with SVD.

Table 1. Recognition performance comparison among SDL-GS, SDL-SC and SVD in different
subsets of the VIPeR dataset. The parameters of SDL-GS and SDL-SC are tuned to optimal
performance. In the Viewpoint Pairs column, 0◦ to 90◦ refers to a subset of data where probe
samples are in the viewpoint angle 0◦ and gallery samples are in the viewpoint angle 90◦. The
other two notations follow the same convention. “–” denotes the “not applicable” because the
subset does not have enough samples.

Viewpoint Pairs approach
Rank

5 10 15 20 25 30 35 40
SDL-GS 0.267 0.400 0.500 0.608 0.692 0.742 0.775 0.800

0◦ to 90◦ SDL-SC 0.242 0.367 0.450 0.525 0.608 0.692 0.750 0.783
SVD 0.242 0.367 0.450 0.525 0.633 0.725 0.7667 0.7917
SDL-GS 0.098 0.431 0.627 0.706 0.745 0.824 0.863 0.922

0◦ to 180◦ SDL-SC 0.098 0.431 0.549 0.667 0.745 0.824 0.843 0.922
SVD 0.098 0.412 0.588 0.667 0.765 0.804 0.843 0.941
SDL-GS 0.056 0.417 0.556 0.611 0.694 0.778 0.917 –

45◦ to 135◦ SDL-SC 0.028 0.361 0.500 0.583 0.694 0.722 0.889 –
SVD 0.056 0.361 0.528 0.611 0.694 0.750 0.889 –

Comparison with Other Paradigms. To validate the effectiveness of proposed ap-
proach on overall dataset, we compare with the LMNN [7] and ELF200 [6], which are
the state-of-the-art approaches in VIPeR dataset. We use the implementation of LMNN
in [23]. We also implement the ELF200 reported in [6]. We conduct the proposed ap-
proach on each subset of VIPeR dataset according to the viewpoints. The λ is set as
0.02 while the dictionary size is set as 250.

Fig. 2 shows the CMC curves of competing approaches. SDL-GS is observed to be
superior or comparable than the supervised approach of metric learning. We empha-
size that our approach is unsupervised and can be easily combined with supervised
approaches to further achieve performance.
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Fig. 2. Performance comparison among SDL-GS and other representative approaches. LMNN
refers to the state-of-the-art approach reported in [7]. And ELF200 refers to [6]. Template is a
baseline approach that directly compares distances between features of probe sample and gallery
samples. (a) CMC curve comparison on all data; (b) CMC curve comparison on view pairs 0◦ to
90◦. Please refer to text (4) for detailed experimental setting.

5 Conclusion

In this work, we have presented a multi-view dictionary learning approach with shared
latent embedding. Group sparsity constraints by l1,∞ regularization were adopted for
more stable representation and superior performance. Our generative model provids a
natural way to reconstruct data in unseen views. Such reconstruction ability is utilized
in multi-view pedestrian and gait recognition. And various evaluation measures have
demonstrated that SDL-GS outperforms other approaches in two mainstream datasets.

Currently, our model requires the knowledge of the viewpoint and that the training
set should cover all viewpoints. In future work, we will investigate predicting viewpoint
of the probe sample and training with incomplete views. We will also explore other
extensions, such as by incorporating supervision information and learning Region of
Interests (ROI).
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Abstract. In order to develop artificial agents operating in complex
ever-changing environments, advanced technical memory systems are re-
quired. At this juncture, two central questions are which information
needs to be stored and how it is represented. On the other hand, cog-
nitive psychology provides methods to measure the structure of mental
representations in humans. But the nature and the characteristics of
the underlying representations are largely unknown. We propose to use
feature selection methods to determine adequate technical features for
approximating the structure of mental representations found in humans.
Although this approach does not allow for drawing conclusions transfer-
able to humans, it constitutes an excellent basis for creating technical
equivalents of mental representations.

Keywords: Feature selection, Mental representations, Memory.

1 Introduction

One of the biggest challenges today is the endeavour to copy or emulate memory
as it is found in humans and animals. In principle, memory constitutes the basis
for any kind of learning to be performed. Therefore, a multitude of approaches
related to the topic of memory in artificial systems have been proposed. They
adopt single properties of natural memory, in particular, its structure [1], its
processes [2], or mental representations [3].

A crucial problem with developing artificial agents using memory systems is
the formation of appropriate technical representations of perceptual data. Simi-
lar to natural agents possessing cognitive capabilities, technical memory systems
have to obey the principle of cognitive economy [4]; i.e., the amount of data
needs to be diminished before it is stored. Otherwise, the deluge of incoming
sensory information would quickly consume the entire memory. Nevertheless,
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the formed representations need to contain the relevant information. Two im-
portant methods for achieving this goal are the formation of categories [4] and
dimensionality reduction [5].

The goal of our work consists of the emulation of the structure of human
mental representations by means of features that can be computed from visual
stimuli (images). In order to comply with the principle of cognitive economy, the
resulting feature sets should be as small as possible. Therefore, several feature
selection methods are compared. As the selected features contain the information
to replicate the results obtained from humans, we assume that they are good
candidates for representing the corresponding images in artificial systems.

In Section 2, we introduce different methods for analysing mental representa-
tions in humans. Afterwards, popular feature reduction methods are discussed
in Section 3. Our complete approach is described in Section 4 and evaluated in
Section 5. Finally, Section 6 summarises the most important outcomes.

2 Psychological Background

One way to obtain knowledge about human mental representations consists of
conducting experiments in which subjects assign labels to perceived stimuli (e.g.,
[6]). From these, conclusions about the internal concepts and features used for
classification can be drawn. But degrees of class membership are usually not
reflected. In [7], a method explicitly avoiding semantic groups was applied: The
subjects successively split presented images into two groups. Here, images of
one group should share a common global aspect, structure, or certain elements.
Afterwards the subjects were asked to verbally describe the splitting criteria
used. Hence, the features utilised for splitting were associated with a label, e.g.,
naturalness, which itself represents a concept.

Structural Dimensional Analysis (SDA) [8] constitutes an alternative ap-
proach to the analysis of mental representations. In contrast to the methods
introduced above, it does not require labels provided by subjects. In cogni-
tive psychology, SDA is a well-established method for psychometrically inves-
tigating the representational structure of concepts in long-term memory. The
concepts under analysis are verbally defined by the experimenter, e.g., ‘wood’,
‘brush’, and ‘hat’ [8]. This original SDA method was extended to the analy-
sis of the representational structure of motor skills, which is called Structural
Dimensional Analysis-Motoric (SDA-M) [9,10]. The extension from verbally de-
fined concepts to movements was achieved by introducing so-called basic action
concepts (BACs), which represent components of complex movements that are
characterised by perceivable features. In this context, SDA was shown to work
with visual stimuli as an alternative to verbal descriptions.

3 Relevant Feature Reduction Methods

For numerous machine learning techniques, a feature reduction step is required
in order to avoid problems arising from the curse of dimensionality [11]. Feature
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reduction methods aim to decrease the dimensionality of the feature space while
minimising the information loss. This is achieved by removing irrelevant and
redundant information. In general, feature reduction can be divided into two
principal methods: feature extraction (e.g., principal component analysis [12]
and independent component analysis [12]) and feature selection (e.g., minimum-
redundancy-maximum-relevance [13] and genetic algorithms [14]). Feature ex-
traction computes a functional mapping for which the underlying meaning of
the features is lost. In contrast, feature selection chooses salient features from
the original feature set and thereby preserves the features’ semantics. Moreover,
unselected features do not need to be computed. For these reasons, we decided
to focus on feature selection rather than feature extraction approaches.

Feature selection methods can be divided into filters and wrappers. While
filters operate independently of the utilised machine learning technique and op-
timise pre-selected criteria [11,13], wrappers optimise the actual learning results
provided by an induction algorithm [14]. As a consequence, wrappers often lead
to better results while filters are less computationally expensive [11]. Addition-
ally, feature selection approaches can be distinguished depending on the way they
determine sets of relevant features. Some methods first measure the quality of in-
dividual features and rank them [15]. Then, the top-ranked features are selected.
Since the actual number of required features is hard to choose, other approaches
directly select feature subsets [11,13]. These feature subset selection methods
usually provide better results than ranking-based techniques, since they account
for redundancies and complex interdependencies of the considered features [13].

Structural Dimensional Analysis itself can identify common features in differ-
ent representational units (items) [8,9,10]. This is achieved by means of factor
analysis [12], which is frequently applied in psychology. It provides meaningful
factors explaining observed results and is closely related to the feature extraction
methods mentioned above. However, the factors themselves cannot be computed
from the stimuli. They rather are unobservable variables describing the experi-
mental results obtained from human subjects.

4 Our Approach

An overview of our approach is given in Fig. 1. First, SDA is performed in order
to measure the representational distances of a set of images in different human
subjects (cf. Section 4.1). Then, feature-based representations of these images are
determined. In principle, any kind of real-valued features which can be computed
from individual images could be applied here. From this initial set, subsets of
features are selected. An initial set or a selected subset are considered valid, if
they enable an accurate mapping to the measured representational distances;
i.e., if such a mapping exists, we assume that the respective features contain
all information required for the reproduction of the representational distances
found in humans. But the mapping itself may be very complex and non-linear.

In order to test for the existence of a mapping from the feature-based repre-
sentations of the images to the measured representational distances, we attempt
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Fig. 1. Principal approach. A feature selection method chooses minimum sets of com-
putable features in order to determine an efficient technical representation of natural
images. The representational distances determined by SDA serve as ground truth,
which is to be approximated using the respective feature subsets.1

to compute an adequate regression model. Provided that such a model has been
found, it is concluded that the applied feature set suffices to represent the images
under consideration. In contrast to traditional machine learning approaches, the
application of distinct test and training datasets is neither possible nor necessary
for the training of the regression models. Firstly, such training sets would not
be representative for the complete input distribution, as the underlying human
information processing is too complex and results in unpredictable represen-
tational distances between untrained stimuli. Secondly, we aim at explaining
observed data, similar to SDA, and do not require good generalisation proper-
ties of the regression models. But unlike the regression models, the determined
feature subsets are validated.

As the maximum number of images and, therefore, the amount of available
samples is very limited due to the algorithmic properties of SDA (see Section 4.1),
we decided to apply Support Vector Regression2 (SVR) [16]. Regarding the task
of feature selection, several methods are compared (see Section 4.2).

4.1 Generating Ground Truth Data – SDA

In a first step, SDA seeks to gain information about the distance between repre-
sentational units corresponding to a set of ns selected stimuli. Since the struc-
ture of mental representations can only be explicated by subjects to a limited
extent, this is achieved by a special splitting technique: one stimulus is chosen
as an anchor and the remaining stimuli are compared to it (in random order)
and manually classified as ‘similar’ or ‘dissimilar’. This is repeated for the re-
sulting subsets until they become too small to be split or the subject decides
that further splitting is not reasonable. Thus, a decision tree is constructed.

1 Lynx, sea-elephant, meerkat, and otter: CC-by-SA 3.0 Unported; rhinoceros and
zebra: CC-by-A 2.0 Generic.

2 We used the ν-SVR implementation of LIBSVM, version 3.0.
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The splitting procedure is repeated in such a way that each stimulus serves as an
anchor. Therefore, the number of constructed decision trees equals the number
of stimuli.

In order to obtain a distance measure, the algebraic sums along all branches
are computed for each decision tree. Here, stimuli classified as ‘dissimilar’ obtain
a negative sign and elements classified as ‘similar’ a positive sign. From the
resulting values, a matrix is constructed, with its elements sik denoting the sum
for stimulus k with respect to anchor i. These sums are z-transformed:

zik =
sik − μi

σi
, with μi =

1
ns

ns∑
k=1

sik and σi =

√√√√ 1
ns

ns∑
k=1

(sik − μi)2. (1)

Then, a correlation matrix is computed. The individual correlation rij of two
stimuli i and j is further transformed into the Euclidean distance measure dij :

dij =
√

2ns

√
1− rij , with rij =

1
ns

ns∑
k=1

zikzjk. (2)

The computed distances dij are subjected to a hierarchical cluster analysis which
reveals the representational structure of the stimuli and constitutes the second
step of SDA. As the mental representations differ between the individuals of a
population, the measured structures exhibit differences as well. The third step
comprises a cluster-dependent factor analysis revealing underlying dimensions
in the structured set of representations and the final step consists in testing for
invariance within and between groups of subjects.

Our work focusses on the first step, as the distance values provided therein
completely define the representational structure revealed by cluster analysis.
Since dii always equals 0 independent of the representational structure and the
underlying representations, we decided to omit these values. Furthermore, the
number nd of available distance values is reduced due to symmetry (dij=dji). It
amounts to 1

2ns(ns−1). Due to the high number of comparisons which have to
be performed by the subjects (up to O(n3

s)), the number of obtainable distance
values is very limited. In particular, ns should not be chosen higher than 20.
Otherwise, the decisions made regarding the similarity of stimuli may become
inconsistent.

4.2 Feature Selection

In order to select adequate features, it must be considered that each subject has
individual mental representations of the images and, therefore, the mappings
from the stimuli to their representations and the resulting representational struc-
tures may vary considerably. Nevertheless, it would be beneficial if the data from
different subjects could contribute to a common feature subset, as the amount of
available data is considerably increased this way. Furthermore, we assume that
the principal way of information processing does not differ considerably between
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different healthy human subjects. Thus, our approach aims at aligning the fea-
ture subsets found for all subjects, in addition to pursuing the traditional goal
of minimising the number of selected features.

The nature of the task at hand implies the usage of a wrapper approach, as the
quality criterion consists of the accurate approximation of the representational
distances dij provided by SDA. Hence, we decided to apply a genetic algorithm
[17], due to the flexibility of this method. The developed algorithm is specifi-
cally tailored to the problem at hand. Nevertheless, it would be advantageous if
standard methods could be applied as well. Therefore, we analysed two further
feature selection approaches, namely Correlation-based Feature Selection (CFS)
[11] and ReliefF [15].3 As these methods are filters, we expected them to be less
computationally expensive than the genetic algorithm. But they are not able
to process the subjects individually while simultaneously aligning their results.
Hence, we applied these methods to the collective data of all considered subjects,
in order to find a single feature subset.

Genetic Algorithm. In our genetic algorithm (GA), a candidate solution, also
called an individual, constitutes a combination of a feature subset and an associ-
ated regression model approximating the representational distances of a specific
subject. As a result, the genome of each individual comprises two components:
(i) the feature genome gf defining the selected features (and the dimensionality
of the feature space) and (ii) the parameter genome gp defining the parameters
for the SVR. Here, three possible kernels – linear, radial basis function (RBF),
and sigmoid – are considered depending on the parameter type.

While feature subsets are defined by binary genes denoting whether a specific
feature is selected or not, the SVR parameters are encoded as numerical values
from the interval [0,1]. For the regularisation constant C and the kernel param-
eters γ, κ, and ϑ, these numerical genes are mapped to the interval [0.00001,
10000]. The feature genome is adapted by bit mutation [17] with the probability
pm and uniform cross-over [17]. For the parameter genome, a mutation operator
for real-valued genes4 [18] and arithmetic cross-over [18] are utilised. pc denotes
the cross-over probability for both operators. In the initial generation, features
are randomly selected with the mutation probability pm.

In order to align the feature sets selected for different subjects, each feature i
is assessed by a weight

w(i) =
∑

A∈E g
f
A(i)∑nf

j=1

∑
A∈E g

f
A(j)

(3)

reflecting the frequency of its occurrence in the set E , which summarises the
elite individuals of the current generation for all subjects. Here, nf denotes the
number of features.

The three goals explained above are reflected by the fitness function which is
used for evaluating the performance of each individual A:
3 For CFS and ReliefF, the implementations of WEKA, version 3.6.3, were used.
4 Changes are sampled from the Gaussian N (0, 0.0252).
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F (A) = 1− (1− cf − ch)E(A)︸ ︷︷ ︸
(i)

−cf 1
nf

nf∑
i=1

gf
A(i)︸ ︷︷ ︸

(ii)

−ch
(

1−
nf∑
i=1

gf
A(i)w(i)

)
︸ ︷︷ ︸

(iii)

. (4)

Component (i) minimises the regression error E(A), component (ii) minimises
the size of the chosen feature subset, and component (iii) assures the alignment
of selected features across all subjects.

The constants should be chosen as follows: 1	cf	ch. By this, the regres-
sion error obtains the highest priority, followed by the feature set size and the
alignment of feature sets between different subjects. As the influence of the com-
ponents (ii) and (iii) is very small compared to the regression error E(A), we
applied rank-based selection [18].

The final feature subset consists of those features which were applied by all
elite individuals of the final generation.

5 Results

The suitability of the considered feature selection methods was analysed using
20 images (400×300 pixels) showing different, complete and centred animals in
their natural environment (cf. Fig. 1). The representational distances between
these images were measured for s=31 subjects (16 male, 15 female; age: 21–46)
resulting in nd=190 samples per subject and 5, 890 samples in total. In order
to alleviate the evaluation, the distances of each subject were normalised to
the interval [0, 1]. As an example for feature-based image representations, we
employed the well-established gist descriptor (nf=512) [7]. For the evaluation,
ten different splittings of the set of subjects into subsets of 20 training subjects
and 11 test subjects each were randomly created. The data of the respective
training subjects is applied so as to select salient features. These suitability of
these features is tested with respect to the test subjects.

For each training subject, the genetic algorithm optimised 100 individuals,
the 10 fittest of which were regarded as elite individuals.5 Figure 2 depicts the
development of the mean regression error μ(E) for the respective training sub-
jects and the mean number of selected features μ(nsf ) during the optimisation.
In addition, the mean normalised histogram intersection μ(H) [19] is plotted.6

It measures the similarity between the feature usage histograms of the elite in-
dividuals assigned to different subjects. Figure 2 demonstrates that the genetic
algorithm achieves the goals stated in Section 4.2.

5 The remaining parameters were set to the following values: pc=0.25, cf =0.01, and
ch=0.0005.

6 Over-lined symbols denote average values over all elite individuals and/or training
subjects, while μ and σ denote the mean and the standard deviation over the different
splittings, respectively.
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Fig. 2. Results of the evolutionary optimisation performed by the genetic algorithm.
The regression error decreases rapidly during the first generations (left). The feature
number (centre) and the alignment of the features subsets of different subjects (right)
require more generations to converge. Here, larger values of the mutation probability
pm retard the optimisation process.
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Fig. 3. Relative frequencies of feature usage by the elite individuals after a single run
of the genetic algorithm (a), distribution of the normalised representational distances
dij for a single subject (b), and mean regression errors of ReliefF for the test subjects
depending on the number of selected features nsf (c).

In order to determine the final feature subset, the relative frequencies of the
usage of features by the elite individuals of the final generation are analysed. An
exemplary result is shown in Fig. 3(a). Those four features, which were used by
all elite individuals, constitute the resulting feature subset.7

The validity of the chosen feature subsets was tested using the data of the
respective test subjects (see Table 1). The parameters ν, C, and γ for the SVR
(RBF kernel) were determined by grid search (11 values per parameter) indi-
vidually minimising the regression error Ets for each test subject. The genetic
algorithm was compared to CFS and ReliefF. In case, the computation of the
regression models did not terminate using the default criterion (ε=0.001), the
respective splitting was omitted.8 The results for CFS using the default param-
eters and different search directions are given in Table 1, as well. Here, it must be

7 Due to the random nature of the genetic algorithm and redundancies in the initial
feature set, the actually selected features varied across different trials. But their
number was approximately constant.

8 CFS, forward: splitting 4; ReliefF, k=100: splittings 6 and 8.
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Table 1. Means μ and standard deviations σ of the regression errors Ets for the test
subjects and the corresponding sizes nsf of the chosen feature subsets.

feature selection approach μ(Ets) σ(Ets) μ(nsf ) σ(nsf )

genetic algorithm, pm=1/nf 1.21·10−4 6.07·10−6 3.9 0.7

genetic algorithm, pm=3/nf 1.25·10−4 8.92·10−6 4.1 0.7

genetic algorithm, pm=5/nf 1.23·10−4 9.57·10−6 3.9 0.7

CFS, forward 1.17·10−4 6.52·10−6 11.0 2.67

CFS, backward 1.17·10−4 5.34·10−6 13.5 2.06

CFS, bi-directional 1.15·10−4 5.71·10−6 10.2 1.99

considered that the majority of the distances dij is centred around a single peak
(see Fig. 3(b)). Therefore, very small errors are required in order to preserve the
representational structure.

Both the genetic algorithm and CFS enable the approximation of the repre-
sentational distances with high accuracy. But the feature subsets determined by
CFS are larger. This is likely to be a result of the collective processing for all
training subjects.

In contrast to our approach and CFS, ReliefF does not directly select fea-
ture subsets but provides quality assessments and a ranking. Figure 3(c) depicts
the mean regression error depending on the number of selected features using
two different neighbourhood sizes k. If the 4 top-ranked features are selected,
the regression errors are comparable to the genetic algorithm and CFS. A fur-
ther increase of the feature set size does not lead to significant improvements,
although ReliefF collectively processed the data of all training subjects like CFS.

6 Conclusion

We compared several feature selection methods regarding their ability to se-
lect subsets of computable features enabling the emulation of the structure of
mental representations found in humans. Standard feature selection methods, in
particular CFS and ReliefF, achieved results comparable to a genetic algorithm
that was specifically tailored to this problem. Using such methods, the results of
SDA can be explained in terms of small sets of salient features which are directly
computable from the stimuli. In the future, the resulting feature sets could be
exploited to learn human-like representational structures in technical agents. For
example, adequate feature subsets could be determined off-line. As they preserve
the relevant information, their usage instead of the original stimuli would not
reduce the potential learning capabilities of the agent during interaction with its
environment. However, the amount of data to be stored would be considerably
reduced.

Acknowledgements. This work was partially funded by the German Research
Foundation (DFG), Excellence Cluster 277 “Cognitive Interaction Technology”.
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Abstract. We propose a learning based super resolution algorithm for single 
frame text image. The distance based candidate of example can’t avoid the 
outliers and the super resolution result will be disturbed by the irrelevant 
outliers. In this work, the unique constraints of the text image are used to reject 
the outliers in the learning based SR algorithm. The final image is obtained by 
the Markov random field network with k nearest neighbor candidates from an 
image database that contains pairs of corresponding low resolution and high 
resolution text image patches. We demonstrate our algorithm on simulated and 
real scanned documents with promising results. 

Keywords: Super resolution, Text image, Markov random field, Outlier. 

1   Introduction 

The single frame text image super resolution (SR) is to estimate missed higher 
resolution details from only one observed low resolution (LR) text image. In general, 
the super resolution reconstruction method requires multiple LR images captured 
from the same scene with sub-pixel shift [1]. When the input images are insufficient 
or the magnification factor is increased, the reconstruction will fail. Baker analyzed 
the constraints of the SR and proposed the learning based super resolution [2]. In the 
learning based SR method, the prior knowledge extracted from the train dataset is 
used as the additional constraints, and the input image number can reduce to only one.  
The basic idea of the learning based SR method is that the image is reconstructed 
from the k nearest neighborhood (kNN) found candidates by maximum posterior 
(MAP) or minimum mean square error (MMSE) estimation [2-6]. The neighborhood 
constraint is introduced into the Markov random field to reconstruct the image with 
local compatibility [2, 3]. Performance of their works lays in the large training 
database, allowing rich prior probabilities. As the kNN examples include many 
outliers, Elad proposed a global pruning outlier method within the MAP scope [4]. 
The global MAP penalty function only prunes one outlier in each iterative, and the 
edge is blurred for the reconstruction without any local constraints. In [5] the example 
database is separated into several classes, and the LR input patch has been classified 
into one class before reconstruction. The predictor will be the bottleneck of this 
method. In [6] the special prior such as the edge also is used for improve the match 
processing. 
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Since the non-negligible null-space of the degradation operator, the outliers cannot 
be avoided in the MSE search [4]. The additional constraints are required for the 
pruning, which is hardly obtained from the generic image. In contrast to the task of 
generic image SR, there are stronger constraints in the text images which provide the 
chance to obtain vivid character output. In this paper, we present a new neighbor 
constraint model for text image in Bayesian framework via the MRF. The unique 
constraints of text image are taken account into pruning the outlier of the selected 
candidates before reconstruction. This pruning is based on the local feature 
contrasting with [4], and all of the example in database will be looked thought to 
overcome the drawback of predictor in [5]. After the outliers in the kNN examples 
have been rejected, the computational complexity of the MRF decreases. Moreover, 
the huge duplicate database is replaced by a special small reduced example database. 

The paper is organized as follows. In Section (2) the framework of the learning 
based SR is introduced and the constraints of text super resolution is analyzed; the 
outliers in the learning based SR is discussed in this section. In Section (3), the 
proposed method is given. Experiments are then provided and discussed in Section (4) 
and the paper concludes in Section (5). 

2   Learning Based Super Resolution and the Super Resolution 
Constraints 

2.1   The Framework of Learning Based Super Resolution 

The learning based SR in Bayesian framework is proposed as finding the MAP or 
MMSE from the following formulation [2]. 

( | ) ( )
( | )

( )

P L S P S
P S L

P L

⋅=
.

 (1) 

where P(S) is the prior knowledge. P(L|S) is the estimation of low-resolution image 
from HR in image formation model. P(S|L) is the posterior probability density 
function.  

The neighbor-constraint knowledge comes from LR and HR image patch pairs 
based on the Markov network. Markov network used in this paper models  
the statistical relationships between LR and their corresponding HR patches and the 
statistical relationships between HR patches and their overlapping neighbor ones. The 
structure of the Markov network and the neighborhood considered for calculations are 
shown in Fig.1. The joint compatibility over observed node y (input LR patch) and 
selected example x (LR and corresponding HR patch pairs) is as below [3] 

( , )

1
( | ) ( , ) ( , )

neighboring k
jk k kj k

P
Z

x y x x x y= ∏ Ψ ∏ Φ . (2) 

where the compatibility function Φ(xk,yk) is the exponential of the error between the 
observed node (input LR patch) and the LR patch of the selected example pairs, and 
Ψ(xk,xj) is the exponential of matching pixels ratio of neighboring patches overlap in  
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the HR patch. It should be noted that the xk in the Φ and Ψ will use the LR and HR 
patch of the selected example pair separately, which is the tie of LR and HR image. 
The MAP and MMSE for xj at node j are 

,
ˆ arg max max ( , )

ij

j
allx i jx

x MAP P x y
≠

= . (3) 

,

ˆ ( , )
j i

j j j

x allx i j

x MMSE x dx P x y dx
≠

=   . (4) 

The optimal solution of this MRF can be obtained using the belief propagation 
algorithm [3].  

( , )k kx y

( , )k jx x

kx

ky

jx
 

Fig. 1. The MRF structure 

2.2   The Degrading Constraint 

In generally, the low resolution input images are considered as degraded result of a 
high resolution image. The mathematical expression is as below [1] 

( ) ( * )l degrade h T h PSF s η= = ↓ + . (5) 

where l is LR observed images, h is HR image, T is geometric transformation, η is 
additive noise, ↓s is down sampling, PSF is Point Spread Function (PSF). 

For the multiple images SR reconstruction, the constraint includes the PSF and the 
registration of each LR input [2]. The patch pairs used in the learning method may be 
regarded as combination constraint of the PSF and registration although only one 
input LR image. 

2.3   The Unique Constraint of Text Image 

Beyond the general image, the text image has the unique constraints as the positive 
information which is contained in the text. Those constraints are list in follow: 

The low resolution: as the optical character recognition (OCR) has the ability to 
recognize the text from the high quality text image, the super resolution is restricted to 
the low resolution in which the traditional or the commercial OCR has failed [2]. 

The fixed content: the content of text image is the character which has fixed shape. 
Although the size and the fold are variable, the patterns of character are finite. So less 
inaccuracy of the result will be tolerated than the general image. Moreover, location 
relationship of the stroke or the patch in the image is fixed or invariable. 
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The few gray level: unlike the nature image, the text image has bimodal 
distributions in the gray level [7]. The high quality text image may be clearly 
expressed in binary; while in the low resolution, the text also can be expressed in a 
few gray levels. 

The sharp edge: in the high quality text image, the edge of stoke is sharp, and the 
profile of stroke is smooth and continuous.  

2.4   The Outlier in Learning Based SR 

The outlier in the learning based SR is been defined in follow: 

Definition 1. let P = (Pl, Ph) is an patch pair in the example database, Pl and Ph is the 
LR and HR patch, the lp is one patch extracted from LR observed image l, the l is 
obtained from HR image h by (1), hp is the corresponding HR patch. If P is one of the 
selected candidates based on Φ(Pl,lp) and d(Ph,hp)>t, then P is outlier. Where d is the 
distance, t is the threshold. In this work, we use the L2 norm as the distance. 

While the outlier problem has been discussed in [4], the authors indicated that  
the outliers are unavoidable even if all examples were close in the LR. In this work 
the outliers in different location of the image is concerned. As shown in Fig. 2, the 
percent of outlier will increase in the edge region, and in the inner of one character  
the outlier is decreased. In additional, the outliers will be uniform in the region out  
of the character or in the background because the database contains abundant  
blank patches.  

 

Fig. 2. The percent of outlier of text image, the position in the x-y plane is the location of the 
patches in the image, and the z axis gives the percent of outlier in the top 50 candidates 

 

Fig. 3.The flow chart of the proposed method 
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3   The Proposed Super Resolution Method 

As the outlier is inevitable in the low resolution match step, we propose a method to 
prune the outlier using the unique constraint of text image. The framework of this 
method is shown in Fig.3.  

3.1   Preprocess of Low Quality Image 

This step includes the intensity adjustment and segmentation. The LR image usually 
is described in gray image and the intensity will vary by the various capture condition. 
These factors will increase computational complexity and produce imprecise 
matching particularly with the reduced duplicate or insufficient database. Because the 
text image may be described with less number of gray levels, four gray levels is used 
which in enough to describe the bimodal distributions in our experiments. Although 
the LR image is hardly segmented into the letter, it is easily extracted every word 
through the projection processing. 

3.2   Pruning the Outlier 

From the (2), it is shown that the probability of each node will depend on all the k 
states (kNN candidates) of this node. And the computational complexity of the 
Markov network will increase with the O(k2). As discussed above, there are many 
outliers in the k found examples. Thus the correct candidate will be flooded into the 
outlier in particular the dataset has been reduced the duplicate.  

In Freeman’s works, the database contained many duplicate candidates [3]. In [4] the 
outlier was pruned in global under the likelihood penalty function and the edge is 
blurred for the reconstruction without any local constraints. In this work, the unique 
constraints of text image are used to pruning the outlier before constructing the network.  

a) The background pruning. Although the LR is low quality, the background is easy 
detected. We use following rules to detect the background: 

 The segmented image is projected in horizontal and vertical direction. The 
nodes in the region out of the center rectangle are background. 

 If all pixels of the node are white, it is an background candidate; 

 If at least two 4-connected neighborhoods of the candidate node are 
background, the node is regarded as background. 

The result of background pruning is shown in Fig. 5(a). The input LR image is shown 
in Fig.2 (a). The region out of the contour of the word has been considered as the 
background. 

b) The pruning with structural feature. The text image has constant structural in 
every character. So the outlier can be found out using those constraints. 

 The pruning with location feature. Since the stroke of the LR image is hardly 
extracted, the localization feature is used to prune the outliers. The localization 
feature concerns about the distributing of the strokes. We use the center line as the 
reference line, and use the distance between the center line and the center of the LR 
patch as the feature. The center line can be obtained from the horizontal projection of 
the image. 
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Fig. 4. The location feature 

Every LR patch in the example database has record the distance as the attribute of 
this patch. The outlier is discriminated by the follow formulation: 

( , )
( ) i i

i

false if d x y t
outlier x

true other

<
= 


. (6) 

where t is the threshold, d(·,·) is the distance of the attribute between the observe node 
yi and candidates node xi. In our work the threshold is 3 pixels which is just about 
quarter of the character height. The result of location pruning is shown in Fig.5(b).  

 The pruning with statistic feature. Besides the location feature, some statistics 
are invariant or steady between the LR and HR patches. We use the gravity center as 
the feature. The gravity center of one LR patch lp is given in following: 

,
x lpdxdy y lpdxdy

xc yc
lpdxdy lpdxdy

⋅ ⋅
= = 
 

. (7) 

The gravity center is a measurement of the distribution of the density, so it is invariant 
by the degrade processing. The discrimination rule is similar as (6). In our work the 
threshold of the gravity center is the mean of the candidates in this node. 

4   Experiments 

To evaluate the performance of the proposed algorithm, the simulation LR image and 
the scanned image from the flat scanner will be demonstrated in the experiments. All 
experiments and timing statistics are carried out and recorded on executing the un-
optimized code on the PC with Core 2 Duo 2.0G HZ CPU and 2G memory using the 
Matlab 2009. 

4.1   The Training Example  

In the previous works of text image SR, the patch pairs are directly extracted from the 
example text image without any special selection. Although this method is simple, the 
dataset will become vastness and tousle which is vital factor of the performance and 
complexity of the Markov network. Because of the fixed content of the text image, 
the train examples may select the special pattern to stand for the characters. We use 
the combination of all the character as the train example which is smallness, for 
example there are only 676 train image for all 26 English letter. The LR image is  
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degraded using the (5). The PSF is the average kernel and the noisy is the Gaussian 
white. The dataset contains only about 6*104 patch pairs that are much less than the 
106 of freeman’s [3]. 

