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Preface

This book and its sister volumes constitute the proceedings of the 18th Inter-
national Conference on Neural Information Processing (ICONIP 2011) held in
Shanghai, China, during November 13–17, 2011. ICONIP is the annual confer-
ence of the Asia Pacific Neural Network Assembly (APNNA). ICONIP aims to
provide a high-level international forum for scientists, engineers, educators, and
students to address new challenges, share solutions, and discuss future research
directions in neural information processing and real-world applications.

The scientific program of ICONIP 2011 presented an outstanding spectrum of
over 260 research papers from 42 countries and regions, emerging from multidis-
ciplinary areas such as computational neuroscience, cognitive science, computer
science, neural engineering, computer vision, machine learning, pattern recogni-
tion, natural language processing, and many more to focus on the challenges of
developing future technologies for neural information processing. In addition to
the contributed papers, we were particularly pleased to have 10 plenary speeches
by world-renowned scholars: Shun-ichi Amari, Kunihiko Fukushima, Aike Guo,
Lei Xu, Jun Wang, DeLiang Wang, Derong Liu, Xin Yao, Soo-Young Lee, and
Nikola Kasabov. The program also includes six excellent tutorials by David Cai,
Irwin King, Pei-Ji Liang, Hiroshi Mamitsuka, Ming Zhou, Hang Li, and Shan-
feng Zhu. The conference was followed by three post-conference workshops held
in Hangzhou, on November 18, 2011: “ICONIP2011Workshop on Brain – Com-
puter Interface and Applications,” organized by Bao-Liang Lu, Liqing Zhang,
and Chin-Teng Lin; “The 4th International Workshop on Data Mining and Cy-
bersecurity,” organized by Paul S. Pang, Tao Ban, Youki Kadobayashi, and Jung-
suk Song; and “ICONIP 2011 Workshop on Recent Advances in Nature-Inspired
Computation and Its Applications,” organized by Xin Yao and Shan He.

The ICONIP 2011 organizers would like to thank all special session orga-
nizers for their effort and time high enriched the topics and program of the
conference. The program included the following 13 special sessions: “Advances
in Computational Intelligence Methods-Based Pattern Recognition,” organized
by Kai-Zhu Huang and Jun Sun; “Biologically Inspired Vision and Recogni-
tion,” organized by Jun Miao, Libo Ma, Liming Zhang, Juyang Weng and Xilin
Chen; “Biomedical Data Analysis,” organized by Jie Yang and Guo-Zheng Li;
“Brain Signal Processing,” organized by Jian-Ting Cao, Tomasz M. Rutkowski,
Toshihisa Tanaka, and Liqing Zhang; “Brain-Realistic Models for Learning,
Memory and Embodied Cognition,” organized by Huajin Tang and Jun Tani;
“Clifford Algebraic Neural Networks,” organized by Tohru Nitta and Yasuaki
Kuroe; “Combining Multiple Learners,” organized by Younès Bennani, Nistor
Grozavu, Mohamed Nadif, and Nicoleta Rogovschi; “Computational Advances
in Bioinformatics,” organized by Jonathan H. Chan; “Computational-Intelligent
Human–Computer Interaction,” organized by Chin-Teng Lin, Jyh-Yeong Chang,
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John Kar-Kin Zao, Yong-Sheng Chen, and Li-Wei Ko; “Evolutionary Design
and Optimization,” organized by Ruhul Sarker and Mao-Lin Tang; “Human-
Originated Data Analysis and Implementation,” organized by Hyeyoung Park
and Sang-Woo Ban; “Natural Language Processing and Intelligent Web Infor-
mation Processing,” organized by Xiao-Long Wang, Rui-Feng Xu, and Hai Zhao;
and “Integrating Multiple Nature-Inspired Approaches,” organized by Shan He
and Xin Yao.

The ICONIP 2011 conference and post-conference workshops would not have
achieved their success without the generous contributions of many organiza-
tions and volunteers. The organizers would also like to express sincere thanks to
APNNA for the sponsorship, to the China Neural Networks Council, Interna-
tional Neural Network Society, and Japanese Neural Network Society for their
technical co-sponsorship, to Shanghai Jiao Tong University for its financial and
logistic supports, and to the National Natural Science Foundation of China,
Shanghai Hyron Software Co., Ltd., Microsoft Research Asia, Hitachi (China)
Research & Development Corporation, and Fujitsu Research and Development
Center, Co., Ltd. for their financial support.

We are very pleased to acknowledge the support of the conference Advisory
Committee, the APNNA Governing Board and Past Presidents for their guid-
ance, and the members of the International Program Committee and additional
reviewers for reviewing the papers. Particularly, the organizers would like to
thank the proceedings publisher, Springer, for publishing the proceedings in the
Lecture Notes in Computer Science Series. We want to give special thanks to the
Web managers, Haoyu Cai and Dong Li, and the publication team comprising
Li-Chen Shi, Yong Peng, Cong Hui, Bing Li, Dan Nie, Ren-Jie Liu, Tian-Xiang
Wu, Xue-Zhe Ma, Shao-Hua Yang, Yuan-Jian Zhou and Cong Xie for checking
the accepted papers in a short period of time. Last but not least, the organizers
would like to thank all the authors, speakers, audience, and volunteers.

November 2011 Bao-Liang Lu
Liqing Zhang
James Kwok
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André Cavalcante, Allan Kardec Barros, Yoshinori Takeuchi, and
Noboru Ohnishi

Neural Model of Auditory Cortex for Binding Sound Intensity and
Frequency Information in Bat’s Echolocation . . . . . . . . . . . . . . . . . . . . . . . . 62

Yoshitaka Mutoh and Yoshiki Kashimori

Naive Bayesian Multistep Speaker Recognition Using Competitive
Associative Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Shuichi Kurogi, Shota Mineishi, Tomohiro Tsukazaki, and
Takeshi Nishida

Medial Axis for 3D Shape Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Wei Qiu and Ko Sakai

A Biologically Inspired Model for Occluded Patterns . . . . . . . . . . . . . . . . . 88
Mohammad Saifullah



XVI Table of Contents – Part I

Bioinformatics

Dynamic Bayesian Network Modeling of Cyanobacterial Biological
Processes via Gene Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Nguyen Xuan Vinh, Madhu Chetty, Ross Coppel, and
Pramod P. Wangikar

Discrimination of Protein Thermostability Based on a New Integrated
Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Jingru Xu and Yuehui Chen

Visual Analytics of Clinical and Genetic Datasets of Acute
Lymphoblastic Leukaemia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Quang Vinh Nguyen, Andrew Gleeson, Nicholas Ho,
Mao Lin Huang, Simeon Simoff, and Daniel Catchpoole

Complex Detection Based on Integrated Properties . . . . . . . . . . . . . . . . . . . 121
Yang Yu, Lei Lin, Chengjie Sun, Xiaolong Wang, and Xuan Wang

Exploring Associations between Changes in Ambient Temperature
and Stroke Occurrence: Comparative Analysis Using Global and
Personalised Modelling Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Wen Liang, Yingjie Hu, Nikola Kasabov, and Valery Feigin

Recognition of Human’s Implicit Intention Based on an Eyeball
Movement Pattern Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Young-Min Jang, Sangil Lee, Rammohan Mallipeddi,
Ho-Wan Kwak, and Minho Lee

ECG Classification Using ICA Features and Support Vector
Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Yang Wu and Liqing Zhang

Feature Reduction Using a Topic Model for the Prediction of Type III
Secreted Effectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Sihui Qi, Yang Yang, and Anjun Song

Biologically Inspired Vision and Recognition

A Saliency Detection Model Based on Local and Global Kernel Density
Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Huiyun Jing, Xin He, Qi Han, and Xiamu Niu

Saliency Detection Based on Scale Selectivity of Human Visual
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Fang Fang, Laiyun Qing, Jun Miao, Xilin Chen, and Wen Gao



Table of Contents – Part I XVII

Bio-inspired Visual Saliency Detection and Its Application on Image
Retargeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Lijuan Duan, Chunpeng Wu, Haitao Qiao, Jili Gu, Jun Miao,
Laiyun Qing, and Zhen Yang

An Approach to Distance Estimation with Stereo Vision Using
Address-Event-Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

M. Domı́nguez-Morales, A. Jimenez-Fernandez, R. Paz,
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Abstract. Compared with the relatively stable structural networks, the
functional networks, defined by the temporal correlation between remote
neurophysiological events, are highly complex and variable. However, the
transitions should never be random. So it was proposed that some stable
fast rewiring mechanisms probably exist in the brain. In order to probe
the underlying mechanisms, we analyze the fMRI signal in temporal di-
mension and obtain several heuristic conclusions. 1) There is a stable
time delay, 7∼14 seconds, between the stimulus onset and the activation
of corresponding functional regions. 2) In analyzing the biophysical fac-
tors that support stable fast rewiring, it is, to our best knowledge, the
first to observe that skeleton voxels may be essential for the fast rewiring
process. 3) Our analysis on the structure of functional network supports
the scale-free hypothesis.

Keywords: fMRI, rewiring, functional network.

1 Introduction

Though ∼3×107 synapses are lost in our brain each year, it can be neglected
when taking the total number of synapses, ∼1014 , into consideration. So the
structural network is relatively stable. But the functional networks, which relates
to the cognitive information processing, are highly variable. So a problem aris-
ing: how does a relatively stable network generate so many complex functional
networks? It has puzzled intellects for years [1]. We don’t want to linger on this
enduring pitfall, but only emphasize the functional network, especially the tran-
sition between functional networks. For, though incredible advances have been
obtained in disclosing the structural network with the help of neuroanatomy, we
know little about the functional networks [2].

Gomez Portillo et al. [3-4] recently proposed that there may be a fast rewiring
process in the brain, and they speculated that the scale-free characteristics might
be determined by a local-and-global rewiring mechanism by modeling the brain
as an adaptive oscillation network using Kuramoto oscillator. But their assump-
tions are problematic. Since human cognitions are continuous process, the ran-
dom assumption about the initial states is infeasible. What’s worse, the rewiring
∗ This work is supported by National Natural Science Foundation of China (61071180).

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 1–8, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(a) (b) (c)

Fig. 1. Morphological dilation to ROI: (a) the activated region given by SPM; (b) the
extracted ROI; (c) the mask obtained by ROI dilation

is too slow to satisfy the swift and precise information process requirements
of the brain. (Also, in personal communication, Gomez Portillo explained that
the underlying biophysical basis is not clear at present.) Obviously, our brain
has been experiencing ”oriented” rewiring instead of “random” rewiring, so the
rewiring is stable, and which should be oriented to response precisely to the
stimulus.

To disclose the biophysical mechanisms underlying fast rewiring, we conduct
explorative analysis to the fMRI signal in temporal dimension and many impor-
tant and heuristic conclusions are drawn. The experiment material is introduced
in Section 2. In Section 3 and 4, we analyze the temporal stability and skeleton
voxels. Finally, we conclude this paper in Section 5.

2 Material

Analysis were conducted based on an auditory dataset available at the SPM site
[5], which comprises whole brain BOLD/EPI images and is acquired by a mod-
ified 2 Tesla Siemens MAGNETOM Vision system. Each acquisition consisted
of 64 contiguous slices (64×64×64 3mm×3mm×3mm voxels). Data acquisition
took 6.05s per volume, with the scan to scan repeat time set to 7s. 96 acqui-
sitions were made (TR=7s) from a single subject, in blocks of 6, giving 16 42s
blocks. The condition for successive blocks alternated between rest and auditory
stimulation, starting with rest. Auditory stimulation was with bi-syllabic words
presented binaurally at a rate of 60 per minute [6]. The first 12 scans were dis-
carded for T1 effects, leaving with 84 scans for analysis. SPM8 was the main tool
for image pre-processing. All volumes were realigned to the first volume and a
mean image was created using the realigned volumes. A structural image, ac-
quired using a standard three-dimensional weighted sequence (1×1×3mm3 voxel
size) was co-registered to this mean (T2) image. Finally all the images were spa-
tially normalized [7] to a standard Tailarach template [8] and smoothed using a
6mm full width at half maximum (FWHM) isotropic Gaussian kernel. And we
use the default (FWE) to detect the activated voxels.

3 Temporal Stability

Though SPM can be used to detect the activated regions, as shown in Fig.1
(a), we know little on the temporal relationship between the stimulus and the
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(a) (b)

Fig. 2. The temporal stability of fast rewiring. For convience, only the upper triangle
part of the binary similarity matrix is show, and the threshod coefficients are (a)η =
0.4,(b)η = 0.5. The rectangle wave above each matrix denotes the stimulus onset in
the block design. The local maximum (denoted by black dots) show that there is a
huge jump between the first and the second scan after each stimulus onset. And the
periodicality of local maximums, which is consistent with the periodicality of stimulus
onset, shows that the delay between the stimulus onset and the corresponding cortical
activation is very stable. And the delay is about 7 14 seconds (dt=2 scans, TR=7
seconds). Not that there are some “noise”, like the missing of local maximums (red
circles) or priming phenonmenon (red numbers), please see the text for explainations.

response. So, in order to facilitate the analysis, we need to extract those activated
voxels for post-processing. And the extracted activated regions, also known as
region of interest (ROI), is shown in Fig.1 (b).

The ROI provided by SPM are the most activated voxels responding to the
stimulus. In order to reduce the noise and also facilitate the latter analysis, we
expand the ROI at firstly, because the essential voxels that play an important
role in rewiring may be not included in the ROI, as it shown in latter sections.
We adopt the morphological dilation [9]and the 3×3×3 cubic structural element
is used. The dilated ROI, denoted as M , is shown in Fig.1 (c).

Due to the adaptation effects or the descending of blood oxygenated level
of the functional regions, the energy intensity of fMRI signal varies with large
amplitude. To facilitate the comparison between scans, we have to normalize the
energy of eachscan. Let fi be the ith scan, and gi be the normalized image, then
the normalization can be depicted as

gi = fi

max
i

{〈fi〉}

〈fi〉
(1)

where 〈·〉 stands for the mean energy. Then we can extracted the voxels of
interests using the mask M ,

Gi = [gi]M (2)

where Gi is the masked image.
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Even when the brain is at the resting state, the intensities of voxels are very
large. So the baseline activities of voxels are very high, and the stimulus only
makes the voxels more active or less active. Compared with the mean activities,
the energy changes are very small, so it is better not to use the original voxels
intensities. We differentiate the images as follow,

dGi = Gi − Gi−1 (3)

By the way, the baseline activity of each voxel is described by a constant factor in
the design matrix. Threshold the differential images with some θ and transform
the images into binary vectors, then we can obtain the similarity matrix by
calculating the inner product of any two binary vectors. That is,

dist (Gi, Gj) = 〈sgn (dGi − θ) , sgn (dGi − θ)〉 (4)

where θ = η · max {dist (Gi, Gj)}ijand ηis a coefficient.
If the onset of stimulus can induce remarkable change in fMRI signal, there

would be a steep peak in the corresponding differential vector. And if the change
is also stable, then there would be periodic local maximums. In Fig.2, we show
the local maximums using different thresholds. For convenience, we only show the
upper triangle part of the binary similarity matrix. See the caption for details.

As it can be seen from Fig.2, there are periodic local maximums in the sim-
ilarity matrix. So the periodic stimulus can induce the periodic enhancement
and recession of fMRI signal. So the dynamic rewiring of functional network is
temporal stable.

What’s more, we found that the local maximums don’t appear immediately
when the stimulus set, and there is always 2-period delay. Because the scanning
period, 7 seconds, is too large when compared with the cognitive processing
speed of the brain, and the volumes were pre-processed by slice-timing, the
time delay is estimated to be about 7∼14s, which coincides with the theoretical
value [6]. The stable time delay phenomenon reminds us that we can study the
mechanisms and rules underlying the fast rewiring by scrutinizing these first
2-scans after each stimulus onset, which would be described in the next section.

It is also interesting to note that there are two kinds of noise in the similarity
matrix. The first one is the pseudo local maximums, like 1-4 and 6-8 in Fig.2
(a) and 1 in Fig.2 (b). The pre-activation behaviors may be relevant to the
priming phenomenon [10]. By the way, in SPM, these activities are captured by
the derivative of HRF function [11].

The second is the absence of some local maximums. It is worth nothing that
the absences can’t be understood as the deactivation of these regions. There
are two ways to look at the issue: the first is that the results largely depend on
the threshold, with lower ones produces more local maximums; and the second is
that the basic assumption, the brain is at resting state when stimulus disappears,
may not hold some time, due to the activity changes induced by the adaptation
or any physiological noise.
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(a) (b)

Fig. 3. The transition matrix(a) and its eign values(b). Only one eigen value is much
large than other eigen values. So approximately, there exists an linear relationships
between the column of the transformation matrix.

4 Skeleton Voxels

Let Gj
i be the jth scanned fMRI image after the onset of the ith stimulus. All

the first scans are denoted as G1 = [G1
1, · · ·, G1

S ], the second scans as G2 =
[G2

1, · · ·, G2
S ], where S is the number of stimulus. The transition matrix is A,

then
G2 = AG1, (5)

Using the simple pseudo-inverse rule, we have

A = G2G1T
(
G1G1T

)−1

. (6)

The transition matrix is shown in Fig.3(a). To analyze the characteristics of the
transition matrix, we decompose the matrix by SVD (singular matrix decompo-
sition) and the eigen values are plotted in Fig.3(b). The first eigen value is much
larger than any other eigen values. So the matrix nearly has only one princi-
ple direction. It demonstrates that there is an approximately linear relationship
between the columns. It accords with what we see from Fig.3, the rows of the
transition matrix are very similar, but the columns are very different.

Turn formula (8a) to its add-and-sum form,

G2
in =

K∑
m=1

anmG1
im, (7)

where anm can be seen as the weight of the m th voxel.
As described in Section 2, there is a rest block before each stimulus onset, so

in statistics, we consider the activity of each voxel to be random. Then formula
(8b) can be simply reduced to

G2
in ≈ G1

i·

K∑
m=1

anm, (8)
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Fig. 4. Skeleton voxels and the connections between them. Note that the connections
are obtained by threshod the connection weights anm.

Fig. 5. Voxel Degree follows truncated exponential distribution. Thr stands for differ-
ent threshold coefficients.

where G1
i· stands for the mean energy of the first scan after the onset of the

ith stimulus. Then anm can also be seen as the contributions of the mth voxel.
As discussed above, the columns of the trasition matrix differs much, so it is
probably that only a subset of voxels, which have larger contributions, play
essential roles. Threshold the transform matrix shows that only several voxels
are very important in function network rewiring, as shown in Fig.4. We named
them “skeleton voxels”.

Similarly, anm can be seen as the connection weight between voxel m and n .
If we threshold the weight and only take the presence or absence of these connec-
tions into consideration, the degree distribution of voxels can also be obtained.
As shown in Fig.5, the degrees follow a truncated exponential distribution, which
supports the conclusion of Achard et al. [12]. It says that only a small subset of
voxels have large degree, while the others have small degree, and which is the
typical characters of scale-free network. We also found that most of the voxels
with large degree belong to skeleton voxels, so skeleton voxels might support
stable fast rewiring by widespread connections.

We also analyzed the neighbor distribution of single voxels. In most cases,
their activations are mainly determined by few local neighboring voxels and
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their counterparts in the opposite hemisphere, which supports the sparse coding
hypothesis and the connection role played by the callose. A sample is shown in
Fig.6. It should be noted that skeleton voxels have more neighbors, and we think
it may have something to do with the stability requirements.

Of course, the “closest” neighbors correlate with the specific tasks brain un-
dertakes. But our analysis shows that some voxels may be essential for the stable
fast rewiring.

5 Discussions and Conclusions

Our brain experiences complex changes every day. When stimulus set, peripheral
sense organs send information into the central neural system. Then we formu-
late the cognition by functional complex network dynamics [13]. Cognition to
different objects or concepts relies on different functional works. So analyzing the
switching mechanisms between networks is not only essential for disclosing the
formulation of function networks, but also for revealing the relationship between
structural network and function networks. They are all heuristic for artificial
networks.

The emergence of fMRI technology provides us the opportunity to analyze
the network mechanisms in a micro-macro scale. The paper mainly discusses the
stability of fast rewiring in functional network by analyzing the fMRI signal, and
many interesting and heuristic conclusions are drawn. Firstly, we verified that
there is a 2-scans time delay between the stimulus onset and the activation of
corresponding functional region. The most important is that we found that the
delay is very stable. Secondly, we proposed for the first time that there might be
skeleton voxels that induces the stable fast rewiring. What’s more, our analysis
on the degree distribution of voxels supports the scale-free hypothesis.

Also recently, we note that Tomasi et al [14][15] proposed that some “hubs”
areas are essential for the brain network architecture by calculating the density of
functional connectivity. Our analysis supports their conclusions. But our method
provides a new way to analyze the activation pattern of each sub-network. Our
future work will focus on the statistical test of skeleton voxels, exploration of
skeleton voxels in other modals and reasoning the origination skeleton voxels.

Acknowledgments. We thank Welcome team for approval use of the MoAE
dataset. Special thanks go to He-Ping Song from Sun Yat-Sen University and
another two annoymous viewers for their helpful comments for the manuscript.
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Abstract. In social interaction between two persons usually a person displays 
understanding of the other person. This may involve both nonverbal and verbal 
elements, such as bodily expressing a similar emotion and verbally expressing 
beliefs about the other person. Such social interaction relates to an underlying 
neural mechanism based on a mirror neuron system, as known within Social 
Neuroscience. This mechanism may show different variations over time. This 
paper addresses this adaptation over time. It presents a computational model 
capable of learning social responses, based on insights from Social Neuroscience. 
The presented model may provide a basis for virtual agents in the context of 
simulation-based training of psychotherapists, gaming, or virtual stories. 
 

Keywords: Hebbian learning, ASD, computational model, social interaction.  

1   Introduction 

Showing mutual empathic understanding is often considered a form of glue between 
persons within a social context. Recent developments within Social Neuroscience 
have revealed that a mechanism based on mirror neurons plays an important role in 
generating and displaying such understanding, both in nonverbal form (e.g., smiling 
in response to an observed smile) and in verbal form (e.g., attributing an emotion to 
the other person); cf. [11, 19]. Such empathic responses vary much over persons. For 
example, when for a person these responses are low or nonexistent, often the person is 
considered as ‘having some autistic traits’. Within one person such differences in 
responding may occur as well over time, in the sense of learning or unlearning to 
respond. This is the focus of this paper.  

It is often claimed that the mirroring mechanism is not (fully) present at birth, but has 
to be shaped by experiences during lifetime; for example, [3, 11, 14]. For persons (in 
particular children) with low or no social responses, it is worth while to offer them 
training sessions in imitation so that the mirror neuron system and the displayed social 
responses may improve. This indeed turns out to work, at least for the short term, as has 
been reported in, for example [7, 13]. Thus evidence is obtained that the mirror neuron 
system has a certain extent of plasticity due to some learning mechanism. In [14] it is 
argued that Hebbian learning (cf. [8, 10]) is a good candidate for such a learning 
mechanism. 
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In this paper a Hebbian learning mechanism is adopted to obtain an adaptive agent 
model showing plasticity of the agent’s mirror neuron system. The model realises 
learning (and unlearning) of social behaviour (in particular, empathic social 
responses), depending on a combination of innate personal characteristics and the 
person’s experiences over time obtained in social context. A person’s experiences 
during lifetime may concern self-generated experiences (the person’s responses to 
other persons encountered) or other-generated experiences (other persons’ responses 
to the person). By varying the combination of innate characteristics and the social 
context offering experiences, different patterns of learning and unlearning of socially 
responding to other persons are displayed. 

In Section 2 the adaptive agent model for Hebbian learning of social behaviour is 
presented. In Section 3 some simulation results are discussed, for different 
characteristics and social contexts. In Section 4 a mathematical analysis of the 
learning behaviour is made. Section 5 concludes the paper. 

2   The Adaptive Agent Model Based on Hebbian Learning  

The basic (non-adaptive) agent model (adopted from [20]) makes use of a number of 
internal states for the agent self, as indicated by the nodes in Fig. 1. A first group of 
states consists of the sensory representations of relevant external aspects: a sensory 
representation of a body state (labeled by) b, of a stimulus s, and of another agent B, 
denoted by srb, srs, srB, respectively. Related sensor states are ssb, sss, ssB, which in turn 
depend on external world states wsb, wss, wsB. Moreover, pbb and pcB,b denote 
preparation states for bodily expression of b and communication of b to agent B. 
Following [5], the preparation for bodily expression b is considered to occur as an 
emotional response on a sensed stimulus s. Feeling this emotion is based on the 
sensory representation srb of b. These b’s will be used as labels for specific emotions. 
Communication of b to B means communication that the agent self  believes that B 
feels b; for example: ‘You feel b’, where b is replaced by a word commonly used for 
the type of emotion labeled in the model by b.  

The states indicated by psc,s,b are considered control or super mirror states (cf. [11], 
pp. 200-203, [12], [16]) for context c, stimulus s and body state b; they provide 
control for the agent’s execution of (prepared) actions, such as expressing body states 
or communications, or regulation of the gaze. Here the context c can be an agent B, which can be another agent (self-other distinction), or the agent self, or c can be sens 
which denotes enhanced sensory processing sensitivity: a trait which occurs in part of 
the population, and may affect social behaviour (e.g., [1, 4]). One reason why some 
children do not obtain a sufficient amount of experiences to shape their mirror neuron 
system, is that they tend not to look at other persons due to enhanced sensory 
processing sensitivity for face expressions, in particular in the region of the eyes; e.g., 
[4, 15]. When observing the face or eyes of another person generates arousal which is 
experienced as too strong, as a form of emotion regulation the person’s own gaze 
often is taken away from the face or eyes observed; cf. [9]. Such an avoiding 
behavioural pattern based on emotion regulation may stand in the way of the 
development of the mirror neuron system. In summary, three types of super mirroring 
states may (nonexclusively) occur to exert control as follows:  
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• if a super mirror state for agent B occurs (self-other distinction), a prepared 
communication will be performed and directed to B  

• if it occurs for self, the agent will execute the related prepared actions 
• if it occurs for sens, the agent will regulate some aspects of functioning to 

compensate for enhanced sensitivity: to suppress preparation and expression of 
related bodily responses, and to adapt the gaze to avoid the stimulus s.  

 

Expressing body state b is indicated by effector state ebb, communication of b to B by ecb,B, and regulated gaze to avoid stimulus s by egs. These effector states result in a 
modified body state indicated by wsb and an adapted gaze avoiding s indicated by wgs. 

In case the stimulus s is another agent B’s body expression for b (denoted by sb,B, 
for example, a smiling face), then mirroring of this body state means that the agent 
prepares for the same body expression b; e.g., [11, 16, 19]. If this prepared body state 
is actually expressed, so that agent B can notice it, then this contributes an empathic 
nonverbal response, whereas communication of b to B is considered an empathic 
verbal response. The bodily expression of an observed feeling b together with a 
communication of b to B occurring at the same time is considered a full empathic 
response of self to B. These two elements for empathic response are in line with the 
criteria for empathy explicated in [6], p. 435 (assuming true, faithful bodily and 
verbal expression): (1) presence of an affective state in a person, (2) isomorphism of 
the person’s own and the other person’s affective state, (3) elicitation of the person’s 
affective state upon observation or imagination of the other person’s affective state, 
(4) knowledge of the person that the other person’s affective state is the source of the 
person’s own affective state.  

 

Fig. 1. Overview of the adaptive agent model 

The arrows connecting the nodes in Fig. 1 indicate the dynamical relationships 
between the states. Most of these connections have been given strength 1, but six of 
them (indicated by dotted arrows) have a dynamical strength, adapted over time 
according to Hebbian learning. Note that the graph of the model shown in Fig. 1 
shows three loops: the body loop to adapt the body, the as-if body loop to adapt the 

body loop

as-if body loop

gaze adaptation loop

   

 

 

  



12 J. Treur 

internal body representation and integrate felt emotions in preparations for responses, 
and the gaze adaptation loop. The effect of these loops is that for any new external 
situation encountered, a (numerical) approximation process takes place until the 
internal states reach an equilibrium (assuming that the external situation does not 
change too fast). However, as will be seen in Section 3, it is also possible that a 
(static) external situation leads to periodic oscillations (limit cycle behaviour).  

The connection strengths are indicated by ωij with the node labels i and j (the 
names of the nodes as indicated in Fig. 1) as subscripts. A distinction is made between 
expression states and the actual states for body and gaze. The first type of states are 
the agent’s effector states (e.g., the muscle states), whereas the body and gaze states 
result from these. The sensory representation of a body state b is not only affected by 
a corresponding sensor state (via the body loop), but also by the preparation for this 
body state (via the as-if body loop). Preparation for a verbal empathic communication 
depends on feeling a similar emotion, and adequate self-other distinction.  

Super mirroring for an agent A (self  or B) generates a state indicating on which 
agent (self-other distinction) the focus is, and whether or not to act. Super mirroring 
for enhanced sensory processing sensitivity, generates a state indicating in how far the 
stimulus induces a sensory body representation level experienced as inadequately 
high. To cover regulation to compensate for enhanced sensory processing sensitivity 
(e.g., [1]), the super mirroring state for this is the basis for three possible regulations: 
of the prepared and expressed body state, and of the gaze.  

A first way in which regulation takes place, is by a suppressing effect on 
preparation of the body state (note that the connection strength ωpssens,s,bpbb  from 
node pssens,s,b  to node pbb is taken negative). Such an effect can achieve, for example, 
that even when the agent feels the same as the other agent, an expressionless face is 
prepared. In this way a mechanism for response-focused regulation (suppression of 
the agent’s own response) to compensate for an undesired level of emotion is 
modelled; cf. [9]. Expressing a prepared body state depends on a super mirroring state 
for self and a super mirroring state for enhanced sensitivity with a suppressing effect 
(note that ωpssens,s,bebb is taken negative). This is a second way in which a mechanism 
for response-focused regulation is modelled to compensate for an undesired level of 
arousal. A third type of regulation to compensate for enhanced sensory processing 
sensitivity, a form of antecedent-focused regulation (attentional deployment) as 
described in [9], is modelled by directing the own gaze away from the stimulus. Note 
that node egs for avoiding gaze for stimulus s has activation level 1 for total avoidance 
of the stimulus s, and 0 for no avoidance (it indicates the extent of avoidance of s). To 
generate a sensor state for stimulus s, the gaze avoidance state for s is taken into 
account: it has a suppressing effect on sensing s (note that ωwgssss is taken negative). 

The model has been specified in dynamical system format (e.g., [18]) as follows. 
Here for a node label k, by ak(t) the activation level (between 0 and 1) of the node 
labeled by k at time t is denoted, by input(k) the set of node labels is denoted that 
provides input (i.e., have an incoming arrow to node k in Fig. 1), and th(W)  is a 
threshold function.  
   

        
 ( )   =   [ (  ( )   ( )) ( ) ]         (1) 
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The parameter γ  is an update speed factor, which might differ per connection, but has 
been given a uniform value 0.8  in Section 3. The following logistic threshold function th(W) with σ > 0 a steepness and τ ≥ 0 a threshold value has been used in the 
simulations (except for the sensor states): 

  th(W) = (1+ (   )  -  1+  ) / (1 - 1+ )    or   th(W) = 1+ (   )   (2) 

 

The former threshold function can be approximated by the simpler latter expression 
for higher values of στ (e.g., σ  higher than 20/τ). For the sensor states for b and B the 
identity function has been used for th(W), and for the sensor state of s the update 
equation has been taken more specifically to incorporate the effect of gaze on the 
sensor state (note that the connection strength    from the world gaze state to 
the sensor state is taken negative): 

 

         
 ( )   =   [  ( )(1 +   ( ))  ( ) ]      (3) 

 
Hebbian Learning   
The model as described above was adopted from [20]; as such it has no adaptive 
mechanisms built in. However, as put forward, for example, in [3, 11, 14] learning 
plays an important role in shaping the mirror neuron system. From a Hebbian 
perspective [10], strengthening of a connection over time may take place when both 
nodes are often active simultaneously (‘neurons that fire together wire together’). The 
principle goes back to Hebb [10], but has recently gained enhanced interest by more 
extensive empirical support (e.g., [2]), and more advanced mathematical  
formulations (e.g., [8]). In the adaptive agent model the connections that play a role 
in the mirror neuron system (i.e., the dotted arrows in Fig. 1) are adapted based on a 
Hebbian learning mechanism. More specifically, such a connection strength ω is 
adapted using the following Hebbian learning rule, taking into account a maximal 
connection strength 1, a learning rate η, and an extinction rate ζ (usually small):  

 
 

 ( ) = γ [η ai(t)aj(t)(1 - ωij(t)) - ζωij(t) ] = γ [η ai(t)aj(t) - (η ai(t)aj(t) + ζ) ωij(t)]  (4) 
 
 

A similar Hebbian learning rule can be found in [8], p. 406. By the factor 1 - ωij(t) the 
learning rule keeps the level of ωij(t)  bounded by 1 (which could be replaced by any 
other positive number); Hebbian learning without such a bound usually provides 
instability. When the extinction rate is relatively low, the upward changes during 
learning are proportional to both a1(t)   and a2(t)   and maximal learning takes place 
when both are 1. Whenever one of them is 0 (or close to 0) extinction takes over, and 
ω slowly decreases (unlearning). This learning principle has been applied 
(simultaneously) to all six connections indicated by dotted arrows in Fig. 1. In 
principle, the adaptation speed factor γ, the learning rate η and extinction rate ζ, could 
be taken differently for the different dynamical relationships. In the example 
simulations discussed in Section 3 uniform values have been used: γ = 0.8, η = 0.2 
and ζ = 0.004.  
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3   Example Simulations of Learning Processes  

A number of simulation experiments have been conducted for different types of 
scenarios, using numerical software. For the examples discussed here the values for 
the threshold and steepness parameters are as shown in Table 1. Note that first the 
value 3 for sensitivity super mirroring threshold was chosen so high that no enhanced 
sensitivity occurs. The speed factor γ was set to 0.8, the learning rate η = 0.2 and 
extinction rate ζ = 0.004. The step size Δt was set to 1. All nonadapted connection 
strengths have been given value 1, except those for suppressing connections  

 

ωpssens,s,bpbb, ωpssens,s,bebb  and ωwgssss 
 

which have been given the value -1. The scenario was chosen in such a way that after 
every 100 time units another agent is encountered for a time duration of 25 units with 
a body expression that serves as stimulus. Initial values for activation levels of the 
internal states were taken 0. A first pattern, displayed in Fig. 2, is that in normal 
circumstances, assuming initial strengths of the learned connections of 0.3, the model 
is indeed able to learn the empathic responses as expected. Here (and also in Fig. 3) 
time is on the horizontal axis and activation levels at the vertical axis. 
 

 

Fig. 2. Example scenario of the Hebbian learning process  

The upper graph shows levels for body representation, body preparation, expressed 
body states and communication. The lower graph shows the learning patterns for the 
connections (the dotted arrows in Fig. 1). Note that the two connections  

ωsrb pbb    (for emotion integration)   and   ωpbbsrb   (as-if body loop)  

have the same values, as they connect the same nodes srb and pbb, and have been 
given the same initial values. Moreover, also the connections  

ωsrB psB,s,b   and ωsrs psB,s,b  
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have the same values, as in the considered scenario the input nodes for srB and srs 
have been given the same values, and also the initial values for the connections. This 
can easily be varied. In Fig. 2 it is shown that when regular social encounters take 
place, the connections involved in responding empathically are strengthened to values 
that approximate 1. Notice that due to the relatively low initial values of the 
connections chosen, for some of them first extinction dominates, but later on this 
downward trend is changing into an upward trend. Accordingly the empathic 
responses become much stronger, which is in line with the literature; e.g., [7], [13]. 

Table 1. Settings for threshold and steepness parameters 

 

How long the learned patterns will last will depend on the social context. When 
after learning the agent is isolated from any social contact, the learned social 
behaviours may vanish due to extinction. However, if a certain extent of social 
contact is offered from time to time, the learned behaviour is maintained well. This 
illustrates the importance of the social context. When zero or very low initial levels 
for the connections are given, this natural learning process does not work. However, 
as other simulations show, in such a case (simulated) imitation training sessions 
(starting with the therapist imitating the person) still have a positive effect, which is 
also lasting when an appropriate social context is available. This is confirmed by 
reports that imitation training sessions are successful; e.g., [7], [13].  

In addition to variations in social environment, circumstances may differ in other 
respects as well. From many persons with some form of autistic spectrum disorder it 
is known that they show enhanced sensory processing sensitivity; e.g., [1], [4]; this 
was also incorporated in the model. Due to this, their regulation mechanisms to avoid 
a too high level of arousal may interfere with the social behaviour and the learning 
processes. Indeed, in simulation scenarios for this case it is shown that the adaptive 
agent model shows an unlearning process: connection levels become lower instead of 
higher. This pattern is shown in Fig. 3. Here the same settings are used as in Table 1, 
except the sensitivity super mirroring threshold which was taken 1 in this case, and 
the initial values for the connection weights, which were taken 0.7. It is shown that the 
connections  

 

ωsrs pbb  (for mirroring) and  ωsrb pbb   and ωpbbsrb  (for emotion integration) 
 

are decreasing, so that the responses become lower over time. 
 

 

  
representing body state

super mirroring B
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preparing communication

expressing body state
expressing communication
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Fig. 3. Learning under enhanced sensory processing sensitivity 

This is due to the downregulation which, for example, leads to a gaze that after a 
short time is taken away from the stimulus, and returns after the arousal has 
decreased, after which the same pattern is repeated; this is shown in the upper graph 
(the two or three peaks per encounter). Note that the values related to super mirroring 
of and communication to another agent stay high: the downregulation as modelled 
does not have a direct effect on these processes. When downregulation is also applied 
to communication, also these connections will extinguish. When for such a case 
imitation training sessions are offered in a simulation, still the connection levels may 
be strengthened. However, these effects may not last in the natural context: as soon as 
these sessions finish, the natural processes may start to undo the learned effects. To 
maintain the learned effects for this case such training sessions may have to be 
repeated regularly.  

4   Formal Analysis  

The behaviour of the agent’s adaptation process can also be investigated by formal 
analysis, based on the specification for the connection strength ω = ωij from node i to 
node j. 

 
 

    
( ) + γ (ηai(t)aj(t) + ζ) ω(t)  = γηai(t)aj(t)            (5) 

 

This is a first-order linear differential equation with time-dependent coefficients: ai 
and aj  are functions of t which are considered unknown external input in the equation 
for ω. An analysis can be made for when equilibria occur:  

 

 
( ) = 0  ⇔   (ηaiaj  + ζ) ω = ηaiaj   ⇔   ω  = 

  
           (6) 

 

One case here is that ω = 0  and one of ai and aj is 0. When ai and aj are nonzero, (6) 
can be rewritten as (since aiaj ≤ 1):  
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ω = 1 /(1  + ζ/ηaiaj)  ≤  1 /(1  + ζ/η)            (7) 
 

 

This shows that when no extinction takes place (ζ = 0), an equilibrium for ω of 1 is 
possible, but if extinction is nonzero, only an equilibrium < 1 is possible. For 
example, when η = 0.2 and ζ = 0.004  as in Section 3, then an equilibrium value will 
be ≤ 0.98, as also shown in the example simulations.  

Further analysis can be made by obtaining an explicit analytic solution of the 
differential equation in terms of the functions ai and aj. This can be done as follows. 
Take  

 W(t) =  ( ) ( )                 (8) 
 

the accumulation of ai(t)aj(t) over time from t0 to t; then 
 

 
( )

  = ai(t)aj(t)                  (9) 

 

Given this, the differential equation (5) for ω can be solved by using an integrating 
factor as follows: 

 

 

    
( ( )+( ))( ) = γηai(t)aj(t)   

( ( ) ( 0))      (10) 

 

from which it can be obtained: 
 

ω(t) = ( 0)   ( )+( ) +  γη  ai(u)aj(u)   
 ( ( ) ( )) ( ) du  (11) 

 

For the special case of constant aiaj= c, from (11) explicit expressions can be obtained, 
using  W(t) = c(t-t0) and W(t)-W(u) = c(t-u): 

 

  ai(u)aj(u)   
 ( ( ) ( )) ( ) du =   c   )( ) du  

  =  
( +)) [1 -    )( 0)  ]         (12) 

 

Although in a simulation usually aiaj will not be constant, these expressions are still 
useful in a comparative manner. When aiaj  ≥ c on some time interval, then by 
monotonicity the above expressions (11) for ω with aiaj = c  provide a lower bound for 
ω. From these expressions it can be found that 

 
ηc /(ηc+ζ) – ω(t) = [ηc /(ηc+ζ) – ω(0)] ( )     (13) 

 
which shows the convergence rate to an equilibrium for constant aiaj= c, provides an 
upper bound for the deviation from the equilibrium. This has half-value time  

 

ln(2)/γ(ηc+ζ) = 0.7 /γ(ηc+ζ)          (14) 
 

When aiaj  ≥ c on some time interval, then by the monotonicity mentioned earlier, the 
upward trend will be at least as fast as described by this expression. For example, for 
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the settings in Section 3 with c = 0.2  this provides half-value time 20. This bound 
indeed is shown in simulations (e.g., in Figs 2 and 3) in time periods with aiaj around 
or above 0.2.  

For scenarios in which encounters with other agents alternate with periods when 
nobody is there, as in Figs 2 and 3, a fluctuating learning curve is displayed. A 
question is how the balance between the different types of episodes should be in order 
to keep the learned effects at a certain level. Given the indications (14) above a rough 
estimation can be made of how long a time duration td1 of increase should last to 
compensate a time duration td2 of decrease: 

 
 

 ( ) =        td2/td1 =  (ηc+ζ)/ζ  = 1+ηc/ζ      (15) 
 
 

For example, when η = 0.2 and ζ = 0.004, as in Section 3, for c = 0.2  this provides: td2/ td1 = 11. This means that for this case under normal circumstances around 9%  of 
the time an encounter with another agent should take place leading to aiaj  ≥ 0.2 to 
maintain the empathic responses. This indeed corresponds to what was found by 
simulation experiments varying the intensity of encounters.  

5   Discussion 

To function well in social interaction it is needed that a person displays a form of 
empathic understanding, both by nonverbal and verbal expression. Within Social 
Neuroscience it has been found how such empathic social responses relate to an 
underlying neural mechanism based on a mirror neuron system. It is often suggested 
that innate factors may play a role, but also that a mirror neuron system can only 
function after a learning process has taken place (e.g., [3], [11], [14]): the strength of 
a mirror neuron system may change over time within one person. In this paper an 
adaptive agent model was presented addressing this aspect of adaptation over time, 
based on knowledge from Social Neuroscience.  

The notion of empathic understanding taken as a point of departure is in line with 
what is formulated in [6]. The learning mechanism used is based on Hebbian learning, 
as also suggested by [14]. It is shown how under normal conditions by learning the 
empathic responses become better over time, provided that a certain amount of social 
encounters occur. The model also shows how imitation training (e.g., [7], [13]) can 
strengthen the empathic responses. Moreover, it shows that when enhanced sensory 
processing sensitivity [1] occurs (e.g., as an innate factor), the natural learning 
process is obstructed by avoidance behaviour to downregulate the dysproportional 
arousal [9].  

In [17] a computational model for a mirror neuron system for grasp actions is 
presented; learning is also incorporated, but in a biologically implausible manner, as 
also remarked in [14]. In contrast, the presented model is based on a biologically 
plausible Hebbian learning model, as also suggested by [14]. The presented agent 
model provides a basis for the implementation of virtual agents, for example, for 
simulation-based training of psychotherapists, or of human-like virtual characters.  
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Abstract. Joint approximate diagonalization (JAD) is a solution for
blind source separation, which can extract non-Gaussian sources with-
out any other prior knowledge. However, because JAD is based on an
algebraic approach, it is not robust when the sample size is small. Here,
JAD is improved by an information theoretic approach. First, the “true”
probabilistic distribution of diagonalized cumulants in JAD is estimated
under some simple conditions. Next, a new objective function is defined
as the Kullback-Leibler divergence between the true distribution and the
estimated one of current cumulants. Though it is similar to the usual JAD
objective function, it has a positive lower bound. Then, an improvement
of JAD with the lower bound is proposed. Numerical experiments verify
the validity of this approach for a small number of samples.

1 Introduction

Independent component analysis (ICA) is a widely-used method in signal pro-
cessing [5,4]. It solves blind source separation problems under the assumption
that source signals are statistically independent of each other. In the linear model
(given as X = AS), it estimates the N × N mixing matrix A = (aij) and the
N × M source signals S = (sim) from only the observed signals X = (xim).
N and M correspond to the number of signals and the sample size, respec-
tively. Joint approximate diagonalization (denoted by JAD) [3,2] is one of the
efficient methods for estimating A. Cpq is defined as an N × N matrix whose
(i, j)-th element is κx

ijpq , which is the 4-th order cumulant of the observed sig-
nals X. It can be easily proved that Δpq = V CpqV

′ is a diagonal matrix
for any p and q if V = (vij) is equal to the separating matrix A−1 except
for any permutation and scaling. In other words, A can be estimated as the
inverse of V which diagonalizes C̄pq for every pair of p and q, where C̄pq

is an estimation of the true Cpq on the observed signals X . Thus, an error
function for any p and q is defined as

∑
i,j>i (νijpq)

2 where each νijpq is the
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(i, j)-th element of V C̄pqV
′ (νijpq =

∑
k,l vikvjlκ

x
klpq). Then, the average of the

squares of νijpq over i, j > i, p, and q > p is defined as the objective func-

tion Ψ =
(∑

i,j>i

∑
p,q>p (νijpq)

2
)

/
(

N(N−1)
2

)2

. Note that a pair of the same
index p = q is excluded. This exclusion is needed in Section 2.1. Lastly, the es-
timated separating matrix V̂ is given as V̂ = argminV Ψ . One of the significant
advantages of JAD is that it does not depend on the specific statistical prop-
erties of source signals except for non-Gaussianity. Because JAD utilizes only
the linear algebraic properties on the cumulants, JAD is guaranteed to generate
the unique and accurate estimation of V if each cumulant κx

ijpq is estimated
accurately [2]. However, from the viewpoint of the robustness, JAD lacks the
theoretical foundation. Because many other ICA methods are based on some
probabilistic models, the estimated results are guaranteed to be “optimal” in
the models. On the other hand, JAD is theoretically valid only if the objec-
tive function Ψ is equal to 0. In other words, it is not guaranteed in JAD that
V with smaller (but non-zero) Ψ is more “desirable.” This theoretical problem
often causes a deficiency of robustness in practical applications.

In this paper, an information theoretic approach to JAD is proposed. In order
to realize this approach, the “true” probabilistic distribution of νijpq in Ψ is theo-
retically estimated under the conditions that V is accurately estimated (namely,
V = A−1). Then, a new objective function is defined as the Kullback-Leibler
(KL) divergence between this true distribution and the estimated one of current
νijpq . Lastly, by this approach, we can derive an appropriate termination con-
dition of minimization of Ψ which increases the efficiency. In our previous work
[7], the termination condition on JAD has been improved by a similar approach.
However, their estimation of the distribution of cumulants was relatively rough
and did not involve the effect of the sample size explicitly. Besides, it used model
selection instead of the direct KL divergence. Here, we propose more rigorous es-
timation of the KL divergence involving the sample size. This paper is organized
as follows. In Section 2.1, the true probabilistic distribution of νijpq is estimated
theoretically. In Section 2.2, the KL divergence between the true distribution
and the estimated one of the current cumulants is derived as a new objective
function. Besides, a positive lower bound is derived. In Section 2.3, an improve-
ment of JAD utilizing the lower bound is proposed. Section 3 shows numerical
results on artificial datasets. This paper is concluded in Section 4.

2 Method

2.1 Estimation of True Distribution

Here, the true probabilistic distribution of νijpq is estimated theoretically under
the four simple conditions: (1) a linear ICA model; (2) a large number of samples;
(3) a random mixture; (4) a large number of signals. In this paper, “true” means
that V is completely equivalent to A−1. First, the following condition is assumed.

Condition 1 (Linear ICA Model). The linear ICA model X = AS holds,
where the mean and the variance of each source sim are 0 and 1, respectively.
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This is the fundamental condition in JAD and many other ICA methods. Then,
νijpq(i < j) is transformed by the multilinearlity of cumulants and V = A−1 as
follows:

νijpq =
∑
k,l

vikκ̄x
klpqvjl =

∑
k,l

vikvjl

∑
r,s,t,u

akralsaptaquκ̄s
rstu

=
∑

r,s,t,u

δirδjsaptaquκ̄s
rstu =

∑
t,u

aptaquκ̄s
ijtu (1)

where δij is the Kronecker delta and κ̄s
ijkl is an estimator of the 4-th order

cumulant on S. Because the first and second order statistics κs
i and κs

ij are
accurately determined by κs

i = 0 and κs
ij = δij under Condition 1, κ̄s

ijkl(i < j)
is given as

κ̄s
ijkl =

∑
m simsjmskmslm

M
− δikδjl − δilδjk. (2)

If the estimation is accurate (κ̄s
ijkl = κs

ijkl), νijpq(i < j) is 0 under Condition 1.
That is the principle of JAD. However, the estimator (or the estimation error)
κ̄s

ijkl is different from the ideal κs
ijkl = 0 in practice. Now, the following condition

is introduced.

Condition 2 (Large Number of Samples). The sample size M is sufficiently
large so that the central limit theorem (CLT) holds.

Then, each estimation error κ̄s
ijkl is given according to a normal distribution with

the mean of 0 by CLT. Because νijpq is a linear combination of the estimation
errors (Condition 1), each νijpq is also given according to a normal distribution
with the mean of 0. Then, the following lemma on the distribution of each νijpq

holds:

Lemma 1. Each νijpq follows the normal distribution with the mean of 0 under
Conditions 1 and 2.

Thus, the second order statistics (covariances) on νijpq (i < j and p < q) com-
pletely determine the distribution of νijpq ’s. However, it is difficult to estimate
those statistics when A is unknown. So, the following condition is added.

Condition 3 (Random Mixture). Each element aij in A is given randomly
and independently, whose mean and variance are 0 and 1/N , respectively.

This condition is easily satisfied by pre-whitening X and multiplying it by a
random matrix whose elements are given randomly according to the normal
distribution with the mean of 0 and the variance of 1/N . Note that this condition
is consistent with the orthogonality (

∑
k aikajk = δij) when N is sufficiently

large. Then, the covariances on νijpq can be estimated by EA (ES (νijpqνklrs))
where EA () and ES () are the expectation operators on A and S, respectively.
By Eq. (1), the expectation is rewritten as

EA (ES (νijpqνklrs)) =
∑

t,u,v,w

EA (aptaquarvasw)ES

(
κ̄s

ijtuκ̄s
klvw

)
. (3)
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Under Condition 3, EA (aptaquarvasw) is given by (δprδqsδtvδuw) /N2 because of
p < q and r < s. On the other hand, E

(
κ̄s

ijtuκ̄s
klvw

)
is given as

ES

(
κ̄s

ijtuκ̄s
klvw

)
=

ES (simsjmstmsumskmslmsvmswm)
M

− (δitδju + δiuδjt) (δkvδlw + δkwδlv)
M

(4)

where Eq. (2) and the following two properties were utilized: (1) sim is indepen-
dent of sjn for i �= j or n �= m; (2) ES (

∑
m simsjmstmsum/M) = δitδju + δiuδjt

for i �= j. Then, Eq. (3) (i < j and k < l) is transformed further into

EA (ES (νijpqνklrs)) =
δprδqs

∑
t,u ES (simsjmskmslmstmstmsumsum)

MN2

− 2δprδqsδikδjl

MN2
. (5)

By a basic relation between cumulants and moments, the expectation term in
Eq. (5) is given as a sum of products of cumulants over all the partitions of the
set of the subscripts [8]. Then, the following equation holds:∑

t,u

ES (simsjmskmslmstmstmsumsum) =
∑
t,u

∑
P∈Πijklttuu

∏
B∈P

κs[B] (6)

where Πijklttuu is the set of all the partitions of the subscripts {i, j, k, l, t, t, u, u},
P is a partition, B is a subset of subscripts in P , and κs[B] is the cumulant
of S on the subscripts in B. Under Condition 1, every term on a partition
including a singleton vanishes because the mean of every source is 0. In addition,
the subscripts must be identical in the same subset in a partition because the
sources are independent of each other. Now, the multiplicity of the summation
is focused on. The original form of each term on a partition P in Eq. (6) is a
double summation on t and u. However, if t (or u) belongs to a subset including
the other subscripts in P , the term on P is a single summation or a single value
because t (or u) is bound to the other subscripts. Therefore, only the partitions
of {· · · , {t, t}, {u, u}} correspond to double summations. Because every cumulant
does not depend on N , the value of a term without a double summation is of
the order of N . Thus, Eq. (6) is rewritten as

∑
P∈Πijklttuu

∏
B∈P

κs[B] =

⎛⎝∑
t,u

δuuδtt

∑
P∈Πijkl

∏
B∈P

κs[B]

⎞⎠+ O (N)

= N2δikδjl + O (N) (7)

where i < j and k < l are utilized. Now, the following condition is introduced.

Condition 4 (Large Number of Signals). The number of signals N is
sufficiently large.
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Then, Eq. (5) is rewritten as

EA (ES (νijpqνklrs)) =
δikδjlδprδqs + O

(
1
N

)
M

� δikδjlδprδqs

M
, (8)

which means that every νijpq is independent of each other. In addition, the
variance of every νijpq is 1/M . Consequently, the following theorem is derived:

Theorem 1. Under the above four conditions, each νijpq (i < j and p < q)
is expected to be an independent and identically distributed random variable ac-
cording to the normal distribution with the variance of 1/M .

2.2 Objective Function

By utilizing Theorem 1, a new objective function for JAD is defined as the
KL divergence between an estimated distribution of the current νijpq (denoted
by P (ν)) and the true distribution Gt (ν) = exp

(
−ν2M/2

)
/
√

2π/M . The KL
divergence D between P (ν) and Gt (ν) is given as

D =
∫

P (ν) log
P (ν)
Gt (ν)

dν =
∫

P (ν) (log P (ν) − log Gt (ν)) dν

� −H (P ) +
log (2π/M)

2
− 4

N2 (N − 1)2
∑

i,j>i,p,q>p

−Mν2
ijpq

2

= −H (P ) +
log (2π/M)

2
+

MΨ

2
(9)

where H (P ) = −
∫

P (ν) log P (ν) dν is the entropy of P (ν). Though it is gen-
erally difficult to estimate H (P ) from given samples νijpq ’s, a rough Gaussian
approximation with the mean of 0 is employed in this paper. In other words,
P (ν) is approximated by a normal distribution with the mean of 0. Then, the
variance of the distribution is given as the average of the squares of ν. Therefore,
the variance is estimated as the usual JAD objective function Ψ . Consequently,
P (ν) and H (P ) are approximated as exp

(
−ν2/2Ψ

)
/
√

2πΨ and log (2πeΨ) /2,
respectively. Now, D depends on only Ψ and M , which is given as

D (Ψ) =
−1 − log M

2
− log Ψ

2
+

MΨ

2
. (10)

Because the optimal value Ψ̂ satisfies D′
(
Ψ̂
)

= − 1

2Ψ̂
+ M

2 = 0, Ψ̂ is given by

Ψ̂ = 1/M . It is easily shown that D (Ψ) is minimized if and only if Ψ = Ψ̂ .
Therefore, Ψ̂ = 1/M can be regarded as a lower bound of Ψ .

2.3 Improvement of JADE with Lower Bound

Here, one widely-used algorithm of the usual JAD named JADE [3] is improved
by incorporating the lower bound Ψ̂ . In JADE, X is pre-whitened and V is esti-
mated by the Jacobi method under the orthogonal constraints. Note again that
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the orthogonality is consistent with Condition 3 when N is sufficiently large.
The Jacobi method minimizes Ψ by sweeping the optimization over every pair of
signals, where each pair optimization corresponds to a rotation which can be cal-
culated analytically. Only the termination condition on each rotation is modified
in the proposed method. In the usual JADE, each rotation is actually carried out
if the rotation is greater than a fixed small threshold. Therefore, the usual JADE
tends to converge slowly. In the proposed method, each rotation is actually car-
ried out only if the current Ψ on i and j (=

(∑
p,q>p (νijpq)

2
)

/
(

N(N−1)
2

)
) is

greater than the lower bound Ψ̂ = 1/M . Therefore, the proposed method can
inhibit unnecessary optimizations. In summary, the improved JADE with the
lower bound is given as follows:

1. Initialization. Multiply X by a random matrix, whiten X , and calculate
νijpq .

2. Sweep. For every pair (i, j), rotate actually νijpq for optimizing Ψ only if(∑
p,q>p (νijpq)

2
)

/
(

N(N−1)
2

)
> 1/M .

3. Convergence decision. If no pair has been actually rotated in the current
sweep, end. Otherwise, go to the next sweep.

3 Results

Here, the two types of numerical experiments were carried out. In the first ex-
periment, the distribution of νijpq with V = A−1 is compared with Gt (ν) in
order to verify the validity of Theorem 1. In the second experiment, the pro-
posed improvement of JADE in Section 2.3 is compared with the usual JADE
for various sample size. Regarding datasets, artificial sources were used, a half
of which were generated by the Laplace distribution (super-Gaussian) and the
other half by the uniform distribution (sub-Gaussian). JAD is known to be effec-
tive especially for such cases where sub- and super-Gaussian sources are mixed.
A was given as an orthogonalized random matrix. Fig. 1 shows the comparative
results of the histograms of νijpq and the true distribution Gt (ν) for N = 10,
20, and 30 and M = 100 and 10000. The KL divergence (averaged over 10 runs)
is also shown. It shows that Gt (ν) can approximate the actual distribution of
νijpq highly accurately in all the cases. The results verify the validity of Theorem
1. Though the accuracy of the approximation slightly deteriorated when M was
large (10000), it seems negligible. Because Gt (ν) includes no free parameters
(even the variance is fixed), the accuracy is quite surprising. Fig. 2 shows the
transitions of the objective function Ψ at the convergence (a), the computation
time (b), and the final error (c) along the sample size M by the proposed method
with the lower bound (solid curves) and the usual JADE (dashed). N was set to
20. Fig. 2-(a) shows that the optimized value of the total objective function Ψ in
the proposed method was slightly larger than the usual JADE. It is consistent
with the adoption of the lower bound. On the other hand, Fig. 2-(b) shows that
the proposed method converged much more rapidly than JADE for a small num-
ber of samples. Moreover, Fig. 2-(c) shows that the proposed method slightly
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(a) N = 10, M = 100.
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(b) N = 20, M = 100.

KL = 0.018.
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KL = 0.007.
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(c) N = 10, M = 10000.

KL = 0.106.
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(d) N = 20, M = 10000.

KL = 0.031.
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Fig. 1. Comparison of distributions of νijpq with the true distribution Gt (ν): Each
histogram shows an experimental distribution of νijpq with V = A−1. Each curve
displays Gt (ν). The KL divergence is shown below each figure.
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Fig. 2. Objective function, computation time, and final error along the sample size:
The curves show the transitions of the objective function Ψ at the convergence (a), the
computation time (b), and the final error (c) along the sample size (on a log scale).
Two curves in each figure were displayed by the improved JADE with the lower bound
(solid curve) and the usual JADE with a fixed small threshold ε = 10−6 (dashed).
Artificial datasets were given similarly in Fig. 1 (N = 20). The final error is measured
by Amari’s separating error [1] at the convergence, which is defined as the sum of
normalized non-diagonal elements of the product of the estimated separating matrix
and the given (accurate) mixing one. All the results were averaged over 10 runs.

outperformed the usual JADE on the final separating error when the sample size
was small. These results verify the efficiency of the proposed method at least for
a small number of samples.
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4 Conclusion

In this paper, we proposed an information theoretic approach to JAD. It was
shown that the true distribution of cumulants with the accurate separating ma-
trix is the normal distribution whose variance is the inverse of the sample size.
Then, the KL divergence between the true distribution and the estimated one
of current cumulants is defined as an objective function. The function is similar
to Ψ in JAD, except that it has a positive lower bound. In addition, a simple
improvement of JADE with the lower bound was proposed in order to avoid un-
necessary optimizations. Numerical experiments on artificial datasets verified the
efficiency of this approach for a small number of samples. We are now planning
to develop this approach further in order to achieve the drastic improvement
of not only efficiency but accuracy in the estimation of the separating matrix.
Though the entropy H (P ) is estimated by a Gaussian approximation in this
paper, this approximation is quite rough and wasteful of an important clue to
estimate V . By approximating H (P ) more accurately, the construction of a
more robust JAD algorithm is expected. We are also planning to compare this
method with other ICA methods such as the extended infomax algorithm [6]. In
addition, we are planning to apply this method to various practical applications
as well as many artificial datasets.

References

1. Amari, S., Cichocki, A.: A new learning algorithm for blind signal separation. In:
Touretzky, D., Mozer, M., Hasselmo, M. (eds.) Advances in Neural Information
Processing Systems, vol. 8, pp. 757–763. MIT Press, Cambridge (1996)

2. Cardoso, J.F.: High-order contrasts for independent component analysis. Neural
Computation 11(1), 157–192 (1999)

3. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE
Proceedings-F 140(6), 362–370 (1993)

4. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning
Algorithms and Applications. Wiley (2002)

5. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley
(2001)

6. Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using
an extended infomax algorithm for mixed subgaussian and supergaussian sources.
Neural Computation 11(2), 417–441 (1999)

7. Matsuda, Y., Yamaguchi, K.: An adaptive threshold in joint approximate di-
agonalization by assuming exponentially distributed errors. Neurocomputing 74,
1994–2001 (2011)

8. McCullagh, P., Kolassa, J.: Cumulants. Scholarpedia 4(3), 4699 (2009),
http://www.scholarpedia.org/article/Cumulants

http://www.scholarpedia.org/article/Cumulants


Support Constraint Machines

Marco Gori and Stefano Melacci

Department of Information Engineering
University of Siena, 53100 Siena, Italy

{marco,mela}@dii.unisi.it

Abstract. The significant evolution of kernel machines in the last few
years has opened the doors to a truly new wave in machine learning on
both the theoretical and the applicative side. However, in spite of their
strong results in low level learning tasks, there is still a gap with models
rooted in logic and probability, whenever one needs to express relations
and express constraints amongst different entities. This paper describes
how kernel-like models, inspired by the parsimony principle, can cope
with highly structured and rich environments that are described by the
unified notion of constraint. We formulate the learning as a constrained
variational problem and prove that an approximate solution can be given
by a kernel-based machine, referred to as a support constraint machine
(SCM), that makes it possible to deal with learning tasks (functions)
and constraints. The learning process resembles somehow the unification
of Prolog, since the learned functions yield the verification of the given
constraints. Experimental evidence is given of the capability of SCMs to
check new constraints in the case of first-order logic.

Keywords: Kernel machines, Learning from constraints, Support
vector machines.

1 Introduction

This paper evolves a general framework of learning aimed at bridging logic and
kernel machines [1]. We think of an intelligent agent acting in the perceptual
space X ⊂ IRd as a vectorial function f = [f1, . . . , fn]′, where ∀j ∈ INn : fj ∈
W k,p belongs to a Sobolev space, that is to the subset of Lp whose functions
fj admit weak derivatives up to some order k and have a finite Lp norm. The
functions fj : j = 1, . . . , n, are referred to as the “tasks” of the agent. We
can introduce a norm on f by the pair (P, γ), where P is a pseudo-differential
operator and γ ∈ IRn is a vector of non-negative coordinates

R(f) = ‖ f ‖2
Pγ

=
n∑

j=1

γj < Pfj, Pfj >, (1)

which is used to determine smooth solutions according to the parsimony prin-
ciple. This is a generalization to multi-task learning of what has been proposed

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 28–37, 2011.
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in [2] for regularization networks. The more general perspective suggests consid-
ering objects as entities picked up in X p,� =

⋃
i≤p

⋃
|αi|≤pi Xα1,i× Xα2,i , . . . ,Xαi,i

where αi = {α1,i, . . . , αi,i} ∈ P(p, i) is any of the pi = p(p − 1) . . . (p − i + 1)
(falling factorial power of p) i-length sequences without repetition of p elements.
In this paper, however, we restrict the analysis to the case in which the objects
are simply points of a vector space. We propose to build an interaction amongst
different tasks by introducing constraints of the following types1

∀x ∈ X : φi(x, y(x), f(x)) = 0, i ∈ INm

where INm is the set of the first m integers, and y(x) ∈ IR is a target function,
which is typically defined only on samples of the probability distribution. This
makes it possible to include the classic supervised learning, since pairs of labelled
examples turns out to be constraints given on a finite set of points. Notice that
one can always reduce a collection of constraints to a single equivalent constraint.
For this reason, in the reminder of the paper, most of the analysis will focus on
single constraints. In some cases the constraints can be profitably relaxed and
the index to be minimized becomes

R(f) = ‖ f ‖2
Pγ

+C · 1′
∫
X

Ξ(x, y(x), f(x)). (2)

where C > 0 and the function Ξ penalizes how we depart from the perfect fulfill-
ment of the vector of constraints φ, and 1 is a vector of ones. If φ(x, y(x), f(x)) ≥
0 then we can simply set Ξ(x, y(x), f(x)) := φ(x, y(x), f(x)), but in general we
need to set the penalty properly. For example, the check of a bilateral constraint
can be carried out by posing Ξ(x, y(x), f(x)) := φ2(x, y(x), f(x)).

Of course, different constraints can represent the same admissible functional
space Fφ. For example, constraints φ̌1(f, y) = ε − |y − f | ≥ 0 and φ̌2(f, y) =
ε2 − (y − f)2 ≥ 0 where f is a real function, define the same Fφ. This motivates
the following definition.

Definition 1. Let Fφ1 ,Fφ2 be the admissible spaces of φ1 and φ2, respectively.
Then we define the relation φ1 ∼ φ2 if and only if Fφ1 = Fφ2 .

This notion can be extended directly to pairs of collection of constraints, that is
C1 ∼ C2 whenever there exists a bijection C1

ν→ C2 such that ∀φ1 ∈ C1 ν(φ1) ∼
φ1. Of course, ∼ is an equivalent relation. We can immediately see that φ1 ∼
φ2 ⇔ ∀f ∈ F : ∃P (f) : φ1(f) = P (f) · φ2(f), where P is any positive real
function. Notice that if we denote by [φ] a generic representative of ∼, than the
quotient set Fφ/ ∼ can be constructed by

Fφ/ ∼= {φ ∈ Fφ : φ = P (f) · [φ](f)} .

Of course we can generate infinite constraints equivalent to [φ]. For example,
if [φ(f, y) = ε − |y − f |], the choice P (f) = 1 + f2 gives rise to the equivalent
1 We restrict the analysis to universally-quantified constraints, but a related analysis

can be carried out when involving existential quantifiers.
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constraint φ(f, y) = (1+f2)·(ε−|y−f |). The quotient set of any single constraint
φi suggests the presence of a logic structure, which makes it possible to devise
reasoning mechanisms with the representative of the relation ∼. Moreover, the
following notion of entailment naturally arises:

Definition 2. Let Fφ =
{
f ∈ F : φ(f) ≥ 0

}
. A constraint φ is entailed by

C = {φi, i ∈ INm}, that is C |= φ, if FC ⊂ Fφ.

Of course, for any constraint φ that can be formally deduced from the collection
C (premises), we have C |= φ. It is easy to see that the entailment operator states
invariant conditions in the class of equivalent constraints, that is if C ∼ C′, C |=
φ, and φ ∼ φ′ then C′ |= φ′. The entailment operator also meets the classic chain
rule, that is if C1 |= C2 and C2 |= C3 then C1 |= C3.

2 SCM for Constraint Checking

A dramatic simplification of the problem of learning from constraints derives
from sampling the input space X , so as to restrict their verification on the set
[X ]� := {xκ ∈ X , κ ∈ IN �}. This typically cannot guarantee that the algorithm
will be able to satisfy the constraint over the whole input space. However, in
this work we consider that there is a marginal distribution PX that underlies
the data in X , as it is popularly assumed by the most popular machine learning
algorithms, so that the constraint satisfaction will holds with high probability.

Theorem 1. Given a constraint φ, let us consider the problem of learning from

∀κ ∈ IN � : φ(xκ, y(xκ), f(xκ)) = 0. (3)

There exist a set of real constants λκ, κ ∈ IN � such that any weak ex-
treme of functional (1) that satisfies (3) is also a weak extreme of Eφ(f) =‖
f ‖2

Pγ
+
∑

κ∈IN�
λκ · φ(xκ, f(xκ)). The extreme f� becomes a minima if the

constraints are convex, and necessarily satisfy the Euler-Lagrange equations
Lf�(x) +

∑�
κ=1 λκ · ∇fφ(xκ, y(xκ), f�(xκ))δ(x− xκ) = 0 being L := P ′P , where

P ′ is the adjoint of P . Moreover, let us assume that ∀x ∈ X : g(x, ·) be the
Green function of L. The solution f� admits the representation

f�(x) =
∑

κ∈IN�

ak · g(x, xκ) + fP (x), (4)

where aκ = −λκ∇fφ(xκ, y(xκ), f(xκ)). The uniqueness of the solution arises,
that is fP = 0, whenever KerP = {0}. If we soften the constraint (3) then all
the above results still hold when posing ∀κ ∈ IN � : λκ = C.

Proof: (Sketch)
Let X = IRd be and let {ζh(x)}∞h=1 be a sequence of mollifiers and choose

ε := 1/h, where h ∈ IN . Then {ζh(x)}∞h=1

weakly−→ δ(x) converges in the classic
weak limit sense to the delta distribution. Given the single constraint φ let us
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consider the sampling Fφ
S→ Fφ : φ → [φ]h carried out by the mollifiers ζh on

[X ]�
[φ]h(x, y(x), f(x)) :=

∑
κ∈IN�

φ(x, y(x), f(x))ζh(x − xκ) = 0.

Of course, [φ]h is still a constraint and, it turns out that as h → ∞ it is equivalent
to ∀κ ∈ IN � : φ(xκ, y(xκ), f(xκ)) = 0. Now the proof follows by expressing the
overall error index on the finite data sample for [φ]h(x, y(x), f(x)).

We can apply the classic Euler-Lagrange equations of variational calculus with
subsidiary conditions for the case of holonomic constraints ([3] pag. 97-110), so
as any weak extreme of (1) that satisfies (3) is a solution of the Euler-Lagrange
equation

Lf�(x) +
∑

κ∈IN�

λi(x) · ∇fφi(x, y(x), f�(x))ζh(x − xκ) = 0, (5)

where L := [γ1L, . . . , γnL]′ and ∇f is the gradient w.r.t. f . The convexity of the
constraints guarantees that the extreme is a minima and KerP = {0} ensures
strict convexity and, therefore, uniqueness. Finally, (4) follows since ∀x ∈ X :
g(x, ·) is the Green function of L. The case of soft-constraints can be treated by
similar arguments.

From (4), which give the representation of the optimal solution we can collapse
the dimensionality of F and search for solutions in a finite space. This is stated
in the following theorem.