 

Fig. 5. The number of the candidates in every node. The position in the x-y plane is the location 
of the patches in the image, and the z axis gives number of the candidates. 

4.2   The Simulation LR Image Experiment 

This experiment uses 100 dpi. , 6 points, Time New Roman input images and shows 
the two times magnification factor of super resolved image. The input image is 
degraded by (8) with the average blur kernel from a true ground 200dpi. image. The 
Fig. 6 shows the result. The proposed results get higher PSNR than the result without 
pruning and the performance has improved. 

 

Fig. 6. The results of the simulation LR image. The d) is the same as the freeman’s method 
except the database. 

The performance of the different method is given in Table 1. The test dataset is 
random select one paragraph from an English examination paper, including 672 words. 
Because the performance has a negative relationship with the number of candidates, 
the computation time has been reduced since the outliers have been pruned. After 
structural pruning, there are only half candidates of the initial. Thus the construction 
Markov network will become rapid. As the number of nodes in the network is constant, 
the each iteration time is little change. However the iteration will convergent faster 
because the outlier is removed. Therefore the total time has been saved. 

4.3   The Scanned Image Experiment 

In this experiment the input image is scanned 6 points, Time New Roman document 
in 100dpi. The two times magnification super resolved image is shown in fig 7. 
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Table 1. The performance of simulation image 

 
Without 
pruning 

Backgroun
d pruning 

structural 
pruning 

Construction the MRF time (second) 359.81 255.18 180.14 
Each iteration of BP time (second) 0.27 0.25 0.25 

Mean of the candidates 50 33.14 26.29 
Mean of Node number 588 588 588 

Fig. 7. The result of scanned image 

5   Conclusion 

We present a new neighbor constraint model for text image in Bayesian framework 
via the MRF. The outlier has been pruned based on the structure feature, so the 
complex of the network has decreased. A reduced example database will satisfy the 
demand of the network. From the demonstration of experiment, this method has better 
performance.  
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Abstract. Scene classification plays an important role in multimedia
information retrieval. Since local features are robust to image transfor-
mation, they have been used extensively for scene classification. How-
ever, it is difficult to encode the spatial relations of local features in the
classification process. To solve this problem, Geometric Local Features
Integration(GLFI) is proposed. By segmenting a scene image into a set
of regions, a so-called Region Adjacency Graph(RAG) is constructed to
model their spatial relations. To measure the similarity of two RAGs,
we select a few discriminative templates and then use them to extract
the corresponding discriminative graphlets(connected subgraphs of an
RAG). These discriminative graphlets are further integrated by a boost-
ing strategy for scene classification. Experiments on five datasets validate
the effectiveness of our GLFI.

Keywords: scene classification, graphlet, local features.

1 Introduction

Scene classification is an important issue for many multimedia applications, such
as image retrieval and surveillance. To deal with scene classification successfully,
it is essential to have proper discriminative image features. In the evolution
of image analysis, many features have been proposed and they can be catego-
rized into two groups: global features and local features. Global features, e.g.,
eigenspace [1], represent an image by a single vector and are hence tractable
for conventional classifiers, such as Support Vector Machine(SVM) [13]. How-
ever, global features are sensitive to occlusions and clutters, which result in poor
classification accuracy. In contrast to global features, local features, e.g., Scale
Invariant Feature Transform(SIFT) [12], are extracted at interest points and are
robust to image deformations. Different images may produce different number
of local features. In order to be tractable for conventional classifiers, these lo-
cal features are often integrated into an orderless bag-of-features representation.
Unfortunately, as a non-structural representation, the bag-of-features represen-
tation ignores the spatial relations of local features, which prevents it from being
discriminative.

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 657–666, 2011.
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To encode the spatial relations of local features for scene classification, graph
based local feature integration [2–7] is proposed. In [2, 3], each image is modelled
as a tree and image matching is formulated into tree matching. Unfortunately,
compared to general graphs, the capability of modelling regions’ spatial rela-
tions by trees is limited. Felzenszwalb et al. [4] modelled the relation of different
parts of an object as a spring. However, [4] relies heavily on the optimal back-
ground subtraction. In [5], Hedau et al. defined a new measure of pairwise regions
based on the overlaps between regions; but just region overlaps are too simple
to capture the complicated spatial relations of regions. Keselaman et al. [6] de-
fined a graph, called Least Common Abstraction (LCA), for an object. However,
LCA cannot be output to a conventional classifier, e.g., SVM [13] directly. Walk
kernel [7] captures the walk structures of regions by a finite sequence of neigh-
boring regions. Unfortunately, as demonstrated in [8], the totter phenomenon
brings noise to walk kernel [7] and thus makes it less discriminative.

(c) Discriminative graphlets boosting(a) Construct RAG for each image (b) Obtain discriminative graphlets

discretized-RAG
for each RAG

highly discriminative
templates

Graphlets based
on the selected
templates

Predicted Label

Classifiers to the selected
templates are combined into a
strong one by a boosting strategy

Classifier to

Classifier to

Classifier to

Classifier to

Fig. 1. The flowchart of our GLFI

To solve or at least reduce the aforementioned problems, a new local fea-
ture integration method GLFI is proposed for scene classification. As shown
in Fig. 1, first of all, each scene image is segmented into a set of regions. To
model the spatial relations of these regions, a graph called RAG is constructed
subsequently (Fig.1(a)). Then, to measure a pair of RAGs, it is straightforward
to compare all their pairwise graphlets. Unfortunately, based on graph theory,
the number of graphlets of an RAG is huge, making the graphlet enumeration
computational intractable. Towards an efficient measure, it is necessary to se-
lect a few discriminative graphlets for comparison. As the number of candidate
graphlet for selection is huge, aiming at fewer candidates, we obtain templates
by discretizing the continuous labels of graphlets into discretized ones, then
only highly discriminative templates are selected and further used to extract the
corresponding discriminative graphlets (Fig.1(b)). Finally, these discriminative
graphlets are integrated by a boosting strategy for scene classification (Fig.1(c)).
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2 Region Adjacency Graph(RAG)

A scene image usually contains millions of pixels. If we treat each pixel as a local
feature, high computational cost will make scene classification computational
intractable. Fortunately, a scene image can be represented by a set of clusters
because pixels are usually highly correlated with their spatial neighbors, wherein
each cluster consists of neighboring pixels with consistent color intensities. Thus,
we propose RAG to represent a scene image by a set of regions and encode their
spatial relations in a labelled graph.

(a). A scene image (c). Graphlet (d). Template

1 2

1

6

2

47

5 1
(b). RAG

Fig. 2. The flowchart from a scene image(a) to its RAG(b) and further to its graphlet(c)
and its template(d)

As shown in Fig.2(a, b), given a scene image I, we segment it into a set of
regions {r1, r2, · · · , rM} (Unsupervised Fuzzy Clustering(UFC) [17] based seg-
mentation is applied because of its stability), and an RAG G is constructed to
model a scene image I, i.e.,

G = (V,E,H,L, h, l) (1)

where V = {v1, v2, · · · , vM} is a finite set of vertices, vi represents region ri;
h : V → H is a function assigning a label to each v ∈ V , i.e., h(v) is a row vector
representing the RGB histogram of the region corresponding to v; l : V → L
is a function assigning an index to each vertex v ∈ V , i.e., l(v) means the
region corresponding to v is obtained from the l(v)-th segmentation(multiple
segmentations are applied); E = {(vi, vj)|vi, vj ∈ V ∧ l(vi) = l(vj) ∧ vi ∼ vj} is
a set of edges, vi ∼ vj means two regions corresponding to vi and vj are spatial
adjacent.

As shown in Fig.2(c), given an RAG G, we call S a graphlet of G if S is a
connected subgraph of G. For two graphlets S and S

′
, they are isomorphic [8],

denoted by S ∼= S
′
, if there exists a bijection ϕ : V → V

′
such that for each

u, v ∈ V ,(u, v) ∈ E iff (ϕ(u), ϕ(v)) ∈ E
′

and h(u) = h(ϕ(u
′
)). If S ∼= S

′
and

S
′ ⊆ G

′
, we call S subgraph isomorphic to G

′
or, G

′
supergraph isomorphic to

S, denoted by S � G′
.

3 Discriminative Graphlets Selection

Based on the definition of RAG, the similarity of a pair of scene images I and
I

′
depends on their corresponding RAGs G and G

′
. To measure the similarity

between G and G
′
, it is straightforward to compare all their pairwise graphlets.
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However, 1). based on graph theory, the number of graphlets of an RAG is
O(MM )(usuallyM > 50); 2). non-discriminative graphlets make no contribution
to scene classification. Therefore, it is necessary to select a few discriminative
graphlets for scene classification.

Towards an efficient selection of discriminative grpahlets, a three-step method
is developed: firstly, we obtain a small set of templates from the training RAGs
and accordingly derive the class label of template. Then, a few discriminative
templates are selected. Finally, these discriminative templates are used to extract
the corresponding discriminative graphlets.

3.1 Template and Its Class Label

As shown in Fig.2(d), to obtain a template, a codebook HD = [hD
1 , h

D
2 , · · · , hD

P ]
is generated by k-means [13] on all the training vertex labels firstly, then the
continuous label h(v) of vertex v is discretized into hD(v) by:

hD(v) = arg min
h∈HD

||h(v)− h|| (2)

where || · || is the Euclidean norm. Based on HD and hD, given an graphlet S, we
define its corresponding template T is obtained by mapping g : S → T , where

T = {V,E,HD, L, hD, l} (3)

Since template is a label-discretized graphlet, the number of candidate templates
for selection is much smaller than that of graphlets, thus it is feasible to select
a few discriminative ones for scene classification. Before selecting discriminative
templates, we need to measure template’s discrimination, i.e., how accuracy of
a template predicting the class labels of scene images. As a label-discretized
graphlet, template describes the spatial relations of local features in an approx-
imate manner, to accurately predict the class label of template T , given an
RAG G , it is necessary to find graphlets in G corresponding to T . Formally, we
call graphlets S satisfying T , if g(S) = T , and graphlets of G satisfying T are
collected into G(T ), i.e.,

G(T ) = {S|S ⊆ G ∧ g(S) = T } (4)

If G(T ) �= ∅, each graphlet S ∈ G(T ) can be represented as a vector h(S), i.e.,

h(S) = ∪v∈S [h(v)] (5)

where ∪[·] is a row-wise vector concatenation operator.
Based on (5), given a set of training RAGs G = {G1, G2, · · · , GN} and a

template T , we obtain a set of feature vectors H = {h(S)|S ∈ G(T ) ∧ G ∈ G},
and further train a SVM classifier [13] C based on {H,K}, where K is the set
of class labels corresponding to RAGs in G. Based on trained SVM classifier C,
given an RAG G and a template T , the class label k ∈ {1, 2, · · · ,K} of graphlet
S ∈ G(T ) is obtained based on the posterior probability P (G → k|S) output
from C, i.e.,

S → argmax
k

P (G→ k|S) (6)
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Since there may be more than one graphlets in G satisfying template T , i.e.,
|G(T )| ≥ 1, the label of G(T ) is derived from a multiple classifiers combin-
ing strategy [19] (under the sum rule), i.e., the posterior probability for G(T )
belonging to class k ∈ {1, 2, · · · ,K} is:

P (G→ k|G(T )) = (1 − Z)P (G→ k) +
Z∑

i=1

P (G→ k|Si) (7)

where Z = |G(T )|; P (G→ k) is the probability of RAG G belonging to class k
(computed from the training RAGs), i.e.,

P (G→ k) =
|G→ k ∧G ∈ G|

N
(8)

Based on (7), the class label of G(T ) is obtained by:

G(T )→
{

argmaxk P (G→ k|G(T )) if G(T ) �= ∅
0 if G(T ) = ∅ (9)

where G(T )→ 0 means decision cannot be made on G(T ).

3.2 Selecting Discriminative Templates

In the extreme case, a template T is optimal if ∃k ∈ {1, 2, · · · ,K}, the following
two conditions are satisfied:

C1: P (G(T )→ k|G→ k) = 1
C2: P (G→ k|G(T )→ k) = 1

where C1 maximize the descriptive ability of template T , and C2 maximize the
discriminative ability of template T . However, as proved in [13], in the case of
noisy training data, such optimal template may not always exist. Therefore, it
is necessary to search for a set of sub-optimal templates, i.e., ∃k ∈ {1, 2, · · ·K},
such that:

C3: P (G(T )→ k) ≥ min(P (G→ k))
C4: P (G→ k|G(T )→ k) ≥ α ∗ P (G→ k)

To satisfy C3, we obtain a set of discretized RAGs GD = {GD|GD = g(G)∧G ∈
G} based on (2), then the frequency of template T is computed by counting how
many GD ∈ GD are supergraph isomorphic to T , i.e.,

P (G(T )) =
|T � GD ∧GD ∈ GD|

N
(10)

Based on (10), the frequency of a template belonging to class k ∈ {1, 2, · · · ,K}
is computed by:

P (G(T )→ k) =
|T � GD ∧GD ∈ GD ∧GD = g(G) ∧G→ k|

N
(11)
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For a template T , a larger P (G(T ) → k) means T has a higher generalization
ability towards class k. In our approach, an efficient frequent subgraph mining
algorithm, FSG [18], is employed to output templates whose P (G(T ) → k) ≥
min(P (G→ k))

To satisfy C4, given a template T , its measure of discrimination is defined as
largest discrimination towards class k ∈ {1, 2, · · · ,K}, i.e.,

disc(T ) = max
k

[
P (G→ k|G(T ))
P (G→ k)

]
(12)

where denominator is computed based on (8); the numerator is computed based
on (7). Template whose disc(T ) < α is regarded as a less discriminative one.
Based on C3+C4, we present the algorithm of discriminative template selection
in Table 1.

Table 1. Discriminative Template Selection(Algorithm 1)

input: A set of training data D = {Gi, ki}N
i=1; Threshold α;

output: A set of discriminative template L;
begin:

1. For each RAG Gi in D, obtain the corresponding discretized-RAGs GD
i and save them into GD ;

2. Conduct FSG on GD to output templates T whose P (G(T ) → k) ≥ min(P (G → k)) into L ;
3. for each template T ∈ L

if disc(T ) < α, then L ← L \ T ;
end for;

Return L;
end

3.3 Extracting Discriminative Graphlet

Each template T ∈ L (output from Algorithm 1) is discriminative. Thus given an
input RAG G, we conduct depth-first-search on G, and graphlets of G satisfying
T are extracted for scene classification. It is noticeable that, vertices in RAG are
of low degree, i.e., less than 5 on average, so its computational is approximately
linear increasing with the number of vertices in RAG G.

4 Discriminative Graphlets Boosting

To integrate the extracted discriminative graphlets for scene classification, a
boosting strategy is developed. In detail, for each template T ∈ L, a SVM
classifier C is trained as described in Section 3.1. Based on {Ci}|L|

i=1, we develop a
multi-class boosting algorithm to integrate the |L| weak classifiers {Ci}|L|

i=1 into
a strong one C. We present the algorithm of discriminative graphlets boosting
in Table 2.

5 Experimental Results and Analysis

To demonstrate the advantage of our GLFI, we experiment on five datasets:
Scene15 [9], Scene67 [20], Caltech256 [14], PASCAL VOC 2009 [15] and LHI [16].
Details of the five datasets are presented in Table 3.
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Table 2. Discriminative Graphlets Boosting(Algorithm 2)

input: A set of training RAGs and their corresponding labels: {Gj , kj}N
j=1;

A set of weak classifiers {Ci}|L|
i=1; Iteration number of boosting R;

output: A strong classifier: C(G);
begin:
1. Set the training RAG weights wj = 1

N , j = 1, 2, · · · , N ;
2. for t = 1, 2, · · · , R

(a).Select a weak classifier C(t) from {Ci}: arg minC(t)∈{Ci}
∑N

j=1 wj ·∏ (Gj(Ti) � k);

(b).Compute weighted training error: errt =

∑N
j=1 wj·∏(Gj (Ti)�k)∑N

j=1 wj
;

(c). at ← log (1−errt)
errt + log(K − 1);

(d). Update the training RAG weight: wj ← wj · exp[at ·∏ (Gj(T ) � k)];
(e). Re-normalize wj ;
end for;

Return C(G) = arg maxk

∑T
t=1 at ·∏ (G(Ti) → k);

end

Table 3. Details of the five datasets

Dataset # of categories. # of images. # of training images # of test images

Scene15 15 4485 100 per category rest per category

Indoor67 67 15620 80 per category 20 per category

Caltech256 256 30,607 50 per category rest per category

VOC2009 20 14,743 7,054 7,689

LHI 5 20 N/A N/A
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Fig. 3. Classification accuracy of the compared methods on Scene15(top left),
Scene67(top right), Caltech256(bottom left) and PASCAL VOC 2009(bottom right)

5.1 GLFI versus Representative Local Features Integration
Methods

In Fig. 3, we compare our GLFI with five representative local feature integra-
tion methods, i.e., fixed length walk kernel(FLWK) [7], fixed length path kernel
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(FLPK) [8], multiresolution histogram(MRH) [10], spatial pyramid matching
kernel(SPMK) [9] and region-based hierarchical image matching(RHIM) [2]. The
experimental settings are as follows: the lengths of FLWK [7] and FLPK [8] are
tuned from 2 to 10; for MRH [10], we smooth images with RBF kernels of 15 gray
levels; for SPMK [9], each image is decomposed into over 1 million SIFT [12]
features of 16× 16 pixel patches computed over a grid with spacing of 8 pixels,
then a codebook of size 400 is generated by k-means [13]; for our GLFI, the
times of multiple segmentations, max(L), is tuned from 2 to 7, and the iteration
number of boosting, R, is set to 200.

In Table 4, we present the classification accuracy of each category on PASCAL
VOC 2009 . As seen, our GLFI outperforms the three compared graph based local
feature integration methods significantly on most categories, which is consistent
with our theoretical analysis in Section 1.

Table 4. Averaged classification accuracy of 20 categories on PASCAL VOC 2009(%)

aero bicycle bird boat bottle bus car cat chair cow

FLWK 72.2 40.6 41.2 42.1 23.9 56.6 39.8 44.3 47.2 20.2

FLPK 73.1 42.8 44.3 50.4 22.7 57.1 41.2 43.9 43.5 22.3

RHIM 60.8 22.1 25.3 33.2 11.3 34.6 30.1 26.3 30.2 13.2

GLFI 75.6 54.1 60.6 58.2 33.4 65.2 56.5 56.4 48.5 37.7

dining dog horse motor person potted sheep sofa train tv

FLWK 32.3 33.1 42.2 44.3 76.6 27.3 30.9 26.7 63.8 44.4

FLPK 33.7 34.4 44.5 44.5 73.2 29.6 32.1 28.4 65.3 46.7

RHIM 13.4 22.1 26.4 25.4 56.8 9.6 17.6 10.2 44.8 30.1

GLFI 47.7 43.2 60.2 63.2 74.6 29.4 31.3 40.2 77.3 51.1

5.2 Influence of Different Segmentation Settings

In retrospect to the proposed GLFI, we notice that the influence of segmenta-
tion operation in the construction of RAG is nonnegligible. To evaluate scene
classification under different segmentation settings, based on (12), we report the
frequent template’s(output from Step2 of Algorithm 1) meausre of discrimination
under benchmark-segmentation, deficient-segmentation, and over-segmentation.
We experiment on PASCAL VOC 2009 [15] beacause its segmentation bench-
mark is helpful to make a precise comparison.

As shown in Fig. 4, templates from benchmark-segmentation achieves the
highest discrimination, with the highest disc value of 35.4, followed by the
over-segmentation 33.7 and deficient-segmentation 31.2. The explanations are
as follows: 1).the benchmark segmentation is obtained by manually annotation,
which encodes the high-level semantic understanding, thus it is unavoidable that
UFC [17] may be less accurate than the benchmark segmentation; 2).in contrast
with deficient-segmentation, more regions are obtained in over-segmentation set-
ting, so it is rarer for one region spans several components, fewer discriminative
components are neglected.
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Fig. 4. disc value of templates under 3 different segmentation settings

5.3 Visualization of the Discriminative Graphlets

A unique property of our GLFI is the ”transparency” of the scene classification
model. As shown in Fig. 5, we visualize the the most discriminative graphlets
of aerial images in LHI [16]. As seen, discriminative graphlets from different
categories have different structure pattern, which further validates the intuition
of our GLFI.

(b) Marine

(d) Residential

(a) Intersection

(e) School

(c) Parking

Fig. 5. Visualized discriminative graphlets

6 Conclusions

In this paper, a new local feature integration method GLFI is proposed for scene
classification. First, an RAG is constructed to encode the geometric property and
color intensity distribution of scene image. Then, the discriminative graphlets are
selected from the RAGs. Finally, these discriminative graphlets are integrated
by a boosting strategy for scene classification. Extensive experiments on five
datasets validate the effectiveness of our GLFI.
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Abstract. Visual attention, as an important issue in computer vision
field, has been raised for decades. And many approaches mainly based on
the bottom-up or top-down computing models have been put forward to
solve this problem. In this paper, we propose a new and effective saliency
model which considers the inner opponent relationship of the image in-
formation. Inspired by the opponent and feedback mechanism in human
perceptive learning, firstly, some opponent models are proposed based
on the analysis of original color image information. Secondly, as both
positive and negative feedbacks can be learned from the opponent mod-
els, we construct the saliency map according to the optimal combination
of these feedbacks by using the least square regression with constraints
method. Experimental results indicate that our model achieves a better
performance both in the simple and complex nature scenes.

Keywords: Visual attention, Opponent, Feedback, Saliency map.

1 Introduction

Visual attention influences our daily behaviors as if an invisible hand behind. It
plays an important role in many applications such as image/video processing,
visual advertisement design and human psychology. For example, in image and
video compression, using the visual attention model permits a rapid selection
for image information before further processing [1, 2]. It is also widely used in
image segmentation [3], classification [4] and retrieval [5]. What’s more, seizing
people’s attention is also important in advertising design [6].

Current visual attention methods can be divided into three models based on
the different driving conditions. Stimulus-driven model [7–9] is computed from
a set of low-level features. Some features such as color, intensity and orientation
are extracted from the original image at different scales and orientations. The
stimulus-driven model can perform well for some nature scenes or synthetic data.
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Fig. 1. Comparison on some existing saliency models and eye-tracking data. (a) Orig-
inal color images (b) Itti et al. saliency maps [7] (c) Torralba et al. saliency maps [9]
(d) Judd et al. saliency maps [10] (e) Eye-tracking data.

However, for some of the nature scenes with complex scenario, they could not
predict the right place where human look. Fig. 1(b) is the saliency map generated
by Itti et al. model [7] which was computed from color, intensity and orientation
features. And Fig. 1(c) is the Torralba et al. saliency map [9] based on the
subband pyramids feature. There is a big difference between the saliency maps
and the real eye-tracking data in Fig. 1(e). The eye-tracking data are from the
MIT eye-tracking data set [10] which consists of 1003 images from 15 viewers.

Besides low-level features, some high-level features like face, human and other
objects [10, 11] were also added to the stimulus-driven model for a better results.
This method is treated as the concept-driven model. Cerf et al. [11] added face
detection into Itti et al. stimulus-driven model and improved the saliency map’s
accuracy significantly. Judd et al. [10] expanded the model further, which in-
cluded not only high-level features but also mid-level features. Then they trained
a SVM model from the eye-tracking data set to learn different feature’s param-
eter for the final saliency map. However, these methods ignored the inner rela-
tionship among different features. Fig. 1(d) takes Judd et al. saliency model as
an example, and the brightest areas of the map can not match the eye-tracking
data well.

The information-driven [12, 13] model also makes a contribution to the visual
attention issue. Bruce et al. [12] believed that the saliency region provided more
information than others, and a method called “Attention based on Information
Maximization (AIM)” was proposed to maximize the self-information in the
image. It performed marginally better than the previous models. Except for these
three common driven models mentioned before, other models such as Bayesian
model [14, 15], efficient coding [16], and spectral residual [17] provided some
different methods for the topic as well.
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Fig. 2. Some typical images reflecting different opponent process. The first row is the
original images while the second row is the eye-tracking data. (a) Intensity Opponent
(b) Center Opponent (c) Self-information Opponent (d) Semantic Opponent.

In this paper, inspired by the opponent and feedback (OAF ) mechanism in
human perceptive learning, we learn different opponent relationship from the
image and use some effective models to reflect them firstly. Then, feedbacks
provided by the opponent models are studied and a new saliency model can be
constructed by using the least square regression with constraints method.

The rest of the paper is organized as follows: section 2 introduces the motiva-
tion of the proposed approach. Our saliency model based on the OAF mechanism
is described in section 3. Experiments and analysis are carried out in section 4.
And we make a conclusion in section 5.

2 Motivation

Opponent-process theory [18] is a universal psychological and neurological model
in human perceptive learning. The well-known application is the color-opponent
process. Color-opponent process [19] states that human visual system responses
color information by strengthening one color and at the same time suppressing
another color. This opponent mechanism is meaningful in the analysis of visual
attention issue and has been already involved in many saliency models [7, 10, 11].

In addition to color-opponent mechanism in human visual system, we believe
that some other opponent mechanisms also exist when people look at an image.
Fig. 2 shows some typical images and their eye-tracking data. And it’s clear that
some other opponent mechanisms also play an important role in both simple and
complex nature scenes.

Firstly, the intensity-opponent mechanism is taken into consideration. It is a
part of the color-opponent mechanism [19] while popular color-opponent only
includes two color pairs, blue versus yellow, and red versus green. Secondly, as
people naturally take the significant object in the center of the images when
they take photos (Fig. 2(b)), the center region in the image is more significant
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Fig. 3. Opponent and Feedback (OAF ) mechanism

than others. And we put forward a center-opponent mechanism to strengthen the
center area and suppress the surroundings. Thirdly, visual salience is not only
based on the response of cells within a local region but also on the relationship
between the local region and the surroundings [12]. And the bigger difference will
attract more attention than the smaller ones. It can be confirmed in Fig. 2(c)
where the white stone on the grass is more attractive than other parts. Finally,
semantic-opponent relationship is also learned in our saliency model. When many
different semantic objects appear in one image simultaneously, only one or two
objects are saliency. For example, in Fig. 2(d), only text and face information
are noticed by human.

3 Saliency Model Based on OAF

In this section, we present the saliency model which is motivated by the opponent
and feedback (OAF ) mechanism in human perceptive learning. Fig. 3 gives a
graphical overview of the OAF mechanism and more details are depicted in the
following parts.

3.1 Opponent Process

As described in section 2, besides the classical color opponent process in human
perceptive learning, some other opponent mechanisms also play an important
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role when human look at an image. And we construct five typical opponent
models to learn the saliency model in this section.

ColorOpponentandIntensityOpponent. Color opponent relationship exists
in the pairs of red/green, blue/yellow in human primary visual cortex [20], and
intensity opponentmechanism can detect light/dark variations from the image and
learn their opponent relationship. Here Itti’s method [7] is used to extract the two
opponent maps from original images at different scales and orientations.

Center Opponent. Center information is another important factor that affects
human’s attention. In order to simulate the center-opponent process, we learn
a normal Bivariate Gaussian equation (1) which has been proved to fit the eye
fixation distribution well for the center bias [15].

M(x, y)=η exp
(
− 1

2(1− ρ2)

((x − μ1)2

δ21
+2ρ

(x− μ1)(y − μ2)
δ1δ2

+
(y − μ2)2

δ22

))
(1)

M is the image matrix and x, y are the point coordinates, η = 1

2πδ1δ2

√
1−ρ2

and

we use ρ = 0 for simplicity. For the image size of 200*200 in this paper, the
specific parameters are μ1 = 98.1, μ2 = 102.6, δ1 = 35.6, δ2 = 40.1.

Self-Information Opponent. It’s naturally for human to notice the area that
is different from surroundings. And self-information is a measure of the infor-
mation content associated with others. The maximum self-information implies
the biggest difference with others in the image. Therefore, we adopt a model
proposed in [12], in which the maximum self-information can be extracted from
the image. And in order to achieve a better opponent effect, only top 15% points
are selected from the generating map.

Semantic Opponent. Let’s take Fig. 2(d) as an example, there is a man who
sits on the sofa reading a book, and around him is some furniture, two notebooks
and a curtain with some words. The corresponding eye-tracking image shows
that the text and face information attract more attention rather than the sofa
or notebooks. This phenomenon expresses that the opponent relationship also
exists among different semantic objects. However, it’s quite difficult to decide
which object is more salient as not all objects appear simultaneously in one
image and their scales, positions can not be the same either.

Here three common semantic features (text, face and car) are extracted from
the image to learn the opponent relationship, and a statistical average score
method is used to decide the salient one. Firstly, images with at least two of these
three features are selected from the data set. Then we compute each feature’s
saliency average score denoted as Sk using (2). For an image with three features,
the most salient feature’s score is three, and the others are zero because of the
opponent effect. The same process is applied for the image with any two features
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Fig. 4. Difference between combination with equal and optimal opponent models. (a)
Original image (b) Modulated image with equal combination (c) Modulated image with
optimal combination (d) Modulated image of eye-tracking. For a clearly contrast, we
adopt top 15% points of the saliency maps.

and the more salient one gets two points. In (2), scorei is the feature’s score in
the image i, and Nk is the number of the images with feature k, k ∈ {1, 2, 3} is
the class label for text, face and car.

Sk =
1
Nk

Nk∑
i=1

scorei (2)

For the 1003 images in MIT data set, 665 images have at least one of these three
features and 123 images satisfy our statistical standard. The scores are 1.94, 0.67,
0.18 for text, face and car, which means text information attracts more attention
than face and car. The “winner-take-all” mechanism [21] is used to ensure that
only the salient feature remains and others are suppressed. It’s noticeable that
even in the images without high-level features, our saliency model can still get
good results due to the existence of other significant opponent mechanisms.

3.2 Feedback Process

The feedback process is an optimal linear combination of different opponent
maps. The strengthened parts from the opponent maps provide positive feed-
backs to the original image while the suppressed parts provide negative feed-
backs. We use the linear, least square regression with constraints [22] to learn
their weights w from the real data. Formally, F is the set of all the opponent
maps which are stretched to vectors.
F = {color, intensity, center, self -information, semantic}.
While Gfix is the vectorized fixation map which represented as the fixation

locations convolved with a gaussian kernel. And we use (3) to learn the different
weights for each opponent model.

arg min
w

(||F ∗ w −Gfix||)2 s.t. w ≥ 0 (3)

The equation can be treated as a LASSO problem where efficient implementa-
tion exists [23]. The optimal weights we learned are 0.279, 0.203, 0.135, 0.463 and
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Fig. 5. Qualitative comparison on different saliency models

0.627 which correspond to each variable in F . Then we normalize the saliency
map for the final result. Simple as it is, however, experimental results show a
good performance.

4 Experiments and Analysis

Experiments are implemented on the MIT data set [10] which is the largest data
set and records eye-tracking data from 15 users viewing 1003 images freely. All
the images are resized to 200*200 before further processing, and both qualitative
and quantitative analysis are carried out here.

4.1 Qualitatively Evaluation

The first column in Fig. 5 is the original color images and the corresponding
eye-tracking data are presented in the last column. We compare our results to
four typical saliency models, stimulus-driven model(Fig. 5(b)), concept-driven
model (Fig. 5(c)), information-driven model(Fig. 5(d)) and spectral residual
model (Fig. 5(e)). Our OAF model is presented in Fig. 5(f). The saliency area is
the brightest regions in the saliency maps. As the OAF mechanism used in our
model, the saliency areas in the results are relative concentration and match the
eye-tracking data better than other methods in both simple and complex nature
scenes.

4.2 Quantitatively Evaluation

The receiver operating characteristic (ROC ) curve is a widely accepted criterion
to evaluate the saliency model quantitatively [10, 15]. And the area under the
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Fig. 6. The ROC curves of five different models

curve indicates how well the saliency map predicting eye fixations. In Fig. 6, we
plot our result curve as well as the other saliency result curves. The threshold of
visual attention region varies from top 5% to top 30% part of the saliency map.
The ROC curves in the figure depict quantitatively that the proposed method
takes advantage over the other methods.

5 Conclusion

In this paper, some representative opponent models are extracted from the orig-
inal image firstly. Then we learn the optimal combination of different models
by using the least square regression algorithm. Though simple, our OAF model
takes opponent relationship among different features into consideration and pro-
duces better results than several existing typical models.

We also notice some limitations of our method. For example, more high-level
features can lead a better opponent relationship in some images. In the future, we
will discuss the relationship among more high-level features, and better feedback
process will be also studied.
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Abstract. In this paper, we propose a discriminative learning-based
method for recovering the depth of a scene from multiple defocused im-
ages. The proposed method consists of a discriminative learning phase
and a depth estimation phase. In the discriminative learning phase, we
formalize depth from defocus (DFD) as a multi-class classification prob-
lem which can be solved by learning the discriminative metrics from the
synthetic training set by minimizing a criterion function. To enhance the
discriminative and generalization performance of the learned metrics,
the criterion takes both within-class and between-class variations into
account, and incorporates margin constraints. In the depth estimation
phase, for each pixel, we compute the N discriminative functions and
determine the depth level according to the minimum discriminant value.
Experimental results on synthetic and real images show the effectiveness
of our method in providing a reliable estimation of the depth of a scene.