Theorem 2. Let us consider the learning under the sampled constraints (3). In
the case kerP = {0} we have fP = 0 and the optimization is reduced to the
finite-dimensional problem

min
a

{ ∑
κ∈INn

γja
′
jGaj+

∑
κ∈IN�

λkφ(xκ, y(xκ), f�(xκ))

}
(6)

that must hold jointly with (3). If φ ≥ 0 holds for an equality soft-constraint φ
then the above condition still holds and, moreover, ∀κ = 1, . . . , � : λκ = C.

Proof: The proof comes out straightforwardly when plugging the expression of
f� given by (4) into R(f).

For a generic bilateral soft-constraint we need to construct a proper penalty. For
example we can find arg mina

{∑n
j=1 γja

′
jGaj + C

∑�
κ=1 φ2(xκ, f(xκ))

}
. Then,

the optimal coefficients a can be found by gradient descent, or using any other
efficient algorithm for unconstrained optimization. In particular, we used an
adaptive gradient descent to run the experiments. Note that when φ is not
convex, we may end up in local minima.

Theorem 2 can be directly applied to classic formulation of learning from
examples in which n = 1 and φ = Ξ is a classic penalty and yields the classic
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optimization of argmina{a′Ga + C
∑S�

κ=1 Ξ(xκ, y(xκ), f(xκ))}. Our formulation
of learning leads to discovering functions f compatible with a given collection
of constraints that are as smooth as possible. Interestingly, the shift of focus on
constraints opens the doors to the following constraint checking problem

Definition 3. Let us consider the collection of constraints C = {φi, i ∈ INm} =
Cp ∪ Cc where Cp ∩ Cc = ∅. The constraint checking problem is the one of estab-
lishing whether or not ∀φi ∈ Cc Cp |= φi holds true. Whenever we can find f ∈ F
such that this happens, we say that Cc is entailed by Cp, and use the notation
Cp |= Cc.

Of course, the entailment can be related to the quotient set Fφ/ ∼ and its
analysis in the space Fφ can be restricted to the representative of the defined
equivalent class. Constraint checking is somehow related to model checking in
logic, since we are interested in checking the constraints Cs, more than in ex-
hibiting the steps which leads to the proof.

Now, let Cp |= φ and f� = argminf∈Fp ‖ f ‖Pγ . Then it is easy to see
that φ(f�) = 0. Of course, the vice versa does not hold true. That if f� =
argminf∈Fp ‖ f ‖Pγ and φ(f�) = 0 : Cp �|= φ. For example, consider the
case in which the premises are the following collection of supervised examples
S1 := {(xκ, yk)}�

κ=1 and S2 := {(xκ,−yk)}�
κ=1 given on the two functions f1, f2.

It is easy to see that we can think of S1 and S2 in terms of two correspondent
constraints φ1 and φ2, so as we can set Cp := {φ1, φ2}. Now, let us assume that
φ(f�) = f�

1 − f�
2 = 0. This holds true whenever aκ,1 = −aκ,2 Of course, the

deduction C |= φ is false, since f can take any value in outside the condition
forced on supervised examples2. This is quite instructive, since it indicates that
even though the deduction is formally false, the generalization mechanism behind
the discovering of f� yields a sort of approximate deduction.

Definition 4. Let f� = arg minf∈Fp ‖ f ‖Pγ be and assume that φ(f�) = 0
holds true. We say that φ is formally checked from Cp and use the notation
Cp � φ.

Interestingly, the difference between Cp |= φ and Cp � φ is rooted in the gap
between deductive and inductive schemes. While |= does require a sort of uni-
fication by checking the property φ(f) = 0 for all f ∈ Fp, the operator �
comes from the computation of f� that can be traced back to the parsimony
principle. Whenever we discover that Cp � φ, it means that either Cp |= φ or
f� ∈ Fp

⋂
Fφ ⊂ Fp, where ⊂ holds in strict sense. Notice that if we use soft-

optimization then the notion of simplification strongly emerges which leads to a
decision process in which more complex constraints are sacrificed because of the
preference of simple constraints. We can go beyond � by relaxing the need to
check φ(f�) = 0 thanks to the introduction of the following notion of induction
from constraints.
2 Notice that the analysis is based on the assumption of hard-constraints and that in

case of soft-constraints, which is typical in supervised learning, the claim that the
deduction is false is even reinforced.



Support Constraint Machines 33

Definition 5. Let ε > 0 be and [X ]u ⊂ X be a sample of u unsupervised exam-
ples of X . Given a set of premises Cp on [X ]u and let Fu

p be the correspondent
set of admissible functions. Furthermore, let f� = argminf∈Fu

p
‖ f ‖Pγ be and

denote by [f�]u its restriction to [X ]u. Now assume that ‖ φ([f�]u) ‖< ε holds
true. Under these conditions we say that φ is induced from Cp via [X ]u, and use
the notation (Cp, [X ]u) �� φ.

Notice that the adoption of special loss functions, like the classic hinge function,
gives rise to support vectors, but also to support constraints. Given a collection of
constraints (premises) Cp, then φ is a support constraint for Cpwhenever Cp �� φ.
When the opposite condition holds, we can either be in presence of a formal
deduction Cp |= φ or of the more general checking Cp � φ in the environment
condition.

3 Checking First-Order Logic Constraints

We consider the semi-supervised learning problem (6) composed of a set of con-
straints that include information on labeled data and prior knowledge on the
learning environment in the form of First-Order Logic (FOL) clauses. Firstly,
we will show how to convert FOL clauses in real-valued functions. Secondly, us-
ing an artificial benchmark, we will include them in our learning framework to
improve the quality of the classifier. Finally, we will investigate the constraint in-
duction mechanism, showing that it allows us to formally check other constraints
that were not involved in the training stage (Definitions 4 and 5).

First-Order Logic (FOL) formula can be associated with real-valued functions
by classic t-norms (triangular norms [4]). A t-norm is function T : [0, 1]×[0, 1] →
IR, that is commutative, associative, monotonic and that features the neutral
element 1. For example, given two unary predicates a1(x) and a2(x), encoded
by f1(x) and f2(x), the product norm, which meets the above conditions on
T-norms, operates as follows: a1(x)∧ a2(x) �−→ f1(x) · f2(x), a1(x)∨ a2(x) �−→
1 − (1 − f1(x)) · (1 − f2(x)), ¬a1(x) �−→ 1 − f1(x), and a1(x) ⇒ a2(x) �−→
1− f1(x) · (1− f2(x)). Any formula can be expressed by the CNF (Conjunctive
Normal Form) so as to transform it to a real-valued constraint step by step.
In the experiment we focus on universally quantified (∀) logic clauses, but the
extension to cases in which the existential quantifier is involved is possible.

We consider a benchmark based on 1000 bi-dimensional points belonging to
4 (partially) overlapping classes. In particular, 250 points for each class were
randomly generated with uniform distribution. The classes a1, a2, a3, a4 can be
thought of the characteristic functions of the domains D1,D2,D3,D4 defined as
D1 = {(x1, x2) ∈ IR2 : x1 ∈ (0, 2) ∧ x2 ∈ (0, 1)}, D2 = {(x1, x2) ∈ IR2 : x1 ∈
(1, 3) ∧ x2 ∈ (0, 1)}, D3 = {(x1, x2) ∈ IR2 : x1 ∈ (1, 2) ∧ x2 ∈ (0, 2)}, and
D4 = {(x1, x2) ∈ IR2 : (x1 ∈ (1, 2) ∧ x2 ∈ (0, 1))∨ (x1 ∈ (0, 2) ∧ x2 ∈ (1, 2))}.
Then the appropriate multi-class label was assigned to the collection of 1000
points by considering their coordinates (see Fig. 1). A multi-class label is a binary
vector of p components where 1 marks the membership to the i-th category
(for example, [0, 1, 1, 0] for a point of classes a2 and a3). Four binary classifiers
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were trained using the associated functions f1, f2, f3, f4. The decision of each
classifier on an input x is oj(x) = 1(fj(x)− bj) where bj is the bias term of the
j-th classifier and 1(·) is the Heaviside function.

We simulate a scenario in which we have access to the whole data collec-
tion, where � points (�/4 for each class) are labeled, and to domain knowledge
expressed by the following FOL clauses,

∀x a1(x) ∧ a2(x) ⇒ a3(x) (7)
∀x a3(x) ⇒ a4(x) (8)
∀x a1(x) ∨ a2(x) ∨ a3(x) ∨ a4(x). (9)

While the first two clauses express relationships among the classes, the last
clause specifies that a sample must belong to at least one class. For each of the
� labeled training points, we assume to have access to a partial labeling, such
as, for example, [0, ?, 1, ?], that means that we do not have any information on
classes 2 and 4. This setup emphasizes the role of the FOL clauses in the learn-
ing process. We performed a 10-fold cross-validation and measured the average
classification accuracy on the out-of-sample test sets. A small set of partially
labeled data is excluded from the training splits, and it is only used to validate
the classifier parameters (that were moved over [0.1, 0.5, . . . , 12] for the width of
a Gaussian kernel, and [10−4, 10−3, . . . , 102] for the regularization parameter λ
of soft-constrained SCM). We compared SCMs that include constraints on la-
beled points only (SCLL) with SCMs that also embed constraints from the FOL
clauses (that we indicate with SCMFOL). In Fig. 1 we report a visual comparison
of the two algorithms, where the outputs of f1, f2, f3, f4 are plotted (� = 16).

The introduction of the FOL clauses establish a relationship among the differ-
ent classification functions and positively enhance the inductive transfer among
the four tasks. As a matter of fact, the output of SCMFOL is significantly closer
to the real class boundaries (green dashed lines) than in SCML. The missing
label information is compensated by the FOL rules, and injected on the whole
data distribution by the proposed learning from constraint scheme. Note that the
missing labels cannot be compensated by simply applying the FOL clauses on
the partially labeled vectors. Interestingly the classifier has learned the “shape”
of the lower portion of class 3 by the rule of (7), whereas the same region on
class 4 has been learned thanks to the inductive transfer from (8).

We iteratively increased the number of labeled training points � from 8 to
320, and we measured the classification macro accuracies. The output vector on
a test point x (i.e. [o1(x), o2(x), o3(x), o4(x)]) is considered correctly predicted
if it matches the full label vector that comes with the ground truth. We also
computed the accuracy of the SCML classifier whose output is post-processed
by applying the FOL rules, in order to fix every incoherent prediction. The
results are reported in Fig. 2. The impact of the FOL clauses in the classification
accuracy is appreciable when the number of labeled points is small, whereas it is
less evident when the information on the FOL clauses can be learned from the
available training labels, as expected. Clearly the results becomes less significant
when the information on the FOL clauses can be learned from the available
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Fig. 1. The functions f1,f2,f3,f4 in the data collection where a set of FOL constraints
applies. The j-th row, j = 1, . . . , 4, shows the outcome of the function fj in SCMs that
use labeled examples only (left) and in SCMs with FOL clauses, SCMF OL (right). The
green dashed lines shows the real boundaries of the j-th class.
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Fig. 2. The average accuracy (and standard deviation) of the SCM classifier: using
labeled examples only (SCLL), using examples and FOL clauses (SCMF OL), using
examples only and post processing the classifier output with the FOL rules

training labels, so that in the rightmost region of the graph the gap between the
curves becomes smaller. In general, the output of the classifier is also more stable
when exploiting the FOL rules, showing a averagely smaller standard deviation.

Given the original set of rules that constitutes our Knowledge Base (KB) and
that are fed to the classifier, we distinguish between two categories of logic rules
that can be deducted from the trained SCMFOL. The first category includes the
clauses that are related to the geometry of the data distribution, and that, in
other words, are strictly connected to the topology of the environment in which
the agent operates, as the ones of (7-9). The second category contains the rules
that can be logically deducted by analyzing the FOL clauses that are available
at hand. The classifier should be able to learn both the categories of rules even
if not explicitly added to the knowledge base.

The mixed interaction of the labeled points and the FOL clauses of the KB
leads to an SCM agent that can check whether a new clause holds true in our
environment. Note that the checking process is not implemented with a strict
decision on the truth value of a logic sentence (holds true or false), since there
are some rules that are verified only on some (possibly large) regions of the input
space, so that we have to evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be assumed to hold true. In
Table 1 we report the degree of satisfaction of different FOL clauses and the
Mean Absolute Error (MAE) on the corresponding t-norm-based constraints.
We used the SCMFOL trained with � = 40. Even if it is simple to devise them
when looking at the data distribution, it is not possible to do this as the input
space dimension increases, so that we can only “ask” the trained SCM if a FOL
clause holds true. This allow us to rebuild the hierarchical structure of the data,
if any, and to extract compact information from the problem at hand. The rules
belonging to the KB are accurately learned by the SCMFOL, as expected. The
SCMFOL is also able to deduct all the other rules that are supported in the
entire data collection. The ones that do not hold for all the data points have
the same truth degree as the percentage of points for which they should hold true,
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Table 1. Mean Absolute Error (MAE) of the t-norm based constraints and the per-
centage of points for which a clause is marked true by the SCM (Average Truth Value),
and their standard deviations (in brackets). Logic rules belong to different categories
(Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage
of Support indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Truth Value

a1(x) ∧ a2(x) ⇒ a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)
a3(x) ⇒ a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)

a1(x) ∨ a2(x) ∨ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)

a1(x) ∧ a2(x) ⇒ a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ∧ a3(x) ⇒ a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ∧ a2(x) ⇒ a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a1(x) ∧ a3(x) ⇒ a4(x) ENV 100% 0.0027 (0.0014) 96.13% (3.51)
a2(x) ∧ a3(x) ⇒ a4(x) ENV 100% 0.0025 (0.0011) 96.58% (4.13)

a1(x) ∧ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ∨ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ∨ a2(x) ⇒ a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
a1(x) ∧ a2(x) ⇒ ¬a4(x) LD 0% 0.26 (0.06) 3.51% (3.76)
a1(x) ∧ ¬a2(x) ⇒ a3(x) ENV 0% 0.063 (0.026) 27.74% (18.96)
a2(x) ∧ ¬a3(x) ⇒ a1(x) ENV 0% 0.073 (0.014) 5.71% (5.76)

whereas rules that do not apply to the given problem are correctly marked with
a significantly low truth value.

4 Conclusions

This paper gives insights on how to fill the gap between kernel machines and mod-
els rooted in logic and probability, whenever one needs to express relations and
express constraints amongst different entities. The support constraint machines
(SCMs), are introduced that makes it possible to deal with learning functions in
a multi-task environment and to check constraints. In addition to the impact in
multi-task problems, the experimental results provide evidence of novel inference
mechanisms that nicely bridge formal logic reasoning with supervised data. It is
shown that logic deductions that do not hold formally can be fired by samples
of labeled data. Basically SCMs provide a natural mechanism under which logic
and data complement each other.
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Abstract. Since smart phones with diverse functionalities become the general 
trend, many context-aware services have been studied and launched. The 
services exploit a variety of contextual information in the mobile environment. 
Even though it has attempted to infer activities using a mobile device, it is 
difficult to infer human activities from uncertain, incomplete and insufficient 
mobile contextual information. We present a method to infer a person’s 
activities from mobile contexts using hierarchically structured Bayesian 
networks. Mobile contextual information collected for one month is used to 
evaluate the method. The results show the usefulness of the proposed method. 

Keywords: Bayesian network, mobile context, activity inference. 

1  Introduction 

Smartphones, such as Apple iPhone and Google Android OS based phones, with 
various sensors are becoming a general trend. Such phones can collect contextual 
information like acceleration, GPS coordinates, Cell ID, Wi-Fi, etc. Many context-
aware services are introduced and tried to provide a user with convenience using 
them. For example, Foursquare includes a location-based social networking service. It 
ranks the users by the frequency of visiting a specific location and encourages them to 
check in the place. Loopt service recommends some visited locations for the users, 
and Whoshere service shows friends' locations. Davis et al. tried to use temporal, 
spatial, and social contextual information to help manage consumer multimedia 
content with a camera phone [1]. Until now, most of such services use only raw data 
like GPS coordinates. 

Many researchers have attempted to infer high-level semantic information from 
raw data collected in a mobile device. Belloti et al. tried to infer a user's activities to 
recommend suitable locations or contents [2]. Chen proposed intelligent location-
based mobile news service as a kind of location based service [3]. Santos et al. 
studied user context inference using decision trees for social networking [4]. Most of 
the research used various statistical analysis and machine learning techniques like 
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probabilistic model, fuzzy logic, and case based reasoning. However, it is practically 
difficult to infer high level context because mobile environment includes uncertainty 
and incompleteness. This paper presents a method to infer human activities from 
mobile contexts using hierarchical Bayesian networks. 

2  Related Works 

Some researchers have collected contextual information in the mobile environment. 
VTT research center has developed technologies to manage contextual information 
and infer higher-level context abstractions from raw measurement data [5]. An 
adaptive user interface has been also developed by the VTT research center [6]. 
Helsinki University developed a ContextPhone framework which collected contexts 
(GPS, GSM cell ID, call history, SMS history, and application in use) on the Nokia 60 
series [7]. 

Some researchers studied object based activity recognition using RFID tags. 
Patterson et al. examined reasoning with globally unique object instances detected by 
a Radio Frequency Identification (RFID) glove [8]. They constructed a model with 
hidden Markov model (HMM) and applied the model to identify what they are 
cooking. Wyatt et al. studied object based activity recognition using RFID tags, a 
RFID reader, and models mined from the Web [9]. It is used to solve a fundamental 
problem in recognizing human activities which need labeled data to learn models for 
the activities. 

On the other hand, there are location based activity recognition algorithms. In the 
approaches, it is assumed that a person’s environment affects his activity. Therefore, 
they often focused on the accurate place detection algorithms rather than activity 
recognition for practical applications. Liao et al. used relational Markov network and 
conditional random field (CRF) [10] to extract activities from location information. 
Anderson and Muller attempted to recognize activities using HMM from GSM  
Cell-ID data [11]. 

In this paper, we propose a hierarchical Bayesian network based method to 
automate activity inference. It raises scalability and precision in recognizing activities 
by modeling hierarchical Bayesian network with intermediate nodes.  

3  Proposed Method 

In this section, the whole process of activity recognition will be described. The whole 
system is composed of four components, which are context collection, statistical 
analysis, activity recognition with hierarchical Bayesian networks, and a user 
interface as shown in Fig. 1. The hierarchical Bayesian networks are designed based 
on the context hierarchy [12] and Hwang and Cho’s work [13]. 
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Fig. 1. System Overview 

3.1  Context Collection and Preprocessing 

Context collection is the first step to infer activity. Table 1 shows the information 
from a mobile phone. In the process, raw data are preprocessed by simple analysis 
(frequency, elapsed time, etc). 

Table 1. Contextual information from smartphone 

Data Attributes 
Location GPS coordinates, Speed, Altitude, Place name 
Activity User’s activity (reported by manual labeling) 
Music MP3 title, start time, end time, singer 

Photograph Time, captured object 
Call history Start time, end time, person (friend/lover/family/others) 
SMS history Time, person (friend/lover/family/others) 

Battery Time, whether charging or not (Yes/No), charge level (%) 

There are many practical difficulties to recognize user’s activities using mobile 
contextual information in a smartphone. The fundamental problem is that mobile 
context in a smartphone does not reflect user’s activities perfectly. User’s activities 
generate various contextual information and only parts of them are observable in a 
smartphone. Moreover, important context in a smartphone is often damaged and 
uncertain. For instance, GPS signals may be invalid or be lost in some locations, 
especially indoor environment. Schedule stored in a smartphone may be different with 
the facts because it seems difficult to expect exact coincidence between schedule and 
user’s activities in real life. Sometimes, unexpected events and accidents may occur. 
On the other hand, call history, SMS history, and photographs have important 
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personal information, but are difficult to understand the semantics automatically. We 
applied several data mining techniques (decision tree, association rules, etc) to 
analyze and interpret the context. As a result, we distinguish the useful context. 

Mobile data can be classified into three types such as useful, partially useful and 
useless contexts to infer a user's activity. In this paper, we ignore useless context, and 
use other contexts to infer activity. 

3.2  Bayesian Network Modeling for Activity Using Context Hierarchy 

According to Kaenampornpan et al., many researchers defined context and elements 
of context for context awareness. The goal of a context classification is to build a 
conceptual model of a userÊs activity. Activity Theory is a valuable framework used 
to analyze and model human activities by providing a comprehensive types and 
relationships of context [14]. It consists of six components which are subject, object, 
community, rules, division of labor, and artifact. Kofod-Petersen et al. built context 
taxonomy from six elements found in Activity Theory and applied it to their semantic 
networks as five context categories: environmental, personal, social, task, spatio-
temporal context [12]. Fig. 2 presents our context model structure which is based on 
context hierarchy to recognize the activities.  

 

Fig. 2. Context model for activity recognition 

The hierarchical context model allows us to implicitly decompose a user’s 
activities into simpler contexts. Intuitively, it might be easier for the model to design 
probabilistic network modules with hierarchical tree structure rather than the complex 
one. Further, it is advantageous to break a network for an activity into smaller sub-
trees and then build models for the sub-trees related to specific context. Fig. 3 shows 
basic structure of our Bayesian network model for each activity. 

Bayesian network is a directed acyclic graphical model that is developed to 
represent probabilistic dependencies among random variables [13]. It relies on Bayes 
rule like (1) and conditional independence to estimate the distribution over variables.  
 

( ) ( ) ( )
( )YP

XPXYP
=YXP

|
|                                   (1) 

 
The nodes in the Bayesian network represent a set of observations (e.g., locations, day 
of week, etc), denoted as O = {o1, o2, o3, …, on}, and corresponding activities  
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(e.g., walking, studying, etc), denoted as A = {a1, a2, a3, …, am}. These nodes, along 
with the connectivity structure imposed by directed edges between them, define the 
conditional probability distribution P(A|O) over the target activity A. Equation (2) 
shows that ai, which is a specific activity to recognize, can be inferred from 
observations. 
 

( ) ),...,,,|(| 321 ni ooooaPOAP →                            (2) 
 
The proposed model has intermediate nodes, denoted as C = {c1, c2, …, cm}, to 
represent hidden variables for activity inference. 

 

Fig. 3. Bayesian network structure for activity recognition 

3.3  Hierarchical Bayesian Networks for Activity Class 

In the previous section, Bayesian networks for each activity make it easy to extract 
activities with only related observations. However, a person can do independent 
activities at the same time. For instance, he can watch a television and eat something 
simultaneously. The simultaneous activities cause confusion and mistake to recognize 
activities because of mixed contextual information. Each Bayesian network module 
for an activity cannot deal with the situation effectively. We define a global domain 
for similar activities as activity class. The recognition for global domain of activities 
is a summary of all similar activities. For instance, Fig. 4 shows the conceptual 
structure. Let E be the set of all evidences in a given Bayesian network. Then, a 
Bayesian network factorizes the conditional distribution like P(a|E), where a is an 
activity and every E = {e1, e2, e3, … , en}. It is assumed that ei+1, ei+2, and ei+4 are the 
observed nodes in a given environment. Under the evidences, ai and ai+2 are the most 
probable activities, and we may have the possibility of confusion between ai and ai+2. 
Intuitively, activity class as a global activity captures the “compatibility” among the 
variables. Using the hierarchical structure, the conditional distribution over the 
activity class A is written as P(A|ai, ai+1, …). 
 



 Human Activity Inference Using Hierarchical Bayesian Network in Mobile Contexts 43 

ei+3 ei+6 ei+8ei+1

ai

ei+2ei ei+4 ei+5

ai+1

Ai

ei+7

ai+2

ei+9 ei+10

ai+3

Ai+1

Input evidence

Activity Class

Activities

Evidences

 

Fig. 4. Structure for Activity class from activities 

4  Experimental Result 

We define 23 activities according to GSS (General Social Survey on Time Use, 1998) 
which is a statistical survey for daily activities on time usage in Canada (Statistics 
Canada, 2005). The activities are suitable to be selected from contextual information 
regarding user’s environment because GSS provides activity types related to location, 
time and activity purposes. We compare reported activities and inferred activities 
using our Bayesian networks to calculate the hit rate of the recognition. 

 

Fig. 5. Accuracy of activity recognition 

According to our analysis, time and location are the most important factors to 
estimate the probability of each activity. That is, location and time dependent 
activities tend to be detected well as shown in Fig. 5. For example, ‘Night Sleep’ 
occurs at specific location (mainly home) and time (mostly night). ‘Examination’ has 
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fixed dates in a semester. Korean regular army training is one of duties in South 
Korea, of which schedule is determined by the Ministry of National Defense. It is also 
easy to estimate the occurrence. On the while, location and time independent 
activities such as ‘Relaxing’ and ‘Reading books’ are difficult to detect automatically 
from contextual information. Fig. 6 illustrates the result of activity class recognition. 

 

Fig. 6. Accuracy of activity class recognition 

Finally, we introduce an interface to annotate a user's activity for some images. It 
helps a user to check recognized activity related to a photograph. It reduces fatigue of 
manual annotation. In this point of view, we have developed a prototype annotation 
tool as shown in Fig. 7. The probability of activity class tended to be more accurate 
than each activity. A user can easily use their activity to annotate their photographs 
taken by a mobile phone. 

 

Fig. 7. User interface screenshots for activity annotation 

5  Summary and Discussion 

In this paper, we have proposed a method to recognize activities using hierarchical 
probabilistic models. The system is composed of 4 components, which are context 
collection, preprocessing and feature extraction, activity recognition, and an interface 
for visualization and labeling. Bayesian network models for activity refer to context 
hierarchy and activity hierarchy. It is evaluated with the data collected in real mobile 
environment. The proposed interface makes labeling easy with effective visualization 
in order to support recognized activities more accurately. 
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Our future research must include more diverse personal information and improve 
the performance of activity recognition. In addition, various menu interfaces have to 
be developed for user’s convenience. 
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Abstract. In this paper, we propose an estimation system for the
human-interest degree while watching TV commercials using the elec-
troencephalogram(EEG). When we use this system, we can estimate the
human-interest degree easily, sequentially, and simply. In particular, we
measure the EEG using a simple electroencephalograph and survey the
human-interest degree using questionnaires in a scale. For construction
this estimation system, we investigate the relationship between the EEG
and the result of questionnaires. In order to evaluate our estimation sys-
tem, we show results of experiments using real TV commercials.

Keywords: human-interest, electroencephalogram(EEG), TV commer-
cial.

1 Introduction

In companies, they advertise their products or services to consumers using vari-
ous advertisements, (i.e. TV commercial, radio advertising, newspaper flyer, ban-
ner advertising on Internet). Companies use appropriate advertisements which
match target or scene. In Japan, consumers often contact TV commercials, be-
cause a penetration level of TV is higher than other advertising media. Therefore,
when consumers buy goods or choose services, they are influenced by what they
see on TV commercials. In addition, using TV commercials, it is possible that
companies feed visual and audio information to passive audience. For these rea-
sons, TV commercials are very important advertising strategy. As for companies,
they need to produce effective TV commercials which consumers are interested in
TV commercials and products/services. For production of effective TV commer-
cials, it is important to get in touch with what audience has an interest. When
we investigate a consumer’s interest, we often use questionnaires or interviews.
It is easy to understand consumer’s interest because we can ask them “Are you
interested in this commercial?”, or “How do you rate your interest on a scale?”.
On the other hand, it is difficult to evaluate sequential the human-interest which
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is associated with changing scene of TV commercials. The human-interest for
TV commercials are needed to evaluate sequentially because investigators want
to know which scene of TV commercials audiences are interested in. Recently,
people study the investigation of latent human mind using biological signals. In
previous study[1], it became obvious that we can obtain a result with reliability
using them. Moreover, it is possible that we get a sequential evaluation result, be-
cause we can measure these signals sequentially. In particular, in the evaluation
of TV commercials, there are some previous studies using biological signals[2],[3].
In these studies, they use some biological signals(EEG, galvanic skin response,
and electromyogram/heart rate) and questionnaires/interviews. Accordingly, for
both subjects and investigators, measuring more than one biological signal is
great burden. Furthermore, measuring some signals interfere with watching TV
commercials. We regard that an estimation system for the human-interest degree
should be clearly/easily, sequentially, and simply, especially for TV commercials.
Thus, we focus on the EEG for estimating the human-interest degree. The EEG
reflects brain activity. It seems that brain activity is suitable to estimate the
human-interest degree because it regulates the conscious and the feelings. We
can measure a part of brain activity easily and cheaply by using the EEG. In ad-
dition, the EEG reflects the changes of psychological states in real-time because
it responds fast to external stimuli. Therefore, the EEG is suitable as index to
estimate the human-interest degree for TV commercials.

The contribution of this study in this paper is to estimate “the human-interest
degree” while watching TV commercials to only measure the EEG. In particular,
we focus on the sequentially investigation by using the EEG. We investigate the
relationship between the EEG while watching TV commercials and the result of
questionnaires. For measuring the EEG, we use a simple electroencephalograph.
Accordingly, our system includes not only the clear/easy result of questionnaire
and the sequential acquisition of data but also the simple EEG measurement.

2 Estimation System for Human-Interest Degree

In this section, we explain the estimation system for human-interest degree in
detail. First, we show the system summary. Then, we describe the method of
constructing our system. In particular, we explain the method of EEG mea-
surement and feature extraction, an EEG clustering, and a multiple regression
analysis.

2.1 Overview of Our System

Fig. 1. shows the overview of estimation system for human-interest degree. Our
system estimates the human-interest degree while watching TV commercials se-
quentially. First of all, we acquire the EEG data while watching TV commercials
using the simple electroencephalograph. Moreover, we apply the EEG data to
our system. After that, we get the sequential estimation result for human-interest
degree.
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Fig. 1. Overview of Estimation System for Human-Interest Degree

2.2 EEG Measurement and Feature Extraction

EEG is electrical signal caused by the activity of cerebral cortex. We can measure
human brain activity noninvasively, high temporal resolution, and flexibility by
using EEG. It is well known that EEG changes corresponding to mental condi-
tion, cerebration, and emotion. EEG measurement point is defined by the inter-
national 10-20 system. Generally, we measure the EEG based on these points
using multiple-electrode electroencephalograph having many electrodes. How-
ever, there are some problems. It takes more than 30 minutes to wear. Also,
subjects need to use gel for electrolyte and that would stress them. For these
reasons, multiple-electrode electroencephalograph is impractical. Therefore, in
this experiment, we use a simple electroencephalograph which is formed of band
type. This electroencephalograph is less demanding method for subjects because
it is easy to wear and less stressing by nothing of tightness. Moreover, this device
measures the EEG activity at Fp1(left frontal lobe) in the international 10-20
system. There is very low noise caused by hair at this measurement point. Fur-
thermore, the EEG changes occur in prefrontal area largely[4]. Thus, we consider
that this simple electroencephalograph is an appropriate method of measuring
the EEG to estimate the human-interest. In addition, measurement methodology
is referential recording: reference electrode is arranged at the left ear lobe and
exploring electrode is at Fp1. Using this device, sampling frequency is 128Hz.
The EEG data is analyzed by using fast fourier transform per one sec., and we
can obtain the amplitude spectra at 1–64Hz. We ought to consider the effective
EEG band frequency and characteristic of the simple electroencephalograph. Al-
though we apply the 4–22Hz at 1Hz interval the effective frequency bands by
using the band pass filter, taking account of EEG characteristics.

2.3 Construction of Estimation System for Human-Interest Degree

First of all, we show about the EEG features and the questionnaire. Then, we
classify the subjects by the EEG feature using a cluster analysis because we con-
sider the individual characteristic of the EEG. We explain the cluster analysis.



Estimation System for Human-Interest Degree 49

Finally, in order to estimate the human-interest degree, we apply the EEG fea-
tures and the result of questionnaire to a multiple regression analysis. We show
the multiple regression analysis.

Questionnaire. The questionnaire shows human’s emotion or cerebration by
linguistic expression. Moreover, this is called subjective assessment. In this exper-
iment, the subjects evaluate the human-interest degree for each TV commercial
on a scale of zero to ten. We use this degree when we analysis the human-interest.

EEG Features. The EEG features are the EEG data of amplitude spectra of
4–22Hz. In this experiment, we suppose that the EEG features show the change
of human’s emotion or cerebration while watching TV commercials. In addition,
when we construct the system, we use the time average of the spectrum while
watching TV commercials.

Cluster Analysis. The cluster analysis is used for clustering the subjects us-
ing the individual characteristic of EEG. In particular, we apply the hierarchical
algorithm. We begin with each data and proceed to divide it into successively
smaller clusters. Moreover, the distance function is important factor for clas-
sification. There are some distance functions however we adopt the Euclidean
distance because this distance is most common method. In this paper, we classify
into the subjects depending on the EEG features by the cluster analysis. Fur-
thermore, we decide the effective cluster number by investigation the relationship
between the number of data and the number of variable(EEG features)[5].

Multiple Regression Analysis. We use the multiple regression analysis to
quantitatively evaluate the degree of human-interest. The multiple regression
analysis is one of the multivariate analysis to have been constructed the esti-
mation model from a set of training data. The multiple regression equation as
estimation model is constructed by using some explanatory variables and an
objective variable. In this paper, we apply the EEG features as the explanatory
variables and the result of questionnaire as the objective variable. That is, we
estimate the result of questionnaire using the EEG features.

3 Experiment of Watching TV Commercials

In this section, we show about the experiment of watching TV commercials. We
measured the EEG while watching each TV commercial and investigated the
degree of human-interest for each TV commercial using questionnaires. In this
experiment, the subjects are set up as 54 people, including 28 males and 26
females. Each subject watch 10 different kinds of TV commercials that consist
of 15 seconds. We measure the EEG while watching TV commercials using the
simple electroencephalograph. After watching each TV commercial, we investi-
gate the degree of human-interest for each TV commercial using questionnaires.
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Fig. 2. The Procedure of an Experiment

Then, Fig. 2. shows the experimental procedure. Moreover, TABLE 1 represents
the experimental condition and data. Furthermore, TABLE 2 is used for the
questionnaires in this experiment.

4 Simulations

We explain the results of simulations for evaluation of our system. We conducted
two kinds of simulations in order to discuss the effectiveness of our system. The
first is the estimation of human-interest degree for each TV commercial. The
second is the sequential estimation of human-interest degree for TV commercials.
We describe the each result.

4.1 Estimation of Human-Interest Degree for Each TV Commercial

We verify the effectiveness and generalization of the estimation system, partic-
ularly about the subject clustering with the EEG features. In order to evaluate
our system, we define accuracy rate[%] as follows:
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Table 1. Experimental Condition and Data

Condition and Data

Number of subjects 54
male: 28, female: 26

20’s: 23, 30’s: 23, 40’s: 5, 50’s: 3

Object of watch 10 kinds of TV commercials(Japanese)

Watching time 15 seconds each TV commercial

Order of watch in random order

Experimental period 25–27th, August, 2010

Table 2. The Questionnaire Items

Questions

Q1 How do you rate your interest degree
for the TV commercial on a scale of 0 to 10?

Q2 Which scenes are you interested in?
(Choose some scenes from the pictures)

Q3 How many times have you seen the TV commercial?
(Choose i. 0, ii. 1–3, iii. 4– )

Q4 How many times have you use/touch the products/services?
(Choose i. 0, ii. 1–3, iii. 4– )

Q5 Rank TV commercials in descending order of human-interest degree.

accuracy rate[%] =
CORRECT

TOTAL
× 100. (1)

We use the most high-scoring and the most low-scoring TV commercials by the
questionnaire(Q2) to calculate accuracy rate[%]. Then, we define the human-
interest degree which is estimated using the EEG by A, and the score of ques-
tionnaires by B. We determine the situation which the higher TV commercial of
A matches higher one of B by CORRECT . In addition, TOTAL indicates the
number of all data.

Incidentally, TABLE 3 shows the relationship between the number of subject
cluster and the accuracies of ranking of 2 TV commercials by proposed system.
According to TABLE 3, we find that 2 clusters is the highest accuracy rate.
In contrast, we considered that more number of cluster was higher accuracy

Table 3. The Number of Cluster and Recognition Accuracies

Number of Cluster Accuracy Rate[%]

1 74.1

2 79.6

3 74.1

4 75.9
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(c) Subject34/CM4 (d) Subject43/CM8

: Human-Interest from Questionnaire : Human-Interest Degree from Estimating System

The vertical axis: Human-interest degree obtained by the proposed system.

The horizontal axis: The time[second]

Fig. 3. Results by the Proposed System

rate because the number of data and variance of data were smaller. However,
in this simulation, we regard that we classify the subjects to 2 clusters because
accuracy rate is not proportional to the number of cluster. Furthermore, we show
the effectiveness of estimation of human-interest degree for each TV commercial
by the result of accuracy rate 79.6%.

4.2 Sequential Estimation of Human-Interest Degree for TV
Commercials

We attempt to estimate the human-interest degree for TV commercials sequen-
tially. In previous section, we show the effectiveness of our estimation system.
Accordingly, in order to estimate human-interest degree sequentially, we use that
system. When we measure the EEG using the simple electroencephalograph, the
EEG signals of 1 second are transformed into frequency components. For this rea-
son, we estimate the human-interest degree for TV commercials every 1 seconds.
However, we apply moving average to the EEG features because we need consid-
eration perception time, remainder time, and measuring error. Fig. 3. shows the
example of sequential estimation. Based on the graph of Fig. 3. (a) or (c), we
confirm an upward tendency around the interest scene from the questionnaire.
Moreover, there are some subjects which the estimation results have a few ups
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and downs, (see Fig. 3. (b)). Furthermore, according to the graph of Fig. 3. (d),
there are a lot of scenes which the subject are interested in by the question-
naire. On the other hand, human-interest degree by the estimating system has
a lot of ups and downs. According to these results, we consider that we show
the fluctuation of human-interest degree which we cannot understand human-
interest by the questionnaire. Furthermore, we found the personal difference of
the questionnaire.

5 Conclusions

In this study, we propose the estimation system for the human-interest degree
while watching TV commercials using the EEG. In particular, we consider that
(1)easy-to-understand result, (2)sequential estimation, and (3)simple system.
Firstly, we use the questionnaires for easy-to-understand result. Secondly, we
apply the EEG for sequential estimation. Finally, we adopt the simple electroen-
cephalograph to construct simple system. However it became evident that we
should investigate the personal difference of the questionnaire. We will consider
that not only the individual characteristic of the EEG but also the personal
difference of the questionnaire.

Acknowledgments. We thank all subjects in Dai Nippon Printing Co., Ltd
for participating in our experiment.
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Abstract. It is known that independent component analysis (ICA) gen-
erates filters that are similar to the receptive fields of primary visual
cortex (V1) cells. However, ICA fails to yield the frequency tuning ex-
hibited by V1 receptive fields. This work analysis how the shape of IC
filters depend on second-order statistics of the input data. Specifically,
we show theoretically and through experimentation how the structure of
IC filters change with second-order statistics and different types of data
preprocessing. Here, we preprocess natural scenes according to four con-
ditions: whitening, pseudo-whitening, local-whitening and high-pass
filtering. As results, we show that the filter structure is strongly mod-
ulated by the inverse of the covariance of the input signal. However,
the distribution of size in frequency domain are similarly biased for all
preprocessing conditions.

Keywords: Independent component analysis, second-order statistics,
receptive fields.

1 Introduction

An important result in computational neuroscience is that the independent com-
ponent analysis (ICA) of natural scenes yields filters similar to the Gabor-like
receptive fields of simple cells in the primary visual cortex (V1)[1]. However, it is
known ICA fails to generate filters that match the spatial frequency tuning and
orientation distribution observed for V1 receptive fields. Specifically, the ICA fil-
ters normally have higher central frequencies and are not as broadly distributed
in orientation as V1 receptive fields. In this way, it is important to determine
precisely how the shape of IC filters is adapted.

Baddeley [2] suggested that since natural scenes have local variance, the pro-
cess of sparseness maximization (which is closely related to independence maxi-
mization in case of natural signals) would generate zero DC filters. On the other
hand, Thomson [3] suggested that both power and phase structure would re-
quire high-frequency filters for sparseness maximization. Specifically, the Fourier
transform of the fourth-order correlation function of whitened images showed
that oblique-high-frequency components have higher contributions to kurtosis
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than vertical and horizontal-low-frequencies components. Furthermore, it was
shown for natural sounds that the optimal coding bandwidth is similar for kur-
tosis calculated from either the second spectrum or from the phase-only second
spectrum [4].

On the other hand, Lewicki [5] showed that distribution of filter bandwidths
is strikingly similar to the inverse of the power spectrum of the input signal
when the efficient coding algorithm has second-order constraints. In this work,
we analyze the influence of second-order statistics on independent component
filters by modifying the power spectra of natural scenes. To our best knowledge,
no work has determined precisely what is the role of the amplitude information
on ICA when there are second-order constraints involved. The importance of
this work is that we are the first to show mathematically why ICA fails to fails
to generate filters with the same characteristics of V1 receptive fields.

This work is divided as follows: in the methods section we provide a analysis
on how the structure of ICA filters is formed; section “Results” describes the
experiments and outcomes; the section “Discussion” provides information about
the relation of these results to physiological studies; a conclusion section provides
information about remaining challenges.

2 Methods

2.1 The Generative Model of IC Filters

Independent component filters are optimized so that their responses to the
input signal are maximally statistically independent. In this way, ICA filters
represents a “privileged” transform that (maximally) reduce both second and
higher-order correlations for the specific statistical distribution of the input [6].
Although second-order uncorrelatedness alone is computationally inexpensive,
second-order correlations impose a heavy computational cost on the ICA adap-
tive process. Whitening the input signal before learning and maintaining the
filters orthogonalized ensures both low-computational cost and second-order
uncorrelatedness during the adaptation.

Taking these constraints into account, it is easy to show that each ICA filter,
represented here by wi, can be found as the linear combination

wi = bi1 · v1 + bi2 · v2 + · · · + bin · vn, (1)

where the set of vectors V = {v1,v2, . . . ,vn} (not necessarily an orthogonal
set) represents the decorrelation transform applied on the input signal, and the
filter coefficients bi1, bi2, . . . , bin are normally optimized based on a non-linear
transformation of the input. The goal of this non-linear transformation is to
make wi able to reduce higher-order correlations as well. It is important to
notice that this generative model may be only valid for ICA strategies that
perform second-order decorrelation by means of a pre-whitening transform.

In this way, filters wi only reduce as much higher-order correlations as possible
for a combination of second-order decorrelation vectors. The immediate question
how precisely the vectors vj compromise the ICA higher-order decorrelation.
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2.2 FastICA

In case of the FastICA algorithm [7], V is the principal component analysis
(PCA) solution given by the eigen-decomposition of the covariance matrix of
the input, i.e.,

V = D− 1
2 ET, (2)

where D is the diagonal matrix of eigenvalues and E is the matrix of eigenvectors.
In this case, the set V will form a base of the white space of the input signal
for which complete second-order decorrelation is guaranteed. Furthermore, one
can establish a semantical order to the base vectors vj . Specially in case of
natural signals with “1/f” Fourier spectra, these vectors will normally reflect
the frequency components organization.

The generative model can therefore be rewritten as

wi =
∑
ij

bij · d
− 1

2
j · ej , (3)

where dj is the eigenvalue corresponding to the eigenvector ej . Therefore, the

magnitude of the product bij ·d
− 1

2
j defines the contribution of ej to the structure

of wi.
Not surprisingly, in case of “1/f” data, high-frequency eigenvectors will be

normally accompanied by much larger d
− 1

2
j than those of low-frequency

eigenvectors so that in the final wi is a high-frequencies are emphasized.
In case of the FastICA algorithm, it is also possible to estimate another set

of “filters” called basis functions. Each basis function is given by

ai =
∑
ij

bij · d
1
2
j · ej . (4)

Now, high-frequency eigenvectors will be accompanied by lower values d
1
2
j than

those of low-frequency eigenvectors for “1/f” data. Therefore, ai is a “lower
frequency” filter than wi.

3 Results

The natural scenes dataset was obtained from the McGill Calibrated Colour
Image Database [8]. This database consists of TIFF formated non-compressed
images. The resolution of image files is 576 x 768 pixels. In order to build a
dataset as general as possible, 150 scenes were selected from natural image cat-
egories such as forests, landscapes, and natural objects such as animals. Images
containing man-made objects were not used.

3.1 Preprocessing Conditions

Natural scenes had their amplitude spectrum modified according to four prepro-
cessing criteria: whitening, pseudo − whitening, local − whitening and high−
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pass filtering. Notice that for all conditions, the PCA whitening step in Fas-
tICA is performed assuring stability. In the whitening condition, the amplitudes
of all frequency components were set the unit. In the pseudo − whitening con-
dition, all images were zero-phase filtered by the frequency response R(f) =
f exp[−(f/fo)4], where fo = 0.4 cycles/pixel.

In the local − whitening, whitening was applied to non-overlapping image
patches used for learning of independent component filters. In the high −
pass filtering, all images were high-pass filtered according the filter R(f) =
− exp[−(f/fo)4] + 1, where fo is the same as for the pseudo-whitening filter.

3.2 Learned Filters and Basis Functions

In order to learn filters for each preprocessing condition, 100,000 non-overlapping
image patches of 16 × 16 pixels were extracted from the natural scenes dataset.
Here, we use the FastICA algorithm where the working non-linearity was the
hyperbolic tangent and the number of iterations was set to 250. Examples of
learned filters and respective basis functions (columns of the inverse of filter
matrix) are shown in Figure 1.

In Figure 1, the panel in the first row (1/f) exhibits the filters and basis
functions for natural scenes with raw 1/f amplitude spectra. The second row
(whitening) shows the filters learned from natural scenes with whitened ampli-
tude spectra. The third-row (pseudo − whitening) shows the filters and bases
learned after the amplitude spectra of the scenes have been filtered by using
Eq. 4. The last panel shows the results for high-pass filtered data.

As expected, 1/f data yields visually high-frequency (sharp) filters and
corresponding low-frequency (smooth) basis functions. Whitened data gener-
ates filters which are similar to the basis functions. Pseudo-whitening gener-
ates very-high-frequency filters and cannot be visualized in square pixel sample
(pixelation issue), whereas the basis functions are well-defined. In case of the
local−whitening condition, filters are super localized in the spatial window. Fil-
ters and basis functions are also very similar. In contrary to 1/f data, high-pass
filtered data generates low-frequency filters and high-frequency basis functions.

In order to provide a quantitative analysis of the learned filters, they have been
fitted by real-valued Gabor functions. Figure 2 shows polar plots representing the
parameters of the best fits for each preprocessing condition. In the polar plots,
each filter is represented by a colored circle whose orientation and distance to the
plot origin represents the preferred orientation (degrees) and spatial frequency of
the filter (cycles/pixel), respectively. The color of the circle represents the area
occupied by the filter in frequency domain. Here, this area is given in terms of
the product of the horizontal and vertical frequency lengths which are given by
σu = 1/(2π · σx) and σv = 1/(2π · σy), respectively.

The polar plot for 1/f images shows that the great majority of filters are
localized in the highest frequency part of Fourier domain. Furthermore, the con-
centration of filters in the polar plots is visibly higher in oblique orientations.
The color of the circles in the polar plots also demonstrate that filters have small
products between lengths in frequency domain. For Whitening data, filters are
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Filters Basis functions

Whitening

pseudo-whitening

local-whitening

high-pass filtering

Fig. 1. Examples of learned ICA filters and basis functions. The panels in
each row show examples of filters and basis functions learned for each preprocessing
condition. For comparison, the first row (1/f) shows filters and basis functions for
natural scenes with original amplitude spectrum.

fairly distributed over the Fourier domain in terms of both spatial frequency
and orientation. The color of circles also demonstrate that these filters can have
larger areas in frequency domain than filters learned from 1/f data.

As shown in Figure 1, the structure of the filters learned for the pseudo −
whitening condition contains much energy in very high frequencies. In this way,
a fitting analysis of these filters is not reliable. Further information on the re-
sults for this preprocessing condition data is however provided in the Discussion
section. Similar to the Whitening preprocessing, the Local − whitening condi-
tion generates filters fairly scattered over the frequency domain. The difference
is that these filters have larger areas in frequency domain as demonstrated by
the product of frequency lengths than those for Whitening condition. The filters
estimated for High−pass filtered data are concentrated at low frequencies. How-
ever, similar to 1/f filters they have in majority very small areas in frequency
domain. In order to provide a better analysis of the filter areas in frequency
domain, Figure 3 shows the histograms of the products between horizontal and
vertical frequency lengths for each preprocessing condition. For all preprocessing
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Fig. 2. Quantitative analysis of the IC filters. The parameters of best Gabor
fits are represented by polar plots for each preprocessing condition. Each gray colored
circle in the polar plots represents an IC filter. The orientation of the circle represents
the orientation of the filter (degrees). The distance of the circle to the plot origin
represents the spatial frequency given in cycles/pixel (cpp). The circle color represents
the product between the filter’s horizontal and vertical lengths in frequency domain.
The associated graymap is show on the right bottom of the figure.

conditions, histograms have been calculated using 32 bins. Interestingly, these
histograms shows that filters are biased towards small values of frequency area
independent of the preprocessing condition. However, it is also possible to ob-
serve that whitening and local − whitening can generates higher values more
commonly than other conditions. This is because the “flat” covariance of white
data forces the filters to cover the frequency domain more uniformly.

4 Discussion

Firstly, let us discuss the effects of second-order statistics on independent com-
ponent analysis by analyzing Eqs. 3 and 4. Both equations are basically formed
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Fig. 3. Histogram of frequency area. Each histogram correspond to the products
between filter’s horizontal and vertical lengths in frequency domain for each polar plot
in Figure 2. All histograms have been calculated using 32 bins.

of two main terms, a higher-order term bij and a second-order term formed by
eigenvalue dj and eigenvector ej . It is important to notice that regarding higher-
order information from the input, there are no differences between an IC filter wi

and its respective basis function ai since both are formed by the same values bij .
The only difference between them is the exponent of the eigenvalue dj . However
this does have an impact on the structure of wi and ai. Specifically, the energy
composition of filters will be modulated by the inverse of the covariance of the
input data whilst the basis functions will be directly modulated by the input
covariance.

This effect can be observed by the filters and basis functions shown in Figure
1. For instance, 1/f data yields high-frequency filters and low-frequency basis
functions but with similar orientation, phase and position in the spatial window.
However, both whitening and local−whitening preprocessing conditions, which
flat the amplitude spectra of the images, generate filters and basis functions
that are visually very similar. This also suggests that the pseudo − whitening
condition yields very high-frequency filters because after preprocessing by Eq.
5, the very high-frequencies are strongly attenuated in the resulting images.
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The quantitative analysis of the filters also demonstrates that filters will be
localized in the frequency areas where the input energy has low energy. For
instance, for 1/f data, the concentration of filters is higher at oblique high-
frequency areas which for raw natural scenes are the regions with lowest energy.
This behavior is also observed for the preprocessing conditions used in this work.
It is important to notice that the dependence of ICA on second-order statistics
can not be removed by simply flatting the amplitude spectrum of the input data.

These results explain why ICA fails to generate filters that match the fre-
quency tuning observed for V1 receptive fields. It also demonstrates that the
ICA may generate this frequency tuning in case the input data or the prepro-
cessing technique is well chosen. In this regard, Lewicki [9] showed a methodology
to generate filters which are very similar to the cat’s auditory receptive fields.
However, he emphasizes that the specific choice of input signal is essential to
obtain auditory-like receptive fields.

5 Conclusion

In this work, we have shown the extent of the effects of second-order statistics
on the shape of ICA filters. Specifically, the center frequency of IC filters is
determined by the inverse the covariance of the input data. On the other hand,
characteristics such as filter size in frequency domain are less dependent on
amplitude information. We propose to extend this work to also analyze how the
response behavior of the IC filters depend on the second-order statistics.
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Abstract. Most species of bats making echolocation use the sound pressure 
level (SPL) and Doppler-shifted frequency of ultrasonic echo pulse to measure 
the size and velocity of target. The neural circuits for detecting these target 
features are specialized for amplitude and frequency analysis of the second 
harmonic constant frequency (CF2) component of Doppler-shifted echoes. The 
neuronal circuits involved in detecting these features have been well 
established. However, it is not yet clear the neural mechanism by which these 
neuronal circuits detect the amplitude and frequency of echo signals. We 
present here neural models for detecting SPL amplitude and Doppler-shifted 
frequency of echo sound reflecting a target. Using the model, we show that the 
tuning property of frequency is changed depending on the feedback connections 
between cortical and subcortical neurons. We also show SPL amplitude is 
detected by integrating input signals emanating from ipsi and contralatreal 
subcortical neurons. 
 
Keywords: auditory system, echolocation, frequency tuning, SPL amplitude, 
neural model. 

1   Introduction 

Mustached bats emit ultrasonic pulses and listen to returning echoes for orientation 
and hunting flying insects. The bats analyze the correlation between the emitted 
pulses and their echoes and extract the detailed information about flying insects based 
on the analysis. This behavior is called echolocation. The neuronal circuits underlying 
echolocation detect the velocity of target with accuracy of 1 cm/sec and the distance 
of target with accuracy of 1 mm. To extract the various information about flying 
insects, mustached bats emit complex biosonar that consists of a long-constant 
frequency (CF) component followed by a short frequency-modulated (FM) 
component [1]. Each pulse contains four harmonics and so eight components 
represented by (CF1, CF2, CF3, CF4, and FM1, FM2, FM3, FM4). The information 
of target distance and velocity are processed separately along the different pathways 
in the brain by using four FM components and four CF components, respectively [2]. 
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In natural situation, large natural objects in environment, like bushes or trees, 
produce complex stochastic echoes, which can be characterized by the echo 
roughness. The echo signal reflecting from a target insect is embedded in the complex 
signal. Even in such an environment, bats can detect accurately the detailed 
information of flying insect. To extract the information about insects, it is needed to 
encode efficiently the amplitude and frequency information of echo sounds and to 
combine them. 

To investigate the neural mechanism underlying the encoding of amplitude and 
frequency information, we study the neural pathway for detecting target size and 
velocity, which consists of cochlea, inferior colliculus (IC), and Doppler-shifted 
constant frequency (DSCF) area. The cochlea is remarkably specialized for fine-
frequency analysis of the second harmonic CF component (CF2) of Doppler-shifted 
echoes. The information about echo CF2 is transmitted to IC, and the size and relative 
velocity of target insect are detected in DSCF area by analyzing the sound pressure 
level (SPL) amplitude and Doppler-shifted frequency of echo signals. There are 
several experimental results on IC and DSCF neurons. It was reported that DSCF 
neurons responds to a specific range of SPL amplitude, as well as best frequency (BF) 
[3]. Xia and Suga [4] demonstrated that electric stimulation of DSCF neurons evokes 
the BF shifts of IC neurons away from the BF of the stimulated DSCF neuron 
(centrifugal BF shift) and bicuculine (an antagonist of inhibitory GABA receptors) 
applied to the stimulation site changes the centrifugal BF shifts into the BF shifts 
towards the BF of stimulated DSCF neurons (centripetal BF shift). This indicates that 
the BF modulation elicited by top-down signal may play a crucial role in frequency 
coding of IC and DSCF neurons. However, it is not yet clear how the bat’s auditory 
system detects the SPL amplitude and Doppler-shifted frequency of echo signals. 

In the present study, we propose neural network models for detecting SPL 
amplitude and Doppler-shifted frequency of sound echoes. Using the model, we show 
how these sound features are represented in bat’s auditory cortex.  

2   Model 

The auditory system of bat’s brain contains choclea (Ch), inferior colliculus (IC), and 
Doppler-shifted constant frequency (DSCF) processing area in each hemisphere, as 
shown in Fig. 1. The Ch neurons project to contralateral IC neurons and DSCF 
neurons receive the output of contralateral IC neurons. The Ch neurons have 
frequency map by which sound frequency is encoded. The amplitude of SPL is 
encoded in to firing rate of Ch neurons. The IC neurons have frequency map and also 
encode SPL in to firing rate. DSCF area has a specific map detecting sound frequency 
and SPL, in which frequency is represented along the radial axis [3,5,6] and the 
amplitude of SPL is represented along a circular axis [3,7]. The frequency axis is 
overrepresented with the frequencies of 60.6 kHz to 62.3 kHz, corresponding to echo 
frequencies of second harmonics. The neurons in the DSCF area are excited by the 
output of contralateral IC neurons and inhibited by that of ipsilateral IC neurons [8]. 
To investigate the neural mechanism underlying auditory information processing of 
bat’s brain, we developed neural models for detecting Doppler-shifted frequency and 
SPL amplitude of echo signals. 
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Fig. 1. Auditory pathway involved in SPL amplitude and Doppler-shifted frequency 
information processing. The left and right hemispheres contain Ch, IC, and DSCF area, 
respectively. The regions for encoding SPL amplitude and Doppler-shifted frequency are 
denoted by ‘A’ and ‘F’ in ICs, respectively. The solid and dashed lines indicate the excitatory 
and inhibitory connections, respectively. The vertical dashed line indicates the corpus callosum 
(CC). Ch: Choclea, IC: inferior colliculus, and DSCF: Doppler-shifted constant frequency 
processing area.  

2.1   Model for Detecting Doppler-Shifted Frequency of Echo Signals  

Figure 2 illustrates a model for detecting Doppler-shifted frequency of echo sounds. 
The model consists of three layers, right (R) -Ch, left (L) -IC, and R-DSCF layers. For 
simplicity, we do not consider here the model for other layers, L-Ch, R-IC, and L-
DSCF, because they have the similar connections to the model shown in Fig. 2 and 
differ only from reverse relationship in right and left side. The R-Ch layer has  
one-dimensional array of neurons, each of which is tuned to a frequency of sounds. 
The L-IC and R-DSCF layer have also tonotopical maps corresponding to tuning 
property of R-Ch layer. The neurons in each layer were modeled with the leaky 
integrate-and fire (LIF) neuron model [9]. The details of the network model were 
described in Ref. 10. 

 

Fig. 2. Neural network model for detecting Doppler-shifted frequency of echo sound. The model 
consists of three layers, right (R)-choclear, left (L)-inferior colliculus, and R-DSCF layers. 



 Neural Model of Auditory Cortex for Binding Sound Intensity 65 

2.2   Model for Detecting SPL Amplitude of Echo Signals 

Figure 3 illustrates the model for detecting SPL amplitude. The model consists of five 
layers, right-(R-) and left-(L-) Chs, R- and L-ICs, and R-DSCF layer. To investigate 
the essential mechanism underlying the detection of SPL amplitude, we do not 
consider here L-DSCF layer that has the similar network to that of R-DSCF layer. 

The R-DSCF neurons can detect SPL amplitude as a peak location of activated 
DSCF neurons. The excitatory input from L-IC neurons elicits the firing of DSCF 
neurons, but the inhibitory input from R-IC neurons suppresses the firing of DSCF 
neurons. This allows the DSCF neurons to exhibit a firing region in R-DSCF network, 
in which neurons, located in the left side of the neuron that has membrane potential 
just under the firing threshold, are activated, because the inhibitory synaptic weights 
are gradually increased as the position of neurons moves to the right side of the DSCF 
network, as shown in Fig. 3. Then the lateral inhibition across DSCF neurons enables 
the DSCF network to activate only the neurons nearby the edge between activated and 
silent neurons in spatial activity of DSCF neurons, leading to detection of SPL 
amplitude.   

The mathematical descriptions of the model are as follows. 

2.2.1   Choclea 
The models of R- and L-Ch have one-dimensional arrays of neurons, each neuron of 
which is tuned to a specific frequency of sound. The Ch neuron was modeled with the 
LIF neuron model. The membrane potentials of ith X-Ch neurons (X= R, L) are      
determined by  
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where ChX −τ  is the time constant of ChX
iV − and iI  is the input to ith X-Ch neuron, 

which is described by the Gaussian function that has a maximum response of i0th Ch 
neuron.  

2.2.2   R- and L-IC 
IC neurons integrate the outputs of contralateral Ch neurons and encode the 
information of SPL amplitude in to firing rate of IC neurons. The R- and L-IC layers 
have one-dimensional array of neurons, respectively The model of IC neuron was 
based on the LIF model. The membrane potentials of ith X-IC neurons (X= R, L) are 
determined by 
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where ICX −τ  is the time constant and );;( ChYICXijw −− is the synaptic weight of 

the connection from jth Y-Ch neuron to ith X-Ch one. )(tX ChY
j

−  is the output of jth 

Y-Ch neuron, described with α-function [9]. 

 

Fig. 3. Neural network model for detecting SPL amplitude of echo sound. The black circles and 
short horizontal bars in R-DSCF indicate excitatory and inhibitory synapses, respectively. The 
inhibitory synaptic weights are monotonically increased along the array of neurons from the left 
to right sides. 

2.2.3   R-DSCF 
R-DSCF neurons receive excitatory inputs from L-IC neuron in contralateral side and 
excitatory or inhibitory inputs from R-IC neurons in the ipsilateral side, as shown in 
Fig. 1. The synaptic weights of the contralateral connections from L-IC neurons to R-
DSCF ones have a constant value, and those of the ipsilateral connections from R-IC 
neurons to R-DSCF ones change gradually from a positive value to a negative value. 
The DSCF neuron was modeled with the LIF model. The membrane potential of R-
DSCF neuron is determined by 
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where, DSCFR−τ  is the time constant of DSCFR
iV − . );;( ICYDSCFRiw −− (Y=L, R) 

are the synaptic weights of ith R-DSCF neuron receiving the output of Y-IC 
neurons )(tS ICY − , );;( DSCFRDSCFRijw −− is the synaptic weight of the inhibitory 

connection between ith and jth R-DSCF neurons, and ew is the weight of the 
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excitatory synapses mediating the output of L-IC neurons, )(tS f
ICL− , in frequency 

map described in section 2.1. w0 is constant, and α the decreasing rate of inhibitory 
synaptic weight.  

3   Results 

3.1   BF Shifts of IC Neurons Caused by Feedback Signals 

Figure 4a shows the change in the tuning property of IC neurons in the case where 
tone stimulus was delivered and electric stimulus (ES) was applied to DSCF neuron 
tuned to 60.6 kHz. The result was calculated by using the network model shown in 
Fig. 2. The ES resulted in the BF shift of the IC neurons away from the BF of the 
stimulated DSCF neuron, that is, centrifugal BF shift. Before the ES, the IC neurons 
maximally responded to 60.6 kHz (vertical dashed line). When DSCF neuron tuned to 
61.1 kHz was electrically stimulated, the BF of IC neuron was shifted from 60.6 kHz 
to 60.5 kHz. That is, the IC neurons showed a centrifugal shift. 

 

Fig. 4. Tuning properties of IC neurons. Centrifugal (a) and centripetal (b) BF shift. The dashed 
lines indicate the center of firing pattern in control. The arrows indicate BF shifts caused by 
electric stimulation (ES) and application of bicuculine, respectively. BMI: bicuculine. 

Figure 4b shows the response properties of IC neurons when the antagonist of 
GABA, bicuculine, was applied to the DSCF neurons tuned to 61.1 kHz. The 
inhibition of GABA led to the BF shift of the IC neuron towards the BF of the 
bicuculine-injected DSCF neuron. The BF of IC neurons shifted from 60.6 kHz to 
60.8 kHz. That is, the IC neurons showed a centripetal BF shift.  

Our model reproduces well the experimental results measured by Xia and Suga [4]. 

3.2   Neural Mechanism for Determining Directions of BF Shifts 

Figure 5a illustrate the changes in the synaptic potentials of the top-down connections 
from the DSCF neuron tuned to 61.6kHz to IC neurons, that is, the receptive field of 
the DSCF neuron, in the case of electric stimulation of a DSCF neuron. The ES made 
the peak position of the synaptic potential shift away from the position of ES, 
resulting in the BF away from the BF of the stimulated DSCF neuron, that is, 
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centrifugal BF shift. In contrast to the centrifugal BF shift, the application of 
bicuculine, an antagonist of GABA receptors, modulated the shape of the receptive 
field, as shown in Fig. 5b. The injection of bicuculine made the peak position shift 
towards the injection site of bicuculine, leading to the BF shift towards the BF of the 
bicuculine-injected DSCF neuron.   

 

(a) (b) 

Fig. 5. The changes in synaptic potentials of top-down connections from a DSCF neuron to IC 
neurons. The solid lines indicate the synaptic potentials in control, and the dashed lines indicate 
those under ES (a) and application of bicuculine (b), respectively.   

3.3   Response Properties of DSCF Neurons for SPL Amplitude 

Figure 6a shows the firing pattern of R-DSCF neurons in the network model shown in 
Fig.3 for two different SPL amplitudes of echo signals. The SPL amplitude is detected 
by a peak location of activated neurons. As shown in Fig. 6a, the peak location of 
firing pattern moved to right side of DSCF network as SPL amplitude is increased.   

The R-DSCF neuron has a window of response, with a lower and upper threshold 
for SPL amplitude, as shown in Fig. 6b. The response property of DSCF neurons to a 
specific region of SPL amplitude enables the DSCF neurons to encode amplitude 
information of echo sound. 

 
 (a) (b) 

Fig. 6. Response properties of R-DSCF neurons for SPL amplitude. (a) Neuronal activities 
evoked by to echo signals with different SPL amplitudes. (b) Response windows. The solid and 
dashed lines, respectively, represent the response properties for two different SPL amplitudes.   
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4   Conclusion 

We have presented here the neural mechanisms for detecting SPL amplitude and 
Doppler-shifted frequency of echo sounds. We show that Doppler-shifted frequency is 
encoded by the tonotopical map, in which tuning property of subcortical neurons is 
adequately modulated by corticofugal signals. We also show that the amplitude of 
echo sound is encoded by integrating the outputs of ipsi and contralateral subcortical 
neurons. 
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Abstract. This paper presents a method of multistep speaker recognition using
naive Bayesian inference and competitive associative nets (CAN2s). We have
been examining a method of speaker recognition using feature vectors of pole
distribution extracted by the bagging CAN2, where the CAN2 is a neural net
for learning piecewise linear approximation of nonlinear function, and bagging
CAN2 is the bagging (bootstrap aggregating) version. In order to reduce the
recognition error, we formulate a multistep recognition using naive Bayesian in-
ference. After introducing several modifications for reasonable recognition, we
show the effectiveness of the present method by means of sereral experiments
using real speech signals.

Keywords: Multistep speaker recognition, Bayesian inference, Competitive
associative net.

1 Introduction

This paper describes a method of multistep speaker recognition using Bayesian infer-
ence and competitive associative nets (CAN2s). Here, the CAN2 is an artificial neu-
ral net for learning efficient piecewise linear approximation of nonlinear function by
means of using competitive and associative schemes [1–6]. The effectiveness has been
shown in several applications involving learning and analyzing speech signals. We have
shown that the speech time-series is reproduced and recognized with high precision
by the bagging (bootstrap aggregating) version of the CAN2 [4]. Recently, we have
shown that the poles of piecewise linear predictive coefficients obtained by the bagging
CAN2 are effective for speaker recognition [6, 7]. Here, note that among the previ-
ous research studies of speaker recognition, the most common way to characterize the
speech signal is short-time spectral analysis, such as Linear Prediction Coding (LPC)
and Mel-Frequency Cepstrum Coefficients (MFCC) [9–12]. Namely, these methods ex-
tract multi-dimensional features from each of consecutive intervals of speech, where a
speech interval spans 10-30ms of the speech signal which is called a frame of speech.
Thus, a single feature vector of the LPC or the MFCC corresponds to the average of
multiple piecewise linear predictive coefficients of the bagging CAN2. Namely, the
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ŷ〈s1〉
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Fig. 1. Speaker recognition system using the CAN2s

bagging CAN2 has stored more precise information on the speech signal so that it can
reproduce speech signal with high precision.

In our most recent research [7], we have shown a method of speaker recognition
using the feature vector of pole distribution of piecewise linear coefficients extracted
by the bagging CAN2, and presented a simple example of multistep recognition us-
ing Bayes’ rule to reduce the recognition error. This paper focuses on the latter topic.
Namely, we formulate the Bayesian multistep recognition in 2, and show the
performance using real speech data in 3.

2 Naive Bayesian Multistep Speaker Recognition Using CAN2

2.1 Overview of Speaker Recognition

Fig. 1 shows the present speaker recognition system using the CAN2s. The speaker
recognition system, in general, consists of four steps: speech data acquisition, feature
extraction, pattern matching, and making a decision. Furthermore, the speaker recog-
nition is classified into verification and identification, where the former is the process
of accepting or rejecting the identity claim of a speaker, which is regarded as two-class
classification. The latter, on the other hand, is the process of determining which regis-
tered speaker provides a given utterance, which is regarded as multi-class classification.
In addition, speaker recognition has two schemes: text-dependent and text-independent
schemes. The former require the speaker to say key words or sentences with the same
text for both training and recognition phases, whereas the latter do not rely on a specific
text being spoken.

2.2 Singlestep Speaker Recognition

In this study, we use a feature vector of pole distribution obtained from a speech sig-
nal (see [7] for details). Let Q〈s〉 be a set of feature vectors q = (q1, q2, · · · , qk)T of a
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speech signal from a speaker s ∈ S = {si|i ∈ IS}, where IS = {1, 2, · · · , |S|}. We
use a learning machine called CAN2, which learns to approximate the following target
function:

f 〈s〉(q) =
{

1, if q ∈ Q〈s〉,
−1, otherwise.

(1)

Let CAN2〈s〉 be the learning machine for the speaker s. Then, with a number of training
data (q, f 〈s〉(q)) for q ∈ Q〈s〉, we train CAN2〈s〉 to approximate the above function by
a continuous function as ŷ〈s〉 = f̂ 〈s〉(q). So, we can execute a singlestep verification
with the binarization of the output given as

v〈s〉 =
{

1, if ŷ〈s〉 = f̂ 〈s〉(q) ≥ yθ,
−1, otherwise.

(2)

Namely, we accept the speaker si if v〈s〉 = 1, and reject otherwise. Here, a threshold
yθ is introduced for adjusting the recognition performance shown below. We execute a
singlestep identification by the maximum detection given by

r = argmax
i∈IS

{ŷ〈si〉 = f̂ 〈si〉(q)}. (3)

Namely, we identify the speech signal is of the rth speaker with the above r.

2.3 Naive Bayesian Multistep Speaker Recognition

For speaker verification, let pV(v〈si〉|s) be the probability of the output v〈si〉 of
CAN2〈si〉 to classify the feature vector q of a speaker s. Here, note that pV(v〈si〉 =
1|s) + pV(v〈si〉 = −1|s) = 1 for every si and s in S. Let v

〈si〉
1:t = v

〈si〉
1 , · · · , v

〈si〉
t

be an output sequence of CAN2〈si〉 for a sequence of feature vectors obtained from
a speaker s. Then we estimate whether the speaker s is si or si by means of naive
Bayesian inference given by

pV(s|v〈si〉
1:t ) =

pV(v〈si〉
t |s)pV(s|v〈si〉

1:t−1)

pV(v〈si〉
t |s)pV(s|v〈si〉

1:t−1) + pV(v〈si〉
t |s)pV(s|v〈si〉

1:t−1)
(4)

where pV(s|v〈si〉
1:t ) + pV(s|v〈si〉

1:t ) = 1 and s = si or si. Here, we employ condi-

tional independence assumption given by pV(v〈si〉
t |s, v〈si〉

1:t−1) = pV(v〈si〉
t |s), which

is shown effective in many real world applications of naive Bayes classifier [8]. We
execute the Bayesian speaker verification as follows; we accept the speaker si when
pV(s = si|v〈si〉

1:t ) ≥ pVθ is satisfied at t (= tV) for the increase of t until t = TV, and
reject otherwise. Here, pVθ and TV are constants.