Keywords: Depth estimation, Discriminative learning, Discriminative
metric, Sub-gradient descent.

1 Introduction

Depth from defocus (DFD) is to infer the depth of each point in the scene from
multiple defocused images which are captured with different camera settings.
Compared with other image-based depth estimation approaches, e.g., depth from
stereo and structure from motion, DFD can avoid correspondence problems [1].

Since the introduction of DFD for depth estimation [2], many DFD ap-
proaches, e.g., Markov random field-based approach [3], spatial domain-based
approach [4], partial differential equation-based approach [5, 6], and variational
approach [7–9], have been developed. All these approaches are faced with the
problem of choosing the appropriate Point Spread Function (PSF) (e.g., Gaus-
sian function and Pillbox function) in the imaging process. However, bypassing
this problem, Favaro et al. [10, 11] develop a learning-based approach, which
repeatedly learns the linear operators from a training set of blurred images of a
certain depth using singular value decomposition (SVD) for a number of depths.
Nevertheless, there still exist some weaknesses for this learning-based approach.
For example, learning the linear operator of a certain depth is only from the
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training set of blurred images of the same depth using SVD, but it does not con-
sider the influence of the training sets of blurred images of other depths. This
possibly leads a new image of a certain depth to belong to the null spaces of the
linear operators of other depths.

In this paper, we proposed a novel approach based on discriminative learning,
which consists of a discriminative learning phase and a depth estimation phase.
For simplicity, we assume that the surface of the scene is equifocal and that
dimension of admissible depth level (class) set S = {s1, s2, · · · , sN} is finite.
Based on this hypothesis, DFD is formalized as multi-class classification. In the
discriminative learning phase, the results of [10] and [11] are extended to learn
the discriminative functions and the synthetic training set are used to learn N
discriminative metrics (the values of parameters) in N discriminative functions
by minimizing a criterion function, which is solved by the sub-gradient descent
method [12]. In the depth estimation phase, we compute the values of the N
discriminative functions and select the class label (depth level) corresponding to
the minimum discriminant value.

Once the discriminative metrics are learned via labeled training set, they can
be used to estimate the depth of the various scenes in depth estimation phase.
Since the whole computation only involves simple matrix-vector multiplication
operations and can be performed independently at each pixel, allowing for a high
level of parallelism, the algorithm can be performed efficiently. The experimental
results on synthetic and real images show that the depth map of the scene is
significantly enhanced with greater accuracy and robustness over the state-of-
the-art method.

2 Related Work

Discriminative learning approaches have recently received much attention, which
have been used in face identification [13], 3D scan data segmentation [14] and
image annotation[15] etc.. In [11], learning approach is used in DFD. Favaro and
Soatto[11] select the equifocal imaging model and the least-squares criterion to
formulate DFD as an optimal inference. In the Hilbert space, the least-squares
criterion is stated as:

φ(s, r) = ‖I−Hsr‖2 (1)

where s and r is the depth and radiance of the scene respectively, Hs : L2(R2)→
R

P is the linear operator such that Hsr=̇〈hs(·, y), r〉 =
∫

hs
v(y, x)r(x)dx , the

observed image I = [I1; I2; · · · ; IK ] ∈ R
P is a column vector of dimension P =

MNK by stackingK images of the same scene captured with K different param-
eter settings v = [v1, v2, · · · , vK ]T on top of each other, hs

v = [hs
v1
, hs

v2
, · · · , hs

vK
]T

is the PSF corresponding to each parameter setting.
Using the geometry of operators in Hilbert spaces, Favaro et al. [11] proved

that the extremum of (1) is identical to the extremum of the following function:

ψ(s) = ‖H⊥
s I‖2 (2)

where H⊥
s is the orthogonal operator.
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If the surface is constrained to an N dimensional set of admissible depth levels
and the orthogonal operators H⊥

s corresponding to each depth level are known,
the corresponding discriminative function for each depth level is determined. As
a result, for each point in the measured images, the class (depth level) corre-
sponding to the smallest discriminant value is selected by computing (2) (the
discriminative functions).

Favaro et al. [11] learn the orthogonal operator H⊥
s for each depth level from

training set by SVD. For more detailed description of learning procedure please
refer to [11]. A basic limitation of using SVD to obtain the orthogonal operators
is that H⊥

ŝ obtained by SVD at a given depth level ŝ can only guarantee that
the value of ‖H⊥

ŝ Iŝ‖2 for the defocused images Iŝ at given depth level ŝ is small,
but can not guarantee that the value of ‖H⊥

ŝ Iŝ‖2 is smaller than the value of
‖H⊥

s̃ Iŝ‖2 at other depth level s̃. Therefore, it is easier to determine the depth
level for the defocused images Iŝ to be s̃. To avoid this scenario, it is proposed to
learn the discriminative metrics by minimizing the criterion function that takes
both within-class and between-class variations into account.

3 Learning Discriminative Metric for DFD

In this section, we first present the core of model for discriminative metric learn-
ing, and then describe the sub-gradient descent algorithm for learning the dis-
criminative metric, and finally provide the procedure for depth estimation.

3.1 Problem Formalization

As discussed in Section 1 and Section 2, DFD can be formalized as multi-
class classification. Using the finite dimension of admissible depth level set S =
{s1, s2, · · · , sN} as the number of category, we extend (2) to represent the dis-
criminative function for each depth level. Therefore, using notation of Euclidean
and Mahalanobis distance, the N discriminative functions can be written as:

gsi(I) = ‖LiI‖2 = ITMiI, i = 1, 2, · · · , N (3)

where I is an unclassified sample image that is a column vector of dimension P
(as is shown in Section 2), Li is a matrix of size P×P , the matrixMi = LT

i Li. As
Li and Mi appear in discriminative function, Li and Mi are called discriminative
metric and Mahalanobis discriminative metric at depth level si respectively. For
all admissible depths, if L = (L1, L2, · · · , LN) or M = (M1,M2, · · · ,MN) is
known, the class of I corresponding to the smallest discriminant value is selected
by computing (3).

The subsequent step shows how to reconstruct the criterion function and learn
the N discriminative metrics for DFD. According to (3), for arbitrary training
sample Iij (which denotes the jth training sample at ith depth level si ), if
Iij is classified into the depth level si correctly, the value of ‖LiIij‖2 must be
smaller than the values of ‖LkIij‖2(∀k �= i), that is, ‖LiIij‖2 ≤ ‖LkIij‖2(∀k �= i).
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Moreover, to increase the robustness of classification, the large margin con-
straint is incorporated such as ‖LkIij‖2 ≥ ‖LiIij‖2 + 1(∀k �= i). Obviously,
if (‖LiIij‖2 + 1) − ‖LkIij‖2(∀k �= i, ∀i, j) are smaller than zero, a robust and
perfect classification accuracy would be obtained. Therefore, to obtain higher
classification accuracy, the N discriminative metrics can be obtained by mini-
mizing the following criterion function:∑

i,j,k

(1− yik)[1 + ‖LiIij‖2 − ‖LkIij‖2]+ (4)

where the term [z]+ = max(z, 0), a variable yik = 1 is introduced if and only if
i = k; otherwise yik = 0.

Additionally, by Favaro’s work [11], the training set at any depth level should
be the null space of the corresponding discriminative metric. In other words, for
any training sample Iij in the training set at the depth level si, the value of
‖LiIij‖2 should be as small as possible. Therefore, we further introduce a term
into (4) and obtain the following criterion function:

ε(L) = (1− μ)
∑
i,j

‖LiIij‖2 + μ
∑
i,j,k

(1− yik)[1 + ‖LiIij‖2 − ‖LkIij‖2]+ (5)

where μ ∈ [0, 1] is balance parameter trading off the effect between two terms.
The criterion function in (5) is multi-modal and non-convex in the matrix

elements of L. To avoid these difficulties, we reformulate the optimization of (5)
as a semi-definite programming (SDP). We firstly convert (5) into the criterion
function with respect to M:

ε(M) = (1− μ)
∑
i,j

IT
ijMiIij + μ

∑
i,j,k

(1− yik)[1 + IT
ijMiIij − IT

ijMkIij ]+ (6)

Furthermore, we convert (6) into a SDP by introducing nonnegative slack vari-
ables {ξijk} for all triplets which do not satisfy the large margin constraint. The
SDP is stated as:

min(1− μ)
∑

i,j I
T
ijMiIij + μ

∑
i,j,k(1− yik)ξijk (7)

s.t.

⎧⎨
⎩
IT
ijMkIij − IT

ijMiIij ≥ 1− ξijk

ξijk ≥ 0
Mi � 0

. (8)

3.2 Sub-gradient Descent

The core of learning the discriminative metrics is to minimize the criterion in (6).
Here we adopt the sub-gradient descent method [12], providing that it converges
to the correct solution. In the sub-gradient descent method, M iterates along
the gradient of ε(M) in (6) with respect to M to reduce the criterion function
and then projects this result onto the cone of all positive semi-definite matrices
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at each iteration, which converges to a matrix M
′

while the gradient step-size
is sufficiently small.

The core of the sub-gradient descent method is gradient computation. Suppose
Cij = IijI

T
ij and define the set of triples Φt and Ψ t respectively. Both (i, j, k) ∈ Φt

and (i, j, k) ∈ Ψ t result in triggering the second term of (5) and (6) by the
indices (i, j, k). But notice the fact that (i, j, k) ∈ Φt implies that the large
margin constraint 1 + ‖LiIij‖2 ≤ ‖LkIij‖2 does not hold, while (i, j, k) ∈ Ψ t

implies that the large margin constraint 1+ ‖LkIkj‖2 ≤ ‖LiIkj‖2 does not hold.
With those definitions, at tth iteration, we can write the gradient of ε(Mt) with
respect to M t

i as:

∂ε
∂Mt

i
= (1− μ)

∑
j Cij + μ(

∑
i,j,k∈Φt Cij −

∑
i,j,k∈Ψ t Ckj) (9)

To accelerate the sub-gradient descent method, results by SVD are used as a
starting point for the SDP. For more detailed description of the sub-gradient
descent method please refer to [12].

3.3 Recovery of Depth

After L or M is obtained, (3) is used to estimate the depth information of the
scene. Given a collection of K defocused images of the scene, for each pixel x, the
patch centered in x for each defocused image is extracted, and then a column
vector I(x) = [I1(x); I2(x); · · · ; IK(x)] is obtained by stacking them on top of
each other. We compute the N discriminative functions according to (3). At
each pixel, the depth level s corresponding to the minimum among the values of
the discriminative functions is the actual depth level s∗:

s∗(x) = arg min
si∈S

gsi(I(x)) (10)

4 Experimental Results

4.1 Experiments with Synthetic Images

In the discriminative learning phase, the 51 synthetic scenes are obtained by
placing a synthetic scene of 100 × 100 pixels obtained randomly equidistantly
in the range of 520mm and 850mm in front of a camera with a 35mm lens and
F-number 4. For each scene, two defocused images are captured by bringing the
plane at 520mm and 850mm into focus respectively. 196 patches of 7× 7 pixels
are collected from each defocused images, which constitute the training set with
196× 51 labeled samples. The discriminative metrics learned from this training
set are used on two synthetic testing sets to obtain Fig. 1 and Fig. 2.

Fig. 1 shows the depth estimation performance when we use the discrimina-
tive metrics learned from training test with ranks of 45, 60, 70, 80 and 90 by SVD
and the proposed algorithm respectively on synthetic images. Both mean and
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Fig. 1. Performance test for SVD and the proposed algorithm. Top (a.1-e.1): Results us-
ing the orthogonal operators from training set with the truncated ranks of 45, 60, 70, 80
and 90 by SVD on the testing set. Bottom (a.2-e.2): Results using the discriminative
metrics from training set by the proposed algorithm on testing set. Both mean and
standard deviation of the estimated depth are plotted over the ideal curve.

standard deviation of the estimated depth (solid line) are plotted over the ideal
characteristic curve (the dotted line). Notice that, for SVD, when the chosen
rank does not correspond to the correct rank of the matrices, the performance
degrades rapidly and the value of the mean error (RMS) varies from 1.7mm to
36.1mm. However, for the proposed algorithm, this case is not worried and the
RMS varies only from 1.3mm to 7.0mm. Therefore, the rank without consider-
ation is one of the most important merits.

To estimate further performance of the proposed algorithm, we synthesize
a set of two novel images of 51 × 2601 pixels that are segmented in horizontal
stripes of 51×51 pixels (see Fig. 2). Every stripe has been generated by the same
random radiance but with equifocal planes at decreasing depths as we move from
top to the bottom of the image. Fig. 2 shows that depth map and mesh of the
reconstructed depths are obtained by the proposed algorithm.

4.2 Experiment with Real Images

In the experiment with real data, the training set consists of 196 × 51 labeled
samples, which are captured by the camera with a 12mm lens and F-number
2 . The far and near focused plane is identical to Section 4.1. The discriminative
metrics learned from this training set are used on Fig. 3(a) to obtain Fig. 3(b).
Fig. 3 shows the two defocused images and the depth map before and after
median filtering.

The discriminative metrics learned by SVD and our proposed algorithm in
Section 4.1 are used on Fig. 4(a) to obtain Fig. 4(b) and Fig. 4(c) respectively.
Fig. 4 shows that the estimated depth map by SVD is very similar to the esti-
mates obtained by our proposed algorithm.
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Fig. 2. Performance test for the proposed algorithm with synthetic data. Left: two
synthetic defocused images are shown. The surface in the scene is a piecewise constant
function (a stair) such that each horizontal stripe of 51 × 51 pixels corresponds to
an equifocal plane. Depth levels decrease moving from the top to the bottom of the
images. Middle: the depth map of the stair scene before and after a 7×7 pixels median
filtering respectively. Right: mesh of the reconstructed depth of the stair scene.

Fig. 3. (a) Detail of two 240×320 defocused images. For more details on the scene and
camera settings, please refer to [6]; (b) and (c) Depth map recovered by the proposed
algorithm before and after post-processing respectively.

Fig. 4. (a) Detail of two 238×205 defocused images. For more details on the scene and
camera settings, please refer to [11]; (b) and (c) Depth map recovered by SVD and the
our proposed algorithm respectively.

5 Conclusion

We present a novel method for recovering the depth of a scene from multiple
defocused images, which consists of a discriminative learning phase and a depth
estimation phase. Experimental results on synthetic and real images demon-
strate effectiveness of our method in providing a reliable estimate of the depth
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of a scene. The method is robust, and the discriminative metrics learned from
synthetic defocused images can be used effectively on real images. The method
only involves simple matrix-vector multiplication computations in the depth es-
timation phase and can be performed independently at each pixel, and thus the
algorithm is high level of parallelism and real-time performance.
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Abstract. Center-surround antagonistic receptive field in the retina is generated 
by negative feedback from horizontal cells (HCs) via a proton feedback 
mechanism [1]. In this study, the contribution of protons on the color opponent 
signal formation is analyzed. Increasing the buffer capacity of the external 
medium by 10 mM HEPES depolarized the dark membrane potential of HCs, 
and substantially increased hyperpolarizing responses to light stimulation. In 
contrast, feedback mediated depolarizing responses of H2 and H3 HCs were 
suppressed by HEPES. Moreover, depolarizing response onset of H2 and H3 
HCs was significantly delayed compared to the hyperpolarizing responses. 
These indicate that proton plays an important role on the color opponent signal 
formation of HCs, and that the feedback from H1 to H2 HCS is delayed by 10 – 
20 ms. A similar delay might be applicable to other feedback pathways as well. 

Keywords: Retina, outer plexiform layer, horizontal cell, proton, feedback. 

1   Introduction 

Negative feedback signals from horizontal cells (HCs) to cones contribute to the 
center-surround antagonistic receptive field formation and color signal transformation 
in lower vertebrates. Mechanisms of dynamic characteristics of color signaling, 
however, have not been understood well. Cone and rod photoreceptor signals are 
segregated at HC level in fish [2-3]. H1, H2 and H3 HCs are cone-driven HCs, 
receiving major input from red-, green- and blue-sensitive cones, respectively [4]. 

Stell et al. [4] proposed morphologically that H1 HCs send back their negative 
feedback signals to all types of cones. This negative feedback signals have long been 
believed to be mediated by GABAergic feedback from HCs to cones. This 
GABAergic feedback hypothesis has been doubted by the fact that picrotoxin, a 
GABA receptor antagonist, could not suppress the feedback signal [5]. Proton (H+) 
was proposed as a feedback transmitter released by HC depolarization instead of 
GABA [1]. Acidification of extracellular environment reduces the current through 
voltage gated calcium channels (ICa) and shifts the activation voltage to more positive 
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voltages [1], [6-7]. ICa of cone photoreceptors was also suppressed when HCs were 
depolarized during darkness or by application of glutamate agonists [1]. The effects of 
HC polarisation on the ICa of cone photoreceptors disappeared when the retina was 
superfused with a high pH-buffer [1], [8]. Based on these observations, Hirasawa and 
Kaneko [1] hypothesised that protons released from HCs regulate the ICa of cone 
terminals and hence the transmitter release. Vessey et al. [9] made similar 
observations in the zebrafish retina by Ca2+ imaging studies of cone terminals. Proton 
release from fish HCs was revealed by ratio imaging method for measurement of 
immediate extracellular surface pH of HCs and the H+ release was found to be 
dependent on the membrane depolarization of HCs [10]. The H+ releasing mechanism 
was found to be due to V-ATPase (vacuolar type adenosine triphosphatase, H+ pump) 
based on the results that bafilomycin A1, a specific V-ATPase inhibitor, suppressed 
acidification responses induced by kainate or high extracellular K+ [10]. 

Mechanisms of dynamic characteristics of color signaling were studied on the basis 
of the proton negative feedback hypothesis. HEPES and/or chromatic adapting light 
were applied to analyze the effects on spectral responses of H1, H2 and H3 HCs. 
Chromatic response kinetics and response amplitude were investigated to examine the 
proton mediated feedback in chromatic signaling of these HCs. 

2   Material and Methods 

2.1   Retinal Preparation and Intracellular Recording 

Goldfish (Carassius auratus) of about 30-50 g body weight were dark-adapted for 5 
min, pithed and dissected. The experimental procedures conformed to the Guidelines 
of the Institute Animal Welfare Committee. The eye balls were removed under dim 
red light and the retina was isolated and mounted with photoreceptor-side up on a 
piece of white filter paper (AAWP01300, Japan Millipore Ltd., Japan). This 
preparation is referred to here as ‘light-adapted retina’ since the fish were dark-
adapted for only 5 min before surgery. The retina was placed in a small recording 
chamber (volume ~0.3 ml) and superfused at a rate of 0.4 ml/min with control 
bicarbonate-Ringer’s solution, having the following composition (in mM): 102 NaC1, 
2.6 KC1, 28 NaHCO3, 1.0 MgCl2, 1.0 CaC12 and 5.0 glucose. The bicarbonate-Ringer 
was saturated with a gas mixture of 95 % O2 and 5 % CO2, maintaining a pH of 7.60 
at room temperature (20 – 24 ℃). In experiments using 10 mM HEPES supplemented 
Ringer, the same amount of NaCl was replaced by HEPES. The pH values of the 
solutions were strictly maintained within 0.01 pH unit fluctuation. Intracellular 
recordings were made using a glass-microelectrode filled with 3 M KC1 (resistances, 
100 - 400 MΩ). The pH buffering capacity of the 10 mM HEPES-fortified Ringer 
was calculated to be 9.1 mM, which is 2.7 times greater than that of the control 
bicarbonate-Ringer (3.4 mM) [11]. 

Responses of three types of cone-driven HCs were intracellularly recorded. The 
cell somata were identified by (i) the position of the electrode tip at around 100 - 150 
μm from the surface of the photoreceptor layer, (ii) characteristic spectral responses 
of each type (by comparing responses to five chromatic test stimuli), (iii) the 
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sequential order of the encountered photoresponses, and finally (iv) morphological 
identification by the intracellular staining of Lucifer yellow, in some cases. 

2.3   Light Stimulation 

The photostimulator for test light stimuli consisted of five types of LEDs (461, 524 
584, 614 and 689 nm; reflection type with parallel light emission, LAP-type, Iwasaki 
Electric Ltd., Tokyo), corresponding to blue, green, yellow, orange and red light 
respectively. Their light intensities at the retinal surface were adjusted to equal quanta 
of 4.6x104 quanta/μm2s, each equipped with an interference filter (10 nm narrow band 
width). The test light intensity induced light response around 10-20 mV at the 
impalement of HCs. Each test light of five color stimuli was flashed with 700 ms 
duration at 2.1 s intervals in a cycle of 11 s. The five sets of monochromatic light 
stimuli were used for the identification of cone-driven HCs. 

2.4   Estimation of Response Onset Delays 

Light responses of HCs are delayed due to phototransduction delay at the cone 
photoreceptors, and the synaptic transmission delay from cones to HCs. To a first 
approximation, the initial phase of a HC light response was fitted by the following 
second order system equation 

( )2/1)( τ+= − sAesG ds ,                            (1) 

where A is the gain, τ the time constant, and d the time delay. More accurate fits can 
be obtained by increasing the order of the equation; however, they also introduce 
system delays. Therefore, a second order equation was utilized in the present study. 
Parameters A and τ were fitted to the initial response phase while delay time d was 
globally searched in the range from 10 ms to 80 ms in 1 ms step. 

3   Results 

3.1   Effects of HEPES on Dark Membrane Potential and Photoresponse 
Amplitude of H1 HCs 

H1 HCs were intracellularly recorded from goldfish retinae which were dark-adapted 
for only five minutes. Responses to five chromatic light stimuli perfused with control 
Ringer’s solution were compared with those perfused with 10 mM HEPES-fortified 
Ringer. By the application of HEPES containing Ringer, the dark membrane potential 
of H1 HCs was significantly depolarized (Fig. 1A). On average, it depolarised by 10.7 
± 1.7 mV from -39.2 ± 2.4 mV to -29.5 ± 2.8 mV (p value of paired Student’s t-test 
=0.0003, n=15). Light response amplitudes of H1 HCs to all the five chromatic light 
stimuli were significantly increased by more than 50 % by HEPES (Figs. 1B). These 
effects were suggested to be attributed to suppression of proton mediated feedback 
from HCs to cones. The delay on the photoresponse onset determined by fitting the 
initial phase of the response to a second order system (1) (Fig. 1C) was not 
significantly different between different stimulus wavelengths in control condition,  
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Fig. 1. Effects of HEPES on H1 HC response to 5 color light stimuli. A) Continuous recordings 
to sequential light stimulation. Dashed line: range of drug application; straight lines: range of 
averaged trials for analysis. B) Averaged responses of three trials in control (black lines) and 
HEPES (gray lines) condition at different stimulus wavelength. Horizontal bars: light 
stimulation (700 ms). C) Initial phase of an H1 HC’s responses (symbols) fitted by a second 
order system with delay (solid lines). D) Averaged response onset delay at each stimulus 
wavelength obtained as in C (mean ± SE, n = 13). *: Responses in HEPES were significantly 
delayed from those in control. Blue responses were significantly different from remaining 
wavelengths in HEPES. 

however, response onset delay in HEPES was significantly delayed compared to that 
in control condition (Fig. 1D). The delay being on average by 4.1 ± 0.2 ms to blue; 
3.1 ± 0.2 ms to green; 2.1 ± 0.1 ms to yellow; 2.0 ± 0.1 ms to orange; and 1.1 ± 0.2 
ms to red (paired Student’s t-test: p=0.0007, 0.002, 0.009, 0.041 and 0.026, 
respectively, n=13). And blue responses were significantly delayed compared from 
other wavelengths in HEPES condition (Fig. 1D; one way anova, p=0.01, n=13). 

3.2   Effects of HEPES on Dark Membrane Potential and Photoresponse 
Amplitude of H2 HCs 

By the application of 10 mM HEPES Ringer, the dark membrane potential of H2 HCs 
was significantly depolarized (Fig. 2A). On average, it depolarised by 11.6 ± 1.8 mV 
from -38.5 ± 3.9 mV to -26.9 ± 2.7 mV (paired Student’s t-test: p=0.00003, n=13). 
Depolarizing red (689 nm) light responses of the cells were greatly suppressed by 
HEPES (Fig. 2B), on average the suppression of response amplitude being 2.1 ± 0.5 
mV from 3.7 ± 0.6 mV to 1.5 ± 0.3 mV (Δ=-55 ± 6 %, paired Student’s t-test: 
p=0.001, n=13). On the other hand, hyperpolarising light response amplitudes of H2 
HCs to short-middle wavelengths were enhanced by the application of HEPES (Fig. 
2B). These effects were suggested to be attributed to suppression of proton mediated 
feedback from HCs to cones. The initiation of photoresponse onset was not affected 
by HEPES (Fig. 2C & D). However, depolarizing photoresponse onset for red light 
stimulation was significantly delayed compared to other stimulus wavelengths by 14.0 
± 2.9 ms to orange and by 17.0 ± 2.6 ms to green (one way anova: p=0.00002) in 
control condition. That delay became greater by 20.5 ± 6.5 ms to orange and by 25.7 
± 4.5 ms to green (p=0.0002) in HEPES condition (n=3).  
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Fig. 2. Effects of HEPES on H2 HC response to 5 color light stimuli. A) Continuous recordings 
to sequential light stimulation. Dashed line: range of drug application; straight lines: range of 
averaged trials for analysis. B) Averaged response of three trials in control (black lines) and 
HEPES (gray lines) condition. Horizontal bars: light stimulation (700 ms), numbers indicate 
applied wavelength. C) Initial phase of an H2 HC’s responses (symbols) fitted by a second 
order system (solid lines). D) Response onset delay at each stimulus wavelength (mean ± SE, 
n=3); *: significantly different from remaining condition. 

3.3   Effects of HEPES on Dark Membrane Potential and Photoresponse 
Amplitude of H3 HCs 

By the application of 10 mM HEPES Ringer, the dark membrane potential of H3 HCs 
was also significantly depolarized (Fig. 3A). On average, it depolarised by 12.4 ± 1.9 
mV from -28.8 ± 3.2 mV to -16.4 ± 3.8 mV (paired Student’s t-test: p=0.0001, n=10). 
Hyperpolarizing blue light responses were significantly enhanced by HEPES (Figs. 
3B), on average the enhancement of response amplitude being 3.8 ± 0.7 mV from 8.6 
± 2.1 mV to 12.8 ± 1.7 mV (Δ=80 ± 30 %, p=0.0003, n=10). As the wavelength of 
green light stimulus is near the neutral wavelength of H3 HCs where its response 
polarity changes, the green response waveforms looked very complicated due to the 
summation of two kinds of inputs with opposite polarity from green- and blue-
sensitive cones. The green response was usually composed of an early 
hyperpolarising potential followed by a late depolarising one. The green responses 
measured at the early hyperpolarising peak were significantly enhanced by HEPES 
(Fig. 3B), on average the enhancement of response amplitude being 2.3 ± 0.8 mV 
from 5.7 ± 1.1 mV to 8.0 ± 1.5 mV (Δ=93 ± 52 %, p=0.023, n=10) (Fig. 3B). 
Depolarizing yellow and orange light responses were greatly suppressed by HEPES 
(Fig. 3B). On average, the suppression of response amplitude was 10.0 ± 1.8 mV to 
yellow from 12.8 ± 1.7 mV to 2.7 ± 1.4 mV (Δ= -81 ± 9 %, p=0.0004, n=10) and 9.0 
± 1.7 mV to orange from 10.8 ± 1.6 mV to 1.9 ± 0.9 mV (Δ= -83 ± 7 %, p=0.0005, 
n=10), respectively (Fig. 3B). Hyperpolarising red responses were also significantly 
suppressed by HEPES (Fig. 3B), on average the suppression of response amplitude 
being 2.1 ± 0.5 mV from -2.2 ± 0.6 mV to -0.1 ± 0.3 mV (Δ= -117 ± 25 %, p=0.002, 
n=10) (Fig. 3B). Depolarizing photoresponse onset for yellow and orange light 
stimulation were significantly delayed by 20.2 ± 3.5 ms and 23.6 ± 3.2 ms, 
respectively when compared to hyperpolarizing photoresponses onset to blue light in  
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Fig. 3. Effects of HEPES on H3 HC response to 5 color light stimuli. A) Continuous recordings 
to sequential light stimulation. Dashed lines: drug application; straight lines: range of averaged 
trials for analysis. B) Averaged response of three trials in control (black lines) and HEPES 
(gray lines) condition. Horizontal bars: light stimulation (700 ms). C) Initial phase of an H3 
HC’s responses (symbols) fitted by a second order system (solid lines). D) Response onset 
delay at each stimulus wavelength (mean ± SE, n = 5). *: Red responses were significantly 
delayed from yellow, and those to yellow and orange were significantly delayed from blue and 
green. Responses in HEPES were also significantly delayed from those in control. 

control condition (one way anova, p=0.000006, n=5). The initiation of photoresponse 
onset was also not affected by HEPES (Fig.3C & D) for blue and green stimuli. For 
other stimulus wavelengths HEPES almost completely suppressed response 
amplitude, therefore response onset delay could not be measured. 

4   Discussion 

In the present study, we demonstrated that HEPES depolarized the dark membrane 
potential of HCs and increased hyperpolarizing responses. These observations are 
consistent with previous studies where bicarbonate buffer was completely substituted 
by HEPES [15]. In addition, HEPES also suppressed the depolarizing responses in H2 
and H3 HCs, demonstrating the contribution of the proton feedback mechanism on the 
color opponent signal formation of H2 and H3 HCs. A schematic diagram of the 
connection between cones and HCs is illustrated in Fig. 4. Straight lines indicate 
glumatatergic synapses, whereas dashed lines indicate proton feedback synapses. 

The HEPES-induced depolarization of the dark membrane potential of HCs 
indicates that, the synaptic cleft is maintained in a slightly acidified state in darkness 
by proton extruded from depolarized HCs via V-ATPase proton pumps [10] together 
with proton exocytosed with glutamate release [16-17]. Light stimulation decreases 
glutamate release by hyperpolarizing the cones, which also hyperpolarizes HCs (solid 
lines in Fig. 4). These hyperpolarizations induce alkalinization of the synaptic cleft 
(dashed lines in Fig. 4), eliciting an increase in calcium current at the cone synaptic 
terminal [6], therefore, augmenting glutamate release. This will in turn depolarize the 
HCs, forming the sag and/or inflection points on the response waveforms [13]. 
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Fig. 4. Schematic diagram of the connection between cones and HCs. R, G and B are red- 
green- and blue- cones respectively. Solid lines indicate glutamatergic synapses, and dashed 
lines proton feedback synapses. 

In the case of red light stimulation, green- and blue-sensitive cones will not 
hyperpolarize since their spectral sensitivities are nearly zero [12]. However, red 
cones and H1 HCs are hyperpolarized, which will induce alkalinization of cone 
synaptic clefts to which H1 HC dendrites are connected (dashed lines b11, b12 and 
b13 in Fig. 4). Alkalinization at the green-sensitive cone synaptic cleft will induce an 
increase in glutamate release due to increase in calcium current. This will in turn 
depolarize H2 HCs (line a22), which will induce acidification at the blue-sensitive 
cone synaptic cleft (dashed line b23) due to extrusion of proton via V-ATPase at H2 
HCs. Finally, this cascade will induce a decrease in glutamate release at the synaptic 
cleft of blue-sensitive cones, resulting in hyperpolarization of H3 HCs (line a33). 
Similarly, depolarizing responses of H3 HCs to middle wavelength light is generated 
by alkalinization of blue cone synaptic cleft induced by hyperpolarization of H2 HCs 
(dashed line b23) as well as H1 HCs (dashed line b13). Under these configurations, 
HEPES would block changes in the synaptic cleft pH (blockade of all dashed lines); 
therefore, light response of H1 HCs will increase its response amplitude. Similarly, 
depolarizing responses of H2 and H3 HCs will be suppressed and response amplitude 
of the hyperpolarizing responses to short wavelengths will be increased. However, 
recordings from H3 HCs have revealed that, in some cases, response to red light 
stimulation reversed its polarity (data not shown). This result can only be interpreted 
by a direct feedback connection from H1 HCs to blue cones (dashed line b13), and 
that HEPES could only block either the feedback from H1 HCs to green cones 
(dashed line b12) and/or the feedback from H2 HCs to blue cones (dashed line b23). 
Moreover, by the observation that depolarizing responses are significantly delayed 
compared to the hyperpolarizing responses to short wavelength light stimulation 
(Figs. 2C,D & 3C,D), it can be speculated that the proton feedback pathway is 
delayed by about 10 – 20 ms including the synaptic delay from cones to HCs.  