For speaker identification, let pI(v〈S〉|s) = pI(v〈s1〉, · · · , v〈s|S|〉|s) be the joint prob-
ability of v〈S〉 = (v〈s1〉, · · · , v〈s|S|〉) responding to a feature vector q obtained from a
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speaker s ∈ S. We assume pI(v〈S〉|s) =
∏

si∈S pI(v〈si〉|s) because any two prob-

abilities pI(v〈si〉|s) and pI(v〈sj〉|s) for i �= j are supposed to be independent. Let
v
〈S〉
1:t = v

〈S〉
1 , · · · , v

〈S〉
t be a sequence of v〈S〉 obtained from a speaker s, then we have

the Bayesian inference given by

pI(s|v〈S〉
1:t ) =

pI(v
〈S〉
t |s)pI(s|v〈S〉

1:t−1)∑
si∈S pI(v

〈S〉
t |si)pI(si|v〈S〉

1:t−1)
. (5)

where we use conditional independence assumption pI(v
〈S〉
t |s, v〈S〉

1:t−1) = pI(v
〈S〉
t |s).

We examine two cases to execute the multistep speaker identification as follows;

Case I1: We identify the rth speaker holding r = argmax
i∈IS

pI(si|v〈S〉
1:t ) at t = TI, where

TI is a constant (we set TI = 7 in the experiments shown below).

Case I2: We identify the rth speaker at t (= tI) when pI(s = sr|v〈S〉
1:t ) ≥ pIθ is satis-

fied for the increase of t until TI, where pIθ is a threshold. In this case, there is a
possibility that no speaker is identified.

2.4 Problems and Modifications for Reasonable Recognition

First of all, let us introduce the following error metrics to evaluate the performance of
the classifiers and the recognition.

EFN(si) � pV

(
v〈si〉 = −1

∣∣ si

)
, (6)

EFP(si) � pV

(
v〈si〉 = 1

∣∣ s̄i

)
, (7)

EV � 1
|S|
∑
si∈S

(
pV

(
v〈si〉 = −1

∣∣ si

)
+

∑
sj∈S\{si}

pV

(
v〈sj〉 = 1

∣∣ si

))
, (8)

EI � 1
|S|
∑
si∈S

∑
si∈S

pI(v〈S〉 �= v∗
i |si) (9)

where FN and FP represent false negative and false positive, respectively, often used in
binary classification problems, and v∗

i is the desired vector whose ith element is 1 and
the other elements are -1,

Modification of the original probability distribution: We have to estimate the orig-
inal probability distribution as p̂(v〈si〉|s) from a limited number of speech data. Then,
some estimated probabilities may happen to become 0 or 1, which leads to a stuck of
the multistep inference by Eq.(4) and Eq.(5). So, we employ the modification given by
p̂(v〈si〉|s) := (1−2p0)p̂(v〈si〉|s)+p0 in order for the new p̂(v〈si〉|s) to be in [p0, 1−p0],
where p0 is a small constant (we use p0 = 0.05 in the experiments shown below).



74 S. Kurogi et al.

Modification of multistep probability: Similarly as above, we can see that pV(s|v〈si〉
1:t )

and pI(s|v〈S〉
1:t ) once become 0 or 1, they will not change any more. So we truncate

the probability to be in [p1, 1 − p1], where p1 is a constant (we set p1 = 0.01 in the
experiments shown blow).

Tuning the threshold of binary classifiers: By means of the threshold yθ in Eq.(2),
we can tune the ratio of FN and FP, because the original learning machine, i.e. CAN2,
is an approximator of continuous function. We set yθ to be the center of the mean out-
put of the CAN2s for true positives (TP) and that of true negatives (TN). Note that we
could not have examined this strategy in detail so far, this tuning may largely affect the
performance of the recognition as shown below.

Introducing “void” speaker: We introduce “void” speaker for reasonable identifica-
tion. Namely, there is a case where no classifier, i.e. CAN2〈si〉, provides positive output.
In such a case, we might have to do an exceptional processing because the above infer-
ence method does not consider such cases. Here, we define the probability for the void
speaker by the mean verification error as follows:

pI(v〈S〉|s) =

⎧⎪⎪⎨⎪⎪⎩
EV if v〈S〉 �= v∗

void ∧ s = void,
EV if v〈S〉 = v∗

void ∧ s �= void.
1 − EV if v〈S〉 = v∗

void ∧ s = void,
1 − EV if v〈S〉 �= v∗

void ∧ s �= void,

(10)

3 Experimental Results and Remarks

3.1 Experimental Setting

We have used speech signals sampled with 8kHz of sampling rate and 16 bits of reso-
lution in a silent room of our laboratory. They are from five male speakers: S ={SM,
SS, TN, WK, YM}. We have examined five texts of Japanese words: W ={/kyukodai/,
/daigaku/, /kikai/, /fukuokaken/, /gakusei/} where each utterance duration of the words
is about 1s. For each speaker and each text, we have ten samples of speech data,
L = {1, 2, · · · , 10}. Namely, we have speech data x = xs,w,l for s ∈ S, w ∈ W
and l ∈ L.

In order to evaluate the performance of the present method, we use the leave-one-
set-out cross-validation (LOOCV). Precisely, for text-dependent tasks, we evaluate the
performance with test dataset X(S, w, l) = {xs,w,l | s ∈ S} and training dataset
X(S, w, Ll) = {xs,w,i | s ∈ S, i ∈ L\{l}} for each w ∈ W and l ∈ L. On the other
hand, for text-independent tasks, we use test dataset X(S, w, l) and training dataset
X(S, Ww, L) = {xs,u,i | s ∈ S, u ∈ W\{w}, i ∈ L} for each w ∈ W and l ∈ L.

3.2 Experimental Results

We have conducted experiments for each text and we have the error rate shown in
Table 1. From (a) for text-dependent recognition, we can see that the original singlestep
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Table 1. Error rates, EV and EI, and the mean of decision step numbers, 〈tV〉 and 〈tI〉, of speaker
recognition for each text. The superscripts “ss” and “ms” of the error indicate the singlestep
(original) and multistep (Bayesian) recognition, respectively. We terminate the Bayesian steps at
t = TV = TI = 7. The result is obtained with pVθ = pIθ = 0.95.

(a) text-dependent speaker recognition
/kyukodai/ /daigaku/ /kikai/ /fukuokaken/ /gakusei/

Ess
V 0.028 (7/250) 0.020 (5/250) 0.032 (8/250) 0.044 (11/250) 0.016 (4/250)

Ess
I 0.080 (4/50) 0.060 (3/50) 0.060 (3/50) 0.100 (5/50) 0.040 (2/50)

Ems
V 0.000 (0/25) 0.000 (0/25) 0.000 (0/25) 0.000 (0/25) 0.000 (0/25)

〈tV〉 2.2 2.0 2.4 2.6 2.0
Ems

I1 0.000 (0/5) 0.000 (0/5) 0.000 (0/5) 0.000 (0/5) 0.000 (0/5)
Ems

I2 0.000 (0/25) 0.000 (0/25) 0.000 (0/25) 0.000 (0/25) 0.000 (0/25)
〈tI〉 1.8 1.6 1.8 2.2 1.4

(b) text-independent speaker recognition
/kyukodai/ /daigaku/ /kikai/ /fukuokaken/ /gakusei/

Ess
V 0.092 (23/250) 0.056 (14/250) 0.096 (24/250) 0.140 (35/250) 0.132 (33/250)

Ess
I 0.200 (10/50) 0.200 (10/50) 0.280 (14/50) 0.400 (20/50) 0.420 (21/50)

Ems
V 0.000 (0/25) 0.040 (1/25) 0.000 (0/25) 0.160 (4/25) 0.040 (1/25)

〈tV〉 3.2 2.2 2.6 3.6 4.0
Ems

I1 0.000 (0/5) 0.000 (0/5) 0.000 (0/5) 0.000 (0/5) 0.200 (1/5)
Ems

I2 0.000 (0/25) 0.040 (1/25) 0.000 (0/25) 0.000 (0/25) 0.080 (1/25)
〈tI〉 3.0 2.2 2.6 3.0 3.0

method achieves not zero but small error rate, while the Bayesian multistep method has
achieved correct verification and identification for all texts. On the other hand, from
(b) for text-independent speaker recognition, we can see that the error of the singlestep
method is bigger than the error of the above text-dependent case, which causes the error
of the multistep method. However, the multistep method has smaller error than the sin-
glespep method in almost all cases, and achieved correct verification and identification
for /kyukodai/ and /kikai/.

The mean of the decision step numbers, 〈tV〉 for verification and 〈tI〉 for “Case
I2” identification, are less than or equal to 4 steps, which may be reasonable in real
applications of the present method. Now, let us examine the errors in detail for the
text-independent recognition of the text /gakusei/. We show the state variable values
through the recognition steps in Table 2 and Fig. 2 to see the results numerically and vi-
sually. From the table, we can see that the identification error is occured for the speech
signal of WK, wher ethe Bayesian probability pV and pI do not reach the threshold
pVθ = pIθ = 0.95. From the table and figure, it is supposed that the reduction of FN
(false negative) of CAN2〈WK〉 as well as FP (false positive) of CAN2〈TN〉 is necessary
for eliminating this error. Actually, we can see this fact from the table of (EFN, EFP)
shown in Fig. 3. Although it is not so easy to solve this problem, it is important and
valuable to know this causality.
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Table 2. State variable values in text-independent speaker recognition for /gakusei/. The second
row indicates CAN2〈s〉 for s=SM, SS, TN, WK, YM (and void for pI), and each row below the
second shows the responses to the tth speech signal of speakers shown on the left. Percentage
values are shown for pV and pI.

Y
M

W
K

T
N

SS
SM

yi

t SM SS TN WK YM
0 – – – – –
1 +0.30 -0.90 -0.93 -0.89 -0.36
2 -0.37 -0.77 -0.93 -0.73 +0.30
3 -0.26 -0.92 -0.96 -0.75 +0.08
4 +0.19 -0.92 -0.95 -0.84 -0.17
5 -0.00 -0.84 -0.96 -0.72 -0.19
6 +0.28 -0.91 -0.93 -0.82 -0.42
7 +0.11 -0.98 -0.97 -0.85 -0.10
0 – – – – –
1 +0.05 -0.22 -0.69 -0.98 -0.96
2 -0.56 +0.21 -0.53 -0.97 -0.98
3 -0.68 -0.23 -0.06 -0.95 -0.93
4 -0.52 -0.15 -0.81 -0.89 -0.78
5 -0.58 -0.65 +0.18 -0.97 -1.00
6 -0.56 -0.29 -0.07 -0.96 -0.95
7 -0.46 -0.43 -0.08 -0.94 -0.95
0 – – – – –
1 -0.24 -0.75 +0.10 -0.95 -0.92
2 -0.55 -0.93 +0.54 -0.86 -0.86
3 -0.04 -0.94 -0.43 -0.70 -0.85
4 -0.45 -0.67 -0.11 -0.93 -0.89
5 -0.78 -0.81 -0.08 -0.75 -0.36
6 -0.68 -0.73 +0.06 -0.87 -0.29
7 -0.57 -0.61 -0.22 -0.79 -0.84
0 – – – – –
1 -0.07 -0.73 -0.60 -0.77 -0.59
2 -0.60 -0.94 -0.08 -0.54 -0.61
3 -0.63 -0.94 +0.04 -0.87 -0.42
4 -0.49 -0.85 -0.23 -0.53 -0.82
5 -0.97 -0.95 +0.39 -0.78 -0.70
6 -0.09 -0.99 -0.84 -0.90 -0.02
7 -0.22 -0.93 -0.21 -0.35 -0.91
0 – – – – –
1 -0.95 -0.96 -0.98 -0.87 +0.81
2 -0.94 -0.99 -0.99 -0.96 +0.95
3 -0.92 -0.99 -0.97 -0.91 +0.95
4 -0.93 -0.99 -0.99 -0.94 +0.83
5 -0.84 -0.90 -0.94 -0.96 +0.79
6 -0.88 -0.75 -0.98 -0.92 +0.78
7 -0.79 -0.95 -0.99 -0.97 +0.83

vi

SM SS TN WK YM
– – – – –

+1 -1 -1 -1 -1
-1 -1 -1 +1 +1
-1 -1 -1 +1 -1
+1 -1 -1 -1 -1
+1 -1 -1 +1 -1
+1 -1 -1 -1 -1
+1 -1 -1 -1 -1
– – – – –

+1 +1 -1 -1 -1
-1 +1 -1 -1 -1
-1 +1 +1 -1 -1
-1 +1 -1 -1 -1
-1 -1 +1 -1 -1
-1 +1 +1 -1 -1
-1 +1 +1 -1 -1
– – – – –
-1 -1 +1 -1 -1
-1 -1 +1 -1 -1
+1 -1 -1 +1 -1
-1 -1 +1 -1 -1
-1 -1 +1 +1 -1
-1 -1 +1 -1 -1
-1 -1 +1 -1 -1
– – – – –

+1 -1 -1 -1 -1
-1 -1 +1 +1 -1
-1 -1 +1 -1 -1
-1 -1 +1 +1 -1
-1 -1 +1 -1 -1
+1 -1 -1 -1 -1
-1 -1 +1 +1 -1
– – – – –
-1 -1 -1 -1 +1
-1 -1 -1 -1 +1
-1 -1 -1 -1 +1
-1 -1 -1 -1 +1
-1 -1 -1 -1 +1
-1 -1 -1 -1 +1
-1 -1 -1 -1 +1

pV
SM SS TN WK YM
50 50 50 50 50
83 14 23 41 5
59 3 8 66 41
30 1 3 85 4
67 1 1 80 1
90 1 1 92 1
98 1 1 89 1
99 1 1 84 1
50 50 50 50 50
83 95 23 41 5
59 99 8 33 1
30 99 19 25 1
11 99 6 19 1
4 94 15 14 1
1 99 32 10 1
1 99 54 7 1

50 50 50 50 50
23 14 72 41 5
8 3 87 33 1

30 1 67 58 1
11 1 84 49 1
4 1 93 73 1
1 1 97 65 1
1 1 99 57 1

50 50 50 50 50
83 14 23 41 5
59 3 44 66 1
30 1 67 58 1
11 1 84 80 1
4 1 93 73 1

15 1 80 65 1
5 1 91 84 1

50 50 50 50 50
23 14 23 41 93
8 3 8 33 99
3 1 3 25 99
1 1 1 19 99
1 1 1 14 99
1 1 1 10 99
1 1 1 7 99

pI
SM SS TN WK YM void
17 17 17 17 17 17
82 1 6 5 1 6
96 1 1 1 2 1
96 1 1 3 1 1
99 1 1 1 1 1
99 1 1 1 1 1
99 1 1 1 1 1
99 1 1 1 1 1
17 17 17 17 17 17
10 88 1 1 1 1
1 99 1 1 1 1
1 99 1 1 1 1
1 99 1 1 1 1
1 84 11 4 1 1
1 99 1 1 1 1
1 99 1 1 1 1

17 17 17 17 17 17
1 5 65 21 1 8
1 1 89 9 1 1

20 1 51 28 1 1
1 1 85 15 1 1
1 1 74 25 1 1
1 1 90 10 1 1
1 1 96 3 1 1

17 17 17 17 17 17
82 1 6 5 1 6
3 1 35 58 1 5
1 1 64 35 1 1
1 1 49 51 1 1
1 1 74 25 1 1

12 1 67 20 1 1
1 1 63 36 1 1

17 17 17 17 17 17
1 1 1 1 98 1
1 1 1 1 99 1
1 1 1 1 99 1
1 1 1 1 99 1
1 1 1 1 99 1
1 1 1 1 99 1
1 1 1 1 99 1
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Fig. 2. Experimental result of text-independent speaker recognition for /gakusei/. The black boxes
indicate yi by its height, the black unit impulses vi, the red broken line pV and the blue broken
lines pI.

Table 3. FN and FP error rate, (EFN, EFP) [%], of the classifiers

/kyukodai/ /daigaku/ /kikai/ /fukuokaken/ /gakusei/
CAN2〈SM〉 (30.0, 2.5) (30.0, 5.0) ( 0.0, 2.5) ( 0.0, 20.0) (20.0, 12.5)
CAN2〈SS〉 (20.0, 2.5) ( 0.0, 5.0) (40.0, 15.0) (30.0, 22.5) (10.0, 0.0)
CAN2〈TN〉 (10.0, 7.5) (10.0, 5.0) (20.0, 10.0) (20.0, 7.5) (20.0, 27.5)
CAN2〈WK〉 (20.0, 15.0) (10.0, 5.0) (10.0, 5.0) (20.0, 10.0) (40.0, 17.5)
CAN2〈YM〉 (10.0, 7.5) ( 0.0, 2.5) (10.0, 7.5) (10.0, 7.5) ( 0.0, 2.5)
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4 Conclusion

We have formulated a method of multistep speaker recognition using naive Bayesian
inference and CAN2s. After introducing several modifications for reasonable recogni-
tion, we have shown the effectiveness of the present method using real speech signals.
Namely, the error rate of the single step method is reduced by the present multistep
method. In order to reduce the multistep recognition error much more, we have to re-
duce both FN and FP errors of the original classifiers, i.e. CAN2s, for all texts.

This work was partially supported by the Grant-in Aid for Scientific Research (C)
21500217 of the Japanese Ministry of Education, Science, Sports and Culture.
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Abstract. Cortical representation of shape is a crucial problem in vision 
science. Recent physiological studies on monkeys have reported that neurons in 
the primary visual cortex (V1) represent 2D shape by Medial Axis (MA). 
Physiology has also shown that a set of smooth surfaces represents 3D shape in 
a higher stage (IT). Based on the physiological evidence, we propose that 
monocular retinal images yield 2D-MAs that represent 2D-surfaces in V1, and 
the 2D-MAs are fused to yield 3D-MA that represents 3D-surfaces in IT. To 
investigate this hypothesis, we developed a computational model based on the 
physiological constraints, and evaluated its power on the shape encoding. The 
model represented a variety of 3D-shapes including natural shapes, with 
reconstruction errors of around 0.2 regardless of the shape complexity. The 
results support the visual system encodes monocular 2D-MAs in V1 and fuses 
them into 3D-MA in IT so that 3D-shape is represented by smooth surfaces. 

Keywords: Medial axis, MA, Shape representation, 3D, Binocular disparity. 

1   Introduction 

Symmetry is an important queue for shape perception. According to physiological, 
psychological and computational studies [e.g., 1,2,3], Medial Axis (MA) that encodes 
shape using local symmetry axis plays an important role for object representation. A 
recent physiological study has shown that neurons in higher-order visual areas are 
tuned to 3D spatial configuration that appears to be the basis for the representation of 
3D shape [4]. However, it has not been clarified how the visual system fuses 2D 
information to translate them into 3D shape. 

We see the world with left and right eyes that are horizontally separated by about 
60-70mm. Because of the separation, the retinal images of 3D objects are slightly 
different. Our brain uses this difference that is called binocular disparity to perceive 
depth of objects. A numerous physiological studies have reported that a majority of 
neurons in the primary visual cortex (V1) show selectivity for binocular disparity 
within their small receptive-fields. This local disparity is integrated to represent 
global depth in higher-level visual areas. This process appears to be crucial in the 
representation of 3D shape [5]. Neurons in higher-level visual areas such as inferior 
temporal cortex (IT) have been reported to represent 3D surfaces even if only 
binocular disparity along contour is provided [4, 6], though disparity along contour 
may not be capable of representing surfaces because contour-based disparity cannot 
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encode the surface inside the contours – surface texture is also needed. It has not been 
clarified how binocular disparities in V1 are converted into surfaces, and further to a 
3D shape. 

In the present study, we investigated cortical representation of 3D shape with 
specific interests on the transformation of 2D representation of shape into 3D 
representation. We propose that 2D-MAs are computed independently for the left and 
right retinal images in the early stage of visual pathway, and then 3D-MA is obtained 
from the fusion of these 2D-MAs. It means that 2D surfaces are formed for each eye 
and 3D shape is computed from the disparity of the 2D surfaces, not from the 
disparity of contours. If so, a smooth 3D shape could be formed from binocular 
disparity along contours. In this paper, in order to investigate the plausibility of this 
hypothesis, we developed a computational model based on the visual neural system, 
and observed its behavior. The model consists of two major stages: (1) that computes 
2D-MAs from the left and right images, and (2) that computes the depth (3D-MA) 
from the disparity of the left and right 2D-MAs. We assumed that the detection of 2D-
MA is based on the onset synchronization of border-ownership-selective neurons in 
V2, and that the size of the receptive field (including surrounding regions) is 
preserved simultaneously with the MA [3,7]. 3D-shape was reconstructed by 
overlapping spheres with their centers located along the 3D-MA and radii equal to the 
receptive-field size. As the first step toward examining this hypothesis, we carried out 
the simulations of the model with a variety of stimuli with distinct shapes, including 
natural objects, to investigate how plausible is the model in the representation of 3D 
objects from realistic 2D retinal images. We compared the reconstructed 3D-shape 
and the original. The results showed fairly federate reconstruction of 3D-shape from 
the fusion of 2D-MAs.  

2   The Model and the Methods  

The model consists of three stages. A schematic diagram of the model is shown in 
Fig.1. We gave a pair of stereo images as input stimuli. The representation of shape 
went through the following steps: (a) computing 2D-MAs from left and right images, 
(b) calculating depth from the disparity between the detected 2D-MAs to compute 
3D-MA, and (c) measuring the distances between every point on the 3D-MA and the 
nearest point on a contour. For the reconstruction of shape, we overlapped a number 
of spheres along the 3D-MA with their radius equals to the measured distance. 

2.1   Input Stimulus 

We generated the left and right images of artificial objects and natural objects. The 
simple artificial shapes were generated by computer graphics (CG), and natural 
objects were taken by a 3D digital camera. CG images were convergent stereo images 
that were taken from two imaginary cameras located at equi-distance from the object 
center (Shade 11, E frontier). Natural images were parallel stereo images taken by 
FinePix REAL 3DW1 (Fujifilm). The images were 200x200 pixel with the range of 
disparity set between -200~200 pixel. We binarized the images with the inside of an 
object (figure) set to 1(white) and the outside 0 (black). 
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Fig. 1. An illustration of the model consisting of three stages 

2.2   MA Detection 

2D-MA is computed in Stage (a) as follows: generating a number of circles that contact 
with a contour at more than two points, and binding these centres (MATLAB, 2-D 
Medial Axis Computation Package). 3D-MA is computed in Stage (b) with three steps.  

(1) The first step computes binocular disparity from corresponding feature-points in a 
conventional way: 

f

xx
disparity

lr −= ,    (1) 

where (xl,yl) on the left image matches to (xr,yr) on the right, and f is the focal length. 
The ends and intersections of 2D-MAs were chosen as the feature points for the sake 
of simplicity. Note that the feature points were discarded if no correspondence was 
found on the other eye. Depth of each point (d) is determined by: 
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where fix represents the distance from the fixation point, and delta represents the 
distance between two eyes.  
(2) The second step computes the coordinate of each feature-point in (x, y, z), which is 
defined as: 
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where s represents a scaling coefficient that approximates the ratio of the object size 
in an image with respect to the real size.  
(3) The third step connects the feature-points by short lines to establish 3D-MA. 
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2.3   Reconstruction 

We reconstructed a 3D shape from the computed 3D-MA to examine the capability of 
the model in 3D-shape representation. In Stage (c), we computed the distance from 
every point on the 3D-MA to a nearby 2D contour (on z=0), and overlapped spheres 
along the MA with their radius set to the measured distance. This approximation in 
distance appears to be valid since z=0 is set to the object center. 

2.4   Reconstruction Error 

In order to evaluate our algorithm quantitatively, we calculated the error in 
reconstruction. We defined the error as the difference between the original object 
(I(x,y,z)) and the reconstructed 3D-shape (R(x,y,z)): 
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We divided (I-R) 2 by (I+R) 2 to normalize the error with respect to object volume. 

3   Simulation Results 

We carried out the simulations of the model with various stimuli to test whether the 
model is capable of representing 3D shape with 3D-MA. In this section, we present a 
few but typical examples of the simulation results. 

3.1   Stimuli and Method 

The stimuli included CG images of three typical shapes (Capsule, Cone and Torus) 
and two Natural images (Eggplant and Bear). The model computed 3D-MA of these 
stimuli. We reconstructed 3D shape from the computed MA, and determined the 
reconstruction error with respect to the original shape. 

3.2   Results 

First, we carried out the simulations of a capsule-shaped object that appears to be 
easily encoded by MA. Fig.2 shows the results for the frontal view of the object. 2D-
MAs are slightly different between the left and right ones as expected. The computed 
MA is shown in the x-y plane (b-1) and in x-y-z (b-2) with the arrow indicating the 
direction of view. The computed depth (-Z) becomes farther from the viewpoint as the 
value of Y grows. The reconstructed shape is shown in the three sub-panels in (c) as 
viewed from three distinct directions (for a presentation purpose). The upside of the 
capsule in the original (input) image is tilted toward far off. This feature is similar to 
that of the reconstructed shape. The reconstruction error that was computed by 
equation (4) was 0.18, indicating fairly accurate representation of the shape.  
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Fig. 2. The computation of 3D-MA and the shape reconstruction from it for Capsule (front 
view). Panel (a) shows the input images (left), the binary images (middle), and the computed 
2D-MAs(right). Panel (b) shows the computed 3D-MA viewed from distinct directions. The 
input images were shot from Z direction (indicated by an arrow). Panel (c) shows the 
reconstructed shape represented by a number of overlapping spheres, viewed from distinct 
directions. 
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Fig. 3. The results for the Capsule (Side view). The conventions are the same as Fig. 2. 

 

Fig. 4. The results for Cone. The conventions are the same as Fig. 2. 

 

Fig. 5. The results for Torus. The conventions are the same as Fig. 2. 
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Fig.3 shows the results for a side-view of the same capsule-shaped stimulus, together 
with the computed 3D-MA and the reconstructed shape. We obtained shape and depth as 
similar to the frontal view, despite the distinct viewing direction. The reconstructed shape 
appears to correspond to the original one. The reconstruction error was 0.23. These 
results indicate that, using the disparity of 2D-MAs, we can reconstruct 3D shape with 
smooth surfaces, which is difficult for contour-based stereopsis (the depth of contours 
can be computed but not smooth surfaces inside the contours). 

Next, we tested Cone-shape stimulus with a sharp corner and varying thickness. 
Fig.4 shows the results in which the sharp corner and the varying thickness are 
reproduced successfully with the reconstruction error of 0.19 that is as low as the 
Capsule. These results indicate that the model is capable of representing various 3D 
shapes with sharp corners and varying thickness such as those included in a cone and 
a polyhedron in general. 

 

Fig. 6. The reconstruction result of a natural image (Eggplant). The conventions are the same as 
Fig. 2. 

 

Fig. 7. The reconstruction result of a natural image (Bear). The conventions are the same as Fig. 2. 
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We also tested the model with Half-Torus-shape stimulus that has a large curvature 
in the direction perpendicular to a small curvature. Fig.5 shows the results. The 
curved surface is reproduced smoothly, and the reconstructed shape resembles the 
original with the reconstruction error of 0.20. These results indicate that the model is 
capable of encoding objects with complex curves. 

Next, we carried out simulations with natural images. Fig.6 shows the result for 
Eggplant stimulus, as an example. Unlike the CG images, it has an irregular contour 
and an overall curvature along the major (X) axis. The model reproduced these 
features, suggesting that our model is capable of representing natural shapes with 
relatively simple contours such as an eggplant. 

Finally, we tested the stimulus of Bear, another natural image that is more complex 
than eggplant, including all features we have tested so far. Fig.7 shows the results.  

The model reconstructed successfully the features, such as a sharp nose, curved 
ears and a smoothly rounded body. These results indicate that the model can extract 
fairly accurate 3D shape by fusing two 2D-MAs even for natural objects in natural 
scenes. 

We listed the reconstructed shapes and their errors in table 1 for an overall 
evaluation. In all cases, including basic shapes of Capsule, Cone and Torus, and 
natural shapes, the model represented successfully 3D shape with the error between 
0.18 and 0.23, indicating fairly accurate representation of 3D shape by 3D-MA that is 
constructed from 2D-MA. 

Table 1. Reconstruction error 

 

4   Conclusions and Discussions 

We proposed that 3D shape is represented in the cortex by 3D-MA that can be 
computed from the fusion of two 2D-MAs that are obtained independently from the 
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left and right retinal images. As the first step to examine the plausibility of this 
hypothesis, we developed a computational model, and carried out the simulations of 
the model with various stimuli. In this paper, we showed, as examples, the results for 
three basic shapes of Capsule, Cone and Torus, and two natural shapes (eggplant and 
bear). In order to test the accuracy of the 3D representation by the model, we 
reconstructed the shape from the encoded information retrieved from the model. The 
model represented successfully 3D shape through MA representation with 
reconstruction error of around 0.2. The results support the hypothesis that 3D objects 
can be represented by 3D-MA that is computed from the disparity between 2D-MAs.  

These results suggest that 2D-MAs representing surfaces are computed 
independently from our binocular retinal images in an early visual stage, and then, 
3D-MA is computed based on the disparity between the 2D-MAs. In particular, our 
results reproduced the physiological fact that shape representation based on curved 
surfaces in the cortex can be made even if only binocular disparities of contours are 
provided. 3D-MA representation from the fusion of 2D-MAs is expected to advance 
the further understanding of the shape representation in the cortex including how 
binocular disparities in V1 neurons are transformed to surfaces and to a 3D shape. 
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Abstract. In this paper a biologically-inspired model for partly occluded 
patterns is proposed. The model is based on the hypothesis that in human visual 
system occluding patterns play a key role in recognition as well as in 
reconstructing internal representation for a pattern’s occluding parts. The 
proposed model is realized with a bidirectional hierarchical neural network. In 
this network top-down cues, generated by direct connections from the lower to 
higher levels of hierarchy, interact with the bottom-up information, generated 
from the un-occluded parts, to recognize occluded patterns. Moreover, 
positional cues of the occluded as well as occluding patterns, that are computed 
separately but in the same network, modulate the top-down and bottom-up 
processing to reconstruct the occluded patterns. Simulation results support the 
presented hypothesis as well as effectiveness of the model in providing a 
solution to recognition of occluded patterns. The behavior of the model is in 
accordance to the known human behavior on the occluded patterns. 

Keywords: Vision, Neural network model, Occluded patterns, Biologically-
inspired. 

1   Introduction 

Occlusion is one of the major sources of trouble for pattern recognition systems. 
When a pattern is occluded by another pattern a recognition system has to face two 
problems. First, the system receives features from the occluded as well as occluding 
pattern and needed to distinguish the two. Second, system is deprived of some 
features belonging to the occluded pattern that might be very crucial for recognition. 
Performance of a system for recognizing occluded patterns is largely depended on 
solution to these two problems. 

An interesting case of the occlusion arises when occluded part of a pattern has 
discriminatory role between two or more pattern classes. For example, patterns ‘E’ 
and ‘F’ are indistinguishable when lower edge ‘_’ of ‘E’ is occluded. In this paper this 
occlusion is called ‘critical occlusion’. This situation is unsolvable for simple pattern 
recognition system. When we humans confronts with such a situation we need some 
additional information (e.g., contextual cues) to predict the true identity of such 
patterns. Without additional information this problem is unsolvable. Humans utilize 
different contextual cues to recognize critically as well as simple occluded or 
ambiguous patterns [1], [2]. At the core of this recognition ability lies the architecture 
of the endowed visual information processing system.  
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The visual information processing in humans can be easily understood in terms of 
two stream hypothesis [3]. These streams are the ventral stream or   ‘What’ pathway 
and the dorsal stream or ‘Where’ pathway. The ventral stream is responsible for 
recognizing and identifying objects while the dorsal deals with the spatial information 
associated with objects. These two pathways interact with each other to solve 
different visual tasks. 

Now, consider the fig. 1 to recapitulate the most common human behavior on the 
task of occluding patterns. The first two patterns (from left) are unconcluded and can 
be easily recognized. The third pattern is an occluded one but we can recognize this 
pattern and also perceive the occluded parts of the pattern. The fourth pattern has 
some missing parts. This pattern can be recognized but it is comparatively difficult to 
perceive the missing parts. The fifth one is a critically-occluded pattern; In this case 
the exact identity of the pattern cannot be determined. It can be any of the two 
alphabets ‘O’ or ‘Q’. This type of occlusion requires some additional information 
(e.g., contextual or semantic cues) to predict the exact identity of the pattern. The last 
pattern is also critically-occluded but there is a difference comparing to the previous 
case. The occluding pattern is similar to the potentially occluded feature, i.e., the 
feature that make alphabet ‘O’ to ‘Q’. Though in this case it is still not possible to 
decide about the identity of the exact pattern without any extra information, but one 
feels biased to consider it as a character ‘Q’. On the basis of above discussion we 
hypothesize that: i) Occluding patterns play an important role in recognition of 
occluded patterns and perception of occluding parts, 2) Occluding patterns helps 
reconstruct the representation of the occluded pattern in the visual system, which is 
not the case with pattern having missing parts. On the basis of the above mentioned 
hypothesis and known architecture of the human visual system a model for the 
occluded pattern is presented in this paper. 

The work in this paper is related to the earlier work [4], [5]. Especially, the work in 
this paper is close to that of Fukushima [6] [7], where he used the biologically-
inspired hierarchical structure but with only bottom-up processing of information. In 
that work, the occluding patterns were removed to avoid the unwanted effects of 
irrelevant features. In this paper, occluding patterns are utilized to recognize and 
reconstruct the occluding parts in a bidirectional hierarchical neural network. 

 

Fig. 1. A few example patterns 

2   Approach  

Our approach in this work is inspired by the modular and parallel processing 
architecture of the human brain, where different individual processes go on in parallel 
having different local goals, but at the same time these processes interact with each 
other for achieving a common, global goal.  More specifically, we model the visual 
information processing along the two pathways of the human visual system as a 
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solution for the recognition of occluding objects. According to this approach the 
ventral pathway store the representation of the objects along its hierarchical structure. 
The visible parts of the occluded patterns are processed along the ventral pathway for 
recognition. This recognition process is facilitated by the top-down cues provided by 
the direct connections from the lower to higher parts of the hierarchy of the ventral 
stream. The dorsal pathway encodes the positional information and modulates the 
ventral pathway to reconstruct the incomplete representation of the occluding parts. 
This approach requires information to flow not only in bottom-up or top-down 
direction but all possible direction. In this work this kind of omnidirectional 
processing is realized by developing a fully recurrent neural network.  

3   The Model 

The model presented in this paper is a modified and extended version of the 
biologically-inspired models for object recognition [8], [9], based on the ventral 
stream of the human visual system. It has a hierarchical structure of layers of units 
that interact with each other through feed-forward as well as recurrent connections. 
The model encodes size, position and shape invariant representation along its 
hierarchy through learning.  

The model proposed in this paper is shown in Fig. 2.  The first layer, layer at the 
lowest level of the hierarchy, is Input layer. The next layer in the model hierarchy is 
V1. This layer is organized into group of units or hypercolumns such that each group 
of units looks only at a part of the input or receptive field. This layer sense and 
encodes the oriented edges in the input images but only from unoccluded parts of the 
pattern. After V1 the model is divided into two information processing pathways. 
These two pathways are named after the visual processing pathways of the human 
brain as the ventral and the dorsal pathways. The ventral pathway process the shape 
information while the dorsal pathway takes care of the positional information of the 
input pattern. The ventral pathway is further divided into two information processing 
channels, i.e., the main channel and the direct channel. The main channel contains the 
layers V2, V4 and Pat_ID while the direct channel is composed of two layers, namely, 
Direct_Ch and Pat_Category. The V2 layer is also organized into group of units and 
these groups extract input from the contiguous groups of unit from V1 and thus have 
somewhat topographic representation of the input pattern. The V4 layer is a single 
group layer and has receptive field that encompass the whole input image. The last 
layer in the main channel is the Pat_ID layer that interacts with the V4 layer to 
compute and display the result of processing in this channel. The Direct_Ch get its 
input from the V1 and project to Pat_Category layer. This channel provides a less 
refined, in terms of discriminatory ability, but fast computing channel to the model for 
category recognition. The Pat_Category and Pat_ID layers are mutually connected to 
each other. The direct channel computes the object category information that is used 
as top-down cues to modulate processing along the main channel. This top-down 
modulation facilitates the processing in the main channel by limiting the output 
choices for the information processing along the main channel. 

The dorsal pathway is composed of only one layer, Pat_Saliency. This layer gets 
its input from the Input layer and projects to the V2 layer in a topographic manner. 
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Ideally, this pathway should get its input from V1 layer but to contain the complexity 
of the model it is connected to input directly. The Pat_Saliency layer also has a self-
connection to help generate a positional-template of the input pattern. This layer 
modulates the units of the V2 layer according to the positional-templates of the input 
images which contains the critically occluded part of the pattern as well. This 
modulation allows the units in the V2 layer to reconstruct the representation at the 
occluded locations of the input patterns and hence facilitate the correct recognition of 
the object identity. Interaction of the Pat_Saliency layer with the V2 layer is based on 
our hypothesis that how occluding patterns help perceive the occluded pattern in a 
biologically inspired way. 

 

Fig. 2. The proposed biologically-inspired model 

3.1   Network Algorithm 

An interactive (bidirectional, recurrent) neural network is developed to realize the 
model. The network was developed in Emergent [10], using the biological plausible 
algorithm Leabra [8]. Each unit of the network had a sigmoid-like activation function. 
Learning in the network was based on a combination of Conditional Principal 
Component Analysis (CPCA), which is a Hebbian learning algorithm and Contrastive 
Hebbian learning (CHL), which is a biologically-based alternative to back 
propagation of error, applicable to bidirectional networks [11]. 

4   Data for Training and Testing 

To simplify the training and analysis of the results, gray level images of only six 
alphabetical character classes (fig. 3) are used for training and testing. These 
characters are further divided into three categories, such that each category contains 
two different classes of characters. These categories are created manually on the basis 
of shape resemblance of classes with each other, so that simulations for critically-
occluded objects can be easily demonstrated according to the hypothesis presented in 
this paper. 
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Fig. 3. Patterns used for training. Six different classes of patterns are grouped together into 
three categories. Close pattern classes in the figure falls in the same category. 

Tabel 1. Simulation results, when direct channel recognize the category of the object correctly 

No. Pattern Specification Avg. Correct (%) Remarks 
1 No occlusion 100 --- 
2 Non-critical occlusion 97 A few wrong recognitions when 

occlusion is close to critical 
occlusion 

3 Missing Parts 73 --- 
4 Critical occlusion --- Arbitrary recognition of a class, 

mostly in favor of pattern with 
occluded feature  

5   Simulation and Results 

Training for the two network channels of the ventral pathway, i.e., the main channel 
and the direct channel, is performed separately. First, the training of the direct channel 
was performed for learning the three input categories. Second, the main channel was 
trained on six different classes and three categories. In the second part of the training, 
the main channel learns representation of each of the six classes as well as a mapping 
between the Pat_ID and Pat_Category. Each unit of Pat_ID and Pat_Category 
represent one pattern class and one category respectively in the order they appear in 
the fig. 3. The dorsal pathway does not require any learning.  

After completion of the training, the network is simulated on different occluded 
patterns, Table 1. In the following section a few simulation results are presented with 
analysis: 

5.1   Pattern without Any Occlusion 

Figure 4 shows the behavior of the model when an un-occluded pattern is presented to 
the network. Since the pattern is complete therefore the main channel can easily 
recognize it without any additional help from the dorsal pathway or the direct channel. 
When the pattern is presented to the network, the direct channel activates the correct 
category of the object (cycle: 6) and modulate the processing in the main ventral 
pathway, in a top-down manner, by interacting with Pat_ID layer. This action of the 
direct channel bias limits the choices of the main channel and biases its processing 
towards class-representations belonging to a specific category (cycle: 13-16). Meanwhile, 
the Pat_Saliency layer of the dorsal pathway encodes the template like positional cues of 
the input pattern and modulates the V2 layer. This result in completing the representation 
of the pattern first at V2 layer and then in rest of the network (cycle: 5-39). The 
interaction between the top-down and bottom-up cues as well as with thetemplate like 
positional cues from the dorsal pathway result in the activation of correct pattern class at 
the Pat_ID layer (cycle: 17).  
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Fig. 4. Snapshots of activations in the various network layers (each layer is made up of a matrix 
of units, and the activation values of these matrices are shown here). The recorded changes in 
activation for different processing cycles illustrates how the top-down and bottom-up 
interactions within ventral pathway and interaction between the ventral and the dorsal pathway 
lead to desired specific behavior. For each graph, in the order from left to right, the columns 
represent: Number of processing cycle (how far computation of activation has gone), 
activations in Input layer, Pat_Saliency layer, V2 layer, Pat_Category layer and Pat_ID layer of 
the network. Yellow (light) colors denote high activation values, red (dark) colors low 
activation. Gray (neutral) color means no activation. 

 

Fig. 5. Cycle-wise activation of various network layers while processing patterns with non-
critical occlusion 

5.2   Pattern with Non-critical Occlusion 

In this simulation an image of occluded pattern is presented to the network and the 
corresponding behavior of the network is shown in the fig. 5. The category of the 
pattern is correctly recognized at Pat_Category layer (cycle: 13). The role of the 
dorsal channel is not critical in this case as pattern is not critically-occluded and there 
is no confusion about the identity of the object. But, Pat_Saliency layer help to 
reconstruct the representations of the occluding parts of the pattern (cycle: 13-20).  
Moreover, the result of interaction among different information processing channels 
in the network lead to correct identification of the pattern class at Pat_ID layer 
(cycle:14-20). 
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5.3   Pattern with Missing Parts  

Figure 6 shows the behavior of the network when a pattern with missing parts is 
presented to the network. It is the same pattern that is used in the previous simulation 
but after removing the occluding patterns. Patterns of activations of Pat_ID and 
Pat_Category layers are similar to the previous case. The main difference of this case 
from the previous one is the activation patterns at Pat_Saliency and V2 layers. Due to 
absence of occluding patterns the Pat_Saliency layer does not encode the positional 
template of the missing parts of the patterns (cycle: 3-51). Consequently, interaction 
between the Pat_Saliency and the V2 layer does not reconstruct the representation of 
the missing parts of the occluding pattern (cycle: 5-51). It supports our hypothesis 
about the role of occluding patterns in reconstructing the occluding parts of the 
patterns through the dorsal pathway. 

 

Fig. 6. Cycle-wise activation of various network layers while processing pattern with missing 
parts 

5.4   Pattern with Critical Occlusion 

Figure 7 shows processing of the network for a critically-occluded pattern. Soon after 
the input is presented to the network the Pat_Category layer categorizes the pattern 
(cycle: 7) and strengthens the units of the Pat_ID layer that represent the objects of 
this particular category (cycle: 13-18). The Pat_ID layer in turns modulates the main 
channel by biasing it for two specific classes of patterns. In this case, the bottom-up 
cues along the main network belong to the whole category and not to a specific 
object, as the critical part of the pattern are occluded. In the same way, the top-down 
cues also belongs to the whole category. In this situation bottom-up and top-down 
cues will interact along the hierarchy of the main network and activates the 
representations of the features that are common in both classes. Consequently, the 
most probable object at the output layer should be the pattern with minimum occluded 
features, in this case that would be pattern ‘O’. However, the positional cues in the 



 A Biologically Inspired Model for Occluded Patterns 95 

form of pattern template from the dorsal channel make a difference here. Since this 
template contains the occluded parts of the pattern as well, and modulates the V2 
layer units that represent the occluded part of pattern ‘Q’. The modulation of critically 
occluded pattern especially interacts with the top-down category cues and activates 
the units representing the critically-occluded patterns. The resulting representation in 
the main network is tilted towards the pattern ‘Q’ that is accordingly displayed at the 
layer Pat_ID. But, as representation of the both classes is present in the network 
therefore it is just a matter of chance that which pattern will win and accordingly be 
declared as a final output. It depends on the shape of occluding patterns as well as on 
the accuracy with which Pat_Saliency layer encodes the positional cues. Sometime, 
this interaction results in a state where the network cannot decide about the exact 
class of the pattern and oscillate between the two choices. In such cases some kind of 
contextual cues are required to bias the result towards a specific class.  

 

Fig. 7. Cycle-wise activation of various network layers while processing critically occluded pattern 

6   Conclusion 

In this paper a biologically-inspired model for recognition of occluded pattern is 
presented. The information processing strategy is based on the hypothesis that 
occluding patterns provide the important cues for recognition as well as 
reconstructing the representation of occluded parts. The architecture of the model is 
based on the two stream hypothesis of human visual system. The computers 
simulations with the model demonstrate that it provides a satisfactory solution to the 
occluded patterns recognition as well as produce a behavior that is in accordance to 
the known human behavior on recognizing partly occluded objects. 
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Abstract. Cyanobacteria are photosynthetic organisms that are cred-
ited with both the creation and replenishment of the oxygen-rich atmo-
sphere, and are also responsible for more than half of the primary pro-
duction on earth. Despite their crucial evolutionary and environmental
roles, the study of these organisms has lagged behind other model organ-
isms. This paper presents preliminary results on our ongoing research to
unravel the biological interactions occurring within cyanobacteria. We
develop an analysis framework that leverages recently developed bioin-
formatics and machine learning tools, such as genome-wide sequence
matching based annotation, gene ontology analysis, cluster analysis and
dynamic Bayesian network. Together, these tools allow us to overcome
the lack of knowledge of less well-studied organisms, and reveal interest-
ing relationships among their biological processes. Experiments on the
Cyanothece bacterium demonstrate the practicability and usefulness of
our approach.

Keywords: cyanobacteria, Cyanothece, dynamic Bayesian network,
clustering, gene ontology, gene regulatory network.

1 Introduction

Cyanobacteria are the only prokaryotes that are capable of photosynthesis, and
are credited with transforming the anaerobic atmosphere to the oxygen-rich
atmosphere. They are also responsible for more than half of the total primary
production on earth and found the base of the ocean food web. In recent years,
cyanobacteria have received increasing interest, due to their efficiency in carbon
sequestration and potential for biofuel production. Although their mechanism
of photosynthesis is similar to that of higher plants, cyanobacteria are much
more efficient as solar energy converters and CO2 absorbers, essentially due to
their simple cellular structure. It is estimated that cyanobacteria are capable of
producing 30 times the amount oil per unit area of land, compared to terrestrial
oilseed crops such as corn or palm[14]. These organisms therefore may hold the
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key to solve two of the most fundamental problems of our time, namely climate
change and the dwindling fossil fuel reserves.

Despite their evolutionary and environmental importance, the study of cyano-
bacteria using modern high throughput tools and computational techniques has
somewhat lagged behind other model organisms, such as yeast or E. coli [18].
This is reflected partly by the fact that none of the cyanobacteria has an official,
effective gene annotation in the Gene Ontology Consortium repository as of May
2011 [20]. Nearly half of Synechocystis sp. PCC 6803’s genes, the best studied
cyanobacterium, remain unannotated. Of the annotated genes, the lack of an
official, systematic annotating mechanism, such as that currently practiced by
the Gene Ontology Consortium, make it hard to verify the credibility of the an-
notation as well as to perform certain type of analysis, e.g., excluding a certain
annotation evidence code.

In this paper, to alleviate the difficulties faced when studying novel, less well-
studied organisms such as cyanobacteria, we develop an analysis framework for
building network of biological processes from gene expression data, that lever-
ages several recently developed bioinformatics and machine learning tools. The
approach is divided into three stages:

– Filtering and clustering of genes into clusters which have coherent expres-
sion pattern profiles. For this, we propose using an automated scheme for
determining a suitable number of clusters for the next stages of analysis.

– Assessment of clustering results using functional enrichment analysis based
on gene ontology. Herein, we propose using annotation data obtained from
two different sources: one from the Cyanobase cyanobacteria database [11],
and another obtained by means of computational analysis, specifically by
amino sequence matching, as provided by the Blast2GO software suite [5].

– Building a network of interacting clusters. This is done using the recently
developed formalism of dynamic Bayesian network (DBN). We apply our re-
cently proposed GlobalMIT algorithm for learning the globally optimal DBN
structure from time series microarray data, using an information theoretic
based scoring metric.

It is expected that the network of interacting clusters will reveal the interactions
between biological processes represented by these clusters. However, when doing
analysis on the cluster (or biological process) level, we lose information on indi-
vidual genes. Obtaining such information is possible if we apply network reverse
engineering algorithms directly to the original set of genes without clustering,
resulting in the underlying gene regulatory network (GRN). Nevertheless, with
a large number of genes and a limited number of experiments as often seen in
microarray data, GRN-learning algorithms face severe difficulties in correctly
recovering the underlying network. Also, a large number of genes (including lots
of unannotated genes) makes the interpretation of the results a difficult task.
Analysis at the cluster level serves two purposes: (i) to reduce the number of
variables, thus making the network learning task more accurate, (ii) to facilitate
interpretation. Similar strategies to this approach have also been employed in
[7, 16, 18].
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In the rest of this paper, we present our detailed approach for filtering and
clustering of genes, assessing clustering results, and finally building network of
interacting clusters. For an experimental cyanobacterial organism, we chose the
diazotrophic unicellular Cyanothece sp. strain ATCC 51142, hereafter Cyanoth-
ece. This cyanobacterium represents a relatively less well-studied organism, but
with a very interesting capability of performing both nitrogen fixation and pho-
tosynthesis within a single cell, the two processes that are at odds with each
other [19].

2 Filtering and Clustering of Genes

Cyanobacteria microarray data often contain measurements for 3000 to 6000
genes. Many of these genes, such as house keeping genes, are not expressed, or
expressed at a constant level throughout the experiments. For analysis, it is de-
sirable to filter out these genes, and retain only genes which are differentially
expressed. There are various methods for filtering genes such as the thresh-
old filter, Student’s t-test or analysis of variance (ANOVA) [4]. In this work,
we implement a simple but widely employed threshold filter to remove genes
that are not differentially expressed above a certain threshold throughout the
experimental process, e.g., 1.5-fold or 2-fold change.

Next, we cluster the selected genes into groups of similar pattern profiles. In
the recent years, there has been dozens of clustering algorithms specifically de-
veloped for the purpose of clustering microarray data. Some of the most popular
methods include K-means, hierarchical clustering, self organizing map, graph
theoretic based approaches (spectral clustering, CLICK, CAST), model based
clustering (mixture models), density based approaches (DENCLUE) and affinity
propagation based approaches [9]. In this work, we implement the widely used
K-means with log-transformed microarray data.

A crucial parameter for K-means type algorithms is the number of clusters
K. For our purpose in this paper, K will control the level of granularity of the
next stages of analysis. We use our recently developed Consensus Index for au-
tomatically determining the relevant number of clusters from the data [24]. The
Consensus Index (CI) is a realization of a class of methods for model selection
by stability assessment [17], whose main idea can be summarized as follows: for
each value of K, we generate a set of clustering solutions, either by using differ-
ent initial starting points for K-means, or by a certain perturbation scheme such
as sub-sampling or projection. In regard to the set of clusterings obtained, when
the specified number of clusters coincides with the “true” number of clusters,
this set has a tendency to be less diverse—an indication of the robustness of the
obtained cluster structure. The Consensus Index was developed to quantify this
diversity. Specifically, given a value of K, suppose we have generated a set of B
clustering solutions UK = {U1, U2, ..., UB}, each with K clusters. The consensus
index of UK is defined as:

CI(UK) =

∑
i<j AM(Ui,Uj)
B(B − 1)/2

(1)



100 N.X. Vinh et al.

where the agreement measure AM is a clustering similarity measure. In this
work, we use the Adjusted Rand Index (ARI) and the Adjusted Mutual In-
formation (AMI—which is the adjusted-for-chance version of the widely used
Normalized Mutual Information) as clustering similarity measures [23]. The op-
timal number of clusters K∗ is chosen as the one that maximizes CI, i.e., K∗ =
argmaxK=2...Kmax

CI(UK) where Kmax is the maximum number of
clusters to be considered.

3 Assessment of Clustering Results

Having obtained a reasonable clustering solution, we next investigate the ma-
jor biological functions of each cluster. In this work, this is done by means of
functional enrichment analysis using gene ontology (GO), where every GO terms
appearing in each cluster is assessed to find out whether a certain functional cat-
egory is significantly over-represented in a certain cluster, more than what would
be expected by chance. To do this, first of all, we need a genome-wide annotation
of genes in the organism of interest. As stated previously, one of the difficulties
working with less well-studied organisms is that there is not an official annota-
tion database. To address this challenge, we propose gathering annotation data
from two different sources: one from the Cyanobase database [11], and another
from genome-wide amino sequence matching using the Blast2GO software suit
[5]. We describe each source below.

The Cyanobase maintains, for each cyanobacterium in its database, an an-
notation file which was obtained by IPR2GO, a manually-curated mapping of
InterPro terms to GO terms that is maintained by the InterPro consortium [21].
Although being the result of a manual curation process, surprisingly, it has been
reported that the accuracy of this mapping can be considerably lower than some
automated algorithms, such as that reported in [10]. Moreover, the number of
annotated genes normally accounts for just less than half of the genome, eg. in
the case of Cyanothece, there are currently only annotations for 2566 genes out
of 5359 genes (as of May 2011).

Thus, in order to supplement the Cyanobase IPR2GO annotation, we em-
ploy Blast2GO, a software suit for automated gene annotation based on se-
quence matching [5]. Blast2GO uses BLAST search to find similar sequences to
the sequence of interest. It then extracts the GO terms associated to each of
the obtained hits and return the GO annotation for the query. For Cyanoth-
ece, Blast2GO was able to supplement the annotation for almost another one
thousand genes. In this work, we aggregate Cyanobase IPR2GO and Blast2GO
annotation into a single pool, then use BiNGO [12] for GO functional cate-
gory enrichment analysis. For BiNGO, we use the filtered gene set as the refer-
ence set, the hypergeometric test as the test for functional over-representation,
and False Discovery Rate (FDR) as the multiple hypothesis testing correction
scheme.
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4 Building a Network of Interacting Clusters

Our next stage is to build a network of clusters, in order to understand the inter-
actions occurring between the biological processes represented by these clusters.
We perform this modeling task using the recently developed dynamic Bayesian
network (DBN) formalism [8, 13, 26, 27]. The simplest model of this type is
the first-order Markov stationary DBN, in which both the structure of the net-
work and the parameters characterizing it are assumed to remain unchanged
over time, such as the one exemplified in Figure 1a. In this model, the value of
a variable at time (t + 1) is assumed to depend only on the value of its parents
at time (t). DBN addresses two weaknesses of the traditional static Bayesian
network (BN) model: (i) it accounts for the temporal aspect of time-series data,
in that an edge must always direct forward in time (i.e., cause must precede
consequence); and (ii) it allows feedback loops (Fig. 1b).

      t                 t+1    

A 

B 

C 

A 

B 

C 

(a)

A B 

C 

(b)

Fig. 1. Dynamic Bayesian Network: (a) a 1st order Markov stationary DBN; (b) its
equivalent folded network

Recent work in machine learning has progressed to allow more flexible DBN
models, such as one with, either parameters [6], or both structure and parameters
[3, 15] changing over time. It is worth noting that more flexible models generally
require more data to be learned accurately. In situations where training data are
scarce, such as in microarray experiments where the data size can be as small
as a couple of dozen samples, a simpler model such as the first-order Markov
stationary DBN might be a more suitable choice. Moreover, it has been recently
shown that the globally optimal structure of a DBN can be efficiently learned
in polynomial time [2, 22]. Henceforth, in this work we choose the first order
Markov DBN as our modeling tool.

For a DBN structure scoring metric, we propose using a recently introduced
information theoretic criterion named MIT (Mutual Information Test) [1]. MIT
has been previously shown to be effective for learning static Bayesian network,
yielding results competitive to other popular scoring metrics, such as BIC/MDL,
K2 and BD, and the well-known constraint-based approach PC algorithm. Under
the assumption that every variable has the same cardinality—which is generally
valid for dicretized microarray data—our algorithm recently developed in [22]1

can be employed for finding the globally optimal DBN structure, in polynomial
time.
1 see our report and software at http://code.google.com/p/globalmit/

http://code.google.com/p/globalmit/
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5 Experiments on Cyanothece sp. strain ATCC 51142

In this section, we present our experimental results on Cyanothece. We collected
two publicly available genome-wide microarray data sets of Cyanothece, per-
formed in alternating light-dark (LD) cycles with samples collected every 4h
over a 48h period: the first one starting with 1h into dark period followed by
two DL cycles (DLDL), and the second one starting with two hours into light
period, followed by one LD and one continuous LL cycle (LDLL) [25]. In total,
there were 24 experiments.

Filtering and clustering of genes: Using a threshold filter with a 2-fold
change cutoff, we selected 730 genes for further analysis. We first used the Con-
sensus Index to determine the number of clusters in this set. Fig. 2(a) show
the CI with K ∈ [2, 50]. It can be seen that the CI with both the ARI and
AMI strongly suggests K = 5 (corresponding to the global peak). Also, a local
peak is present at K = 9. As discussed in [24], the local peak may correspond
be the result of the hierarchical clustering structure in the data. We performed
K-means clustering with both K = 5 and K = 9, each for 1 million times
with random initialization, and picked the best clustering results, presented in
Fig. 2(b,c).

Assessment of clustering results: From the visual representation in
Fig. 2(b), it can be seen that the clusters have distinct pattern profiles. GO
analysis of the clustering results are presented in Tables 1 and 2. From Table
1, of our particular interest is cluster C5, which is relatively small but con-
tains genes exclusively involved in the nitrogen fixation process. It is known that
Cyanothece sp. strain ATCC 51142 is among the few organisms that are capable
of performing both oxygenic photosynthesis and nitrogen fixation in the same
cell. Since the nitrogenase enzyme involved in N2 fixation is inactivated when
exposed to oxygen, Cyanothece separates these processes temporally, so that
oxygenic photosynthesis occurs during the day, and nitrogen fixation during the
night. Cluster C4 is also of our interest, since its contains a large number of
genes involved in photosynthesis. As the experimental condition involves alter-
native light-dark condition, it could be expected that the genes involved in ni-
trogen fixation and photosynthesis will strongly regulate each other, in the sense
that the up-regulation of N2 fixation genes will lead to the down-regulation of
photosynthesis genes, and vice-versa.

Building a network of interacting clusters: We apply the GlobalMIT al-
gorithm [22] to learn the globally optimal DBN structure, first to the 5-cluster
clustering result. We take the mean expression value of each cluster as its rep-
resentative. There are thus 5 variables over 24 time-points fed into GlobalMIT.
The globally optimal DBN network as found by GlobalMIT is presented on Fig.
3(a). It is readily verifiable the fact that nitrogen fixation genes and photosyn-
thesis genes strongly regulate each other, since there is a link between cluster
C4 (photosystem) and C5 (nitrogen fixation).
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(b) Clustering result with K = 5
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(c) Clustering result with K = 9

Fig. 2. Cluster analysis of Cyanothece microarray data

We perform a similar analysis on the 9-cluster clustering result. The DBN
for this 9-cluster set is presented in Fig. 3(a). Note that clusters I and VII
are disconnected. We are interested in verifying whether the link between the
photosynthesis cluster and the nitrogen fixation cluster remains at this level of
granularity. Visually, it it easily recognizable from Fig. 2(b-c) that cluster C5 in
the 5-cluster set corresponds to cluster IV in the 9-cluster set. GO analysis on
cluster IV confirms this observation (Table 2). We therefore pay special attention
to clusters VI, since there are a link between cluster VI and IV. Not surprisingly,
GO analysis reveal that cluster VI contains a large number of genes involved in
photosynthesis. The structural similarity between the two graphs is also evident
from Fig. 3. At a higher level of granularity, the clusters become more specialized.
The links between cluster VIII and {IX, III} are also of interest, since cluster
VIII is a tightly co-regulated group which contains several genes with regulation
activities, which might regulate genes involving transport and photosynthesis
(clusters III and IX).
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Fig. 3. DBN analysis of Cyanothece clustered data

Table 1. GO analysis of the 5-cluster clustering results

Cluster Size GO ID Description #Genes Corrected P-value

C1 54
8746 NAD(P)+transhydrogenase activity 3 0.98%
70469 respiratory chain 3 2.9%

C2 206
8652 cellular amino acid biosynthesis 18 2.1%
4518 nuclease activity 8 4.1%

C3

236

32991 macromolecule complex 61 2E-10
30529 ribonucleoprotein complex 24 2.9E-7
6412 translation 29 1.5E-6
44267 cellular protein metabolic process 46 5.4E-5
19538 protein metabolic process 50 0.14%

C4
196

71944 cell periphery 35 6.8E-5
9512 photosystem 20 6.5E-3
6022 aminoglycan metabolic process 6 2%

C5
38

9399 nitrogen fixation 19 5.7E-22
51536 iron-sulfur cluster binding 12 9.6E-6
16163 nitrogenase activity 5 1.5E-5

Table 2. GO analysis of the 9-cluster clustering results

Cluster Size GO ID Description #Genes Corrected P-value

I 157
8652 cellular amino acid biosynthesis 17 4.5E-3
46394 carboxylic acid biosynthesis 17 1.6%

II 48
55114 oxidation reduction process 14 17%
15980 energy derivation by oxidation 6 17%

III 127
15979 photosynthesis 17 45%
6810 transport 27 45%

IV 36 9399 nitrogen fixation 19 1.5E-24

V 68
6022 aminoglycan metabolic process 5 2.1%
7049 cell cycle 4 3.8%

VI 158 15979 photosynthesis 36 3.6E-10
VII 101 6412 translation 27 6.7E-13

VIII 16
65007 biological regulation 5 7.7%
51171 regulation of nitrogen compound 3 7.7%

IX 19
15706 nitrate transport 3 2.2E-3
6810 transport 9 2.2%

6 Discussion and Conclusion

In this paper, we have presented an analysis framework for unraveling the inter-
actions between biological processes of novel, less well-studied organisms such as
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cyanobacteria. The framework harnesses several recently developed bioinformat-
ics and data mining tools to overcome the lack of information of these organisms.
Via Blast2GO and IPR2GO, we could collect annotation information for a large
number of genes. Cluster analysis helps to bring down the number of variables
for the subsequent network analysis phase, and also facilitates interpretation.
We have demonstrated the applicability of our framework on cyanothece. Our
future work involves further analysis of other cyanobacteria that are potential
for carbon sequestration and biofuel production.
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Abstract. The research of protein thermostability has been vigorously
studied in the field of biophysical and biological technology. What is
more, protein thermostability in the level of amino acid sequence is still
a challenge in the research of the protein pattern recognition. In this
paper, we try to use new integrated feedforward artificial neural network
which was optimized by particle swarm optimization (PSO-NN) to recog-
nize the mesophilic and thermophilic proteins. Here, we adopted Genetic
Algorithm based Selected Ensemble (GASEN) as our integration meth-
ods. A better accuracy was got by GASEN. So, the integrated methods
were proved to be effectual.

Keywords: protein thermostability, integrated, Genetic Algorithm based
Selected Ensemble, particle swarm optimization, artificial neural net-
work.

1 Introduction

Thermophilic and mesophilic proteins are polymers that are made up of the same
20 kinds of amino acids [1], but in the condition of high-temperature, there is
a remarkable contrast between thermostable enzymes and normal temperature
enzymes. This phenomenon affords perplexity to us. If we know the protein ther-
mostability very well, it would be helpful to know better the folding mechanism
and the function of protein. What is more, it would be an important assistant
to reconstruct the stability of protein [2]. If we want to reconstruct the stability
of protein, we must make clear the protein thermostability firstly, especially in
the level of amino acid sequence. In this research field, how to extract features
from amino acid sequence and search an effective tool to recognize mesophilic
and thermophilic proteins are what we should consider. Here, we focused on
predicting whether an amino acid residue is thermophilic or mesophilic proteins.
With the development of bioinformatics, there are many effectual methods to be
introduced to this research. It is a two-type classification problem to discrimi-
nate protein thermostability based on bioinformatics. If an amino acid residue
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was mesophilic proteins, it was labeled as ’1’, otherwise it was labeled as ’0’ [3].
The main steps of this work are as follows: (1) Select an appropriate data set;
(2) extract important features; (3) use predictors to predict interaction sites; (4)
determine the evaluation methods.

In this paper, we try to use new integrated feedforward artificial neural net-
work which was optimized by particle swarm optimization (PSO-NN) to rec-
ognize the mesophilic and thermophilic proteins. Here, we adopted Genetic
Algorithm based Selected Ensemble (GASEN) as our integration methods.

2 Materials and Methods

2.1 Dataset [14]

The training database came from reference [4]. It contained 3521 thermophilic
protein sequences and 4895 mesophilic protein sequences which were derived
from Swiss-Prot. The corresponding two testing datasets contained 859 proteins.
The first one came from reference [4] which included 382 thermophilic protein
sequences of Aquifex aeolicus [5], and 325 mesophilic protein sequences of Xylella
fastidiosa [6]. The second one included 76 pairs set of thermophilic and mesophilic
proteins which were also downloaded from Swiss-Prot for the reason of their non-
redundancy. The protein of the second testing came from reference [7].

2.2 Feature Extraction

In this paper, four kinds of feature extraction method were used [8], they are
the Amino acids models (AA), Chem-composition model (CC), the fusion of AA
and CC and PseAA. Specific are as follows:

(1) Amino acids models (AA) [14]
Twenty kinds of common amino acid residues were calculated their frequency

of occurrences in every protein sequences. Every dimension of characteristic
vector can be expressed as:

Xi = Ni/N, i = 1, 2, 3......20 (1)

In the formula, Ni indicates the numbers of the ith residue: N indicates the
length of the sequence. This model contains twenty dimensions.

(2) Chem-Composition models(CC)
The 20 native amino acids are divided into three groups for their physic-

ochemical properties, including hydrophobicity, polarity, polarizibility, charge,
secondary structures and solvent accessibility. Take hydrophobicity attribute for
example, all amino acids are divided into three groups: polar, neutral and hy-
drophobic. A protein sequence is then transformed into a sequence of hydropho-
bicity attribute. Therefore, the composition descriptor consists of three values:
the global percent compositions of polar, neutral and hydrophobic residues in
the new sequence. For seven types of attributes, the chem-composition model
consists of twenty-one dimensions.
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(3)Fusion
This is the process of combination of these existing features which were ex-

tracted by amino acids models and chem-composition models separately, that is
to say, it contains forty-one dimensions.

(4) Pseudo-amino acid composition method (PseAA)
Pseudo-amino acid composition method (PseAA) was advanced by Chou [9].

According to the PseAA composition model, the protein sequence can be for-
mulated as:

p = [p1, p2, . . . , p20, p20+1, . . . , p20+λ]T (λ < L) (2)

Where the first 20 components are the same as those in the classic amino acid
composition and p1, p2, . . . , p20, p20+1, . . . , p20+λ are related to λ which states
different ranks of sequence order correlation factors. L is the length of protein
sequence.

2.3 Discrimination Method [14]

Artificial neural network (ANN) [10] has the capabilities of learning, parallel pro-
cessing, auto-organization, auto-organization, auto-adaptation, and fault toler-
ance. Therefore, ANN is well suited for a wide variety of engineering applications,
such as function approximation, pattern recognition, classification, prediction,
control, etc. In this paper, we choose ANN as our discrimination model to rec-
ognize thermophilic and mesophilic proteins, and particle swarm optimization
(PSO) was used to optimize the parameters of ANN.

Particle swarm optimization (PSO) is a population-based stochastic optimiza-
tion technique, which was originally designed by Kennedy and Eberhart [11]. It
shares many similarities with evolutionary computation techniques such as GA.
However, unlike GA, the PSO algorithm has no evolutionary operators, such as
crossover and mutation. In the PSO algorithm, each single candidate solution
can be considered a particle in the search space, each particle move through the
problem space by following the current optimum particles. Particle i is repre-
sented as Xi, which represents a potential solution to a problem. Each particle
keeps a memory of its previous best position Pbest, and a velocity along each
dimension, represented as Vi. At each iteration, the position of the particle with
the best fitness value in the search space, designated as Gbest, and the current
particle are combined to adjust the velocity along each dimension, and that ve-
locity is then used to compute a new position for the particle. The updating
rules are as follows:

Vk+1 = W ∗ Vk + c1 ∗ r1 ∗ (Pbest− Xk) + c2 ∗ r2 ∗ (Gbest − Xk) (3)

Xk+1 = Xk + Vk+1 (4)

Where W is an inertia weight, it regulate the range of the solution space. c1
and c2 determine the relative influence of the social and cognition components
(learning factors), while rand1 and rand2 denote two random numbers uniformly
distributed in the interval [0,1]. In this paper, we choose W=0.5, c1=c2=2.
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2.4 Integration

As shown in the previous research [12], integration always has good performance
when the base classifiers have obvious differences. We used Genetic Algorithm
based Selected Ensemble (GASEN) [13] as our integrated method. It is the exten-
sion of generalized ensemble method (GEM). GEM is calculated by the following
formula:

fGEM =
n∑

i=1

Wi ∗ fi(x) (5)

Where Wi is an inertia weight,it is changed between 0 and 1. The sum of n*Wi

is 1. In GASEN, the weights were optimized by Genetic Algorithm.

3 Experimental Results

First, we defined the followings [14]:
TP (true positives): it represents the number of mesophilic proteins that were

predicted correctly.
TN (true negatives): it represents the number of thermophilic proteins that

were predicted correctly.
FP (false positives): it represents the number of thermophilic proteins that

were predicted as mesophilic proteins.
FN (false negatives): it represents the number of mesophilic proteins that were

predicted as thermophilic proteins.
N: it represents the number of all protein molecule.
The following metrics were used to evaluate the prediction results:
sensitivity of the positive data:

sensitivity = TP/(TP + FN); (6)

specificity of the negative data:

specificity = TN/(TN + FN); (7)

accuracy of prediction:

accuracy = (TP + TN)/N ; (8)

In this paper, four kinds of feature extraction methods were used, they are the
Amino acids models (AA), Chem-composition models (CC), the fusion of AA
and CC and PseAA. So we need four PSO-NNs to train them. Every neutral
network generated a result and the four groups of results were compared.Next,
we used Genetic Algorithm based Selected Ensemble (GASEN) as our integrated
method.The final experimental results were shown in Table 1:

The comparison of the results with prior research which also use the same
database. It is shown in table 2:
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Table 1. The final experimental results of database

method sensitivity specificity accuracy

AA 93.27 82.42 87.71
CC 90.27 80.76 85.40

Fusion [14] 92.8 87.6 90.2
PSEAA 84.54 84.80 84.68
GASEN 95.52 89.88 92.70

Table 2. The comparison of the results with prior research

method Test sample sensitivity specificity accuracy

Our method(GASEN) test1+test2 95.52 89.88 92.70
BPNN+Dipeptide[15] test1 93.50 85.20 89.70

test2 96.10 75.00 85.50
BPNN+AA[15] test1 97.40 63.70 81.90

test2 97.40 46.10 71.70
PSO-NN+fusion[14] test1+test2 92.80 87.60 90.20

Adaboost[4] test1+test2 82.97 92.27 87.31
Logitboost[4] test1+test2 87.34 90.77 88.94

4 Conclusion

In this paper, Genetic Algorithm based Selected Ensemble (GASEN) as a kind of
integrated method has good performance in the field of protein thermostability.
The next work, we want to use more unique and critical features to predict
protein thermostability. We also hope that more and more different and new
methods about computational intelligence and biology can be applied to this
subject.
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Abstract. This paper presents a novel visual analytics method that in-
corporates knowledge from the analysis domain so that it can extract
knowledge from complex genetic and clinical data and then visualizing
them in a meaningful and interpretable way. The domain experts that
are both contributors to formulating the requirements for the design of
the system and the actual user of the system include microbiologists,
biostatisticians, clinicians and computational biologists. A comprehen-
sive prototype has been developed to support the visual analytics pro-
cess. The system consists of multiple components enabling the complete
analysis process, including data mining, interactive visualization, analyt-
ical views, gene comparison. A visual highlighting method is also imple-
mented to support the decision making process. The paper demonstrates
its effectiveness on a case study of childhood cancer patients.

Keywords: Visual analytics, Visualization, Microarray, Acute lymphoblas-
tic leukamedia, Gene expression.

1 Introduction

The human genome contains a large amount of variations, and the simplest but
most abundant type of genetic variations among individuals is single nucleotide
polymorphisms (SNPs). Variations in SNPs can affect how humans develop dis-
eases and respond to pathogens, chemicals, drugs, vaccines, and other agents.
For example, it is recognised that SNPs have high potential to be used as prog-
nostic markers [1, 2]. As the activity of genes are co-regulated when one gene is
switched on, many other genes are also switched on or off, it is generally believed
that metabolic actions are driven by small changes in expression of a large num-
ber of genes rather than large changes in only a few. However, it is still unclear
exactly why particular genes are good indicators of patient outcome as it is not
known whether these genes directly cause the metabolic effects or whether they
are in the co-regulating ensemble.

Despite presenting with similar clinical features, ALL patients do not always
respond in a similar manner to the same treatment strategies. In other words,
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the underlying complexities of the disease are not always clearly reflected by the
clinical presentation nor pathological results. As a result, understanding biolog-
ical data (such as microarray and SNPs data) as well as clinical data (such as
annotated clinical attributes, treatment details, domain ontologies and others)
is crucial to improving the diagnosis and treatment. The analysis of the genetic
data could bring the insight of information as well as the discovery of relation-
ships, non-trivial structures and ir(regularity). Techniques that are acceptable
to medical scientists should integrate rigorous automated analysis with the in-
teractive interfaces whose visualizations are clearly interpretable, navigable and
modifiable by medical analysts, so that in the decision making process they can
interact with the automated analysis through these visualizations.

Recent biological data analysis techniques that provide reasonably advanced
visualization were presented in [3–8]. Although these techniques provide some-
what effective ways for the analysis of data, they however do not fully provide a
deep analysis mechanism and/or a complete platform so that medical analysts
can interactively explore and manipulate the information. No matter how pow-
erful the visualization or the visual analytics tools are, they are not useful if they
cannot be interpreted by the domain experts in the field.

Presented work was developed with strong involvement from medical scientists
at the Children’s Hospital at Westmead, Sydney, Australia, who are experts in
genetic research, especially related to ALL. The philosophy behind the work
is that with this new way of looking at genetic and clinical details both from
the perspectives of domain knowledge and technologies, visual analytics can
provide a medium for the discovery of genetic and clinical problems leading to,
potentially, improved ALL treatment strategies.

2 Data Set and Automated Analysis

The expression and genomic profiles of 100 paediatric B-cell ALL patients treated
at the Children’s Hospital at Westmead were generated using Affymetrix ex-
pression microarrays (U133A, U133A 2.0 and U133 Plus 2.0) and Illumina NS12
SNP microarrays respectively. Each Affymetrix expression microarray has over
22 thousands attributes whilst each Illumina SNP microarray has almost 14
thousands attributes. Each attribute is mapped to a gene and the value for
each attribute corresponds to the expression levels or genotype for the gene. In
addition, the details (annotations) for each gene are mapped on separate files.
Expression microarrays were hybridised with diagnostic bone marrow samples
and genomic microarrays with remission peripheral blood samples.

Using these datasets, we developed a model predictive of treatment outcome
by identifying genes capable of differentiating patients that survived and those
that did not. To achieve this, we applied an attribute deletion approach: identi-
fying and removing genes that are almost certainly not involved in a biological
phenomenon. We used the attribute importance ranking implemented in Ran-
dom Forest [9] to identify these genes, called genes of interests (GOIs) [10]. The
expression values were z-score normalised within each platform, concatenated
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and z-score normalised to minimise inter- and intra-platform biases. The expres-
sion and SNP values for the top 250 GOIs were used to create a 3-dimensional
(3D) similarity space using Singular Value Decomposition (SVD) - a matrix de-
composition technique that can be used to project highly multidimensional data
into lower dimensional spaces [11].

3 The Visual Analytics Platform

The automated analysis produced a 3D similarity space of the patients based on
their genetic properties. A mapping table of 250 genes of interests is also created
during this process. In order to present these results in a form suitable for visual
analysis by medical experts we have created an interactive visualisation which
operates with the treated data. From the treated data, interactive visualization
is applied to 1) present a meaningful display of the patient cohort 2) filter,
explore and manipulate the information 3) interactively provide the details of
both original and processed data on demands and 4) highlight patterns and/or
abnormality in supporting the decision making process.

3.1 Overview of the Patients

A design of the prototype version of the new visual analytics system provides the
set of views addressing the above described needs. It provides the global overview
of the entire patient’s structure, allowing to grasp the ”big picture” before drilling
into the details. Displaying the entire visual structure at once allows analysts to
move rapidly to any location in the space so that the navigation across the large
structures and exploration of specific parts of it is effortless.

The patients’ positions are mapped into the 3D space according to their ge-
netic similarity. The similarity was defined by applying the Random Forest tech-
nique on the 250 GOIs which was mentioned at section 2. Two patients are close
together if their genes are similar and conversely, they are located far from each
other if their genetic properties are different. Figure 1 shows the overall view
of the entire patient population captured in the data set. This figure illustrates
clearly two distinctive groups of patients, marked by the dash-line ellipses. The
smaller group contains mostly the deceased patients (drawn with brighter and
transparent outlines) whilst the other contains patients that responded well to
the treatment and survived the decease. The fact that the deceased patients are
closely located to each other in the gene space on the figure may support the
hypothesis that genetic properties are essential to determine whether a patient
is likely to respond well in the context of the clinical treatment.

Uniquely, with the incorporation of prior knowledge about the patient’s clin-
ical management and eventual outcome, it is anticipated that newly diagnosed
and as yet untreated patients can then be directly compared to local neighbours
on the basis that patients with similar genetic backgrounds and gene expression
activities within their tumours will cluster together. By comparing how similar
patients have previously been managed and their treatment outcomes, the ana-
lyst (or clinician) can glean specific information from the similar patients within
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Fig. 1. An example showing 3D visualizations of the entire 100 patients

the cohort which will assist with their clinical decision making for the individual
patient, thereby moving towards the development of more personalised treatment
protocols. Rich graphical attributes are employed to provide the background and
treatment properties of the patients. The attributes are carefully selected based
on feedback from medical analysts. In addition, they can be easily adjusted, fil-
tered and re-mapped via an interactive menu to suit the preferences of different
users.

3.2 Interactive Navigation

From the visualization, users can interactively filter out uninteresting patients
to enhance their visualization and the visualization of related data. The filtered
patients are displayed dimly at the background using darker colours and trans-
parency. Figure 2a indicates that all the patients born after the year 2000 and
before the year 1995 have been filtered out and they are displayed transpar-
ently at the background. The treatment property and protocol figures have also
been filtered out in this figure. Figure 2b illustrates another further stage where
showing only high to very high risk patients. The interactive visualization in-
terface allows the researcher/clinician (domain expert) to extract, picture and
interrogate specific features for the patients.

From the overview of all patients, users can select one or multiple patients to
analyse further. At first glance, the analytical view provides the full information
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of both genetic and clinical data of the selected patients. Layout of the panels
is as follows: 1) the top-left panel displays information of Affymetrix expression
microarrays; 2) the top-right panel displays information of Illumina SNPs and
3) the bottom panels displays all background and treatment information of the
patient. For example, we select three patients highlighted at Figure 2b by the
red-dash ellipses where the deceased patient ALL123 is at the top-left and the
survived patients ALL26 and ALL302 are located close each other at the near
bottom-right. Figure 3 shows the detail views of the three selected patients.
The figure indicates that the gene expression values of the patient ALL123 is
significantly different from the other two patients ALL26 and ALL302. This
property confirms the result of generating the 3D similarity space of the patients
based on their genetic properties.

Fig. 2. An example of the visualizations at different navigational stages

3.3 Genes of Interests Analysis

The Gene Comparison Interactive Visualization is a tool we designed to allow the
analyst to drill down further into the genetics and treatment data of patients
identified as significant by the processes described in previous sections. This
visualization figure implements several mechanisms whereby the similarity and
differences between patients and groups of patients can be examined in greater
detail.

An important feature of this interactive visualization is the use of active re-
gions to indicate what the analyst is currently focused on. Knowing this makes
it possible to infer what extra information the analyst might find useful, and to
make sure that it is available. This interactive visualization consists of 5 separate
visual components 1) the primary patient probeset heat-map component, 2) the
gene zoom component, 3) the colour gradient and Gaussian curve component,
4) the gene ontology and probeset annotation component, and 5) the patient
treatment data component.
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Fig. 3. An example of the comparison windows of the analytical views of three patients,
namely ALL123, ALL26 and ALL302 respectively

Figure 4 shows an example of the gene comparison visualization of multiple
patients. Patient’s heat-maps are laid out one below the other in such a way
to make sure that, for each patient, the cells representing particular genes and
probesets line up vertically on the screen. The upper-layer represents the Illu-
mina SNPs values whilst the lower-layer represents the Affymetrix expression
microarrays. The significantly different probesets are also highlighted. This rep-
resentation makes details like unusual measurements, and unusual variations of
measurements between patients, stand out easily to the eye. For example, in
this figure, it can be readily seen that the patient ALL144 might have significant
difference in the expression values at the gene CYP1B1, HNMT and TTN.

4 Analytical Discussions

The above prototype has been used to explore and analyse the genetic and
clinical details both from the perspectives of domain knowledge and technologies.
In spite of the size limitation of the data set due to the expensive data collection,
the discovery is quite encouraging in the case of ALL patients. The pilot results
will enable further enhancement and verification on more comprehensive data.
Details of the findings (and confirmation of the prognoses) are further described
as following:

1. There is little coherence between the genetic property and the background or
the clinical property, such as age, gender, dead or survival rate. In other words,
similar patients in term of background and clinical information might have a
significant difference in their genetic properties.

2. Early treatments are more effective than late treatments. Particularly, there
is only one death out of 22 (95.5% chance of survival) if the treatment was
started within a year after the birth. This is also a special case for very high risk
patients who are likely dead because of the disease. If the treatment was started
after 5 years from birth, the survival rate is 85% (3 dead cases out of 20). And
if the treatment was used after 10 years from birth, the survival rate reduces
significantly to 62.5% (3 dead cases out of 8).
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Fig. 4. Genes of Interests Comparison Visualization with multiple patients ALL123,
ALL144, ALL26, ALL302, ALL106 and ALL288

3. Among the very high risk patients: ALL123, ALL143, ALL144 and ALL302,
the patient ALL302 (located at the near bottom-right) was the only survivor
whose genes were significantly different from the others (at the top-left). The
further examination using the 250 Genes of Interests confirms the differences in
the expression values, especially at the genes ABCA4, BRCA2 and ZNF267. The
variation at the particular gene or the combination of the genes might contribute
to the ability to survival or the improvement in treatment.

4. Patients who were born at later years have a better chance of survival. For
example, the rate of survival for those patients born after 1995 is approximately
94% whilst the rate for those patients born before 1995 is approximately 83%.
This property reflects the improvement in treatment technology, methodology
and the living condition.

5. Female patients tend to fare better than male patients in overall. There is
92.5% chance of survival in females (3 dead cases out of 40) versus 88.3% chance
of survival in males (7 dead cases out of 60).

6. Study 8 protocol is dominant. BFM 95 protocol is mostly applied to standard
to medium risk patients who were born before year 2000. Study 8 protocol is
a much more popular method and it was used for patients regardless their risk
strategies and ages. There is only one case using Interfant 99 protocol.

7. Chemotherapy is more effective in treatment. Although nearly a half of
all patients did not have any treatments, the untreated patients mostly have
standard to medium risks. The BMT treatment method has little effect on the
survival rate (only 1 out of 5 cases was survived). The most chosen treatment
method is Chemotherapy whose survival rate is over 90%.
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5 Conclusions

In this paper, we have presented a novel visual analytics approach that provides
a comprehensive solution for analysing large and complex integrated genetic
and clinical data. The set of interactive visualisations and the functionality of
the visual data manipulation cover the needs defined by the above experts. It
provides not only the overview of the importance of the patient’s information
but also the mechanism to zoom, to filter and to analyse further at each level
of details, enabling by mapping the processed data to the original data and the
clinical data to the genetic data. The pilot finding and the initial confirmation
of the prognoses on the Acute Lymphoblastic Leukaemia patients are discussed
comprehensively in this paper.
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Abstract. Most of current methods mainly focus on topological information 
and fail to consider the information from protein primary sequence which is of 
considerable importance for protein complex detection. Based on this 
observation, we propose a novel algorithm called CDIP (Complex Detection 
based on Integrated Properties) to discover protein complexes from the yeast 
PPI network. In our method, a simple feature representation from protein 
primary sequence is presented and become a novel part of feature properties. 
The algorithm can consider both topological and biological information (amino 
acid background frequency), which is helpful to detect protein complex more 
efficiently. The experiments conducted on two public datasets show that the 
proposed algorithm outperforms the two state-of-the-art protein complex 
detection algorithms.  

Keywords: protein complex, PPI network, background frequency. 

1   Introduction 

Protein complexes are key molecular entities to perform important cellular functions 
in the PPI network. The detection about the components of these units from high-
throughput experimental approaches on a proteome wide scales often suffers from 
high false positive and false negative rate [1] and some of them can not be detected 
under the given conditions. Protein complexes detection remains a challenge task in 
the present study by means of the computational methods.   

Previous studies have provided alternative approaches for complex detection. 
MCODE [2] uses vertex weight to grow clusters from a starting vertex of high local 
weight by iteratively adding neighbor vertices with similar weights. It generates small 
complexes and some of complex often is two large. Cfinder [3] is a clique-finding 
algorithm to identify fully connected subgraphs of different minimum clique size and 
merges cliques based upon their percentage of shared members. CFinder results vary 
widely with each increment of minimum clique size. MCL [4] detects protein 
complexes by simulating random walks in the weighted or unweighted graph with 
iterative expansion and inflation operators. Amin et al. proposes a cluster periphery 
tracking algorithm (DPclus) to detect protein complexes by keeping tracking of the 
periphery of a detected cluster [5]. Limin et al. modifies the DPclus to detect protein 
complexes based on two topological constraints and reduce the number of parameters 
of the algorithm in IPCA [6]. King et al. proposes the restricted neighbors searching 
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clustering (RNSC) to detect protein complexes based on both graph-theoretical and 
gene-ontological properties [7]. Leung at el. proposes the CORE algorithm based on a 
statistical framework to identify protein complex cores [8]. Wu at el. presents a core-
attachment method which detects protein complex in two stages: core complex and 
attachment complex [9]. Qi et al. proposes a supervised graph clustering framework 
to predict protein complex with learning the topological and biological properties of 
the known complexes [10]. But the learned knowledge could be bias and affect the 
complex formation because of the limited training data. Although lots of clustering 
algorithms have been proposed to improve the performance of the protein complex 
detection, the limitation is that most of the methods are mainly based on observation 
of the topological structures and can not focus on the biological information within 
protein amino acid sequence. 

To author’s knowledge, there are few methods focusing on the primary sequence 
information for this task. Thus, in this paper, we present a novel graph clustering 
method, named complex detection based on integrated properties (CDIP), where the 
topological properties and protein amino acid background frequency are combined in 
the clustering process and it can help obtain insights into both the topological 
properties and functional organization of protein networks in cells [10]. Moreover, the 
similarity measure, namely cosine similarity, is introduced to locate protein complex 
from biological information. The topological properties are based on the fact that 
proteins are relatively connected densely in the complex [2] and protein amino acid 
background frequency is virtually axiomatic fact that “sequence specifies structure”, 
which gives rise to an assumption that knowledge of the amino acid sequence might 
be sufficient to estimate the interacting property between two proteins for a specific 
biological function [11].  

The remainder of this paper is organized as follows: Section 2 describes the 
proposed clustering method. Section 3 presents experimental results. Finally, Section 
4 concludes this paper. 

2   Method 

In our framework, PPI network can be modeled as an undirected graph G= (V, E), in 
which V is the node set, corresponding with proteins and E is the edge set, 
representing interactions between pairs of proteins. Complex is presented as a 
subgraph in the whole PPI network. Features and the proposed method are described 
in detail for protein complex detection in the followings. 

2.1   Features 

In PPI network, complexes can be determined by multiple factors, such as node size, 
node degree distribution, substructure topology and biological properties. Thus, 
exploring features from subgraphs in the clustering process can measure the 
differences between complexes. 32 values are extracted as a vector to describe a 
complex. These properties include 12 values about subgraph topological structures 
and 20 biological values from protein amino acid background frequency. For cluster 
degree distribution part, mean, variance, median and maximum are used. Mean, 
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variance and maximum properties are adopted in clustering coefficient and 
topological coefficient, respectively. Each is described in the following parts. 

• Cluster size is the number of the nodes in a subgraph.  

• Cluster density is defined in (1). V  is the number of vertexes and E is the 

number of edges in a subgraph.   

2 *
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( * ( 1))

E
den G

V V
=

−
 (1)

• Cluster degree distribution describes the degree of the nodes in a subgraph. Node 
degree is the sum of the direct neighbors of a node.  

• Clustering coefficient [5] nC  for a node n is defined in (2): 
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where nk is the number of neighbors for the node n and ne is the number of connected 

pairs between all neighbors of this node [2].  

• Topological coefficient nT  for a node n with nK  neighbors is computed as (3):   

( ( , )) /n nT average J n m K=  (3)

( , )J n m  is the number of neighbors shared between n and m, plus one if there is a 

directed link between n and m. m is the node sharing at least one neighbor with n. 
• As for biological properties, the frequency is defined in (4): 
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where iC  is a kind of amino acid among twenty amino acids, ( )isum C  is the 

count of this amino acid iC  appearing in a subgraph, ( )ilen p  is the amino acid 

sequence length of protein ip in a subgraph, s is the size of subgraph.  

2.2   The Proposed Algorithm 

Our algorithm operates in four stages, including seed selection, cluster enlarge, 
enlarge judgment and filter process. Seed selection is based on the fact that protein 
complexes within PPI network form stable subgraph of interactions in same 
community [2]. In the part of enlarge judgement, two key parameters are applied to 

select the candidate subgraph. One is the topological constraint vkIN  [6], the other is 

the included angle cosine ( cosθ ) to measure the intrinsic similarity between 
interaction proteins. They are defined in (5) and in (6) respectively. 
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where vkm is the number of edges between the vertex v and the subgraph k. kn is the 

size of subgraph k. 
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where p is the size of the vector for a protein (p=32), imx and jmx are the thm value of 

the vectors of protein i and protein j respectively. 

Algorithm 
1:input the PPI network G= (V, E); 
2:initializing the set of selected clusters D C ∅＝  
3:calculating the degree of each node, ranking all nodes by non-increasing 

according to the degree and sorting the ranked nodes into Q; 

4: while (Q! =φ ) {select the first node v in Q and put it into the current cluster K. 

call Enlarge Cluster(K); call Filter Process(K); } 
5: Output clusters in DC. 

Enlarge cluster 
1:Finding the neighbors of K and sorting neighbors to N by non-increasing 

according to degree; 
2:For each node in N ; 

if a node satisfies the enlarge judgement condition in (7), 
add the node to the K; enlarge Cluster (K); 
else continue to select the nodes from other neighbors of K. 

3: If no node is extended and the current cluster K can not be further extended, 
insert K to DC. 
Filter process 

1: ,i iS m o s t s i m i D K D D Cω ∈= ( ) ,  

2: if , K tω( S ) ＜ , insert K into DC, 

else if ( ) * ( ) *k sden K V den S V≥ , insert S into DC and delete K from DC 

else discard K; delete the nodes in K from Q. 

The enlarge judgment is a key stage. When the algorithm locates a cluster, the cluster 

is restricted by cosθ  and vkIN . If v satisfies the constraint condition in (7) at the 

same time, v will be added into a subgraph K. The types of related parameters 
0.7  and =0.8δ μ=  are obtained in our experiment for the best f-measure.   

  cos    , [0, 1] 
vk

N andδ θ μ δ μ≥ ≥ ∈  (7)
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The filter process is to obtain meaningful complexes, in which S is the most similar 
graph in DC. Given two graphs, please see their judgement in equation (8) of the 
section 3. In step 2, t=0.2 is adopted.  

3   Results and Discussion 

3.1   Reference Datasets and Evaluation Matrices 

Two reference datasets of protein complex with size no less than 4 are used. The first 
set comprises of hand-curated complexes MIPS [12] and the other set is generated 
from CYC 2008 catalog [13]. PPI dataset about yeast is from DIP [14].  

Given a set of real complex { }, , ..., nR R R R1 2= and a set of predicted clusters  

{ }1 , , ..., nC C C C2= , the detected protein complex is matched with the real complex  

in the benchmark set by the evaluation score in (8): 
2
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Here, C R∩i j is the size of the interaction set between a detected complex iC and 

a known complex jR , iC  is the size of detected complex and jR is the size of 

known complex. In [2, 5], a detected cluster is assumed to match a known complex if 
its overlapping score is at least 0.2, which is also adopted in this study. For 
comparison, recall, precision, f-measure and coverage rate are used [9] and they are 
defined as followings: 
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Where 
ijC is the number of the common proteins between the thi real complex and 

the thj  detected cluster iN  is the number of proteins in the thi real complex.  
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3.2   Comparison Results 

In order to show the efficiency of CDIP, we conduct the experiments on two 
benchmark datasets in the DIP network. Since MCODE and CFinder predict different 
number of clusters with different parameters, the default parameters are utilized. 
Table 1 shows the comparison results of predictions among the three methods. It can 
be observed that CDIP performs consistently better than CFinder and MCODE on all 
evaluation matrices from two datasets, which may be due to the combination of 
biological and topological properties. The best f-measures are provided by the highest 
recall and precision, which illustrates that our method can match more real complexes 
and predict complex more accurately. Moreover, the highest coverage rates show that 
located complexes can cover the most proteins in the benchmark datasets. 

Table 1. The comprehensive comparison results in DIP PPI network 

methods 
MIPS (complexes:109) CYC2008(complexes:148) 

CDIP CFinder MCode CDIP CFinder MCode 

C  181 112 40 181 112 40 

mP  65 26 14 91 42 16 

 mK 52 28 19 73 41 23 

recall 0.477 0.257 0.174 0.493 0.277 0.155 
precision 0.359 0.232 0.35 0.503 0.375 0.4 
f-measure 0.410 0.244 0.233 0.498 0.319 0.224 

CR 0.289 0.212 0.250 0.368 0.229 0.309 
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Fig. 1. The robustness to seven thresholds 

In order show the robustness of the performance improvement of our method, three 
method are compared on seven thresholds t= {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} in terms of 
the number of real complexes matched on two individual datasets in Fig.1. CDIP can 
match more real complexes than other two methods, except t=0.7 on benchmark MIPS. 

3.3   Functional Annotation of Network Modules 

The basic hypothesis is that proteins in a reliable protein complex are shown to share 
the same function and the functional identities of proteins in the predicted complexes 
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may be an alternative index to assess the reliability of predictions [15]. To validate 
this idea, the located modules were annotated and the comparison was made between 
the three methods based on the annotated functional of Yeast genes in MIPS 
Functional Catalog database. Fig. 2 shows the functional annotations ratios of the 
located modules of the three methods. Located modules were assigned benchmark 
dataset of funcat by analysis of constituent protein function. We have computed the 
ratio of the number of proteins belonging to the specific function over the located 
modules size. The modules with the ratio at least 0.5 are selected and the first three 
function class ratios are plotted. The column shows the proportion of the located 
modules of each method belongs to the first three specific function classes. We found 
that ratio of our methods is 86%, which is 10% and 32% higher than CFinder and 
MCODE, respectively. The reports illustrate that integrated properties are in favor of 
mining more functional modules. Moreover, it is helpful to infer protein function 
type. As shown in Fig. 3, the complex with size 14 is located by our method, 13 
proteins belong to the splicing function and there is a new protein YKR002W.  

         

Fig. 2. Comparison of functional annotation ratios  Fig. 3. One example of predicted cluster 

4   Conclusions and Future Work 

We have proposed a new method for protein complex detection, which combines 
topological and biological properties to locate clusters. The feature based on protein 
primary sequence is proposed and become a novel part of features and both are 
investigated for a complex. The experimental results have shown that this algorithm 
clearly outperforms the two clustering algorithms. We validate the detected 
complexes using function analysis which shows that the CDIP is favor of locate more 
biological modules.  
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Abstract. Stroke is a major cause of disability and mortality in most
economically developed countries that increasing global importance. Up
till now, there is uncertainty regarding the effect of weather conditions
on stoke occurrence. This paper is offering a comparative study of ex-
ploring associations between changes in ambient temperature and stroke
occurrence using global and personalised modelling methods. Our study
has explored weather conditions have significant impact on stroke occur-
rence. In addition, our experimental results show that the personalised
modelling approach outperforms the global modelling approach.

Keywords: weather, stroke occurrence, personalised modelling, global
modelling, FaLK-SVM.

1 Introduction

Stroke is known as an acute cerebrovascular disease (CVD), it can cause neuro-
logical damages or even death (particularly in the elderly) by the reason of the
blood supply suddenly disrupted or stopped to part of the brain. It is becoming
a major public health concern and challenge in many countries.

Recently, there is increasing evidence linking weather conditions and stroke
occurrence [1][2]. However, thus far, only few studies on exploring the effect of
weather on stroke occurrence, and most of these studies examined stroke oc-
currence have also been inconsistent [3][4][5], which remains a matter of uncer-
tainty and controversy. From early evidence, environmental triggers of different
stroke subtypes are dependent to age, gender and climate characteristics. How-
ever, these data are selection bias (e.g. unclear CT/MRI verification of different
stroke subtypes), or no reliable data exists in various population groups (e.g. by
age, gender, and region).

Previous studies attempted using different techniques for studying complex
stroke data. These techniques can be generally divided into two categories, sta-
tistical and machine learning methods (e.g. conventional statistical methods are
more widely applied, in particular). However, in many cases, the conventional
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statistical methods have limitations in efficiency and improving the prediction
accuracy compared to machine learning methods. Khosla et al. [6] presented an
integrated machine learning approach that significantly outperformed the Cox
proportional hazards model (one of the most popular used statistical methods in
medical research) on the Cardiovascular Health Study (CHS) dataset for stroke
risk prediction.

Personalised modelling is an emerging machine learning approach, where a
model is created for every single new input vector of the problem space based
on its nearest neighbours using transductive reasoning approach [7]. The basic
philosophy behind this approach when applied to medicine is that every person
is different from others, thus he/she needs and deserves a personalised model and
treatment that best predicts possible outcomes for this person. Such character-
istic makes personalised modelling an appropriate method for solving complex
modelling problems.

This paper therefore presents a comparative analysis using global and per-
sonalised modelling methods to explore associations between changes in ambi-
ent temperature and stroke occurrence. This knowledge will contribute to the
understanding of environmental triggers of stroke. In turn, this will help identify
other new areas of research, such as physiological studies on weather-stroke as-
sociations or clinical trials, to test preventive strategies to reduce the hazardous
effects of harmful weather conditions.

The remainder of this paper is organized as follows. Section 2 briefly reviews
global and personalised modelling methods. Section 3 describes a recently de-
veloped personalised modelling method, Fast Local Kernel Support Vector Ma-
chines (FaLK-SVM). Section 4 provides the experimental results of the compar-
ative study. Finally, section 5 gives the conclusion and future direction.

2 Background and Related Work

2.1 Global Modelling

A global model is created from the entire data set for the whole problem space
based on the inductive inference method. It focuses on the whole problem space
rather than individual vectors. This model is usually difficult to be adapted on
new incoming input vectors.

Support vector machine (SVM) is one of popular global modelling al-
gorithm, which has been widely used to deal with regression and classification
problems. It is a powerful tool for separating a set of binary labeled data in a
feature space by an optimal hyperplane. The two major types of SVM used far
and wide, are linear SVM [8] and non-linear SVM [9].

2.2 Personalised Modelling

A personalised model is created for every single new input vector of the problem
space based on its nearest neighbours using the transductive reasoning approach
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[7]. It is more concerned with solving an individual given problem rather than
solving a general problem across the whole population.

Personalised modelling has been successfully applied to deal with a variety
of modelling problems such as personalised drug design for known diseases (e.g.
cancer, diabetes, brain disease) as well as for other modelling problems in ecol-
ogy, business, finance, crime prevention. Nowadays, personalised medicine is an
emerging trend in the research areas of medicine, health care and life science.
Ginsburg and McCarthy [10] present the objective of personalised medicine to
determine a patient’s disease at the molecular level, so the right therapies are
able to be applied on the right people at the right time. Multiple examples have
significantly proved that the traditional form of medicine is declining in favor of
more accurate marker-assisted diagnosis and treatment.

The basic principle and framework of personalised modelling is summarized
in Figure 1:

New input vector Vi

Dataset D for training

Feature selection

Dataset Di derived from D,
based on the neighbourhood
of the new input vector Vi

A new personalised model Mi
is created for the new input
vector Vi

Evaluate the performance of
the new personalised model
Mi

Not satisfied

Output Yi

satisfied

Evolve a personalised model Mi

Fig. 1. Basic principle and framework of personalised modelling

K-nearest neighbour (KNN) is the simplest personalised modelling algo-
rithm, was originally proposed by Fix and Hodges in 1951 [11]. It is a supervised
learning algorithm that has been widely used for classifying sets of samples based
on nearest training samples in a multi-dimensional feature space by using some
suitable distance metric such as Euclidean distance or Manhattan distance.

Weighted K-Nearest Neighbour (WKNN) is a extension of KNN as
developed by Dudani in 1976 [12]. In the WKNN algorithm, the output of a
new input vector is calculated not only dependent upon its k-nearest neighbour
vectors, but also upon the distance between the existing vectors and a new input
vector (known as a weight vector w ), this being the basic idea behind the WKNN
algorithm.

Transductive Neural Fuzzy Inference System with Weighted Data
Normalisation (TWNFI) is a dynamic neuro-fuzzy inference system with
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local generalization proposed by Song and Kasabov in 2006 [13]. In the TWNFI
algorithm, the input variables are weighted based on their importance for the
problem, derived through the back-propagation or an evolutionary optimisation
algorithm.

3 Fast Local Kernel Support Vector Machines - A
Recently Developed Personalised Algorithm

Fast Local Kernel Support Vector Machines (FaLK-SVM) is a fast and scalable
local SVM algorithm [14]. In the FaLK-SVM algorithm, the cover tree data-
structure [15] is implemented for fast retrieval of neighbourhoods in the feature
space, and integrates the LibSVM for SVM training and prediction [16].

FaLK-SVM consists of training phase and testing phase. The training phase
is designed to reduce the number of local models by pre-computing a set of local
SVMs in the training set and assigns to each model all the points lying in the
central neighbourhood of the k points on which it is trained. The testing phase
is to apply to a query point that it is the nearest neighbour to the new vector
in the training set.

Mathematically, the FaLK-SVM algorithm can be formulated with following
equation, which derived from original formulation of KNNSVM:

FastLSV M(x) = sign(
k∑

i=1

αrc(i)yrc(i)K(xrc(i), x)+b) with c = cnt(xrx(l)) (1)

where rc(i) is a function to order the indexes of the training samples, αrc(i), and
b are two scalar values derived from the training of an SVM on the k-nearest
neighbours of c in the feature space. c is the selected center of the local models.
In this way, the total number of SVMs trained can be reduced.

cnt(xi) = xj ∈ C
with j = min(z ∈ {1, ..., n}|xz ∈ C and xi ∈ Xxz)

(2)

where Xxz = {xrxz(h)|h = 1, ..., k′} With the cnt function, each training point
is assigned to a unique corresponding center and thus to the SVM model trained
on the center neighbourhood.

4 Experiment

4.1 Dataset and Experiment Setup

This study aims to explore the significant associations between ambient tem-
perature and stroke occurrence using Weather and Stroke Occurrence dataset.
This international collaborative study is carried out under the auspices of six
population regions: Auckland (NZ), Perth and Melbourne (Australia), Oxford-
shire (UK), Dijon (France), and Norrbotten and Vasterbotten counties (Northern
Sweden).
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The dataset consists of 11,453 samples (all with first-ever occurrence of stroke)
and 9 features (4 patient clinical features - categorical data & 5 weather features
- continuous data). Patient clinical features include information such as: age,
gender, history of hypertension and smoking status. Weather features include
information such as: temperature, humidity, wind speed, windchill and atmo-
spheric pressure. All these weather parameters are measured for the date of
stroke occurrence.

To our understanding, this work is the first study to use computational intel-
ligent modelling techniques to investigate the associations between the weather
and stroke occurrence. Many data samples are collected based on the interview
and questionnaire of the patients, which leaves plenty of missing values. Since
our work is a pilot study that focuses on this real world medical data, we use the
data only from Auckland region and select 500 samples without missing values
from the whole dataset.

We applied case-crossover design for the data pre-processing, because there
is no “non-stroke” patients in the original dataset. We use the date of stroke
occurrence (1 day lag) as the “stroke” group and 30 days before stroke occurrence
(1 day lag) for the same participant as the “normal/control” group, assuming
that weather parameters 30 days before the index stroke had no influence on the
stroke occurrence 30 days later. This approach is known as case-crossover design.
Mukamel and his colleagues [17] adopted case-crossover design for comparing the
measures of weather and ambient air pollution on the day of presentation and
control days for each patient.

We used the data by counting down 30 days from the date of stroke occurrence
for creating the “normal/control” data samples. These samples are created in
the following way: assuming we have a patient who firstly trigged stroke on i.e. 1
Jan 1981 - “stroke” sample. For creating the “normal/control” data sample, we
count down 30 days from the date this patient trigged stroke, i.e. 1 Dec 1980. If
this patient did not have the record of stroke occurrence on 1 Dec 1980, which
means he/she was “normal/control” on that day. Then, we look for next following
year stroke triggered, i.e. 1 Dec 1982 and use this measurement to create the
“normal/control” data sample. This approach is based on the assumption that
the weather does not have big changes for the same month but in different years.

Hence, using the case-crossover design approach for the experiments, the
data consists of 1,000 samples (500 “normal/control” patients (class1) and 500
“stroke” patients (class 2)).

Our experiments are carried out in three steps: [(1) using only 4 patient clin-
ical features to perform a comparative analysis of the global and personalised
modelling approaches; (2) using all 9 features (4 patient clinical features and 5
weather features); (3) using 6 features (age and 5 weather features), as age is a
continuous value and suggested to be used for our experiments by experts.] For
all experiments in this study, K-fold (k=3) cross-validation is used to evaluate
the performance obtained by global and personalised modelling methods.
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4.2 Experiment Result and Discussion

In the first experiment, we applied all the modelling techniques on the data with
4 patient clinical features, and the best accuracy is manifested by the FaLK-
SVM personalised model. Its classification accuracy is 51.69% (46.81% for class
1 - Normal, and 56.75% for class 2 - Stroke). FaLK-SVM outperforms all other
methods in terms of classification accuracy. However, the accuracy obtained from
FaLK-SVM with 4 patient clinical features is close to random, though the patient
clinical variables such as age, gender, blood pressure and smoke are identified as
very important stroke risk factors [18].

In the second experiment, we applied the same modelling techniques on the
data with 9 features in order to explore whether the accuracy will be improved
by taking weather features into account. The FaLK-SVM personalised model
obtains the best classification accuracy as compared with all other methods,
which is 65.00% (61.94% for class 1 - Normal, and 68.06% for class 2 - Stroke).
It can be obviously seen that the classification accuracy is improved compared
with the results achieved using only 4 patient clinical features. It is easy to
elucidate that weather conditions have significant effect on stoke occurrence.

In the third experiment, we applied the same modelling techniques on the
data with 6 features (age and 5 weather features), as age is a continuous value
and suggested to be used for our experiments by experts. A comparison of clas-
sification performance using 6 features from SVM, KNN, WKNN, TWNFI and
FaLK-SVM is summarized in Table 1.

Table 1. Experimental results in terms of model accuracy tested through 3-folds cross-
validation method when using 6 features (age and 5 weather features) to perform a
comparative analysis of global and personalised modelling approaches

Model
Global Personalised
SVM KNN WKNN TWNFI FaLK-

SVM
(Poly
kernel,
g=1)

(k=51)(k=51,
thr=0.49)

(thr=0.5,
Epochs=12)

(k=5,
RBF
kernel,
g=-0.8,
c=115)

Number of Features 6 6 6 6 6

Accuracy of Each Class (%)
Normal 60.00 63.40 61.00 61.35 69.90
Stroke 69.20 68.00 70.60 72.73 70.64

Overall Accuracy (%) 64.60 65.70 65.80 67.00 70.27

Note: g is gamma, thr is threshold, and c is a kernel parameter

Table 1 shows that the best classification accuracy is again achieved by FaLK-
SVM. The overall classification accuracy is 70.27% (69.90% for class 1 - Normal,
and 70.64% for class 2 - Stroke). The overall classification accuracy is approxi-
mately increased by 5% compared with the result obtained using 9 features, and
class 1 and class 2 accuracy are significantly improved.
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Fig. 2. Plot showing the area under the ROC curve of FaLK-SVM personalised model
applied on the data with 6 Features

Figure 2 shows the classification performance obtained by FaLK-SVM per-
sonalised model on the weather-stroke data with 6 features. The classification
performance is measured by Receiver Operating Characteristics (ROC) curve
(area is .70). ROC graph is a widely used tool for measuring how well a parame-
ter can distinguish between two groups (e.g. normal/diseased). Nowadays, they
are becoming increasingly common in medical decision-making and diagnostic
systems for evaluating medical tests [19] [20] [21].

As a general conclusion, the knowledge discovered through our experiments
are: (1) weather conditions have significant impact on stroke occurrence. The
overall classification accuracy is significantly improved due to taking weather
features into account in the experiments. This knowledge will contribute to have
good understanding of environmental triggers of stroke. In addition, this will
help the health and medical experts to easily identify other new areas of research,
such as physiological studies on weather-stroke associations, or clinical trials to
test preventive strategies to reduce the hazardous effects of harmful weather
conditions; (2) we have found out that all the models using same amount of
features but different numbers of K produced different accuracy. So we can say
that finding an appropriate size of testing samples’ neighbors (the samples having
similar data patterns) is a decisive factor to improve the accuracy, which worth
to be further investigated in the future.

5 Conclusion and Future Direction

In this study, we have presented a comparative study of exploring associations
between changes in ambient temperature and stroke occurrence using global and
personalised modelling methods. Our study has explored weather conditions have
significant impact on stroke occurrence. Our experimental results also show that
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the personalised modelling approach outperforms the global modelling approach
on the weather-stroke data in terms of classification accuracy. The knowledge
discovered from this study will bring outstanding contribution to the health and
medical experts for better understanding the associations between weather and
stroke. In turn, this will ensure the experts providing more accurate diagnosis
and physiological treatment for individual patient.

However, this study only investigated the cases in the Auckland region and
selected 500 samples out of 2850 samples as a preliminary study. Therefore, this
work will be further extended to explore all samples in the Auckland region and
also other five regions. Furthermore, in the future study, we will consider to ex-
plore the personalised risk for each individual patient, rather than only simply
classify patients into normal or diseased group. Because accurately quantifying
this risk can be helpful for medical decision support to ensure patients receive
treatment that is optimal for their individual profile. In addition, the experi-
mental results show that k-nearest neighbour could be an important factor to
improve the accuracy. In this study, we manually selected neighbors and model
parameters based on the training accuracy. In the future, we will develop new
methods for personalised modelling in order to improve the robustness and gen-
eralisability of feature selection, neighborhood selection, model and its parameter
selection for classification, diagnostic and prognostic problems. For instance, the
evolutionary algorithm (EA) can be integrated with the personalised modelling
approach for solving optimisation problems.
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Abstract. We propose a new approach for a human’s implicit intention 
recognition system based on an eyeball movement pattern analysis. In this 
paper, we present a comprehensive classification of human’s implicit intention. 
Based on Bernard’s research, we define the Human’s implicit intention as 
informational and navigational intent. The intent for navigational searching is to 
locate a particular interesting object in an input scene. The intent for 
informational searching is to locate interesting area concerning a particular 
topic in order to obtain information from a specific location. In the proposed 
model, eyeball movement pattern analysis is considered for classifying the two 
different types of implicit intention. The experimental results show that the 
proposed model generates plausible recognition performance using a fixation 
length and counts with a simple nearest neighborhood classifier. 

Keywords: eyeball movement, implicit intention, navigational intent, 
informational intent, human intention monitoring system, human computer 
interface & interaction. 

1   Introduction 

In recent, intention modeling and recognition have been important research issues for 
creating a new paradigm of human computer interface (HCI) and human robot 
interaction (HRI), which becomes a common issue to psychology and cognitive 
science [1]. Some researches of computer science and robotics have shown good 
results by cognitive science, HCI and psychology [2]. Human can inform the system 
of his explicit intention by facial expressions, explicit speech, and hand gesture as 
well as using a keyboard and a computer mouse. It is easy for the system to 
understand the explicitly represented intentions like “copy this file” in HCI, or “close 
the door” in HRI. Not only the explicit intention but also an implicit intention can be 
useful information for doing something related with human’s intention by a computer 
or a robot. However, implicitly represented intentions might not be clear to the 
system. There have been many researches to handle this problem [3]. We focus on the 
implicit intention recognition based on eyeball movement pattern analysis. 
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Being “a window to the mind,” the eye and its movements are tightly coupled with 
human cognitive processes. The possibility of taking advantage of information 
conveyed in eye-gaze has attracted many researchers in human-computer interaction 
[4-7]. In this research, we develop a methodology to classify human’s implicit 
intention in real-world environment based on computer vision technology. We 
propose a new computational approach for a human’s implicit intention recognition 
system based on an eyeball movement pattern analysis. Based on Bernard’s research 
[8], we categorize human’s implicit intention as navigational and informational 
intention. We propose a novel intent recognition model that can discriminate human’s 
different implicit intent in the course of seeing real-world scenes with different intent 
in out-door environment as well as in-door environment. We analyze real human 
eyeball movement patterns measured by eye-track system (Tobii 1750) when human 
see visual scenes with different intent. As a reliable indicator to monitor human’s 
implicit intention, we use a fixation length and account in human scan paths and a 
simple nearest neighborhood (NN) classifier is adopted to implement the human 
intention model. The proposed system shows reliable performance over 80% to 
recognize human’s different implicit intent through the experiments using real in-door 
and out-door visual scenes. 

This paper is organized as follows. Section 2 describes the proposed recognition of 
human intention based on eyeball movement. Section 3 includes experimental results 
for intention recognition of the proposed model in indoor and outdoor visual 
environments. Finally, conclusions and discussions are given in Section 4. 

2   Recognition of Human Intention Based on Eyeball Movement 

Figure 1 shows the block diagram of the proposed model for recognizing the human’s 
implicit intention based on feature extraction of eyeball movement patterns. We use 
an eye tracking system to measure human’s eyeball movement patterns according to 
the given visual stimuli. 

 

Fig. 1. Block diagram of the proposed system for recognizing human’s implicit intention 

We preset the areas of interest (AOI) in an image for visual stimuli, and analyze 
the eyeball movement pattern according to human’s intention. There are several 
features related with intention driven eyeball movement pattern such as time to first 
fixation, fixation length and count, observation length and count as well as pupil size  
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variation with eye blinking. In order to select the most dominant features among 
them, we have analyzed eyeball movement patterns in detail for real-time 
implementing a human’s implicit intention recognition system in real world. A 
classifier is used to recognize whether the features are related to the navigational 
intention or informational intention. The detail processing in each part is described in 
the following sections. 

2.1   Definition of User Intention 

Several researchers have examined the elements of human intention in web searching 
using a variety of controlled studies, surveys, and direct observation. Carmel, 
Crawford, and Chen distinguished three types of categorization of user intent in web 
searching [9]: (1) search-oriented browsing which is the process finding information 
relevant to a fixed task, (2) review browsing which is the process of scanning to find 
interesting information, and (3) scan browsing which is the process of scanning to 
find information with no reviewing or integration involved. Marchionini articulated 
similar browsing patterns as directed browsing, semi-directed browsing, and 
undirected browsing [10]. 

In this research, we develop a new approach for a human’s implicit intention 
recognition system based on an eyeball movement patterns during seeing real-world 
scenes. We redefine and present a comprehensive classification of human intention 
derived from the work of Rose and Levinson as follows [11]: 

 
 Navigational intent: The intent of navigational searching is to locate a particular 

interesting object in an input scene. 
 

 Informational intent: The intent of informational searching is to locate interesting 
area concerning a particular topic in order to obtain information from a specific 
location. 

2.2   Eyeball Movement Measurement Device 

For measuring human’s visual scan path with each given visual stimulus, an eye 
tracking system, Tobii 1750 eye trackers, produced by Tobii Technology 
incorporation was utilized. Visual stimuli are displayed on the computer monitor 
located at 40cm from the human head. After visual stimulus is given, the eye tracking 
system measures the human’s eyeball movement and obtains a fixation length and 
count, observation length and count, and visual scan path etc. of participant when 
seeing the given visual stimuli. The followings are several features that can be 
measured by the eye-track system as shown in figure 2 [12]:  
 
 Fixation count: a number of fixations within an AOI. 

 

 Fixation length: length of the fixations in seconds within an AOI. 
 

 Observation count: a number of visits to an AOI. 
 

 Observation length: total time in seconds for every time a person has looked 
within an AOI. 
 

 Etc. 
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Fig. 2. Eye movement measurement device of Tobii 1750 (technical specifications) 

2.3   Correlation between Eyeball Movement and Human’s Implicit Intent 

Eyeball movements are known as tightly being coupled with human cognitive 
processes and the eye-gaze contains richer and more complex information regarding a 
person’s interest and intentions than what is used in pointing [7]. 

Therefore, it might be assumed that human generate specific eyeball movement 
patterns according to a different kind of human’s implicit intention during visual 
searching. In accordance, the eyeball movement patterns are able to be considered as 
possible factors for recognizing the human’s implicit intent by verifying the 
correlation between the eyeball movement patterns and specific human’s implicit 
intent. Different implicit intent may cause different eyeball movement patterns when 
seeing or searching the same visual scene. 

In this paper, we analyze the characteristics of eyeball movement patterns 
measured using the Tobii 1750 eye track system in order to verify the correlation 
between implicit intent and eyeball movement patterns. We have found that the 
fixation length and count are most dominant features to distinguish the navigational 
and informational intentions of a user through the experiment. When human search a 
visual scene with a navigational intent that is trying to localized user’s interesting 
object, according to the analysis of eyeball movement patterns, fixation length and 
count features among characteristics of eyeball movement patterns are short and 
small, respectively. Instead, in the case of the informational intention, fixation length 
and count features are relatively long and large compared to those of navigation 
intention case. Therefore, it might be experimentally concluded that the fixation 
length and count features are highly correlated with the human’s implied intention. By 
comparing the fixation length and count in each AOI of a given input image, we can 
construct a classifier to discriminate the navigation and information intent. 

2.4   Discrimination between Navigational and Informational Intent 

Based on the experimental verification of there being distinctive correlation between 
the fixation length/count and human’s implicit intention, we considered the fixation 
length and count as input features of intention classifier. The NN classifier is applied 
for recognizing whether the current fixation length and count are related with the 
navigational intention or informational intention. Eyeball movement features such as 
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fixation length and count show irregular characteristics during visual searching with 
navigational intention. Nevertheless, the simple classifier implemented by NN 
algorithm successfully discriminates the intentions as two classes. One class is for 
navigational intention and the other one is for informational intentions. 

3   Experiments 

We developed a methodology to classify user’s intention in real-world environment. 
The indoor scene and outdoor scene images with five AOI areas were prepared. The 
AOI is a candidate fixation region by an eyeball movement with each given visual 
stimulus. We defined AOI as the significantly salient object in given visual stimulus. 
The set up AOI area is shown in figure. 3. Fig. 3 (a) is indoor image as a kitchen and 
Fig. 3 (b) is outdoor image as a downtown street. 

 

Fig. 3. Visual stimulus images and set up for AOI 

Figure 4 shows that the proposed model for human’s implicit intent recognition 
system in experimental sequence. Following is an actual working scenario of the 
proposed human intent recognition system based on an eyeball movement: 

 
 Step 1) Command: searching is to locate a particular interesting object in visual  

stimuli images 
 

 Step 2) Visual stimuli: Kitchen (Indoor image) / Downtown (Outdoor image) 
 

 Step 3) Command: searching is to locate interesting area concerning a particular  
topic in order to obtain information. 
- Indoor: searching is to cup, bottle and refrigerator door. 
- Outdoor: searching is to humans and Dunkin donuts. 

 

 Step 4/5) Visual stimuli: Kitchen (Indoor image) / Downtown (Outdoor image) 
 

We obtain the essential experimental data for 40 people participated in human’s 
intention recognition experiment using an eye tracking system. Using the raw data 
and their statistical analysis, we determine the baseline value as a threshold to 
distinguish the two implicit intents. 
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Fig. 4. Human’s implicit intention recognition system in experimental sequence 

3.1   Experimental Results for an Eyeball Movement Analysis of Human’s Intention 

As a pre-step, in order to calibrate the eye tracker system (Tobii 1750), we 
demonstrate a simple test that is tracking an eyeball movement on the monitor. When 
visual stimulus is given, eye tracker system detects the pupils and measures the 
human’s eye movement using an IR (infrared) camera. The whole processes detecting 
human’s eyeball movement are shown in figure 5. After detecting the pupil using the 
IR camera, we get the pupil center data in an image as shown Figs. 5 (a) and (b). Fig. 
5 (c) shows the points of the two pupils’ center with depth information. Fig. 5 (d) is 
the calibrated test image. Finally, Fig. 5 (e) represents the positions of detected 
eyeball as color circles and green dot-circle is eye gaze point. 

 

Fig. 5. The calibration process of eye tracker system to measures the eyeball movement 

Figure 6 shows the heat maps representing the fixation length of the eyeballs for the 
given visual stimuli. Figs. 6 (a) and (c) are the heat maps of the navigational intent results 
for the indoor and outdoor scenes, respectively. Figs. 6 (b) and (d) are the heat maps of 
the informational intent results for the indoor and outdoor scenes, respectively. 

 

Fig. 6. The heat maps of the human’s eyeball movement analysis for visual stimuli 

Figure 7 show the experimental results such as scan path, fixation length and count for 
raw-data analysis based on eyeball movement pattern. Fig. 7 (a) shows the results for 
indoor visual stimulus image. Fig. 7 (b) shows the results for outdoor visual stimulus 
image. In the Fig. 7, the gray bars are the data for the navigational intent and white bars 
are the data for the informational intent. We confirmed that the fixation length and count 
are dominant factors to discriminate the navigational and informational intent through the 
experiment. 
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Fig. 7. The raw-data analysis experiments for recognition of human’s implicit intents 

3.2   Performance for Human’s Implicit Intent Using the Nearest Neighbor 

In order to classify the human’s implicit intent based on eyeball movement pattern, 
we used a NN classifier. The data set of 40 people was used for training of the input 
images. Through the statistical analysis of data result in training process, we 
determined the baseline value as a reference of eyeball movement to distinguish the 
implicit intent. Test data set number is 180 which consist of 60 navigational intent 
data and 120 informational intent data. Table 1 shows the average recognition 
accuracy of NN classifier for human’s implicit intents which consist of navigational 
and informational intent based on eyeball movement pattern.  

Table 1. Human’s intent recognition performance by the proposed model 

Type of intent 
Recognition rate 

Indoor image Outdoor image Average 
Navigational intent 85.98 (%) 86.40 (%) 86.19 (%) 
Informational intent 79.01 (%) 81.82 (%) 80.42 (%) 
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4   Conclusions 

In this paper, a new approach for a human’s implicit intention recognition model 
based on an eyeball movement pattern analysis is proposed. We define and present a 
comprehensive classification of human’s implicit intent. In order to recognize the 
human’s implicit intent for given visual stimulus, an eye tracking system, Tobii 1750 
was used. Through the experiments, we confirmed that the fixation length and counts 
are the main factors to discriminate the navigational and informational intent. In order 
to classify the human’s implicit intent, we used a NN classifier. The experimental 
results show that the proposed method shows plausible performance. 

We are now implementing a prototype for human intention monitoring system. For 
performance verification, however, more experiments using complex real scenes 
reflecting various situations are needed as a further work. 
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Abstract. Classification accuracy is vital in practical application of au-
tomatic ECG diagnostics. This paper aims at enhancing accuracy of ECG
signals classification. We propose a statistical method to segment heart-
beats from ECG signal as precisely as possible, and use the combination
of independent component analysis (ICA) features and temporal feature
to describe multi-lead ECG signals. To obtain the most discriminant fea-
tures of different class, we introduce the minimal-redundancy-maximal-
relevance feature selection method. Finally, we designed a vote strategy
to make the decision from different classifiers. We test our method on
the MIT-BIT Arrhythmia Database, achieving a high accuracy.

Keywords: ECG segmentation, ICA feature extraction, SVM.

1 Introduction

The electrocardiograic(ECG) signals is a key approach for heart disease diag-
nosis. The automatic ECG diagnostics has very high clinical value of modern
medical diagnosis. Nowadays, many researches focus on feature extraction and
pattern recognition of ECG signals.

Among those recently related works, we can find some typical techniques
dealing with this issue. Wave detection of ECG signals is a key step of pre-
processing. Previous work is mainly obtained from the shape characters [1], and
more from frequency domain in recent works [2]. Many algorithms from pattern
classification problems have been applied to the ECG signals classification. Zhao
et al. used SVM and wavelet transform achieving a high accuracy [3]. E. Pasolli
et al. applied active learning method to the ECG classification using some ECG
morphology and temporal features [4]. Some other methods such as SOM, ANN,
HMM have been proven to be efficient in automatic ECG Diagnosis [5]. To
acquire high classification accuracy, efficient representation of ECG signals are
needed. ECG feature extraction is important to diagnosing most of the cardiac
disease. Various methods have proposed in different approaches for ECG features
extraction [6],[7].

In order to realize the automatic diagnosis, to enhance the accuracy of auto-
mated classification of the ECG signals is an important task. This paper is to

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 146–154, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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develop new feature extraction method to improve classification performance.
Our system structure is illustrated in Fig.1, showing the general framework of
the ECG data processing.

ECG signal

Pre-processing
Denoising and
Segmentation

Training Data

Resample and
ICA Training

Feature
Selection
and SVM
Training

SVM
Classifiers

Testing Data
Vote and

Classification

Temporal
Feature ICA Features

Fig. 1. Structure of out System

2 Feature Extraction

2.1 Independent Component Analysis Features

The ECG signals represent the current produced by myocardium in every heart-
beat. ECG signals can be considered as a mixture of different source of ECG.
Thus, the signals can be represented as the following linear combination of some
unknown sources.

SECG =
N∑

i=1

aisi (1)

where si is one source, and ai is the coefficient.
The independent component analysis (ICA) is very closely related to the

method called blind source separation (BSS) [8]. The linear combinations (1)
above is the same as the basic model of ICA. Using a vector-matrix notation,
the mixing model can be written as

x = As (2)

where s is a N × 1 column vector of the unknown source signals, A is a N × N
mixing matrix we may want to know. Estimating the independent components
equals finding the proper linear combination of the si, i.e.,

s = A−1x (3)
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Our purpose is to find the independent components si with the observed data
x [9]. There are several approaches have been proposed to solve this problem.
We select the algorithm FastICA to estimate the ICs, which performs better in
batch algorithm [10].

In this paper, we use ICA model to find efficient representation of ECG signals.
Then, si is considered as the basis functions and ai is the coefficient correspond-
ing to the feature. ICA-based feature extraction method has been widely used
in many feature extraction fields, such as image data, video data, audio data
and hyperspectral data [9], and also used in ECG signals feature extraction and
worked well.

We train the ICA basis functions using some random samples with zero mean
selected from different heart disease. We chose twelve ICs as basis functions in
computer simulations. The learned ICs are illustrated in Fig.2. The coefficients
in the IC basis is considered as a features for disease classification. One fitting
result using the IC basis shows in Fig.3.
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Fig. 2. A group of twelve ICA basis learned from random selected heartbeat data

2.2 Statistical Segmentation and Temporal Feature

But when we get features of ICA basis functions, we omit the temporal features
casually. ICA described features can represent the morphology well, but lack of
time domain ones. The dynamic feature is important for doctors to make clinic
diagnosis. To overcome this shortcoming, we combine some time domain features
with the ICA-based features.

Wave detection methods show good performance when the wave is regular.
But there many varying morphologies of normal and abnormal complexes in the
pathological signals. To obtain the length of abnormal ones, we record the wave
temporal features statistically of the regular beats, and use those information
to estimate the boundary of the abnormal records from the same person in the
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Fig. 3. One heartbeat fitting result with ICA basis. The blue dotted line express the
original heartbeat, the red solid line express the fitting curve.

same time period. Meanwhile, we get the beat duration defined as the start of
the P wave to the end of the T wave. Fig.4. shows 200 heartbeat segmentation
length of both manual determined and statistical determined. The estimation
results are very closed to the real ones. And we take this reliable length as a
feature of time domain.

2.3 Feature Selection

Different types of heart disease may need different set of features to be described.
So, it’s important to select the most relevant features for classification purpose.
Feature selection is a useful dimensionality reduction technique widely used in
pattern recognition, machine learning and data mining research fields. Feature
selection can also help us to find the distinctive features for the class. [11]

We chose a efficient heuristic feature selection method, minimal-redundancy
maximal-relevance (mRMR) in our framework [12].

Relevance is described with the mean value of all mutual information values
between individual feature xi and class c:

D =
1
|S|
∑
xi∈s

I(xi; c) (4)

Redundancy is defined as:

R =
1

|S|2
∑

xi,xj∈s

I(xi; xj) (5)

Therefore, the criterion of minimal-redundancy-maximal-relevance is define as
the following form, and the objective is to optimize D and R simultaneously:

max(D − R) (6)
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Fig. 4. Length comparison of 300 heartbeat between manual measured and statistical
estimated. The blue dotted line express the former length, and the red solid line express
the latter.

Fig.5 shows the ICA features distributions of two type of heart disease segments
after feature selection. The first 10 small figures represent the 10 features selected
by the mRMR approach. The last 5 small figures with no axis labels in the frame
represent some of the less significant features for the two classes. We can clearly
see that the selected features are more discriminant.

3 Classification

The Support Vector Machine (SVM) is an extensively adopted classification
technique [13]. Given two classes of training vectors xi ∈ �n, i = 1, . . . , l from
the d-dimensional feature space X, and an indicator vector y ∈ �l such that yi ∈
{+1,−1}. The linear SVM classification approach is trying to find a separation
between the two classes by means of an optimal hyperplane that maximizes the
separating margin, i.e. , to solve the following primal optimization problem.

min
w,b,ξ

1
2
wTw + C

l∑
i=l

ξi (7)

subject to yi(wT φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , l

Because of the possible high dimensionality of the vector w. The problem above
can be reformulated by Lagrange functional. Then, we can solve the following
equivalent dual problem.

min
α

1
2
αT yiyjK(xi, xj)α − eT α (8)
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Fig. 5. Feature distributions of two type of heart disease selected by mRMR. The
first 10 figures represent the most discriminant ones. The red bars and the blue bars
represent two classes respectively.

subject to yT α = 0, 0 ≤ αi ≤ C, i = 1, . . . , l,

In the nonlinear case, we can map the two classed in a higher dimensional feature
space with a kernel method. The radial basis function (RBF) is introduce into
this work.

SVM were originally designed for binary classification. When face to mul-
ticlass problem, we need to find an approaches for it. Now there are some
types of approaches: ”one-against-all”, ”one-against-one”, DAGSVM and Bi-
nary Tree[14][15]. Hsu and Lin give a detailed comparison demonstrate that
”one-against-one” is a competitive one [16]. In our framework, we designed some
voting strategy rules based on probability estimated by SVM [17]. We trained
different classifiers with optimum parameters by cross-validation (CV). When to
predict the test data, we give different decision based on the probability given
by the classifier. For example, we give bonus to the high certainty estimation
but penalty to the uncertainty. After all, we give the most high score candidate
as the predicted label. Through experiment, we find it shows significantly fair
to unbalance training data. In other words, this strategy give much higher pre-
diction accuracy to smaller scale training data, but a little bit lower to bigger
ones.

4 Experiment and Result

In our experiment, we perform a number of computer experiments on the MIT-
BIH Arrhythmia Database [18]. This database is an open ECG database with high
quality expert labels. We chose all the 48 data with approximately 109,000 beats of
following 13 types (Symbol in parenthesis): Normal beat (N), Left bundle branch



152 Y. Wu and L. Zhang

Table 1. The results of heartbeat classification accuracy of vote strategy and one-
against-one. Our strategy performs well especially in small training data.

Beat #Training Training # Testing Test Acc. Test Acc.
Type Beats Acc. Beats Vote Strategy One-One

N 10000 97.71% 74931 97.90% 99.05%
L 1997 99.66% 8070 99.01% 99.30%
R 1738 99.03% 7254 95.88% 99.45%
A 570 98.21% 2541 89.85% 79.81%
a 53 97.46% 149 96.64% 77.85%
J 50 97.74% 83 90.36% 60.24%
V 1676 98.61% 7118 94.20% 97.53%
F 401 98.57% 802 94.51% 86.66%
! 133 98.73% 405 99.01% 99.01%
j 76 98.74% 229 99.56% 78.60%
E 50 99.71% 106 98.11% 97.17%
\ 1729 99.27% 7020 98.56% 99.44%
f 242 99.33% 982 98.88% 94.91%

Table 2. Comparisons of the classification accuracy between our method and X.Jiang’s

Beat Type N L R A a J V

Our Result 97.90% 99.01% 95.88% 89.85% 96.64% 90.36% 94.20%
X.Jiang 98.54% 99.28% 99.14% 90.42% 70.13% 86.88% 97.44%

Beat Type F ! j E \ f

Our Result 94.51% 99.01% 99.56% 98.11% 98.56% 98.88%
X.Jiang 84.72% 77.43% 80.81% 91.84% 86.67% 94.53%

block beat (L), Right bundle branch block beat (R), Atrial premature beat (A),
Aberrated atrial premature beat (a), Nodal (junctional) premature beat (J), Pre-
mature ventricular contraction (V), Fusion of ventricular and normal beat (F),
Ventricular flutter wave (!), Nodal (junctional) escape beat (j), Ventricular escape
beat (E), Paced beat (\), Fusion of paced and normal beat (f).

We use statistical segment method mentioned before to segment the original
signals into single heartbeat segments [19]. The we center the R spike of each
beat and resample them to the same length and keep the original beat length
as a feature. Then we trained the ICA basis and extracted features use both
leads in the data. The combination of the temporal feature and ICA features are
25 dimensions in all. After feature selection using mRMR, we get data to train
the SVM classifiers [20]. Finally, the result in Table 1. shows high accuracy in
classification.

We compared our work with other similar experiments published. The com-
petitive one is X.Jiang et al. ’s work [21]. They used similar feature extract
method and got a high overall accuracy. But we get more stable classification
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accuracy, most of them are above 90%. The comparison results are given in Table
2. The other is the types of premature and escape beat are strongly exhibited in
temporal feature and relied on the accuracy of the segmentation. It shows that
our methods are greatly improved for many types.

Acknowledgement. The work was supported by the National Natural Science
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Cooperation Program (Grant No. 61111140019).
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Abstract. The type III secretion system (T3SS) is a specialized pro-
tein delivery system that plays a key role in pathogenic bacteria. Until
now, the secretion mechanism has not been fully understood yet. Re-
cently, a lot of emphasis has been put on identifying type III secreted
effectors (T3SE) in order to uncover the signal and principle that guide
the secretion process. However, the amino acid sequences of T3SEs have
great sequence diversity through fast evolution and many T3SEs have
no homolog in the public databases at all. Therefore, it is notoriously
challenging to recognize T3SEs. In this paper, we use amino acid se-
quence features to predict T3SEs, and conduct feature reduction using
a topic model. The experimental results on Pseudomonas syringae data
set demonstrate that the proposed method can effectively reduce the
features and improve the prediction accuracy at the same time.

Keywords: type III secretion system, type III secreted effector, topic
model, feature reduction.

1 Introduction

The type III secretion system (T3SS) is one of the six types of secretion sys-
tems that have been discovered in gram-negative bacteria. T3SS is an essential
component for a large variety of pathogens, such as Pseudomonas, Erwinia, Xan-
thomonas, Ralstonia, Salmonella, Yersinia, Shigella, Escherichia, etc [1], which
can cause devastating diseases on plants, animals and human beings. T3SS plays
an important role in developing the diseases by injecting virulence proteins into
the host cells.

Researchers have been exploring the working principle and mechanism of T3SS
for over a decade. The detailed structure of T3SS has been identified, including a
needle-like structure and bases embedded in the inner and outer bacterial mem-
branes [1]. The virulence proteins, called type III secreted effectors (T3SEs),
are secreted directly from the bacterial cell into the host cell through the needle.
Although the structure of T3SS apparatus has been uncovered, the precise mech-
anism of the secretion process has not been fully understood. In recent years,
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more and more effort has been put into the studies of T3SEs, because the char-
acteristics determining what kind of proteins could be secreted have not been
discovered yet. A lot of questions remain unresolved, such as how the T3SEs
are recognized, and how they are transported into host cells. Once we know the
answers, we know much better about how the T3SS works.

Although the structure of T3SS is conserved, T3SEs are highly variable even
among different strains of the same bacterial species. This is because they evolve
fast in order to adapt to different hosts and respond to the resistance from
the host immune systems. Therefore, it is notoriously challenging to recognize
T3SEs. Some wet-bench methods have been used to verify T3SEs, e.g., functional
screen and protein secretion assay [2]. These methods are time and labor con-
suming, and cannot deal with high-throughput screening, while computational
tools can save the laborious work in wet-bench experiments and help biologists
find the T3SE candidates more quickly. Therefore, bioinformatics approaches
are in great demand for the study of T3SS.

There is very little domain knowledge could be used for identifying T3SEs.
Actually, many T3SEs were hypothetical proteins before they were verified. As
the sequencing techniques have gained breakthrough for the past decade, a large
number of sequenced genomes for plant and animal pathogens became avail-
able, thus the genome sequences and amino acid sequences are widely used to
discriminate effectors and non-effectors. Researchers have detected amino acid
composition biases in T3SEs, especially in the N-termini. For example, Guttman
et al. [2] reported that the first 50 amino acids of P. syringae effectors have a
high proportion of Ser and a low proportion of Asp residues. A conserved reg-
ulatory motif on promoters was also found in some T3SEs [3]. However, these
features are not accurate enough to identify new effectors because some effectors
do not possess these features at all.

Recently, some machine learning methods have been proposed for the predic-
tion of T3SEs. Arnold et al. [4] used the frequencies of amino acids as well as the
frequencies from two reduced alphabets, i.e., they mapped amino acids to groups
according to the amino acid properties. They also computed the frequencies of
di- and tri-peptides from each of the alphabets. Löwer and Schneider [5] used
sliding-window technique to extract features. The sliding window procedure di-
vides a sequence in a number of overlapping segments. Each segment is encoded
by a bit string containing W ×20 bits (W is the size of the window). Yang et al.
used amino acid composition, K-mer composition, as well as SSE-ACC method
(amino acid composition in terms of different secondary structures and solvent
accessibility states) [6]. Wang et al. [7] proposed a position-specific feature ex-
traction. The position-specific occurrence time of each amino acid is recorded,
and then the profile is analyzed to compose features.

These methods mainly utilize sequence features, like amino acid composi-
tion and position information, but they do not consider the most discriminating
residues or peptides. In this paper, we regard the protein sequences as text writ-
ten in a certain kind of biological language. The residues and peptides, i.e.,
K-mers (K-tuple amino acid sequences), are the words composing the text.
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Since the number of K-mers would be very large when K increases, we conduct
feature reduction instead of using all the K-mers as features. In order to elim-
inate the noisy words effectively, we adopt a topic model, called HMM-LDA,
which integrating the hidden Markov model (HMM) and latent Dirichlet allo-
cation (LDA) model. The advantage of HMM-LDA over other LDA models is
that it introduces both syntax states and topics. In our method, we keep the
words which are assigned to some topics with high probability but do not per-
vasively assigned to many topics, i.e., the typical words particularly to some
topics, thus we get the condensed word set. We conduct a series of experiments
to compare the new method with other approaches, including the methods using
all di-mers/tri-mers, and the methods that reduce features by word frequency
and tf-idf criteria. The experimental results show that the new method achieves
better prediction accuracy with much less features.

2 Methods

In our previous studies [8,9], protein sequences were modeled as text, and seg-
mented into words in a non-overlapping way. The words are predefined in a dic-
tionary, which includes valuable words according to some criteria. This method
has been proved to have good performance in protein subcellular localization [8]
and protein family classification [9]. In this paper, the training data are processed
by segmentation, and the dictionary is constructed using the criteria of word fre-
quency and tf-idf value, respectively. Then the word set is further condensed by
a topic model to eliminate noisy words.

The rest of this section consists of two parts. In the first part, we introduce
the topic models, especially the HMM-LDA model used in our study. And the
second part describes the details of our method.