5   Conclusion 

It has been demonstrated that HEPES suppressed depolarizing responses of H2 and 
H3 HCs, indicating that proton mediated feedback synapses from HCs to cones are 
involved in color opponent signal formation in the outer plexiform layer (OPL). These 
depolarizing responses were significantly delayed compared to hyperpolarizing 
responses to short wavelengths, as measured by differences in the delay of 
hyperpolarizing and depolarizing responses (§3.2). Therefore, the network connection 
of the OPL consists of a dynamic cascade network with delay. We are currently 
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developing an OPL mathematical model based on these findings to uncover the 
details of color signal transformation due to the proton feedback mechanism. 
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Abstract. In this paper, under the efficient coding theory we propose
a computational model to explore the intrinsic dimensionality of scene
perception. This model is hierarchically constructed according to the
information pathway of visual cortex: By pooling together the activity
of local low-level feature detectors across a large regions of the visual
fields, we build the population feature representation as the statistical
summary of the input image. Then, a large amount of population fea-
ture representations of scene images are embedded unsupervisedly into
a low-dimensional space called perceptual manifold. Further analysis on
the perceptual manifold reveals the topographic properties that 1) scene
images which share similar perceptual similarity stay nearby in the man-
ifold space, and 2) dimensions of the space could describe the perceptual
continuous changes in the spatial layout of scenes, representing the de-
gree of naturalness, openness, etc. Moreover, scene classification task is
implemented to validate the topographic properties of the perceptual
manifold space.

Keywords: visual perception, hierarchical model, scene classification.

1 Introduction

One of the fundamental issues in computational neuroscience concerns how in-
formation is encoded and represented by the neural architecture of the brain.
As for the neural computation of visual signal, from photoreceptor of retina to
the unified scene perception in high-level cortex, the visual processing of input
signal is hierarchically constructed. With multilayers of wiring in visual cortex,
neural response gradually achieve generalization over the input signal [1].

The neurophysiologic studies [2] indicate that through the hierarchical pro-
cessing of information in the visual cortex, the extremely high-dimensional in-
put signal is gradually represented by fewer active neurons, which is believed
to achieve efficient coding [3]. One of the concepts of efficient coding theory is
that with the metabolic constraints the visual cortex relies on the environmen-
tal statistics to encode and represent the visual signal [4], that is, a group of
neurons should encode information as compactly as possible, in order to most
effectively utilize the available computing resources. Mathematically, this is ex-
pressed as to maximize the information that neural responses provide about the
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visual environment. This theory has been applied to derive efficient codes for
natural images and to explain a wide range of response properties of neurons in
the visual cortex [4].

On the other hand, studies on the natural image statistics suggest that the
natural images are usually embedded in a relatively low dimensional manifold of
image space, and there is a large amount of information redundancy within the
natural images [5]. According to the efficient coding theory, it could be implied
that neural system would be efficiently adapted to reduce information redun-
dancy and extract the underlying low meaningful dimensionality of natural image
to form the unified scene perception, in spite of the extremely high-dimensional
raw sensory input from the retina [2]. From the functional viewpoint, the hier-
archical architecture of visual system could be considered as the multilayered
process of nonlinear dimensionality reduction, gradually resulting in sparser and
more efficient response in higher-level neurons [6].

In this paper, from the functional view of neural architecture we propose a
computational model for visual scene processing. This model termed Perceptual
Manifold is data-drivenly constructed on the natural image statistics and hi-
erarchically layered : By pooling together the activity of local low-level feature
detectors across large regions of the visual fields, we build the population feature
representation as the statistical summary of the scene image. Then, thousands
of population feature representations of scene images are extracted, and to be
mapped unsupervised along into a low dimensional space called perceptual man-
ifold space. Analysis of this perceptual manifold reveals that scene images which
share similar perceptual similarity stay nearby in the manifold space, and the
dimensions of the manifold could describe the perceptual continuous changes in
the spatial layout of scenes. In addition, scene classification task is performed to
validate the topographic property of the perceptual manifold space.

2 Perceptual Manifold Model

A hierarchical model called Perceptual Manifold is proposed. The architecture
of the proposed model includes four cortex-like layers of computation: 1) local
sparse feature encoding, 2) local higher-order feature encoding, 3)population
feature encoding and 4) perceptual manifold embedding (refer to Fig.1).

Different layers of computation abstract their own representations of input
signals, which accounts for the different hierarchical stages of neuronal response
to visual stimulus [2]. It is assumed that through the hierarchial layers of com-
putation, the dimensionality of image representation is gradually reduced, that
is, M < N < K, leading to more general organization of image representation.

2.1 Local Sparse Feature Encoding

Experimental studies have shown that the receptive fields of simple cells in the
primary visual cortex produce a sparse representation of input signal [4]. Efficient
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Fig. 1. Schematic diagram of the Perceptual Manifold model. There are four hierarchi-
cal layers of sensory computation to form the final perceptual space, which resemble
the information pathway in visual cortex.

coding method [7] assumes that the image patch is transformed by a set of linear
filters wi to output response ui. In matrix form,

u = Wx (1)

Or equivalently in terms of generative process, x=Au=W−1u. Then, the filter
response ui are assumed to be statistically independent,

p(u) =
∏

i

p(ui) (2)

where p(ui) ∝ exp(−|ui|). Let W = [w1,w2, ...wK ] be the learned filter func-
tions, and K is the number of basis functions, so that the dim(u)=K. Fig. 2
shows a subset of the filter functions w. These filter functions resemble the re-
ceptive field properties of simple cells, i.e., they are spatially localized, oriented
and band-pass in different spatial frequency bands. A vectorized image patch
x can be decomposed into those statistically independent bases, in which only
a small portion of bases are activated at one time. They are used as the first
layer of local feature extraction in our framework, so that representation of local
image patches in first layer is u. This layer of computation resembles the simple
cells in V1 [8].

2.2 Local Higher-Order Feature Encoding

Higher-level visual neurons encode statistical variations that characterize local
image regions, these results provide a functional explanation for nonlinear effects
in complex cells [9]. Thus the coefficients of local basis A are further assumed
to follow a generalized Gaussian distribution,

p(u) = N (0, λ, q) = zexp(−|u
λ
|q), (3)
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Fig. 2. A subset of filter basis W trained from natural image patches

where z = q/(2λΓ [1/q]) is the normalizing constant, and mostly λ=1. In [10],
the variance λ value is assumed to be generated by variance basis as follows:

logλ = Bv, (4)

where B = [b1,b2, ...bN ] are variance basis functions trained from thousands of
natural image patches1, N is the number of variance basis functions and v is
the higher-order representation of local image patches, so that the dim(v)=N,
where N<K. The transformation from sparse representation u to the higher-
order representation v is determined by maximizing the posterior distribution
for a given u,

v̂ = argmaxp(u|B,v)p(v). (5)

where p(v)=
∏

j p(vj) and p(vj) ∝ exp(−|vj |). In the simulation, v̂ is derived
by gradient ascent [10]. For simplicity, here the nonlinear transformation of u
to v is denoted as a general function f, where v=f (u). This is second layer of
computation in our framework, and through it v = [v1, v2, ..., vN ]
 becomes the
representation of local image patches. This layer of computation resembles the
complex cells in V1 [9].

2.3 Population Feature Encoding

The neurophysiologic study [2] suggests that on the population level in extras-
triate visual areas II(V2) and IV(V4), a normalized pooling mechanism might
be used to extract the global response of the stimulus. Let X = [x1,x2, ...,xn, ...]
denote the sample matrix, where xn is the vectorized image patch sampled from
one scene image. After the first two layers of local encoding: un = Wxn and
vn = f(un), the population feature component for the ith feature of vn is,

pi =
∑

n([vn]i)2∑N
i=1

∑
n([vn]i)2

(6)

where [vn]i indicates the ith element of the vector vn. Thus, p = [p1, p2, ..., pN ]


indicates the normalized population feature response of scene image, which ac-
counts for the holistic representation of scene image in the third layer of com-
putation. This layer of computation resembles the population coding in V2/V4.
1 Refer to [10] for visualization of the variance basis.
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2.4 Perceptual Space Embedding

To explore the intrinsic dimensionality of scene perception, the Local Linear
Embedding [11] is applied as the method of nonlinear dimensionality reduction
to a large amount of the population feature responses of different scenes:

First step: compute the weight ωij that best linearly reconstructs pi from its
neighbor pj , minimizing:

ε(ω) =
∑

i

|pi −
∑

j

ωijpj |2 (7)

Second step: compute the low-dimensional embedding vectors qi best recon-
structed by ωij , minimizing:

φ(q) =
∑

i

|qi −
∑

j

ωijqj |2 (8)

The resulting embedding space R
M is called perceptual manifold space, as the

final layer of computation in our architecture. And q = [q1, q2, ..., qM ]
 is the
representation of scene perception for a specific image, in which dim(q)=M and
M < N < K. This layer of computation is believed to exist in the inferotem-
poral cortex(IT) or the prefrontal cortex(PFC), which involve in forming the
perception of objects and scenes [12].

The implementation and analysis of the perceptual manifold space are pre-
sented in the following experiment section.

3 Experiments

For the training of image basis A(or W) and variance basis B, 150000 20 × 20
gray image patches from a standard set of ten 512×512 natural images [13] are
extracted. The number of 20 × 20 filter basis W is 400, equivalently K=400, and
the number of variance basis function B is limited to 100, equivalently N =100.
For manifold embedding layer, the dataset of scene images used here comes from
[14], which contains 3890 images from 13 semantic categories of natural scenes,
like coast and forest, etc. All 3890 images are normalized to 128×128 pixels
before layers of computation. The dimensionality of manifold space M is tuned
empirically as 15, so that the manifold embedding is R

100 → R
15. Thus, through

the whole process of multilayered computations, the representative space changes
as R

400 → R
100→ R

15.
In the following part, the topographic properties of the perceptual space are

analyzed at first. Then to validate those properties of perceptual space, scene
classification task is performed in this perceptual space.

3.1 Perceptual Space Analysis

For visualization of the perceptual space, data points of scene images from four
scene categories are described by the first three principal component coordinates
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Fig. 3. Data points of scene images from four categories are visualized by the first three
coordinates and first two coordinates of perceptual space. a) Clustering and nonlinear
geometric property of the data points in the 2D perceptual space. b) Representative
scenes are shown next to the corresponding data points in different parts of the 3D
perceptual space. The bottom and right sets of images correspond to points along the
two pathes(linked by solid line), illustrating particular perceptual changes in scene
images.

(Fig. 3a) and first two principal component coordinates of perceptual space (Fig.
3b). In Fig. 3a, we can see that there are clustering and nonlinear geometric
properties among the pool of data points. In Fig. 3b, representative scenes are
shown next to the corresponding data points in different regions of the perceptual
space. The bottom and right sets of images correspond to points along the two
pathes(linked by solid line), illustrating particular degree of perceptual changes
within the scene images.

As we can see, the topographic properties of perceptual space are related
to the perceptual dimensions(degree of naturalness, openness, expansion, etc)
supervised trained in [15], which represent the dominant spatial dimensions of a
scene. Our Perceptual Manifold model is layered in a bottom-up way to find the
intrinsic dimensionality of scene perception. Our finding supports the viewpoint
that the shape of a scene could be described by a few perceptual dimensions [16].
Moreover, the topographic properties give further implication that human visual
system might be adapted to both extract and integrate the lower perceptual
dimensions to form the holistic scene perception. After that, scene classification
task is performed to validate the topographic properties of perceptual manifold
space.

3.2 Scene Classification

Scene classification task is to classify each image from testing set into one cat-
egory of scenes. The dataset contains 13 categories of scenes, 100 images from
each scene class are as training set, and the rest are as testing set. Both testing
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set and training set of images have been embedded in perceptual manifold space
before the classification, so that all images are represented as 15 dimensional
feature vectors. A 13-way linear SVM classifier is trained on the training set,
then it is applied to classify images from testing set.

The average accuracy of classification for our method is 68.9%. The average
accuracy for baseline methods LDA[14] is 64.0%. Even though the Perceptual
Manifold model is not designed specifically for the scene classification task, our
model achieves good performance. Scene classification task well validates the
topographic properties of the perceptual manifold space. And it further reveals
that there is neural correlation between the perceptual space and semantic space
in human cognitive process [16].

4 Discussion

4.1 On the Dimensionality of Perceptual Manifold Space

The choice of reduced dimensionality M for manifold space is theoretically and
experimentally important. First, the local linear embedding [11] itself relies on
the amount of observation samples and the setting of reduced dimensionality
to search for intrinsically low-dimensional structures embedded nonlinearly in
high-dimensional observations. And the theoretic analysis of this point could
be found in the studies on manifold learning [17], which goes beyond the scope
of this paper. Second, the topographical properties of perceptual manifold are
influenced by the dimensionality M value, here we illustrate that by the corre-
lation between dimensionality M value and performance of scene classification,
as shown in Fig. 4. From that we can see, the dimensionality to engender the
topographic properties of perceptual manifold is rather low. For the limitation
of paper length, more theoretic analysis would be included in our further work.
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Fig. 4. The correlation between dimensionality M and scene classification performance

5 Conclusion

A novel hierarchical model of scene perception termed Perceptual Manifold is
introduced in this paper. Through the cortex-like layers of computation, dimen-
sionality of input visual signals is gradually reduced, and it finally leads to the
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formation of perceptual manifold space. In this perceptual manifold space, there
exist topographic properties that 1) data points of perceptual similarly scene
images stay nearby in this perceptual manifold space and 2) dimensions of the
perceptual space could describe the meaningful continuous changes in the spa-
tial layout of scene images. Scene classification task is performed to validate the
topographic properties of the perceptual manifold space.
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Abstract. Major depression is a prominent mental disorder that has significant 
impact upon the patient suffering from the depression as well as on the society 
as a whole. Currently, therapies are offered via the Internet in the form of self-
help modules, and they have shown to be as effective as face-to-face 
counseling. In order to take automated therapies a step further, models which 
describe the development of the internal states associated with depression can 
be of great help to give dedicated advice and feedback to the patient e.g. by 
means of making predictions using the model. In this paper, an existing 
computational model for states related to depression (e.g. mood) is taken as a 
basis in combination with models that express the influence of various therapies 
upon these states. These models are utilized to give dedicated feedback to the 
patient, tailor the parameters towards the observed patient behavior, and give an 
appropriate advice regarding the therapy to be followed. 

Keywords: Virtual patient, depression, support agent, tailored advice. 

1   Introduction 

Major depression is currently the fourth disorder worldwide in terms of disease 
burden, and is expected to be the disorder with the highest disease burden in high-
income countries by the year 2030 according to a prediction of the World Health 
Organization (WHO). Within mental health care, a new generation of therapies for 
treatment of depression has emerged, in which patients can use Internet-based self-
help therapies. This takes away the long waiting times for psychological treatments 
and also removes the barrier of going to a doctor to seek counseling. A wide variety 
of therapies are available in the form of self-help modules, including activity 
scheduling (also called behavioral activation, see e.g. [14]), cognitive behavior 
therapy (see e.g. [3]), and problem solving therapy (see e.g. [10]). A growing number 
of randomized trials have been performed that show that such forms of treatment are 
as effective as face-to-face treatment (see e.g. [15]; [1]). However, these treatments 
currently do not provide very personalized or tailored support to the patient, which 
could potentially lead to an even better treatment of the depression. 

In order to provide such personal advice and support, the supporting system (for 
instance in the form of a personal support agent) should be able to build up a picture 
of the current and potential future development of the patient, and the influence of the 
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therapy upon this development. Based upon this picture, the system can determine 
how the patient is progressing and is expected to progress further, provide feedback 
on this, and also select the most appropriate therapy for the patient. In previous work 
[5], a computational model for the cognitive states associated with depression has 
been developed based upon literature available in clinical psychology, including 
elements such as mood, thoughts, and appraisal and their interrelationship. This 
model can be used to predict the development of these states of the patient over time. 
In extensions of the model (see [6];[7]), the influence of various therapies upon these 
states of the patient have been included, which enables predictions on the 
effectiveness of the therapy for the patient. 

In this paper, an approach is presented which utilizes such models to provide 
dedicates feedback to the patient and give advice on the appropriate therapy to follow. 
This process is composed of three subparts: (1) deriving the therapy with the highest 
probability of success and providing this as advice to the patient, (2) once a therapy 
has been selected, the predicted trends can be compared with the observed trends of 
the patient to provide feedback, but also to trigger a process which evaluates whether 
there is potentially a more effective therapy than the current one, and (3) tuning the 
parameters of the predictive models towards the observations with respect to the 
patient in case large deviations are found to improve the accuracy of future 
predictions.  

This paper is organized as follows. Section 2 briefly describes the underlying 
models. In Section 3 the algorithms that describe how such models can be utilized are 
described, whereas Section 4 presents simulations results for a dedicated scenario. 
Finally, Section 5 is a discussion. 

2   Therapeutic Models 

In [6] and [7], therapies are described in terms of a computational mood model [5]. In 
Figure 1, the mood model is shown in gray. This model uses situations in the world 
(world events) and personal characteristics such as coping skills, vulnerability and 
prospected mood level to describe the state of a person. In the figure, the black arrows 
and grey circles describe the therapeutic influence of the Cognitive Behavior Therapy 
(CBT) module with three effects on the mood model: intervention, reflection and a 
therapy-dependent effect, appraisal in case of CBT. The first two hold for all 
interventions. 

• Intervention effect: the positive effect on the thoughts of a person when this 
person is following a form of therapy.  

• Reflection: the learning effect of a therapy by increasing coping skills. The 
concepts involved in reflection differ among the therapies. 

• Therapy-dependent effect: each intervention has its own view on how to treat 
depression. CBT focuses on changing the appraisal of a situation, the other two 
modeled interventions focus on introducing more pleasant (activity scheduling) or 
physical (exercise therapy) activities into a person’s daily life. These effects are 
described in more detail below. 
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The idea behind CBT is that there is a relation between how a situation is appraised 
(appraisal) and the mood level. During the therapy, one learns that emotions are 
triggered by thoughts about a situation (appraisal) rather than by the situation itself. 

 

  

Fig. 1. Computational model for Cognitive Behavior Therapy (CBT). The model for dynamics 
of mood and depression is shown in gray. The additions for the CBT model are shown in black. 

These negative thoughts can be identified and changed into thoughts that are more 
positive. This is modeled by an appraisal effect from the CBT module influencing the 
element reflect on negative thoughts, which in turn influences appraisal. Openness 
for CBT determines to what extent these concepts are influenced. A person that is 
very open to a specific therapy will put more effort into the therapy and will learn 
quicker.  

The other therapies modeled in previous work are Activity Scheduling and 
Exercise Therapy. During Activity scheduling (AS), the patient learns the relationship 
between the selection of a relatively positive activity and the level of mood (i.e., when 
you do fun things, you will start to feel better, based on the reinforcement theory in 
[14]). In order to learn this relationship, the therapy imposes the selection of positive 
situations. Exercise Therapy (ET) is based on the idea that physical exercise may 
improve mood ([4], [8]). A number of concepts have been added to the model, such as 
physical state and physical norm. The physical state influences the mood level 
positively and learning the relation between these concepts increases the coping skills. 
For more details on the mood model and the models of the different therapies, see 
([5], [6], [7]) 

3   Support System Utilizing Therapeutic Models 

In order to utilize the models described in Section 2, this Section introduces a three 
stepped approach. The first step comprises of the utilization of the models to advise 
the patient which therapy to follow. Once a therapy has been selected, comparisons 
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can be made between the predicted developments of the patient in terms of the mood 
level and the actual development of the patient based upon measurements. This can 
either be used as a basis for feedback (e.g. “you’re developing much faster than 
expected, congratulations!”) or to trigger a new process to see whether a switch in 
therapy could result in a more speedy recovery. In case the predictions of the model 
show to be inaccurate, the third step is to perform parameter adaptation to improve the 
predicative power of the models. Each of these elements is treated in more detail 
below.  

3.1   Selecting a Suitable Therapy 

When a patient wants to start with a treatment, the first step to undertake is to 
determine what type of therapy the patient should follow. In the approach presented in 
this paper, the models which describe the development of internal states and the 
influence of therapy upon this development are utilized to advice the most appropriate 
therapy. Simulations are performed to see how the mood of the patient will develop, 
given a certain therapy which has been selected. In these models, a number of 
parameters are present that depend on the characteristics of the patient (as described 
in Section 2). Specifically, the following parameters are assumed to be set in 
accordance with such patient dependent characteristics: 

1. Initial level of mood 
2. Coping skills level 
3. Vulnerability level 
4. Openness for the type of therapy 

Hereby, the first element (initial level of mood) can be measured directly (“what is 
your mood on a scale from 1-10?”), whereas the second and third parameter (i.e. 
coping and vulnerability) follow from a set of dedicated questions that are part of an 
initial questionnaire the patient has to fill in. The parameter openness for therapy 
depends on the prior experience of the patient (has the therapy been followed before, 
and if so, was it successful), and the general characteristics (e.g. does the patient like 
to run to determine whether the patient is open towards exercise therapy). Once 
precise values are derived for each of these elements, predictive simulations for each 
of the different therapies can be run. The criterion for advising the best therapy is 
simply the therapy in which the mood level will be 6 or higher during three 
consecutive days (i.e. sufficiently high again) within the shortest time span. If none of 
the therapies meets this criterion, the therapy with the highest mood level at the end of 
the therapy is advised. 

3.2   Comparing Predictions and Actual Observations 

Once the patient has decided to follow a certain therapeutic module, the support agent 
can monitor the effectiveness of the therapy by comparing the predictions of the 
models with the actual observations around the patient. Such a comparison is not a 
trivial task. A precise comparison between the predicted and observed values is often 
difficult to do, as one more wants to see whether the trends are similar, not whether 
the precise numbers are the same. Therefore, first trends are expressed within the 
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development of the states of the patient which are applicable to both the predictions 
using the model and the actual observations of the patient. Thereafter, these trends are 
compared and conclusions are drawn, possibly resulting in actions being undertaken.  

Identification of Trends. Making a comparison between the data which has been 
collected from the patient (e.g. due to the mood ratings the patient has performed) and 
the predictions of the model is difficult. The model tends to make predictions that are 
relatively smooth and give a more general indication of the trends of the patient, 
whereas the observations around the patient are fluctuating a lot more, for instance 
during the start of the day the mood is generally rated a lot lower compared to the 
middle of the day. As a consequence, a comparison based upon the general trends of 
the predictions of the model and the general trends in the observed data of the patient 
is much more useful. The following trends are hereby distinguished: 

• Increasing during a period x: The general trend is that a particular aspect of the 
therapy or state of the patient is increasing during a certain time period x. 

• Decreasing during a period x: The general trend is that a particular aspect of the 
therapy or state of the patient is decreasing during a certain time period x. 

• Stable (fluctuations within certain boundaries) during a period x: The general 
trend for a particular aspect of the therapy or the state of the patient is stable 
during a period x. 

• Average over a period x is above a threshold th: The average value for a 
particular aspect of the therapy or the state of the patient is above a certain 
threshold value th during a certain time period x. 

• Average over a period x is below a threshold th: The average value for a 
particular aspect of the therapy or the state of the patient is below a certain 
threshold value th during a certain time period x. 

All of these trends are expressed in more detail below.  

Variable v increasing during a period x. 
In order to express increasing trend with respect to some measurements around the 
patient is not a trivial matter. Certain outliers might occur in the data that need to be 
filtered out, and when looking at individual measurements such outliers can be quite 
difficult to detect. For instance, sometimes a clear increasing trend can be seen, but 
rare outliers prohibit a strict property with respect to an increasing measurement from 
being satisfied. Of course, many different techniques can be applied to detect the 
increasing trends, e.g. the fitting of a linear curve through the data making use of the 
method of least squares (e.g. [13]). In this case, another approach has been used 
which averages the measurements over the days and detects whether these averages 
are monotonically increasing. Due to the fact that the predictions as given by the 
models provide quite a lot of data per day, this approach is computationally more 
efficient, and is also closer to the current approaches used in clinical psychology. The 
algorithm to derive whether this criterion is indeed fulfilled is expressed on the next 
page. Note that hereby a start and end time are assumed. The duration between these 
time points should be equal to x (the duration expressed in the property). 

In the algorithm, a loop is present in which the average is taken for a window from 
the current time point till the current time point plus a duration d (the window size).  
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In case this average is strictly higher than the average in the previous window, the 
property can still be satisfied, and the loop continues by setting the current time to a 
new value. In case the loop is completely passed the property succeeds. If a case 
occurs whereby the average is not higher than the previous average, the property fails 
and the cycle ends. 

 
Algorithm 1. Increasing trend from start time tstart to end time tend 
tcurrent = tstart 

previous_average = 0; 
while (tcurrent < tend) { 
 total = 0; 
 for (int i=0; i < d; i++){ 
  total = total + v(tcurrent + i); 

}  
current_average = total / d; 

 if (current_average ≤ previous_average) { 
  return false; 
 }else{ 
  previous_average = current_average; 
  tcurrent = tcurrent + d; 
 } 
} 
return true; 

 

Variable v decreasing during a period x 
For the decreasing trend, a similar approach can be taken as described for the 
increasing trend.  

Variable v stable (fluctuations within certain boundaries) during a period x 
Furthermore, a stable trend is also expressing, which indicates that the variable v 
fluctuates within certain boundaries.  
 
Algorithm 2. Stable trend from start time tstart to end time tend 
tcurrent = tstart 

average = 0; 
total = 0; 
timesteps = 0; 
for (int t=tstart; t < tend; t++){ 
 timesteps++; 
 total = total + v(t) 
} 
average = total / timesteps; 
for (int t=tstart; t < tend; t++){ 
 if (v(t) > (1+b) * average || v(t) < (1-b) * average){ 
  return false; 
 } 
} 
return true; 

 

Hereby, once a value exists which deviates more than b from the average value during 
the entire period, the algorithm returns false. 
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Average of variable v over a period x is above/below a threshold th. 
For the sake of brevity, the algorithm underlying this definition is not shown, but for a 
calculation of the average value algorithm 2 can be followed, and a simple check can 
be performed to see whether this average is above or below the threshold value th. 

Comparison of Trends. Once the trends for both the actual patient states and the 
predicted patient states are known, a comparison can be made to see how these trends 
relate to each other. In this case, a comparison is based upon the general level within 
the patient (the patient is doing well when the average level is above six) as well as 
the trend in the development of the measurement (i.e. stable, increasing or 
decreasing). In Table 1 a categorization is given of the comparison between the 
predicted and observed trend regarding the development of the patient. 

Table 1. Comparison between trends 

 Predicted trend good   bad   
Observed 
trend  

 increasing stable decreasing increasing stable decreasing 

good increasing o + ++ ++ ++ ++ 
stable - o + + + ++ 
decreasing -- - o o o o 

bad increasing o o o o + ++ 
stable -- - - - o + 
decreasing -- -- -- -- - o 

 
 

    In the table, a ‘--' expresses a significant worse development of the patient’s state 
compared with the predictions. A ‘-‘ indicates a somewhat worse development, and a 
‘o’ represents a development comparable with the prediction. ‘++’ is a far more 
positive development, whereas ‘+’ is a somewhat more positive development. In all 
cases, except when the patient is performing significantly worse, feedback is given to 
the patient how he/she is doing compared with the predictions. All of these messages 
are phrased positively and meant to stimulate the patient as much as possible. 
Examples of such messages include: “you’re doing much better than other people in 
your situation, keep up the good work!” for the case of ‘++’ and “you’re progression 
is a little bit less than expected, try as best as you can to get the most out of the 
therapy and enable a rapid recovery! ”. If the performance is significantly worse than 
expected, a process is started to seek for an alternative therapy which might be more 
suitable for the patient. The first step in this process is to tune the parameters of the 
models used to predict the patient development towards the observed data of the 
patient. 

3.3  Tuning the Model towards Observed Patient Behavior 

Once it has been shown that the trend in the patient state is much worse than 
expected, apparently the predictions of the models were not sufficiently accurate. 
Hence, the parameters of the models should be adapted such that the model describes 
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the behavior of the patient more precise. Thereafter, the models can again be utilized 
to select the most appropriate therapy (cf. Section 3.1) with these newly gained 
insights about the parameters of the patient. In the parameter adaptation process, two 
parameters are adapted, namely coping and vulnerability. For the openness of therapy 
the old value is assumed (as it has developed as a result of the model), and for the 
initial level of mood the actual input of the patient is used. Algorithm 3 expresses the 
algorithm for the parameter adaptation process. 
 

Algorithm 3. Parameter adaptation 
current_best_value_coping = low; 
current_best_value_vulnerability = low; 
current_best_mse = 1; // maximum value 
 
for all settings for coping 

for all setting for vulnerability 
 current_mse = mse(current_value_coping, current_value_vulnerability,  

current_therapy); 
        if (mse(current_mse < current_best_mse) { 
   current_best_mse = current_mse; 
   current_best_value_coping = current_value_coping; 
   current_best_value_vulnerability = current_value_vulnerability; 
                        end 
 end 
end 
 

 
The mean squared error is used as a measure of the fitness of the parameters. 
Furthermore, a limited set of parameter values is assumed to avoid a too high 
computational load. Once the ideal parameters have been selected, the different 
alternative therapies can again be compared, following the approach described in 
Section 3.1. Hereby it is assumed that the previous values of all the states are taken as 
an initial value when starting the run the predictions. 

4   Simulation Results 

In this Section, the overall approach is evaluated by means of simulation runs with a 
typical patient. The figures below show the different steps of one simulation of a 
person with low coping skills, high vulnerability, a low initial mood level and 
medium openness to therapy. The first step of the support system is to select a 
suitable therapy. Figure 3 shows the predicted mood level given the parameters above 
for the therapies AS, CBT and ET. The advice given to the person is to follow 
exercise therapy, because a sufficiently high mood level is reached within the shortest 
time span (52 days for ET, 59 days for AS and 53 days for CBT). In the figure, the 
solid black line indicates the threshold for the patient state in order to be considered 
sufficiently high. 

Following step 2, the situation is evaluated after week 7 of the exercise therapy. In 
Figure 4a, the actual patient state, based on the reported mood level, is shown as a 
solid blue line. The predicted state of the patient is shown as a red striped line. The 
trends are depicted as a circle for the virtual and an asterisk for the actual trend, where 
a value of 1 means increasing, 0.5 means stable and 0 means decreasing. The trend of 
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Fig. 3. Predicted mood levels for the three therapies 

the prediction (red circle) is good and increasing whereas the actual trend is bad and 
decreasing (blue asterisk). According to Table 1, this situation is undesirable and the 
parameter adaptation process is started as step 3 of the support system. 

 

Fig. 4a, b. Virtual vs. actual patient state in week 7 of ET before (left) and after (right) 
parameter adaptation 

    Running algorithm 3 results in a new set of parameters describing the current state 
of the patient more precisely. The predictions based on the new parameters are shown 
in Figure 4b. The best fitting coping skills level is very low, in combination with a 
very high level of vulnerability. The mean squared errors for the coping levels very 
low, low, medium and high in combination with opposite vulnerability levels are 
respectively: 0.02, 0.13, 0.19 and 0.30. Combining corresponding levels for coping 
and vulnerability lead to even greater mean squared errors. 

Since the patient is not doing very well (the patient state trend is bad and 
decreasing), the support system can now start with step 1 again: selecting a suitable 
therapy. All therapies are simulated again to see if the patient is better of switching to 
a different therapy. It is assumed that switching to a different therapy is experienced 
as positive, due to the personal advice that is given. Therefore, the simulations of the 
other therapies than the current start with a mood level one point higher than the last 
reported mood level. Figure 5 depicts the mood levels of the three therapies given the 
current state of the patient and the newly determined parameters. The support system 
advises to switch to CBT, because it is expected that CBT leads to the highest mood 
level at the end of the therapy. 
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Fig. 5. Predicted mood levels for the three therapies 

5   Discussion 

In this paper an approach has been presented to provide feedback and give 
personalized advice to people suffering from a depression. In order to come to such an 
approach, cognitive models which represent the states associated with depression are 
utilized, in combination with extensions expressing the influence of dedicated 
therapies upon the mental states of a human. The presented approach consists of three 
main elements: (1) the utilization of the models to make predictions of effectiveness 
of therapy and give advice on the therapy with the fasted expected recovery, (2) the 
comparison of the predictions using the models with the actual observed behavior to 
provide feedback to the patient and potentially trigger a process to advise a 
therapeutic change, and (3) the tailoring of the parameters of the models towards the 
behavior of the patient in case this is necessary to guarantee the accuracy of the 
predictions. The overall approach has been evaluated by means of simulations runs, 
and shows that the approach indeed works as expected. Next steps include the 
validation of the models themselves with empirical data, after which the presented 
approach will be deployed as part of a system to be tested with actual patients. 