2.1 Topic Model

Topic model is a kind of statistical model in the realm of machine learning and
natural language processing. It is able to discover the implicit topic information
in the document. Over the past decade, topic models have been developed very
fast. Besides in text automatic classification, information retrieval and other
related applications in natural language processing realm, topic models have
been successfully applied in image searching and classification, social network
analysis, etc. In the realm of bioinformatics, some researchers have also used topic
models to process biological data. For example, in the study of protein remote
homology detection, Liu et al. used latent semantic indexing model [10], and
Yeh et al. used latent topic vector model [11], both of which achieved satisfying
results.

Among the numerous topic models, the latent Dirichlet allocation (LDA)
model [12] has been widely used in recently years for its excellent performance,
in which each document is represented as a mixture of topics, and each topic is
a multinomial distribution over words in a vocabulary. In this study, we regard
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each protein sequence as a document, and the K-mers as words. We adopted a
variant of LDA, the HMM-LDA model [13] to conduct the feature selection. This
model further extends the topic mixture model by separating syntactic words
from content words, whose distributions depend primarily on local context and
document topic, respectively. The major difference between LDA and HMM-
LDA is that each word is generated independently in LDA, while there is local
dependencies between nearby words in HMM-LDA. We have experimented both
original LDA and HMM-LDA, and the later performs better. That is because
the HMM-LDA model discovers both syntactic classes and semantic topics in
the document, which may be more helpful to eliminate the noisy words.

2.2 Our Method

The flowchart of our method is shown in Fig. 1. Our method mainly consists
of four steps: a) Construct a dictionary, i.e., word set, using certain criteria;
b) Segment the protein sequences by matching the words in the dictionary; c)
Select typical words in order to get a condensed feature set; d) Use support
vector machines to classify the feature vectors into effectors or non-effectors.

M, A, E, SS, EA, 
TL, SSL, PVLG

Dictionary Construction
Sequence Segmentation

M|EA|SSL|PVLG|E|A|TL
Feature 

Reduction Classification

Fig. 1. Flowchart of the new method

For the first step, the dictionary can include both amino acids and K-mers
(K > 1). Two criteria, word frequency and tf-idf value, are considered here to
select words. They are defined as follows.

1) Frequency: We record the frequency for each K-mer appearing in the train-
ing set and keep a predefined proportion of the most frequent K-mers.

2) tf -idf value: According to its definition in text categorization, tf -idf is
calculated for a term in a single document. The value is in proportion to the
occurrence time of the term in the document, i.e., the tf (term frequency) part;
and in inverse proportion to the number of documents in which the term occurs
at least once, i.e., the idf (inverse document frequency) part. Here we redefine
it as the following equation.

Let ft,s be the frequency of K-mer t in sequence s, N be the size of the
training set, wt,s be the tf -idf value for a K-mer t in sequence s, and nt be the
number of sequences in which t appears.

wt,s = ft,s × log
N

nt
. (1)
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The weight of t, wt, is defined as the maximum value of wt,s among all the
sequences in data set T . The words with high weight will be selected.

wt = max
s∈T

wt,s, (2)

In the second step, we adopt the segmentation method proposed in [8]. And in the
third step, by using the HMM-LDA model to implement dimension reduction,
we use the strategy shown in Algorithm 1 to extract the typical words. Let nw,t

denote the number of times that word w has been assigned to topic t. There are
two predefined thresholds α and β. α is used to eliminate the obscure words,
and β is for selecting discriminating words by removing those words which occur
nearly equally on multiple topics.

Algorithm 1. Feature Reduction
Input: Word set W
Output: Reduced word set W ′

Set W ′ = φ.
for each word w ∈ W do

if w is assigned to only one topic t then
if nw,t > α then

Add w to W ′

end if
end if
if w is assigned to multiple topics, t1, t2, ..., tm then

Find j, where nw,tj = max{nw,ti , 1 ≤ i ≤ m}
mindiff = min{(nw,tj − nw,ti), 1 ≤ i ≤ m, i 
= j}
if mindiff > β then

Add w to W ′

end if
end if

end for

3 Experimental Results

3.1 Data Set

Pseudomonas syringae, which has the biggest number of verified T3SEs, has been
used as a model organism in the study of T3SS. Therefore, we collected data from
this species. To our knowledge, there is a total of 283 confirmed effectors, from
P. syringae pv. tomato strain DC3000, P. syringae pv. syringae strain B728a
and P. syringae pv. phaseolicola strain 1448A. Considering that the redundancy
of the data set would result in overestimation on the accuracy of the classifier,
we eliminated the samples with sequence similarity over 60%. After redundancy
removing, there are 108 positive samples.

The negative data set was extracted from the genome of P. syringae pv.
tomato strain DC3000. We excluded all the proteins related to T3SS, as well as
the hypothetical proteins (Note that this set may still contain some unknown
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effectors). And then we selected randomly from the remaining samples to con-
stitute a negative set, keeping the ratio of positive samples to negative samples
as 1:7. The number of the negative samples is 760, thus there is a total of 868
samples.

3.2 Experimental Settings and Evaluation Criteria

In the experiments, we used HMM-LDA in the Matlab Topic Modeling Toolbox
1.4 [14]. Except the number of topics, all other parameters were set to be default
values. The parameters α and β were set as 14 and 10, respectively. And we
used the support vector machines (SVMs) as the classifier, which is widely used
in bioinformatics. Our implementation of the SVM adopted LibSVM version
2.8 [15]. We chose the RBF kernel, and the kernel parameter gamma and C were
set as 2−7 and 128, respectively.

Multiple measures were used to assess the performance of our proposed
method, including sensitivity (Sens), specificity (Spec) and total accuracy (TA).
TA is the ratio of the samples classified correctly compared to the total size of
the data set. The sensitivity and specificity are defined in terms of the number
of true positives (TP ), the number of false positives (FP ), and the number of
false negatives (FN) as follows.

Sens =
TP

TP + FP
, Spec =

TP

TP + FN
. (3)

3.3 Results and Discussions

We examined the performance of the feature reduction method by comparing the
prediction accuracies of different feature vectors obtained by multiple methods.
Table 1 lists the number of dimension, total accuracy (TA), sensitivity (Sens) and
specificity (Spec) of five methods, respectively. The second and third methods
perform feature reduction by word frequency/tf-idf only, and the fourth and fifth
methods use all the di/tri-mers without feature reduction.

Table 1. Result Comparison

Method Dimension TA (%) Sens (%) Spec (%)

HMM-LDA 228 93.2 72.2 77.2
frequency 520 92.6 58.3 76.8

tf-idf 520 93.0 66.7 74.2
di-mer 400 93.2 65.7 76.3
tri-mer 8000 91.6 32.4 100

Table 1 clearly shows that the reduced feature set achieves good performance.
The tri-mer method has the biggest number of dimensions, but its accuracy is
the lowest. The reason why the tri-mer method has such high specificity and low
sensitivity is that the number of false negative is zero while the number of false
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positive is very big. We also conducted experiments using K-mers with K > 3,
and the accuracy is even worse. On the contrary, the HMM-LDA method has
only 228 dimensions, but it has the best classification performance, especially
for the sensitivity, which is nearly 14% higher than that of using frequency only
as feature reduction method, and 6.5% higher than that of using all the di-
mers. We can also observe that an initial feature reduction using frequency or
tf-idf has much better performance than that of tri-mer method, but has little
advantage over di-mer method. That may be because the di-mers are better for
the classification.
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Fig. 2. Sensitivities obtained with different numbers of topics

In addition, we examined the impact of the number of topics on the prediction
accuracy. The optimum number of topics was searched in the range from 5 to 95,
including all the multiples of 5. The relationship between the number of topics
and sensitivity is depicted in Figure 2. We found that the highest sensitivity
(72.2%) was obtained when the number of topics is 55. And it could be observed
from the figure that the number of topics has great influence on the final result.
Even using the HMM-LDA model to reduce the dimension, if the number of
topics is not appropriately selected, the sensitivity would be not higher than
using frequency only. The reason is that we may remove some useful features in
the process of dimension reduction.

On the whole, the experimental results demonstrate that using the HMM-
LDA model for dimension reduction can improve the prediction accuracy, and
it is helpful for predicting novel effectors.

4 Conclusion

In this paper, we use machine learning approaches to predict proteins secreted
via the type III secretion system. We mainly focus on the sequence features,
i.e., the frequencies of amino acid subsequences. Instead of using all K-mers,
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we propose to use the HMM-LDA to eliminate noisy features. We compare the
new method with the methods that use all di-mers/tri-mers, and that use only
frequency/tf-idf as feature reduction method. The cross-validation tests show
that our method achieves higher values on all of the accuracy measures.

This work is a preliminary study utilizing topic models to perform the feature
reduction for protein sequence classification. For the future work, we will keep
exploring better criteria in selecting the informative subsequences, as well as
seeking the specific signals in the sequences that direct the secretion of effectors
so as to advance our understanding on type III secretion mechanism.

Acknowledgments. This work was supported by the National Natural Sci-
ence Foundation of China (Grant No. 61003093), and the Science & Technology
Program of Shanghai Maritime University (Grant No. 20110009).
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Abstract. Visual saliency is an important and indispensable part of vi-
sual attention. We present a novel saliency detection model using Bayes’
theorem. The proposed model measures the pixel saliency by combin-
ing local kernel density estimation of features in center-surround region
and global density estimation of features in the entire image. Based on
the model, a saliency detection method is presented that extracts the
intensity, color and local steering kernel features and employs feature
level fusion method to obtain the integrated feature as the correspond-
ing pixel feature. Experimental results show that our model outperforms
the current state-of-the-art models on human visual fixation data.

Keywords: Visual attention, Saliency map, Bayes’ theorem, Kernel
density estimation.

1 Introduction

The Human visual system rapidly and automatically detects salient locations of
images or videos to reduce the computational complexity. Saliency maps are to-
pographical maps of the visually salient parts in static and dynamic scenes, which
can be classified as bottom-up saliency map and top-down saliency map. The
former are automatically-driven, while the latter are task-driven. The detection
of salient image locations is important for applications like object detection[1],
image browsing[2], and image/video compression[3].

Several computational models have been proposed to compute saliency maps
from digital imagery. Some of these models[4] are biologically based, while other
models [5–7] are partly based on biological models and partly on computational
ones. Furthermore, the learning techniques training from human fixation data
are recently introduced to compute bottom-up saliency map[8, 9].

The saliency model of Itti and Koch [4] is the earliest and the most influential
model. Based on the feature integration theory, the model decomposes the input
image into three channels (intensity, color, and orientation) and combines the
multiscale center-surround excitation responses of feature maps in the three
channels into a single saliency map. Gao et al. [10] proposed the discriminant
center-surround saliency hypothesis, which is obtained by combining the center-
surround hypothesis and the hypothesis that all saliency decisions are optimal in
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a decision-theoretic sense. The saliency of each image location is equated to the
discriminant power of a set of features observed in that location to distinguish
between the region and its surround. Bruce and Tsotsos[5] modeled saliency at
a location as the self-information of the location relative to its local surround
or the entire image. Zhang et al.[6] proposed a Bayesian framework (SUN) from
which the bottom-up saliency are computed as the self-information of local visual
features. The underlying hypothesis of the framework is that the probability of
local visual features is equal to saliency. Seo et al. [11] computed a saliency
map through computing the self-resemblance of a feature matrix at a pixel with
respect to its surrounding feature matrices. In [8], the authors learned optimal
parameters for saliency detection model based on low-level, middle-level and
high-level image features. Murray et al.[9] used a non-parametric low-level vision
model to compute saliency, where the scale information is integrated by a simple
inverse wavelet transform over the set of extended contrast sensitivity function
(ECSF) outputs and the ad-hoc parameters are reduced by introducing training
steps on both color appearance and eye-fixation data.

Considering that Zhang et al.[6] and Seo et al.[11] respectively utilize a part
of Bayes’ equation of saliency, we integrate the two parts of Bayes’ equation and
measure saliency as a function of local and global kernel density estimation using
Bayes’ theorem.

The rest of the paper is organized as follows. The proposed saliency detection
model is described in Section 2. Section 3 presents the implementation of pro-
posed saliency detection model. Experimental results and conclusions are given
in Sections 4 and 5, respectively.

2 Proposed Saliency Detection Model

Motivated by the approach in [6], [10] and [11], we measure saliency of each
pixel by Bayes’ theorem. Firstly, representing saliency of each pixel i under the
feature Fi and the location Li as a binary random variable, we define binary
random variables {yi

M
i=1} as follows

yi =
{

1, if pixel i is salient,
0, otherwise. (1)

where i = 1, . . . , M and M is the total number of pixels in the image.
Thus, the saliency of a pixel i is defined as a posterior probability Pr(yi =

1|F, L) as follows
Si = Pr(yi = 1|Fi, Li) (2)

where Fi = [f1
i , f2

i , . . . , fK
i ] contains a set of features {fi

K
k=1} extracted from the

local neighborhood of the corresponding pixel, K is the number of features in
that neighborhood and Li represents the pixel coordinates.

Eq. 2 can be rewritten using Bayes’ rule:

Si = Pr(yi = 1|Fi, Li) =
p(Fi, Li|yi = 1)Pr(yi = 1)

p(Fi, Li)
(3)
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We assume that 1) the feature and location are independent and conditionally
independent given yi = 1; and 2) under location prior, Pr(yi = 1|L) is equal to
be salient. Then Eq. 2 is simplified as follows

Si =
p(Fi, Li|yi = 1)Pr(yi = 1)

p(Fi, Li)

=
1

p(Fi)
p(Fi|yi = 1)Pr(yi = 1|Li)

=
1

p(Fi)
p(Fi|yi = 1) (4)

p(Fi) depends on the visual features and implies that the feature of less proba-
bility seems to have higher saliency. In Seo et al.[11], p(Fi) is considered uniform
over features. In Bruce et al.[5] and Zhang et al.[6], p(Fi) is used to detect
saliency, where Fi is the feature vector and the features are calculated as the re-
sponses to filters learned from natural images. Different from Bruce et al.[5] and
Zhang et al.[6], we directly calculate p(Fi) using normalization kernel density
estimation for Fi. Then we obtain Eq. 5.

1
p(Fi)

=

∑M
i=1

∑M
j=1 κ(Fi − Fj)∑M

j=1 κ(Fi − Fj)
(5)

where κ is the kernel density function and M is the total pixels number of the
image.

In Zhang et al.[6], p(Fi|yi = 1) of Eq. 4 is considered with knowledge of the
target and is not used when calculating saliency. However, Seo et al.[11] adopt
local ”self-resemblance” measure to calculate p(F |yi = 1) using nonparametric
kernel density estimation. Similar to Seo et al.[11], we make a hypothesis that
yi = 1 of the center pixel i in the center-surround region. It means that Fi is
the only sampled feature in the center-surround features’ space. Under this hy-
pothesis, we estimate all F = [F1, F2, . . . , FN ] including Fi using kernel density
estimation in the center-surround region where F is a feature set containing
features from the center and surrounding region and N is the number of pix-
els in the center-surround region. Then we normalize p(Fi|yi = 1) under the
hypothesis of yi = 1.

p(Fi|yi = 1) =
κ(Fi − Fi)∑N

j=1 κ(Fi − Fj)

=
1∑N

j=1 κ(Fi − Fj)
(6)

Now we rewrite Eq. 4 using Eq. 5 and Eq. 6 and obtain the saliency formula of
each pixel
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Si =

∑M
i=1

∑M
j=1 κ(Fi − Fj)∑M

j=1 κ(Fi − Fj)

1∑N
j=1 κ(Fi − Fj)

(7)

Eq. 7 could be represented as follows

Si =
Klocal(Fi)
Kglobal(Fi)

(8)

where Klocal(Fi) represents normalization kernel density estimation in the local
center-surround region and Kglobal(Fi) represents normalization kernel density
estimation in the entire image. Thus, we model pixel saliency as local and global
kernel density estimation of features of the corresponding pixel.

3 Implementation

Due to the contributions of Takeda et al.[12, 13] to adaptive kernel regression,
local steering kernel was proposed as a feature to compute p(F |yi = 1) in [11].
Though local steering kernel(LSK) is to robustly obtain the local structure of
images by analyzing pixel value difference, it is unable to represent intensity or
color information of the corresponding pixel, which are the important cues for
computing saliency. Lacking intensity and color information, the LSK feature
only represents a weighted relation which penalizes distance away from the local
position where the approximation is centered[12]. So, it is not used appropriately
to compute p(F ).

In our implementation, we extract the intensity, color and LSK features and
employ feature-level fusion method to obtain the integrated feature of these
features. Then, we compute the local and global kernel density estimation of the
integrated feature to obtain the saliency value. The implementation could be
detailed by the following steps:

1.We extract intensity and color features from the Lab color space. In the Lab
color space, each pixel location is an [L; a; b]T vector. For the input image of M
pixels, the normalized L component of each pixel composes the intensity features
FL = [FL

1 , . . . , FL
i , . . . , FL

M ]T ; the normalized a and b components compose the
color features FC = [FC

1 , . . . , FC
i , . . . , FC

M ]T , where FL
i and FC

i are respectively
the intensity feature and color feature of the ith pixel.

2.Local steering kernel(LSK) features are extracted. The local steering kernel
[11] is represented as follows

K(xj − xi) =

√
det(Cj)
h2

exp{ (xj − xi)TCj(xj − xi)
−2h2

} (9)

where j ∈ {1, · · · , P} , P is the the number of pixels in a local window, h is a
global smoothing parameter and the matrix Cj is a covariance matrix estimated
from a collection of spatial gradient vectors within the local analysis window
around a sampling position xj = [x1, x2]Tj . We extract the normalized local
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steering kernels from each color channel L,a, b as FLS
i , FaS

i , FbS
i and collect

them to form LSK feature FS
i = [FLS

i , FaS
i , F bS

i ]. These normalized local steer-
ing kernels FLS

i = [fL1
1, . . . , fLj

i , . . . , fLP
i ] are computed from the P number

of pixels in a local window centered on the pixel i, where fLj
i is computed as

Eq. 10.

fLj
i =

K(xj − xi)∑P
j=1 K(xj − xi)

, i = 1, · · · , M ; j = 1, · · · , P (10)

The the normalized local steering kernels FaS
i and FbS

i can be obtained by the
same process.

3. We obtain the integrated features. Because the LSK features are dense,
PCA is applied to FS

i for dimensionality reduction and retain only the largest
d principal components. The lower dimensional features of local steering ker-
nel features are obtained as FS = [FS

1 , . . . , FS
i , . . . , FS

M ], where FS
i is the lower

dimensional LSK feature of the ith pixel. Then the FL
i , FC

i and FS
i are concate-

nated to form the integrated features FCi.

FCi = [FL
i , FC

i , FS
i ]. (11)

4.Calculating kernel density estimation of p(FCi) is usually time-consuming.
In order to speed up the operation, we perform a kernel density estimation using
a Gaussian kernel with with the rule-of-thumb bandwidth1.

5.Because using a feature matrix consisting of a set of feature vectors provides
more discriminative power than using a single feature vector, ”Matrix Cosine
Similarity” [11] is chosen to compute p(FCi|yi = 1). The feature vectors FC′

i =
[FC1, . . . , FCi, . . . , FCL] are used to replace FCi to compute p(FCi|yi = 1),
where L is the number of features in a local neighborhood centered on the pixel
i . Then we use the following equation to calculate p(FC′

i|yi = 1)

p(FC′
i|yi = 1) =

1∑N
k=1 exp(−1+ρ(FC′

i,FC′
k)

σ2 )
, k = 1, · · · , N (12)

where ρ(FC′
i, FC′

k) is equal to trace ( FC′T
i FC′

k

‖FC′
i‖‖FC′

k
‖ ) and σ is set to 0.07 as default

value.
6.By step 4 and step 5, we obtain the value of p(FCi) and p(FCi|yi = 1).

Then saliency of each pixel is calculated using Eq. 4.

4 Experimental Results

We evaluated our method’s performance with respect to predicting human visual
fixation data from natural images. The dataset and the corresponding fixation
1 We use the Kernel Density Estimation Toolbox for Matlab provided by Alexander

Ihler (Available at http://www.ics.uci.edu/~ihler/code/kde.html)

http://www.ics.uci.edu/~ihler/code/kde.html)
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Table 1. Performance of Three Kinds of Saliency Models

Model KL(SE) AUC(SE)

saliency model only using p(FCi) 0.3792(0.0032) 0.6897(0.0008)

saliency model only using p(FCi|yi = 1) 0.4088(0.0030) 0.6841(0.0007)

our model 0.4302(0.0031) 0.7022(0.0008)

Table 2. Experimental Results

Model KL(SE) AUC(SE)

Itti et al.[4] 0.1130(0.0011) 0.6146(0.0008)

Bruce and Tsotsos[5] 0.2029(0.0017) 0.6727(0.0008)

Gao et al.[10] 0.1535(0.0016) 0.6395(0.0007)

Zhang et al.[6] 0.2097(0.0016) 0.6570(0.0008)

Seo and Milanfar[11] 0.3432(0.0029) 0.6769(0.0008)

Our Method 0.4302(0.0031) 0.7022(0.0008)

data we used were collected by Bruce and Tsotsos[5] as the benchmark dataset
for comparison. The dataset contains eye fixation data from 20 subjects for a
total of 120 natural images of size 681 × 511.

In order to reduce the computation cost, the input images are down-sampled
to an appropriate scale (64× 64). We then set P = 3× 3 and h = 0.2 to extract
the normalized LSK values in three color channels of size 3 × 3 to form the
image local structure features FS

i . The lower dimensional LSK feature FS
i only

contains three dimensions. The probability of p(FC′
i|yi = 1) is computed under

L = 7 × 7 and N = 3 × 3.
The Kullback-Leibler(KL) divergence and the area under receiver operating

characteristic(AUC) were computed as performance metrics. A high value of
two metrics means better performance. In Zhang et al.[6], Zhang et al. noted
that the original KL divergence and ROC area measurement are corrupted by
an edge effect which yielding artificially high results. For eliminating border
effects, we adopt the same procedure described by Zhang et al.[6] to measure
KL divergence and ROC area. As we alluded to earlier, the proposed saliency
detection model, combining local and global kernel density estimation using
Bayes’ theorem, provides more discriminative power than the saliency models
only utilizing a part of Bayes’ equation of saliency. Table 1 well demonstrate
that.

We compared our method against state-of-the-art methods [4–6, 10, 11]. The
mean and the standard error are reported in Table 2. Our method performs bet-
ter than the current state-of-the-art models in KL-divergence and AUC metrics.
Limited by space, we only present some examples of visual results of our method
compared with Seo et al.[11] and Bruce et al.[5] in Fig. 1. Visually, our method
also exceeds the other two models in term of accuracy.
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Fig. 1. Examples of saliency map on human visual fixation data
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5 Conclusions and Future Work

In this paper, we presented a novel saliency detection model using Bayes’ the-
orem. Because of the limitation of the common saliency models utilizing only
a part of Bayes’ equation of saliency, the proposed model integrates the two
parts of Bayes’ equation. Then the pixel saliency is modeled as the combina-
tion the global and local kernel density estimation of the integrated features.
Experimental results demonstrate that the proposed model exceeds the current
state-of-the-art models. In future work, we will investigate the saliency detection
method for dynamic video.

Acknowledgments. This work is supported by the National Natural Science
Foundation of China (Project Number: 60832010) and the Fundamental Re-
search Funds for the Central Universities (Grant No. HIT. NSRIF. 2010046).
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Abstract. It is well known that visual attention and saliency mechanisms play 
an important role in human visual perception. This paper proposes a novel 
bottom-up saliency mechanism through scale space analysis. The research on 
human perception had shown that our ability to perceive a visual scene with 
different scales is described with the Contrast-Sensitivity Function (CSF). 
Motivated by this observation, we model the saliency as weighted average of 
the multi-scale analysis of the visual scene, where the weights of the middle 
spatial frequency bands are larger than others, following the CSF. This method 
is tested on natural images. The experimental results show that this approach is 
able to quickly extract salient regions which are consistent with human visual 
perception, both qualitatively and quantitatively. 

Keywords: Saliency Detection, Human Visual System, Scale Selectivity. 

1   Introduction 

It is well known that the visual attention and saliency mechanism play an important 
role in human visual perception. In recent years, there have been increasing efforts to 
introduce computational models to explain the fundamental properties of biological 
visual saliency. It is generally agreed that visual attention of Human Vision System 
(HVS) is an interaction between bottom-up and top-down mechanisms. In this paper, 
we will focus on the bottom-up saliency detection.  

Bottom-up saliency drives attention only by the properties of the stimuli in a visual 
scene and is independent of any high level visual tasks. Inspired by the early visual 
pathway in biological vision, the features used in saliency models include low-level 
simple visual attributes, such as intensity，color, orientation and motion. In one of the 
most popular models for bottom-up saliency [1], saliency is measured as the absolute 
difference between feature responses at a location and those in its neighborhood, in a 
center-surround fashion. This model has been shown to successfully replicate many 
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observations from psychophysics [2]. Gao and Mahadevan [3] implemented the center-
surround mechanisms as a discriminate process based on the distributions of local 
features centering and surrounding at a given point. In a recent proposal, Kienzle et al. [4] 
employed machine learning techniques to build a saliency model from human eye 
fixations on natural images, and showed that a center-surround receptive field emerged 
from the learned classifier. Some other recent works model the saliency in information 
theory and deriving saliency mechanisms as optimal implementations of generic 
computational principles, such as the maximization of self-information [5], local entropy 
[6] or ‘surprise’ [7]. Other methods are purely computational and are not based on 
biological vision principles [8, 9]. 

This paper proposes a saliency detection method based on the scale selectivity of 
HVS. In natural scenes, objects and patterns can appear at a wide variety of scales. In 
other words, a natural image includes signals of multiple scales or frequencies. 
However, the HVS is able to quickly select the frequency band that conveyed the 
most information to solve a given task and interpret the image, not conscious of the 
information in the other scales [10]. Researches on human perception had suggested 
that image understanding is based on a multi-scale, global to local analysis of the 
visual input [11, 12]. The global precedence hypothesis of image analysis implies that 
the low spatial frequency components dominate early visual processing. Physiological 
research has also shown that our ability to perceive the details of a visual scene is 
determined by the relative size and contrast of the detail present. The threshold 
contrast necessary for perception of the signal is found to be a function of its spatial 
frequency, described by the CSF [13, 14], in which contrast sensitivities are higher in 
the middle frequency bands than the other bands. These inspire us to detect saliency 
in the visual by using the low-middle frequency components and ignoring the other 
ones.  

The rest of the paper is organized as follows. Some related works on scale 
selectivity of human vision system will be given in Section 2. The analysis of the eye 
tracking data and the details of the proposed saliency detection methods are described 
in Section 3. Experimental results are shown in Section 4. Finally the conclusions are 
given in Sections 5. 

2   Scale Selectivity of Human Vision System 

Scale selectivity is a visual processing property which passes different spatial 
frequencies. This behavior is characterized by a modulation-transfer function (MTF) 
which assigns an amplitude scale factor to different spatial frequency [15]. The 
amplitude scale factor ranges from 1.0 for spatial frequencies that are completely 
passed by the filter to 0.0 for spatial frequencies that are completely blocked. In 
certain situations, the MTF can be described by the CSF [13] which is the reciprocal 
of contrast sensitivity as a function of spatial frequency. This function describes the 
sensitivity of the human eye to sine-wave gratings at various frequencies. 
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The CSF tells us how sensitive we perceive different frequencies of visual stimuli. 
As illustrated in Fig.1 [15], the CSF curve is band pass in which spatial frequencies 
around 3-6 cycles/degree are best represented, while both lower and higher are poorly, 
and it is meaningless for that above 60 cycles/degree. That is to say, if the frequency 
of visual stimuli is too high, we will not be able to recognize the stimuli pattern any 
more. For example, the stripes in an image consisting of vertical black and white 
stripes are thin enough (i.e. a few thousand per millimeter), then we will not be able to 
see the individual stripes. 

 

Fig. 1. Contrast-Sensitivity Function [15] 

3   Saliency Detection Based on Scale Selectivity 

Motivated by the observation in scale selectivity of human vision system, we propose 
a novel algorithm in this section. Although the form of CSF is known, the 
measurements of CSF only utilize sine-wave gratings, which is a simple stimulus 
[13]. Nevertheless, its application on complex stimuli, such as nature images, is 
dubious. Therefore we firstly analyze the sensitivity of the human eye at each spatial 
frequency according to eye tracking data over images. 

3.1   Analysis of Eye Tracking Data 

It is well known that any image can be represented equivalently in image space and 
frequency space. One can move back and forth between image space and frequency 
space via Fourier transformation and inverse Fourier transformation [17]. Fig.2 shows 
some natural images, their corresponding pictures in different frequency band and 
human saliency map, respectively. It is obvious that low-middle frequency 
components of image are closest to the human’s perception when compare with the 
saliency map from the eye tracking data, which is consistent with previously 
described CSF. 
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 (a)                   (b)                (c)                  (d) 

Fig. 2. Analysis of spatial frequencies. In each group, we present (a) original image, (b) 
decomposition of image into low-middle frequency components, (c) decomposition of image 
into high frequency bands, (d) saliency map from the eye tracking data. 

As stated before, different frequencies which human perceive are quite distinct, 
namely, human have intense perception in some frequency but in others have a little 
or scarcely sensitive. We analyze the sensitivity of the human eye at each spatial 
frequency on two pubic datasets proposed by Bruce et al. [5] and Judd et al. [16]. The 
dataset of Bruce et al. [5] contains eye fixation records from 20 subjects on 120 
images of size 511×681. The dataset of Judd et al. [16] contains 1003 natural images 
covering a wide range of situations, and the eye fixation data is collected from 15 
subjects. All of images are down-sampled to the size of 64× 86. 

We use the ROC metric for quantitative analysis human sensitive on each 
frequency. Under the criterion, we make comparisons between every frequency map 
from an image and eye fixation records from humans [5, 16]. By varying the 
threshold, we draw the ROC curve, and the area under the curve indicates how well 
the frequency map of any frequency can predict the ground truth fixations. More 
specifically, the larger area, the more sensitive human perceive, and vice versa. 
According to the value of the area, we obtain a set of coefficients about human 
sensitivity in every frequency. Fig.3(a)(b) and Fig.4(a)(b) are the sensitivity curves 
showing the changes in scales which are obtained from both the whole and part of the 
dataset, respectively. The red curves in these figures represent the sensitivity statistic 
of human fixation in different scales, while the blue ones are the 5-order polynomial 
fitting with respect to the red. As shown in these figures, we find that the sensitivity 
curve of different scenarios share similar trends. 
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(a)                                    (b) 

Fig. 3. Sensitivity curves on different frequency (a) over 60 images and (b) the whole images in 
Bruce et al. [5], where red curves represent the sensitivity statistic of human fixation in 
different scales, and the blue ones are the polynomial fitting with respect to the red ones 
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(a)                                    (b) 

Fig. 4. Sensitivity curves on different frequency (a) over 300 images in Judd et al. and (b) the whole 
images in Judd et al. [16], where red curves represent the sensitivity statistic of human fixation in 
different scales, and the blue ones are the polynomial fitting with respect to the red ones 

Table 1. Test results of frequency sensitivity by cross-validation 

 Bruce dataset [5] Judd dataset [16] 
Bruce dataset [5] 0.71259 0.68612 
Judd dataset [16] 0.71590 0.69438 
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According to the sensitivity coefficients from Fig.3 and Fig.4, we conduct four 
tests. In the first two tests, we utilize the sensitivity coefficients from part of the 
images as the weighted value of amplitude, and test on the other part of same dataset. 
In the later two, we carry out in a cross-dataset validation way, where training and 
testing are on different datasets. More specifically, we use each sensitivity coefficient 
from the whole dataset of Judd as the weighted value of amplitude, and test on Bruce 
dataset. Similarly, we conducted on the whole datasets of Bruce and test on Judd. 
Table 1 lists the four test results of cross-validation. For example, the value 0.71259 
indicates the result training and testing both on Bruce dataset. As shown in Table 1, 
the best test result comes from training on Judd and testing on Bruce; while the worst 
result from training on Bruce and testing on Judd. This may due to the fact that the 
images in Judd dataset include more semantic objects which attract human eyes such 
as faces, cars, which can not explain by low level signal features only. However, 
difference between training results are little, which indicate that we can mimic the 
scale selectivity of HVS by designing a band-pass filter which passes the low-middle 
frequency components while suppresses the others.  

3.2   Saliency Based on Scale Selection 

Based on the scale selection properties of human vision system, we decompose the 
input image into the multi-scale bands and detect the saliency of the input scene by 
designing a band-pass filter which mimic the scale selectivity of human vision 
system.  

We use Fourier transform to get a multi-scale representation of the input. The 2D 
formulation of Fourier function is: 

2 ( )

( , )

( , ) ( , ) j ux vy

x y

F u v I x y e π += 
, 

(1)

where (x, y) is the coordinate of the current pixel and I(x,y) is the intensity function of 
input image. The variable u and v represent spatial frequency coordinate of natural 
image in horizontal and vertical directivity, respectively. The amplitude in each 
frequency band is represented as: 

( , ) ( , )A u v F u v= . (2)

Weighted value of each scale in image is equal to the corresponding coefficients. As a 
result, the amplitude B(ω) in each scale after weighting can be represented as: 

( ) ( ) ( )B A Hω ω ω= ⋅ . (3)

The weighted amplitude map in different frequencies bands is shown in Fig.5(c). It 
can be seen that the center of the amplitude map is lighter, which further demonstrate 
the amplitude is more intense at low-middle frequency. 

Then we can acquire saliency image in each spatial frequency by Inverse Fourier 
Transform. The value of the saliency map is obtained by Eq.4: 

[ ]21( , ) ( , )* ( ) exp( ( ))S x y g x y F B i P wω−= ⋅ ⋅ , (4)
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whereF-1 denotes Inverse Fourier Transform, ( )P w  is the phase spectrum of the image, 

which is preserved during the process, and ( , )g x y  indicates a 2D Gaussian filter to 

smooth the saliency map. An example of the saliency image is shown in Fig.5(d). 
As stated before, human vision system are more sensitive to the low-middle 

frequency components. Based on the observation, we find that simply using the low-
middle frequency components of image as the saliency map produces excellent result.  

The low-middle frequency component is extracted using the following band-pass 
filter: 

2 2 2 2
1 2( ) exp( / 2 ) exp( / 2 )H ω ω σ ω σ= − − − , (5)

where w is the frequency, it is represented as: 2 2w u v= + , σ1, σ2  are the variances 
of the Gaussian function. The relationship between σ and cut-off frequency ω0 is 
described as: 

0

1

2 ln 2
σ ω= . (6)

According to perception ability that HVS on different spatial frequency visual signal, 
we indicate that the variances of σ are 15.2 and 90.5, respectively. The band-pass 
filter that we defined is shown in Fig.5(b). It preserves the low-middle frequency of 
the image for the detection of saliency.  

         
(a)                       (b)                  (c)                   (d) 

Fig. 5. (a) is the original image. The corresponding weighted amplitude map (c) is computed 
using the band-pass filter (b). And the saliency map is shown in (d). 

4   Experimental Results 

In this section, we evaluate the proposed method on natural images to demonstrate its 
effectiveness. In the experiments, we use the image dataset and its corresponding eye 
fixations collected by Bruce et al. [5] as the benchmark for comparison. We down-
sample the images to the size of 64× 86 pixels. The results of our model are compared 
with two state-of-the-art methods: information maximization approach [5] and 
spectral residual approach [9], as shown in Fig.6 and Fig.7.  

For qualitative analysis, we show two challenging saliency detection cases. The 
first case (Fig.6) includes images with a large amount of textured regions in the 
background. These textured regions are usually neglected by the human beings, 
whose saliency will be obviously inhibited. For such images, we expect that only the 
object’s pixels will be identified as salient. In Bruce et al.’s method [5], the pixels on 
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the objects are salient, but other pixels which are on the background are partially 
salient as well. As a consequence, Bruce et al.’s method is quite sensitive to textured 
regions. In Hou et al.’s method [9], which is somewhat better in this respect, however, 
many pixels on the salient objects are not detected as salient, e.g., the clock. Our 
method detects the pixels on the salient objects and is much less sensitive to 
background texture. 

  
 
 
 
 
 
 
 
 
 
 
       (a)               (b)              (c)             (d)               (e)    
 

Fig. 6. Comparative saliency results on images with a large amount of textured regions in the 
background. The first image in each row is the original image (a), the rest saliency maps from 
left to right are produced by Bruce et al.[5] (b), Hou et al.[9] (c), our method (d) and human 
fixations (e), respectively. 

 

 
 
 
 
 
 
 
 
 
 

        
     

(a)             (b)              (c)              (d)              (e) 

Fig. 7. Comparative saliency results on images of complex scenes. The first image in each line 
is the original image (a), the rest saliency maps from left to right are produced by Bruce et 
al.[5] (b), Hou et al.[9] (c), our method (d) and human fixations and (e), respectively. 

The second case includes images of complex scenes. Fig.7 shows images of messy 
scene indoor. In this situation, the core objects in cluttered scene are expected as 
salient. It can be observed that our approach capture salient parts. For example both 
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the globe and the table are detected in the first scene, and the hydrant is detected in 
the second scene. Taking the advantage of the property of middle spatial frequency, 
the proposed method achieves the best visual-evaluated performances among all 
comparative studies. 

For quantitative evaluation, we exploit Receiver Operating Characteristic (ROC) 
curve. The fixation data collected by Bruce et al. [5] is compared as the benchmark. 
From Fig.8, we could see that our algorithm outperforms other methods. In addition, 
we computed the Area Under ROC Curve (AUC). The average values of ROC areas 
are calculated over all 120 test images. And the results are reported in Table 2, which 
further demonstrates the superiority of the proposed method. 

Table 2. Performances on static image saliency 

Method Bruce et al.[5] Hou et al.[9] Our method 

AUC 0.6919 0.7217 0.7265 
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Fig. 8. ROC curves for different methods 

5   Conclusion 

In this paper, we propose a novel saliency detection method through scale space 
analysis. The saliency is based on the principle which is observed in the psychological 
literature: our ability to perceive a visual scene on different scales. This inspires us to 
detect saliency by using the low-middle frequency components and ignoring the 
others. Experiments on real world datasets demonstrated that our method achieves a 
high degree of accuracy and the computing cost is less. We would like to learn the 
benefits of our method in applications, such as image classification and image quality 
assessment in the future. 
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Abstract. In this paper, we present a saliency guided image retargeting method. 
Our bio-inspired saliency measure integrates three factors: dissimilarity, spatial 
distance and central bias, and these three factors are supported by research on 
human vision system (HVS). To produce perceptual satisfactory retargeting 
images, we use the saliency map as the importance map in the retargeting 
method. We suppose that saliency maps can indicate informative regions, and 
filter out background in images. Experimental results demonstrate that our 
method outperforms previous retargeting method guided by the gray image on 
distorting dominant objects less. And further comparison between various 
saliency detection methods show that retargeting method using our saliency 
measure maintains more parts of foreground. 

Keywords: visual saliency, dissimilarity, spatial distance, central bias, image 
retargeting. 

1   Introduction 

Human vision system is able to select salient information among mass visual input to 
focus on. Via the ballistic saccades of the eyes, the limited resources of the visual 
apparatus are directed to points of attentional awareness. Computationally modeling 
such mechanism has become a popular research topic in recent years [1], [2], [3] and 
the models has been applied to visual tasks such as image classification [4], image 
segmentation [5] and object detection [6]. 

In this paper, a saliency guided image retargeting method is proposed. We use our 
biologically inspired saliency measure proposed in [7], and this measure integrates 
three factors: dissimilarity, spatial distance and central bias. The dissimilarity is 
evaluated using a center-surround operator simulating the visual receptive field. 
Visual neurons are typically more sensitive in a small region of the visual space (the 
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center) when stimuli are presented in a broader region around the center (the 
surround) [1], and this structure is a general computational principle in the retina and 
primary visual cortex [8]. The above second factor, i.e., spatial distance, is supported 
by the research [9] on foveation of HVS. HVS samples the visual field by using a 
variable resolution, and the resolution is highest at center (fovea) and drops rapidly 
toward the periphery [10]. Therefore with the increasing spatial distance between the 
current fixation and another image location, the influence of dissimilarity between 
them is decreased due to the decreased resolution. In addition, subjects tend to look at 
the center of images according to previous studies on the distribution of human 
fixations [11]. This fact, also known as central bias (the above third factor), has often 
been contributed to the experimental setup (e.g. experiments typically start in the 
center) but also reflects that photographer tent to center objects of interest [12]. 

To produce perceptual satisfactory retargeted images, we use the saliency map as the 
importance map in the retargeting method. Image retargeting aims at resizing an image 
by expanding or shrinking the non-informative regions. Therefore, an essential 
component of retargeting techniques is to estimate where the important regions of an 
image are located, and then these regions will be preserved in the final resized image 
[13]. The map recording the importance of all regions in an image is called an 
importance map. Various importance maps have been introduced, such as a Harris 
corners based map [14], a gradient-based map [15] or the corresponding gray image [16]. 
However, these importance maps are sensitive to strong edges appeared in background 
regions of an image due to the presence of noise. On the contrary, background can be 
filtered out by a saliency map, and informative regions are often salient in an image. 
Therefore we will use the saliency map as the importance map in our retargeting method. 

The paper is organized as follows: Review of our saliency detection is in Section 2. 
In Section 3, we present our saliency guided retargeting method. In Section 4, we 
compare our retargeting method with previous method, and the performance of 
retargeting methods based on different saliency measures is also compared. The 
conclusions are given in Section 5. 

2   Review of Our Saliency Measure 

We use our saliency measure proposed in [7], and it is shown in Fig. 1. There are four 
main steps in our method: splitting image into patches, reducing dimensionality, 
evaluating global dissimilarity and weighting dissimilarity by distance to center. First 
non-overlapping patches are drawn from an image, and all of the color channels are 
stacked to represent each image patch as a feature vector of pixel values. All vectors 
are then mapped into a reduced dimensional space. The saliency of image patch ip  is 

calculated as 

1( ) ( ) ( )i i iSaliency p p GD pω= ⋅  (1)

where 1( )ipω  represents central bias and ( )iGD p  is the global dissimilarity.  

1( )ipω  and ( )iGD p  are computed as  

1
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In Eq. 2, ( )iDistToCenter p  is the spatial distance between patch ip and center of 

the original image, and max { ( )}j jD DistToCenter p=  is a normalization factor. In 

Eq. 3, L  is total number of patches, 2 ( , )i jp pω  is inverse of spatial distance, and 

( , )i jDissimilarity p p  is dissimilarity of feature response between patches. 2 ( , )i jp pω  

and ( , )i jDissimilarity p p  are computed as 

2

1
( , )

1 ( , )i j
i j

p p
Dist p p

ω =
+

 (4)

( , ) || ||i j i jDissimilarity p p f f= −  (5)

In Eq. 4, ( , )i jDist p p  is the spatial distance between patch ip  and patch jp  in the 

image. In Eq. 5, feature vectors if  and jf  correspond to patch ip  and patch jp  

respectively. Finally, the saliency map is normalized and resized to the scale of the 
original image, and then is smoothed with a Gaussian filter ( 3σ = ). 

 

Fig. 1. Our saliency detection method [7] 
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3   Saliency Guided Image Retargeting 

The proposed saliency guide image retargeting is demonstrated in Fig. 2. Rubinstein 
et al. [16]’s retargeting method using seam carving operator is exploited. However, as 
stated in Section 1, we will use saliency maps as importance maps to guide seams 
carving, instead of original gray image in Rubinstein’s method. To introduce high-
level semantic information, the saliency map is combined with the results of face 
detection [17], pedestrian detection [18] and vehicle detection [19]. In Fig. 2, the 
results of respective detectors are called face conspicuity map, pedestrian conspicuity 
map and vehicle conspicuity map. The conspicuity map is a binary map, and is the 
same size as original image. On the map, pixels belonging to the corresponding object 
(face, pedestrian or vehicle) are set to 1, and other pixels are set to 0. Then the 
“saliency map with semantic information” in Fig. 2 is calculated by linearly adding 
the saliency map, face conspicuity map, pedestrian conspicuity map and vehicle 
conspicuity map with respective weights Sω , fω , pω  and vω . Other object  

detectors can also be added into the above framework. 

 

Fig. 2. Saliency guided image retargeting combined with object detectors 

4   Experimental Validation 

The saliency guided image retargeting method is applied on two public image datasets 
[20], [21] to evaluate its performance. We will compare the distortions induced by our 
method and Rubinstein’s original method [16]. Performance of image retargeting 
based on different saliency detection methods including ours is also compared. The 
same parameters of our method will be used across all images.  

4.1   Parameters Selection 

According to our previous parameter settings [7], the color space is YCbCr, the size 
of image patch is 14x14 and the dimensions to which each feature vector reduced is 
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11. Our saliency detection method with above parameters outperforms some state-of-
the-art [1], [20], [22], [23] on predicting human fixations, please see [7] for details. 
The weights Sω , fω , pω  and vω  stated in Section 3.2 are set equally to each 

other , i.e., 1/4. We do not tune these four weights to specific image dataset. 

4.2   Saliency Map vs. Gray Image 

The performance of our saliency guided retargeting is compared with Rubinstein’s 
original method based on gray image [16] in Fig. 3. On each input image, the 
foreground object is in the manually labeled regions using two red dashed lines, and 
these objects are supposed to be least distorted. In Fig. 3, car and people in images are 
less distorted by using our method. This is because these objects are dissimilar from 
surroundings (i.e., salient), and detectors of face, pedestrian and vehicle are used in 
our method. Other foreground objects are also less resized by our method such as 
rocks in the first input image. Another reason for our better performance is that 
foreground objects are often near the center of images due to photographers preferring 
placing objects of interest in the center [12], and this factor called central bias is  
integrated into our saliency detection method as stated in Section 3. 

 

Fig. 3. Comparison between image retargeting based on saliency maps (the second row) and 
gray images (the third row) 

4.3   Qualitative Comparison between Saliency Measures 

In Fig. 4, we compare the retargeting results based on Itti et al. [1], Bruce et al. [20], 
Hou et al. [22], Harel et al. [23], and our saliency measure. Our method achieves 
better results on the first three images whose foreground objects are not pedestrians or 
vehicles, therefore the results mainly attribute to our original saliency maps without 
semantic information. As shown in Fig. 1, our saliency map is spread-out, therefore 
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more parts of the foreground object on our map are detected as salient. According to 
Rubinstein’s retargeting method [16], non-informative or non-salient pixels are 
removed first. Consequently, our method prevents more pixels belonging to the 
dominant object from being removed. 

 

 

Fig. 4. Comparison of image retargeting based on Itti et al. [1], Bruce et al. [20], Hou et al. 
[22], Harel et al. [23] and our saliency measure 

 
Itti et al. [1] 

 
Bruce et al. [20] 

 
Hou et al. [22] 

 
Harel et al. [23] 

 
Our method 

 



188 L. Duan et al. 

4.4   Quantitative Comparison between Saliency Measures 

Ten students were asked to evaluate the retargeting results for each saliency measure 
according to the following criteria: almost perceptual satisfactory, moderate, and 
severely distorted. Therefore for each saliency measure, an image will be scored ten 
times. Fig. 5 shows the quantitative comparison based on Itti et al. [1], Bruce et al. 
[20], Hou et al. [22], Harel et al. [23] and our measure. Our method is more 
perceptual satisfactory and less distorted. 
 

 

Fig. 5. Quantitative comparison of image retargeting based on Itti et al. [1], Bruce et al. [20], 
Hou et al. [22], Harel et al. [23] and our saliency measure 

5   Conclusions 

In this paper, we have presented a saliency guided image retargeting method. The 
saliency detection method is biologically inspired, and the three key factors of the 
method are supported by research on HVS. We use the saliency map as the 
importance map in the retargeting method. Experimental results show that dominant 
objects are less distorted by using our method than by previous gray image guided 
method. And comparing with some other saliency measures, our method prevents 
more pixels belonging to foreground from being removed. The performance of our 
method can be further improved by extracting more visual features and introducing 
the top-down control of visual attention. 
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Abstract. Image processing in digital computer systems usually considers the 
visual information as a sequence of frames. These frames are from cameras that 
capture reality for a short period of time. They are renewed and transmitted at a 
rate of 25-30 fps (typical real-time scenario). Digital video processing has to 
process each frame in order to obtain a result or detect a feature. In stereo 
vision, existing algorithms used for distance estimation use frames from two 
digital cameras and process them pixel by pixel to obtain similarities and 
differences from both frames; after that, depending on the scene and the 
features extracted, an estimate of the distance of the different objects of the 
scene is calculated. Spike-based processing is a relatively new approach that 
implements the processing by manipulating spikes one by one at the time they 
are transmitted, like a human brain. The mammal nervous system is able to 
solve much more complex problems, such as visual recognition by 
manipulating neuron spikes. The spike-based philosophy for visual information 
processing based on the neuro-inspired Address-Event-Representation (AER) is 
achieving nowadays very high performances. In this work we propose a two-
DVS-retina system, composed of other elements in a chain, which allow us to 
obtain a distance estimation of the moving objects in a close environment. We 
will analyze each element of this chain and propose a Multi Hold&Fire 
algorithm that obtains the differences between both retinas. 

Keywords: Stereo vision, distance calculation, address-event-representation, 
spike, retina, neuromorphic engineering, co-design, Hold&Fire, FPGA, VHDL. 

1   Introduction 

In recent years there have been numerous advances in the field of vision and image 
processing, because they can be applied for scientific and commercial purposes to 
numerous fields such as medicine, industry or entertainment. 

As we all know, the images are two dimensional while the daily scene is three 
dimensional. Therefore, in the transition from the scene (reality) to the image, what 
we call the third dimension is lost. Nowadays, society has experienced a great 
advance in these aspects: 2D vision has given way to 3D viewing. Industry and 
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research groups have started their further research in this field, obtaining some 
mechanisms for 3D representation using more than one camera [14]. Trying to 
simulate the vision of human beings, researchers have experimented with two-
camera-based systems inspired in human vision ([12][13]). Following this, a new 
research line has been developed, focused on stereoscopic vision [1]. In this branch, 
researchers try to obtain three-dimensional scenes using two digital cameras. Thus, 
we try to get some information that could not be obtained with a single camera, i.e. 
the distance at which objects are. 

By using digital cameras, researchers have made a breakthrough in this field, going 
up to create systems able to achieve the above. However, digital systems have some 
problems that, even today, have not been solved. A logical and important result in 
stereoscopic vision is the calculation of distances between the point of view and the 
object that we are focused on. This problem is still completely open to research and 
there are lots of research groups focusing on it. The problems related to this are the 
computational cost needed to obtain appropriate results and the errors obtained after 
distance calculation. There are lots of high-level algorithms used in digital stereo 
vision that solve the distance calculation problem, but this implies a computer 
intervention into the process and it is computationally expensive.  

The required computational power and speed make it difficult to develop a real-
time autonomous system. However, brains perform powerful and fast vision 
processing using millions of small and slow cells working in parallel in a totally 
different way. Primate brains are structured in layers of neurons, where the neurons of 
a layer connect to a very large number (~104) of neurons in the following one [2]. 
Most times the connectivity includes paths between non-consecutive layers, and even 
feedback connections are present. 

Vision sensing and object recognition in brains are not processed frame by frame; 
they are processed in a continuous way, spike by spike, in the brain-cortex. The visual 
cortex is composed of a set of layers [2], starting from the retina. The processing 
starts when the retina captures the information. In recent years significant progress 
has been made in the study of the processing by the visual cortex. Many artificial 
systems that implement bio-inspired software models use biological-like processing 
that outperform more conventionally engineered machines ([3][4][5]). However, these 
systems generally run at extremely low speeds because the models are implemented 
as software programs. Direct hardware implementations of these models are required 
to obtain real-time solutions. A growing number of research groups around the world 
are implementing these computational principles onto real-time spiking hardware 
through the development and exploitation of the so-called AER (Address Event 
Representation) technology. 

AER was proposed by the Mead lab in 1991 [8] for communicating between 
neuromorphic chips with spikes. Every time a cell on a sender device generates a 
spike, it transmits a digital word representing a code or address for that pixel, using an 
external inter-chip digital bus (the AER bus, as shown in figure 1). In the receiver the 
spikes are directed to the pixels whose code or address was on the bus. Thus, cells 
with the same address in the emitter and receiver chips are virtually connected by 
streams of spikes. Arbitration circuits ensure that cells do not access the bus 
simultaneously. Usually, AER circuits are built with self-timed asynchronous logic. 
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Fig. 1. Rate-coded AER inter-chip communication scheme 

Several works are already present in the literature regarding spike-based visual 
processing filters. Serrano et al. presented a chip-processor able to implement image 
convolution filters based on spikes that work at very high performance parameters 
(~3GOPS for 32x32 kernel size) compared to traditional digital frame-based 
convolution processors (references [6],[7],[5]). 

There is a community of AER protocol users for bio-inspired applications in vision 
and audition systems, as evidenced by the success in the last years of the AER group 
at the Neuromorphic Engineering Workshop series. One of the goals of this 
community is to build large multi-chip and multi-layer hierarchically structured 
systems capable of performing complicated array data processing in real time. The 
power of these systems can be used in computer based systems under co-processing. 

First, we describe element by element of our processing chain until obtain the 
complete system. Then we propose an AER algorithm, which can be developed in 
AER systems using a FPGA to process the information; and that is able to obtain 
differences from both retinas and calculate a distance estimation of the object in 
movement. Finally, we present distance estimation results of the whole system, and 
compare it with the real distance. 

2   System Description 

In this section we will describe in detail the system used and each one of the 
components that form our system. We can see from figure 2 a block diagram of the 
whole system. 
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Fig. 2. Complete system with all the elements used 
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All the elements that compose our system are these (from left to right): two 
DVS128 retinas [10], two USB-AER, a Virtex-5 FPGA board, an USBAERmini2 [9] 
and a computer to watch the results with jAER software [11]. Next, we will talk about 
the USB-AER and the Virtex-5 FPGA board (Fig. 3). 

USB-AER board was developed in our lab during the CAVIAR project, and it is 
based on a Spartan II FPGA with two megabytes of external RAM and a cygnal 8051 
microcontroller. 

To communicate with the external world, it has two parallel AER ports (IDE 
connector). One of them is used as input, and the other is the output. In our system we 
have used two USB-AER boards, one for each retina. In these boards we have 
synthetized in VHDL a filter called Background-Activity-Filter, which allows us to 
eliminate noise from the stream of spikes produced by each retina. This noise (or 
spurious) is due to the nature of analog chips and since we cannot do anything to 
avoid it in the retina, we are filtering it. So, at the output of the USB-AER we have 
the information filtered and ready to be processed. 

 

Fig. 3. Left, USB-AER board; right, Virtex-5 FPGA board 

The other board used is a Xilinx Virtex-5 board, developed by AVNET [17]. This 
board is based on a Virtex-5 FPGA and mainly has a big port composed of more than 
eighty GPIOs (General Purpose Inputs/Outputs ports). Using this port, we have 
connected an expansion/testing board, which has standard pins, and we have used 
them to connect two AER inputs and one output. 

The Virtex-5 implements the whole processing program, which works with the 
spikes coming from each retina, processes them and obtains the differences between 
both retinas and the spikes rate of these differences. The whole program block 
diagram is shown in figure 4. The system behavior and its functionality are shown in 
the following sections. 

3   Multi Hold and Fire Algorithm 

Once we have all the elements of our chain, we can start thinking about the 
algorithms used. In this work we receive the traffic from both retinas and calculate the 
differences between them. To do that we have used the idea of the Hold&Fire 
building block [16] to obtain the difference of two signals. With this block working 
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correctly, we have extrapolated this to a 128x128 signals system (one for each pixel 
of the retinas) and obtained a Multi Hold&Fire system that allows us to calculate the 
differences between both retinas’ spikes streams. 

The Hold&Fire subtracts two pulses, received from two different ports. When it 
receives an event, it waits a short fixed time for another event with the same address. 
If it does not receive a second event and the fixed time is over, it fires the pulse. If, 
otherwise, it receives another event with the same address, then, if the new event 
comes from the other retina, the event is cancelled and no event is transmitted, but if 
this second event comes from the same retina, the first event is dispatched and this 
second event takes the role of the first event and the system waits again the short 
fixed time. This Hold&Fire operation for subtracting or cancelling two streams of 
spikes is described in depth in the paper indicated before. 

To summarize, if both events with the same address have the same polarization and 
come from different ports they are erased and the Hold&Fire block does not fire 
anything. In this case it fires only when both events have different polarizations. On 
the other hand, when both events come from the same port, then the opposite 
happens: it only fires when both events have the same polarization. There are other 
cases to complete the truth table. 

Our algorithm is based on the Hold&Fire block, as it is said before, but it has one 
Hold&Fire block for each pixel of the retina. It treats each pixel separately and 
obtains the difference between this pixel in the left retina and the same pixel in the 
right retina. At the end, we have the difference of both retinas in our system output. 

The complete VHDL system, which is completely implemented on the Virtex-5 
FPGA board, consists of: 

- One handshake block for each retina: these blocks establish the 
communication protocol with the retina. They are based on a state machine 
that waits for the retina request signal, receives the AER spike and returns the 
acknowledge signal. 

- Two FIFOs: to storage a great amount of spikes and lose none. 
- One Arbitrator: select spikes from both FIFOs depending on the occupation of 

them. 
- Multi Hold&Fire module: applies the algorithm explained before to the 

stream of spikes received. To storage the information of the first pulse of each 
sequence, this block uses a dual-port RAM block. 

- Distance estimation block: this block will be explained in the next section. 
- Handshake out: this block establishes the communication between our 

processed information and the out world. 
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Fig. 4. VHDL block diagram inside Virtex-5 FPGA 
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4   Calculating Distances 

In this section we will talk about the schematic block that was only named in the 
previously section: distance estimation module. 

The algorithm explained is a first approximation to the distance calculation using 
spikes. Nowadays, there is no algorithm that can solve this problem using only spikes 
in a real-time environment. That is why we are trying to focus on this field. 

Existing algorithms in digital systems extract features from both cameras, process 
them, and try to match objects from both cameras frame by frame [15]. This process 
involves high computational costs and does not work in real time. 

We want to do this same thing in real time using AER. As a first step to achieve 
this goal we propose an algorithm based on the spikes rate of the Multi Hold&Fire 
output. 

Theoretically we have to explain the meaning of what we are going to obtain and, 
after that, we will show the practical results and we will test if both match. 

In our system, both retinas are calibrated with a certain angle to obtain a focus 
distance of 1 m. To do that, we have put our retinas in a base, separated 13’5 cm. We 
have obtained the system shown below (Fig. 5). 

 

Fig. 5. Retinas situations and trigonometry 

Applying Pythagoras and trigonometric rules, we can obtain: 
 

h2 = 6’752 + 1002    h = 100’22755 cm 

sin α = 100 / 100’22755 = 0’99773 

arcsin 0’99773 = 86’1387º 

 

So, our retinas are calibrated with an angle of 86’1387º to obtain a focal distance of 
one meter. After that, we have measured the spikes rates at the output of our Multi 
Hold&Fire algorithm using a recorded video about one object in movement. This 
video has been played many times at different distances from the retinas and we have 
annotated the number of spikes fired during this video. The resulting spike stream was 
recorded using jAER software [11]. After measurements, we have recorded all the 
results and have made a graph with all of them. This graph indicates the number of 
spikes versus distance. 
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It is logical to think that, at the central match point of the focal length of each retina, 
the Multi Hold&Fire acts like a perfect subtractor and do not fire any spike at all (except 
for the retinas’ spurious), so the spike rate at this point is near zero. If we approach the 
retinas, the spike rate will be increased because the object becomes bigger and each retina 
sees it from a different point of view, so the subtractor will not act so perfectly. 

Otherwise, if we put the video further from the retinas, spike rate will be slightly 
increased due to the subtraction result (different points of view of the retinas), but the 
object becomes smaller, so it compensates this failure: as the further the object is, the 
smaller it is and therefore, the lower the spike rate is; because less spikes are fired, but 
the subtraction acts worse and fires more spikes. That is why the second aspect is 
balanced with the first one. 

So, in theory, we will see a graph where the number of spikes is greatly increased 
near the retinas and is slightly increased as we move away the object from the focal 
collision point. We can see the experimental results in the next figure. We have 
stimulated our system using two types of stimuli: an oscillating pendulum and a 
vibrating ruler. Measurements were taken from the starting point of 10 centimeters to 
150 centimeters. They were taken every 10 centimeters. 

 

Fig. 6. Spike rate versus Distance. Up: Pendulum. Down: Ruler. 
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In figure 6 we can see the experimental results obtained. It is interesting to remark 
that, approximately, at a distance of 100 centimeters (focal collision of both retinas) 
we obtained the lowest spike rate. If we see measurements taken closer, it can be seen 
that spike rate increases, and far away from the focal collision point, the spike rate is 
increased a little. Finally, we obtained the results we expected. In the first case, with 
the pendulum, it can be seen better than the other one; but, what is true is that, in a 
short distance, we can estimate the distance of the object in movement with a 
quadratic regression (line in blue shown in figure 6). 

It is very interesting to see that our system behaves similarly to human perception: 
a priori, without knowing the size of the object, we cannot give exact distances, only 
an approximation. This approximation depends on our experience, but the system 
proposed cannot learn. However, we can measure the distance qualitatively, and 
interacting with an object in a nearby environment. 

  

Fig. 7. Hardware used to test our system (right) and stimulus used (left) 

5   Conclusions 

The existing difficulties to calculate distances in digital systems have been shown. 
That is why a biological approach (Address-Event-Representation) to work with has 
been presented. We have introduced the Address-Event-Representation notation to 
communicate neuro-inspired chips as a new paradigm in Neuromorphic Engineering. 
We have evaluated the advantages of this method and explained why we work with it. 

In this work we propose a first approximation to distance estimation using spikes 
in a close environment. To do that, a stereoscopic vision system with two DVS retinas 
has been used, working with VHDL over a Virtex-5 FPGA. 

We have described and shown the whole system used and each one of its elements 
required to obtain the distance estimation. With the hardware system described, we 
have explained the algorithms used. The first algorithm uses a method to obtain 
differences between both retinas in real time and without sampling. With these 
differences the second algorithm was explained, which works with the spike rate 
obtained in our system after the differences calculation. 
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With the results of these two algorithms, we have been able to model the spike rate 
versus the distance of the object. The simulation results are very encouraging, because 
we can see in the graphs shown that there is a relationship between distance and the 
spike rate after our processing and that this system works quite similar to human 
perception. 
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Abstract. Neuro-inspired processing tries to imitate the nervous system and may 
resolve complex problems, such as visual recognition. The spike-based philosophy 
based on the Address-Event-Representation (AER) is a neuromorphic interchip 
communication protocol that allows for massive connectivity between neurons. 
Some of the AER-based systems can achieve very high performances in real-time 
applications. This philosophy is very different from standard image processing, 
which considers the visual information as a succession of frames. These frames 
need to be processed in order to extract a result. This usually requires very 
expensive operations and high computing resource consumption. Due to its relative 
youth, nowadays AER systems are short of cost-effective tools like emulators, 
simulators, testers, debuggers, etc. In this paper the first results of a CUDA-based 
tool focused on the functional processing of AER spikes is presented, with the aim 
of helping in the design and testing of filters and buses management of these 
systems. 

Keywords: AER, neuromorphic, CUDA, GPUs, real-time vision, spiking 
systems. 

1   Introduction 

Standard digital vision systems process sequences of frames from video sources, like 
CCD cameras. For performing complex object recognition, sequences of 
computational operations must be performed for each frame. The computational 
power and speed required make it difficult to develop a real-time autonomous system. 
However, brains perform powerful and fast vision processing using millions of small 
and slow cells working in parallel in a totally different way. Vision sensing and object 
recognition in brains are not processed frame by frame; they are processed in a 
continuous way, spike by spike, in the brain-cortex. The visual cortex is composed of 
a set of layers [1], starting from the retina, which captures the information. In recent 
years, significant progress has been made in the study of the processing by the visual 
cortex. Many artificial systems that implement bio-inspired software models use 
biological-like processing that outperforms more conventionally engineered machines 
[2][3][4]. However, these systems generally run at extremely low speeds because the 
models are implemented as software programs in classical CPUs. Nowadays, a 
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growing number of research groups are implementing some of these computational 
principles onto real-time spiking hardware through the so-called AER (Address Event 
Representation) technology, in order to achieve real-time processing. 

AER was proposed by the Mead lab in 1991 [5][7] for communicating between 
neuromorphic chips with spikes. In AER, a sender device generates spikes. Each 
spike transmits a word representing a code or address for that pixel. In the receiver, 
spikes are processed and finally directed to the pixels whose code or address was on 
the bus. In this way, cells with the same address in the emitter and receiver chips are 
virtually connected by streams of spikes. Usually, these AER circuits are built using 
self-timed asynchronous logic [6]. Several works have implemented spike-based 
visual processing filters. Serrano et al. [10] presented a chip-processor that is able to 
implement image convolution filters based on spikes, which works with a very high 
performance (~3 GOPS for 32x32 kernel size) compared to traditional digital frame-
based convolution processors [11]. Another approach for solving frame-based 
convolutions with very high performances are the ConvNets [12][13], based on 
cellular neural networks, that are able to achieve a theoretical sustained 4 GOPS for 
7x7 kernel sizes. 

One of the goals of the AER processing is a large multi-chip and multi-layer 
hierarchically structured system capable of performing complicated array data 
processing in real time. But this purpose strongly depends on the availability of robust 
and efficient AER interfaces and evaluation tools [9]. One such tool is a PCI-AER 
interface that allows not only reading an AER stream into a computer memory and 
displaying it on screen in real-time, but also the opposite: from images available in the 
computer’s memory, generate a synthetic AER stream in a similar manner a dedicated 
VLSI AER emitter chip [8][9][4] would do. This PCI-AER interface is able to reach 
up to 10Mevents/sec bandwidth, which allows a frame-rate of 2.5 frames/s with an 
AER traffic load of 100% for 128x128 frames, and 25 frames/s with a typical 10% 
AER traffic load.  

Nowadays computer-based systems are increasing their performances exploiting 
architectural concepts like multi-core and many-core. Multi-core is referred to those 
processors that can execute in parallel as many threads as cores are available on 
hardware. On the other hand, many-core computers consist of processors (that could 
be multi-core) plus a co-processing hardware composed of several processors, like the 
Graphical Processing Units (GPU). By joining a many-core system with the 
mentioned PCI-AER interface, a spike-based processor could be implemented.  

In this work we focus on the evaluation of GPU to run in parallel an AER system, 
starting with the frame-to-AER software conversion and continuing with several usual 
AER streaming operations, and a first emulation of a silicon retina using CCD 
cameras. For this task monitoring internal GPU performance through the Compute 
Visual Profiler [17] for NVIDIA® technology was used. Compute Visual Profiler is a 
graphical user interface based profiling tool that can be used to measure performance. 
Through the use of this tool, we have found several key points to achieve maximum 
performance of AER processing emulation.  

Next section briefly explains the pros and cons of Simulation and emulation of 
Spiking systems, when compared to real implementation. In section 3, a basic 
description of Nvidia CUDA (Compute Unified Device Architecture) architecture is 
shown, focusing on the relevant points that affect the performance of our tool. In 
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section 4 the main parts of the proposed emulation/simulation tool are discussed. In 
section 5 the performance of the operations for different software organization is 
evaluated, and in section 6 the conclusions are presented. 

2   Simulation and Emulation of Spiking Systems 

Nowadays, there is a relatively high number of spiking processing systems that use 
FPGA or another dedicated integrated circuits. Needless to say that, while these 
implementations are time effective, they present many design difficulties: elevated 
time and cost of digital synthesis, tricky and cumbersome testing, possibility of wiring 
bugs (which often are difficult to detect), etc. Support tools are then very helpful and 
demanded by circuit designers. Usually there are several levels in the field of 
emulation and simulation tools: from the lower (electrical) level to the most 
functional one. There is no doubt that none of these tools can cover the whole 
“simulation spectrum”. In this paper we present a tool focused on the functional 
processing of AER spikes, in order to help in the design and testing of filters and 
buses management of these systems.  

CPU is the most simple and straightforward simulation, and there are already some 
of these simulators [25][26]. But simulation times are currently far from what one can 
wish for: a stream processing that lasts microseconds in a real system can extend for 
minutes on these simulators even when running in high performance clusters. 

Another hurdle that is common in CPU emulators is their dependence on input (or 
traffic) load. In a previous work [14], the performance of several frame-to-AER 
software conversion methods for real-time video applications was evaluated, by 
measuring execution times in several processors. That work demonstrated that for low 
AER traffic loads any method in any multicore single CPU achieved real-time, but for 
high bandwidth AER traffics, it depends on which method and CPU are selected in 
order to obtain real-time. This problem can be mitigated when using GPGPUs 
(General Purpose GPUs).  

A few years ago GPU software development was difficult and close to bizarre [23]. 
During the last years, with the expansion of GPGPUs, tools, function libraries, and 
hardware abstraction mechanisms that hide the GPU hardware from developers, have 
appeared. Nowadays there are reliable debugging and profiling tools like those from 
CUDA [18]. Two additional ones complement these advantages. First, the very low 
cost per processing unit, which is supposed to persist, since the PC graphics market 
subsidizes GPUs (only Nvidia has already sold 50 million CUDA-capable GPUs). 
Secondly, the annual growth performance ratio is predicted to stay very high: by 70% 
per year due to the continuing miniaturization. The same happens for Memory 
Bandwidth. For example, extant GPUs with 240 floating point arithmetic cores, 
realizing a performance of 1 TFLOPS with one chip. One of the consequences of this 
advantage to its competitors, is that the top leading supercomputer (November 2010) 
is a GPU based machine (www.top500.org).  

Previous reasons have pushed the scientific community to incorporate GPUs in 
several disciplines. In video processing systems, GPUs application is obvious, 
therefore some very interesting AER emulation systems have begun to appear 
[15][16]. 
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The last fact regards the need for spiking output cameras. These cameras (usually 
called silicon retinas) are currently expensive, rare and inaccurate (due to electrical 
mismatching between their cells [22]). Moreover, their actual resolution is very low, 
making it impossible to work with real elevated address streams at present. This 
hurdle is expected to be overcome in next years. However, current researchers cannot 
evaluate their spike processing systems for high resolutions. Therefore, a cheap CCD 
camera where a preprocessing module generates a spiking streaming is a very 
attractive alternative [20], even if the real silicon retina speed cannot be reached. And 
we believe GPUs may be the most well-placed platform to do it. Emulating a retina 
by a GPU has additional benefits: on the one hand, different address coding can be 
easily implemented [24]. On the other hand, different types of silicon retinas could be 
emulated over the same GPU platform, simply by changing the preprocessing filter 
executed before generating the spiking stream. Nowadays implemented retinas are 
mainly of three types [22]: gray level, spatial contrast (gradient) and dynamic vision 
sensor (diferential) retinas. The first one can be emulated by generating spikes for 
each pixel [8], the second option through a gradient and the last one, with a discrete 
time derivative.  

In this work the balance between generality and efficiency of emulation is 
considered. Tuning simulator routines with a GPU to reach a good performance 
involves a loss of generality [21]. 

3   CUDA Architecture 

A CUDA GPU [18] includes an array of streaming multiprocessors (SMs). Each SM 
consists of 8 floating-point Scalar Processors (SPs), a Special Function Unit, a multi-
threaded instruction unit, and several pieces of memory. Each memory type is 
intended for a different use; in most cases they have to be managed by the 
programmer. This makes the programmer to be aware of their resources, achieving 
maximum performance. Each SM has a “warp scheduler” that selects at any cycle a 
group of threads for execution, in a round-robin fashion. A warp is simply a group of 
(currently) 32 hardware-managed threads. As the number and types of threads may be 
enormous, a five dimension organization is supported by CUDA, with two important 
levels: a grid contains blocks that must not be very coupled, while every block 
contains a relatively short number of threads, which can cooperate deeply. 

If a thread in a warp issues a costly operation (like an external memory access), 
then the warp scheduler switches to a new warp, in order to hide the latency of the 
other thread. In order to use the GPU resources efficiently, each thread should operate 
on different scalar data, with a certain pattern. Due to these special CUDA features, 
some key points must be kept in mind to achieve a good performance of an AER 
system emulator. These are basically: It is a must to launch thousands or millions of 
very light threads; the pattern memory access is of vital importance (the CUDA 
manual [18] provides detailed algorithms to identify types of coalesced/uncoalesced 
memory accesses); there is a considerable amount of spatial locality in the image 
access pattern required to perform a convolution (GPU texture memory is used in this 
case). Any type of bifurcation (branch, loops, etc.) in the thread code should be 
avoided. The same for any type of thread synchronization, critical sections, barriers, 
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atomic accesses, etc. (this means that each thread must be almost independent from 
the others); Nevertheless, because GPU do not usually have hardware-managed 
caches there will be no problem with false dependencies (as usual in multicore 
systems when every thread has to write in the same vector as the others). 

4   Main Modules of the Emulation/Simulation Tool 

An AER system emulation/simulation tool must contain at most the following parts: 

- Images Input module. It can include a preprocessing filter to emulate different 
retinas. 

- Synthetic AER spikes generation. It is an important part since the distribution 
of spikes throughout time must be similar to that produced by real retinas. 

- Filters. Convolution kernels are the basic operation, but others like low pass 
filters, integrators, winner takes all, etc. may be necessary. 

- Buses management. It includes buses splitters, merges, and so on.  
- Result output module. It must collect the results in time order to send them to 

the CPU. 
- AER Bus Probes. This module appears necessarily as discussed below.   

The tool presented here is intended to emulate a spiking processing hardware system. 
As a result, the algorithms to be carried out in the tool are generally simple. In 
GPGPU terminology, this means that the “arithmetic intensity” [18] (which is defined 
as the number of operations performed per word of memory transferred) is going to 
be very low. Therefore, optimisation must focus on memory accesses and types. As a 
first consequence some restrictions on the number and size of the data objects were 
done. Besides, a second conclusion is presented: instead of simulating several AER 
filters in cascade (as usual in FPGA processing), it will be usually better to execute 
only a combined filter that fuses them, in order to save GPU DDRAM accesses or 
CPU-GPU transactions. This is to be discussed in next sections, according to the 
results. Finally the concept of AER Bus Probe is introduced here in order to only 
generate the intermediate AER values that are strictly necessary. Only when a probe 
is demanded by the user, a GPU to CPU transaction is inserted to collect AER spikes 
in the temporal order. Besides, some code adjustments have been introduced to avoid 
new data structures despite of adding more computation. 

Synthetic AER generation is one of the key pieces of an AER tool. This is because 
it usually lasts a considerable time and because the spike distribution should have a 
considerable time uniformity to ensure that neuron information is correctly sent [8]. 
Besides, in this work two additional reasons have to be considered. Firstly, it has to be 
demonstrated that a high degree of parallelism can be obtained using CUDA, so that 
the more cores the GPU has, the less time the frame takes to be generated. And 
secondly, we have performed a comparison of execution times with those obtained for 
the multicore platforms used previously in [14]. 

In [14] these AER software methods were evaluated in several CPUs regarding the 
execution time. In all AER generation methods, results are saved in a shared AER 
spike vector. Actually, spike representation can be done in several forms (in [24] a 
wide codification spectrum is discussed). Taking into account the consideration of 
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previous section, we have concluded that the AER spike vector (the one used in [14]) 
is very convenient when using GPUs.  

One can think of many software algorithms to transform a bitmap image (stored in 
a computer’s memory) into an AER stream of pixel addresses [8]. In all of them the 
frequency of appearance of the address of a given pixel must be proportional to the 
intensity of that pixel. Note that the precise location of the address pulses is not 
critical. The pulses can be slightly shifted from their nominal positions; the AER 
receivers will integrate them to recover the original pixel waveform.  

Whatever algorithm is used, it will generate a vector of addresses that will be sent 
to an AER receiver chip via an AER bus. Let us call this vector the “frame vector”. 
The frame vector has a fixed number of time slots to be filled with event addresses. 
The number of time slots depends on the time assigned to a frame (for example 
Tframe=40 ms) and the time required to transmit a single event (for example 
Tpulse=10 ns). If we have an image of N×M pixels and each pixel can have a grey 
level value from 0 to K, one possibility is to place each pixel address in the frame 
vector as many times as the value of its intensity, and distribute it with equidistant 
positions. In the worst case (all pixels with maximum value K), the frame vector 
would be filled with N×M×K addresses. Note that this number should be less than the 
total number of time slots in the frame vector. Depending on the total intensity of the 
image there will be more or less empty slots in the frame vector Tframe/Tpulse.  

Each algorithm would implement a particular way of distributing these address 
events, and will require a certain time. In [8] and [14] we discussed several algorithms 
that were convenient when using classical CPUs. But if GPUs are to be used, we have 
to discard those where the generation of each element of frame vector cannot be 
independent from the others. This clearly happens in those methods based on Linear 
Feedback Shift Registers (LFSR): as the method requires calling a random function 
that always depends on itself, the method cannot be divided in threads. 

To sum up, the best-suited method for GPU processing is the so-called Exhaustive 
method. This algorithm divides the address event sequence into K slices of N×M 
positions for a frame of N×M pixels with a maximum gray level of K. For each slice 
(k), an event of pixel (i,j) is sent on time t if the following condition is asserted:  

KPKPk jiji ≥+⋅ ,, mod)(    and   tjMikMN =+⋅−+−⋅⋅ )1()1(  

where Pi,j is the intensity value of the pixel (i,j). 
The Exhaustive method tries distributing the events of each pixel in equidistant 

slices. In this method, there is a very important advantage when using CUDA: 
elements of frame vector can be sequentially processed, because the second condition 
above can be implemented using t as the counter of the frame vector (that is, the 
thread index in CUDA terminology). This means that several accesses (performed by 
different threads) can be coalesced to save DDRAM access time. The results section 
is based on this algorithm.  

Nevertheless, other algorithms could be slightly transformed to adapt them to 
CUDA. The most favorable case is that of the Random-Square method. While this 
method requires the generation of pseudorandom numbers (which are generated by 
two LFSR of 8 and 14 bits), LFSR functions can be avoided if all the lists of numbers 
are stored in tables. Although this is possible, it will involve two additional accesses 
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per element to long tables, which probably will reside in DDRAM. This will add a 
supplementary delay that is avoided with the exhaustive method.  

The rest of methods are more difficult to fine-tune to CUDA (namely the Uniform, 
Random and Random-Hardware methods) because of the aforementioned reasons.  

There are another group of software methods dedicated to manage the AER buses. 
Fortunately, these operations are intrinsically parallel, since in our case they basically 
consist of a processing of each of the frame vector elements (which plays the role of a 
complete AER stream).  

The other operations involved in AER processing are those that play the role of image 
filtering and convolution kernels. Nowadays, the algorithms that execute them on AER 
based systems are intrinsically sequential: commonly for every spike that appears in the 
bus, the values of some counters related to this spike address are changed [15][10]. 
Therefore, these counters must be seen as critical sections when emulating this process 
through software. This makes impractical to emulate this operation in a GPU. On the 
contrary, the standard frame convolution operation can be easily parallelized [19] if the 
image output is placed in a memory zone different from that of image input. Execution of 
a standard convolution gives an enormous speedup when comparing to a CPU. Due to 
this and considering that the other group of operations does present a high degree of 
parallelism, in this paper convolutions are processed in a classical fashion. Nonetheless, 
this combination of AER-based and classical operations results in a good enough 
performance as seen in the following section.  

5   Performance Study 

In order to analyze the performance and scalability of CUDA simulation and 
emulation of AER systems, a series of operations have been coded and analyzed in 
two Nvidia GPUs. Table 1 summarizes the main characteristics of the platforms 
tested. The second GPU have an important feature: it can concurrently copy and 
execute programs (while the first one cannot).  

Table 1. Tested Nvidia GPUs 

Characteristics GeForce 9300 ION   GTX 285 
Global memory 266010624 bytes 1073414144 bytes 
Maximum number of threads per block 512 threads  512 threads 
Multiprocessors x Cores/MP 2 x 8 = 16 Cores 30 x 8 = 240 Cores 
Clock rate 1.10 GHz 1.48 GHz 

Fig. 1 depicted a typical AER processing scenario. The first module ‘ImageToAER’ 
transforms a frame into an AER stream using the Exhaustive method. The ‘Splitter’ 
divides spikes into two buses according to an address mask that represents the little clear 
square in the almost black figure. The upper bus is then rotated 90 degrees simply by 
going through the ‘Mapper’ module, which changes each spike’s address into another. 
Finally a merge between the original image and the upper bus gives a new emulated AER 
bus, which can be observed with a convenient AERToImage module (which, in a few 
words, makes a temporal integration). A consequence of the use of a rigid size frame 
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vector composed of time slots is that a merge operation between two full buses cannot 
fuse perfectly the two images represented in the initial buses. In our implementation, if 
both buses have a valid spike in a certain time slot, the corresponding output bus slot is 
going to be filled only by one of the input buses (which is decided with a simple circuit). 
This aspect appears also in hardware AER implementations, where an arbiter must 
decide which input bus “looses”, and then its spike does not appear in the merged bus 
[8][10]. 

 

Fig. 1. Cascade AER operations benchmark 

According to section 4, three kinds of benchmarks have been carried out. In a first 
group, an AER cascade operations were simulated: in the middle of two operations, 
(that is, in an AER bus) an intermediate result is collected by the CPU to check and 
verify the bus values. In the second group, operations are executed in cascade, but 
transitional values are not “downloaded” to the CPU, thus preserving GPU to CPU 
transactions. This implies that no AER Bus Probe modules are present, thus inhibiting 
inspection opportunities. Finally a third collection is not coded in previous modular 
fashion since the first four operations are grouped together in one CUDA kernel (the 
same thread executes all of them sequentially). This avoids several GPU DDRAM 
accesses, saving an enormous execution time in the end. The fifth operation that 
transforms an AER stream into an image frame cannot be easily parallelized for the 
same reasons described in previous section for convolution kernels. Timing 
comparison for these three groups is summarized in Table 2. 

It is important to remark that the execution time for the third group almost 
coincides with the maximum execution time of all the operations in the first group. 
Another obvious but interesting fact is that transactional times are proportionally 
reduced when CPU-GPU transactions are eliminated. And speed-up between GTX285 
and ION 9300 is also near to the ideal. One can conclude that scalability for our tool 
is good, which means for faster upcoming GPU a shorter execution time is expected.  

Finally, contrast retina emulation has been carried out: for a frame, first a gradient 
convolution is done in order to extract image edges, and secondly, the AER frame 
vector is generated (in the same CUDA thread). A hopeful result is obtained: the 
mean execution time to process one frame is 313.3 μs, that is, almost 3200 frames per 
second. As the execution times are small we can suppose that these times could be 
overlapped with the transaction ones. The resulting fps ratio is very much higher 
(around 50x) than those obtained using multicore CPUs in previous studies of AER 
spikes generation methods [14]. 
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Table 2. Benchmarking times for GPU GTX285 and for 9300 ION. Times in microseconds. 

Measured Time  First Group 
GTX285

Second Group 
GTX285

Third Group 
GTX285

Third Group 
9300 

CPU to GPU 
transactions 

8649.2 360.3 125.5 5815.5 

CUDA kernel 
execution  

2068.6 1982.7 781.6 15336.8 

GPU to CPU 
transactions 

11762.8 2508.9 2239.2 12740.8 

Total Time  22480.5 4851.9 3146.3 33893.0 

Through these experiments we have demonstrated that major time is spent in these 
types of AER tools in external DDRAM GPU accesses, since data sizes are necessarily 
big while algorithms can be implemented with a few operations per CUDA thread. This 
conclusion gives us an opportunity to develop a completely functional AER simulator. A 
second consequence derived from this is that the size of the image can introduce a 
considerable increment of time emulation. In this work, the chosen size (128 × 128 
pixels) results in a frame vector of 8 MB (4 Mevents × 2 bytes/event). However, a  
512 × 512 pixel image will have 4x the size image, plus twice the bytes per address (if no 
compression is implemented). This means an 8x total size, and then an 8x access time. 
To sum up, eliminating the restrictions on the number and size of data objects can have 
an important impact on the tool performance.  

6   Conclusions and Future Work 

A CUDA-based tool focused on the functional processing of AER spikes and its first 
timing results are presented. It intends to emulate a spiking processing hardware 
system, using simple algorithms with a high level of parallelism. Through 
experiments, we demonstrated that major time is spent in DDRAM GPU accesses, so 
some restrictions on the number and size of the data objects have been done. A 
second result is presented: instead of simulating several AER filters in cascade (as 
usual in FPGA processing), it is better to execute only a combined filter that fuses 
them, in order to save GPU DDRAM accesses and CPU-GPU transactions. Due to the 
promising timing results, the immediate future work comprises a fully emulation of an 
AER retina using a classical video camera. Running our experiments on a multiGPU 
platform is another demanding extension because of the scalability of our tool.  
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Abstract. It seems how the brain develops its representations inside its
closed skull throughout the lifetime, while the child incrementally learns
one new task after another. By closed skull, we mean that the brain (or
the Central Nervous System) inside the skull is off limit to the teachers
in the external environment, except its sensory ends and the motor ends.
We present Where-What Network (WWN) 6, which has realized our
goal of a fully developmental network with closed skull, which means
that the human programmer is not allowed to handcraft the internal
representation for any concepts about extra-body concepts. We present
how the developmental program (DP) of WWN-6 enables the network
to learn and perform for attending and recognizing objects in complex
backgrounds while the skull is closed.

Keywords: Development, neural nets, attention, object recognition.

1 Introduction

Symbolic methods [1,2] for object detection and recognition are “skull-open”. By
“skull-open”, we mean that it is the human programmer who understands each
given task (e.g., object recognition) that the machine is supposed to perform.
The human programmer handpicks a set of symbols (e.g., “car”, Gabor features,
parts, whole) along with their meanings for the task. He then handcrafts a task
specific representation (e.g., Hidden Markov Model (HMM) using a symbolic
graph) plus a way to use the representation (e.g., search across the input im-
age for a good fit to the HMM model). Effectively, he opens the “skull” and
handcrafts the “open brain”. Two problems exist with this paradigm of manual
development. (1) Brittle systems: Many unpredictable events take place in the
external environments. It is impractical for a human programmer to guarantee
that all the conditions required by the handcrafted model (e.g., eyes are open)
are met. This situation results in brittle systems. (2) No new tasks: The sys-
tem is not able to go beyond the handcrafted representation so as to deal with
� This work was supported by the Fund of State Key Lab. of ASIC & System
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Fig. 1. The skull is closed, with X and Z exposed to the external environment. Op-
eration, learning or performance, is fully autonomous inside the skull. The color of a
Y neuron matches the sources in X and Z.

new tasks. In contrast, a child’s brain seems to develop with the skull closed
throughout the life (e.g., he can learn English even if all his ancestors did not).

Neural networks, whose internal representations autonomously emerge
through interactions during training, have a potential to address the above two
fundamental problems. However, the traditional neural networks face several in-
tertwined problems. The most prominent one is a lack of emergent goals and
emergent-goal directed search. The series of Where-What Networks (WWNs),
from WWN-1 [3] to the latest WWN-5 [4] by Juyang Weng and his co-workers,
was a series of brain-inspired networks that was meant to address these and
other related problems. In a WWN, learned goals emerge as actions in motor
areas, which in turn direct next internal search through top-down connections.

Although the prior WWNs are consistent with the idea of skull closure, they
require, during learning only, a functioning “pulvinar”. Pulvinar is an area in-
side the thalamus believed to play a role in attention [5]. The pulvinar module
in WWN suppresses the neurons whose receptive fields are outside the current
object being learned. The pulvinar module in a WWN is pre-programmed, as-
suming that it could be developed earlier. Without the pulvinar module, neurons
responding to background patches can also fire, causing two major challenges.
(a) Neuronal resource could be wasted for learning useless backgrounds. (b) With
the skull closed, how can the network attribute the action currently supervised
at the motor end to the correct object patch in the sensory image, instead of
any other possible patches in the large background?

The major novelty of the work reported here is a biology-inspired computa-
tional mechanism for attention-based resource competition during autonomous
development. Frequently attended objects recruit more neuronal resources than
less frequently attended sensory components. Rarely firing neurons die to release
resource. The brain has three areas, sensory X , internal Y (brain), and motor
Z, with only X and Z open to the external environment, as illustrated in Fig. 1.
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Fig. 2. The architecture and resource parameters of the new WWN-6. AL corresponds
to layer L4 & L6, DL corresponds to layer L2/3 & L5 in the cerebral cortex.

Each Y neuron has a synaptic vector (vx,vz) to match a local patch x ∈ S(X)
and a pattern in motor Z, where S(X) is a subspace in X by keeping only a
subset (e.g., foreground pixels) of the components in X . Since Z is supervised
with the action pattern z that corresponds to the learned concepts (e.g., location
and type) of a particular object patch in S(X), a neuron that happens to match
an object patch x with its corresponding z concepts should win more often than
other neurons, assuming that the actions of the network are related to some
patches in X while the agent gets more and more mature. In this view, the brain
gradually devotes its limited resources to the manifolds that have a high hit rate
in the sensorimotor space X ×Z. This perspective enables us to realize the first,
as far as we know, fully emergent “closed-skull” network that is able to detect
and recognize general objects from complex backgrounds.

2 Overview of the Network Architecture

It has been shown [6], adding an IT (inferior temporal) and PP (posterior pari-
etal) degrades the performance of WWNs. This seems to suggest that at least
for single-frame recognition and single-frame actions, shallow structure is better.
Therefore, the structure of WWN-6 is shown in Fig. 2.

The Y area uses a prescreening area for each source, before integration, result-
ing in three laminar levels: the ascending level that prescreenings the bottom-up
input, the descending level that prescreenings the top-down input and paired
level that takes pre-screened inputs. The neurons in each level are arranged in a 3-
D plane whose scale is shown in the Fig. 2 corresponding to row×column×depth.
The Z area has the type motor (TM) area and the location motor (LM) area.
The number of neurons in each area in Fig. 2 can be considered as the limited
resource of a “species”, as an experimental example. The number is typically
much larger in an biological animal. The number of firing neurons in LM and
TM is not limited to one either. Depending on the complexity of the “manip-
ulatory” language in LM and the “verbal” language in TM, each LM and TM
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can represent an astronomical number of concepts. Consider how the 26 English
letters give rise to rich meanings in English.

In this part, some major characteristics of the WWNs are reviewed, which
are consistent with finds about human visual cortex system in neuroscience, and
also compared to the mechanisms of the human brain.

1. The WWN is inspired by the dorsal (“where” corresponding to LM) and
ventral (“what” corresponding to TM) pathways in cortical visual process-
ing and integrates both bottom-up (feed-forward) and top-down (feedback)
connections.

2. The in-place learning algorithm in WWN is used to develop the internal rep-
resentations, such that each neuron is responsible for the learning of its own
signal processing characteristics within its connected network environment,
through interactions with other neurons in the same level. This indicates
that the signal processing of each neuron takes place independently which is
consistent with the mechanism of the brain.

3. There is no symbolic representations in Y area (i.e., closed skull), which are
human handcrafted concepts. The internal representations of each neuron in
Y can be only learned from connective sensory end and motor end which are
allowed to be interacted with the external environment during development.

4. Similar to the brain, WWN is not task-specific. Therefore, there is nothing
hard-coded to bias the system to do a certain task (e.g., object recognition).

However, in the previous versions of WWNs, there still exist some problems.

1. The initialization of the bottom-up weights of the neurons in Y area uses the
information of the foreground objects to be learned, which means that the
foreground objects to be learned should be “told” to the agent (i.e., network)
by the external environments (e.g., teacher) before learning. Apparently, this
is not the way working in our brain.

2. There is a mechanism called “pulvinar” in the previous WWNs which allows
the external environments to draw the agent’s attention to the foreground
object by forcing the corresponding neurons fired.

Here, we try to deal with the problems by introducing the new mechanisms
called “firing threshold” and “cell regenesis” to realize a skull-closed WWN.

3 New Mechanisms for Skull Closure

3.1 Concepts of the New Mechanisms

Firing Threshold: Before describing this mechanism, two states of the neurons
in Y area are defined: one is “memory state” (i.e., learning state), the other
is “free state” (i.e., initial state). After the initialization of the network, all
the neurons are in initial state. During the learning stage, once the stimulus
to one neuron is strong enough, the state of this neuron will be changed into
learning state. In our work, the intensity of the stimulus is measured by the pre-
response of the neuron, and the firing threshold decides whether the neuron is
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Fig. 3. (a) The illustration of the receptive fields of the neurons. (b) The training
samples and input images.

fired (i.e., in learning state) with such stimulus. That is to say, if the pre-response
of the neuron is over the threshold, it will be in learning state. Otherwise, it
will remain the previous state. All the neurons in initial state and the top-k
pre-responding neurons in learning state will do the Hebbian learning. After
the Hebbian learning, the age of the neuron in initial state does not increase
while the age of the neuron in learning state increases one for each time. When
the age is smaller, it is easier for the neuron to learn something just like the
child. Therefore, the neurons in initial state remain the high learning rate (high
plasticity).

Cell regenesis: Neurons that do not fire sufficiently often are not attended
enough to justify the dedication of the resource. We hypothesize that the internal
cellular mechanisms turn them back to the initial state so that they are available
for more appropriate roles.

3.2 Algorithm

In order to clearly illustrate all the algorithms to implement a skull-closed de-
velopmental WWN, all the following descriptions are from the viewpoint of a
single neuron (e.g., neuron (i, j)) in the network.

Initialization of the network: WWN-6 initializes the bottom-up synaptic vec-
tors of neurons randomly before the learning. Therefore, the foreground objects
to be learned are not necessary to be known in advance any more and this makes
the network more biologically plausible (internal neurons can not be initialized
by using task information when the skull is closed).

Perception of the input image: Each neuron in Y area has a local receptive
field from X area (i.e., sensory end), which perceives a × a region of the input
image. The distance between two adjacent receptive field centers in horizontal
and vertical directions is 1 pixel shown as Fig. 3 (a).
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Computation of the pre-response: The pre-response of the neuron (i, j) is
calculated as the following formula:

zp
i,j(t) = αza

i,j(t) + (1 − α)zd
i,j(t)

where zp
i,j(t) represents the pre-response of the neuron in the paired level called

paired response, za
i,j(t) represents the pre-response of the neuron in the ascending

level called bottom-up response, and zd
i,j(t) represents the pre-response of the

neuron in the descending level called top-down response. Here, α = 0.5 which
indicates that the bottom-up input accounts for 50% of “energy”. It is important
to note that, as indicated below, the dimension and contrast of the ascending
and descending input have already normalized. The “genome” parameter α is
assumed to be selected by evolution through many generations.

The bottom-up response is calculated as

za
i,j(t) =

wa
i,j(t) · xa

i,j(t)∥∥wa
i,j(t)

∥∥∥∥xa
i,j(t)

∥∥
where wa

i,j(t) and xa
i,j(t) represent the ascending weight vector of and the input

vector of the neuron; The top-down connections from the neurons in Z area
consist of two parts, TM and LM. Accordingly

zd
i,j(t) = β

wTM
i,j (t) · xTM

i,j (t)∥∥wTM
i,j (t)

∥∥∥∥xTM
i,j (t)

∥∥ + (1 − β)
wLM

i,j (t) · xLM
i,j (t)∥∥wLM

i,j (t)
∥∥∥∥xLM

i,j (t)
∥∥

where wTM
i,j (t) and xTM

i,j (t) represent the weight vector and input vector corre-
sponding to the connection with TM; wLM

i,j (t) and xLM
i,j (t) represent the weight

vector and input vector corresponding to the connection with LM. Like α,
β = 0.5 as a hypothesized “ genome” parameter.

Top-k competition: Lateral inhibition among the neurons in the same level is
used to obtain the best features of the training object. For the paired level in Y
area, top-k competition is applied to imitate the lateral inhibition which effec-
tively suppresses the weakly matched neurons (measured by the pre-responses).
The response zp

i,j(t) after top-k competition is

zi,j(t) =
{

zp
i,j(t)(zq − zk+1)/(z1 − zk+1) if 1 ≤ q ≤ k

0 otherwise

where z1, zq and zk+1 denote the first, qth and (k+1)th neuron’s paired-response
respectively after being sorted in descending order. This means that only the
top-k responding neurons can fire while all the other neurons are set to zero.

Firing threshold: If the paired pre-response (before top-k competition) of one
neuron exceeds the firing threshold (1 − ε), its state will be changed into the
learning stage. In the followings, the neurons in learning state are named as
LSN, and the neurons in initial state are named as ISN.
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Fig. 4. Comparisons of the network performances with/without new mechanisms (i.e.,
initial state and cell regenesis) in 15 epoches. The data marked “with initial state only”
is without cell regenesis. (a) Recognition rate. (b) Distance error.

Hebbian-like learning: Two types of neurons need to be updated by Hebbian-
like learning: ISN and the firing LSN (i.e., the top-k responding LSN) whose age
and weight vector will be updated. The age is updated as

ni,j(t + 1) =
{

ni,j(t) if neuron (i, j) is ISN
ni,j(t) + 1 if neuron (i, j) is top-k LSN.

The weight vector of the neuron is updated as

wi,j(t + 1) = w1(t)wi,j(t) + w2(t)zi,j(t)xi,j(t)

where w1(t) and w2(t) are determined by the following equations.

w1(t) = 1 − w2(t), w2(t) =
1 + u(ni,j(t))

ni,j(t)
(1)

where u(ni,j), the firing age of the neuron, is defined as

u(ni,j(t)) =

⎧⎨⎩
0 if ni,j(t) ≤ t1
c(ni,j(t) − t1)/(t2 − t1) if t1 < ni,j(t) ≤ t2
c + (ni,j(t) − t2)/r if t2 < ni,j(t)

(2)

where t1 = 20, t2 = 200, c = 2, r = 10000 in our experiment.

Cell regenesis: For the firing neuron in the learning, the age of its 6 neighbors
(from 3 directions in 3-D space) are checked. The average age is defined:

n̄(t + 1) = w1(t)n̄(t) + w2(t)n(t)

where w1(t) and w2(t) are described in equation (1) and (2), n̄(t) represents the
average age and n(t) represents the age of the neuron. Suppose that the neuron
A fires, and one of its neighbors, neuron B, is checked. If

n̄A > t1 and n̄A > 4n̄B

then neuron B needs to be turned back to initial state.
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With above modifications, the new algorithm only allows external environ-
ment to interact with the sensory end (i.e., X area) and motor end (i.e., Z area),
not the internal representation (i.e., Y area), which realizes the skull closure.

4 Experimental Results

In the experiment, background images were extracted from 13 natural images1

and cropped into images of 42 × 42 pixels randomly. The objects of interest are
selected from the MSU-25 image dataset [7]. In the training and testing sessions,
different background patches were used for simulating a learned object present
in a new unknown background. Foreground objects and some examples of the
images that WWN-6 learns and recognizes are displayed in Fig. 3(b).

Shown as Fig. 4, it can be found that the network hardly works without the
new mechanisms if the skull is closed. Without “pulvinar”, the network cannot
attend the foreground object and may learn the background. Moreover, without
“initial state”, the neurons may commit too soon. “Cell regenesis” can turn
the neurons firing insufficiently back to initial state for more appropriate roles
improving the network performance a little.

5 Conclusion

This is the first work, as far as we are aware, to establish a skull closed network
which can be fully emergent (as opposed to programmed pulvinar) for general-
purpose object detection and recognition from complex scenes. This framework
needs to be tested on larger object sets in the future.
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Abstract. In general, a face analysis relies on the face orientation; therefore, 
face orientation discrimination is very important for interpreting the situation of 
people in an image. In this paper, we propose an enhanced approach that is 
robust to the unwanted variation of the image such as illumination, size of 
faces, and conditions of picture taken. In addition to the conventional algorithm 
(Principal Component Analysis and Independent Component Analysis), we 
imposed the Gabor kernels and Fourier Transform to improve the robustness of 
the proposed approach. The experimental results validate the effectiveness of 
the proposed algorithm for five kinds of face orientation (front, quarter left, 
perfect left, quarter right, and perfect right side of faces). In real application, the 
proposed algorithm will enable a Human-Computer Interface (HCI) system to 
understand the image better by extracting reliable information of face 
orientation. 

Keywords: Face orientation discrimination, Gabor filter, Fourier transform, 
Principal independent analysis, Independent component analysis. 

1   Introduction 

The discrimination of face orientation plays an important role in applications such as 
car driver attention monitoring and Human-Computer Interface (HCI). Specifically, 
most face recognition and tracking systems are based on frontal face views [1]. To 
make it operate based on non-frontal face views, a large number of training samples 
are collected in different face orientation angles [2]. Another solution is to apply 
smart camera networks to the tasks [3]; however, its time complexity is too high. 

Alternatively, the orientation angle of the face is estimated from the captured 2D 
images. Methods for face orientation discrimination can be categorized into two main 
categories: local-feature based and global-feature based. Local-feature based 
approaches are based on geometrical relation among local facial feature (eyes, 
nostrils, and mouth) [4], [5]. Global-feature based approaches suppose the 
relationship between face orientation and certain properties of the facial image is 
unique [6]. The local-feature based approaches are accurate, but more complex and 
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scale and orientation selectivity, which gives local features that are most suitable for 
face recognition” [7]. For its favorable characteristics, many studies have been 
conducted using Gabor filters for low level feature extraction and also as a pre-feature 
extraction method prior to ICA for general face recognition system [7]. 

Gabor filters are product of Gaussian envelope and complex sinusoidal waves. By 
combining two equations, we can adjust the width of kernels. By changing parameters 
in (1) described in Chengjun Liu’s paper [7], Gabor filters are rotated to get desired 
edge directions: B (x, y) = exp xσ + yσ exp j ω x + ω y . (1)

For general face recognition, usually 40 different Gabor kernels are designed to detect 
40 different edge features from face images [7]; kernels with five different scales and 
eight different rotational angles. To change the parameters efficiently, equation of the 
Gabor filters are modified to (2), which is adopted from Chengjun Liu’s method [7]. 
In (2), µ is parameter for adjusting orientation and ʋ is for scale of Gabor filters. The 

wave vector kµ,ʋ is defined as kµ,ʋ = k
ʋ
e µ , where kµ = k /f ʋ. 

φµ,ʋ(z) = kµ,ʋ /σ e ( µ,ʋ / e µ,ʋ e ( / ) . (2)

Each Gabor kernel is applied over an image to detect specific edge orientations 
corresponding to 40 different kernels using (3): Oμ,ʋ(z) = I(z) φμ,ʋ(z). (3)

When utilizing Gabor edge features, only magnitude of convolution output, not the 
phase is used for further process [7]. 

2.2   FFT 

In image processing, FFT is used to convert information from spatial domain to 
frequency domain. FFT represents information by sum of sinusoidal waves in 
frequency domain. Below, (4) shows basic FFT: F(µ, ʋ) =  sum f(x, y) e( (µ ʋ )N )  . (4)

FFT result comprises of two parts: magnitude and phase. Magnitude tells us the 
amount of specific frequency component and phase tells us the location of the specific 
frequency. By extracting magnitude part only, one can remove the shift variance of 
pixel information of an image. Since the shift invariance is one of the biggest issues 
for image processing, FFT method is widely used for this purpose. 

2.3   PCA 

PCA is one of frequently used method in face recognition, along with ICA [8], [9]. 
Although PCA alone can be used as feature extraction method for face recognition, it 
is also used prior to ICA for dimension reduction [7], [8], [9]. 
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PCA projects data linearly to two dimensional subspaces [9]. By linear projection 
onto second order dimensional subspaces, it reduces the dimension of data and 
decorrelates lower dimension information of data [7].  

The basic equation for PCA is shown in (5), where P is eigen vector matrix, X is 
covariance matrix of face image data, and Y is the output of PCA, which is 
dimension-reduced face image data:  

Y = PX.                                        (5) 

By selecting a few eigen vectors with largest eigen values, information of weak 
independent coefficients are lost. This step reduces dimension of information while 
maintaining information of strong independent coefficients still [9]. 

2.4   ICA 

The goal of ICA is to seek “nonaccidental and sparse feature codes and to form a 
representation in which these redundancies are reduced and the independent features 
and objects are represented explicitly” [7]. Learned filters of ICA show edge-oriented 
features, which mimics the receptive field properties of mammal visual cortex. 

While Gabor filters extract local features, ICA reduces redundancy and represents 
independent features explicitly [7]. While PCA considers second order only, ICA 
considers higher order statistics, reduces statistical dependencies, and produces a 
sparse and independent code that is useful for subsequent pattern discrimination. 
Therefore, it enhances overall classification performance when utilized in 
combination of Gabor filters and PCA. 

The basic equation of ICA is as follows in (6) and (7), where X is observed signals, 
S is unknown source signals, A is mixing matrix, W is separating matrix, and U is 
independent coefficients: 

ICA assumes that all images are composed of independent components, U or S, on 
mixing matrix of basis images, or axes, A. ICA finds W matrix that best separates the 
image points. ICA works as a method for feature extraction as well as classification 
by finding U matrix that contains independent coefficient information, which is 
separated by W matrix. 

3   Experimental Results 

The database used for the experiment is FERET (FacE REcognition Technology) 
database, provided by NIST. We trained and tested our proposed method for 
discrimination of five-class problem for front, quarter left, perfect left, quarter right, 
and perfect right oriented faces. For each of five classes, 100 images were randomly 
selected and they were divided into 80 and 20 images each for training and testing 
dataset. Five cross validation tests were conducted for more reliable results. Initial 
images used are grayscale images with 384 x 256 resolutions. To make the problem 

X = AS, (6)

U = WX. (7)
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global, we did not limit the conditions of the images; we did not discriminate images 
with different gender, races, clothing, date of image taken, facial sizes, facial 
expressions, or illuminations. Since dataset was collected randomly, each class may 
or may not include image of the same person. 

 

Fig. 2. Gabor kernels generated (left). Five different scales and eight different rotational angles 
produce forty different Gabor kernels. To generate Gabor filters with five scales, ʋ is varied as 
ʋ={0,1,2,3,4}, and to make eight different angles, µ is varied as µ={0,1,2,3,4,5,6,7}. The 
parameters used are σ=2π, k_max=π/2, and f=√2. (Adopted from Chengjun Liu [7].) An image 
filtered with 40 different Gabor kernels (right). 

 

Fig. 3. Example of raw dataset images (left), magnitude part of convolutional outputs of Gabor 
filtered images (middle), and FFT2 result images (right). The first Gabor kernel, which is 
located in the top-left of Fig. 2, is applied to each corresponding image shown on the left. 

For Gabor kernels, we referred to the algorithm explained in Chengjun Liu’s paper 
[7]. As shown and described in left image of Fig. 2, we generated 40 Gabor kernels in 
total for 5 different scales and 8 different rotational angles to extract 40 different 
kinds of edge features from images [7]. Right image of Fig. 2 shows convolutional 
output of 40 Gabor kernels applied to one face image. Fig. 3 shows the convolutional 
output of images in each of five classes with one Gabor kernel. Fig. 3 shows clear and 
distinct edge features for each class. 



222 H.A. Song, S.D. Choi, and S.-Y. Lee 

Gabor filtered images were down-sized by scale of 4x4 as known method [7], 
which resulted in 96x64 resolution for each Gabor images. Gabor filtered images 
were concatenated to form a column vector of 6144 rows for each Gabor image. 
Then, FFT was applied to Gabor images. We used ‘fft2’ function provided in Matlab. 
FFT result was then linearly separated by PCA and ICA. For PCA, we used first 100 
eigenvectors as axes to be projected. For ICA, ‘FastICA’ algorithm was used for our 
experiment. For classification, Euclidean distance measure was used. Here, two kinds 
of measures were tested for better classification. In first measuring method, we treated 
each of Gabor image as one independent data source. We averaged column vectors of 
independent coefficient that correspond to the same Gabor kernel in each class. As a 
result, 40 averaged-independent-coefficient-columns for each Gabor images are 
obtained. In second measuring method, we averaged all independent coefficients of 
Gabor images in each class where one column vector of independent coefficient is 
generated as each class mean. The result showed that first measuring method provides 
better performance rate and we used the first measure for the result. 

Table 1. Face orientation discrimination performance rate 

The final classification result is as shown in Table 1. We conducted additional four 
tests to compare the performance rate with that of our proposed algorithm. Our 
proposed method showed 93.2% classification performance rate, the best performance 
for facial orientation discrimination among other four methods. Four additional tests 
are designed as follows: 1) FFT, PCA, and ICA, 2) Liu’s algorithm: Gabor, PCA, and 
ICA, 3) conventional algorithm: PCA and ICA, 4) switched orders of proposed 
method: FFT, Gabor, PCA, and ICA. For FFT application in test 1) and 4), we tried 
two methods for extracting features from FFT2 image with several FFT-point 
resolution parameters. First method is to truncate leftmost corner of the enlarged FFT-
point resolution of FFT2 image to extract essential low frequency information and 
second is to down-size the enlarged FFT-point resolution of FFT2 image by 
averaging. Truncation method showed no response towards increasing resolution 
parameter when already-down-sized image of 96x64 was introduced whereas down-
size method showed increase in classification rate in response with increasing 

Experiment Front Quarter 
left 

Perfect 
left 

Quarter 
right 

Perfect 
right 

Total 

Proposed (Gabor + 
FFT + PCA +ICA) 

96 % 97 % 88 % 95 % 90 % 93.2 % 

FFT + PCA + ICA 65 % 75 % 80 % 80 % 80 % 76.0 % 

Gabor + PCA + ICA 96 % 93 % 86 % 95 % 87 % 91.4 % 

PCA + ICA 69 % 84 % 89 % 79 % 81 % 80.4 % 

FFT + Gabor + PCA 
+ ICA 

75 % 60 % 55 % 85 % 90 % 73.0 % 
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resolution parameter. Since we had to introduce down-sized image to FFT2 function 
due to computational problem, we utilized down-size method for extracting features 
from FFT2 images. The optimal resolution parameter for FFT2 we used is 8 where 
classification result of test 1) showed 76.0%; result showed saturation for parameter 
of 16 with result of test 1) of 72.0%. In Fig. 4, the FFT2 result images using averaging 
method are shown, for each FFT-point resolution parameter of 1, 4, 8, and 16. It is 
clear that as FFT-point resolution parameter increases, FFT images look more 
detailed.  

 

Fig. 4. FFT2 result images of averaging method for FFT-point resolution parameter of 1 (first), 
4 (second), 8 (third), 16 (fourth). For observation, leftmost corner is magnified for images 
shown above. FFT2 result image shows more discriminancy as parameter increases until 8. 

The result proved that our proposed algorithm works most successfully for facial 
orientation discrimination of random images, compared to several tests. By 
comparing result of test of FFT and test of Gabor only, we can analyze the reasons 
how our proposed algorithm enhances the performance compared to conventional 
method using PCA and ICA. The result for test with FFT shows that utilizing FFT 
with PCA and ICA does not contribute any benefits for facial orientation 
discrimination. On the other hand, result of Liu’s method, test with Gabor with PCA 
and ICA, confirms that Liu’s method enhances the performance rate when compared 
to conventional method of PCA and ICA, even for the case classification of 
orientation of random images, like it does for general recognition which is already 
known. The result for the proposed algorithm shows that when combining Gabor with 
FFT, performance is enhanced even more than adding Gabor alone to the 
conventional method. We can analyze the result as synergy effect of Gabor along with 
FFT; FFT removes the shift variance properties of Gabor filtered edge features and 
makes the classification performance more robust for pixel shifts in spatial location, 
which is a common problem encountered for conventional methods. 

However, when we conducted experiment with dataset of images taken on same 
date, meaning all images are in the same condition, the classification performance 
turned out to be highest for Liu’s Gabor, PCA, and ICA method with 92.0% whereas 
proposed method showed result of 78.0%. This may be because of no shift variations 
in images so that role of FFT is diminished. With this result, it is shown that our 
proposed method works the best in condition of random images. 
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4   Conclusions 

In this paper, we proposed a novel algorithm for five-class face orientation 
discrimination that consists of four methods: Gabor filters, FFT, PCA, and ICA. The 
proposed algorithm demonstrated successful classification result of 93.2%. The result 
convinces that Gabor-based approach for five-class face orientation discrimination 
along with linear projection of simple edge features with shift invariant properties 
provides reliable feature extraction result for analyzing orientation of faces. 

Our proposed algorithm proves that Gabor filter also contributes to excellent 
performance of face orientation discrimination as well, like its reputation for general 
face recognition introduced by Liu, and its performance is enhanced even more when 
working along with FFT as posterior step. We also suggest several useful 
comparisons on optimizing methods. With simple and straight-forward methods, the 
proposed algorithm will help analyze situation of a given image in fields of Human-
Computer Interaction. 
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Abstract. This paper proposes a visual cortex inspired framework to
detect and discriminate junction points in a visual scene. Inspired by the
biological research in primary visual cortex V1 and secondary visual cor-
tex V2, banks of filters are invented to simulate the response of complex
cells, horizontal lateral connections and angle detectors. Before junction
detection, contour enhancement and texture suppression are performed
in determining the sketch of a scene. The proposed algorithm can extract
primal sketch of the scene and detect the response of junction points in
the scene. Experiments prove the good performance on scenes with man-
made structures.

Keywords: Visual Cortex, Primal Sketch, Junction Detection.

1 Introduction

With scale-invariant properties and semantic meanings, junctions constitute the
“alphabet” in image grammar and could provide robust feature descriptors for
feature matching in stereo vision and motion tracking. As junctions are points
where two or more edges meet, they usually indicates occlusion, transparency,
surface bending and other geometric properties in the scene [1, 2].

In the research of computer vision, the exploration on the detection of junc-
tions has a long history. Traditional approaches usually detect junctions locally
with a structure tensor like Harris operator or a corner template such as SU-
SAN detector [3], and annotate junctions by a template with pre-defined pa-
rameters [4]. However, as local detectors are vulnerable to erroneous response in
textured regions, multi-scale detection and contextual information obtained rich
attention in recent literature on junction detection [5].

There is substantial evidence in psychophysiology, neurophysiology and
computational modeling that secondary visual cortex (V2) is the place where
two-dimensional features such as junctions and corners are encoded. Neurophys-
iological experiments on macaques [6, 7] show that neurons in V2 respond selec-
tively to angle stimuli. Multi-layer self-organized model such as LISSOM [8] and
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Deep Belief Network [9] also present that preferred visual patterns of the second
layer tend to combine two different orientations. Hence, one possible mechanism
of junction detection in visual cortex is proposed that neurons in V2 form differ-
ent feature maps which sample each combination of two orientation preference
responses from primary visual cortex (V1) and generate sparse responses for
each feature map [10].

On the basis of biological research in V2 and some existing computational
model on V1 [2, 11], we propose a framework for junction detection. It is as-
sumed that horizontal connections in V1 play an important role on contour
enhancement and neurons in V2 combines inputs from two or more groups of
neurons with different orientation preference in V1.The framework consists of
two stages. At the first stage, a bank of Gabor filters are employed to generate
contour responses, and horizontal connections in V1 are modeled for a contour
representation which is perceptually evident. At the second stage, junction points
are discriminated by annotating two or more largest orientation responses in a
neighborhood region. In our framework, we only model the finest resolution in
fovea and we choose to design receptive fields which lead to better results instead
of totally simulating the receptive fields that was proposed in previous models.
The main contributions of this paper are highlighted as follows:

(i) In computer vision, this paper proposes a framework for primal sketch and
junction detection inspired from neural circuitry in V1 and V2;

(ii) In visual neuroscience, this paper presents a computational scheme to testify
and predict the functions of feedforward and lateral connections in V1 and
V2.

The rest of the paper is organized as follows. In Section 2, we present a model of
primal sketch to get an enhanced contour map for junction detection. Methods
in junction detection would be detailed in Section 3. In Section 4, experiments
are conducted and a discussion on the model and experiment results is given.
Section 5 concludes the article.

2 Primal Sketch

As junctions are usually intersection of edges, the extraction of edges is a nec-
essary prepossessing step before junction detection. In this paper, we adopt the
term “Primal Sketch”, which is first proposed by David Marr in [12], to describe
the process of contour extraction, contour enhancement and texture suppression
at the first stage of our framework. In this section, the model of discovering
primal sketch will be studied in detail.

2.1 Contour Extraction

To extract the contours in different orientations of a scene, a bank of oriented
2D quadrature Gabor filters is designed. The responses of 2D Gabor filter share
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Fig. 1. Result of contour extraction after Gabor filtering and non-linear gain control
and undesirable texture response that would interfere junction detection

many similarities with receptive fields of simple cells in V1 [13]. In spatial do-
main, a 2D Gabor filter can be denoted as the product of a Gaussian envelope
times a complex sinusoid,

g(x, y, θ; λ, ψ, σ, γ) = exp(−x′2 + γ2y′2

2σ2
) exp(i(2π

x′

λ
+ ψ)) (1)

with x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ, where θ represents the
orientation preference, λ represents the wavelength of the sinusoidal factor, ψ
is the phase offset, σ denotes the width of the Gaussian envelope and γ is the
spatial aspect ratio which specifies the ellipticity of filter. In practice, the DC
component in real part is eliminated in to ensure zero response in homogeneous
area.

In contour extraction, a Gabor filter g(x, y, θk; 0.2π, 0, 1, 0.5) is applied with
the orientation θk = kπ/N (k = 0, 1, ..., N − 1) and N = 8. The responses of
even and odd simple cells, which correspond to the real and imaginary parts of
g(x, y, θ), are obtained by a convolution of the input image I with Gabor filter.
The response of complex cells are modeled by Euclidean norm of corresponding
even and odd simple cells,

C′(θk) = ‖I ∗ g(x, y, θk)‖ (2)

After this, the responses of complex cells are normalized in contrast by non-linear
gain control and thresholded by a piecewise linear approximation of sigmoid F (·)
to constrain the activity in a range of [0, 1]:

C(θk) = F (
C′(θk)

l + C′(θk)
) (3)

The parameter l > 0 could be tuned to determine the degree of enhancement on
weak response. Here we choose l = 0.5 and get a contour response as is shown
in Fig. 1, which is very similar to a pencil sketch with noise from texture.

2.2 Contextual Moudulation

Contextual Modulation, which includes contour enhancement and texture sup-
pression here, is originated from the fact that the result of contour extraction is
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not very ‘clean’. As can be seen from Fig. 1, textured response that is undesirable
in our primal sketch for contours also yields strong responses. This also cause
interference in later stage of junction detection as textures are usually areas with
random large response in multiple directions.

Biological evidence from the horizontal lateral connections in V1 also suggests
such a mechanism [14]. Studies show that long-range projections of pyramidal
cells in layer 2/3 project primarily to neurons with similar orientation preference
and appear to be predominantly excitatory. However short-range projections
appear to be largely isotropic and have been argued to be largely inhibitory.

The long-range projections here are modeled as a bank of collinear facilitation
filters on contour responses. The receptive field of collinear facilitation filters are
modeled as the real part of an elongated Gabor filter g(x, y, θk; 0.5π, 0, 2, 0.25)1

and the complex responses Ci(θk) are filtered to get the excitatory response
Rex(θk) of collinear structure.

Rex(θk) = [greal(x, y, θk; 0.5π, 0, 2, 0.25) ∗ C(θk)]+ (4)

where ∗ denotes convolution, [x]+ = max(x, 0) denotes half-wave-rectification.
The inhibitory short-range projections are modeled by filters which collect

responses across different orientations. The shape of inhibitory receptive fields is
modeled by the negative part of even response of g(x, y, θk; π, 0, 2, 1) across eight
orientations with weights of 1D Gaussian distribution. The inhibitory response
Rin(θk) can then be described as follows,

Rin(θk) =
N∑

i=1

([−greal(x, y, θk; π, 0, 2, 1)]+ ∗ C(θi)) · G1,θk
(θi). (5)

Here N=8 denotes eight orientations and 1D Gaussian distribution Gσ,θk
(θi)

denotes that similar orientation response in the neighborhood would contribute
more to the inhibitory response.

As the response of horizontal lateral connections only have modulatory effects
on feed forward response, the response of long-range projections and short-range
projections P (θk) are integrated with modulatory excitation and divisive inhi-
bition as,

P (θk) =
C(θk) · (1 + a · Rex(θk))

b + Rin(θk)
(6)

where C(θk), Rex(θk), Rin(θk) are complex responses, excitatory responses and
inhibitory response defined in Eq. (3), Eq. (4) and Eq. (5). Here P (θk) can be
seen as the steady state of a firing rate model, b and a are the decay parameter
and facilitatory parameter that could be tuned by readers.

The responses of the contextual modulation P (θk) are then fed into neighbor-
ing neurons by recurrent connections and integrated with the feedforward com-
plex response C′(θk). After this procedure, a more sparse and accurate results
of the orientation responses are yielded. The effects of the feedback connections
are illustrated in Fig. 2 (b) and (c).
1 Here Gabor filter is borrowed to model the shape of receptive field for the convenience

of mathematical representation.
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3 Junction Detection

As some neurons in V2 tend to form different feature maps by sampling each
combination of two or more orientation preference responses from V1 [8–10],
we propose a corresponding computational scheme in this section to locate and
discriminate the type of junctions in a scene. The scheme uses combined orien-
tation responses to get sparse junction candidate maps from primal sketch and
responses of end-stopped cells to decide on the type of the junction.

3.1 Junction Locating

In primal sketch, a junction usually locates at the position where multiple lines
end or intersect. So locating positions of intersections is a fast and economical
way to locate junction candidates in a scene.

Intersection detectors J(θm, θn) here are inspired from the neurons that re-
spond selectively to angle stimuli in V2. They could be seen as an “AND” gate
on even responses of two Gabor filters with different orientation preference O(θk)
on the primal sketch P (θk):

O(θk) = [greal(x, y, θk; 0.2π, 0, 1, 0.25) ∗ P (θk)]+ (7)

J(θm, θn) = (O(θm) · O(θn))0.5 (8)

The output of intersection detectors can be seen as sparse maps for junction
candidates in different orientation preference (Each J(θm, θn) here represents a
sparse map with preferences in two orientations). The position of the junction
candidates can then be found by calculating the local maxima of each J(θm, θn).

3.2 Junction Classification

After fixating the location of candidate junctions, a bank of end-stopped filters,
which is inspired from end-stopped cells found in visual cortex, are conducted on
the primal sketch. Their receptive field could be approximated as Gabor filters
in orthogonal orientations to orientation responses in primal sketch P (θk). Here
we only model single-stopped filters as the odd part of g(x, y, θk⊥; π, 0, 1, 2) to
find out the position of line ends,

R′
es(θk) = [gimag(x, y, θk⊥; π, 0, 1, 2)] ∗ P (θk)]+ (9)

where θk⊥ denotes the orthogonal orientation to θk and θk = kπ/N (k =
0, 1, ..., 2N, N = 8) denotes the single-stopped responses in both directions.

As there usually exist ‘false responses’ on lines and edges in R′
es(θk), an ad-

ditional step of ‘surround inhibition’ [15] is implemented to eliminate these false
responses. The end-stopped response Res(θk) can then be expressed as,

Res(θk) = [R′
es(θk) − gRsurr]+ (10)

where g = 0.5 here and Rsurr is detailed in Fig. 9 and Eq. (11) and (12) of [15].
After getting the end-stopped responses, the type of junction can be deter-

mined by the combined responses of Res(θm), Res(θn) and J(θm, θn).
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(a) An original image (b) Contextual Modulation result (1st iteration) (c) Contextual Modulation result (2nd iteration) 

(e) Junctions in horizontal and vertical orientations (f) Junctions in all orientations (d) Junction detection result 

Fig. 2. Result of Primal Sketch and Junction Detection. (a) original image, (b-c) results
of contextual modeling after 2 iterations, the primal sketch become more clean and
sparse after two iterations, (d) junction points in the image after setting a threshold
and get the local maxima on (f), (e) junction points where horizontal and vertical lines
intersect. (f) junction points in the scene which get strong responses in two or more
directions.

Fig. 3. Result of Primal Sketch and Junction Detection. Left: original image, Middle:
junction points detected in the scene, Right: primal sketch and junction map.

4 Experiments and Discussions

In the experiments, the proposed model is applied to compute primal sketches
and junctions in a variety of scenes with man-made structures as shown in Fig. 2
and Fig. 3. It can be seen from Fig. 2 (b) and (c) that texture areas are largely
suppressed and contour regions are enhanced after 2 iterations of contextual
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modulation. The results of junction detection in Fig. 2 and Fig. 3 show that the
detected junction generally captures the structure of the scene, where junctions
capture the corner, occlusion, and surface intersection in the scene.

Another conclusion that can be drawn from the experiments is that, with
well-tuned parameters and proper receptive size, filters similar receptive field
of different neuron groups in visual cortex could to some extent realize some
function of visual processing better than traditional computational algorithms.
The filters used in this model simulate a subset of the neurons with different
sizes and functional connections in brain, and we believe that brain has a sim-
ilar mechanism to optimally choose filter banks of proper sizes and connection
weights to adapt the environment.

5 Conclusion

In this paper, we have presented a brain inspired framework for detecting and
recognizing junctions in low-middle level vision. We identified the primal sketch
of the scene with filter banks inspired from neuron receptive fields and hori-
zontal connections in V1. We then conducted junction detection with based on
end-stopped filters and intersection detectors. The experiments show that the
algorithm can simultaneously obtain good results in junction detection and the
primal sketch which generalizes the main structure of the scene.
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Abstract. Missing value imputation for microarray data is important
for gene expression analysis algorithms, such as clustering, classification
and network design. A number of algorithms have been proposed to solve
this problem, but most of them are only limited in linear analysis meth-
ods, such as including the estimation in the linear combination of other
no-missing-value genes. It may result from the fact that microarray data
often comprises of huge size of genes with only a small number of obser-
vations, and nonlinear regression techniques are prone to overfitting. In
this paper, a quasi-linear SVR model is proposed to improve the linear
approaches, and it can be explained in a piecewise linear interpolation
way. Two real datasets are tested and experimental results show that the
quasi-linear approach for missing value imputation outperforms both the
linear and nonlinear approaches.

Keywords: microarray data, missing value imputation, quasi-linear,
SVR.

1 Introduction

Microarray gene expression data generally suffers from missing value problem
resulted from a variety of experimental reasons [1], while it has become a useful
biological resource in recent years. In DNA microarray experiments, a large
mount of genes are monitored under various conditions, and recovering missing
values by repeating the experiment is often costly or time consuming. Therefore,
computational methods are desired to achieve accurate result for imputation of
microarray data.

Recently, linear analysis based approaches have been widely studied, among
which, an imputation method based on local least squares (LLS) [2] has shown
highly competitive performance compared with others, like K-nearest neigh-
bors (KNN) imputation [3] and Bayesian principal component analysis (BPCA)
imputation [4]. Missing values in a certain gene are represented as a linear com-
bination of similar genes, and elimination of less similar genes is helpful to im-
prove performance. Nevertheless, in most cases, hundreds of similar genes are
selected for estimating missing values in one gene, and the linear approxima-
tion may be insufficient to capture nonlinearity in nature of the gene expression
data. On the other hand, since the microarray dataset often comprises of huge
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size of genes with only a small number of observations [5], nonlinear regression
techniques successfully apply in machine learning, such as neural networks, are
prone to overfitting and generate models with little interpretability [6]. To fill the
gap between the existed linear and nonlinear methods, a model with adjustable
complexity is proposed for the maximum imputation performance.

In this paper, quasi-linear support vector regression (SVR) model [7] is
proposed to improve linear approaches with proper nonlinearity (or flexibility)
contained. It can be explained in a piecewise linear interpolation way to solve
nonlinear regression problem with characteristics of high noise and small number
of training examples for high input dimensional data. To generate appropriate
partition in the input space, clustering technique is used according to the dis-
tribution of data, and flexibility of the model is determined by the number of
partitions. For instance, only two or three subregions are enough in the case of
microarray data missing value estimation, since the size of samples is limited
within a small number, and unnecessary separating may deteriorate generaliza-
tion. In the following, SVR is applied for estimation by a quasi-linear kernel,
which includes piecewise linear information. Details of quasi-linear SVR model
will be elaborated in Section 2.

The proposed imputation method falls in the category of local approaches [1],
and gene selection algorithm from [2] is also applied for the gene-wise local
scheme. In order to show the effectiveness of the proposed local SVR with quasi-
linear kernel (LSVR/quasi-linear) imputation method, results from LLS, local
SVR with linear kernel (LSVR/linear) and local SVR with nonlinear kernel
(LSVR/nonlinear) will be compared. The paper is organized as following: Section
2 formulates quasi-linear SVR model. Section 3 gives the implementation of
microarray data imputation in detail. Section 4 provides simulations based on
two different data sets, and the results will be compared with others. Conclusions
are provided in Section 5.

2 Quasi-Linear SVR Model

2.1 Quasi-Linear Formulation

Linear models often outperform nonlinear models in microarray missing value
imputation problem due to the high noise and a small number of observations.
However, linear models are difficult to capture nonlinear dynamics of the nature
in microarray data. Therefore, a quasi-linear SVR model is proposed with proper
flexibility contained. Let xn = [x1,n, x2,n, · · · , xk,n]T , n = 1, · · · , N denotes the
selected k genes in the n-th observation for estimating missing values of gene y,
then quasi-linear formulation [8] could be given as

yn = xT
nw(xn) + en (1)

w(xn) = Ω0 +
M∑

j=1

ΩjN (pj ,xn) (2)
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where w(xn) is a state-dependant parameter vector of linear structure in Eq.(1),
which can be represented by a basis function network such as radial basis func-
tion (RBF) network in Eq.(2), and N (pj ,xn) denotes the j-th basis function
constructed by parameters pj . Ωj = [ω0j , · · · , ωkj ]T (j = 1, · · · , M) is the con-
nection matrix between input genes and the corresponding basis functions, and
M represents the size of basis functions.

The quasi-linear formulation in Eq.(1) can be explained in a piecewise linear
interpolation way as

yn =
M∑

j=0

xT
nΩjNj,n + en (3)

in which Nj,n means interpolation value of the j-th piecewise linear part, which
is the shortening of N (pj ,xn) for simplicity, and it is defined N0,n = 1. M is
the number of partitions for piecewise linear separating, and en is error of the
model.

2.2 SVR with Quasi-Linear Kernel

SVR has demonstrated impressive generalization performance because it concen-
trates on minimizing the structural risk instead of the empirical risk. However,
the kernel functions could be used are few, which can be categorized into linear
kernel and nonlinear kernel (such as polynomial kernel, Gaussian kernel and Sig-
moid kernel) [9]. Since quasi-linear formulation can be explained into a piecewise
linear interpolation way, a SVR model is built with piecewise linear information
contained into the kernel function.

Firstly, Eq.(3) can be written in a linear-in-parameter way as

yn = ΦT
nΘ + en (4)

where

Φn = [xT
n ,N T

1,nxT
n , · · · ,N T

M,nxT
n ]T (5)

Θ = [ΩT
0 ,ΩT

1 , · · · ,ΩT
M ]T . (6)

In the following, Structural Risk Minimization principal is introduced, and Eq.(4)
can be solved as the QP optimization problem

minJ =
1
2
ΘT Θ + c

N∑
n=1

(ξn + ξ∗n)

subject to: {
yn − ΦT

nΘ − b0 ≤ ε + ξn

−yn + ΦT
n Θ + b0 ≤ ε + ξn,

where N is the size of observations, and ξn, ξ∗n ≥ 0 are slack variables. C is
a non-negative weight to determine how much prediction errors are penalized,
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which exceed the threshold value ε. The solution can be turned to find a saddle
point of the associated Lagrange function

L(Θ, ξn, ξ∗n, αn, α∗
n, βn, β∗

n)

=
1
2
ΘT Θ + c

N∑
n=1

(ξn + ξ∗n) +
N∑

n=1

αn(yn − ΦT
nΘ − b0 − ε− ξn)

+
N∑

n=1

α∗
n(−yn + ΦT

n Θ + b0 − ε− ξ∗n)−
N∑

n=1

(βnξn + β∗
nξ∗n). (7)

Then the saddle point could be acquired by ∂L
∂Θ , thus it leads to

Θ =
N∑

n=1

(αn − α∗
n)Φn. (8)

Substitute Θ in Eq.(7) with (8), the dual cost can be written as

maxW(αn, α∗
n) = −1

2

N∑
n,p=1

(αn − α∗
n)(αp − α∗

p)Φ
T
n Φp

+
N∑

n=1

(αn − α∗
n)(yn − b0)− ε

N∑
n=1

(αn + α∗
n). (9)

With solutions of αn and α∗
n optimized from Eq.(9), the quasi-linear SVR model

can be used as

yl =
N∑

n=1

(αn − α∗
n)K(l, n) (10)

in which yl is the sample with missing value in the target gene, n is the sample
points without missing value. In Eq.(10) the quasi-linear kernel is defined as

K(l, n) = ΦT
l Φn = (

M∑
i=1

Ni,lNi,n + 1)KL(l, n) (11)

and KL(l, n) = xT
l xn is the expression of linear kernel. From Eq.(11) it is found

that quasi-linear kernel contains the piecewise linear interpolation information,
thus the flexibility of model can be adjusted by using different number of parti-
tion M , which is determined according to the knowledge from data.

3 Implementation of Quasi-Linear SVR for Microarray
Missing Value Imputation

There are three steps in quasi-linear SVR based imputation method. The first
step is to select k genes which are similar with the target gene. We use selection
scheme which is the same with the one in LLS for convenience of comparison.
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In the next step, quasi-linear formulation is realized in a piecewise linear in-
terpolation way. The partitions are obtained by using affinity propagation (AP)
clustering algorithm [10], which is recently introduced for exemplar-based clus-
tering. The main advantage of this algorithm is that it can find good partitions
of data and associate each partition with its most prototypical data point (ex-
emplar) such that the similarity between points to their exemplar is maximized,
and the overall cost associated with making a point an exemplar is minimized.
Therefore, reasonable partitions can be generated automatically without pre-
determining the number of clusters. In microarray missing value imputation
problem, due to the size of samples is limited in a small number, two or three
clusters are acquired each time. Then RBF is introduced as basis function to
cover each subregion, which can be explained as interpolation. Therefore, Ni(t)
is defined as

Ni,n = exp(−xn −mi

λdi
) (12)

where mi and di are the center vectors for the i-th subregion, λ is a scale
parameter.

At last, the quasi-linear SVR model obtained from Eq.(7)-(9) is used to esti-
mate the missing value yl as Eq.(10) shown.

4 Experiments and Results

4.1 Experiment Setting

To show effectiveness of the proposed quasi-linear SVR model microarray miss-
ing value imputation, the results will be compared with LLS, LSVR/linear and
LSVR/nonlinear. In LSVR/nonlinear method Gaussian kernel function is ap-
plied. For the reason of fairness, missing values are set to zero when they are
used for estimation of other missing ones in all the four methods. Both experi-
ments are implemented by Matlab 7.6, and Lib SVM toolbox version 2.91 [11]
is applied for SVR implementation, and ν-SVR is used with default parameter
setting.

4.2 Datasets

Two real datasets have been used in our experiments. The first one is from 784
cell-cycle-regulated genes, and 474 genes and 14 experiments (SP.CYCLE) are
obtained after removing all gene rows that have missing values. It was designed
to test how much an imputing method can take advantage of strongly correlated
genes in estimating missing values. The second dataset is the cDNA microarray
data relevant to human colorectal cancer (TA.CRC) and contains 758 genes in 50
samples. These two datasets have been used in studies of BPCA [4] and LLS [2]
imputation.
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Since missing values used in our experiments are introduced artificially, the
performance of imputation methods are evaluated by comparing the estimated
values with the corresponding real values. The matric to assess the accuracy of
estimation is normalized root mean squared error (NRMSE):

NRMSE =

√
mean[(yguess − yans)2]

variance[yans]

where yguess and yans are estimated and real vectors for the artificial missing
values.

4.3 Experimental Results

AP clustering algorithm is implemented, and two clusters are obtained in both
the two cases. In Fig.1, the experimental results are shown for SP.CYCLE and
TA.CRC dataset with missing data rate of 1%. In both cases, the NRMSE values
for all the methods are tested with various values of k, and the best result of each
method that do not depend on the number of genes are shown on the y-axis.
It is found that linear imputation methods (LLS and LSVR/linear) outperform
nonlinear one (LSVR/nonlinear) as k-value increases. And the quasi-linear impu-
tation approach shows the best performance among all the methods compared.
The results are given in Tab.1.

What’s more, as the percentage of missing value increased, the NRMSE
values of both two dataset with the missing rate of 10% and 20% are also
shown in Tab.1. It is found when the missing rate is high, the results from
LSVR/quasi-linear are competitive with LLS, LSVR/linear method, and better
than LSVR/nonlinear method on both two datasets.

4.4 Discussions

As the results shown in above experiments, the quasi-linear approach can pro-
vide higher estimation accuracy compared with linear and nonlinear methods
especially when the missing rate is not high. It owns to the proper flexibility of
the model, which can be explained in a piecewise linear interpolation way. How-
ever, when the missing rate becomes to be high, inaccurate knowledge, such as
data distribution for partition, is also incorporated into quasi-linear SVR model,
hence the performance is only competitive with linear methods.

Table 1. NRMSE results with missing percentage of 1%, 10% and 20%

SP.CYCLE TA.CRC

missing rate 1% 10% 20% 1% 10% 20%

LLS 0.523 0.637 0.638 0.389 0.393 0.503

LSVR/linear 0.513 0.639 0.649 0.385 0.390 0.498

LSVR/quasi-linear 0.500 0.637 0.643 0.379 0.390 0.497

LSVR/nonlinear 0.632 0.686 0.730 0.424 0.408 0.524
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Fig. 1. Comparison of the NRMSEs of four methods and effect of the k-value on
SP.CYCLE and TA.CRC dataset with 1% entries of each dataset
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5 Conclusions

A quasi-linear SVR model is proposed to estimate the missing values in microar-
ray data. It can be explained in a piecewise linear interpolation way to improve
the linear method, and it also performs better than nonlinear methods because
overfitting caused by the lack of observations and high noise of the datasets.
The experimental results show the proposed method outperforms LLS impu-
tation method, and SVR approaches with linear and RBF kernel functions as
well.
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Abstract. We propose a novel method for the segmentation of spine and ribs 
from posterior whole-body bone scintigraphy images. The knowledge-based 
method is first applied to determine the thoracic region. An adaptive 
thresholding method is then used to extract the thoracic spine from it. The rib 
segmentation algorithm is carried out in two steps. First, the rib skeleton is 
extracted based on standard template and image information. The skeleton is 
then used to locate the accurate boundary of the respective ribs. The 
introduction of standard template can deal with significant variations among 
different patients well, while the skeleton-based method is robust against the 
low contrast between the ribs and the adjacent intervals. The experiments show 
that our method is robust and accurate compared to existing methods.   

Keywords: Bone scintigraphy, Spine segmentation, Rib segmentation, 
Knowledge-based segmentation. 

1   Introduction 

Bone scintigraphy is a useful tool for diagnosing diseases such as bone tumors in 
nuclear medicine [1,2,3,4]. The accurate segmentation of the spine and ribs can be 
helpful for the analysis of the bone and location of the lesions. However, the 
automatic segmentation and analysis of the images have been a challenging task, due 
to the poor quality of the bone scan images and the significant variations of bone 
structures among different patients. The low signal noise ratio (SNR) and weak 
boundary contrast are the main difficulty for delineating the specific bone boundary. 
Traditional image segmentation algorithms like thresholding, region growing or level 
set may not work well due to these difficulties .  

Previous works mainly focus on the region partition of the whole-body image [1, 3, 
4, 5]. Only few works have been done on the accurate segmentation of the specific 
bones. Sajn [2] intend to separate body scan images into main skeletal regions and 
intend to segment individual bones. However, many simplifications are made in his 
work: the bones are represented as simple geometric shapes, for example, the spine 
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area is seen as a rectangle, and not all ribs are segmented. The boundary of the bones 
cannot be accurately delineated, either.  

Spine is the most important part of the thoracic region. The accurate segmentation 
of spine can not only be useful for hotspot detection in both spine and ribs area but 
also be important for rib segmentation. The rib segmentation is the most challenging 
work in the segmentation of bone scan images [2]. The contrast between rib and rib 
interval is too low, which makes the accurate delineation of the boundary really 
difficult. Few methods have been proposed for rib segmentation.  

In this paper, the knowledge-based method is first applied to extract the thoracic 
region. An adaptive thresholding method is used for spine and vertebra segmentation. 
Then rib skeleton is extracted based on the standard template via a novel curve 
following algorithm. Finally, the rib skeleton is used to locate the accurate boundary 
of ribs combined with local information. The implementation of our algorithm shows 
that it can generate satisfactory results. 

2   Materials and Methods 

The bone scintigram images we used are acquired from department of nuclear 
medicine, Shanghai Renji Hospital. Each image has a resolution of 1024× 512 and 
each pixel has 16-bit grayscale depth. 

The segmentation algorithm consists 3 steps: thoracic region extraction, spinal 
column segmentation and rib segmentation. All input images first go through a 
Gaussian filter with size of 5 5×  to remove additional noise. 

2.1   Thoracic Area Extraction 

After consulting with the physicians, our region of interest (ROI) is defined as the 
thoracic area between the shoulder points and the pelvis top points. We locate left 
point and the right landmark points separately by looking for the maximum width 
changes along the vertical direction within given ranges.  

Image binarization is first performed by setting all pixels with value less than T1 
(which is set as 6 in our experiments) to 0. The medium filter is applied to remove the 
additional noise introduced during the binarization process. The patient height is then 
estimated by detecting the head and feet position on the binarized image. 