Within the literature, several computational models incorporating emotions have been 
presented. For instance, [2] presents an example model which involves emotions and the 
influence thereof upon the behavior of an agent. Other examples of models include [9] in 
which agents are programmed that involve emotions in their deliberation process, and 
many more exist. In this paper, the utilization of these models is taken one step further, 
namely to give advice based upon predictions using these models. With respect to the 
identification of trends in the development of the patient (which is a necessity to make a 
comparison possible) as a first step a method has been selected which is close to the 
current approach followed by therapists, but more advanced computational methods 
could be utilized. Furthermore, for the parameter adaptation an exhaustive search 
approach based upon a limited set of allowed parameter values has been selected to 
guarantee the robustness of the model as well as to avoid overfitting. Of course, the 
disadvantage is that large discrepancies can still be present. Therefore, for future work, 
more advanced parameter adaptation techniques will be used, for instance using more 
mathematical-based approaches (see e.g. [12]) or Artificial Intelligence learning 
techniques such as Genetic Algorithms (see e.g. [11]). 
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Abstract. Visibility is one of the major items of meteorological observation. Its 
accuracy is very important to air, sea and highways and transport. A method of 
visibility calculation based on image analysis and learning is introduced in this 
paper. First, visibility image is effectively represented by contrast based vision 
features. Then, a Supported Vector Regression (SVR) based learning system is 
constructed between image features and the target visibility. Consequently, 
visibility can be measured directly from a single inputting image with this 
learning system. The method makes use of the existing video cameras to 
calculate visibility in real time. Specific experiments show that this method has 
the characteristic of low cost, fast calculation, and convenience. Moreover, our 
proposed technology can be used anywhere to measure visibility. 

Keywords: Visibility measuring, Learning, Image contrast. 

1   Introduction 

Visibility is an important item of meteorological observation. It is used in military, 
environment and climate change and so on. Its accuracy is vital to air, sea and 
highways and transport. Besides, it can provide reference of weather condition in 
cities and places of interest for tours. 

Usually, visibility is measured by transilluminators or foreword scattering sensors. 
The basic of the latter device is measuring a small volume of air scattering of light and 
calculating visibility directly using the relation between scattered light intensity and the 
extinction coefficient of the atmosphere [1]. However, these two devices do not work 
well in non-uniform atmosphere. Moreover, their installation and debugging are 
complicated and expensive in the large scale of application. 

There are still several methods to measure visibility from images directly without 
using devices. The dual-target approach [2] does not take into account the inherent 
(reference) contrast. In this method, two targets are set up: one is a certain distance 
from the other. Another approach mentioned in Literature [2, 3] is based edge 
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information and makes use of the relationship among adjacent pixels to evaluate local 
contrast. The relations between contrast and target distance, and visibility and contrast 
are found by curve fitting.  Relative visibility [4] can be used to measure daytime 
visibility as well. The relative visibility is obtained by contrasting and analyzing images 
at the same position, but in different weather. All these methods of visibility 
measurement are based analysis of image contrast. Users need to select scene carefully 
and set targets on purpose. In addition, they are instable and have lower accuracy. 

Recently, Hautiere et al. proposed an approach for road visibility measurement 
using camera calibration and visual analysis [5, 6, 7]. It mainly includes measuring 
techniques based camera calibration and road vision, and based contrast analysis and 
stereo vision depth [8]. Although the approach is a convenient measuring technology, 
it has some limitations: (1) a camera needs to be calibrated precisely in advance. With 
the change of position and angle, the camera requires re-calibration and adjustment; 
(2) it is only suitable to measure visibility of regularly shaped roads, otherwise visual 
model of road can not be created properly, and estimation of the horizontal line’s 
position are more difficult; (3) it is just fit for visibility measurement in foggy weather. 

In this paper, we introduced a method of visibility calculation under development. It 
is based on machine learning and uses video cameras that have already been installed. 
Contrast is selected as the image feature according to edge information, texture changes 
and visual features of the captured images. Contrast is a measurement of the different 
brightness levels between the brightest white and the darkest black in image areas. In 
other word, it is the difference in color and light between parts of an image and 
represents the clarity of images. Contrast can be calculated conveniently using active 
window and multiple spatial scales. There is a certain relationship between contrast and 
visibility. 

The rest of the paper is organized as follows. Section 2 simply describes basic 
principles of measuring visibility from images. And our proposed image based 
visibility learning and measuring is explained in Section 3. Section 4 describes some 
experiments of visibility calculation. Finally, some conclusions and discussions are 
drawn in Section 5. 

2   Principle of Measuring Visibility 

Visibility mentioned in this paper is horizontal visibility-how far you can see looking 
straight ahead. It is meteorologically defined as the maximum distance through the 
atmosphere toward the horizon at which prominent objects can be identified with the 
naked eye. We replace visibility by visual range in actual measurement. 

For an obtained image, denote the luminance values of target and its horizontal 
background by Bt and Bh respectively, and then the contrast of target and background, 
C, is defined as 

C ( ) /t h hB B B= −                                      (1) 

Besides, the contrast satisfies the equation [9] 

0/ dC C e σ−=                                        (2) 
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where, C0, a relative constant, is the inherent luminance contrast of target and 
background; C, the contrast observed from distance d; σ , the extinction coefficient of 
the atmosphere. Visual range V is defined as the distance between object and observer 
when the ratio of the two contrasts reduced to ε which is a physical quantity related to 
human vision, then 

Ve σε −=                                        (3) 

From formula (3), visual range V satisfies the following equation directly:  

 σ
εln−=V

                                         (4) 

It is based on Koschmieder law [10]. Above all, there are two ways of visibility. One is 
to measure σ  using some instruments and calculate visibility according to (4) directly; 
the other, based on visibility definition, is to contrast and analyze the luminance 
contrast of target and background using image processing technology to measure 
visibility. Given that the fist approach needs instrumental assistance, the second are 
selected in our research and its basic principle is introduced in following section. 

International meteorological organization recommends ε=0.02; while the 
International Commission on Illumination suggests ε = 0.05 from a practical standpoint 
[11]. In fact, the value is always determined through many comparative experiments in 
practical observation. We supposeε =0.05 and deduce from formula (4) that,  

3.0
V

σ
=                                           (5) 

From formula (2), we obtained  


0

0

1 1
ln ln

CC

d C d C
σ = − =

                                   (6) 

According formula (5) and (6), visibility can be calculated with the following equation. 

03.0 ln
C

V d
C

= ⋅                                       (7) 

For a single observation, the target is fixed, namely distance d is a constant. Thus, the 
link between contrast and visibility is obviously. Traditionally, contrast is calculated 
according to luminance change of the whole image. However, local contrast, which 
uses edge information to compute contrast for each pixel, is adopted in our research. It 
is more suitable for human vision and more close to original definition of visibility as 
human visual system mainly uses edge information to analyze and recognize objects 
[2, 3]. 

3   Measuring Visibility Based on Image Analysis and Learning 

The first step is the image preprocessing. Images captured in actual observation always 
have some problems. The most common situation of image is that the target is fuzzy 
and many obstacles are contained. In order to quickly locate the target, we have to 
select a region of interest (ROI). The target in the ROI should have obvious edge 
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information; the target and the background, large difference in brightness. Only the 
ROI is analyzed and processed in our research. Images usually contain noise or 
irrelevant information as well. Therefore, image preprocessing has to be performed first 
to improve image quality. Noise is mainly produced by the sensor and circuitry of a 
scanneror digital camera. It also can originate in film grain and in the unavoidable shot 
noise of an ideal photon detector. The origin of noise determines the distribution 
characteristic of noise, which is used to choose preprocessing methods. 

3.1  Measurement of Local Contrast  

According to formula (7), V is a function of d, C0 and C. 

0( , , )V f d C C=                                   (8) 

As mentioned before, d is a constant. If we suppose that there is an inherent 
relationship between C0 and C,  

0 ( )C g C=                                       (9) 

V becomes a function of contrast C. 

( )V h C=                                       (10) 

There are several different definitions of contrast. One of the most famous definitions 
is Michelson contrast. It is often used in psychophysics [6] and introduced to quantify 
the visibility of sinusoidal gratings. 

max min
C

max minM

L L

L L

−=
+

                                   (11) 

where Lmax and Lmin are respectively the maximal and the minimal luminance values of 
the image.  

In Weber’s theory, if L is the environmental luminance and △L is the slightest 
variation of the environmental luminance that can be sensed,   

/WC L L= Δ                                      (12) 

The definitions are both based on luminance. Michelson’ is suitable for sinusoidal 
gratings; Weber’s, for targets evenly distributed. However, when stimuli are more 
complex, neither of them perform well. Moreover, they are not suitable to estimate the 
contrast in spontaneous images either [6]. 

 

Fig. 1. Adjacent pixels of x 

In order to overcome these shortages, we adopt a normalized contrast definition of 
adjacent pixels based on Weber’s.  
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( ) ( )
( , )

max( ( ), ( ))
i

i
i

f x f x
C x x

f x f x

−
=                                (13) 

where, x and xi are pixels; f(x) and f(xi) are corresponding pixel gray values. As shown in 
Fig. 1, there are four adjacent pixels for a pixel x, denoted xi (i = 1, 2, 3, 4). We compute 
contrast C(x, xi) using formula (13) for each adjacent pixel xi, and select the maximum of 
C(x, xi) as the contrast of x. Thus, for an ROI, the local contrast of every pixel can be 
obtained and the number of contrast is the same as that of pixels. If all these contrast is 
used as image feature, curse of dimensionality will happen. In order to decrease 
dimensionality, we apply the 4×4 sub-blocks. It means that an ROI is divided into 16 
blocks, and, to each block, we calculate the mean of local contrasts of pixels contained in 
the block. Then, the image feature is reduced to 16-dimensional. 

3.2   Supervised Learning for Visibility Measuring 

There are many methods to determine the mathematical function of contrasts and 
visibility. In this paper, a Supported Vector Regression (SVR) based learning system is 
constructed between image features and the target visibility. It is a kind of supervised 
learning. The most important for supervised learning is sufficient, typical and accurate 
training data. A large number of images with exact visibility value must be supplied in 
training process. They are captured in various scenarios and conditions. The visibility 
values are established by manual observation or instrumental measurement, for 
example, using transilluminators or foreword scattering sensors.  

 

                

Fig. 2. The flow of training process.        Fig. 3. The flow of testing process. 

According to practical application, the effectiveness of the relationship between 
image features and visibility directly influences the accuracy and robustness of the 
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visibility measuring system. In addition, the learning of data is very large-scaled. 
Considering the above states, SVR is just suitable for our research.  

Support vector machine (SVM) is a computer algorithm that learns by example to 
assign labels to objects. In essence, SVM maps date to a sufficiently high dimension by 
an appropriate nonlinear and constructs an optimal separating hyperplane in the high 
dimension. Many kernel mapping functions can be used in SVM, but a few kernel 
functions have been found to work well in for a wide variety of applications, such as 
Radial Basis Function (RBF), Polynomial and Sigmoid. With different kernel functions 
[12, 13], SVM can be used in various areas, such as dichotomies, multiple-classification 
and function fitting. SVR is the SVM for regression. 

With local contrasts as the image features and visibility values as output, SVR 
builds a mathematical function of contrast and visibility. Thus, the visibilities of images 
can be calculated directly. The training flow of SVR is shown in Fig. 2. First, input an 
image and calculate local contrasts to extract image feature. Second, input the feature to 
the mathematical function. At last, output the visibility in real time. Fig. 3 demonstrates 
the test flow. 

4   Experiments 

The images in our database were all captured by a meteorological observation station 
which is located in the southern suburb of Beijing. They were captured during Nov. 
2010, Dec. 2010 and Jan. 2011. The position in images demonstrated in Fig. 4 is 
Yizhuang Bridge. As shown Fig. 4, we grayed the image and selected unalterable part 
of the image as the ROI and then, chosen the parts with obvious edge information as the 
target of visibility measurement. In other words, the target consisted of chimneys, street 
lamps and building roofs. 

      

Fig. 4. Caputured images of Yizhuang Bridge and their ROIs: (a) under morning,(b)under 
nightfall,(c)under sunny weather,(d)under foggy weather 

Experiments were performed in chronological order from 23rd December 2010 to 
6th January 2011. Training samples of a test were the images captured before the test 
date and SVR was used to calculate visibility values. The specific steps of a test 
includes: first, gray images, select the ROI and preprocess (mainly denoise); second, 
choose the ROI of an image  with clear outline as the standard and transform the ROIs 
of other images to the standard; at last, divide ROIs into 4×4 blocks, calculate the mean 
local contrast for each block and construct image features, 16-dimensional contrasts. 
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Considering that the images captured before 9:00 or after 15:00 usually had low 
visibility, vague targets and fuzzy backgrounds, we chosen the images obtained between 
9:00 and 15:00 as test samples. In addition, we got rid of the images with great errors in 
training set. SVR was used to train and test. It applied v-SVR and RBF as its kernel 
function. 

Using the above method, test result is showed in TABLE 1 and TABLE 2. Column: 
Time shows the execution time of the test, training samples, the number of training 
samples for the current test; test samples, the number of test samples used in the test; 
success, the number of samples whose visibilities had been calculated within 20% 
relative errors; Ratio, the percentage of successfully measured test samples. 

Table 1. Testing results 

Time Training samples Test samples Success Ratio (%) 
2010.12.23 1738 30 30 100 
2010.12.24 1783 51 47 92.16 
2010.12.25 1858 53 46 86.79 
2010.12.26 1911 32 21 65.63 
2010.12.27 1961 53 43 81.13 
2010.12.28 2042 50 47 94 
2010.12.29 2103 41 15 36.59 
2010.12.30 2162 53 41 77.36 
2010.12.31 2232 39 33 84.62 

2011.1.1 2286 53 51 96.23 
2011.1.2 2363 53 16 30.19 
2011.1.3 2430 53 51 96.23 
2011.1.4 2501 53 51 96.23 
2011.1.5 2575 53 45 84.91 
2011.1.6 2657 53 52 98.11 

Table 2. Test Result in January 

Time Training samples Test samples Success Ratio (%) 
2011.1.1 2286 53 51 96.23 
2011.1.3 2286 53 51 96.23 
2011.1.4 2286 53 52 98.11 
2011.1.5 2286 53 45 84.91 
2011.1.6 2286 53 52 98.11 

 

In the fifteen days stated in TABLE 1, there are seven days on which the percentages 
of success are above 90% and eleven days above 80%; only two days have the 
percentages below 40%. The poor percentage should due to low visibilities and fuzzy 
targets in part time of the tested day. Low visibilities and fuzzy targets usually result in 
large deviation in calculation. 

Moreover, the reference values of visibilities were measured by forward scatter 
sensor. The sensor has small sampling area, but camera used in our research has large 
wide-angle and big region. Thus, there are much more difference in visibility between 
reference values and measured values. 

For TABLE 2, the images captured in Dec. 2010 and Nov. 2010 were selected as 
training samples, not containing Jan. 2011; 1st January 2011 to 6th January 2011, as 
testing samples. Considering bad image quantity, the test on 2nd January was cancelled. 
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5   Conclusions 

In our research, the images containing target were captured by video cameras, and 
supervised image learning and visibility real-time calculation were both realized on 
computer. When the target has clear outline and weather changes less severely, the 
visibility measuring system basically satisfies the demands of users. It is proved that the 
methods applied in our research are effective to measure visibility. The system uses video 
cameras that have already been installed and calculate visibility in real time. It also makes 
up the defects of existing instruments when local weather has changed in visibility 
measurement, such as small sampling area, high errors and so on. It is convenient, 
functional and with lower cost. In one word, it is worth promoting. 

Acknowledgments. This work is supported by the R&D Special Fund for Public 
Welfare Industry (Meteorology) of China under Grant No. GYHY201106039 and the 
Fundamental Research Funds for the Central Universities under Grant No. 
FRF-BR-10-034B. 

References 

1. Rossum, M.V., Nieuwenhuizen, T.: Multiple scattering of classical waves: microscopy, 
mesoscopy and diffusion. Rev. Mod. Phys. 71, 313–371 (1999) 

2. Kwon, T.M.: An automatic visibility measurement system based on video cameras. 
Technical Report, Minnesota Department of Transportation. MN/RC- 1998-25 (1998) 

3. Kwon, T.M.: Video camera-based visibility measurement system. United States Patent, 
Patent No.: US6853453 (2005) 

4. Kwon, T.M.: Automatic visibility measurements using video cameras: relative visibility. 
Technical Report, Minnesota Department of Transportation, CTS-04-03 (2004) 

5. Hautiere, N., Tarel, J.-P., Lavenant, J., Aubert, D.: Automatic fog detection and estimation 
of visibility distance through use of an onboard camera. Machine Vision and 
Applications 17(1), 8–20 (2006) 

6. Hautiere, N., Labayrade, R., Aubert, D.: Real-time disparity contrast combination for 
onboard estimation of the visibility distance. IEEE Trans. Intelligent Transportation 
Systems 7(2), 201–212 (2006) 

7. Hautiere, N., Aubert, D., Dumont, E., Tarel, J.-P.: Experimental validation of dedicated 
methods to in-vehicle estimation of atmospheric visibility distance. IEEE Trans. 
Instrumentation and Measurement 57(10), 2218–2225 (2008) 

8. Saxena, A., Chung, S.H., Ng, A.Y.: 3D depth reconstruction from a single still image. 
International Journal of Computer Vision 76(1), 53–69 (2008) 

9. Duntley, S.Q.: The reduction of apparent contrast by the atmosphere. J. Opt. Soc. Am. 38, 
179–191 (1948) 

10. Middleton, W.E.K.: Vision through the atmosphere, vol. 64. University of Toronto Press, 
Toronto (1952) 

11. Dumont, E., Cavallo, V.: Extended photometric model of fog effectson road vision. Transp. 
Res. Rec.: J. Transp. Res. Board (1862), 77–81 (2004) 

12. Schlkopf, B., Burges, C., Vapnik, V.: Extracting support data for a given task. In: Fayyad, 
U.M., Uthurusamy, R. (eds.) Proc. of First Intl. Conf. on Knowledge Discovery & Data 
Mining, pp. 262–267. AAAI Press (1995) 

13. Vapnik, V., Golowich, S., Smola, A.: Support vector method for function approximation, 
regression estimation, and signal processing. In: Mozer, M., Jordan, M., Petsche, T. (eds.) 
Neural Information Processing Systems. MIT Press (1997) 



Polynomial Time Algorithm for Learning

Globally Optimal Dynamic Bayesian Network

Nguyen Xuan Vinh1, Madhu Chetty1, Ross Coppel2, and Pramod P. Wangikar3

1 Gippsland School of Information Technology, Monash University, Australia
2 Department of Microbiology, Monash University, Australia

3 Chemical Engineering Department, Indian Institute of Technology, Mumbai, India
{vinh.nguyen,madhu.chetty,Ross.Coppel}@monash.edu, wangikar@iitb.ac.in

Abstract. This paper is concerned with the problem of learning the
globally optimal structure of a dynamic Bayesian network (DBN). We
propose using a recently introduced information theoretic criterion named
MIT (Mutual Information Test) for evaluating the goodness-of-fit of the
DBN structure. MIT has been previously shown to be effective for learn-
ing static Bayesian network, yielding results competitive to other popu-
lar scoring metrics, such as BIC/MDL, K2 and BD, and the well-known
constraint-based PC algorithm. This paper adapts MIT to the case of
DBN. Using a modified variant of MIT, we show that learning the glob-
ally optimal DBN structure can be efficiently achieved in polynomial
time.

Keywords: Dynamic Bayesian network, global optimization, gene reg-
ulatory network.

1 Introduction

Bayesian network (BN) is a central topic in machine learning, and has found
numerous applications [8]. Two important disadvantages when applying the tra-
ditional static BN model to certain domain problems, such as gene regulatory
network reconstruction in bioinformatics, are: (i) BN does not have a mecha-
nism for exploiting the temporal aspect of time-series data; and (ii) BN does
not allow the modeling of cyclic phenomena, such as feed back loops, which
are prevalent in biological systems [13, 9]. These drawbacks have motivated the
development of the so-called dynamic Bayesian network (DBN). The simplest
model of this type is the first-order Markov stationary DBN, in which both the
structure of the network and the parameters characterizing it are assumed to
remain unchanged over time, as exemplified in Fig. 1a. In this model, the value
of a random variable (RV) at time t+1 is assumed to depend only on the value of
its parents at time t. DBN accounts for the temporal aspect of time-series data,
in that an edge must always direct forward in time, and allows feedback loops
(Fig. 1b). Since its inception, DBN has received particular interest, especially
from the bioinformatics community [7, 13, 14, 12]. Recent works in the machine
learning community have progressed to allow more flexible DBN models, such as
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one with, either parameters [5], or both structure and parameters [10,4] changing
over time. It is worth noting that more flexible models generally require more
data to be learned accurately. In situations where training data are scarce, such
as in microarray experiments where the data size can be as small as a couple of
dozen samples, a simpler model such as the first-order Markov stationary DBN
might be a more suitable choice.

      t                 t+1    

A 

B 

C 

A 

B 

C 

(a)

A B 

C 

(b)

N-1 N 2 1 

...

...

Xj 

Xi 

(c)

Fig. 1. Dynamic Bayesian Network: (a) 1st order Markov stationary DBN; (b) its
equivalent folded network; (c) data alignment for dynamic Bayesian network with an
edge Xj → Xi. The “effective” number of observations is now only N − 1.

In this paper, we focus on the problem of learning the globally optimal struc-
ture for the first-order Markov stationary DBN. Henceforth, DBN shall refer
to this particular class of stationary DBN, and learning shall refer to struc-
ture learning. The most popular approaches for learning DBN have been the
ones adapted from the static BN literature, namely the search+score paradigm
[13, 12], and Markov Chain Monte Carlo (MCMC) simulation [7, 4, 10]. In this
paper, we are interested in the search+score approach, in which we specify a
scoring function to assess the goodness-of-fit of a DBN given the data, and
a search procedure to find the optimal network based on this scoring metric.
Several popular scores for static BN, such as the Bayesian scores (K2, Bayesian-
Dirichlet (BD), BDe and BDeu), and the information theoretic scores (Bayesian
Information Criterion (BIC)/minimal description length (MDL) and Akaike In-
formation Criterion—AIC), can be adapted straightforwardly for DBN. Another
recently introduced scoring metric that catches our interest is the so-called MIT
(Mutual Information Test) score [1], which, as the name suggests, belongs to the
family of scores based on information theory. Through extensive experimental
validation, the author suggests that MIT can compete favorably with Bayesian
scores, outperforms BIC/MDL and should be the score of reference within those
based on information theory. As opposed to the other popular scoring metrics,
MIT has not been considered for DBN learning to our knowledge.

As for the search part, due to several non-encouraging complexity results (i.e.,
NP-hardness) in learning static BN [2], most authors have resorted to heuris-
tic search algorithms when it comes to learning DBN. Recently, Dojer [3] has
shown otherwise that learning DBN structure, as opposed to static BN, does not
necessarily have to be NP-hard. In particular, this author showed that, under
some mild assumptions, there are algorithms for finding the globally optimal
network with a polynomial worst-case time complexity, when the MDL and BDe
scores are used. In the same line of these findings, in this paper, we shall show
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that there exists a polynomial worst-case time complexity algorithm for learn-
ing the globally optimal DBN under the newly introduced MIT scoring metric.
Our experimental results show that, in terms of the recovered DBN quality,
MIT performs competitively with BIC/MDL and BDe. In terms of theoretical
complexity analysis, globalMIT admits a comparable worst-case complexity to
the BIC/MDL-based global algorithm, and is much faster than the BDe-based
algorithm. The paper is organized as follows: in Section 2 we review the MIT
score for DBN learning. Section 3 presents our algorithm for finding the globally
optimal network, followed by experimental results in section 4.

2 MIT Score for Dynamic Bayesian Network Learning

Let us first review the MIT score for learning BN, which can then be adapted
to the DBN case. Briefly speaking, under MIT the goodness-of-fit of a network
is measured by the total mutual information shared between each node and its
parents, penalized by a term which quantifies the degree of statistical significance
of this shared information. Let X = {X1, . . . , Xn} denote the set of n variables
with corresponding {r1, . . . , rn} discrete states, D denote our data set of N
observations, G be a DAG, and Pai = {Xi1, . . . , Xisi} be the set of parents of
Xi in G with corresponding {ri1, . . . , risi} discrete states, si = |Pai|, then the
MIT score is defined as:

SSMIT (G : D) =
∑n

i=1;Pai �=∅{2N · I(Xi, Pai) −∑si
j=1 χα,liσi(j)

}

where I(Xi,Pai) is the mutual information between Xi and its parents as es-
timated from D. χα,lij is the value such that p(χ2(lij) ≤ χα,lij ) = α (the Chi-
square distribution at significance level 1−α), and the term liσi(j) is defined as:

liσi(j) =

{
(ri − 1)(riσi(j) − 1)

∏j−1
k=1 riσi(k), j = 2 . . . , si

(ri − 1)(riσi(j) − 1), j = 1

where σi = {σi(1), . . . , σi(si)} is any permutation of the index set {1 . . . si} of
Pai, with the first variable having the greatest number of states, the second
variable having the second largest number of states, and so on. It can be shown
that the mutual information part of the score is equivalent to the log-likelihood
score, while the second part serves as a penalty term. For detailed motivations
and derivation of this scoring metric as well as an extensive comparison with
BIC/MDL and BD, we refer readers to [1].

Adapting MIT for DBN learning is rather straightforward. Essentially, the
mutual information is now calculated between a parent set and its child, which
should be 1-unit shifted in time, as required by the first-order Markov assump-
tion, denoted by X

−→
1

i = {Xi2, Xi3, . . . , XiN}. As such, the number of “effective”
observations, denoted by Ne, for DBN is now only N − 1. Similarly, when the
data is composed of Nt separate time-series, the number of effective observations
is only Ne = N − Nt. This is demonstrated in Figure 1(c). The MIT score for
DBN should be calculated as:

S′
MIT (G : D) =

n∑
i=1;Pai �=∅

{2Ne.I(X
−→
1

i ,Pai) −
si∑

j=1

χα,liσi(j)}
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3 Optimal Dynamic Bayesian Network Structure
Learning in Polynomial Time with MIT

In this section, we show that learning the globally optimal DBN with MIT can
be achieved in polynomial time. Our development is based on a recent result
presented in [3], which states that under several mild assumptions, there exists a
polynomial worst-case time complexity algorithm for learning the optimal DBN
with the MDL and BDe scoring metrics. Specifically, the 4 assumptions that
Dojer [3] considered are:

Assumption 1. (acyclicity) There is no need to examine the acyclicity of the
graph.

Assumption 2. (additivity) S(G : D) =
∑n

i=1 s(Xi,Pai : D|Xi∪Pai) where
D|Xi∪Pai denotes the restriction of D to the values of the members of Xi ∪Pai.

To simplify notation, we write s(Pai) for s(Xi,Pai : D|Xi∪Pai).

Assumption 3. (splitting) s(Pai) = g(Pai) + d(Pai) for some non-negative
functions g,d satisfying Pai ⊆ Pa′

i ⇒ g(Pai) ≤ g(Pa′
i)

Assumption 4. (uniformity) |Pai| = |Pa′
i| ⇒ g(Pai) = g(Pa′

i)

Assumption 1 is valid for DBN in general (since the edges only directs forward
in time, acyclicity is automatically satisfied). Assumption 2 states that the scor-
ing function decomposes over the variables, which is obvious for MIT. Together
with assumption 1, this assumption allows us to compute the parents set of
each variable independently. Assumption 3 requires the scoring function to de-
compose into two components: d evaluating the accuracy of representing the
distribution underlying the data by the network, and g measuring its complex-
ity. Furthermore, g is required to be a monotonically non-decreasing function in
the cardinality of Pai (assumption 4).

We note that unlike MIT in its original form that we have considered above,
where better networks have higher scores, for the score considered by Dojer, lower
scored networks are better. And thus the corresponding optimization must be
cast as a score minimization problem. We now consider a variant of MIT as
follows:

SMIT (G : D) =
∑n

i=1 2Ne.I(X
−→
1

i , X) − S′
MIT (G : D) (1)

which admits the following decomposition over each variable (with the conven-
tion of I(Xi, ∅) = 0):

sMIT (Pai) = dMIT (Pai) + gMIT (Pai)

dMIT (Pai) = 2Ne.I(X
−→
1

i ,X) − 2Ne.I(X
−→
1

i ,Pai)

gMIT (Pai) =
∑si

j=1 χα,liσi(j)
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Roughly speaking, dMIT measures the “error” of representing the joint distri-
bution underlying D by G, while gMIT measures the complexity of this repre-
sentation. It is obvious that the problem of S′

MIT maximization is equivalent to
the problem of SMIT minimization, since

∑n
i=1 2Ne.I(X

−→
1

i ,X) = const. Also, it
is straight-forward to show that dMIT and gMIT satisfy assumption 3. Unfortu-
nately, gMIT does not satisfy assumption 4. However, for many applications, if
all the variables have the same number of states then it can be shown that gMIT

satisfies assumption 4.

Assumption 5. (variable uniformity) All variables in X have the same number
of discrete states k.

Proposition 1. Under the assumption of variable uniformity, gMIT satisfies
assumption 4.

Proof. It can be seen that if |Pai| = |Pa′
i| = si, then gMIT (Pai) = gMIT (Pa′

i) =∑si

j=1 χα,(k−1)2kj−1 . ��
Since gMIT (Pai) is the same for all parent sets of the same cardinality, we can
write gMIT (|Pai|) in place of gMIT (Pai). With assumptions 1-5 satisfied, we
can employ the following Algorithm 1, named globalMIT, to find the globally
optimal DBN with MIT, i.e., the one with the minimal SMIT score.

Algorithm 1. globalMIT : Optimal DBN with MIT
Pai := ∅
for p = 1 to n do

If gMIT (p) ≥ sMIT (Pai) then return Pai; Stop.
P = arg min{Y⊆X:|Y|=p} sMIT (Y)
If sMIT (P) < sMIT (Pai) then Pai := P.

end for

Theorem 1. Under assumptions 1-5, globalMIT applied to each variable in X
finds a globally optimal DBN under the MIT scoring metric.

Proof. The key insight here is that once a parent set grows to a certain extent,
its complexity alone surpasses the total score of a previously found sub-optimal
parent set. In fact, all the remaining potential parent sets P omitted by the
algorithm have a total score higher than the current best score, i.e., sMIT (P) ≥
gMIT (|P|) ≥ sMIT (Pai), where Pai is the last sub-optimal parent set found. ��

We note that the terms 2Ne.I(X
−→
1

i ,X) in the SMIT score in (1) do not play any
essential role, since they are all constant and would not affect the outcome of
our optimization problem. Knowing their exact value is however, necessary for
the stopping criterion in Algorithm 1, and also for constructing its complexity
bound, as we shall do shortly. Unfortunately, calculating I(X

−→
1

i ,X) is by itself
a hard problem, requiring O(kn+1) space and time in general. However, for our
purpose, since the only requirement for dMIT is that it must be non-negative,
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it is sufficient to use an upper bound of I(X
−→
1

i ,X). A fundamental property of
the mutual information states that I(X,Y) ≤ min{H(X), H(Y)}, i.e., mutual
information is bounded by the corresponding entropies. We therefore have:

2Ne.I(X
−→
1

i ,X) ≤ 2Ne.H(X
−→
1

i ),

where H(X
−→
1

i ) can be estimated straightforwardly from the data. Or else, we
can use an a priory fixed upper bound for all H(X

−→
1

i ), that is log k, then:

2Ne.I(X
−→
1

i ,X) ≤ 2Ne. log k.

Using these bounds, we obtain the following more practical versions of dMIT :

d′MIT (Pai) = 2Ne.H(X
−→
1

i )− 2Ne.I(X
−→
1

i ,Pai)

d′′MIT (Pai) = 2Ne. log k − 2Ne.I(X
−→
1

i ,Pai)

It is straightforward to show that Algorithm 1 and Theorem 1 are still valid
when d′MIT or d′′MIT are used in place of dMIT .

3.1 Complexity Bound

Theorem 2. globalMIT admits a polynomial worst-case time complexity in the
number of variables.

Proof. Our aim is to find a number p∗ satisfying gMIT (p∗) ≥ sMIT (∅). Clearly,
there is no need to examine any parent set of cardinality p∗ and over. In the
worse case, our algorithm will have to examine all the possible parent sets of
cardinality from 1 to p∗ − 1. We have:

gMIT (p∗) ≥ sMIT (∅) ⇔
p∗∑

j=1

χα,liσi(j) ≥ dMIT (∅) = 2Ne.I(X
−→
1

i , X).

As discussed above, since calculating dMIT is not convenient, we use d′MIT and
d′′MIT instead. With d′MIT and d′′MIT , p∗ can be found respectively as:

p∗ = argmin{p|∑p
j=1 χα,liσi(j) ≥ 2Ne.H(X

−→
1

i )} (2)

p∗ = argmin{p|∑p
j=1 χα,liσi(j) ≥ 2Ne. log k}. (3)

It can be seen that p∗ depends only on α, k andNe. Since there areO(np∗
) subsets

with at most p∗ parents, and each set of parents can be scored in polynomial
time, globalMIT admits an overall polynomial worst-case time complexity in the
number of variable n. ��
We now give some examples to demonstrate the practicability of Theorem 2.
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Example 1: Consider a gene regulatory network reconstruction problem, where
each gene has been discretized to k = 3 states, corresponding to up, down
and regular gene expression. With the level of significance α set to 0.999 as
recommended in [1], we have gMIT (1) = 18.47; gMIT (2) = 51.37; gMIT (3) =
119.35 . . . Consider a data set ofN = 12 observations, which is the popular length
of microarray time-series experiments (in factN often ranges within 4−15), then
d′′MIT (∅) = 2(N − 1) log k = 24.16. Observing that gMIT (2) > d′′MIT (∅), then
p∗ = 2 and we do not have to consider any parent sets of 2 variables or more.
Let us compare this bound with those of the algorithms for learning the globally
optimal DBN under the BIC/MDL and BDe scoring metrics. For BIC/MDL,
p∗MDL is given by �logk N�, while for BDe, p∗BDe = �N logγ−1 k�, where the
distribution P (G) ∝ γ

∑ |Pai|, with a penalty parameter 0 < γ < 1, is used as
a prior over the network structures [3]. In this case, p∗MDL = 3. If we choose
log γ−1 = 1 then p∗BDe = �N log k� = 14. In general, p∗BDe scales linearly with
the number of data items N , making its value less of practical interest, even for
small data sets.