According to statistics and anatomical knowledge, the shoulder points are 
generally located within 0.17-0.25 patient height down from the head line, while the 
pelvis points are generally located within 0.38-0.45 patient height down from the head 
line. The line with maximum width change (|current width-previous width|) in each 
range is considered as the corresponding shoulder/pelvis line; the landmark point is 
then located as the first non-zero point from outside to inside along the horizontal 
line. The thoracic region is set to be the minimum enclosing rectangle of the detected 
landmark points.  

Fig. 1 demonstrates the thoracic region extraction process. (a) shows the original 
image, (b) shows the binarized image, (c) shows landmarks points  and (d) shows 
extraction result. 
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(a)           (b)             (c)            (d) 

Fig. 1. Procedure of thoracic area extraction 

2.2   Spinal Column Segmentation 

Spine Area Segmentation 
An optimal threshold T2 is first computed by the OTSU algorithm [8] to segment 
spine from thoracic area. The OTSU algorithm considers the segmentation problem as 
a two-class classification problem and intends to minimize the intra-class variance. In 
our case, one class usually includes spine, kidney, and hotspot, which have relatively 
high intensity values, while the other one mainly includes the rib area. 

Topological operations are then applied to remove kidney, hotspots or scapula 
from threshold results. For few cases in which some ribs or kidney may still be 
connected to the spine, the width of the spine area is computed for each horizontal 
line. If the width change surpasses certain predefined value, the corresponding 
boundary is adjusted according to its neighboring lines. The typical result of spine 
segmentation is shown in Fig. 2 (b). 

 
                      (a)            (b)             (c) 

Fig. 2. The segmentation and partition of spinal column 

Spinal Column Partition 
It is not easy to separate spine into vertebras merely by the width or intensity sum 
distribution of each horizontal line (Fig. 3(a)). Considering the anatomical structure 
and intensity distribution of the spine area, we propose a new term ( )S i  for vertebra 

segmentation, which is defined by: 
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3 3

3 3

( ) ( , ( ) ) ( , ( ) )
m n

S i x i left i m x i right i n
=− =−

= + + +                       (1) 

in which i denotes the row number of the thoracic area, ( , )x i j  denotes the pixel 

value of the image at the position of ( , )i j , ( )left i and ( )right i respectively 

denote the column coordinates of left and right boundary of the spine.  
The formula computes the intensity sum around the spine boundary, which shows 

significant periodic change along the vertical line, as is shown in Fig 3(b). The 
intervertebral discs correspond to the local minima of the distribution curve, which is 
used to partition vertebral bodies. The typical vertebra segmentation result is shown in 
Fig. 2(c). 

   
                     (a)                             (b) 

Fig. 3. The distribution of intensity sum and S(i) along the vertical line 

2.3   Rib Segmentation 

To include as much prior knowledge about ribs as possible, we introduce a standard 
template manually delineated by an experience physician from Shanghai Renji 
Hospital, which is shown in Fig. 4(a). We propose a skeleton-based algorithm for rib 
segmentation, which proves to be more robust and accurate. 

Rib Skeleton Extraction 
Rib skeleton is extracted via a novel curve following algorithm based on standard 
template. To control the following process, prior knowledge about the rib shape and 
local information are combined to obtain the best results. The detailed algorithm for 
left rib skeleton extraction is summarized as follows. 

1. The starting points of the ribs care obtained from ( )S i   that we got in section 2.2. 

As ribs are connected to corresponding thoracic vertebras from posterior view, the 
coordinates of local maximum points of ( )S i  can then serve as the starting points 

of ribs.  

2. For each rib skeleton point ( , )k ka b , we can predict the range of the coordinate of 

the neighboring point by: 
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in which ( , )k ka b  is the coordinate of current rib skeleton point with line number 

of kb .The range of δ can be obtained by manually measuring the standard 

template and storing ,min maxδ δ for different rib length in a look-up-table (LUT). 

3. The optimal opδ  can be obtained by solving the following optimization problem: 

 
2

2

arg max ( , 1) [ , ]op k k min max
m

x a m bδ δ δ δ δ
=−

= + + − ∈     (3) 

in which ( , )k kx a b is the corresponding intensity value; the coordinate of the 

current rib skeleton point is then 1( , )k op ka bδ ++ . 

4. Repeat step 2 and step 3 until all ribs reach the end or predefined maximum length.  
5. Cubic spline fitting is applied for smoothing the obtained curve. The result of curve 

fitting is considered as rib skeleton.  

The process of rib skeleton extraction is presented in Fig. 4, in which (b) shows the 
starting points of rib skeleton, (c) shows the curve following result and (d) shows the 
rib skeleton after curve fitting. 

 

          (a)           (b)            (c)           (d)            (e) 

Fig. 4. The template we employed and the extraction of rib skeleton 

Rib Boundary Delineation 
To accurately delineate the boundary of a specific rib, we shift the rib skeleton up and 
down in predefined ranges. The sum of intensity values along the shifted curve is then 
calculated, the peak of each curve corresponds to the rib middle line while the valley 
corresponds to the rib interval. We define the rib boundary as the line with steepest 
intensity change. The rib segmentation result of our algorithm is shown in Fig. 4 (e).    
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3   Experimental Results 

3.1   The Thoracic Region Extraction 

To compare our thoracic region segmentation with existing methods, we ask 
physicians from Shanghai Renji Hospital to manually inspect the results. The 
comparison of accuracy between our method and Huang’s method in our test set is 
shown in table 1. The width-change based method show better robustness than 
intensity-based method. And by locating the left and right landmark points separately, 
the method can resist noise or patient position. Fig. 5 (a) (c) show two cases in which 
Huang's algorithm fail due to noise and asymmetric landmark points. Our method, on 
the other hand, can deal with the problem well, (b) (d).  

Table 1. Comparison of accuracy between landmark points detection methods 

 Our method Huang’s method 

Shoulder point detection  247/250(98.8%)  222/250(88.8%) 

Pelvis point detection 166/175(94.8%)  148/175(84.6%) 

 

    
(a)            (b)            (c)             (d) 

Fig. 5. Examples of thoracic region segmentation results 

3.2   Spine and Vertebrae Segmentation 

Fig. 6 shows some of our spine segmentation results, the knowledge-based algorithm 
can be deal with the variations among different patients well. Our algorithm can also 
show good results for scoliosis patients, as is shown in Fig. 6(c)(d). Knowledge-based 
method can remove ribs or kidney connected to the spine as well. The automatic 
segmentation and partition of vertebras is not only useful for the hotspot detection and 
location in posterior images but also can be used for image registration in later 
studies.  
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(a)                (b)                 (c)               (d) 

Fig. 6. The results of spine segmentation and partition 

3.3   Rib Segmentation 

Fig. 7 shows the rib segmentation results. (a)(e) show the original images; (b)(f) show 
the rib skeleton extracted by our algorithm, (c)(g) show the final rib segmentation of 
our method, (d)(h) show the results obtained by the adaptive region growing in [9], 
the spine and kidney are removed by our method. We can see that it is difficult to find 
the boundary of ribs merely by intensity information due to the low SNR. However, 
the skeleton-based algorithm can overcome the problem since it does not depend on 
the single pixel value. Another advantage of our algorithm over traditional methods 
like level set or graph cut is that each rib can be segmented, which can be analyzed 
individually in later studies. 

    

(a)              (b)          (c)              (d) 

   
(e)              (f)          (g)              (h) 

Fig. 7. The results of rib segmentation 

The main difficulty with rib segmentation is the 1st to 5th ribs, which are quite 
unexpressive in the images. In few cases, the algorithm may fail due to poor quality. 
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This can be manually corrected by the physicians. The result of spine and rib 
segmentation is also applied in our CAD system for the interpretation of bone 
scintigraphy images and shows good clinical potential. 

4   Conclusions 

An automatic method for spine and rib segmentation from posterior bone 
scintigraphy images is proposed in this paper. Combined with statistic 
information and standard template, our algorithm can deal with the shape and 
intensity variety among different patients well. The knowledge-based method also 
shows good results delineating the boundary of the rib in spite of the low SNR 
and weak boundary contrast. The experiments show that our algorithm is robust 
and accurate.  
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Abstract. Weak boundary contrast, inhomogeneous background and
overlapped intensity distributions of the object and background are main
causes that may lead to failure of boundary detection for many image
segmentation methods. An adaptive region growing method based on
multiple boundary measures is presented. It consists of region expansion
and boundary selection processes. During the region expansion process
the region grows from a seed point. The background points adjacent to
the current region are examined with local boundary measures. The re-
gion is expanded by iteratively growing the most qualified points. In the
boundary selection process, the object boundary is determined with the
global boundary measure that evaluates the boundary completeness. Ex-
perimental results demonstrate that our algorithm is robust against weak
boundary contrast, inhomogeneous background and overlapped intensity
distributions.

Keywords: Segmentation, Region growing, Local boundary measures,
Global boundary measure, Growing cost.

1 Introduction

Image segmentation is one of the most critical tasks for automatic image anal-
ysis. Weak boundary contrast occurs frequently in medical images, in which
the boundary contrast of some boundary points is too weak to distinguish
the object and the background. These boundary points are called boundary
openings because the boundary looks discontinuous around them. In some in-
tensity images, the objects may be surrounded by both darker and brighter
background structures, which are called inhomogeneous background. In medical
images the intensity ranges of different medical structures are often overlapped,
which are called overlapped intensity distributions of the object and background.
All of three problems are main causes that may lead to failure of boundary de-
tection for many image segmentation methods. Robust segmentation methods
are required to deal with these three problems: 1) weak boundary contrast; 2)
inhomogeneous background; and 3) overlapped intensity distributions.

Thresholding is a basic segmentation technique based on intensity histogram
[1], [2]. But they may fail when the intensity ranges of object and background

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 249–256, 2011.
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overlap. Edge detection is one of the most common approaches for detecting
meaningful intensity discontinuity in an intensity image, such as Canny and
Sobel edge detectors. They may be badly influenced by weak boundary contrast.
Seeded region growing is another basic technique for object. But some seeded
region growing approaches may not identify the object from the inhomogeneous
background [3]. Various deformable models have been widely used in medical
image segmentation. However, snakes [4], [5] and level set methods [6], [7] may
fail if the initial models are not in the vicinity of the objects.

In this paper, an adaptive region growing algorithm for object segmentation
is developed. It consists of two processes, region expansion and boundary se-
lection. In the region expansion process, current region is expanded by growing
the most qualified point extracted with local boundary measures. The region
expansion process continues until there is no contour point available to join the
region. In the boundary selection process, the object boundary is selected with a
global boundary measure. The application of the proposed method to real images
shows that it is effective in dealing with weak boundary contrast, inhomogeneous
background and overlapped intensity distributions.

2 Region Expansion

In order to avoid the unwanted influences of inhomogeneous background and
overlapped intensity distributions, the information of local intensity distribution
is used to guide the region expansion process. In an intensity image, the location
and shape of a region can be defined by a set of background points adjacent to
the region. For convenience, this set of background points is called the contour
of the region in this paper.

Let Ω represent the region of an original image. Let f(x) be the intensity
function of the image point x = (x, y) ∈ Ω. The region of object to be extracted
is called real object R, while (Ω −R) is called real background B. The contour
of the real object R is denoted as object boundary L. To differ from the real
object, the region examined at step i is called step region R(i), while (Ω−R(i))
is called step background B(i). The contour of the step region R(i) is called step
contour L(i).

In the process of region expansion, each contour point is examined within
its neighborhood, which is a square window centered at the examined contour
point. The size of neighborhood is application dependent. Let N(xe) be the
local neighborhood centered at the contour point xe. Let R(xe) be a subset of
step region points in N(xe) and B(xe) be a subset of step background points,
i.e. N(xe) = R(xe)

⋃
B(xe). Fig. 1 shows an example of a 5 × 5 neighborhood

centered at a contour point.
The local contour contrast is defined by dR = |f(xe) − mR|, which is the

contrast between intensity of the contour point xe and the mean intensity mR

of R(xe). The local background intensity variation is dB = |f(xe)−mB|, which
is the contrast between intensity of xe and the mean intensity mB of B(xe).
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Fig. 1. The variations in the 5 × 5 neighborhood of the labeled contour point during
labeling process

2.1 Local Boundary Measures

In the region expansion process, all of current contour points are examined with
local boundary measures and are classified into two states: region and boundary
candidates. The state of a contour point xe is classified as region candidate if
its intensity is similar to that of R(xe). Otherwise it is classified as boundary
candidate.

A local boundary measure called the local region competition measure, is
introduced to classify the states of contour points. It evaluates the competition
between local region R(xe) and background B(xe) on attraction to the contour
point xe in terms of intensity. This measure is defined by,

υ0 = u(dR − dB) =
{

0, if dR ≤ dB

1, if dR > dB
, (1)

where u(·) is a unit step function. If υ0 = 0, xe is classified as a region candidate
because its intensity is more similar to that of R(xe). Otherwise xe is regarded as
a boundary candidate with this measure. The contour points of real object R with
significant boundary contrast are very likely classified as boundary candidates by
this measure. This local region competition measure is application independent.

Two application dependent local boundary measures are introduced to assist
the local region competition measure. The first application dependent measure
examines the relative intensity range of local region R(xe),

υ1 = u(dR − λσR) =
{

0, if dR ≤ λσR

1, if dR > λσR
, (2)

where σR is the standard deviation of R(xe). λ is the region intensity range
parameter. υ1 = 0 implies that the intensity of xe is within the relative intensity
range of R(xe), i.e. f(xe) ∈ [mR − λσR, mR + λσR]. xe is therefore classified as
a region candidate. Otherwise, xe is treated as boundary candidate if υ1 = 1.
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The second application dependent measure analyzes the absolute intensity
range of local region R(xe),

υ2 = u(dR − κ) =
{

0, if dR ≤ κ
1, if dR > κ

, (3)

where κ is the region intensity threshold. υ2 = 0 shows that the intensity of xe is
within the absolute intensity range of R(xe), i.e. f(xe) ∈ [mR − κ, mR + κ]. xe

is hence classified as a region candidate. Otherwise, xe is regarded as boundary
candidate if υ2 = 1.

Many points inside the real object may be misclassified as boundary can-
didates with the local region competition measure during the early stage of
region expansion process due to inhomogeneous local intensity variation inside
the object. They may well be re-classified as region candidates with these two
application dependent measures.

2.2 Local Classification Function

A classification function is introduced to combine three local boundary measures
for the state classification of contour points, h(xe) = υ0 × υ1× υ2. The function
h(xe) = 1 indicates that the contour point xe satisfies all three conditions: (1)
dR > dB; (2) dR > λσR; (3) dR > κ. It shows that there is significant intensity
contrast between xe and current local region R(xe). Hence xe is regarded as a
boundary candidate. On the other hand, h(xe) = 0 implies that the intensity of
xe is similar to that of R(xe). Therefore xe is classified as a region candidate.
After the state classification of all contour points, the current step contour L(i)
is divided into region candidate set G(i) and boundary candidate set V (i), i.e.
L(i) = G(i) ∪ V (i).

2.3 Region Expansion Algorithm

In the region expansion process, some contour points will be selected to join
current step region at each step. A measure called growing cost is introduced to
evaluate the priority of contour points for step region expansion. The growing
cost function is defined by the local contour contrast dR of the evaluated contour
point xe, ci(xe) = dR(xe), where i indicates that xe is located in the step contour
L(i). The contour point with minimum growing cost is treated as current most
qualified point for region growing. It is labeled as the new region point. Obviously
the step region grows along the path of minimum growing cost. The region
expansion process continues until there is no contour point available to join the
region.

3 Boundary Selection

The object boundary may look like discontinued at its boundary openings due
to weak boundary contrast, which may lead to over-growing into the background
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through these boundary openings. However, compared with pseudo-boundaries,
most of the object boundaries look salient because they have much more bound-
ary points with significant boundary contrast, which are very likely classified as
boundary candidates with local boundary measures.

Qiao and Ong [8], [9] developed an effective method to deal with boundary
discontinuity for circle and ellipse fitting by evaluating the boundary complete-
ness of discontinued arcs with their subtended angles. Here the idea of evaluating
the boundary completeness is shared to measure the detected step contours. A
global boundary measure is introduced to estimate the boundary completeness
of step contour L(i),

ρ(i) =
nV (i)
nL(i)

, (4)

where nV (i) is the number of points in boundary candidate set V (i) and nL(i)
is the amount of contour points in L(i). The global boundary measure ρ(i)
is the percentage of boundary candidates in the step contour L(i). Obviously,
the step contour with maximum global boundary measure looks most salient
and complete because it has the highest percentage of boundary points with
significant boundary contrast. It is therefore selected as the object boundary L.
With global boundary evaluation, the object boundary can be identified even if
there may be some boundary openings in it.

4 Experimental Results

The proposed approach is applied to the real medical images for evaluating its
performance. The neighborhood is a 3× 3 square centered at the contour point.
The point adjacency is 4-connectedness.

Fig. 2(a) is an original magnetic resonance (MR) image of size 166 × 177.
There are several brain structures in the MR image such as ventricles, caudate
nucleus and putamen. In Fig. 2(b) the contours of both caudate nucleus and
putamen are presented. The right structure adjacent to the ventricle is caudate
nucleus while the left one is putamen. Fig. 2(c) and (d) are the results of applying
canny and sobel edge detector on the MR image respectively. The background
of the caudate nucleus is inhomogeneous because the ventricle is darker than it
and the white matter is brighter. The boundary contrast of the putamen is very
weak. The results show that both sobel and canny edge detector fail to detect
the complete contours of putamen and caudate nucleus.

Fig. 3 illustrates the region expansion process for caudate nucleus segmenta-
tion with the intensity range parameter λ = 3 and the region intensity threshold
κ = 3. Fig. 3(a) presents the initial step region. The step region at step 30 is
described in Fig. 3(b), which is inside the caudate nucleus. Fig. 3(c) shows that
the step region is over-expanded to the white matter through the bottom right
corner of the caudate nucleus. In the boundary selection process, the step con-
tour obtained at step 76 is selected as the object contour due to its maximum
global boundary measure. Fig. 3(d) demonstrates the result of caudate nucleus
extraction at step 76.
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(a) (b) (c) (d)

Fig. 2. MR Image: (a) original image; (b) the contour of caudate nucleus and putamen;
(c) Canny edge detection; (d) Sobel edge detection

(a) (b) (c) (d)

Fig. 3. Caudate nucleus segmentation: (a) initial step region obtained at step 1; (b)
step region obtained at step 30; (c) step region obtained at step 150; (d) caudate
nucleus extracted at step 76 with maximum global boundary measure.

Fig. 4 illustrates the examples of caudate nucleus segmentation with GVF-
snake [5] and level set [6] methods. An initial model for snake method is located
in Fig. 4(a), which is determined by the brain atlas registration. Fig. 4(b) shows
the caudate nucleus detected by the snake method using gradient vector flow as
its external force. Some parts of ventricle are misclassified as caudate nucleus.
It indicates that the snake method is sensitive to the initial model. The seed
point for level set method is determined in Fig. 4(c). It is actually the center
of the initial model in Fig. 4(a) and is very close to the seed point in Fig. 3(a).
Fig. 4(d) presents caudate nucleus segmentation obtained by applying the level
set method in ITK-Snap software. The region is over-expanded to white matter
through the bottom right corner of caudate nucleus at which the contrast be-
tween caudate nucleus and white matter is quite weak. It shows that the level
set method may fail to prevent from region over-growing due to weak boundary
contrast.

Fig. 5 presents the region growing process for putamen segmentation with
the intensity range parameter λ = 2 and the region intensity threshold κ = 2.
The initial step region of the seed point is located in fig. 5(a). The step re-
gion defined at step 50 is described in Fig. 5(b), which is a subset of puta-
men. Fig. 5(c) demonstrates that the region is over-expanded into background
at step 400. Fig. 5(d) shows that the putamen is well extracted at step 109
when the global boundary measure of the corresponding step contour is
maximum.
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(a) (b) (c) (d)

Fig. 4. Caudate nucleus segmentation with snake and level set methods: (a) the initial
boundary for snake method; (b) the boundary of caudate nucleus obtained by snake
method; (c) the seed point for level set method; (d) the boundary of caudate nucleus
obtained by level set method

(a) (b) (c) (d)

Fig. 5. Putamen segmentation: (a) initial step region obtained at step 1; (b) step region
obtained at step 50; (c) step region obtained at step 400; (d) putamen extracted at
step 109 with maximum global boundary measure

5 Discussion

5.1 Global Boundary Measure

The existence of boundary openings is a difficult problem for boundary detection
based on the image gradient or its local intensity variation (Fig. 2(c) and (d)).
Fig. 4(d) shows that the level set method may not be robust against bound-
ary openings. The caudate nucleus is over expended into white matter through
boundary openings at its right bottom corner.

The global boundary measure can well deal with boundary openings. It en-
ables the proposed algorithm to tolerate the existence of boundary openings
because it seeks the object boundary in sense of boundary completeness. The
well extraction of medical structures (Fig. 3 and 5) demonstrate the the strategy
of utilizing the global boundary measure for evaluating step contours is robust
against boundary openings.

5.2 Local State Classification

In the region expansion process, the states of the contour points are examined
with local boundary measures based on the intensity distribution of its neigh-
borhood. Therefore the intensity information of other points outside its neigh-
borhood have no influence on the classification of its state. The strategy of state
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classification based on local boundary measures may provide an effective way to
deal with inhomogeneous background and overlapped intensity distribution of
object and background. Besides, the state classification within the neighborhood
simplifies the computational complexity of the region expansion process.

In some applications the background surrounding the object is inhomoge-
neous. Caudate nucleus in the real MR image is an example (Fig. 2(a)). The
ventricle is darker than the caudate nucleus while the white matter is brighter.
This kind of background may lead to failure of thresholding techniques [1], [2]
and some seeded region growing methods [3]. In comparison, the extraction of
caudate nucleus (Fig. 3) shows that state classification based on local boundary
measures are robust against inhomogeneous background.

6 Conclusion

We have presented a novel region growing method characterized by the local
point classification and global boundary evaluation. Its basic idea is to classify
the state of contour points with local boundary measures, select most qualified
point with minimum growing cost for current region expansion, and evaluate
step contours with the global boundary measure. It has two novel features:

1. The local boundary measures enable the state classification of contour points
to be robust against inhomogeneous background and overlapped intensity
distributions.

2. The global boundary measure frees boundary selection from the influences
of the weak boundary contrast and boundary openings.

Experimental results show that the algorithm can well deal with weak boundary
contrast, inhomogeneous background and overlapped intensity distributions.
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Abstract. In this paper, we propose an adaptive algorithm for the detection of 
hotspots in thoracic spine from bone scintigraphy. The intensity distribution of 
spine is firstly analyzed. The Gaussian fitting curve for the intensity distribution 
of thoracic spine is estimated, in which the influence of hotspots is eliminated. 
The accurate boundary of hotspot is delineated via adaptive region growing 
algorithm. Finally, a new deviation operator is proposed to train the Bayes 
classifier. The experiment results show that the algorithm achieve high 
sensitivity (97.04%) with 1.119 false detections per image  for hotspot detection 
in thoracic spine.   

Keywords: Bone scintigraphy, Hotspot detection, Gaussian fitting, Image 
classification. 

1   Introduction 

Bone scintigraphy is a useful tool in diagnosing bone diseases such as bone tumors, 
metabolic bone disease[1][2][3]. In clinical routine bone scanning, differences 
between operations, patients, and subjectivities of physicians limit the accuracy of 
diagnosis. It is urgent to develop an automatic recognition system, which will provide 
assistance for diagnosis and treatment of bone metastasis.  

Yin et al[1] proposed a computer-aided diagnosis system, which chose Asymmetry 
and brightness as the inputs to the characteristic-point-based fuzzy inference system 
according to radiologists’ knowledge. The sensitivity was 91.5% (227/248). Sadik 
[2][3][4] developed an automatic bone scan image analysis software. They extracted 
feature vectors from suspicious lesions and fed the vectors into an artificial neural 
network for classification. Huang[5] proposed a method to compute region threshold 
by least squares estimation of the mean and standard deviation for hotspot detection. 
Ohlsson [6] developed an automatic decision support system for whole-body bone 
scans using image analysis and artificial neural networks. The system sensitivity and 
specificity were respectively 95% and 64%. 
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Various IPDFs of different patients (see Fig.2(a)) are mapped into an approximate 
interval after normalization as shown in Fig.2(b). We notice that one remarkable 
feature of abnormal IPDF compared with normal one, is the long tail which is marked 
by an ellipse in the figures.  

 

(a) (b) 

Fig. 2. Original IPDF and mapped IPDF 

Hotspot Detection 
Hotspot detection is based on the confidence interval which is obtained via optimal 
Gaussian fitting of normal IPDF model. while the pixels which are out of the 
confidence interval are considered as hotspot candidates. The detailed algorithm is 
implemented as follows. 

1. Given mapped IPDF 1f , the predicted normal IPDF model 2f  is computed by: 
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in which the part of 
2 ( )f x  in the interval [ , 2 ]μ μ is mirrored by the part in [0, ]μ to 

eliminate the effect of hotspots, and maxx is the maximum value of mapped intensity. 

At the same time , the deviation 2σ of 2f within [0, 2 ]μ  is computed by: 

2
2

2 2
1

( )( )
x

f x x
μ

σ μ
=

= −∑         
(4)

2. Compute the optimal Gaussian function
opf , which minimizes the mean square 

error between opf  and 2f .  

2

2

( )

41

2
op

x

op

op

f e

μ
σ

σ π

− −

=                         
(5)

2
2 2

2 2
1

arg min ( ( ) ( )) . . 2
2op op op

x

where f x f x s t
μ σ

σ σ σ
=

= − ≤ ≤∑      (6)

 

(a)                                                   (b) 

Fig. 3. The optimal Gaussian fitting of IPDF and confidence interval 

3. Compute confidence interval of opf with confidence level of 95%, as shown in 

Fig.3(b). The pixels out of this interval are considered as hotspot candidates. 
4. Given the effect of noise and the anatomical knowledge of spine, connected region 

with area less than 10 pixels are excluded.   

Hotspot Edge Detection 
The edge detection of hotspots is essential for the quantification analysis. We adopt 
the adaptive region growing algorithm proposed by S.A.Hojjatoleslami [8]. In our 
implementation, the initial seed is the pixel with maximum intensity in each 
connected area. The maximum iteration time is set as two times the original area.  
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The hotspots are not fully detected as shown in Fig.4(a), since no local information 
is used in the detection algorithm. The adaptive region growing method algorithm is 
able to solve the problem by searching the maximum peripheral contrast(PC) and 
average contrast(AC) (Fig. 4(c)). The result of edge detection is shown in Fig. 4(b), in 
which the missing part is found again. 

 
(a)                          (b)                                          (c) 

Fig. 4. The schematic drawing of hotspot detection 

2.2   Classification of Spine Images 

Deviation Operator 
A deviation operator is proposed to measure the difference between the mapped IPDF 
and the optimal Gaussian fitting model in Fig.3. The deviation value is then used as 
the input of the Bayes classifier. 

Deviation operator is defined by: 

2
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− is the difference between mapped IPDF 1( )f x  

and optimal Gaussian fitting ( )opf x out of the confidence interval; ( )x μ−  serves as 

a weight, since the further x  is away from centre μ , which is of a higher probability 

being pathological. Besides, 
2
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− are respectively the 

deviations of left and right half of 1( )f x , which are constants for a given spine 

image. For abnormal IPDF, the right deviation is usually much larger than the left one 
because of the presence of hotspots. The logarithmic function reduces wide-ranging 
deviation values to smaller scopes. 

Bayes Classifier 
225 spine images, including 110 normal images and 115 abnormal ones, are used to 
train the Bayes classifier. The deviations of images are calculated and plotted in 
Fig.5(a). The dots ‘o’ denote deviations of normal images, and red dots ‘*’ denote 
abnormal ones. The distribution curves of deviations are shown in Fig.5(b). 
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Fig.6(a) show the spines with single hotspot. The hotspots in Fig.6(b) have lower 
contrasts against their neighboring normal intensities, compared with the one in 
Fig.6(a). The correct detection in such sample is essential to help physicians diagnose 
the patients who have early-stage bone metastasis. 

Fig.6(c) and Fig.6(d) show the spines with multiple hotspots, and although there 
are fewer hotspots in Fig.6(c), the uptakes of  hotspots are different, which make it 
more difficult to detect. By applying the histogram-based adaptive detection 
algorithm, the hotspots with lower uptakes also are detected. The implementation of 
region growing method on each hotspot can delineate the boundary more accurately. 

3.2   Comparison with Existing Methods 

In this section, we compare our hotspot detection algorithm with two existing 
methods by Yin[2] and Huang[6]. Sensitivity (both patient level and hotspot level) 
and false positive are selected to evaluate the performances of different methods. The 
results are summarized in Table 1. We can see our method reduces the false 
detections while maintaining high sensitivity.  Fig.7a(1) show the result of our 
method on one patient with single low uptake hotspot,  but Huang’s method and Yin’s 
method fail to detect the hotspot due to the low contrast of the hotspot against it 
neighboring area as shown in Fig.7a(2). Fig7b(1-3) respectively show the results for 
patients with multiple hotspots by our method, Huang’s method and Yin’s method. 
Our method delineate the boundary of the hotspots more accurately for such patients. 

Table 1. The comparison of hotspot detection accuracy  

Our method Huang JY’s method  Yin T K’s method 

Sensitivity 
on patient level 

93.1%(202/217) 89.4%(194/217) 91.2%(198/217) 

Sensitivity 
on hotspot level 

97.1%(624/643) 90.4%(581/643) 92.4%(594/643) 

False detections 243 265 271 

False detections 
per image 

1.119(243/217) 1.223(265/217) 1.249(271/217) 

 

            a(1)                          a(2)                         b(1)                       b(2)                      b(3) 

Fig. 7. The comparison with existing methods 
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4   Conclusion  

In this paper, an adaptive detection algorithm for bone scan spine image is developed. 
By applying this algorithm, we can obtain a sensitivity of 97.04% in hotspot level 
with an acceptable 1.119 false positive detections per image. Moreover, hotspots can 
be delineated accurately, which can provide a basis for quantitative analysis. Our 
algorithm shows better robustness and higher accuracy, and has the potential to be 
applied to whole body bone scan images. 
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Abstract. Due to the unknown pathogenesis and pathologies of Alzhei-
mer’s Disease(AD) that it brings about the serious of social problems,
it is urgent to find appropriate technology for early detection of the
Alzheimer’s Disease. As a kind of function imaging, FDG-PET images
can display lesions distribution of AD through the glucose metabolism in
brain, directly reflect lesions of specific areas and the metabolic features,
to diagnose and identify AD. In the paper, we propose a novel method
combining Independent Component Analysis(ICA) and voxel of interest
in PET images for automatic classification of AD vs healthy controls(HC)
in ADNI database. The method includes four steps: preprocessing, fea-
ture extraction using ICA, selection of voxel of interest, and classification
of AD vs healthy controls using Support Vector Machine(SVM). The
experimental results show that the proposed method based on ICA is
able to obtain the averaged accuracy of 86.78%. In addition, we selected
different number of independent component for classification, achieving
the average accuracy of classification results with the biggest difference
only 1.47%. According to the experimental results, we can see that this
method can successfully distinguish AD from healthy controls, so it is
suitable for automatic classification of PET images.

Keywords: Alzheimer’s Disease, Positron Emission Tomography,
Independent Component Analysis, Support Vector Machine.

1 Introduction

Alzheimer’s Disease(AD), also known as senile dementia, is a kind of old neu-
rodegenerative diseases. It has pathologically and clinically unique characteris-
tics. Post-mortem studies of AD have showed three typical lesions in AD brains:
intraneuronal neurofibrillary tangles(NFTs), extracellular deposits of A amyloid
plaques, and the loss of neurons[1]. Recent epidemiological data shows, until
2011, the number of global of AD reaches 35 million , increased 10 percent than
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the number of global of AD in 2005[2]. Whether developed or developing coun-
tries, the morbidity and mortality of dementia are growing fast. In China, for
example, at present it has over eight million cases of AD. AD causes the eco-
nomic burden and social issues which has been increasingly more serious, so it
becomes humanity’s great challenge in the 21st century.

Up to now, pathogenesis and pathologies of AD is unknown. In addition, it
still has no special treatment for AD, hence early diagnosis becomes an impor-
tant way to improve AD survival rate. To clinically diagnose AD patients at
an early stage, many biomedical imaging techniques have been used, such as
structural and functional magnetic resonance imaging(sMRI)[3][4],and positron
emission tomography(PET)[5], etc. However, MR imaging is performed in the
evaluation of patients who have suspected early AD, but the imaging study is
neither sensitive nor specific for the diagnosis, also SPECT imaging has lower
sensitivity than PET imaging, whereas, PET imaging of 18F -2-fluoro-2-deoxy-d-
glucose (FDG) is demonstrated to be accurate and specific in the early detection
of AD[6]. As a kind of function imaging, FDG-PET images can display lesions
distribution of AD through the glucose metabolism in brain, directly reflect le-
sions of specific areas and the metabolic features, to diagnose and identify AD.
And PET images are non-invasive observation tools to assist the diagnosis, com-
monly used to explore the emissive nuclide in body. Relative to other imaging,
PET imaging has unique advantages in early diagnosis of AD. However, how
to deal with PET images, how to extract rich information containing in PET
images, how to classify the useful information extracting from PET images, have
become a focus of attention.

Despite these useful imaging techniques, early treatment of AD still remains
a challenge because valuation of these images normally depends on manual re-
orientation, visual reading and semiquantitative analysis[7]. So several methods
have been proposed in the literature aiming at providing an automatic tool that
guides the clinician in the AD diagnosis process[8][9][10]. These methods can be
classified into two categories: mono-variate and multivariate methods. Statistical
parametric mapping(SPM)[11] is a mono-variate method, consisting of doing a
voexl-wise statistical test and inference, with comparing the values of the image
under study to the mean values of the group of normal images. This method
suffers the main problem that the well-known small sample size problem, that
is, the number of available samples is much lower than the number of features
used in the training step. By contrast, independent component analysis(ICA) is
a multivariate analysis method, an significant kind of blind signal separation,
and has already applied to functional brain images[12][13][14]. It is also able to
probe into PET datasets to provide useful information about the relationships
among voexls. In order to distinguish AD and health controls, support vector ma-
chine(SVM), a kind of machine learning techniques, has received more attention
[15][16]. In the current study, we propose a novel approach for automatic clas-
sification of PET images, which includes four steps: preprocessing using SPM,
extracting features by ICA, selecting voxels of interest, and classification of AD
vs healthy controls using SVM.
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2 Materials and Methods

2.1 Database

In the study, data used in the preparation of this article were obtained from
ADNI database(www.loni.ucla.edu/ADNI). The characteristics of the data set
is showed in table 1.

Table 1. The characteristics of the data set

Group AD HC Group AD HC

No. of subjects 80 80 CDR 1 0

Female/Male 31/49 34/46 MMSE 21.80 ± 4.21 29.01 ± 1.01

Age 76.21 ± 7.22 77.20 ± 5.26 FAQ 15.81 ± 8.32 0.55 ± 1.74

FAQ: Function Assessment Questionnaire.

2.2 Preprocessing

The original PET images were first preprocessed using Matlab toolbox SPM8.
First, all PET images were realigned to the first image, making sure that all of
them were consistent with each other in the spatial atlas. Then those output
realigned images were normalized to a standard template PET image in SPM8.
In this specific process, each image was resliced and voxel volume was set to
be 2×2×2mm3. At last, the normalized images were separated into 2 different
groups and were named as group AD which included all the PET images of AD
patients and group HC of healthy control.

2.3 Independent Component Analysis

To search for the source images that implied the underlying features of PET
images, obviously a blind source separation problem, independent component
analysis[18][19][20][21] was then come into use. ICA can be stated as follows: let
X be an observed random vector and A an unknown full rank mixing matrix such
that: X=AS, where the source signals S denote latent sources. Here since images
of different subjects were already divided into the specific group, we might as well
take each group as a session, a term broadly used in medical images acquisition,
and another toolbox GroupICA [19] could be used. GroupICA was actually used
to find out the independent components that can significantly differentiate the
subjects belonging to a certain group. Using the program package GIFT finds
the diversity between groups, including three steps: Constructing grouping model
and setting the analysis parameters, executing independent component analysis,
expanding independent component analysis results. After the whole analysis,
some significant independent components were also shown in Fig 1.
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Fig. 1. The visualization of significant ICs

2.4 Feature Extraction

From the visualization of those independent components, it’s not hard to see
that each independent component occupied some space in the brain and differ-
ent components corresponded to different areas. In order to extract features of
each group of subjects, we thought about considering the voxel information in
each source area. A common sense is that AD patients suffer from much worse
brain structures atrophy compared to healthy control with similar background
information. So the decision was made that the space area of each independent
component would be mapped into every subjects, then count the numbers of the
voxels whose value indicated as brain structure parts. If the number of indepen-
dent components analysed to be K, each subject would correspondingly achieve
K voxel numbers. So all subjects could together assemble a K-column feature
matrix.

2.5 Classification

The goal of this research was set to better classify subjects from different groups
from each other with a acceptable feature matrix. Since we have constructed a
feature matrix in the foregoing procedures, we next would focus on classification
of subjects involved in the research. we assigned 1 as the label value for the group
AD components and -1 for the group HC ones. In considering of the situation
that features in greater numeric ranges may dominate the classification, we scaled
the features by column into the range of from -1 to 1. Support Vector Machine
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has showed great capacity in the field of classification and we chose LIBSVM[22]
as the analysis method which was developed by Chih-JenLin of the National
Taiwan University. All the subjects was halved into 2 parts, one half for training
and the other half for testing. Taking the randomness of each classification trial
into consideration, the classification procedure was carried out 100 times, and
the final classification results including the accuracy, sensitivity and specificity
were statistically calculated and demonstrated.

3 Results

3.1 Extraction of Independent Components

The PET images of this experiment are 3D images of size M=95×69×79 voxels.
Each voxel represents a brain volume of 2×2×2mm3. Every row of the source
matrix was reshaped in to a 3D image called map[24]. Using GroupICA algorithm
to decompose the brain images, we can obtain independent component(IC). Fig.
1 shows the three significant ICs obtained by the toolbox GroupICA. And the
different color blocks represent different IC in this figure. To get more in-depth
biochemical information of these sources, we transformed the coordinates of these
two significant sources to the coordinates of the standard space of Talairach and
Tournoux[25] by help of the Matlab conversion program developed by Mathew
Brett. And the output Talairach and Tournoux coordinates of voxels were entered
into TD client[26] which was created and developed by Jack Lancaster and Peter
Fox. It is a high-speed database server for querying and retrieving data about
human brain structure over the internet(www.talairach.org). For example, the
output location information of those specific sources labeled of component 1 is
listed in the following table 2. The left column of table 2 are source areas of the
component while the right column the corresponding brodmann area.

Table 2. Talairach Lables of IC1

Source 1 areas Brodmann area Source 1 areas Brodmann area

Superior Occipital Gyrus 19,39 Precuneus 7,19,39

Superior Parietal Gyrus 7 Cuneus 7,17,18,19

Middle Temporal Gyrus 19,39 Angular Gyrus 39

Middle Occipital Gyrus 18,19 Lingual Gyrus 17,18

Middle Frontal Gyrus 10,11,46,47 Insula 13,41

Superior Frontal Gyrus 10,11 Extra-Nuclear CC

Inferior Frontal Gyrus 10,46 Anterior Cingulate 24,25,32

Inferior Occipital Gyrus 18 Subcallosal Gyrus 11,13,25,47

Inferior Parietal Gyrus 7,39 Caudate CH

Transverse Temporal Gyrus 41 Lateral Ventricle P

Superior Temporal Gyrus 13,41

CC = Corpus Callosum; CH = Caudate Head; P = Puamen.
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3.2 Classification

In this section, we randomly selected 50% of the samples to do training after we
gain the feature matrix. For the randomness of the training samples, we get dif-
ferent results of the experiment. Therefore, we considered to classify the samples
in many times to obtain the statistically averaged values. In the experiment, we
repeated 100 times in classification and obtained the corresponding statistically
averaged values.

Table 3 shows the classification results with the different number of IC.
ACC means the accuracy of this classification, MaxA is the highest accuracy
among all those 100 times results and MinA is the lowest one. Sen means
the sensitivity of this classification, and Spe is the specificity of the classi-
fication. Three parameters that measure the results of the classification are:
the Accuracy, the sensitivity and the Specificity, which can be described as
Accuracy = Tp+Tn

Tp+Tn+Fp+Fn , Sensitivity = Tp
Tp+Fn , and Specificity = Tn

Tn+Fp .
where Tp, Tn, Fp and Fn indicate true positives, true negatives, false positives
and false negatives, respectively.

Table 3. The classification results (%)

No. of ICs ACC MaxA MinA Sen Spe

3 85.31 93.75 75.00 71.81 98.81

4 86.23 93.75 76.56 72.75 99.71

5 86.62 98.43 73.43 74.03 99.21

6 86.78 93.75 76.56 73.88 99.69

7 85.81 92.18 76.56 71.87 99.75

4 Discussion and Conclusion

In table 3, the sensitivity of classification is not very ideal. It is possible that
differences in the images due to factors not related to AD are an important source
of variability that may affect classification, as scanner differences or formats.
On the other hand, ADNI patient diagnostic are not pathologically confirmed,
introducing some uncertainly on the subject’s labels. Probably, trying to make
PET images unification, which will improve the sensitivity of classification.

Our results is also comparable with other related study. Illan et al. [27] pro-
posed an approach including three steps: training, cross-validation by means of
the leave-one-out method, and test. They applied SVM based on RBF kernel to
obtain classification accuracy of 88.24% by extracting features with PCA and
87.06% by ICA.

In the paper, an efficient classifier for distinguishing AD from HC has been
presented. All the proposal aim at reducing the dimension of the original im-
ages, which after the reconstruction count with more than 300 000 voxels, to a
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number of features comparable to the number of samples, solving the so-called
small sample size. The scheme combining feature extraction, feature selection
and classification techniques has been deeply studied and tested on real PET
database with promising results, and it can also be extended to other functional
imaging modalities as SPECT or fMRI.
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Abstract. The steady-state visual evoked potential (SSVEP) has been
widely applied in brain-computer interfaces (BCIs), such as letter or icon
selection and device control. Most of these BCIs used different flickering
frequencies to evoke SSVEP with different frequency components that
were used as control commands. In this paper, a novel method com-
bining the time phase and EEG frequency components is presented and
validated with nine healthy subjects. In this method, four different fre-
quency components of EEG were classified out from four time phases.
When the SSVEP is evoked and what is the frequency of the SSVEP
is determined by the linear discriminant analysis (LDA) classifier in the
same time to locate the target image. The results from offline analysis
show that this method yields good performance both in classification
accuracy and information transfer rate (ITR).

Keywords: Brain-computer interfaces (BCIs), Electroencephalogram
(EEG), Steady-state visual evoked potential (SSVEP), Time phase.

1 Introduction

Brain-computer interface (BCI) is a kind of communication system that allows
a connection between the human brain and a computer [1]. According to the
different types of brain activities used as command, many kinds of BCIs are
available. Most of BCIs are based on four types of EEG potentials: (1) slow
cortical potentials (SCP). (2) P300 potentials. (3) event related desynchroniza-
tion/event related synchronization (ERD/ERS, motor imagery). (4) steady-state
visual evoked potential (SSVEP).

In recent years, SSVEP-based BCIs have been increasingly studied and ap-
plied in many aspects, such as letter or icon selection, cursor movement and
device control, due to the shorter calibration time and higher information trans-
fer rate (ITR) than other types of BCIs [2], [3]. SSVEP evoked by repetition
flicker stimulation has the same fundamental frequency as the stimulus and may
also include higher harmonics [4]. The target stimulus on which the subject is
focusing can be located by classifying the frequency components of recorded
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EEG [5]. A 48-target environment controller based on the SSVEPs evoked by 48
flickering LEDs respectively was presented by Gao et al. [6]. The 48 LEDs were
installed on a circuit board in a matrix way and flickered simultaneously. The
average classification accuracy is 87.5 % and the information transfer rate is up
to 68 bits/min. Although the exhibited transfer rate is relatively high when com-
pared to the state of the other results [4], [5], such performance is not typical for
most users in real world settings [7]. A simultaneous classification for so many
targets requires a considerable number of stimulus frequencies and also may be
difficult to achieve high classification accuracy. It is because that the user may
be affected by the neighbor LEDs that are flickering simultaneously with other
frequencies. Furthermore, the classification accuracy usually appears to decrease
rapidly as the number of classes increase in a multi-classification problem [8].
Recently, Friman et al. [5] reported a spelling (letter selection) paradigm with
the SSVEPs evoked by ten LEDs located on the top of rows and columns. A
55 row-column (i.e., a matrix way) paradigm similar with a traditional P300
spelling paradigm was used in their research. Two subjects can hardly complete
any assignment for their weak SSVEP responses. The paradigm of simultaneous
flickers for all stimulus used in [5], [6], [9] should be cautiously considered since
it is difficult to prevent subjects from the mutual interferences among different
stimuli installed with a limited distance. In order to avoid excessive requirement
for the number of stimulus frequencies and the mutual interferences among dif-
ferent stimulus flickers, we present a time phase-based flicker paradigm with
four different flickering frequencies. In this method, the four different frequency
components of EEG are classified out from the four time phases (TPs).

2 Material and Methods

2.1 Experimental Paradigm and EEG Acquisition

In this study, a new stimulus layout design (see Fig. 1(a)) is presented. 16 icons
are assigned to four groups and located in four sides of the monitor window
respectively, which is different from the traditional matrix layout [5], [9], [10].
The icons show an Internet Explore, a Folder, a Email and other commonly used
computer tools. SSVEP will be evoked when user is focusing on the red flicker
beside the target image. The distance among the four flickering squares in each
TP are large enough to avoid the interferences. An explanation for this layout is
depicted in Fig. 1(b). A flicker cycle of our paradigm contains four time phases,
namely TP1∼TP4 (see Fig. 2), and the duration of each TP is 7 seconds. The
white circles show the flickering positions in the each TP. The flicker frequency is
same in the same side. The flickering frequency of the different sides are different
as “f1: 6.9 Hz (Up side), f2: 8.9 Hz (Right side), f3: 10.8 Hz (Down side) and
f4: 12.8 Hz (Left side)”. The subject would be required to focus on the flickering
square beside the target image.

Nine healthy right-handed volunteers (aged 21∼28 years old, six males, and
three females) with normal or corrected to normal vision participated in our
study. During the whole experiment, all subjects were seated in a comfortable
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(a)

1.5cm

(b)

2.5cm 2.8cm

1.5cm 4.1cm

Fig. 1. Experimental icons and the distance and the size of the icons

(a) TP1 (b) TP2

(c) TP3 (d) TP4

Fig. 2. Experimental flicker paradigm. TP1∼TP4 respectively corresponds to the four
flicker sequences in a flicker cycle.

chair with 50 cm distance from a standard 17 inch CRT monitor in a shield room.
Each subject completed four recording sessions. The time required to select an
image was called a run, and there were 32 runs for two selections of each of the
16 icons. Each run began with a target cue of 1 s, and then the flicker would
start according to the TP paradigm in Fig. 2.

EEG was recorded at 250 Hz (fs = 250). Twelve Ag/AgC1 electrodes were
placed on Fz, C3, Cz, C4, T5, P3, Pz, P4, T6, O1, Oz and O2 according to the
standard positions of the 10-20 international system. The average signal from
two mastoid electrodes was used for referencing and grand was at the forehead.
A Nuamps (NuAmp, Neuroscan, Inc.) amplifier 100uv was used. The EEG was
filtered with a band-pass of 5∼35 Hz.
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2.2 Feature Extraction and Classification

Each TP is divided into seven time windows (TWs) (1 s∼7 s ). The frequency
components are extracted by estimating the power spectra density (PSD) (4×fs

points fast Fourier transform (FFT)) of the EEG signals. For each TW, the
sum of the normalized fundamental stimulus frequency and its second harmonic
components with a bandwidth of 0.5 Hz is calculated from each channel, and
then would be taken as features for detect SSVEP. The classes for the four dif-
ferent stimulus frequencies are labeled as 1∼4 respectively and non-target class
is labeled as class 5. For each subject, 32 target trials (8 trials for each class)
and 96 non-target trials are obtained in each session. The train data contain 128
target trials and 384 non-target trials. Here the one-against-rest method is used
to classify. There are four sub-classifiers to detect the four different frequency
components respectively. The output of the classifiers is “0” or “1”. If the cor-
responding frequency component is detected, the output would be “1”, and if
not, the output would be “0” (see Fig. 3). Four-fold cross-validation is used to
estimate the average classification accuracy of each subject. The information
transfer rate (ITR) which is computed by the definition of Wolpaw et al. [1] is
used to evaluate the communication performance of the BCI system.

The output of sub-classifier

The label of class

1 0 0 0

0 01 0

10 0 0

0 0 0 1

0

0

0

0

1 2 3 4 5

Sub-classifier 1

Classifier mode

Train the classifier mode

Test the classifier

Feature 1

Sub-classifier 2

Sub-classifier 3

Sub-classifier 4Feature 5

Feature 3
Feature 2

Feature 4

Sub-classifier 1Feature 1

Sub-classifier 2

Sub-classifier 3

Sub-classifier 4Feature 5

Feature 3
Feature 2

Feature 4

Training data Feature
extraction

Test data Feature
extraction

Classifier

Fig. 3. The method of training and testing the classifier

3 Results

The target selecting accuracy averaged over sessions and the corresponding ITR
are shown in Fig. 4. All of the subjects, except for subject 5, achieved an accu-
racy which is not less than 85 %. Subject 4 is the best, with the average accuracy
of 92.5 % and the ITR of 35.1 bits/min. Subject 5 is the worst, with the average
accuracy of 68.1 % and the ITR of 9.4 bits/min. The highest ITRs of all sub-
jects with corresponding accuracies and TWs are listed in Table 1. A averaged
performance, accuracy of 86.1 % and ITR of 26.7 bits/min within time window
length of 3.4 s, is obtained by the proposed method.
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Fig. 4. Classification accuracy and information transfer rate across different time win-
dow lengths (TWs)

Table 1. The highest information transfer rate (ITR) (bits/min) with the correspond-
ing accuracy (Acc) (%) and corresponding time window length (TW) (s), averaged on
the four sessions

S1 S2 S3 S4 S5 S6 S7 S8 S9 Av.

Acc 86.3 91.9 86.3 92.5 68.1 85.6 88.8 85.0 90.6 86.1±7.3
ITR 29.4 25.3 29.4 35.1 9.4 28.8 20.8 28.2 33.7 26.7±7.7
TW 3 4 3 3 5 3 4 3 3 3.4±0.7

4 Discussion and Conclusion

In this study, a novel method combining the time phase and EEG frequency
components was presented. Compared with the matrix flickering paradigm used
in the multi-command SSVEP-based BCIs [5], [6], [9], this new design was valu-
able in reducing the number of stimulus frequencies and the interferences among
different stimulus frequencies. From the results, all of the subjects, except for
subject 5, the target selecting accuracy were higher than 85 % and the ITR
was over 20 bits/min. As shown in table 1, the average highest accuracy of
86.1 % and ITR of 26.7 bits/min within 3.4 s were achieved by our method. It
is promising to apply the method of this paper in online BCIs. In online sys-
tem, the system will continuously repeat the flickering cycle described in section
2.2. When one of the four frequency components was detected, the TP and the



278 J. Jin, Y. Zhang, and X. Wang

frequency were determined based on the classifier output and the target icon
would be located. To locate the next target icon, if the target’s TP was behind
the previous target’s TP, the user would not need to wait for the next flickering
cycle and could continue to focus on the next target, then the target would be
located in the same flicker cycle. In this way, the information transfer rate would
be improved further. In the future work, an online system based on this method
will be developed and this method should be validated with real world settings.

Acknowledgments. This study is supported by Nation Nature Science Foun-
dation of China 61074113, Shanghai Leading Academic Discipline Project B504,
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Abstract. The studies of P300-based brain computer interfaces (BCIs)
have demonstrated that visual attention to an oddball event can enhance
the event-related potential (ERP) time-locked to this event. However, it
was unclear that whether the more sophisticated face-evoked potentials
can also be modulated by related mental tasks. This study examined
ERP responses to objects, faces, and emotional faces when subjects per-
forms visual attention, face recognition and categorization of emotional
facial expressions respectively in an oddball paradigm. The results re-
vealed the significant difference between target and non-target ERPs for
each paradigm. Furthermore, the significant difference among three men-
tal tasks was observed for vertex-positive potential (VPP) (p < 0.01),
late positive potential (LPP) / P3b (p < 0.05) at the centro-parietal
regions and N250 (p < 0.003) at the occipito-temporal regions. The high
classification performance for single-trial emotional face-related ERP
demonstrated facial emotion processing can be used as a novel oddball
paradigm for the affective BCIs.

Keywords: Brain Computer Interface (BCI), Event-Related Potential
(ERP), P300.

1 Introduction

Brain computer interfaces (BCIs) are communication systems that enable the
direct communication between human and computers through decoding of brain
activity [1], which can be used to assist patients who have disabled motor func-
tions. The P300 speller is one of the most popular BCI paradigm first introduced
by Farwell and Donchin [2]. The P300 ERP elicited when users attend to an
oddball stimulus, i.e., a random series of stimulus events that contains an infre-
quently presented target, is a positive deflection occurring at 300-500 millisec-
ond (ms) post-stimulus over parietal cortex. This is usually done by performing a
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mental count of the number of times the target character is highlighted, implying
the fact that the neural processing of a stimulus can be modulated by attention
[3]. So far, a number of variations of P300 speller have been explored such as
an apparent motion and color onset paradigm [4], the checkerboard paradigm
[5] and the auditory oddball ERP [6]. Although the speed and accuracy of P300
BCIs have been significantly improved by various signal processing methods [7,8],
the single-trial classification of P300 ERP remains a challenging problem. Recent
studies in neuroscience showed that larger N170 ERP is elicited in response to
facial stimuli than non-face objects and scrambled faces [9], face-selective N250r
is elicited by immediate repetitions of faces [10,11,12]. Emotional face type and
anxiety modulated ERP responses are also investigated and divided into three
stages around 200 ms, 250 ms, and 320 ms [13,14]. The neural processes involved
in switching associations formed with angry and happy faces diverged 375 ms
after stimulus onset [15]. The early posterior negativity (EPN) and late posi-
tive potentials (LPP) related to emotional processing were enhanced when the
subjects seeing a fearful face compared to a neutral face [16].

In contrast to highlighting letters in the classical P300 speller, the present
study investigates the three oddball BCI paradigms utilizing randomly flashed
images of objects, faces and emotional faces [17]. The subjects were requested
to perform three different mental tasks, i.e., visual attention, face recognition
(identification), emotion discrimination, corresponding to three types of images.
The main objective was to find the ERP waveforms elicited by oddball faces or
emotional faces stimuli and whether it is feasible to apply face-related ERPs for
BCI paradigm. Furthermore, the amplitude and latency of ERPs under these
three paradigms as well as classification performance were compared.

Fig. 1. A. The procedure of BCI paradigm. The stimuli were shown for 100 ms each
with an ISI of 80 ms. B. Three groups of images were used as stimuli corresponding to
three different experimental conditions.
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2 Methods

Subjects and data collection: Five male subjects aged 25-31 years participated
in the study. All participants were healthy, right-handed, and had normal or
corrected to normal vision. We recorded the EEG from 16 electrodes (F5, Fz,
F6, T7, C5, Cz, C6, T8, P7, P5, Pz, P6, P8, PO7, Oz, PO8) using an 16-channel
amplifier (g.tec, Guger Technology, Austria). The left mastoid and Fpz served
as reference and ground, respectively. The EEG signals were sampled at 256Hz
and band-pass filtered to 0.1-100 Hz with a notch filter of 50 Hz.

Fig. 2. Grand averaged ERPs at Cz over fronto-central region, Pz over centro-parietal
region and PO8 over occipito-temporal region to target (green) and non-target (red)
objects stimuli. ERPs using objects, faces, emotional faces are shown in panel (A), (B)
and (C), respectively.

Procedure: Subjects were seated in a comfortable chair and the screen pre-
sented a 3 × 3 matrix of 9 arrows with gray color and black background (see
Fig. 1A), corresponding to the 9 commands for the concrete BCI application.
We collected data under three experimental conditions. In condition 1, the sub-
jects were asked to focus on the target item and count the number of flashing,
instead of highlighting the target arrow, the images from objects group were
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Fig. 3. Topography of target ERPs for specific time points using three different stimuli
and mental tasks

shown randomly at each of 9 positions; In condition 2, the images from faces
group were utilized for flashed targets and the subjects were asked to perform
the face recognition tasks; In condition 3, the images from emotional faces group
were presented as flashed targets and the subjects were asked to perform emotion
discrimination tasks whenever the desired target is intensified. The procedure
and the images groups are shown in Fig. 1. The subjects performed two sessions
for each experimental condition. Each session consists of 5 runs and each run
presented 9 different target items in succession using only 2 flashes for all items
in random order.

Feature extraction: We first filtered the EEG signals between 0.1 and 20 Hz,
then rejected bad trials by utilizing a threshold for amplitude detection. The
one second (s) time window of EEG after each stimulus onset was extracted as a
trial and the baseline of each EEG trial was corrected using 100 ms pre-stimulus
interval. After moving average and downsampled to 20 Hz, the feature vector
consisted of 16 spatial features × 20 temporal features = 320 spatio-temporal
features.

Channels selection: The number of channels applied in BCI classification can
be reduced by the appropriate channels selection method. By employing the
channels selection method, we can faciliate the installation of EEG scalp and, in
the meantime, the number of features could be reduced, indicating that smaller
training samples is sufficient to build a classifier. In this study, we utilized the
point-biserial correlation coefficient r2-value which can be used for evaluating
the discriminative ability of spatio-temporal features for channels selection.

Classification: The support vector machine (SVM), which has been widely
used for ERP classifications, was adopted in this study to perform target de-
tection. The principle of the SVM is to seek the maximal margin between two
classes, to form the hyper-plan with the best generalization capabilities. In our
study, we employed a linear kernel SVM, and chose the best parameters for each
subject by 5-fold cross-validation from the offline data. Given a set of ERPs
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Fig. 4. Grand averaged ERPs at Cz, Pz over centro-parietal region and PO8 over
occipito-temporal region to objects, faces, and emotional faces stimuli

data (xi|i = 1, . . . , n) and corresponding labels yi, e.g., target (+1) or nontarget
(−1), the objective function of linear SVM is to maximize the margin, which is
formulated as

max
w,w0

1
2
‖w‖2

s.t. yi(w · xi + w0) ≥ 1, i = 1, . . . , n. (1)

3 Results

For each experimental condition, grand-averaged ERPs were calculated sepa-
rately for target and non-target events. We focus on key components of ERPs
elicited by faces such as the face-specific N170 (150-190 ms), VPP (140-200 ms),
N250 (240-280 ms), P300 (250-350 ms), P3b/LPP (400-800 ms). Early compo-
nents are thought to reflect basic structural encoding of faces, whereas later
components may reflect categorization and attention to motivationally relevant
information, including emotion, gender, or identity. Thus, different experiment
conditions may evoke different responses.

Attention task: The Fig. 2A shows the grand-averaged ERPs for target and
non-target stimulus while Fig. 3 shows the topography of corresponding ERPs.
VPP at Cz is clearly different between target and non-target (F(1,18)= 8.08,
p < 0.01), P300 at Cz is also significant (F(1,18)= 13.41, p < 0.002). LPP at Cz
for target is larger than non-target (F(1,18)=5.41, p < 0.032). The main effect
of attention tasks is also significant for VPP at Pz (F(1,18)= 5.47, p < 0.03),
P300 (F(1,18)= 17.4, p < 0.0006) and LPP (F(1,18)=9.76, p < 0.006).

Face identification task: The ERPs elicited by faces stimuli are shown in Fig.
2B while topography map of ERPs are shown in Fig. 3. We observed the sig-
nificant VPP at Cz (F(1,18)= 14.15, p < 0.02), P300 at Cz (F(1,18)= 24.29,
p < 0.0001) and LPP at Cz (F(1,18)= 7.98, p < 0.012), indicating the effects
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of face identification task for oddball paradigm. The similar difference are also
clear at Pz such as VPP (F(1,18)= 13.71, p < 0.02), P300 (F(1,18)= 12.84,
p < 0.0022) and LPP (F(1,18)= 17.2, p < 0.0006). Due to the faces stimulus,
the N170 at PO8 is clearly observed (F(1,18)= 6.37, p < 0.02).

Emotional face discrimination task: The ERPs elicited by emotional faces
stimuli are shown in Fig. 2C while topography map of ERPs are shown in Fig.
3. Analysis of VPP amplitude revealed a significant effect of emotion information
processing at Cz (F(1,18)= 12.13, p < 0.003) and Pz (200 ms) (F(1,18)= 16.09,
p < 0.0008). The LPP are clearly larger for target compared to non-target at Cz
(F(1,18)= 27.97, p < 0.0004) and Pz (F(1,18)=19.99, p < 0.0003). Additionally,
LPP at PO8 is also significant (F(1,18)= 8.08, p < 0.011).

Comparison among three conditions: Further analyses have been performed to
explore the differences of ERPs among the three mental tasks and to find the best
oddball paradigm for BCI application. The VPP at Pz revealed the significant
difference between objects (task 1) and faces (task 2, 3) stimuli (F(2,27)= 5.9,
p < 0.01), but there is no significant difference between faces and emotional faces.
The main effects of emotional faces at Pz and Cz indicating that significant larger
LPP (Cz: F(2,27)= 3.94, p < 0.032, Pz: F(2,27)= 3.45, p < 0.05) compared
to faces and objects stimuli and N250 at PO8 also revealed larger negative
potentials for faces and emotional faces compared to objects stimuli (F(2,27)=
7.48, p < 0.003) (Fig. 4).

Fig. 5. Spatial and temporal distribution of discriminative information. (A) Topo-
graphic map of r2-value at 250 ms and 450 ms, (B) r2-value for temporal features.

Feature selection: The Fig. 5 depicted that the most discriminative informa-
tion consisted of two parts: 1) VPP and N250 around 200 ms and 2) LPP at the
time window (400 - 800 ms). We observed that LPP are more pronounced for
emotional faces compared to the other two types of stimuli.

Classification performance: To compare the performance of three oddball
paradigms, we performed 5-fold cross-validation procedure on single trial data
sets by using various time windows with the trial lengths changed from 100
ms to 800 ms after stimulus onset, as shown in Fig. 6A. It is clear that using
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Fig. 6. (A) Cross-validation accuracy for single trial ERPs by increasing the trial
length. (B) ROC curve for three different oddball paradigms.

emotional faces with emotion discrimination tasks outperform both of objects
and faces paradigms, especially when the trial length is longer than 400 ms.
The ROC curve is shown in Fig. 6B indicating that both emotional faces and
faces paradigm are superior than objects paradigm, in particular, emotional faces
paradigm greatly improved the performance for single trial EEG.

4 Conclusions

This study demonstrates that the components of ERPs, e.g. VPP, N250, LPP,
can be modulated by the processing of emotional facial expressions. We com-
pared the three oddball BCI paradigms by using objects, faces and emotional
faces as stimuli and corresponding mental tasks, respectively. The results re-
vealed VPP and LPP effects for emotional faces and N250 effects for face stimuli.
The classification performance for single trial data demonstrated the superiority
of emotional faces-related ERPs applied in the oddball BCI paradigm. These
finding provide the evidence for the emotional-faces evoked ERPs in oddball
paradigm, suggesting a novel affective BCI paradigm with improved reliability
and flexibilities.
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Abstract. Steady-state visual evoked potential (SSVEP)-based brain
computer-interface (BCI) is one of the most popular BCI systems. An
efficient SSVEP-based BCI system in shorter time with higher accuracy
in recognizing SSVEP has been pursued by many studies. This paper
introduces a novel multiway canonical correlation analysis (Multiway
CCA) approach to recognize SSVEP. This approach is based on tensor
CCA and focuses on multiway data arrays. Multiple CCAs are used to
find appropriate reference signals for SSVEP recognition from different
data arrays. SSVEP is then recognized by implementing multiple linear
regression (MLR) between EEG and optimized reference signals. The
proposed Multiway CCA is verified by comparing to the standard CCA
and power spectral density analysis (PSDA). Results showed that the
Multiway CCA achieved higher recognition accuracy within shorter time
than that of the CCA and PSDA.

Keywords: Brain-computer interface (BCI), Canonical Correlation
Analysis (CCA), Electroencephalogram (EEG), Steady-State Visual
Evoked Potential (SSVEP), Tensor Decomposition.

1 Introduction

SSVEP is evoked over occipital scalp areas with the same frequency as the
visual stimulus and may also include its harmonics when subject focuses on
the repetitive flicker of a visual stimulus [1]. According to this mechanism, a
SSVEP-based BCI can be designed to recognize the frequency components of
EEG signals. In recent years, SSVEP-based BCI has been increasingly studied
and has demonstrated strength including shorter calibration time and higher
information transfer rate (ITR) than other types of BCIs [2]. Although SSVEP
provides aforementioned advantages for BCI systems, it may be contaminated
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by spontaneous EEG or noise and it is still a challenge to detect it with a high
accuracy, especially at a short time window (TW) [3]. Hence, how to recognize
SSVEP with higher accuracy and for shorter TW is a considerably important
issue for obtaining an improved SSVEP-based BCI.

A traditional method for SSVEP recognition is power spectral density analy-
sis (PSDA). PSD is estimated from the EEG signals within a TW typically by
Fast Fourier Transform (FFT), and its peak is detected to recognize the tar-
get stimulus [4]. Instead of recognizing SSVEP by directly detecting the peak
of PSD, some studies also took the PSDs as features and applied classification
algorithm, such as linear discriminant analysis (LDA), to classify the target fre-
quency [1]. A TW longer than 3 seconds (s) is usually required for estimating
spectrum with sufficient frequency resolution when using the PSDA [4]. Such
duration may limit the real-time performance of SSVEP-based BCIs. Lin et al.
[5] proposed a promising and increasingly used method based on canonical cor-
relation analysis (CCA) to recognize SSVEP. In their work, CCA was used to
find the correlations between the EEG signals of multiple channels and refer-
ence signals of sine-cosine with different stimulus frequencies. Then, the target
stimulus is recognized through maximizing these correlations. The use of CCA
seems to provide better recognition performance than that of the PSDA since it
delivers an optimization for the combination of multiple channels and improves
the signal-to-noise ratio (SNR). A further comparison between the CCA and
PSDA was done by Hakvoort et al. [6]. They also adopted the sine-cosine waves
as reference signals used in the CCA for SSVEP recognition.

Although the CCA works quite well in SSVEP-based BCIs, we consider that
the commonly used reference signals of sine-cosine may be not optimal for
SSVEP recognition due to the inter-subject variability of SSVEP and effects
of ongoing EEG and noises. Hence, our goal in this study is to find more effi-
cient reference signals used in correlation analysis for SSVEP recognition. Tensor
CCA proposed by Kim et al. [7] is a extension of the standard CCA and focuses
on two multiway data arrays. Inspired by their work, We propose a Multiway
CCA approach to discover the optimal reference signals from different modes
(space and trial modes) of multidimensional EEG data and recognize SSVEP.
The proposed method is verified with the EEG data of three healthy subjects
and compared with the standard CCA, PSDA and the combination of PSDA
and LDA (PSDA+LDA).

2 Experiment and EEG Acquisition

Three healthy volunteers (all males, aged 25, 31 and 34) participated in the
experiments. The subjects were seated in a comfortable chair 50 cm from a LCD
monitor (60 Hz refresh rate) in a shielded room. Four white squares, as stimuli,
were flickered at four different frequencies: 8.5 Hz, 10 Hz, 12 Hz and 15Hz,
respectively, on the black screen. In the experiment, each subject completed five
runs with 5 ∼ 10 min rest after each of them. In each run, the subject was asked
to focus on each of the four white squares for five times with a duration of 2 s for
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each time, respectively, with each target cue duration of 1 s. That is, each run
contains 20 trials and totally 100 trials were completed for each subjects. EEG
signals were recorded by a Biosemi Active Two amplifier at 256 Hz sampling
rate (fs = 256 Hz) from eight channels PO3, POz, PO4, PO7, PO8, O1, Oz
and O2 placed on the standard position of the 10-20 international system. The
average of them was used as reference. The EEG signals were bandpass filtered
between 5 and 50 Hz.

3 Method

3.1 CCA and SSVEP Recognition

CCA is a multivariable statistical method to reveal the underlying correlation
between two sets of data [8]. Consider two sets of random variables X ∈ RI1×J ,
Y ∈ RI2×J and their linear combinations x̃ = wT X and ỹ = vTY, CCA tries
to find a pair of linear transform w ∈ RI1×1 and v ∈ RI2×1 to maximize the
correlation between x̃ and ỹ, through solving the following optimization problem:

ρ = max
w,v

E [x̃ỹ]√
E
[
x̃2
]
E
[
ỹ2
] =

wTXYTv√
wTXXTwvTYYTv

. (1)

The maximum of ρ corresponds to the maximum canonical correlation between
the canonical variates x̃ and ỹ.

Lin et al. [5] introduced the CCA to recognize SSVEP for the first time.
Assume there are M stimulus frequencies need to be recognized. X consists of
EEG signals from I1 channels, and Ym, as a reference signals set, is constructed
by sine-cosine waves at the mth stimulus frequency fm (m = 1, 2, . . . , M):

Ym =

⎛⎜⎜⎜⎜⎜⎝
sin (2πfm1/fs) . . . sin (2πfmJ/fs)
cos (2πfm1/fs) . . . cos (2πfmJ/fs)

...
...