Example 2: Since the number of observations in a single microarray time-
series experiment is often limited, it is a popular practice to concatenate several
time-series to obtain a larger data set for analysis. Let us merge Nt = 10 data
sets, each with 12 observations, then Ne = N − Nt = 120 − 10 = 110. For
this combined data set, gMIT (4) > d′′MIT (∅) = 2Ne log k = 241.69 ⇒ p∗ = 4,
thus there is no need to consider any parent set of more than 3 variables. Of
course, this analysis only gives us the worst-case time complexity. In practice,
the execution of Algorithm 1 can often be much shorter, since sMIT (Pai) is
often much greater than sMIT (∅). For comparison, we have p∗MDL = 5, and
p∗BDe = 132 with log γ−1 = 1.

4 Experimental Evaluation

We next describe our experiments to evaluate our global approach for learning
DBN with MIT, and compare it with the other most popular scores, namely
BIC/MDL and BD. Our method, implemented in Matlab, was used, along with
BNFinder [12], a Python-based software for inferring the globally optimal DBN
with the MDL and BDe scores as proposed by Dojer [3]. In addition, we also
employed the Java-based Banjo software [6], which can perform greedy search
and simulated annealing over the DBN space using the BDeu metric. The specific
problem domain that we shall work with in this experiment is the problem of gene
regulatory network reconstruction from microarray data, with the variables being
genes, and edges being regulatory relationship between genes. We employ several
synthetic data sets generated by different data generation schemes that have been
used in some previous studies, namely, probabilistic method [7], linear dynamical
system based method [13], and non-linear dynamical system based method [11].
As a realistic number of samples for microarray data, we generated data sets
of between 30 and 300 samples. With the ground-truth network available, we
count the number of true positive (TP), false positive (FP), true negative (TN)
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and false negative (FN) edges, and report two network quality metrics, namely
sensitivity= TP/(TP+FN), and imprecision=FP/(FP+TP).

Parameters setting: globalMIT has one parameter, namely the significance
level α, to control the trade-off between goodness-of-fit and network complexity.
Adjusting α will generally affect the sensitivity and imprecision of the discovered
network, very much like its affect on the Type-I and Type-II error of the mutual
information test of independence. de Campos [1] suggested using very high levels
of significance, namely 0.999 and 0.9999. We note that, the data sets used in [1]
are of sizes from 1000 to 10000 samples. For microarray data sets of merely
30 − 300 samples, it is necessary to use a lower level of significance α to avoid
overly penalizing network complexity. We have experimentally observed that
using α ∈ [0.95, 0.999] on these small data sets yielded reasonable results, with
balanced sensitivity and imprecision. BNFinder+MDL required no parameter
tuning, while for BNFinder+BDe, the pseudo-counts for the BDe score was set
to the default value of 1, and the penalty parameter was set to the default
value of log γ−1 = 1. For Banjo, we employed simulated annealing as the search
engine, and left the equivalent sample size to the default value of 1 for the
BDeu score, while the max-fan-in was set to 3. The runtime for Banjo was set
to the average runtime of globalMIT, with a minimum value of 10 minutes,
in case where globalMIT terminates earlier. Since some experiments were time
consuming, all our experiments were performed in parallel on a 16-core Xeon
X5550 workstation.

Probabilistic Network Synthetic Data: We employed a subnetwork of the
yeast cell cycle, consisting of 12 genes and 11 interactions, as depicted in Fig.
2(a). Two different conditional probabilities were associated with these interac-
tions, namely noisy regulation according to a binomial distribution, and noisy
XOR-style co-regulation (see [7] for the parameter details, and this author web-
site for Matlab code to generate this data). In addition, 8 unconnected nodes
were added as confounders, for a total of 20 nodes. For each number of samples
N = 30, 70 and 100, we generated 10 data sets. From the average statistics in
Table 1, it can be seen that this is a relatively easy case for all methods. Except
Banjo which committed a lower sensitivity and yet a higher imprecision, all other
methods nearly recovered the correct network. Note that due to the excessive
runtime of BNFinder+BDe, for N = 100, only 1 of ten data sets was analyzed.

 

(a) The yeast cell cycle (b) Yu’s net No. 1 (c) Yu’s net No. 2

Fig. 2. Synthetic Dynamic Bayesian Networks
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Linear Dynamical System Synthetic Data: We employed the two synthetic
networks as described in [13], each consisting of 20 genes, with 10 and 11 genes
having regulatory interaction, while the remainder moving in a random walk,
as depicted in Fig. 2(b,c). The data are generated by a simple linear dynamical
process as:Xt+1−Xt = A(Xt−T )+ε, with X denoting the expression profiles, A
describes the strength of gene-gene regulations, T is the constitutive expression
values, and ε simulates a uniform biological noise. The detailed parameters for
each network can be found in [13]. Using the GeneSim software provided by
these authors, we generated, for each number of sample N = 100, 200 and 300,
10 data sets for each network. From the average statistics in Table 1, it can be
seen that Banjo performed well on both data sets. BNFinder achieved a slightly
lower sensitivity, but with very high imprecision rate. It is probable that the
self-link suppression default option in BNFinder has led the method to include
more incorrect edges to the network for a reasonable goodness-of-fit. GlobalMIT
performed worse at N = 100, but is better at higher number of samples. Again,
due to time limit, we were only able to run BNFinder+BDe on one out of ten
data sets for each network at N = 200 and 300.

Table 1. Experimental Results

Probabilistic Network Synthetic Data

N
GlobalMIT Banjo BNFinder+MDL BNFinder+BDe

Sen Imp Time Sen Imp Time Sen Imp Time Sen Imp Time

30 95 ± 9 29 ± 13 13 ± 3 84 ± 6 70 ± 4 600 86 ± 10 10 ± 9 < 2 85 ± 8 11 ± 11 52 ± 4

70 100 ± 0 1 ± 3 67 ± 4 82 ± 0 51 ± 6 600 100 ± 0 5 ± 7 25 ± 1 100 ± 0 3 ± 4 2.7 ± 0.5h

100 100 ± 0 0 ± 0 499 ± 56 82 ± 0 43 ± 2 600 100 ± 0 1 ± 3 34 ± 1 100 0 9.4h∗

Linear Dynamical System Synthetic Data: Yu’s net No. 1

100 54 ± 12 54 ± 13 66 ± 5 58 ± 9 35 ± 16 600 58 ± 9 72 ± 4 4 ± 1 67 ± 7 74 ± 4 4.4 ± 1.3h

200 77 ± 4 19 ± 9 409 ± 127 67 ± 5 8 ± 9 600 66 ± 4 74 ± 2 47 ± 5 67 84 13.6h∗

300 79 ± 4 19 ± 12 .6 ± .07h 69 ± 7 4 ± 6 0.6h 68 ± 4 77 ± 2 49 ± 5 67 84 26.5h∗

Linear Dynamical System Synthetic Data: Yu’s net No. 2

100 22 ± 15 72 ± 17 44 ± 8 38 ± 11 59 ± 13 600 28 ± 12 83 ± 7 3 ± 1 30 ± 16 86 ± 7 3.3 ± 0.8h

200 49 ± 15 35 ± 19 534 ± 158 45 ± 14 37 ± 16 600 38 ± 8 79 ± 4 39 ± 5 42 85 12.1h∗

300 62 ± 12 24 ± 11 .49 ± .05h 53 ± 9 17 ± 13 0.49h 47 ± 9 78 ± 4 40 ± 6 50 85 21.2h∗

Non-Linear Dynamical System Synthetic Data

99 37 ± 10 59 ± 12 < 1 7 ± 3 13 ± 32 600 13 ± 11 81 ± 14 < 1 16 ± 13 77 ± 17 < 1

150 39 ± 16 58 ± 16 < 1 9 ± 11 16 ± 35 600 19 ± 15 71 ± 23 < 1 24 ± 18 67 ± 24 < 1

300 61 ± 7 51 ± 6 < 1 10 ± 12 30 ± 48 600 24 ± 14 74 ± 14 < 1 23 ± 20 80 ± 15 < 1

Sen: percent sensitivity; Imp: percent imprecision; Time: in seconds, unless otherwise specified
∗: only run on one data set.

Non-Linear Dynamical System Synthetic Data: We employed a five-gene
network as in [11], of which dynamics is modeled by a system of coupled differ-
ential equations adhering to the power-law formalism, called the S-system. The
concrete form of an S-system is given as follows:

dXi

dt
= αi

n∏
j=1

X
gij

j − βi

n∏
j=1

X
hij

j , i = 1 . . . n, (4)

where the rates αi, βi and kinetic orders gij and hij are parameters dictating
the influence of gene Xj on the rate of change in the expression level of gene
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Xi. Using the same system parameters as in [11], we integrated the system using
the Runge-Kutta method with 10 different initial conditions to obtain 10 time
series, each of length 50. We then randomly chose 3 time series of length 33, 3
of length 50 and 6 of length 50, to make data sets of length N = 99, 150 and 300
respectively, with 10 data sets for each N value. Although this data had been
previously analyzed with good accuracy by using differential equation models,
it proved to be the most challenging case for DBN based methods. Even with
a fairly large number of samples, compared to a small number of variables and
interactions, all the methods performed poorly, with low sensitivity and high
imprecision, rendering the results hardly useful. GlobalMIT nevertheless showed
a slight advantage, with a reasonable sensitivity and imprecision at N = 300.

5 Conclusion

This paper has investigated the problem of learning the globally optimal DBN
structure with the MIT scoring metric. We have showed that this task can be
achieved using a polynomial time algorithm. Compared with the other well-
known scoring metrics, namely BIC/MDL and BDe, both in terms of the worst-
case complexity bound and practical evaluation, the BIC/MDL-based algorithm
for learning the globally optimal DBN is fastest, followed by MIT, whereas the
extensive runtime required by the BDe-based algorithm renders it a very ex-
pensive option. GlobalMIT, which is based on a sound information theoretic
criterion, represents a very competitive alternative, both in terms of the net-
work quality and runtime required.

Acknowledgments. This project is supported by an Australia-India strategic
research fund (AISRF). Implementation of the proposed algorithms in Matlab
and C++ is available at http://code.google.com/p/globalmit.
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Abstract. A new approach to detect and classify fault conditions of induction 
motors using a hybrid Fuzzy Min-Max (FMM) neural network and the 
Classification and Regression Tree (CART) is proposed.  The hybrid model, 
known as FMM-CART, exploits the advantages of both FMM and CART for 
undertaking data classification and rule extraction problems.  A series of 
experiments using real data measurements of motor currents from healthy and 
faulty induction motors is conducted.  FMM-CART is able to detect and 
classify the associated inductor motor faults with good accuracy rates.  Useful 
rules in the form of a decision tree are also elicited from FMM-CART to 
analyze and understand different fault conditions of induction motors. 

Keywords: Fault detection and diagnosis, fuzzy min-max neural network, 
classification and regression tree, induction motor. 

1   Introduction 

Electric motors are widely used for converting electrical energy to mechanical energy.  
In real applications, it is important for electrical motors to have a continuous and safe 
operation.  As such, effective fault detection and diagnosis techniques are needed in 
order to reduce maintenance and downtime of motors.  Among different types of 
electric motors, induction motors contribute more than 60% of the electrical energy 
produced [1].  It is reported in [2-3] that shipment of AC motors and three-phase 
induction motors in Europe are at 96.2% and 87%, respectively.  As such, the present 
study aims at designing an effective and low-cost approach to detecting and 
classifying fault conditions of induction motors. 

The Motor Current Signature Analysis (MCSA) approach, which is a low-cost and 
convenient method for fault detection and diagnosis, is deployed in this study.  
MCSA deploys the results of spectral analysis of the supply current to detect a 
particular motor failure in the drive system.  An effective use of MCSA in fault 
detection of induction motors is to sample the harmonics components in the stator 
current spectrum using the fast Fourier transform (FFT) [4], which is employed in this 
study. 
                                                           
* Corresponding author. 



 A Hybrid FMM-CART Model for Fault Detection and Diagnosis of Induction Motors 731 

In terms of fault diagnosis, rule extraction plays an important role to provide 
explanation of the predictions to users.  It is reported in [5] that early detection of 
induction motor faults increases the safety of operators handling the machines, and 
the rules extracted from decision trees and adaptive neuro-fuzzy inference serve to 
achieve this purpose.  In [6], rules for unbalanced supply, unbalanced mechanical 
load, encoder, and voltmeter failures are extracted from a neuro-fuzzy system.   

The organization of this paper is as follows. In Section 2, the proposed FMM-
CART model is explained. The experimental study, the results and discussion are 
included in Section 3.  Finally, concluding remarks are given in Section 4. 

2   The Hybrid FMM-CART Model 

Two FMM neural network models were proposed by Simpson: one for pattern 
classification (a supervised learning model) [7] and another for pattern clustering (an 
unsupervised learning model) [8].  The supervised FMM network has the capability 
of learning and adapting to new classes, while refining the existing classes quickly 
[7].  The training time is short as FMM only needs one pass to learn and refine its 
decision boundaries.  Owing to these advantages, we use FMM to form a hybrid 
learning model with CART, known as FMM-CART. 

Figure 1 depicts a flowchart of the proposed FMM-CART model.  Data samples 
for FMM training are taken from the outputs of Power Spectral Density (PSD). The 
centroid of the FMM hyperboxes form a crisp data set for tree building based on the 
CART procedure. The resulting tree is pruned in order to get a simpler tree. Tree 
optimization is accomplished in order to ensure that there is no over-fitting. The 
resulting tree is then used for fault classification. The dynamics of FMM-CART are 
further explained, as follows. 

 

Fig. 1. Flow chart of FMM-CART hybrid model 

FMM constitutes the first part of FMM-CART.  The FMM classification model is 
formed using hyperbox fuzzy sets.  The size of a hyperbox is controlled by θ, which 
varies between 0 and 1.  When θ increases from a small to a large value, the number 
of hyperboxes created is reduced.  The membership function is set with respect to the 
minimum and maximum points of a hyperbox, and to the extent to which a pattern fits 
in the hyperbox. Further details of FMM can be found in [7]. 

In FMM, the weights contain the minimum and maximum points of a hyperbox.  
These weights do not represent the centroid of data samples contained in each 
hyperbox. Anew set of weights that encode the centroid of data samples is introduced 
in FMM-CART. The centroids of data samples are needed as the learning set of 
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CART [9] for rule extraction and fault classification.  The centroid is calculated 
based on a recursive mean computation of data samples contained in each hyperbox. 
Figure 2 shows a two-dimensional hyperbox with the minimum and maximum points 
as well as the centroid of data samples contained in the hyperbox. 

 

Fig. 2. The centroid point of a two-dimensional hyperbox s 

CART has the advantages of handling both numerical and categorical variables that 
are highly skewed. The structure of the tree does not change when any variable in its 
logarithm or root square values are replaced. The procedure of CART consists of three 
basic steps.  The first step is tree building. A tree is built using recursive splitting of 
nodes, which the rule performs splitting of learning samples into smaller parts.  Based 
on the decision matrix from the distribution of classes in the learning set, each resulting 
node is assigned a predicted class. Trees in CART consist of internal nodes and leaf 
nodes [10]. Tree pruning, the second step, is a sequence of generation of simpler trees.  
Pruning the tree is necessary to improve the classification accuracy rate. Here, the 
method of cost-complexity pruning [10] is used.  It is based on a complexity parameter 
which is gradually increased during the pruning process.  The final step consists of 
optimal tree selection. The data samples are divided into two sub-sets, one for learning 
which is used to split nodes and another for testing, which compares the 
misclassification rates for the sub-trees. As trees grow larger, the misclassification cost 
for the learning data decreases gradually. The final tree is then be used for motor fault 
classification.  Further details of CART can be found in [9].  

3   Experimental Study 

MCSA relies on the spectral analysis of the stator currents, or more precisely the 
supply currents of an induction motor, to detect an incipient fault.  In this study, PSD 
is used to extract information from a signal and to describe the power distribution in 
the frequency domain.  PSD is the Fourier transform of the auto-correlation function 
of a signal when the signal is stationary [11]. PSD is not restricted to using one 
specific harmonic for fault detection.  The features extracted from PSD are fed to 
FMM-CART for fault detection and diagnosis.  An overview of the experimental 
procedure is shown in Figure 3. 
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Fig. 3. The experimental procedure of induction motor fault detection and diagnosis 

The experiment was conductedwith a laboratory-scale test rig.  As shown in 
Figure 4, the test rig comprises an oscilloscope (1), three current probes (2), an 
induction motor (3), a belt, shaft, a load inducer (4), and a load controller (5).  
During the experiment, induction motors with 2 Hp, 415V, 50 Hz, 4-pole were 
operated with 25%, 50%, 75%, and full load conditions.  Three AC current probes 
were used to measure the stator currents, and the maximum measurement frequency 
was 50 kHz.  Such induction motor configuration is commonly found in many 
industrial settings[2-3].  As an example, motors smaller than 10 Hp have a market 
share of 59.6% in Europe [2], and 4-pole motors account for 70% of the total 
induction motors in Europe [3]. 

 

Fig. 4. Experimental setup 

Three major types of induction motors faults are evaluated in this study, i.e., stator 
winding faults, eccentricity problems, and unbalanced voltage conditions.  Stator 
winding faults constitute almost 38% of induction motors faults [4, 12].  The main 
cause of stator winding faults is short circuit between a phase winding and the ground 
or between two phases [13].  Note that initial undetected turn-to-turn faults may 
gradually develop to a major short circuit, and may have a destructive effect on the 
stator coils [13].  On the other hand, rotor eccentricity-related faults commonly occur 
as a result of bearing faults [14], which accounts for 40% of induction motor 
problems [4, 12].  Note that eccentricity faults can cause rotor-to-stator rub, resulting 
in damage of rotor and/or stator winding.  Another important fault is related to 
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unbalanced voltage conditions, which occur when the magnitudes of two line voltages 
become different.  Unbalanced voltages lead to a shorterlife span of induction 
motors. 

In this study, the induction motor was operated with 10% turn shorts in one out of 
the three phases having stator windings short.  For eccentricity problems, the 
induction motors were operated with 30% dynamic eccentricity and 10% static 
eccentricity.  In unbalanced voltage conditions, the induction motor was operated by 
biasing one of three-phase unbalanced voltages by 5% (395V), followed by 10% 
(374V).  The PSD outputs comprised a 1000 Hz frequency spectrum, from the 1st to 
19th harmonics.  Note that in a balanced three-phase system, the triplen harmonic 
voltages are zero [15].  As such, the 3rd, 9th, and 15th harmonics were discarded in this 
study.  The FMM-CART model received a total of 21 features comprising the 1st, 5th, 
7th, 11th, 13th, 17th, and 19th harmonics from phases A, B, and C.  The output of 
FMM-CART was the prediction of four motor conditions, with classes 1, 2, 3, 4 
indicating healthy motor, stator winding faults, eccentricity faults, and unbalanced 
voltage conditions, respectively. 

3.1   Experimental Results and Analysis 

Multiple trial-and-error runs were conducted using current signals from the motor 
with the parameters as per the specifications in Section 3. All the data samples were 
normalized between 0 and 1. The cross validation method, a realistic assessment of 
the overall network performance, was adopted. A total of 1000 data samples were 
generated, and divided equally into five sub-sets. Four sub-sets were used for learning 
and the remaining for testing. As such, the experiment was repeated five times, each 
time with a new sub-set of data samples for testing. The results (averages and 
standard deviations) were computed using the bootstrap method [16] with 5000 re-
samplings. Using an Intel Core 2 Duo 2.80 GHz processor with 4 GB RAM on 
MATLAB® R2010a, the computational time taken by a single run of the cross-
validation experiment was also recorded. For performance comparison, four different 
models, viz., the Multi-Layer Perceptron (MLP) network, FMM, CART, and FMM-
CART were evaluated.  Table 1 shows a summary the overall results. 

Table 1. Classification results ofinduction motor conditions 

Model 
 

Accuracy 
(%) 

Standard Deviation 
of Accuracy (%) 

Model 
Complexity 

Time 
(sec) 

MLP 94.77 12.76 19 Hidden Nodes 2.01 
FMM 96.61 3.21 8Hyperboxes 0.52 
CART 98.48 2.12 4 Leafs 0.88 

FMM-CART 99.08 1.05 4 Leafs 0.83 
 

From Table 1, MLP produced the lowest accuracy of 94.77%, with 19 hidden nodes.  
FMM yielded 96.61% accuracy with 8hyperboxes.  CART and FMM-CART achieved 
98.48% and 99.08% accuracy, each with 4 leafs.  Note that CART used all data samples 
to produce 98.48% accuracy, while FMM used only 30% of data samples to achieve 
96.61% accuracy.  In FMM-CART, the hyperboxes resulted from FMM training further 
reduced the number of data samples to only 15%.  These data samples were used by 
FMM-CART to produce the best accuracy rate of 99.08%. 
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Notice that the standard deviation of accuracy from FMM-CART is the lowest, 
which indicates the stability of its performances.  Nevertheless, the computational 
time taken by FMM-CART is longer than that of FMM, but is slightly shorter than 
that of CART.  The decision tree produced by FMM-CART is the same as that of 
CART, i.e. with four leafs which is less complex as compared with those from MLP 
and FMM.  In other words, FMM is useful for extracting the important features for 
classification by using CART. Figure 5 depicts the decision tree resulted from FMM-
CART.  Analysis of the decision tree is as follows. 

 

Fig. 5. The decision tree for all motor conditions 

 

The tree starts by splitting the 7th harmonic of phase A.  For values below 0.5889, 
FMM-CART classifies the input as a healthy motor.  For values above 0.5889, the 
tree splitsat the 19th harmonic phase of C.  For values below 0.2649, FMM-CART 
classifies the input as an eccentricity problem.  The tree splits again for values above 
0.2649.  For values less than 0.5623 forthe 5th harmonic of phase A, FMM-CART 
classifies the input as an unbalanced voltage condition.  Otherwise, the input belongs 
to a stator winding fault.These rules are in agreement with findings reported in the 
literature.  Lee et al [17] stated that the 5th harmonic is the dominant harmonic in 
unbalanced voltages.  Nandi et al [18] stated that the 19th harmonic has a stronger 
energy content which is good for monitoring eccentricity faults while Briz et al [19] 
stated that the 5th harmonic was the best candidate in detecting stator winding faults. 

4   Conclusion 

A hybrid FMM-CART model for induction motor fault detection and diagnosis has 
beendescribed.  In the proposed approach, MCSA has been used for stator current 
signal acquisition while PSD has been used for converting the current signals into 
their frequency spectra.  The resulting motor current harmonics form the input 
features to FMM-CART for fault detection.  An accuracy of 99.08% has been 
achieved by FMM-CART, which outperforms MLP, FMM, and CART.  The 
decision tree from FMM-CART has also shown to be useful in analyzing induction 
motor fault conditions.  In short, FMM-CART is able to make rapid and accurate 
predictions for fault detection and diagnosis of induction motors. 
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Abstract. Explicit relevance feedback requires the user to explicitly
refine the search queries for content-based image retrieval. This may
become laborious or even impossible due to the ever-increasing volume
of digital databases. We present a multimodal information collector that
can unobtrusively record and asynchronously transmit the user’s implicit
relevance feedback on a displayed image to the remote CBIR server for
assisting in retrieving relevant images. The modalities of user interaction
include eye movements, pointer tracks and clicks, keyboard strokes, and
audio including speech. The client-side information collector has been
implemented as a browser extension using the JavaScript programming
language and has been integrated with an existing CBIR server. We verify
its functionality by evaluating the performance of the gaze-enhanced
CBIR system in on-line image tagging tasks.

Keywords: Implicit relevance feedback, JavaScript, gaze tracking,
content-based image retrieval, image tagging.

1 Introduction

Relevance feedback has been widely utilized in content-based image retrieval
(see [1] for an extensive survey). Often, people need to attentively indicate or
answer whether or not the retrieved information is relevant, and thus give ex-
plicit relevance feedback. With large databases and long retrieval sessions, this
will inevitably become a laborious task. The interest for using implicit relevance
feedback [2], although less accurate than explicit, has increased in recent years.
By using implicit relevance feedback, an information retrieval system can unob-
trusively record the user’s behavior, such as gaze direction, facial expressions,
body gestures etc., and use this information to infer the user’s search prefer-
ences [3]. Moreover, a combination of explicit and implicit feedback can even
better model the user’s potential interests [4].

In the current work, we present a multimodal information collector that can
unobtrusively record and transmit the user’s implicit feedback, in addition to the
explicit feedback, to the remote CBIR server for image retrieval. The feedback
modalities include eye movements, pointer tracks and clicks, keyboard strokes,
and audio including but not limited to speech. We focus on using gaze as a pri-
mary feedback modality since eye movements have earlier been found to have

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 737–746, 2011.
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a strong correlation with human cognitive processes (see [5] for a thorough re-
view). Using eye movements as an implicit feedback source is a relatively new
research area. However, eye movements have already demonstrated strong po-
tentials in inferring people’s interests in tasks such as image retrieval [6] and
image ranking [7].

A similar information collector can be found in [8], where a prototype attentive
information system was implemented to track the user’s behavior and suggest
helpful information to the user. However their system was not evaluated quan-
titatively. In [9], a Web-Accessible Multimodal Interfaces (WAMI) toolkit was
developed at MIT. Their approach was tightly connected to the use of speech in-
put and audio output in web applications and had no directions to eye movement
analysis.

The following section describes the implementation and operation principles
of the multimodal information collector. Section 3 introduces the gaze-enhanced
CBIR system. In Section 4, we verify the functionality of the information collec-
tor by evaluating the system performance with real user experiments. Section 5
concludes the paper and discusses our future work.

2 Implementation and Operation Principles

Figure 1 illustrates the overall schematic diagram of a client-server based image
retrieval system with four forms of user interaction modalities collected at the
client side. The multimodal information collector has been implemented as an
extension of Mozilla Firefox, which is a free and open source web browser of
great popularity today.

2.1 Client Implementation

The client-side collector is programmed by using the JavaScript language since
it is the primary implementation language of Mozilla Firefox extensions and
supports prototype-based object construction and object-oriented programming
including class inheritance.

browser
pointer

gaze

audio

keybrd

HTTP serverclient

image
databases

recogniser
speech

search
server

image

Fig. 1. The block diagram of our system capable of transferring multimodal feedback
from a browser client to a content-based image search server
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Fig. 2. A class diagram showing the relationships between the Modality super-class
and its four sub-classes, Gaze, Pointer, Keyboard, and Audio

Figure 2 shows a class inheritance diagram of the JavaScript implementation.
The roles of the classes are defined as follows:

Modality is defined to be the super-class of the classes for modalities of
user interaction. These all collect the input and store them internally in
the xmlDoc object which is then periodically transmitted to the server in
XML-formatted packets.
Gaze is defined to be a sub-class of Modality. This module detects the user’s
gaze samples and fixations on a displayed image and converts them into 2D
coordinates relative to the shown image.
Pointer is defined to be a sub-class of Modality. This module detects the
user’s pointer movements (and clicks) and converts them into 2D coordinates.
Audio is defined to be a sub-class of Modality. This module detects and
converts the user’s voice into binary audio data for the speech recognizer.
Keyboard is defined to be a sub-class of Modality. This module detects and
records the user’s keyboard events (strokes).

Each sub-class inherits all the functions defined in Modality, but adds its own
methods for that particular functionality. The method handleModality() is
overridden in each sub-class for a specific modality. It generates the XML data
structure for that particular interaction modality. For example, in the class of
Gaze, the method handleModality() calls the sampleXML() method to gen-
erate XML data for gaze samples, and fixationXML() for gaze fixations. Then
the general method handleEvents() in the super-class periodically sends the
collected data to the specified server URL. Similar routines apply to the other
three sub-classes.
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2.2 Client-Server Interaction

The client-server communications are based on the World Wide Web Consortium
(W3C) XMLHttpRequest protocol1, which has recently been employed exten-
sively for implementing Asynchronous JavaScript and XML (AJAX)2 type of
asynchronous content updates in web applications.

HTTP server

GET/POST

GET/POST

XMLHttpRequest

XMLHttpRequest

asynchronous   response

synchronous   response

asynchronous   response

synchronous   response

client

A

C

B

D

Fig. 3. The message exchange diagram of synchronous and asynchronous communica-
tions between the image search client and the content-based image retrieval server

Figure 3 shows the messaging diagram of synchronous and asynchronous com-
munications between an image database server and a browser client. The image
retrieval session is initiated by the client requesting the server to present some
visual content for inspection. The server returns with a conventional synchronous
HTTP action a set of images to the browser, which then presents them to the
user. Together with the XML/HTML page containing the images, the server can
also specify an URL from its own URL space where the client can send asyn-
chronous user interaction data. To our knowledge, this is a novel idea not used
in any existing content-based image retrieval systems.
1 http://www.w3.org/TR/XMLHttpRequest/
2 http://www.adaptivepath.com/ideas/essays/archives/000385.php
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The message types transferred between the server and the client have been
identified as A, B, C and D in Figure 3. Their exact roles in the communication
of multimodal relevance feedback are omitted here due to the space limit.

3 Gaze-Enhanced Content-Based Image Retrieval

3.1 PicSOM CBIR System

We have integrated the multimodal information collector with an existing CBIR
server named PicSOM3 [10], which is a content-based image retrieval system
developed since 1998, first at the Helsinki University of Technology and then
at the Aalto University. PicSOM uses the principles of query by example and
relevance feedback in implementing iterative and interactive image retrieval.

The unique approach used in PicSOM is to have several Self-Organizing Maps
(SOMs) [11] in parallel to index and determine the similarity of images. These
parallel SOMs have been trained with separate data sets obtained by using
different feature extraction algorithms on the same objects. The extracted image
features [12] include RGB histogram, DCT coefficients, edge statistics etc.

As the SOM maps visually similar images near to each other, this motivates
to spread the relevance feedback given for the viewed images to their neighboring
images on the map surface. Images marked as relevant are first given positive and
those marked as non-relevant are given negative values on the map surface. These
relevance values are then smoothed and spread around with low-pass filtering.
Images with the largest resulting relevance scores are then shown to the user.

3.2 Using Gaze Patterns as Implicit Relevance Feedback

Based on the received gaze coordinates at the server, we calculate for each viewed
image a 19-dimensional feature vector as specified in Table 1. These features
have been used in image retrieval and ranking tasks before [6,7]. The relevance
predictions for the viewed images are obtained with a simple logistic regression
model created with separate training data.

In the PicSOM system, the gaze-based implicit relevance estimates are com-
bined with the click-based explicit relevance feedback values. In this process the
gaze-based regressor outputs are always in the range of [0, 1] and the larger the
value, the more probably the image is relevant. These values are then summed
with the +1 and −1 values given for the clicked and non-clicked images, respec-
tively. The combined relevance values are finally placed in the SOM units and
spread to their neighbors with low-pass filtering similarly to PicSOM’s normal
operation.

3.3 Automatic Speech Recognition

The speech recognition system used in the experiments has been developed by
the speech group in the Department of Information and Computer Science at
3 http://www.cis.hut.fi/picsom
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Table 1. Eye movement features collected1 at the client side

Number Name Description

1 numMeasurements log of total time of viewing the image
2 numOutsideFix total time for measurements outside fixations
3 ratioInsideOutside percentage of measurements inside/outside fixations
4 speed average distance between two consecutive measurements
5 coverage number of subimages covered by measurements1

6 normCoverage coverage normalized by numMeasurements
7 pupil maximal pupil diameter during viewing
8 nJumps1 number of breaks2 longer than 60ms
9 nJumps2 number of breaks2 longer than 600ms

10 numFix total number of fixations
11 meanFixLen mean length of fixations
12 totalFixLen total length of fixations
13 fixPrct percentage of time spent in fixations
14 nJumpsFix number of re-visits (regressions) to the image
15 maxAngle maximal angle between two consecutive saccades3

16 firstFixLen length of the first fixation
17 firstFixNum number of fixations during the first visit
18 distPrev distance to the fixation before the first visit
19 durPrev duration of the fixation before the first visit

1The image was divided into a regular grid of 4×4 subimages, and covering a subimage
means that at least one measurement falls within it. 2A sequence of measurements
outside the image occurring between two consecutive measurements within the image.
3A transition from one fixation to another.

Aalto University. The speech signal is sampled using 16 kHz sampling rate and
16 bits. The signal is then represented with 12 MFCC (mel-frequency cepstral
coefficients) and the log-energy along with their first and second differentials.
Above features are calculated in 16 ms windows with 8 ms overlap. Cepstral mean
subtraction (CMS) and a maximum likelihood linear transformation, which is
estimated in training, are applied to the features. For the acoustic model, we use
state-clustered Hidden Markov triphone models that have 5062 states modeled
with 32 Gaussians.

4 Experiments

In this section, we verify the functionality of the proposed multimodal informa-
tion collector, and evaluate the gaze-enhanced CBIR system in an image tagging
scenario. Automatic tagging is a useful but still not fully reliable means for as-
sociating keyword-type information to unannotated images. In the current state
of the art, human effort is still needed for checking and correcting the tags [13].
The tag correction process can be seen as a special case of content-based image
retrieval where the goal is to quickly correct the erroneously-tagged images.
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4.1 CBIR-Assisted Image Tag Correction

Let us consider a CBIR setup where the viewed images are such that an au-
tomatic image annotation system has assigned all of them some particular tag
or keyword based on their visual properties. The considered images are thus
visually quite similar to each other, but due to imperfections in the assignment,
there are bound to be semantic differences or tagging errors among them. The
burden of a user who needs to check and correct the automatically assigned tags
would be eased if the wrongly-tagged images could be found as early as possible.

This can be understood as a complementary setting for the conventional in-
teractive CBIR setting. Now the relevant images are not those that resemble the
target image, but those that are semantically different from the other, correctly-
tagged ones. Nevertheless, CBIR techniques can be used to speed up retrieving of
such images. This time, the search will be driven more by the negative relevance
feedback, given to the correctly-tagged images. The system will then retrieve
more and more images that are different from the typical correctly-tagged im-
ages and are thus more likely to be the wrongly-tagged ones.

4.2 Setups and Evaluations

Data. We used the train subset of the PASCAL Visual Object Classes Challenge
2007 (VOC2007) data set [14] with a total of 2501 annotated images that cover
20 overlapping categories. To ease the burden of users, we randomly selected 16
categories and divided them into two groups:
1. correctly-tagged: car, dog, bicycle, person, motorbike, train
2. wrongly-tagged: sheep, horse, aeroplane, boat, bus, bottle, dining table, potted

plant, sofa, tv-monitor

Experiment Setup. We recruited 18 test subjects both males and females from
several departments at the Aalto University. The mean age of the test subjects
was 27.2 years old, ranging from 23 to 34 with good balances in between. Very few
of the users had experiences in image tagging and only one user had experiences
in gaze tracking.

Each subject was asked to perform six tagging tasks. For each task, the user
had to check and correct the tags of one particular category from group 1. Before
each task, the system randomly selected 40 images of that category and another
40 images of the ten categories from the wrongly-tagged group. Thus half of
the images were always tagged correctly. During each task, the system showed
a total of 40 images, contained in five image pages each having eight images.
After each task, the user was asked of his or her subjective opinions whether the
corresponding variant facilitated the tagging task, and whether it was reliable
and fast enough.

Feedback Modalities. The following relevance feedback modality types or vari-
ants of the system were compared:
1. Baseline: The user corrects the image tag by selecting the corresponding

category name from the drop-down menu under the image. No CBIR or
speech recognition techniques are used.
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2. Explicit : The user clicks the pointer over the wrongly-tagged image and
speaks the desired category name into the microphone. Only explicit rele-
vance feedback from pointer clicks are used.

3. Implicit : The tag correction is similar as in explicit. However, the user’s eye
movements are unobtrusively recorded by a Tobii eye tracker4. Both explicit
pointer relevance and implicit gaze relevance feedback are used.

For the baseline variant all the 40 images presented to the user were randomly
chosen, whereas for the other two variants only the eight images in the first page
were random while the images in the remaining four pages were selected by the
relevance feedback information.

The Evaluation and Results of Image Retrieval. The measure of perfor-
mance is the number of images that the user corrects in one tagging task, which
gives reflection on how well the system retrieves wrongly-tagged images. Table 2a
gives the quantitative performance of the three variants for each user. Although
the relative performance of the variants varies between users, it is clear that ex-
plicit and implicit feedback are better than the baseline. This can be seen from

Table 2. (a) The rounded average numbers of images that each user corrected when
using the three variants of the system. The best performance(s) are marked in bold
for each user. (b) The rounded average numbers of images corrected for each category
averaged over 18 users. (c) Means and variances over the 18 users for the three system
variants.

(a) (b)

User Baseline Explicit Implicit

1 16 23 24
2 22 21 22
3 26 25 26
4 19 27 27
5 24 27 23
6 23 27 26
7 25 25 26
8 23 29 19
9 23 26 24
10 18 24 28
11 15 26 22
12 25 22 26
13 22 28 27
14 22 28 24
15 27 25 22
16 28 29 27
17 27 28 25
18 26 24 27

Category Baseline Explicit Implicit

car 20 23 22
dog 22 28 26
bicycle 23 27 25
person 23 26 31
motorbike 26 24 23
train 22 26 23

(c)

Baseline Explicit Implicit

mean 22.83 25.78 24.72
var 14.15 5.48 5.74

4 http://www.tobii.com/
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the averages, and from the fact that the baseline has the best performance in
only three cases. For users 10 and 12, the implicit variant of the system retrieved
about 17% more of the wrongly-tagged images than the explicit variant.

Table 2b gives the quantitative performance for each tagging category aver-
aged over all the users. Similarly, the performances of the explicit and implicit
variants are better than that of the baseline type, except for the motorbike cate-
gory. The reason is probably because of the overlapping categories of the images
in the VOC2007 database. For example, an image tagged as motorbike usually
contains a person riding on it, which might cause users to tag it as person. How-
ever, for the person category, the implicit variant of the system retrieved about
20% more of the wrongly-tagged images than the explicit variant did.

The Evaluation of User Experience. A close examination of the qualitative
feedback from the users (questionaires) indicates that most of the test subjects
(between 66% and 75%) believed that all the variants help to facilitate the tag-
ging tasks, though they had to spend extra efforts in adapting to the eye tracker
and microphone. As for reliability, about 82% of the test subjects considered the
explicit variant with speech input to be the most reliable one, whereas respec-
tively 56% and 50% of the subjects marked the implicit variant and baseline
variant to be reliable. As for speed, the implicit variant with gaze tracking re-
ceived the highest vote of 64%, followed by the explicit variant of 56% and the
baseline variant of 43%.

5 Conclusions and Future Work

We have developed a novel client-side multimodal information collector that has
been implemented as a Firefox browser extension for asynchronously transmit-
ting versatile user interaction modalities, such as eye movements on the displayed
images, to the remote CBIR server. The collector has been integrated with an
existing neural-network-based CBIR system that is made capable of handling
XMLHttpRequest messages from the client.

We have verified the functionality of the collector by evaluating the perfor-
mance of the gaze-enhanced CBIR system with real user image tagging tasks.
The quantitative results showed that both the explicit variant using pointer
clicks and the implicit variant using gaze tracking patterns can to some extent
speed up the search and correction of wrongly-tagged images, compared to the
baseline variant with drop-down menus. The qualitative results revealed that the
implicit variant enhanced by gaze and speech was believed to have the highest
speed among the three.

Our next step is to improve the client-server system by fusing the user’s eye
movements and mouse tracks with more users involved. This time the image
database will be expanded to contain millions of images sampled from Flickr
and ImageNet.
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Abstract. The quadratic discriminant function (QDF) derived from the
multivariate Gaussian distribution is effective for classification in many
pattern recognition tasks. In particular, a variant of QDF, called MQDF,
has achieved great success and is widely recognized as the state-of-the-art
method in character recognition. However, when the number of training
samples is small, covariance estimation involved in QDF will usually be
ill-posed, and it leads to the loss of the classification accuracy. To attack
this problem, in this paper, we engage the graphical lasso method to es-
timate the covariance and propose a new classification method called the
Graphical Lasso Quadratic Discriminant Function (GLQDF). By exploit-
ing a coordinate descent procedure for the lasso, GLQDF can estimate
the covariance matrix (and its inverse) more precisely. Experimental re-
sults demonstrate that the proposed method can perform better than the
competitive methods on two artificial and six real data sets (including
both benchmark digit and Chinese character data).

Keywords: Graphical Lasso, Quadratic Discriminant Function, Char-
acter Recognition.

1 Introduction

In many pattern recognition tasks, it is very common to assume that the data
follow a Gaussian distribution. The quadratic discriminant function (QDF) de-
rived from the multivariate Gaussian distribution can then be used for classifica-
tion. Despite of its simplicity, QDF or its variants have achieved great success in
many fields. The parameters involved in QDF, e.g., the mean and the covariance,
are often obtained via the principle of the maximization-likelihood Estimation
(MLE) [6]. MLE has a number of attractive features. First, it usually has good
convergence properties as the number of training samples increases. Furthermore,
it can often be simpler than alternative methods, such as Bayesian techniques.
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However, when the number of training samples is small (especially when com-
pared to dimensionality), the estimated covariance based on MLE could be often
ill-posed, making the covariance matrix singular; this further leads its inverse
matrix cannot be computed reliably.

To solve this problem, there have been a number of approaches in the lit-
erature. Modified Quadratic Discriminant Function (MQDF) [8] is proposed to
replace the minor eigenvalues of covariance matrix of each class with a con-
stant parameter. This small change proves very effective and has made MQDF
a state-of-the-art classifier in character recognition. However, the substitution
of minor eigenvalues with a constant inevitably loses some class information.
Meanwhile, the cutoff threshold of minor eigenvalues and the constant selection
are critical for the final performance. Liu et al. [11] proposed a discriminative
learning algorithm called Discriminative Learning QDF (DLQDF). It optimizes
the parameters of MQDF with the aim to improve the classification accuracy
based on the criterion of Minimum Classification Estimation (MCE). Similar to
MQDF, DLQDF has the same problem in parameter selection. Alternatively, the
Regularized Discriminant Analysis (RDA) [5] improves the performance of QDF
by covariance matrix interpolation. Hoffbeck and Landgrebe further extended
RDA by optimizing the interpolation coefficients [7]. Empirical results showed
that these two algorithms can usually improve the classification performance of
QDF. However, the improvements are also dependent on two critical parameters
β and γ. In short, all of the above-mentioned methods need empirical settings of
parameters to achieve the best results, which are however both time-consuming
and task-dependent in real applications.

Different from the above approaches, in this paper, we present a novel method,
called the Graphical Lasso Quadratic Discriminant Function (GLQDF). By en-
gaging the graphical lasso, the covariance estimation of the ordinal QDF can be
successfully conducted even when the number of training samples is very small.
Moreover, we can estimate the inverse of the covariance directly and hence avoid
singular problems involved in QDF. One appealing feature is that the whole
process is parameter-insensitive. This presents one big advantage over the other
methods.

The rest of the paper is organized as follows. In the next section, we make an
overview of QDF and MQDF. In Section 3, we introduce our novel GLQDF in
details. In Section 4, we conduct a series of experiments to verify our method.
Finally, we set out concluding remarks in Section 5.

2 Review of QDF and MQDF

2.1 Quadratic Discriminant Function

Let d be the dimension of the feature. The probability density function of d-
dimensional normal distribution is:

p(x) =
1

(2π)d/2 |Σ|1/2
exp{−1

2
(x− u)t

Σ−1(x− u)} , (1)
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where x is a d-component vector, μ is the mean vector, and Σ is the d × d
covariance matrix. The quadratic discriminant function is derived from Eq.(1)
as follows:

g(x) = (x− μ)tΣ−1(x − μ) + log |Σ| =
d∑

i=1

((x−μ)tϕi)
2

λi
+

d∑
i=1

logλi , (2)

where λi is the i-th eigenvalue of Σ sorted by descending order and ϕi is the
eigenvector that corresponds to λi. This function will lead to the optimal classi-
fier, provided that (1) the actual distribution is normal, (2) the prior probabilities
of all categories are equal and (3) the parameters μ and Σ can be reliably pro-
vided. However, since the parameters are usually unknown, the sample mean
vector μ̂ and sample covariance matrix Σ̂ are used.

ĝ(x) = (x− μ̂)tΣ̂−1(x− μ̂) + log
∣∣∣Σ̂∣∣∣

=
d∑

i=1

((x−μ̂)tϕ̂i)
2

λ̂i
+

d∑
i=1

log λ̂i .
(3)

Here, λi is the i-th eigenvalue of σ̂ and ϕ̂i is the eigenvector. It is well-known
that small eigenvalues in Eq.(3) are usually inaccurate; this hence causes the
reduction of recognition accuracy. Moreover, the computational cost of Eq.(3) is
O(d3) for d-dimensional vectors, which may be computationally difficult when
the dimension is high.

2.2 Modified Quadratic Discriminant Function

MQDF is a modified version of the ordinary QDF. QDF suffers from the quadratic
number of parameters, which cannot be estimated reliably when the number of
samples per class is smaller than the feature dimensionality. MQDF reduces the
complexity of QDF by replacing the small eigenvalues of covariance matrix of
each class with a constant. Consequently, the small eigenvectors will disappear
in the discriminant function. This reduces both the space and the computational
complexity. More importantly, this small change proves to improve the classi-
fication performance significantly. Denote the input sample by a d-dimensional
feature vector x = (x1, x2, x3, , xd)T . For classification, each class ci is assumed to
have a Gaussian density p(x|ci) = N(ui, σi), where μi and σi are the class mean
and covariance matrix, respectively. Assuming equal a priori class probabilities,
the discriminant function is given by the log-likelihood:

− 2 log p (x|ci) = (x− μi)TΣ−1
i (x− μi) + log |Σi|+ CI (4)

where CI is a class-independent term, and is usually omitted. We take the minus
log-likelihood to make the discriminant function a distance measure. The covari-
ance matrix Σi can be diagonalized as: Λi, where Λi = diag[λi1, ..., λik, ..., λid]
has the eigenvalues of λik(in descending order) as diagonal elements, ϕik is an
ortho-normal matrix comprising as columns the eigenvectors of λik. Replacing
the minor eigenvalues with a constant, i.e., replacingΛi with diag[λi1, , λik, δi, , δi]
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(k is the number of principal eigenvectors to be retained), the discriminant func-
tion of Eq. (3) becomes what we call MQDF:

g(x, ci) =
k∑

j=1

((x−μi)
tϕij)

2

λij
+

k∑
j=1

logλij

+ 1
δi

(
‖x− μi‖2 −

k∑
j=1

∣∣(x− μi)Tϕij

∣∣2) + (d− k) log δi ,
(5)

where i, j = 1, . . . , k, are the principal eigenvectors of the covariance matrix of
class ωi. In classification, the input pattern is classified to the class of mini-
mum quadratic distance (MQDF), and multiple candidate classes are ordered in
ascending order of distances.

3 Graphical Lasso Quadratic Discriminant Function

In recent years, a number of researchers have proposed the estimation of Gaus-
sian models through the use of L1 (lasso) regularization, which increase the
sparsity of the inverse covariance. Meinshausen and Buhlmann [12] took a simple
approach to this problem. They estimated a sparse model by fitting a lasso model
to each variable while using the others as predictors. Other researchers have pro-
posed algorithms for the exact maximization of the L1−penalized log-likelihood.
For example, Yuan and Lin [13], Banerjee et al.[1] and Dahl et al. [2] adapted in-
terior point optimization methods for the solution to this problem. Both papers
revealed that the simpler approach of Meinshausen and Buhlmann [12] can be
viewed as an approximation to the exact problem. Banerjee et al. [1] exploited
the blockwise coordinate descent approach to solve the lasso problem. Fried-
man et al. [4] invented the graphical lasso and applied fast coordinate descent
algorithms to solve the lasso problem. Graphical lasso is faster than previous
methods and also provides a conceptual link between the exact problem and
the approximation suggested by Meinshausen et al. [12]. In the following, we
introduce the details on how to apply the graphical lasso on QDF.

The graphical lasso estimates the covariance matrix of Gaussian distribution
by recursively solving and updating the lasso problem. Suppose, we have N
multivariate normal observations of dimension d, with mean μ and covariance
Σ. Let Θ = Σ−1 and let S be the empirical covariance matrix, the problem of
graphical lasso is to maximize the penalized log-likelihood

log detΘ − tr(SΘ) − ρ ‖Θ‖1 (6)

Here, tr denotes the trace and ||Θ||1 is the L1 norm−the sum of the absolute
values of the elements of Σ−1. ρ is a trade-off parameter, which however proves
insensitive to the optimization. We set it to 10−4 in all the experiments of this
paper. Expression (6) is the Gaussian log-likelihood of the data, partially maxi-
mized with respect to the mean parameter μ.

Let W be the estimation of Σ. We can solve the problem by optimizing over
each row and corresponding column ofW in a block coordinate descent approach.
Partitioning W and S
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W =
(
W11 w12

wT
12 w22

)
, S =

(
S11 s12
sT
12 s22

)
, (7)

the solution for w12 satisfies

w12 = argmin
y

{
yTW−1

11 y : ‖y − s12‖∞ ≤ ρ
}

(8)

This is a box-constrained quadratic program (QP), which can be solved using
an interior-point procedure. By permuting the rows and columns, the target
column is always the last. We can then solve a problem similar to Eq. (8) for
each column and update their estimate of W after each stage. This is repeated
until convergence. If this procedure is initialized with a positive definite matrix,
the iterates from this procedure remains positive definite and invertible, even if
p > N .

Using convex duality, the solution of problem (8) is equivalent to solving the
dual problem

min
β
{1
2

∥∥∥W 1/2
11 β − b

∥∥∥2

+ ρ ‖β‖1} , (9)

where b = W
−1/2
11 s12; if β solves Eq. (9), then w12 = W11β solves Eq. (8).

Expression (9) resembles a lasso (L1regularized) least squares problem. If W11 =
S11, the solutions β̂ are easily seen to equal the lasso estimates for the pth variable
on the others. When W11 �= S11 in general, we can use fast coordinate descent
algorithm [3], which makes solution of the lasso problem very attractive.

To solve problem (9), graphical lasso uses W11 and s12, where W11 is the
current estimate of the upper block of W . The algorithm updates w and cycles
through all of the variables until convergence.

The detailed algorithm is listed as below:

Algorithm 1. Graphical lasso algorithm
1: Start with W = S + ρI . The diagonal of W remains unchanged in what follows.
2: for j = 1, 2, ...p, 1, 2, ...p, ...
3: input: W11 and s12

4: solve the lasso problem (9)
5: gives a p − 1 vector solution β̂.
6: fill in the corresponding row and column of W using w12 = W11β̂
7: continue until convergence
8: end for

4 Experimental Results

We conduct extensive experiments to verify the effectiveness of the proposed
algorithm for covariance estimation and classification. We compare our algorithm
to the state-of-the-art algorithm MQDF. All the algorithms are implemented and
run using matlab on a PC with 3.0Ghz CPU and 2G RAM.
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4.1 Results on Synthetic Data

In this section, we perform experiments on synthetic data to measure how ac-
curate the proposed graphical Lasso covariance estimate will be. We compared
the estimated covariance obtained by graphical lasso and the EM algorithm,
which is used in QDF. In more details, we first generate samples following a spe-
cific Gaussian distribution. We then use EM and Graphical Lasso to estimate
the covariance. Finally we examine the estimation error between the ground
truth covariance and estimated covariance. The estimation error is computed by
Eq. (10)

D = sqrt(
m∑

i=1

m∑
j=1

|Cij − C′
ij |). (10)

We generate both two-dimensional data and ten-dimensional data, the number
of samples are from 50 to 10000. The results are listed in Fig. 1.
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(a) 2-dimensional estimation
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(b) 10-dimensional estimation

Fig. 1. Estimation Error on Synthetic Data

From the results, we can see that the graphical lasso estimates the covariance
more precisely than EM estimator both on 2-dimensional data and 10-dimensional
data. The superiority is more distinctive when the number of samples is smaller
than the data dimensionality. This can be seen in the left part of Fig. 1(b).

4.2 Results on UCI

To examine the classification performance of GLQDF, we conduct a series of
experiments on three data sets from UCI repository: 1)Optdigits: with 10 class
and 64 dimension, 3,823 training and 1,797 test samples. 2) Sat, with 6 class and
36 dimension, 4,435 training and 2,000 test samples. 3) HW306class: with 153
class and 512 dimension, 91,365 training and 9,141 test samples. For simplicity,
we apply Linear Discriminant Analysis (LDA) to reduce the dimensionality to
the class number minus 1 in the experiments. The recognition rate of MQDF
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and GLQDF is listed in Table 1. It is clear that the GLQDF achieves better
recognition rate in every dataset than MQDF. This clearly demonstrates the
advantages of the proposed GLQDF.

Table 1. Recognition rate on UCI data sets

dateset MQDF GLQDF

Optdigits 94.0 94.4

Sat 84.8 85.8

HW306class 93.4 96.0

4.3 Results on Handwritten Digital Datasets

In this section, we report the experimental results of the proposed algorithm
on two handwritten digital datasets, USPS and MNIST. USPS contains 9, 298
handwriting character measurements divided into 10 classes. The entire USPS
data set is divided into two parts, a training set with 7, 291 measurements and a
test set with 2, 007 measurements. The original image size is 16×16. The MNIST
dataset is another handwritten digits data collection, in which a training set of
60,000 examples and a test set of 10, 000 examples in 10 classes. The original
image size is 20 × 20. We compare the recognition rate of different classifier on
both the pixel-level feature and gradient feature. The pixel-level feature number
of those two datasets is 256 and 400. The gradient feature is extracted by the
algorithm in [9]. We specify 8 direcgions of gradient, choose grid structure of
4× 4 for USPS and 5× 5 for MNIST. Thus, the gradient feature dimensionality
of USPS and MNIST is 128 and 200, respectively. We reduce the dimensionality
to c - 1 by LDA in both the USPS and MNIST and feed to the MQDF and
GLQDF for training and test. We obtain the hyper-parameter of MQDF, which
is a multiplier used for the selection of constant δi, by cross validation and we
select the principle axes as 8. The final results on pixel feature is listed in Table 2
and the result on gradient feature is listed in Table 3.

From the results, either on the pixel feature or gradient feature, the recognition
rate of GLQDF is better than the MQDF. This proves again the effectiveness of
the lasso criterion based covariance estimation.

Table 2. Recognition rate on handwritten digits data set of pixel feature

dataset MQDF GLQDF

USPS 89.09 89.74

MNIST 89.91 90.07
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Table 3. Recognition rate on handwritten digits data set of gradient feature

dataset MQDF GLQDF

USPS 95.96 96.16

MNIST 98.21 98.21

4.4 Results on Handwritten Chinese Character Data

We exploit the CASIA data set for comparison. The CASIA data set, collected
by the Institute of Automation, Chinese Academy of Sciences, contains 3, 755
Chinese characters of the level-1 set of the standard GB2312-80, 300 samples per
class. We choose 250 samples per class for training and the remaining 50 samples
per class for test. To save time, we only selected the first 200 classes from CASIA
data for our experiment. Each binary image of CASIA data was firstly normalized
to gray-scale image of 64×64 pixels by the bi-moment normalization method [10].
Then the 8-direction gradient direction features were extracted. The resulting
512-dimensional feature vector was projected into a low dimensional subspace
learned by the global LDA. All of projected vectors were then fed to the MQDF
classifier and GLQDF classifier. The hyper-parameter of MQDF was learned by
cross validation and its principle axes was set as 20 in different lower subspace.

To compare the performance between MQDF and GLQDF, we projected the
original features into different lower subspace and recorded the recognition rate
of the corresponding classifier. The results were listed in the Table 4. From the
results, we can see that GLQDF almost achieves the same recognition rate as
the MQDF, even when the number of lower subspace is equal to 150.

Table 4. Recognition rate on CASIA data set

Dimensionality MQDF GLQDF

LDA = 30 98.72 98.72

LDA = 50 99.22 99.15

LDA = 100 99.52 99.46

LDA = 150 99.51 99.54

5 Conclusion

In this paper, we engage the graphical lasso method to estimate the covariance
and propose a new quadratic method called the Graphical Lasso Quadratic Dis-
criminant Function (GLQDF). By exploiting a coordinate descent procedure for
the lasso, GLQDF can estimate the covariance matrix more precisely. We can
even compute the inverse of the covariance. This solves the singular problem in
covariance estimation, especially when the number of samples is smaller than the
dimensionality. Extensive experiments demonstrate that the proposed method
can perform better than the competitive methods on two artificial and six real
data sets.
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Abstract. The reliability and availability of network services are being threatened 
by the growing number of Denial-of-Service (DoS) attacks. Effective mechanisms 
for DoS attack detection are demanded. Therefore, we propose a multivariate 
correlation analysis approach to investigate and extract second-order statistics 
from the observed network traffic records. These second-order statistics extracted 
by the proposed analysis approach can provide important correlative information 
hiding among the features. By making use of this hidden information, the 
detection accuracy can be significantly enhanced. The effectiveness of the 
proposed multivariate correlation analysis approach is evaluated on the KDD 
CUP 99 dataset. The evaluation shows encouraging results with average 99.96% 
detection rate and 2.08% false positive rate. Comparisons also show that our 
multivariate correlation analysis based detection approach outperforms some 
other current researches in detecting DoS attacks. 

Keywords: Denial-of-Service Attack, Euclidean Distance Map, Multivariate 
Correlations, Anomaly Detection. 

1   Introduction 

Network security has received public concerns with the rapid growth and the 
prevalence of interconnection among computer systems. It is now under spotlight due 
to the emergence of more sophisticated attack techniques and easy-access user-
friendly attack tools which facilitates any person to easily launch network attacks with 
little programming knowledge. According to studies [1] and [2], there have been 
10,000 new viruses or variant of existing viruses recorded in the year of 2004, and 
billions of dollars loss has been caused by Denial-of-Service (DoS) attacks over the 
past few years. 

The intention of a DoS attack is to deliberately prevent a victim, such as host, 
router or entire network, from being accessible or being capable of receiving normal 
services from the Internet. The availability of network services is seriously threatened 
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by the continuously increasing number of DoS attacks. Thus effective mechanisms for 
DoS attack detection are highly demanded.  

To maintain the reliability and the availability of network services, research 
community and industry sector have put a lot of efforts to the development of 
intrusion detection techniques. As one of the powerful network intrusions, DoS attack 
has been carefully studied in the intrusion detection research over the last decade. 
Generally, network intrusion detection can be grouped into two main categories, 
namely signature-based detection [3] and anomaly-based detection [4]. Benefiting 
from the principal of detection, which monitors and flags any network activity 
presenting significant deviation from their normal profiles as a suspicious, anomaly-
based detection techniques show more advanced in detecting zero-day intrusions [5].  

Therefore, recent works in DoS attack detection mainly focus on anomaly-based 
techniques, and various detection techniques have been proposed. For example, 
clustering [6] [7], neural network [8] [9], pattern recognition [10], support vector 
machine [11], nearest neighbor [12] and statistical detection techniques [13] [14] [15]. 

However, some of these proposed techniques often suffer high false positive rate 
since the dependencies and correlations of the features are intrinsically neglected [16]. 
The other techniques are either invalid to flooding-based DoS attacks [10] or 
incapable of identifying individual attack packets from a group of samples [15].  

To address the aforementioned problems, a Euclidean Distance Map (EDM) based 
multivariate correlation (second-order statistics) analysis approach is proposed in this 
paper to discover the relations among features within the observed data objects. 
Significant changes of these relations indicate occurrences of intrusions. Owing to the 
computational simplify of Euclidean distance and the extracted valuable correlative 
information, application of the multivariate correlation analysis makes the DoS attack 
detection more effective and efficient. It achieves high detection accuracy while 
retaining a low false positive rate. Moreover, benefiting from the principal of anomaly 
detection, our DoS attack detection approach is independent on prior knowledge of 
attack and is capable of detecting both known and unknown DoS attacks. 

The rest of this paper is organized as follows. Section 2 provides current work 
related to our research. Section 3 proposes a novel multivariate correlation analysis 
approach. Section 4 presents a detailed description on the applications of the proposed 
multivariate correlation analysis approach in DoS attack detection. Section 5 shows 
the evaluation results of the proposed approach on KDD CUP 99 dataset and makes 
some analysis. Finally, conclusions and future work are given in Section 6. 

2   Related Work 

Owing to the advantage in detecting unknown attacks, anomaly intrusion detection 
mechanism has captured the major attention from research community. Researchers 
focused on studies of sequential change-point detection based statistical DoS attack 
detection approaches [17] [18] in the early 2000s. The approaches make use of the 
abrupt change occurring in the observed sequential data, such as Management 
Information Base (MIB) variables and statistics between the number of SYN packets 
and the number of FIN or SYN/ACK packets. They have been proven effective in 
detecting any abrupt change in network traffic. However, on one hand, in Thottan and 
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Ji’s approach [17] the operator matrix may need to frequently update its feature set to 
cover the emergent attacks, and the approach suffers time granularity problem. On the 
other hand, the approach proposed by Wang et al. [18] only targets on SYN flooding 
attacks, and its performance is affected by the passive RST packets. Moreover, the 
two approaches consider only the first-order statistics and ignore the correlative 
information which is important to detection accuracy.  

Recently, the intrusion detection research community started recognizing the 
importance of the second-order statistics of monitored-network features. Several 
researches have been conducted to explore the use of the second-order statistics in 
DoS attack detection. A team of researchers from the Hong Kong Polytechnic 
University [15] employed the covariance matrices of the sequential samples and 
proposed a threshold based detection approach to detecting various types of DoS 
attacks. Travallaee et al. [19] applied Covariance Matrix Sign (CMS) for DoS attack 
detection. These approaches achieve encouraging detection rates. However, they still 
suffer from comparative high false positive rates and do not work under the situation 
where an attack linearly changes all monitored features. In addition, the approaches 
can only label a group of observed samples as normal or attacks, and cannot identify 
individual attack packets from the crowd.   

Our work also makes use of the idea of change and the second-order statistics. We 
investigate the change of the correlations between features which are the second-order 
statistics of the features in a single observed data object. This makes our approach 
more advanced in detection accuracy and the ability of labeling individual attack 
packets.  

3   Multivariate Correlation Analysis 

The behavior of network traffic is reflected by its statistical properties. DoS attack is a 
type of intrusions attempting to exhaust a victim’s resource, and its traffic behaves 
different from the normal network traffic. Therefore, the statistical properties can be 
used to reveal the difference. To well present the statistical properties, we propose a 
novel multivariate correlation analysis approach which employs Euclidean distance 
for extracting correlative information (named inner correlation) among the features 
within an observed data object. The detail is given in the following. 

Given an arbitrary dataset = [  ], where = [   ](1) represents the ith m-dimensional traffic record. The dataset can be represented 
in detail as  

=  (1) 

where  is the value of the lth feature in the ith traffic record. l and i are varying from 
1 to m and from 1 to n respectively. 

In order to further explore the inner correlations of the ith traffic record on a multi-
dimensional space, the record  is first transformed into a new m-by-m feature 
matrix  by simply multiplying an m-by-m identity matrix I as shown in (2). 
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= ′ = 0 00 00 0  (2) 

The elements on the diagonal of the matrix ′  of are the features of the record . 
Each column of the matrix ′  is a new m-dimensional feature vector denoted by  = [ ′ , ′ , ′ , ] . (3) 

where ′ , = 0  if ≠  and ′ , =  if = . The parameters satisfy the 
conditions of 1 , 1  and  1 . Thus the m-by-m feature 
matrix ′  can be rewritten as (4). 

′ =  . (4) 

Once the transformation is finished, we can apply the Euclidean distance to extract 
the correlation between the feature vectors j and k in the matrix ′ , which can be 
defined as 

, = , (5) 

where  1 , 1  and 1 . However in practice, (5) can be 
simplified and rewritten as (6) in order to reduce computational complexity. 

, = 0 + 0 , ≠  0       , =  (6) 

Therefore, the correlations between features in the traffic record  are defined by a 
Euclidean Distance Map (EDM) given below. 

= , , ,, , ,
, , ,

. (7) 

Since the EDM is a symmetric matrix (in which , = , ) and there is a zero 

distance from a feature vector to itself ( , = 0,  = ), the upper or the lower 
triangle of the matrix is sufficient to reveal the inner correlations. Hence, the EDM 
can be simplified and converted into a new inner correlation vector containing only 
the lower triangle of the EDM as (8). 
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= ,  , , , , , , . (8) 

For the dataset , its inner correlations can be represented by (9). 

= [ ]. (9) 

By making use of the inner correlations, the changes of network behavior caused by 
DoS attack can be clearly revealed. Additionally, the distance measure facilitates our 
analysis approach to withstand the issue of linear change of all features. 

4   Multivariate Correlation Analysis Based Detection Approach  

The objective of this paper is to develop a detection approach that is effective in 
detecting any known and unknown DoS attacks. Thus, the concept of anomaly-based 
IDS, which attempts to identify network intrusions by detecting any significant 
deviations from a profile generated using only normal traffic records in training 
phase, is the best fit to our problem.  

4.1   Norm Profile Generation 

In this work, the norm profile is first built through the density estimation of the 
Mahalanobis Distances (MDs) between observed normal traffic records and the 
expectation of the normal traffic record. To obtain the distribution of the MDs, two 
parameters are required to be determined. They are the mean µ and the standard 
deviation σ of the distances.  

Assume that there is a set of g normal training traffic records, which is denoted 

by  = [ ,  ,  , ] , the parameters 
can be determined by using the equations shown below. The mean µ is defined as 

= ∑ , , (10) 

, = ( , ) ,
 . (11) 

The expectation of the lower triangles of normal EDMs ( ) and the 
covariance matrix ( ) are given in (12) and (13). 

= 1 ,  (12) 
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= , ,, ,
, ,

, ,, ,
, ,

, ,, ,
, ,

 (13) 

The covariance between two arbitrary second-order statistics in the lower triangle of 
normal EDM is as given in (14) 

, , = ∑ ( , , , )( , , , ) , (14) 

where , = ∑ , , . The standard deviation σ can be obtained by 

using (15). 

=  ∑ ( , )
  (15) 

The obtained distribution of the normal training traffic records is stored in the norm 
profile for attack detection. 

4.2   Attack Detection 

According to the definition of normal distribution, roughly 99.7% of the values are 
within 3 standard deviations from the mean. Therefore, the decision can be made by 
comparing the distance of an observed object to the mean of the distribution. If the 
distance is greater than 3 standard deviations from the mean, it is flagged as an attack 
with 99.7% confidence.  

To make the comparison, the EDM of the observed traffic record ( ) 
needs to be generated using the proposed multivariate correlation analysis approach. 

Then, the MD between the  and the expectation ( ) of the 
lower triangles of normal EDMs stored in the normal profile is computed using (16). 

= ( )
  (16) 

Then, the values are compared with the pre-defined threshold given in (17).  = +   (17) 

For a normal distribution, n is usually ranged from 1 to 3. This means that we would 
like to make a detection decision with a certain level of confidence varying from 68% 
to 99.7% in associate with the selection of different values of n. Therefore, if the 
observed MD is greater than the threshold, it will be considered as an attack. 
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5   Evaluation and Analysis 

This section describes and analyzes the results obtained from the evaluation of the 
performance of the proposed multivariate correlation analysis based approach on DoS 
attack detection. The evaluation is conducted on KDD CUP 99 dataset [20]. 

The 10 percent labelled dataset of KDD CUP 99 dataset is applied for evaluation 
purpose. Although the dataset is not without criticism [21], it is the only public 
dataset with labelled attack samples. Moreover, for the comparison, many research 
works were evaluated using this dataset. There are six different types of DoS attacks 
available from the 10 percent labelled dataset. They are Teardrop, Smurf, Pod, 
Neptune, Land and Back attacks. 

To evaluate an IDS, detection rate and false positive rate are two important metrics. 
We aim to achieve a high detection rate while retaining a low false positive rate. To 
visually reveal the performance of the IDS, Receiver Operating Characteristic (ROC) 
curve is employed to show the relations between these two metrics. 

5.1   Preprocessing 

We first filter all records with the labels of Normal, Teardrop, Smurf, Pod, Neptune, 
Land and Back from the 10 percent labelled dataset. Then, further classify them into 
different clusters according to their labels. The description of the filtered data is 
presented in Table 1. 

Table 1. Number of records of normal and DoS attack records 

Normal Teardrop Smurf Pod Neptune Land Back 
97,260 9,790 2,807,900 2,640 1,072,010 210 22,030 

5.2   Results and Analysis 

To evaluate the detection performance of the proposed approach, we conduct 10 fold 
cross-validations and 32 continuous features are used. Norm profiles are built with 
respect to different types of traffic, namely TCP, UDP and ICMP traffic. In the training 
phase, we only employ the Normal records, while Normal records and the attack records 
are all involved in the test phase. In the test phase, we vary the parameter n given in the 
(17) from 1 to 3 with an increment of 0.5, in order to compare the detection accuracy 
with the change of the threshold. The results are shown in Table 2. 

As can be seen from Table 2, our proposed multivariate correlation analysis based 
detection approach performs very well in most of the cases. The detection rates of 
Normal records rise from 97.92% to 99.13% along with the increase of the threshold. 
The Smurf and Pod attack records are completely detected without being affected by 
the change of the threshold. For Teardrop and Neptune attacks, our approach achieves 
approximately 100% almost in all cases. The detection approach suffers from mirror 
degeneration in the case of Land attack when the threshold set greater than 2σ, but it 
still manages to detect around 74.76% of the attack records. However, when detecting 
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Back attacks, the detection accuracy suffers from a sharp decrease from 92.37% to 
45.71% and finally down to 6.42% when the threshold keeps increasing. This problem 
may be caused by the non-normalized data in which some features dominate the 
detection performance during their comparatively large values. 

Table 2. Detection rates for normal and DoS attack records against different thresholds 

 Type of records Threshold 
1σ 1.5 σ 2 σ 2.5 σ 3 σ

Normal  97.92% 98.47% 98.75% 98.99% 99.13% 
Teardrop 100% 100% 100% 99.99% 99.98% 
Smurf 100% 100% 100% 100% 100%
Pod 100% 100% 100% 100% 100%
Neptune 100% 100% 100% 99.99% 99.99% 
Land 100% 100% 96.19% 87.62% 74.76% 
Back 92.37% 45.71% 9.93% 9.16% 6.42% 

 
To better understand the performance of our proposed multivariate correlation 

analysis based detection approach, ROC curves are given in Fig. 1. 

 

Fig. 1. ROC curves for the detection of DoS attacks 

The ROC curves show clear tradeoff between the detection rate and false positive 
rate. There is a common trend that detection rates of all attacks increase when larger 
numbers of false positive are tolerated. If high detection rates are required, we have to 
endure a comparatively high false positive rate of 2.08%. However, 2.08% false 
positive rate is still in the acceptable range and even better than other detection 
approaches. 

To further evaluate the performance of the proposed approach, a comparison with 
covariance feature space based network intrusion detection [15] and HCVM [22] is 
given in Table 3. 
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Table 3. Performance comparison of different detection approaches 

Multivariate correlation 
analysis based detection 
approach (Threshold = 
1σ) 

Covariance feature space 
based network intrusion 
detection (Threshold approach 
with 3D principle) [15] 

HCVM[22] 

Detection rate 99.96% 99.95% 93.2% 
False positive rate 2.08% 10.33% 5.4% 

 
In general, our multivariate correlation analysis has been proven by the evaluation 

results and it can correctly extract the statistical properties to exhibit the behaviour of 
network traffic. The application of multivariate correlation analysis in DoS detection 
gives promising outcomes. 

6   Conclusions and Future Work 

This paper has proposed a Euclidean distance based multivariate correlation analysis 
approach to extract the inner correlations (second-order statistics) of network traffic 
records, which can better exhibit the network traffic behaviours. We have evaluated 
the analysis approach using the KDD CUP 99 dataset. The results show that these 
second-order statistics can clearly reveal the changes of network behavior caused by 
DoS attack. The multivariate correlation analysis based DoS attack detection 
approach achieves 99.96% detection rate and 2.08% false positive rate. The detection 
accuracy is improved by involving the second-order statistics instead of the original 
first-order statistics into the classification.  

However, our approach still suffers from a high false negative rate in detecting 
Back attack. This may be caused by the non-normalized data or the redundant features 
in the dataset. Therefore, we will employ data normalization methods and optimal 
feature selection in our future work in order to improve the detection accuracy. Also, 
temporal information will be considered in the successive research. 
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Abstract. Financial business prediction has lately raised a great inter-
est due to the recent world crisis events. In spite of the many advanced
shallow computational methods that have extensively been proposed,
most algorithms have not yet attained a desirable level of applicability.
All show a good performance for a given financial setup but fail in general
to create better and reliable models. The main focus of this paper is to
present a deep learning model with strong ability to generate high level
feature representations for accurate financial prediction. The proposed
Deep Belief Network (DBN) approach tested in a real dataset of French
companies compares favorably to shallow architectures such as Sup-
port Vector Machines (SVM) and single Restricted Boltzmann Machine
(RBM). We show that the underlying financial model with deep machine
technology has a strong potential thus empowering the finance industry.

Keywords: Deep Learning, Neural Networks, Financial Prediction.

1 Introduction

The robustness and efficiency by which humans can recognize objects has since
ever been an intriguing challenge in computational intelligence. Motivated by the
extreme efficiency of the visual recognition system recent studies in brain science
fields show that this is largely due to the expressive deep architecture employed
by human visual cortex systems [11]. One important notion is the hierarchical
organization of the brain [5] which plays a critical role on understanding how
brain works. The Hierarchical Temporal Memory (HTM) is a machine learning
model developed by Hawkins [5] that combines ideas to mimic the neocortex
where higher hierarchy levels reuse patterns learned at the lower levels by com-
bining them to memorize more complex patterns. HTM combines and extends
approaches used in Bayesian networks, spatial and temporal clustering algo-
rithms, while using a layered-shaped hierarchy of nodes that is common in neural
networks. With the same goal of finding higher level features to represent con-
cepts other generative models broadly construed on a deep neural architecture
were first introduced by Hinton [6,7] who developed the contrastive divergence
method for training Deep Belief Networks (DBN). Motivated by the fact that in
inference and prediction lies the core activity of all the global brain functions,
these generative models have very recently gained popularity giving rise to suc-
cessful applications [4,11]. An important yet not exploited area is the financial
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credit risk. At the heart of the present global recession there is an inappropri-
ate evaluation of credit risk and most of governments were forced to implement
rescue plans for the banking system. While in the past the small, medium (and
micro) companies had higher propensity of bankruptcy, in the recent past finan-
cial distress in large firms (across all industries) is systematically announced.
Research has been very intensive in the last years and many approaches have
been devised mainly using discriminative techniques [1,9,10]. In particular, the
shallow neural network approach has been found useful in predicting corporate
distress from financial statements. Given the devastating effects of the financial
distress of firms, it is urgent that management and regulators are able to antici-
pate this kind of issues. Boosting the accuracy of credit risk methodologies used
by banks and financial institutions may lead to considerable gains. In this paper,
we present instead a deep neural architecture trained by the contrastive diver-
gence method [7] in a financial database containing 780,000 financial statements
of French companies.

The remainder of the paper is organized as follows. In Section 2 both the
Restricted Boltzmann Machine (RBM) model and the deep learning algorithm
for Deep Belief Networks (DBN) are briefly described. The experimental setup
is presented in Section 3 which examines the Diane database and gives the
evaluation metrics for problem assessment. In Section 4 we analyze the results
obtained with the two-step deep learning methodology. Finally in Section 5 we
summarize the main conclusions and address lines of future work.

2 Deep Learning Network Models

Theoretical results suggest that deep learning architectures with multiple levels
of non-linear operations provide high-level abstractions for object recognition
similar to those found in the human brain. Deep Belief Networks (DBN) have
recently been proposed by Hinton [7] with notable success excelling the state-
of-the-art in visual recognition and AI areas. Bengio [2] gives an overview of
the learning algorithms for deep architectures, in particular those exploiting
Restricted Boltzmann Machines (RBM), which are used to construct deeper
models such as DBN.

An RBM is an energy-based generative model that consists of a layer of bi-
nary visible units (v, whose states are observed) and a layer of binary hidden
units (h, whose states cannot be observed) [7,8]. The hidden units with no pair-
wise connections act as latent variables (features) that allow the RBM to model
distributions over state vectors (see Figure 1). With these restrictions, the hid-
den units are conditionally independent given visible units (i.e. a visible vector).
Given an energy function E(v,h) on the whole set of visible and hidden units,
the joint probability is given by:

p(v,h) =
e−E(v,h)

Z
(1)
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h1 h2 · · · hj · · · hJ 1

v1 v2 · · · vk · · · vK 1

Fig. 1. Restricted Boltzmann Machine (RBM)

where Z is a normalizing partition function i.e., it ensures that p(v,h) is a valid
distribution. For the binary units hi ∈ {0, 1} and vi ∈ {0, 1} the energy function
of the whole network is:

E(v,h) = −hTWv − cT v − bTh

= −
∑
jk

Wjkvkhj −
∑

k

ckvk −
∑

j

bjhj (2)

where W is the matrix of weights, and b and c are the bias units w.r.t. hidden
and visible layers, respectively. The marginal distribution over v is:

p(v) =
∑

h

p(v,h) =
∑

h

p(v|h)p(h) (3)

With J hidden units the hidden vector h can take 2J possible values, thus 2J

distributions p(v|h). Therefore, computing the marginal for a large J is impracti-
cal. A good estimator of the log-likelihood gradient is the Contrastive Divergence
(CD) algorithm [7]. A good property of the RBM is that the posterior of one
layer given the other is easy to compute by (4) and (5)

p(v|h) =
∏
k

p(vk|h) where p(vk = 1|h) = sigm(ck +
∑

j

Wjkhj) (4)

p(h|v) =
∏
j

p(hj |v) where p(hj = 1|v) = sigm(bj +
∑

k

Wjkvk) (5)

where sigm (·) is the sigmoid squashing function 1
(1+e−zi )

with zi = bi+
∑

j Wjisj

where s is the state of the unit j and b is the bias. Inference of hidden factor h
given the observed v can be easily done because h is conditionally independent
given v.

A Deep Belief Network (DBN) is a generative model with an input layer and
an output layer, separated by l layers of hidden stochastic units. The multilayer
neural network can efficiently be trained by composing RBMs using the feature
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Fig. 2. Deep Belief Network (DBN)

activations of one layer as the training data for the next (see Figure 2). The
rationale is that the whole network can be viewed as a single, multilayer genera-
tive model and each additional layer improves a lower bound on the probability
that the multilayer model would generate the training data [6]. Learning one
hidden layer at a time is much more effective given their size which can be very
large (MM of weights). Besides, highest level features are much more useful for
classification (or dimension reduction) than raw data vectors. An energy-based
model of RBMs can be learnt by performing (stochastic) gradient descent on the
empirical negative log-likelihood of the training data with respect to the RBM
parameters,

∂

∂θ
(− log p(v0)) = Ep(h|v0)

[
∂E(v0,h)

∂θ

]
− Ep(v,h)

[
∂E(v,h)

∂θ

]
(6)

where θ are the model parameters and Ep is the expectation. This gradient is
difficult to compute analytically. Markov Chain Monte Carlo methods are well-
suited for RBM models. One iteration of the Markov chain works empirically
well and corresponds to the following sampling procedure:

v0
p(h0|v0)−→ h0

p(v1|h0)−→ v1
p(h1|v1)−→ h1 (7)

where the sampling operations are schematically indicated. Estimation of the
gradient using the above procedure is denoted by CD-1, where CD-k represents
the Contrastive Divergence algorithm [7,3] for performing k iterations of the
Markov Chain up to vk. Given a training set of state vectors (data) learning
consists of finding weights and bias that define a Boltzmann distribution in
which the training vectors have high probability.
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Table 1. Financial Ratios of French DataBase

Variable Description

x1 - Number of Employees Previous year x16 - Cashflow / Turnover
x2 - Capital Employed / Fixed Assets x17 - Working Capital / Turnover days
x3 - Financial Debt / Capital Employed x18 - Net Current Assets/Turnover days
x4 - Depreciation of Tangible Assets x19 - Working Capital Needs / Turnover
x5 - Working Capital / Current Assets x20 - Export
x6 - Current ratio x21 - Added Value per Employee k EUR
x7 - Liquidity Ratio x22 - Total Assets Turnover
x8 - Stock Turnover days x23 - Operating Profit Margin
x9 - Collection Period days x24 - Net Profit Margin
x10 - Credit Period days x25 - Added Value Margin
x11 - Turnover per Employee k EUR x26 - Part of Employees
x12 - Interest / Turnover x27 - Return on Capital Employed
x13 - Debt Period days x28 - Return on Total Assets
x14 - Financial Debt / Equity x29 - EBIT Margin
x15 - Financial Debt / Cashflow x30 - EBITDA Margin

3 Experimental Setup

We used Diane database which contains financial statements of French compa-
nies. One of the problem goals is the class (healthy, bankrupt) prediction model.
The sample extracted from the initial 780000 statements of the database con-
tained about 60000 financial ratios from industrial French companies (during the
years of 2002 to 2006) with at least 10 employees. From these companies, about
3000 were declared bankrupt in 2007 (or submitted a restructuring plan to the
French court). After pre-processing, the data set contains 1200 French compa-
nies, 600 examples distressed in 2007, and the remainder is healthy. As shown in
Table 1, each instance is characterized by 30 financial ratios produced by Coface1.
These predictors describe the firms in terms of its financial strength, liquidity,
solvability, productivity of labor and capital, margins, net profitability and re-
turn on investment. In the experiments we took the historical data consisting of
90 inputs spanning three years before bankruptcy. The multilayer unsupervised
learning allows to compactly representing highly non-linear and highly-varying
interrelations among financial status of enterprises thus improving prediction.
The performance metrics defined from the confusion matrix containing the True
Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN)
are as follows: Recall, Precision, Test Accuracy and F1 measure. The latter mea-
sures the trade-off between the Recall and Precision and is a good indicator in
skewed distributions. In financial analysis, the error of type I (False Positive
Rate) indicates a false alarm of the positive class (bankrupt), i.e. it predicts a
healthy company as default. The error of type II (False Negative Rate) indicates
a failure to detect a company with a ‘bad’ status.
1 Coface is one of largest financial groups in France which provides Credit Insurance,

Factoring Information and Ratings, and Debt Recovery.
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Fig. 3. DBN vs RBM: F1-Measure

4 Results and Discussion

We present the deep learning model for bankruptcy prediction and discuss the
results comparing three different methodologies: DBN, RBM and SVM. The
data was split in a training and testing data sets with 800 and 400 samples,
respectively, for appropriate model selection. The ratios are preprocessed by
logarithmized operation to decrease the scatter data distribution. A linear nor-
malization is applied so that the data is transformed to the range between 0
and 1. We put forward a deep architecture model consisting of two steps. In
the first step we train the deep multilayer neural network with many levels of
non-linearities in a layer-wise unsupervised learning phase. Next, the architec-
ture is refined using a gradient descent based supervised method. The two-stage
construction could mostly be used to verify the bankruptcy prediction of a given
company. Figure 3 shows the histogram of F1 for both DBN and RBM for the
learning rate range [0.0001 − 0.95]. The best mean results were obtained for
the learning rate η = 0.094, momentum α = 0.3, penalization constant 2.10−3

and max epochs= 500. The configuration of the architecture is composed by 3
hidden layers with nh1= 500, nh2= 500, nh3= 1000 and one output layer with
one linear unit. Figure 4 illustrates the mean test error versus the number of
epochs for both models. Each experiment was repeated 10 times. The plots for
the testing error were obtained by performing a moving average of five points
(epochs) to smooth out the learning curves.

Figure 5 illustrates the DBN mean performance w.r.t. F1, test accuracy, type
I and type II errors. The best matching F1-score occurs for DBN which shows an
improvement by 1.123% and 0.719% over RBM and SVM, respectively. This is
also shown in Table 2 which compares the mean and respective standard devia-
tions of the assessment metrics for the tested approaches: DBN, RBM and SVM.
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The SVM hyperparameters were found by 5-fold cross-validation and RBF kernel
was chosen [10]. The Wilcoxon non-parametric test shows that the mean results
obtained with DBN are significantly better than RBM (with the same number of
parameters). The null hypothesis of the RBM having an equal or better F1 mea-
sure than the DBN is rejected at a significance level of 0.05 (with T = 1.907 >
1.645) for the range of tested learning rates. It can be gleaned from the results
that the deep architecture learns the highly non-linear features at hand given
very limited prior knowledge, yielding to an increase of the financial prediction.
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Table 2. Testing Performance for Bankruptcy Prediction Models (%)

Recall Precision Type I Type II Test Acc F1

RBM 87.06±1.45 91.09±1.52 8.64±1.72 12.94±1.45 89.20 ± 0.37 89.01±0.36
DBN 87.56±1.69 93.47±1.97 6.23±2.03 12.44 ±1.69 90.65± 0.65 90.40±0.64
SVM 87.67±1.70 91.95±1.07 7.76±1.10 12.33±1.70 89.94±1.04 89.75± 1.11

5 Conclusion and Future Work

We exploited a deep belief network in a financial business problem tested in a
database of French companies. Despite the unsupervised characteristic of the
model, the last classification stage classifier yields an overall performance that
surpasses SVM. We also compared with an RBM in the same database. The
preliminary results with a deep learning architecture are promising and raise
interest regarding its application to this problem. The properties of the DBN
model allow extracting a high-representation of the features that describe the
financial status of companies through a greedy layer-wise unsupervised learning.
Despite the great prospect of deep learning technologies, to cope with the ex-
pensive training of hundred thousands of parameters that need to be adjusted
future work will address multicore graphical processors.
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Abstract. This paper presents a novel method of selective sampling using condi-
tional class probabilities estimated from a network referred to as the class proba-
bility output network (CPON). For selective sampling, an uncertainty measure is
defined using the confidence level for the CPON output. As a result, the proposed
uncertainty measure represents how confident the CPON output is. We compared
the recognition performance between other sampling methods and the proposed
one. The relationship between the uncertainty measure and recognition rate was
also investigated.

Keywords: confidence level, uncertainty measure, selective sampling, active
learning.

1 Introduction

In many cases of real-world problems of classification or regression, it is expensive to
get labels of examples for training. In this situation, the selection of examples is very
important in order to obtain a good quality of classifier while reducing the necessary
sample size. A possible solution to this problem is to obtain examples selectively which
may be helpful to improve the performance of a classifier. We call this method as se-
lective sampling and it is an essential component of active learning that helps that a
learner can choose informative training data or queries from the pool. In this selective
sampling, the essential component is to define the uncertainty measure; that is, for the
given pattern, how uncertain the classifier’s decision is. If the given pattern is certain,
we don’t need to consider that pattern any more since the decision of classification is
quite clear. However, if the given pattern is uncertain, we need to collect that pattern for
the future training of a classifier.

One interesting approach of defining the uncertainty is to specify a committee [1,2]
or an ensemble of hypotheses that are consistent with the training examples [3] and to
check the degree of inconsistency with the trained model. However, more natural way
of determining uncertain patterns is using the concept of conditional class probability.
In this context, we consider to use the class probability output network (CPON) [5] in
which the conditional class probability for the given pattern is estimated. In this net-
work, for the uncertainty measure, the concept of confidence intervals for the estimated

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part III, LNCS 7064, pp. 774–781, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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statistical parameters is used. For our purpose, the level of confidence for the decision
of classification is used for the definition of uncertainty measure. In this way, the un-
certainty measure represents how uncertain the classifier’s decision is.

The rest of this paper is organized as follows: Section 2 explains the class prob-
ability output network estimating the conditional class probabilities for classification
problems. Section 3 describes the method of determining the uncertainty measure for
selective sampling. Some simulation results to demonstrate the effectiveness of uncer-
tainty measure for selective sampling and learning performance for different sampling
methods are investigated in Section 4. Finally, Section 5 concludes this paper.

2 Construction of Class Probability Output Networks

For the construction of CPON, first, we consider the following discriminant function y
as the classifier’s output for the input pattern x:

ŷ(x) =
m∑

i=1

wiφi(x|θ), (1)

where m represents the number of kernels and wi, φi, and θ represent the ith weight,
the ith kernel function, and the kernel parameter, respectively.

We choose the SVM method [7] to obtain the discriminant function since this clas-
sifier provides sparse representation of training patterns using the structural risk min-
imization (SRM) principle. Then, the output of SVM is normalized between 0 and 1
using the linear scaling method. For the normalized classifier’s output distributions, the
positive and negative classes are approximated by the parameters of the probability dis-
tribution. In this training of classifiers, these parameters as well as the kernel parameters
are adjusted in such a way that the classifier’s output distributions become closer to the
ideal distributions.

After the CPON is trained, the classification for an unknown pattern can be deter-
mined by the probability distribution for each class. First, for the unknown pattern,
the normalized output y of the classifier is computed. Then, the following conditional
probability; that is, the output of CPON F+(y) is calculated:

F+(y) = P (+|Y + ≤ y or Y − ≥ y)
=

FY +(y)
FY +(y) + 1− FY −(y)

. (2)

The final decision can be made using the conditional class probability for the given
pattern; that is,

class =
{

positive if F+(y) > 0.5
negative otherwise.

(3)

In this way, we can make our decision of pattern classification using the CPON output.
For the detail description of applying CPONs to pattern classification problems, refer
to [5,8].
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3 Uncertainty Measure for Selective Sampling

The suggested CPON provides an effective way of estimating conditional probabilities
for classification problems. However, in practice, the conditional class probabilities are
estimated from the limited size of data. In this case, the estimated conditional class prob-
abilities might include some uncertainties; that is, the estimated CPON output F̂+(y)
is determined by

F̂+(y) =
F̂Y +(y)

F̂Y +(y) + 1− F̂Y −(y)
, (4)

where F̂+(y) and F̂−(y) represent the estimated CDF values of the positive and nega-
tive classes, respectively.

The degree of uncertainty for the decision of classification can be determined by
estimating the confidence intervals for the conditional class probabilities. Here, these
confidence intervals are estimated from the following K-S statistic [6]:

– First, find the distance measures D±
n,α for the positive and negative classes; they

are

D+
n,α =

Kα√
n+

and D−
n,α =

Kα√
n− , (5)

where n+ and n− represent the sample size of the positive and negative classes,
respectively, and Kα represents the value that satisfies H(Kα) = 1 − α, where
H(t) is the CDF of the K-S statistic as follows:

H(t) =
√

2π
t

∞∑
i=1

e−(2i−1)2π2/(8t2). (6)

– Setting the variables u± as follows:

u+ = F̂Y +(y) and u− = F̂Y −(y). (7)

– Determine the 100(1−α) percent confidence intervals for the CDFs of the positive
and negative classes:

F ∗
U+(u+)−D+

n,α ≤ FY +(y) ≤ F ∗
U+(u+) +D+

n,α (8)

and

1− F ∗
U−(u−)−D−

n,α ≤ 1− FY −(y) ≤ 1− F ∗
U−(u−) +D−

n,α, (9)

where F ∗
U+(u+) and F ∗

U−(u−) represent the empirical CDFs of the uniform distri-
bution for the positive and negative classes, respectively.

The two-sided confidence intervals of (8) and (9) are described by one-sided confidence
intervals as follows:

– For the positive class, with a probability of 1− α/2,

FY +(y) ≤ F ∗
U+(u+) +D+

n,α or (10)

FY +(y) ≥ F ∗
U+(u+)−D+

n,α. (11)
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– For the negative class, with a probability of 1− α/2,

1− FY −(y) ≤ 1− F ∗
U−(u−) +D−

n,α or (12)

1− FY −(y) ≥ 1− F ∗
U−(u−)−D−

n,α. (13)

Let F ∗
U+(u+) ≥ 1 − F ∗

U− (u−). Then, from (11) and (12), we can find the value of α0

that these two boundaries are met; that is,

F ∗
U+(u+)−D+

n,α0
= 1− F ∗

U−(u−) +D−
n,α0

= x0. (14)

With the above condition,

FY +(y) ≥ x0 ≥ 1− FY −(y). (15)

This implies that with a probability of 1− α0/2,

FY +(y) ≥ 1− FY −(y). (16)

That is, with a probability of 1−α0/2, the true CDF for the positive class is greater than
or equal to the true CDF for the negative class. In the case of 1−F ∗

U−(u−) ≥ F ∗
U+(u+),

the same argument can be applied using (10) and (13).
From this description of confidence level 1 − α0/2, the uncertainty measure δ is

determined as follows:

Step 1. From the output of CPON for the positive and negative classes, determine the
empirical CDFs F ∗

U+(u+) and F ∗
U− (u−). In the case that the CPON is trained

enough for the given patterns,

F ∗
U+(u+) ≈ F̂Y +(y) and (17)

1− F ∗
U−(u−) ≈ 1− F̂Y −(y). (18)

Step 2. From the boundary condition x0, determine the value of Kα0 :
– If F ∗

U+(u+) ≥ 1− F ∗
U−(u−),

Kα0 =
F ∗

U+(u+) + F ∗
U−(u−)− 1

1/
√
n+ + 1/

√
n− . (19)

– Otherwise,

Kα0 =
1− F ∗

U+(u+)− F ∗
U− (u−)

1/
√
n+ + 1/

√
n− . (20)

Step 3. From the value of Kα0 , determine the uncertainty value δ0 as α0/2, where

α0 = 1−H(Kα0). (21)

This uncertainty measure δ represents how well the CDF values of the positive and
negative classes are separated. This value usually lies between 0 and 0.5. For example,
if the uncertainty value δ0 is 0.05, it represents that with a probability of 1 − 0.05
(=0.95), one CDF value is greater than or equal to another CDF value. In this case,
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Fig. 1. The uncertainty measure and CPON output plots for the normalized SVM output in which
the SVM is trained for the Breast Cancer data set of the UCI database

we presume that the decision of classification is quite certain. On the other hand, if the
value is near 0.5, the decision of classification is not quite clear and the given pattern
can be treated as an uncertain pattern.

To illustrate the aforementioned uncertainty measure, the uncertainty measure and
CPON output plots for the normalized SVM output are shown in Figure 1. Theses plots
are obtained from the CPON for binary classification which is trained for the Wisconsin
Breast Cancer data set of the University of California at Irvine (UCI) database [9]. In
this training, the whole data are used to construct a CPON. As expected, the values
of uncertainty measure are larger near the decision boundary and smaller near 0 or 1.
This implies that we need to select uncertain examples that are located near the decision
boundary.

4 Simulation Results

All the simulations were done with a ”LIBSVM” [10], one of SVM libraries for con-
struction of CPONs. For training SVMs, a RBF kernel was used for each construction
of a CPON.

4.1 The Effectiveness of Uncertainty Measure

To show the effectiveness of uncertainty measure to be used in the selective sampling,
the recognition rate was investigated according to the each value of uncertainty mea-
sure. For the benchmark data, we used the UCI database [9]. A brief description of the

Table 1. Description of the data sets from the UCI database

Data Name Size of Data Input Dimension Number of Classes

Diabetes 768 8 2
Breast Cancer 683 10 2
Liver Disorders 345 6 2
Ionosphere 351 34 2
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Fig. 2. The uncertainty measure and recognition rates plot for the normalized SVM output in
which the SVM is trained for several data set of the UCI database

data sets is given in Table 1. Each attribute of data set was linearly scaled between -1
and 1. For each data set, 50% of data were used as training data and the rest 50% of data
were used as test data. With this ratio of training, 10 sets of data were randomly selected
and used for training of CPONs. Then, the average value of uncertainty measures and
recognition rates was obtained using the trained CPONs and the test data sets, respec-
tively. These simulation results are illustrated in Figures 2(a) through 2(d). In these
results, the recognition rate for each output of a classifier showed some variations since
the estimation of the recognition rate was different depending on the number of data
included in the bin of classifier’s output. However, even in these conditions, the results
show that 1) the uncertainty measure has a bell-shaped and non-symmetrical figure with
different width depending on the data set, especially 2) in the region of larger values of
uncertainty measure.

4.2 Comparison of Recognition Performance between Different Sampling
Methods

For comparison of recognition performanc, we compared three different sampling
methods, random sampling, margin-based sampling [4], and combined sampling with
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Fig. 4. Comparison of recognition performance along learning epochs, (a) n = 10 (b) n = 20

margin-based and uncertainty measure using confidence level (MC) sampling. Margin-
based sampling selects a pattern whose margin is the smallest from the decision bound-
ary. Combined sampling means that initially we used margin-based sampling, and after
some epochs used our proposed uncertainty measure using confidence level.

We generated two-dimensional synthetic data set in Figure 3 that has binary bal-
anced classes. Each class has 500 patterns and we initially divided whole data into
training and test data with 70% and 30%, respectively. From training data, n data were
randomly selected initially; n was set to 10 or 20. The remaining patterns among the
training data were regarded as the unlabeled data U. For each learning epoch, we aug-
mented 1 to the current labeled data after labeling, which is selected from the unlabeled
data U, until the whole number of the augmented patterns is equal to 150. For MC
sampling, the replacing learning epochs is set to 60. After updating labeled and un-
labeled data, a classifier was re-trained, and we investigated the recognition rate with
test data, and averaged it over 50 trials. As shown in Figure 4, the recognition rate
of MC sampling ranked best along learning epochs, compared to the random sampling
and margin-based sampling even though initially using margin-based sampling only
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for some learning epochs. In the case of (n = 10 as illustrated in Figure 4(a), it has
fluctuation in the initial learning part due to the small sample size of the training data.

5 Conclusion

We have presented a new way of determining the values of uncertainty measure using
the confidence level for the CPON output and a method of selective sampling based on
the proposed uncertainty measure. The proposed uncertainty measure represents how
uncertain the classifiers decision is. Through the simulation for classification problems
using the CPON, we have shown that the proposed uncertainty measure is effective
to determine the uncertain region of the classifiers output by comparing the value of
uncertainty measure. For selective sampling, the patterns which are mapped into the
uncertain region of the classifiers output can be classified as uncertain patterns and
these patterns will be selected for the future training of a classifier. Also, we compared
the recognition performance compared to other sampling methods. In this way, the pro-
posed uncertainty measure can be easily applied to active learning in which the learning
algorithm has the control over the selection of examples for the future training.
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