...
sin (2πHfm1/fs) . . . sin (2πHfmJ/fs)
cos (2πHfm1/fs) . . . cos (2πHfmJ/fs)

⎞⎟⎟⎟⎟⎟⎠ , (2)

where H denotes the number of used harmonics (i.e., I2 = 2H), J is the number
of sampling points and fs represents the sampling rate. We apply the optimiza-
tion of Eq.(1) to solve the canonical correlations ρ1, ρ2, . . . , ρM corresponding to
the M reference signals, respectively. Then the target stimulus frequency ftarget

is recognized as:
ftarget = max

fm

ρm, m = 1, 2, . . . , M. (3)

Although the CCA works quite well for SSVEP recognition, sine-cosine waves
may be not the optimal reference signals in using correlation analysis since they
do not contain any information about the inter-subject variability and trial-
to-trial variability. We consider that the recognition accuracy may be further
improved by optimizing the reference signals. We will show how to find more
efficient reference signals by a novel Multiway CCA approach from experimental
multidimensional EEG data in the next section.
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Fig. 1. Illustration of Multiway CCA mode

3.2 Multiway CCA and SSVEP Recognition

A tensor is a multiway array of data and the order of the tensor is the number
of dimensions, also known as ways or models [9]. A first-order tensor is a vector
and a second-order tensor is a matrix. A Nth-order tensor is denoted by X =
(X )i1i2...iN

∈ RI1×I2×...×IN . The n-mode product of the tensor with a vector
w ∈ RIn×1 is

(
X ×n wT

)
i1...in−1in+1...iN

=
In∑

in=1

xi1i2...iN win . (4)

Fig. 2. Illustration of Multiway CCA approach for SSVEP recognition. Here, MCCA
denotes the Multiway CCA.
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Multiway CCA mode. Tensor CCA is an extension of the standard CCA,
which focuses on inspecting the correlation between two multiway data arrays,
instead of two sets of vector-based variables [7]. Drawing on the idea of Tensor
CCA, we introduce a Multiway CCA which maximizes the correlation between
multiway data (tensor) and two-way data (matrix) to optimize the reference
signals used in correlation analysis for SSVEP recognition. We consider that EEG
data from the trials with a specific stimulus frequency form a third-order (three-
way) data tensor X ∈ RI×J×K (channel × time × trial) and a original reference
signal matrix Y ∈ R2H×J (harmonic × time) is constructed by the sine-cosine
signals with frequencies as the stimulus frequency and its higher harmonics. Our
aim is to find more efficient reference signals for SSVEP recognition from time
domain (i.e. optimizing the channels and trials data ways) based on the original
reference signals of sine-cosine. Then, the canonical correlation between mode-2
of X and Y is considered. The proposed Multiway CCA finds linear transforms
w1 ∈ RI×1, w3 ∈ RK×1 and v ∈ R2H×1 such that

ρ = max
w1,w3,v

E [x̃ỹ]√
E
[
x̃2
]
E
[
ỹ2
] (5)

is maximized, where x̃ = X ×1 wT
1 ×3 wT

3 and ỹ = vT ×Y. Fig. 1 illustrates
the Multiway CCA mode. For solving this problem, we adopt an alternating
algorithm which fixes w3 to solve w1 and v, then fixes w1 and v to solve w3,
and repeats this procedure until convergence criterion is satisfied. Then, the
optimal reference signal denoted by z ∈ R1×J can be obtained by:

z = X ×1 wT
1 ×3 wT

3 . (6)

When compared with the standard sine-cosine signals, the optimized reference
signal contains not only the ideal SSVEP frequency components but also the
information of inter-subject variability and trial-to-trial variability.

Multiway CCA based SSVEP recognition. We represent the experimental
EEG data corresponding to the mth stimulus frequency fm (m = 1, 2, . . . , M) as
a third-order tensor Xm ∈ RI×J×K (channel×time×trial). The Multiway CCA
is implemented to maximize the correlation between the EEG data tensor and
the corresponding sine-cosine signals Ym ∈ R2H×J (harmonic×time) defined by
Eq.(2), and find the optimal reference signals denoted by zm ∈ R1×J , which will
be used to replace the original sine-cosine based reference signals. Then, with
the new reference signals, multiple linear regression (MLR) [11], a correlation
technique focusing on a variable and a set of variables, is utilized to recognize
target stimulus frequency. We consider the relationship between the test EEG
data Xtest ∈ RI×J and optimized reference signal zm as a multiple regression
model, i.e.,:

zm = bT
mXtest + em, (7)

where bm ∈ RI×1 is a coefficient vector to be estimated and em ∈ R1×J is a
noise vector with zero mean and constant variance. With least square method,
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Algorithm 1. Multiway CCA algorithm for SSVEP Recognition

Input: M EEG tensor data X1,X2, . . . ,XM ∈ RI×J×K and sine-cosine signals
Y1,Y2, . . . ,YM ∈ R2H×J corresponding to M stimulus frequencies,
respectively. A test EEG data Xtest ∈ RI×J .

Output: Recognition result ftarget.
for m = 1 to M do

Random initialization for wm,3 and do X̃m ← Xm ×3 wT
m,3.

repeat

Find wm,1, vm which maximize the correlation between X̃m and Ym by
the CCA. Do X̃m ← Xm ×1 wT

m,1, ỹm ← vT
m × Ym.

Find wm,3 which maximizes the correlation between X̃m and ỹm by the
CCA. Do X̃m ← Xm ×3 wT

m,3.

until the maximum number of iterations is reached ;

Compute the optimized reference signal zm ← Xm ×1 wT
m,1 ×3 wT

m,3.

end
for m = 1 to M do

Implement MLR between Xtest and zm to obtain the correlation Rm.
end
Recognize target stimulus frequency as ftarget = max

fm

Rm, (m = 1, 2, . . . , M).

the esimation of bm is solved as:

b̂m =
(
XtestXT

test

)−1

XtestzT
m, (8)

and the estimated vector of fitting values ẑm is computed as:

ẑm = b̂
T

mXtest = zmXT
test

(
XtestXT

test

)−1

Xtest, (9)

Then, the correlation coefficient Rm which reflects the relationship between Xtest

and zm is calculated as:

Rm =

√
1− ‖zm − ẑm‖22

‖zm − E [zm]‖22
, (10)

where ‖·‖2 denotes l2-norm. Larger Rm implies more significant relationship
between Xtest and zm. Then, the target stimulus frequency is recognized as:

ftarget = max
fm

Rm, (m = 1, 2, . . . , M). (11)

The algorithm of the proposed Multiway CCA for SSVEP recognition is summa-
rized in Algorithm 1. Fig. 2 illustrates SSVEP recognition based on the Multiway
CCA. For each subject, five-fold cross-validation is used to estimated average
classification accuracy. More specifically, a procedure, in which the EEG data
from four runs (80 trials) are used to optimize the reference signals and that
from the left-out run (20 trials) is used for SSVEP recognition, is repeated five
times so that each run served once for SSVEP recognition validation.
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4 Results

The proposed Multiway CCA was compared with the standard CCA, PSDA
and PSDA+LDA. EEG data from all eight channels were used as the inputs for
the standard CCA and Multiway CCA. For the PSDA, PSDs were estimated
by 4fs-point-FFT (i.e., the frequency resolution is 0.25 Hz) from the EEG data
with a bandwidth of 0.5 Hz, averaged on the channels O1, Oz and O2. For
the PSDA+LDA, we took the PSDs as features and applied a 4-class classifier
built by combining six single LDAs to classify the target frequency. The av-
erage accuracy was estimated by a five-fold cross-validation. Fig. 3 shows the
recognition accuracy of the four methods for different subjects and harmonic
combinations. While the standard CCA performed better than the PSDA and
PSDA+LDA, the proposed Multiway CCA yielded higher recognition accuracies
than the standard CCA for most time window (TW) lengths. There was no big
difference between the accuracy of the PSDA and PSDA+LDA. For most of the
four methods, the performance in using more harmonics was slightly better than
that in using fewer harmonics.

Fig. 3. SSVEP recognition accuracies obtained by the standard CCA, Multiway CCA,
PSDA and the combination of PSDA and LDA, across different time window (TW)
lengths, in using different harmonic combinations, for three subjects. The rightmost
column shows the accuracies averaged on all subjects. 1 harmonic: fundamental fre-
quency only, 2 harmonics: fundamental frequency and second harmonic, 3 harmonics:
fundamental frequency, second and third harmonics.
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Information transfer rate (ITR) [10] was also used to evaluate the performance
of the CCA and Multiway CCA further. The ITR can be computed as:

B = log2 N + Acc× log2 Acc + (1−Acc)× log2 [(1 −Acc)/(N − 1)] , (12)
ITR = B× 60/T, (13)

where the bit rate or bits/trial is denoted by B, N is the number of stimulus
frequency, Acc is the recognition accuracy and T represents the duration per
trial. Table 1 presents the recognition accuracies and ITRs of the CCA and
Multiway CCA in using different channel combinations and TW lengths. Here,
we focus on the TW lengths in range of 0.8 s ∼ 1.4 s to compromise between
recognition accuracy and speed. For all of the four TW lengths, the Multiway
CCA yielded higher recognition accuracies and higher ITRs than that of the CCA
for various channel combinations. Furthermore, if fewer number of channels were
used, bigger advantages over the CCA seemed to be achieved by the Multiway
CCA. For both methods, the combination of more channels used yielded better
performance than that in using fewer channels.

Table 1. Accuracy (Acc) (%) and information transfer rate (ITR) (bits/min) of the
standard CCA and Multiway CCA (MCCA) in using different channel combinations
and within different time window lengths (TW) (s), averaged on all subjects

TW Channel
CCA MCCA
Acc ITR Acc ITR

0.8
8 channels 67.0 25.2 77.7 34.3
6 channels 68.0 25.7 74.3 32.4
3 channels 60.7 17.8 70.7 27.8

1.0
8 channels 78.0 30.9 85.3 38.7
6 channels 73.7 29.8 81.3 36.3
3 channels 67.7 22.9 78.0 32.6

1.2
8 channels 83.3 34.0 88.3 38.0
6 channels 80.3 32.0 85.7 37.0
3 channels 72.7 26.6 82.3 33.2

1.4
8 channels 86.7 33.8 91.3 37.8
6 channels 85.0 33.3 88.0 35.4
3 channels 78.7 28.9 83.3 33.1

Note: 8 channels: PO3, POz, PO4, PO7, PO8, O1, Oz and O2. 6 channels: PO3, POz,
PO4, O1, Oz, O2. 3 channels: O1, Oz, O2.

5 Discussion and Conclusion

In this study, a Multiway CCA approach was proposed to recognize the stimulus
frequency for SSVEP-based BCI. In this method, multiple CCAs were imple-
mented between the EEG tensor data and sine-cosine signals to find appropriate



Multiway Canonical Correlation Analysis 295

reference signals used in correlation analysis for SSVEP recognition. After that,
multiple linear regression was applied to inspect the correlation between the
test EEG data and optimized reference signals for SSVEP recognition. From
the results, the Multiway CCA achieved higher accuracy than that of the stan-
dard CCA, PSDA and the combination of PSDA and LDA, within shorter TW
length. This shows the proposed method is promising for enhancing the real-
time performance of SSVEP-based BCIs. Also, the better performance of the
Multiway CCA confirmed that the reference signals optimized from space and
trial data modes were more efficient than the commonly used sine-cosine signals
for SSVEP recognition, since they might contain some information of subject-
specific and trial-to-trial variability. It is possible to develop an online learning
algorithm which gives real-time updates to the reference signals so that an adap-
tive SSVEP-based BCI can be established, which will be our future study.

Acknowledgments. This study is supported by Nation Nature Science Foun-
dation of China 61074113, Shanghai Leading Academic Discipline Project B504,
and Fundamental Research Funds for the Central Universities WH0914028.
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Abstract. In this work, we proposed an emotional face evoked EEG signal 
recognition framework, within this framework the optimal statistic features 
were extracted from original signals according to time and space, i.e., the span 
and electrodes. First, the EEG signals were collected using noise suppression 
methods, and principal component analysis (PCA) was used to reduce 
dimension and information redundant of data. Then the optimal statistic features 
were selected and combined from different electrodes based on the 
classification performance. We also discussed the contribution of each time 
span of EEG signals in the same electrodes. Finally, experiments using Fisher, 
Bayes and SVM classifiers show that our methods offer the better chance for 
reliable classification of the EEG signal. Moreover, the conclusion is supported 
by physiological evidence as follows: a) the selected electrodes mainly 
concentrate in temporal cortex of the right hemisphere, which relates with 
visual according to previous psychological research; b) the selected time span 
shows that consciousness of the face picture has a trend from posterior brain 
regions to anterior brain regions. 

Keywords: EEG, expression classification, electrodes selection, principal 
component analysis.  

1   Introduction 

The EEG can directly reflect the brain's activities, as is well known; it is the 
comprehensive reflection of millions of nerve cells in the brain. Scientists are trying 
to find the coding mechanism of the brain from EEG signals. Brain computer 
interface is a new way to investigate brain processes involved in various stimuli 
[1][2][3]. In this paper, we introduce an EEG signal classification method to 
recognize facial expressions.  
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How the brain distinguishes different facial expressions of emotion has been the 
subject of a number of recent studies. At present, most of researchers determine facial 
expression emotion by image processing and pattern recognition, which is based on 
stimulus of facial image. Analyzing the physiological EEG signal is another way to 
recognize emotion, which is a more intuitive and effective means of emotion 
recognition. However, few researchers consider using EEG for emotion recognition 
[4][5][6].  

Reference related to the classification of EEG emotion mainly consists of two 
aspects. One directly uses the overall EEG signal as a feature vector; Murugappan et 
al. [7] extracted wavelet features from EEG signals for classifying human emotions. It 
used three different wavelet functions on 5 different emotions (happy, surprise, fear, 
and disgust, neutral) for feature extraction, and then selected KNN algorithm and 
LDA classification, test results show that KNN algorithm is superior to LDA; the 
highest average recognition rate reaches 79.174%. However, the other uses the event 
related potentials (ERPs) extracted from the whole EEG signals. Haihong et al. [8] 
classify the ERP signals P300 by support vector machine classifier SVM. P300 is a 
task-related ERP, and the peak appears about 300ms after the stimulus occurs. The 
EEG feature selection in [8] is from the perspective of cognitive psychology and 
combined with the test-related ERP analysis. In summary, the present studies select 
different features in order to improve the performance of emotional facial expression 
classification. 

In this paper, we proposed an emotional face evoked EEG signal recognition 
framework, within this framework the optimal statistic features were extracted from 
original signals according to time and space, i.e., the span and electrodes. First, the 
EEG signals were collected using noise suppression methods, and principal 
component analysis (PCA) was used to reduce dimension and information redundant 
of data. Then the optimal statistic features were selected and combined from different 
electrodes based on the classification performance. We also discussed the contribution 
of each time span of EEG signals in the same electrodes. Finally, experiments using 
Fisher, Bayes and SVM classifiers show that our methods offer the better chance for 
reliable classification of the EEG signal. There are two advantages in our method. The 
first is that we specifically investigate the contribution of each time span extracted 
from an EEG signal to this classification problem, while others directly use the whole 
EEG signal as an input. The second is that our model is purely computational, 
however, the result is supported by biological evidence as follows: a) The electrodes 
selected by our method mainly concentrate in temporal cortex of the right hemisphere 
which is related to vision according to previous psychological research. b) The results 
based on time sequence can show that the consciousness of the face picture has a 
trend from posterior brain regions to anterior brain regions.  

In the remainder of this paper, we explain the framework of facial expression 
evoked EEG signal recognition method and EEG acquisition. Subsequently, we 
describe the method of EEG classification. Then, it shows the results of each 
experiment. Finally, we conclude and prospect the future in the end of the part. 
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2   The Framework of Emotional Face Evoked EEG Signal 
Recognition Method  

2.1   Framework 

The framework of our method includes two main parts: EEG acquisition and EEG 
processing as shown in Fig.1. As with other EEG signal recognition systems, we first 
designed a psychological experiment to collect facial expression evoked EEG signals. 
The left part of fig.1 shows the EEG acquisition step. In order to eliminate the effects 
of age, race and gender elements to facial expression processing, we use schematic 
facial expressions (happy, neutral and sad) to get the clear facial expression evoked 
EEG signal. The right part of fig.1 shows the EEG processing steps. First, we 
preprocess the collected EEG using a noise reduction method, then extract features 
through feature selection and electrode combination. Finally, classification is operated 
on the optimal signal by combining the selected electrodes. In the course of EEG 
signal processing, we adopt many mechanisms to get optimal features and electrodes, 
which mainly involve selection of time series, the selection of electrode and the 
combination of electrode. In order to get the optimal classification performance, we 
compare three classifiers: liner discriminant function classifier (Fisher), support 
vector machine classifier (SVM) and Bayes classifier (Bayes). 

 

Fig. 1. The framework of emotional face evoked EEG signal recognition method 
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2.2   EEG Acquisition  

Twelve subjects aged 20-30 years participate in the study. All the participants report 
normal vision and have no history of current or past neurological or psychiatric illness 
and take no medications known to affect the central nervous system. Participants are 
tested in a dimly lit room. They sit in a comfortable chair, and then they are instructed 
in how to complete the experiment. The stimuli are three types schematic facial 
expressions (happy, neutral, sadness). Each type of expressions has 18 samples of 
facial expressions. The stimuli are presented one at a time. The order of trials is 
randomized. Stimulus exposure time is 1000ms. These stimuli are used to form 2 
stimulus conditions: (a) upright faces, (b) inverted faces. EEG is recorded continually 
by electrodes placed according to the 64 system. EEG is sampled at 500Hz using a 
Neuroscan Nuamps digital amplifiers system. EOG artifacts are corrected using a 
correlation method. The EEG is segmented in epochs of 1000 ms beginning 200 ms 
prior to stimulus onset and averaged separately. Each subject has done 408 trials, 136 
trials for each type schematic facial expressions. Fig. 2 illustrates the EEG data 
acquisition processing using visual stimulus. 

 

Fig. 2. EEG data acquisition processing using visual stimulus 

3   Analysis of the Reorganization of EEG 

Suppose the EEG signals are decomposed into sub-bands according to different time 
span and electrodes. 

ijE  represents the sub-band of the thj time span at the thi

electrode. Then the optimal statistic features X can be written as follows: 

i j ij
i j

X Eα β= ,       

(1)
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The first method is based on single electrode signals.  

a) To begin with, we use 64 single electrodes ( {1,2,....,64}i ∈ ) as a brain 

signal feature to classify and get 64 classification performances.  

b) Subsequently, our purely computational model automatic selects the first 

three single electrodes to restructure. We used combination optimal single 

electrode EEG signals as a new EEG signals feature and PCA dimension 

reduction. In the experiment, {0,1}iα ∈ , 1jβ = and according Experiment 

II result, it shows
2CBE , 

8POE and
8PE as the first three optimal classification 

electrodes. Fig. 3 illustrates the process of optimal single electrodes EEG 

signals feature selection and reorganization. 

c) Finally, we chose three classifiers (Fisher, SVM and Bayes) to compare the 

classification performances. The results show that the fisher classifier 

performs well, as is shown in Experiment II. 

The second method is based on time spans signals. 

a) To begin with, we took 200ms as each time span. As the EEG signals hold 

1000ms. There are five time spans in one electrode (-200-0ms, 0-200ms, 
200-400ms, 400-600ms, 600-800ms). Therefore {1, 2,3,4,5}j ∈ . 

Meanwhile, we chose 
ijE  as an initial signal feature to specifically 

investigate the contribution of each time span extracted from an EEG signal.  

b) Subsequently, when thi electrode thj time span EEG signal got the best 

classification result as MAX, and we artificially set the threshold range as 

[MAX-5% MAX]. In this way, our model automatic selects these 

reasonable EEG signals based on each time span extracted from an EEG 

signal and random combination, and then PCA dimension reduction. Such 

as Fig.4 shows the process of time spans optimal electrode EEG signals 

combination.   

c) Finally, based on a comparison of the results of the three classifiers, we 

chose Fisher as the classifier and this classification performance compares 

with the results of the first method. The results further show that EEG signal 

features based on time span perform well. As shown in Experiment IV. 
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Fig. 3. Optimal single electrodes EEG signals 
feature selection and reorganization scheme 

    Fig. 4. Optimal time spans EEG signals 
    feature   selection and reorganization scheme 

4   Experimental Results and Analysis 

This section contains two parts. On the one hand, it describes PCA dimension 
reduction parameters. On the other hand, we list 4 experiments. Experiment I 
illustrates that the electrodes selected by our method mainly concentrate in temporal 
cortex of the right hemisphere which is related to vision. Experiment II shows the 
Fisher classifier is better than SVM and Bayes. Experiment III illustrates that the 
consciousness of the face expression trends from posterior brain regions to anterior 
brain regions. And experiment VI shows that EEG classification performances based 
on time spans are better than those based on electrodes. 

4.1   PCA Parameter Setting Description 

Since the combination EEG signals are typical high-dimension, it is necessary to reduce 
EEG signals dimensional. The PCA method was chosen because it can guarantee a 
minimum loss of information when it makes high-dimensional variable space dimension 
reduction. In the course of PCA dimension reduction, different dimension parameter of 
400, 300, 200 and 100 were selected. We can get every single electrode’s classification 
results in different dimensions through taking closed-end testing, which clearly shows the 
differences in the classification of different dimensions, the result shows the EEG’s 
classification was best when it was reduced to 400 dimensions. Therefore, an EEG signal 
feature selection will be reduced to 400 dimensions. 
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4.2   Experiment I : Feature Selection – A Single Electrode  

In the Experiment I, the single electrode is viewed as the EEG feature; we choose the 
Fisher classifier to do closed-end testing. The result shows that the electrode CB2 
classification accuracy reached 90.98%. At the same time, the PO8, P8, CP4, P6, 
PO6, P4 classification accuracy rate reached 89.51%, 88.97%, 88.02%, 88.8%, 
85.4%, and 84.36% respectively. Based on the classification results, we marked the 
optimal first six electrodes on brain mapping. Fig.5 shows they are mainly in the 
temporal occipital region [9] and right hemispheric dominance [10], while the 
temporal occipital region is associated with the visual region according to previous 
psychological research. 

 

Fig. 5. The brain mapping (first six electrodes) 

4.3   Experiment II: Feature Selection – A Combination of Optimal Single 

Electrodes 

The purpose of experiment II is improving EEG classification through combination of 
optimal single electrodes. Thus according to experiment I’s classification results, 
firstly, the first three electrodes in the temporal occipital (CB2, PO8, P8) are 
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combined. Secondly, the combination EEG features are reduced dimensionally. 
Finally, we chose Fisher, SVM and Bayes to classify, and then used a 10 times 10 
fold cross validation method to test results. The results shown as Tab.1: The Fisher 
classification accuracy rate was 88.51%. Therefore, the Fisher classifier had good 
classification results in the EEG emotional classification.  

Table 1. The results of classification of emotion EEG in different ways 

Classification of emotion EEG  

Classification method PCA + FISHER PCA + Bayes PCA + SVM 

Recognition rate 88.51 82.30 69.98 

4.4   Experiment III: Feature Selection – Each Time Span of Each Single 
Electrode  

This EEG signals in -200ms-0ms are omitted due to no ERP existence. Therefore, we 
choose EEG signals in 0-800ms, and use each time span (200ms) EEG signals as 
feature to classify them. Fig.6 illustrates the optimal electrodes based on different  
 

 

Fig. 6. The optimal electrodes based on different time range EEG signals classification 
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time range’s EEG signals classification distributions for different electrodes. Such as 
PO8 is an optimal electrode in 0-200ms, PO4 is an optimal electrode in 200-400ms, 
C4 is an optimal electrode in 400-600ms, and FC2 is an optimal electrode in 600-
800ms. According to this experiment, we not only found the emotional classification 
is predominantly on the right hemispheric, but also the most important is that we 
found the perception of pictures of facial expressions trends from posterior brain 
regions to anterior brain regions. This finding is the same as the reference [11]. 

4.5   Experiment IV: Feature Selection – A Combination of Optimal Time Spans  

On the basis of the experiment III, we made the advantages of a single electrode in the 
scope of [MAX-5% MAX] random combination. The result is following. 

Table 2. Optimal time series electrodes combination 

The fourth experiment electrode combination 

0ms-200ms PO6 PO8 P8 

200ms-400ms CB2 FZ F6 

400ms-600ms CB2 P1 PZ 

600ms-800ms PZ FC2 CB2 

 
Compared with experiment II, the experiment IV’s electrode combinations based 

on time series reached an accuracy rate of 98.38%. While in the experiment II, the 
accuracy rate reached 88.51%. Hence, selecting EEG based on time series can greatly 
improve the performance of emotional classification through reduction and 
recombination of EEG.  

5   Conclusions and Outlook 

This paper proposes an emotional facial expression EEG signal classification method 
by dimension reduction and reorganization of electrodes. In the EEG acquisition step, 
we get 500 dimension data for each electrode. In order to eliminate the redundant 
information, we use PCA to decrease the dimensions to 400 for single electrode and 
combined electrodes. We select 3~10 optimal electrodes for classification, while we 
use 64 electrodes for EEG acquisition. In order to get high classification performance, 
we compare Fisher, SVM and Bayes, and find that Fisher obtains better classification 
results. Meanwhile, it has also confirmed the psychology theory. In the future, we will 
consider ERP for the emotional expression classification, and classify all electrodes 
for each time point and analysis the continuity of the same electrodes in each time 
point to find the valuable ERP.  
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Abstract. The cortical atrophy measured from the magnetic resonance imaging 
(MRI) data along with aberrant neuronal activation patterns from the functional 
MRI data have been implicated in the mild cognitive impairment (MCI), which 
is a potential early form of a dementia. The association between the level of 
cortical atrophy in the gray matter (GM) and corresponding degree of neuronal 
connectivity, however, has not systematically been presented. In this study, we 
aimed to provide anecdotal evidence that there would be a close link between 
the anatomical abnormality and corresponding functional aberrance associated 
with the neuropsychiatric condition (i.e. MCI). Firstly, the voxel-based 
morphometry (VBM) analysis identified the medial temporal lobe and inferior 
parietal lobule as the regions with substantially decreased (i.e. atrophy) and 
increased GM concentrations, respectively. In the subsequent functional 
connectivity (FC) analysis via Pearson’s correlation coefficients, the FC 
patterns using the regions with a decreased GM concentration showed increased 
FC patterns (i.e. hyper-connectivity) associated with the MCI. On the other 
hand, the FC patterns using the seed regions with an increased GM 
concentration have shown decreased FC (i.e. hypo-connectivity) with the MCI 
in the task anti-correlated regions including superior frontal gyrus (i.e. task-
negative networks or default-mode networks). These results provide a 
supplemental information that there may be an compensatory mechanism in the 
human brain function, which potentially allow to diagnose early phase of the 
neuropsychiatric illnesses including the Alzheimer’s diseases (AD). 

Keywords: Functional magnetic resonance imaging, mild cognitive 
impairment, voxel-based morphometry, functional connectivity, dementia. 

1   Introduction 

Using non-invasive magnetic resonance imaging (MRI) modalities, a number of 
studies have explored the characteristic traits of various neurodegenerative diseases 
such as the AD using structural MRI (sMRI) and functional MRI (fMRI) data [1,2]. 
These include the abnormalities of the regional volumes of the human brain, GM 
concentration, level of neuronal activity, and functional connectivity between multiple 
regions [2,3,4,5]. 
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In recent studies, the VBM has been useful to characterize a potential biomarker 
estimated from the sMRI data to study GM degeneration [6]. The advantages of VBM 
include greater sensitivity for localizing regional characteristics of the GM in voxel-
wise compared to the volume information from the volumetric analysis [7]. The 
functional abnormality has also been useful to diagnose the AD [4,5]. For example, 
Gili and colleagues [8] investigated GM concentration and functional connectivity 
from the MCI and AD group using VBM and independent component analysis (ICA), 
respectively. However, the association between the structural atrophy and functional 
connectivity abnormality toward the identification of the symptomatic traits of AD 
pathophysiology has not been extensively appreciated. The goal of the present study 
is to provide anecdotal evidence that there would be a close link between the 
anatomical abnormality and the corresponding functional aberrance associated with 
the neuropsychiatric condition (i.e. MCI). To do so, the symptomatic traits of the MCI 
were identified using sMRI and fMRI data via statistical comparison of the GM 
concentration via VBM and functional connectivity patterns using the seed voxels 
derived from the VBM analysis. 

2   Method 

Figure 1 illustrates the overall flow diagram of functional connectivity analysis 
together with VBM. The detailed information of each step is elaborated in the later 
sections. Both sMRI and fMRI data were obtained from the freely available repository 
of the fMRI data center (www.fmridc.org, #2-2000-1118W; n = 41; 1.5 T GE Signa 
LX scanner; [3]). Data from two groups of elderly subjects (i.e. healthy controls, or 
HC, n = 14; subjects with an MCI, n = 13) were adopted. T1-weighted structural MRI 
data (TR/TE = 9.7/4 msec; FA=10°; 1 × 1 × 1.25 mm3 voxel-size) were acquired in a 
series of three to four separate T1-weighted MP-RAGE anatomic images and were 
used for VBM. T2

*-weighted fast spin-echo echo-planar-imaging (EPI) volumes were 
acquired while a subject performed sensory-motor task trials (n = 3 or 4; TR/TE = 
2.68/0.096 sec; 128 volumes per run; 64 × 64 in-plane voxels; 16 axial slices; 3mm 
thickness; 3.75 × 3.75 × 8 mm3 voxel-size). 

sMRI data VBM analysis

fMRI data Preprocessing

Group-level analysis 
via two-sample t-test

Voxel-wise Pearson’s 
correlation 
with the whole brain

Seed voxels

Time course Correlation map

Fisher’s z-transform and  
group-level analysis

 

Fig. 1. Overall flow diagram of functional connectivity analysis together with the VBM 

2.1   sMRI Analysis via Voxel-Based Morphometry 

As shown in Figure 2, the sMRI data of T1 images of each subject were preprocessed 
using the steps of VBM in SPM8 (Statistical Parametric Mapping software toolbox;  
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the Wellcome Trust Centre for Neuroimaging, London, UK). In detail, firstly, T1 
structural images were initially normalized using a 12-parameter affine model to the 
Montreal Neurological Institute (MNI) template that was derived from 550 healthy 
control subjects from the IXI-database (www.braindevelopment.org). Normalized 
images were interpolated with voxel dimension of 1.5 × 1.5 × 1.5 mm3

 and segmented 
into gray, white, and cerebrospinal fluid (CSF) compartments using a modified 
mixture model based cluster analysis technique [6]. Only non-linear deformation was 
used to align with the template, which allows comparing the absolute amount of tissue 
corrected for individual brain sizes. This option is equivalent to non-linear 
deformation combined with affine transformation, in which the total intracranial 
volume is used as a covariate for the step of group-level analysis. The GM images 
were then smoothed using 8 mm full-width-at-half-maximum (FWHM) Gaussian 
kernel. Each voxel in a smoothed image contains the averaged GM concentration. In 
the group-level, a random-effect (RFX) model was administered to evaluate the 
group-level difference between the HC and MCI groups, in which a two-sample t-test 
was applied to the smoothed GM images. The clusters that showed significantly 
different GM concentrations between two groups were obtained. Then, the foci with 
maximum t-score of each of these clusters were defined as seed voxels and used for 
subsequent functional connectivity analysis. 

Spatial Normalization 
using 12-parameter 

Affine Model
sMRI data

Segmentation into Gray 
Matter, White Matter, and 

Cerebrospinal Fluid

Non-linear Deformation 
of Gray Matter Map

Spatial Smoothing (8mm 
FWHM)

Gray matter Map

 

Fig. 2. Overall steps of VBM to analyze the sMRI data 

2.2   fMRI Analysis via Functional Connectivity Patterns 

The EPI volumes were preprocessed using SPM2 (i.e. slice timing correction, head 
motion correction, normalization to the MNI coordinate with 3mm isotropic voxel, 
and spatial smoothing using 8mm isotropic FWHM Gaussian kernel in order) as 
shown in Figure 3. For each run, the first four EPI volumes were removed to allow for 
T1-related signals to reach steady-state equilibrium. 

Slice Timing Correction
(interleaved)fMRI data Head-motion Correction

Spatial Normalization to 
MNI Space 

(3mm isotropic voxel)

Spatial Smoothing 
(8mm FWHM)

Preprocessed 
EPI data

 

Fig. 3. Overall steps of preprocessing to analyze the fMRI data 
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In the functional connectivity analysis, the identified foci where GM concentration 
was significantly decreased or increased from the results of VBM analysis were used 
as seed voxels. The average of the fMRI time series (i.e. blood-oxygenation-level-
dependent, or BOLD signals) from neighboring 27 voxels centered at a seed voxel 
(i.e. 3 × 3 × 3 voxels) were regarded as a representative BOLD signal of the cluster 
and used as a reference BOLD signal of the region. The linear trend of the BOLD 
signals from each of the 27 neighboring voxels including the seed voxel was corrected 
before averaging to remove the potential confounding artifact of the low-frequency 
drift noise originated from hardware imperfection [9]. 

The level of functional connectivity between the seed region and the rest of the 
voxels within a brain region of each subject in each run was evaluated using the 
Pearson’s correlation coefficient. The Pearson’s correlation coefficient of the two 
linearly detrended BOLD signals (i.e., xseed and xv from the seed voxel and each voxel 
within brain mask, respectively) was calculated as follows:

  
r

v
=

σ
seed ,v

2

σ
seed

σ
v
 (1)

where σseed and σv are the standard deviation of xseed and xv, respectively, and σ2
seed,v is 

the covariance of xseed and xv. Subsequently, each correlation map was converted to 
normally distributed z-values using Fisher’s r to z transformation. A fixed-effect 
(FFX) model was adopted by averaging the resulting z-scored correlation map across 
the three or four runs of each subject. In the group-level, a RFX model was 
administered to compare the group-level FC between the HC and MCI groups using 
two-sample t-test applied to the z-scored correlation maps from two groups. 

3   Experimental Results 

3.1   Group-Level Inference of VBM Results 

From the group-level comparison using RFX to the VBM results, a total of 8 foci 
were identified from the two-sample t-test as shown in Fig. 4. The decreased GM 
concentrations from the MCI group were detected in five regions including bilateral 
fusiform gyrus, left parahippocampus, left hippocampus, and left anterior cingulate 
cortex (p < 10-3 uncorrected, with a minimum of 20 connected voxels), in which the 
atrophy of these regions responsible for cognitive ability are believed to be due to the 
MCI status. GM concentration within right hippocampus was shown a moderate 
statistical significance between the MCI and HC group (i.e. p = 0.004 uncorrected). 

Meanwhile, three cortical regions including right medial frontal gyrus, left 
inferior parietal lobule, and right paracentral lobule were identified as the regions 
with significantly increased GM concentrations from the MCI group (p < 10-3 
uncorrected, with a minimum of 20 connected voxels). Table 1 summarizes the 
results of the group-level analysis from the VBM. Subsequently, the eight foci 
from these identified clusters were used as seed regions for the subsequent 
functional connectivity analysis. 
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Fig. 4. Two-sample t-test results indicate that the GM concentrations were (a) significantly 
decreased from the MCI group in the bilateral fusiform gyrus, left parahippocampus, left 
hippocampus, and left anterior cingulate cortex, and (b) significantly increased from the MCI 
group including the bilateral right medial frontal gyrus, left inferior parietal lobule, and right 
paracentral lobule (p < 10-3 uncorrected, with a minimum of 20 connected voxels) 

Table 1. The identified foci from two-sample t-test applied to the GM intensities from the subjects 
in each of the two groups (i.e. cluster size as a number of voxels; x,y,z mm in MNI coordinate) 

Contrast Region Side
Cluster 

size 
x y Z 

Peak t-
score 

p-value 

MCI < HC 

FG 
Hippocampus 

L 57 -33.0 -4.5 -31.5 3.93 3.0 × 10-4 

FG R 28 34.5 -1.5 -33.0 4.25 1.3 × 10-4 

Parahippocampus 
Hippocampus 

L 110 -15.0 -13.5 -21.0 4.00 2.5 × 10-4 

Hippocampus L 131 -25.5 -21.0 -10.5 3.87 3.5 × 10-4 

ACC L 21 -12.0 36.0 7.5 4.14 1.7 × 10-4 

MCI > HC 

MFG R 57 48.0 13.5 48.0 3.68 5.6 × 10-4 

IPL L 28 -40.5 -45.0 55.5 4.20 1.5 × 10-4 

Paracentral lobule R 110 6.0 -33.0 64.5 4.01 2.4 × 10-4 

FG: fusiform gyrus; MFG: middle frontal gyrus; ACC: anterior cingulate cortex; ITG: inferior temporal 
gyrus; IPL: inferior parietal lobule 

3.2   Functional Connectivity Results Integrated with VBM  

Figure 5 and Table 2 summarize the results from the functional connectivity analysis. 
Using the seed regions with reduced GM concentration (i.e. atrophy) from the sMRI data, 
functional connectivity patterns were significantly increased (p < 10-3 uncorrected; a 
minimum of 20 connected voxels) from the MCI group in the regions including the right 
superior frontal gyrus, bilateral middle/posterior cingulate cortex, and right inferior 
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parietal lobule. On the other hand, using the seed regions with increased GM 
concentration, functional connectivity patterns were significantly decreased from the 
MCI group within the anterior cingulate cortex and superior frontal gyrus (p < 10-3 
uncorrected; a minimum of 20 connected voxels). Functional connectivity patterns from 
the seed regions of bilateral fusiform gyrus and the paracentral lobule were not 
significantly different between the MCI and HC group (p > 10-3 uncorrected).  

 

Fig. 5. Functional connectivity patterns via two-sample t-test was (a) significantly increased 
(i.e., hyper-connectivity) from the MCI group within the right superior frontal gyrus, bilateral 
middle/posterior cingulate cortex, and right inferior parietal lobule, and (b) significantly 
decreased from the MCI group (i.e., hypo-connectivity) within the anterior cingulate cortex and 
superior frontal gyrus (p < 10-3 uncorrected; a minimum of 20 connected voxels). 

Table 2. Summary of group-level differences of functional connectivity patterns via two-
sample t-tests, in which the regions with significantly different GM intensity were used as seed 
regions (i.e. cluster size as a number of voxels; x,y,z mm in MNI coordinate) 

GM
intensity 

Seed region (L/R) 
Functional 

connectivity
Regions x y z

Peak t-
score 

Cluster 
size 

MCI < HC 

Parahippocampus (L) 

MCI > HC 

SFG (R) 18 45 12 4.83 58 

Hippocampus (L) MCC/PCC (B) -21 -54 36 7.14 1119 

ACC (L) 
IFG (R) 24 27 -9 4.80 21 

SFG (R) 27 36 12 5.71 58 

MCI > HC 
MFG (R) 

MCI < HC
ACC (L) -9 21 21 5.15 32 

IPL (L) SFG (R) 27 0 69 4.30 21 
 

SFG, MFG, & IFG: superior, middle, & inferior frontal gyrus; ACC, MCC, & PCC: anterior, middle, & 
posterior cingulate cortex; IPL: inferior parietal lobule 
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4   Discussion 

In this study, we successfully demonstrated that the intensity changes of the cortical GM 
observed from the structural MRI data are closely related to the aberrant functional 
connectivity from the affected regions to the rest of the brain. In detail, the hyper-and 
hypo-connectivity patterns from the MCI subjects compared to the healthy subjects were 
observed from the seed regions with decreased and increased GM concentration, 
respectively. These changes of the functional connectivity are particularly interesting 
since this may be indicating the aberrant human brain functions compensating the 
structural abnormality, which may be evident much earlier than the progression of the 
structural detriment. Based on the neurophysiological evidence, a hyper-connectivity in 
early AD may be interpreted as a compensatory mechanism due to axonal sprouting and 
synaptic plasticity, so that the region with atrophy can maintain the level of functional 
integration within the affected region along the progression of the structural damage [10]. 

Further study would be warranted to investigate an effective connectivity (e.g., 
Granger causality analysis; [11]) to identify the abnormal causal flow between the 
brain regions associated with the anatomical abnormality. Since all the MCI subjects 
recruited may not subsequently be developed to the AD, the future investigation using 
the longitudinally obtained data sets from MCI subjects would be greatly appreciated 
toward the potential utility for an early diagnosis of the illnesses. 

5   Conclusion 

In this study, we presented that the structural and functional abnormalities were 
tightly coupled. The analytical method of this study may provide a potentially 
valuable option toward an early diagnosis of various neuropsychiatric illnesses 
including the AD providing an early sign of neuropsychiatric condition estimated 
from the functional abnormality, which may be observed much earlier than the more 
evident structural damage. 
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Abstract. The present study aims at the use of the translation errors
of the EEG signals as criteria for brain death diagnosis. Since the EEG
signals of the patients in coma or brain death contain several kinds of
sources that differ from the viewpoint of determinism, we can exploit
the difference of the translation errors for brain death diagnosis. We also
show that the translation errors of the post-ICA EEG signals are more
reliable than the ones of the pre-ICA EEG signals.

Keywords: Brain death diagnosis, Translation error, Embedding di-
mension, Independent component analysis.

1 Introduction

Brain death is defined as the complete, irreversible and permanent loss of all
brain and brain stem functions. In many countries, the EEG signals of the pa-
tients are used to inspect the absence of cerebral cortex function for brain death
diagnosis. Because the EEG recordings are usually corrupted by various kinds
of artifacts, extracting informative features from noisy EEG signals and eval-
uating their significance is essential in brain death diagnosis. In 2000, Hori et
al.[4][5] proposed the use of independent component analysis (ICA) for the flat
EEG examination in brain death diagnosis. Cao[7], Cao and Chen[8] and Chen
et al.[9] proposed the use of frequency-based and complexity-based statistics for
quantitative EEG analysis in brain death diagnosis. Moreover, Hori and Cao[6]
proposed the use of the translation error for selecting EEG components in brain
death diagnosis. The purpose of the present study is to introduce the use of the
translation errors of the EEG signals as criteria for brain death diagnosis. Based
on the observation that the signals from the brain activities are deterministic
while the environmental noises are stochastic, we exploit the difference of the
translation errors for the EEG signals of the patients in coma or brain death.
We also show that the translation errors of the post-ICA EEG signals are more
reliable than the ones of the pre-ICA EEG signals.
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The rest of the paper is organized as follows. Section 2 presents the ICA
algorithm applied to EEG data in Section 4. Section 3 explains the calculation
procedure of the translation error. Section 4 applies the translation error together
with the ICA algorithm to EEG data for diagnosis of brain death. Section 5
includes concluding remarks.

2 Independent Component Analysis

Independent component analysis (ICA) is a powerful method of signal processing
for blind separation of statistically independent source signals. Several standard
ICA algorithms have been developed and widely used for EEG analysis such as
elimination of noise and extraction of components related to the brain activities.
This section presents the ICA algorithm we apply to EEG data in Section 4.

Since the source of EEG signals propagate rapidly to the electrodes on the
scalp, EEG observation is modeled by an instantaneous mixing model

x(t) = As(t)

where s(t), x(t) and A denote n-channel source signals, m-channel observed
signals, and an m × n mixing matrix respectively. The source signals are all
supposed to be zero-mean and statistically independent to each other. Corre-
sponding demixing model is given as

y(t) = Wx(t)

where y(t) and W denote n-channel demixed signals and an n × m demixing
matrix respectively. ICA algorithms set the demixing matrix W to some ini-
tial value and update it iteratively so that the statistical independence of the
demixed signals is maximized. In convergence, the demixed signals are statisti-
cally independent to each other and the matrix WA is a permutation matrix
with amplitudes. In Section 4, we apply the natural gradient ICA algorithm[12]
with an automatic detection of sub- and super-Gaussian sources[13],

Ẇ = (I −K tanh(y)yT − yyT )W, (1)

where

tanh(y) = (tanh(y1), . . . , tanh(yn))T ,

K = diag(k1, . . . , kn),
ki = sign(E[sech2(yi)]E[yi

2]− E[tanh(yi)yi]),

to the EEG data of patients in coma or brain death.
In our application to the EEG data of the patients in coma or brain death,

the source signals are either the signals from the brain activities, the contamina-
tion from the power supply or the environmental noise. Applying the ICA algo-
rithm to the EEG data, we obtain those as the demixed signals. As explained in
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Section 4, six electrodes (Fp1, Fp2, F3, F4, C3 and C4) were placed for recording
EEG data to produce six source signals, to which we apply the ICA algorithm
to obtain six demixed signals. Following terminology in the field of ICA, we refer
to pre-ICA EEG signals as “EEG channels” and post-ICA EEG signals “EEG
components”.

3 Translation Error

The translation error[14] provides a quantitative measure of determinism of sin-
gle channel time series data from the viewpoint of determinism versus stochas-
ticity. As the EEG signals of the patients in coma or brain death contain several
kinds of sources that differ from the viewpoint, we can exploit the translation
error of the EEG signals in brain death diagnosis. For the calculation of the
translation error, a given single channel time series data is considered to be gen-
erated from a higher dimensional attractor. The attractor is reconstructed based
on Takens’ embedding theorem[15] and the translation error is calculated from
the reconstructed attractor as follows.

Given a single channel time series data z(t), let

ξ(t) = (z(t), z(t + τ), . . . , z(t + (D − 1)τ))

denote a point on the reconstructed attractor in D-dimensional state space where
τ is a delay time. We choose a point ξ0(t) randomly from the reconstructed
attractor and consider its neighborhood on the attractor {ξk(t)|k = 1, . . . , K} of
the K nearest points to ξ0(t) and how the neighborhood displace along the time
evolution of T steps,

vk(t) = ξk(t + T )− ξk(t) (k = 0, . . . , K).

The translation error is defined as the variance of such displacements,

Etrans =
1

K + 1

K∑
k=0

|vk(t)− 〈v(t)〉|2
|〈v(t)〉|2 ,

〈v(t)〉 =
1

K + 1

K∑
k=0

vk(t).

For robust estimation of the translation error, we repeat the above calculation
M times using randomly sampled ξ0(t) and use the median as the result. For
a deterministic time series data, the displacements are expected to be concen-
trated on their center to make the variance small. The translation error Etrans

will decrease as the embedding dimension D approaches the dimension of the
attractor. On the other hand, for a stochastic time series data, the displacements
will be scattered to make the variance large. The translation error Etrans stays
at larger values not depending on the embedding dimension D.

As the brain activities reside in the ensembles of synchronous firings of neu-
rons, the signals from the brain activities are considered to be deterministic.
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Ikeguchi et al.[16] and Gallez and Babloyantz[17] calculated the Lyapunov expo-
nent of the EEG signals and suggested that the signals from the brain activities
are deterministic. The EEG signals of the patients in coma are mainly the sig-
nals from the brain activities for which the translation error is relatively small.
On the other hand, the EEG signals of the patients in brain death are mainly
stochastic environmental noises for which the translation errors keep larger val-
ues. In the following section, we exploit the difference of the translation errors
for diagnosis of brain death.

4 Experiments

In the present study, the EEG recordings were carried out in the Shanghai
Huashan Hospital in affiliation with the Fudan University (Shanghai, China).
The EEG recording instrument was a portable NEUROSCAN ESI-32 amplifier
associated with a laptop computer. During the EEG recordings, nine electrodes
were placed on the forehead of the patient lying on the bed. Specifically, six
electrodes were placed at Fp1, Fp2, F3, F4, C3 and C4 for recording, two at
both ears for reference, and one was used as the ground. From June 2004 to
March 2006, the EEG recordings were carried out for a total of 36 patients in
coma or brain death, from which we analyze the following:

– Patient A : 18-year-old male patient in coma
– Patient B : 19-year-old female patient in brain death
– Patient C1 : 48-year-old male patient in coma
– Patient C2 : Patient C1 transitioned to brain death
– Patient D : 56-year-old female patient in brain death
– Patient E : 26-year-old female patient in brain death
– Patient F : 22-year-old male patient in brain death

In our analysis, we first apply the ICA algorithm (1) to separate the EEG chan-
nels of all the above EEG data to the EEG components. After that, we calculate
the translation error for all the EEG channels and the EEG components for the
embedding dimensions D = 2 through D = 10. In the calculation of the trans-
lation error, we set K = 4, τ = 50, T = 10 and M = 30, that is, the number
of neighborhood points is 4, the time delay for the embedding is 50msec, time
evolution of 10msec is used to calculate displacements, and the median is taken
through the 30 times repetition of the calculation procedure.

Fig.1 and Fig.2 display the translation errors of pre-ICA EEG signals (the
EEG channels) and post-ICA EEG signals (the EEG components) respectively,
for the embedding dimensions D = 2 through D = 10. The results of all the
EEG channels or the EEG components for all the patients are put together in
Fig.1 or Fig.2, where the open dots (◦) indicate the results for the patients in
coma (A and C1) and the crosses (×) for the patients in brain death (B, C1,
D, E and F). In Fig.2, we exclude the results for the EEG components that are
similar to the sinusoid and are apparently the contaminations from the power
supply. The translation errors of such components are very small because the
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sinusoid is deterministic and can be embedded in a lower dimensional state
space. In both figures, the open dots and the crosses are mixed at lower em-
bedding dimensions (D ≤ 4) while they tend to separate and form two clusters
at higher embedding dimensions (D ≥ 7), where the open dots (the patients in
coma) forms the cluster for smaller values and the crosses (the patients in brain
death) for larger values. In Fig.1, however, some crosses take smaller values than
the cluster of open dots even at higher embedding dimensions. Those crosses
correspond to the EEG channels contaminated by the sinusoid from the power
supply which makes the translation error of the channels much smaller. On the
other hand, in Fig.2, the open dots and the crosses separate clearly to form two
clusters at higher embedding dimensions.

5 Concluding Remarks

Regarding the translation errors of the post-ICA EEG signals (the EEG compo-
nents) at higher embedding dimensions (D ≥ 7), the patients in coma forms the
cluster for smaller values and the patients in brain death for larger values. This
is explained by supposing that all the EEG components of patients in coma are
related to the brain activities and the signals from the brain activities are deter-
ministic whereas most EEG components of patients in brain death are related
to stochastic environmental noises. On the other hand, the translation errors of
the pre-ICA EEG signals (the EEG channels) do not show such clear separation
mainly because the sinusoidal contaminations from the power supply make the
translation errors of the EEG channels smaller for patients in brain death. From
the observation so far, we conclude that the translation errors of the post-ICA
EEG signals at higher embedding dimensions can be used as criteria for brain
death diagnosis. Also the translation errors of the EEG signals can be used for
verifying that certain components are stochastic noises and are not signals from
the brain activities[5] as well as selecting the EEG component in brain death
diagnosis[6].
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Abstract. Our final goal is to develop an inattentive driving alert sys-
tem by EEG signals. To develop this system, it is important to predict
saccadic eye moements by EEG signals.

In my previous studies, we found a sharp change of saccade-related
EEG signals in P3 and P4 positions before the saccade. However, there
are two problems in previous studies. As the first problem, we did not
focus on slow cortical potentials that are important EEG signals like
the P300 and the movement-related cortical potential. As the second
problem, we did not observe EEG signals in the case of only cued saccade.

In this study, our purpose is to find differences of saccade-related
cortical potentials between in cued movements and in free movements.

1 Introduction

Recently, many researcher have been developed the interface used by bio-signals
to apply to physically challenged patients and to apply to quantitative evaluation
of human statement. Especially, interfaces used by bio-signals generated from a
brain make rapid progress. Brain Computer Interface (BCI) is interface used
by bio-signals recorded on a brain non-invasively and Brain Machine Interface
(BMI) is interface used by bio-signals recorded in a brain invasively. In many
Brain computer interface, brain computer interface used by electroencephalog-
raphy (EEG) is most popular.

EEG related to saccadic eye movements have been studied by our group to-
ward developing a BCI eye-tracking system [1]. In previous research, saccade-
related EEG signals were found by using the ensemble averaging method [1] and
we can detect saccade-related EEG signals by using the single-trial method [2].

In the ensemble averaging method, the EEG signals were recorded during sac-
cadic eye movements toward a visual or auditory stimulus and the experimental
results showed the amplitude of the EEG declined just before to saccadic eye
movements at one side of the occipital cerebrum. Moreover, the direction of the
saccade coincides with the active side at the occipital cerebrum.
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2 Previous Results and This Problems

2.1 Experimental Settings

There were two tasks in this study (See Fig.1). The first task was to record the
EEG signals during a saccade to a visual target when a subject moves its eyes to
a visual stimulus that is on his right or left side. The second task was to record
the EEG signals as a control condition when a subject dose not perform a saccade
even though a stimulus has been displayed. Each experiment was comprised of
50 trials in total: 25 on the right side and 25 on the left side.

The experiments were performed in an electromagnetically shielded dark room
to reduce the effect of electromagnetic noise and any visual stimuli in the envi-
ronment. The visual targets were three LEDs placed in a line before the subject.
One was located 30 [cm] away from the nasion of the subject (Fig. 2). The other
two LEDs were placed to the right and left of the center LED, each separated
by 25 degrees from the nasion. They were illuminated randomly to prevent the
subjects from trying to guess which direction the next stimulus would be coming
form next.

In order to record saccade-related EEG signals, we performed visually guided
saccade task. This task was to record the EEG signals during a saccade to a
visual target that is either his/her right side or left side. This experiment was
comprised of 50 trials in total: 25 on the right side and 25 on the left side. The
number of subjects is 5. Their age is from 22 to 24 years old.

The EEG signals were recorded through 19 electrodes (Ag-AgCl), which were
placed on the subject’s head in accord with the international 10-20 electrode
position system (see Fig.3). The Electrooculogram (EOG) signals were simul-
taneously recorded through two pairs of electrodes (Ag-AgCl) attached to the
top-bottom side and right-left side of the right eye.

All data were sampled at 1000 [Hz], and stored on a hard disk for off-line data
processing after post-amplification. The raw EEG data was filtered by a high-
pass filter (cut-off 0.53 [Hz]) and a low-pass filter (cut-off 120 [Hz]). The EOG
data was recorded through a high-pass filter (cut-off 0.1 [Hz]) and a low-pass
filter (cut-off 15 [Hz]).

2.2 Experimental Results

Fig. 4 shows electrical potential in a visually guided saccade task. Each graph
are recorded on Fp1, Fp2, T3, T4, O1, O2 according to international 10-20 elec-
trode position classification system [1]. The black lines show electrical potentials
in right side movements and the gray lines show electrical potentials in left
side movements. The horizontal axes indicate the time span and 0 [ms] is start-
ing point of saccadic eye movements. The vertical axes indicate the electrical
potentials.

From this figure, the amplitude of the EEG declined just before to saccadic
eye movements at one side of the occipital cerebrum. Moreover, the direction of
the saccade coincides with the active side at the occipital cerebrum.



324 A. Funase, A. Cichocki, and I. Takumi

2 - 3 [s]

1 [s]
2 - 3 [s]

Non-lighted LED 

Lighted LED

Fixation point

a) Eye movement task

2 - 3 [s]

1 [s]
2 - 3 [s]

b) Non eye movement task

or

or

or

or

Fig. 1. Experimental tasks

These features are observed in the auditory guided saccade task. Therefore,
these feature are dependent on visual and auditory stimuli and are related to
only saccadic eye movements.

2.3 Problems in Previous Results

These features has a sharp change just before saccadic eye movements and a
sharp change are changed in some dozens milliseconds before saccadic eye move-
ments and Peak time of a sharp change is several milliseconds before saccade.

If we use these feature for input signals of BCI, It is short time between observ-
ing these feature and generating saccadic eye movement. Therefore, processing
time for these feature is very short.

In this problem, we analyze anther electrical potentials before saccadic eye
movements.

In previous experiments, we use a high-pass filter to extract sharp change of
electrical potentials. The cut-off frequency of high-pass filter is 4 [Hz]. However,
0-4[Hz] include slow cortical potential components related to P300.

In this paper, we do not use the high-pass filter and focus on slow cortical
potentials before saccadic eye movements.

3 Cued-Movement Experiments

3.1 Experimental Results

Fig. 5 is a result of a visual guided saccade task and subject-A moves his/her
eyes to a right side target. This potential are recorded on P4 position. Horizontal
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axis indicates an electrical potential. Vertical axis indicated an time span and 0
[ms] is a starting point of eye movements. Averaging latency between showing
visual stimuli and starting saccadic eye movements is 304 [ms].

A slow cortical potential are observed in this figure and a slow cortical po-
tential decrease in about 800[ms] on P4, O2 position. When subjects moved to
a left side target, a slow cortical potential decrease in about 800[ms] on P3, O1
position.

3.2 Discussion

From this results, we observed a slow cortical potential before saccadic eye move-
ments. This slow cortical potential is not observed in no movements. This slow
cortical potential is related to this experimental task. The position where a slow
cortical potential are generated is related to direction of saccadic eye movements.
From this result, this slow cortical potential is related to cued-movement based
on visual stimuli. We do not decide whether this feature is related to processing
of stimuli or to processing of movements. Therefore, in next step, we perform
experiments in the case of free-movements.
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4 Free-Movement Experiments

4.1 Experimental Setting

We performed Free-movement task in saccadic eye movements. Subjects watched
center LED during 3-5[sec]. After 3-5[sec], subjects move their eyes to right or
left side by subjects’ free will and subjects watch right or left side LED during
1[sec]. After 1[sec], subjects return their eyes to center LED. This procedure is
one trial. Each experiment was comprised of 50 trials in total: 25 on the right
side and 25 on the left side. The number of subjects is 2 and they have normal
vision.

4.2 Experimental Results

Fig. 6 is a result in free-movement of saccadic eye movements and subject-A
moves his/her eyes to a right side target. This potential are recorded on P4
position. Horizontal axis indicates an electrical potential. Vertical axis indicated
an time span and 0 [ms] is a starting point of eye movements.

We observed two components in this figure. First component has a slow cor-
tical potential and has trend toward increase of potential from -1000[ms] to
-500[ms]. Second component has a slow cortical potential and has trend toward
decrease of potential from -500 [ms] to 0[ms].
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Fig. 5. Results in visually guided saccade task by ensemble averaging. (P4,Cued move-
ment).
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Fig. 6. Results in visually guided saccade task by ensemble averaging. (P4,Free move-
ment).

These component are recorded in 2 subjects. When subjects move to left side
target, these components are observed in P3 position.

4.3 Discussion

By compared with Fig. 5 and Fig. 6, we discussed features of EEG signals in
saccadic eye movements.

First, in cued movement, a feature has only trend toward decrease. In the other
hand, in free movements, one feature has a trend toward decrease from -500[ms]
to 0[ms]. From this results, components from -500 to 0[ms] in two experiments
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Fig. 7. Movement-related cortical potential

are the same components possibly. If this component is the same, this component
is related to decision of saccadic eye movements.

Next, in free movements, one feature has a trend toward increase from -
1000[ms] to -500[ms]. In the other hand, we do not observed this feature in
cued movements. From this results, a brain function is not same from -1000[ms]
to -500[ms] and it is difficult how brain function is related to this components
from -1000[ms] to -500[ms]. However, this component has same tendency in BP
components of movement related cortical potentials [3] (See Fig. 7). In the future,
we must perfume experiments to estimate whether this component is related to
BP components of movement related cortical potential.

5 Conclusion

In this paper, we focus on another components related to saccadic eye movements
except for previous results. We performed experiments in cued-movement and
free movements by not using high-pass filter. From these results, we observed a
slow cortical potential in occipital lobe and this component has a trend toward
decrease of potentials. This components are related to decision of saccadic eye
movements possibly. In the future, we will confirm whether this components are
related to decision of saccadic eye movements.
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Abstract. Functional magnetic resonance imaging (fMRI) has provided
an invaluable method of investing real time neuron activities. Statistical
tools have been developed to recognise the mental state from a batch of
fMRI observations over a period.

However, an interesting question is whether it is possible to estimate
the real time mental states at each moment during the fMRI observation.
In this paper, we address this problem by building a probabilistic model
of the brain activity. We model the tempo-spatial relations among the
hidden high-level mental states and observable low-level neuron activi-
ties. We verify our model by experiments on practical fMRI data. The
model also implies interesting clues on the task-responsible regions in
the brain.

Keywords: fMRI, Conditional Random Fields.

1 Introduction

Functional magnetic resonance imaging (fMRI) employs paramagnetic deoxy-
haemoglobin in venous blood as the contrast agent for MRI and measures the
haemodynamic response to neuron activities in the brain [1]. This makes non-
invasive examination of the human brain possible, where the neuron activities
can be observed with high-accuracy and in real time. Functional MRI investi-
gates how the brain responds to a stimulus by measuring neuron-activity-related
signals1. A typical fMRI test yields high-definition measurement of the brain.
The neuron activities are measured at a spatial resolution as fine as several mil-
limeters, and the measurement is made at a time interval of tenths of a second.
The large volume of data requires specialised tools to aid human experts for
analysis.

Early research has focused on establishing connection between fMRI obser-
vations and the neuron activations. On one side, statistical methods have been
developed to discover which neurons are responsible for certain cognitive tasks
by using fMRI measurements [2,3]. These methods consider the stimulus as a bi-
nary temporal signal. The neuron response to the stimulus is modelled by using a

1 In particular, the neuron activities consume oxygen, and generates blood oxygen
level-dependent (BOLD) signals, which is measurable by MRI.
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haemodynamic response function (HRF). Classical statistic hypothesis tests are
then applied to examine whether individual neurons are related to a stimulus. To
account for the tempo-spatial structure in the fMRI data, Bayesian and random
field approach has been introduced in the model [4,5]. The hypothesis tests have
proven useful to determine neuron activations for some cognitive tasks. However,
the method depends the reliability of the underlying assumption. Ie the system
may give error results if the employed HRF model is not consistent with the ac-
tual response of a neuron to a stimulus. Thus the HRF model must be designed
carefully by experts; and it is not completely clear how to verify the model.

On the other side, fully automatic approaches have been developed based on
data mining techniques, where no explicit neural response model is assumed [6,7].
Individual neurons are considered as observed objects, and the recorded activ-
ities are considered as attributes of the objects. Then the neurons are grouped
based on the fMRI observations. One particular advantage of the structure-free
methods is that they can be used to discover the hidden states beyond the indi-
vidual neurons, for which explicit response function cannot be manually built.

Mitchell et al. [8] has proposed to use fMRI records to identify the mental
states of the brain. They collected fMRI data of subjects during several trials, in
which the subjects were required to perform a series of cognitive tasks, including
reading, seeing and making judgements. A classifier is fitted to the observed fMRI
data and the associated task tags. Then the fitted classifier is used of predict
the cognitive states associated to testing fMRI data. The research shows that
it is possible to recognise high level brain states from fMRI. However, despite
the success of recognising the entire cognitive status during a period, structure-
free methods discard the temporal relations in fMRI data, which may reveal
interesting brain activities.

In this paper, we propose to use a probabilistic model to relate the brain states
and the tempo-spatial structure of the neuron activities observed in fMRI data.
For fMRI data analysis, the proposed approach is developed from the previous
work of [8] by providing a dynamic analysis of the brain states. For technical
development, the proposed approach takes advantage of both paradigm of fMRI
analysis: (1) it models the temporal correlations in fMRI data; (2) it does not
need assumption about the specific relation. Moreover, the model contains spatial
correlations between the neurons, because it is reasonable to believe adjacent
neurons behave similarly in performing cognitive tasks. Specifically, we employ
a conditional random field (CRF, [9]) model to represent the dynamic relations
of the fMRI records and the corresponding cognitive status. Learning the CRF
model reveals the interested relations as conditional distributions of the cognitive
activities given the fMRI observations. Moreover, the learned model may imply
interesting clues of how different part of the brain functions in different cognitive
activities. We have verified the model by applying it to the real fMRI data
reported in [8]. Compared to the setting in [8], recognising the mental states at
each moment is a more challenging task. We also show that the learned model
parameters reveals interesting links between anatomical regions of the brain and
neuron activities in particular tasks.
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In the next section, we introduce the CRF framework and tailor the model
for analysing fMRI data. We then report experimental results of recognising the
cognitive status, and discuss some implications of the learnt model. Section 4
concludes the paper.

2 A Model for Dynamic Cognitive Activities

2.1 Conditional Random Field

In an fMRI test, a subject conducts a set of cognitive tasks, and his/her brain
images are taken by MRI device. We consider the unknown mental states of
the subject as a hidden variable and the observed brain image as a set of input
variables, where each voxel in the image corresponds to one input variable. We
will use X for input variables and Y for hidden variables. We are interested in
the conditional distribution of Y given X , which reveals the dependencies of
interest between the fMRI record and the cognitive activity. In a CRF model,
the conditional distribution is as follows

p(y|x) =
1

Z(x)
exp
{ K∑

k=1

wkfk(yk,xk)
}
. (1)

In the distribution (1), the conditional density is affected by K possible relations
between the variables, f1, . . . , fK , which are called feature functions. Each feature
function is affected by a subset of the variables. In (1), these input variables of
the k-th feature function are denoted as xk and yk. Z()̇ is constant with respect
to the hidden variables. Given the values of the input variables, Z(x) normalises
(1) to be a proper probability distribution (unit sum),

Z(x) =
∑
y

exp
{ K∑

k=1

wkfk(yk,xk)
}
. (2)

The CRF model in (1) is for general case. If the data has temporal characteristic,
it is suitable to use a set of feature functions that fits sequential signal. In
practice, it is often found useful to assume that the temporal variance of the
signal is underlay by the hidden variables. Thus a pair of hidden states that
correspond to adjacent moments are correlated by introducing a feature function
defined on the two hidden variables and the input variables. The sequential CRF
model is as follows

p(y|x) =
1

Z(x)
exp
{ K∑

k=1

wkfk(yi, yi+1,x, i)
}
. (3)

Note that the feature index k and the variable index i are running over difference
ranges respectively.

For the fMRI data, the fMRI observations are determined by hidden mental
states. However, the response of fMRI measurement to neuron activities is not
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x
y

Fig. 1. Diagrams of CRF models
CRF for fMRI consider the relation between yi and xi,...,i+L, in order to analyse the
fMRI records after the inception of a latent cognitive activity. Circles represent hidden
variables Y ; and the brain fMRI illustrates represent observed variables X.

immediate. The interval between the change of mental state and reaction in fMRI
can be up to several seconds [8]. Thus the model needs to consider the correlation
between a hidden state at a moment and the input variables at several moments
later. We introduce a set of feature functions for these correlations

p(y|x) =
1

Z(x)
exp
{∑

i

wi,0f(yi, yi+1,xi)

+
∑

i

wi,1f(yi, yi+1,xi+1) + . . .

+
∑

i

wi,Lf(yi, yi+1,xi+L)
}

, (4)

where L corresponds the delay of fMRI with respect to the change of hidden
mental state. In (4), we use normal typeface for yi, indicating they are scalars.
The model structure is shown in Fig. 1. The figure shows the relationship be-
tween the fMRI observations and the mental states modelled by the CRF. The
hidden variables (circles in the diagram) are connected to the observations (brain
illustrations) that are moments later.

2.2 Model Learning by Maximum Likelihood

The probability of an observed sequence as a function of the model parameters
wk is the likelihood. The objective of model learning is to maximise the likelihood
of all observed sequences over all possible model parameters. For the CRF model,
the log-likelihood function is as follows

L({wk}) =
∑
m

{
− log Z(x(m)) +

∑
k

{
wkfk(y(m)

k ,x(m)
k )
}}

, (5)

where m represents the data items. To find parameters {w} that maximise the
likelihood in (5), we consider the first order derivatives of L with respect to w,

∂L

∂wj
=
∑
m

{
− 1

Z(x(m))
∂Z(x(m))

∂wj
+
∑

k

fk(y(m)
k ,x(m)

k )
}

(6)

=〈fj(YAj , XAj )〉p̃(Y,X) −
∑
m

〈fj(YAj ,x
(m)
Aj

)〉p(Y |x(m),{wk}),
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where 〈·〉p represents taking expectation over a distribution p. The empirical es-
timate of the joint density is represented by p̃(Y, X). Given the m-th sample, the
conditional density over the hidden variables is represented by p(Y |x(m), {wk}).
At a stationary point of (6) the expectation of each feature function over the
empirical distribution is the same as the expectation over the model distribution.

2.3 Model Inference

Computing the empirical expectation (the first term on the r.h.s. of (6)) is
straightforward. The second term on the r.h.s. of (6) takes expectation over
the posterior of Y given x(m) and the model parameters {wk}

〈fk(Y,x(m))〉p(Y |x(m),{wk}) =
∑
y1

· · ·
∑
yT

p({yk}|x(m), {wk})fk({yk}|x(m))

=
∑
y1

· · ·
∑
yT

∏
i

p(yi, yi+1|x(m), {wk})fk({yk}|x(m)). (7)

We can exploit the chain structure of the CRF; and (7) is then amenable to
belief propagation algorithm [9].

3 Experiment

We conduct experiments on modelling the relations between fMRI records and
cognitive process. This section briefly report the experimental results and com-
pare to the classical classifiers.

3.1 Brain Images and Task Settings

The fMRI data we used in our experiment is from [8]. The data consists of fMRI
records of 6 subjects taking a cognitive test. The brain images are taken every 0.5
second during the test. In the test, each subject attends 40 trails. The protocol
of carrying out a trail is as follows. Two types of stimuli are used.

– A pictorial stimulus is an arrangement of two symbols chosen from *(star),
$(dollar) or +(plus). The symbols are put one over another.

– A semantic stimulus is a statement about the arrangement of the symbols,
eg “It is true that the plus is over the star.”

In each trial, there are two stimuli from each category. The first stimulus is
shown for 4 seconds, following by 4 seconds rest. Then the second stimulus is
shown, and the subject is asked to answer whether the statement about the
arrangement of the symbols is valid. There are 15 seconds rest before the next
trial.

The task is to identify five mental states that a subject may experience during
a trial: (1) reading a sentence after a rest (2) seeing a picture after a rest (3)
reading a sentence after seeing a picture (judge making) (4) seeing a picture



334 J. Li and D. Tao

Table 1. Dynamic cognitive activity recognition rates

S1 S2 S3 S4 S5 S6 Avg.

CRF 59.2 77.6 81.1 76.6 68.1 79.6 73.6

HMM 60.0 65.3 72.9 73.3 65.7 72.4 68.3

SVM 59.0 70.2 71.6 67.4 64.4 69.8 67.1

NB 52.6 54.5 60.0 38.2 50.4 52.7 54.6

1-NN 35.8 47.9 50.6 48.2 42.8 43.1 44.6

after reading a sentence (judge making) (5) resting For the training sequences,
we tag the first 8 seconds as state (1)/(2), the next 8 seconds as state (3)/(4)
and the rest of a trial as state (5). The mental state at each moment in a test
sequence is predicted by the trained CRF.

The voxels in the fMRI scan have anatomical tags. Thus the voxels are seg-
mented into regions according to brain anatomy. The signs of the average voxel
values in each region are used as the input variables of the CRF.

For the temporal relations, we set L = 8 in (4). Since the time interval between
two fMRI frames is 0.5 second, this value corresponds to consider a 4 second delay
between change of cognitive state and the response in BOLD signal.

3.2 Recognising Dynamic Cognitive Activities

For each subject, training and test data consist of 50% trials, respectively. We
have compared the proposed CRF based classifier to three widely used classifiers:
nearest neighbour (NN), support vector machine (SVM, [10]), and näıve Bayes
(NB). We also include hidden Markov model (HMM) in our comparison. This
can be implemented within the proposed CRF framework. We can ignore the
temporal relations between the fMRI inputs at one moment and the hidden
states of other moments (let L = 0 in (4)), then the CRF degrades to an HMM.

The performances of different methods in the test of mental state recognition
is shown in Table 1. In general, the temporal information allows HMM and
CRF to outperform the classical classifiers, which predict the mental state for
each moment independently. CRF outperform HMM in most tests because the
model better fits the brain operations. Note that the performance on Subject 1
is inferior for all classifiers, which indicates that the data may be corrupted by
bad alignment or noises.

In Fig. 2 (last page), we illustrate the weights uncovered by the CRF model.
The colours of the ROIs indicates the contribution of the that area to the cogni-
tive task (reading a sentence without recalling a picture in the shown example)
in a period after the snapshot of interest (t0). Though it is premature for making
a tight conclusion, the model gives interesting clues of the function mapping of
the brain from a statistical perspective. For example, when reading a sentence,
the weight of the right-dorsolateral prefrontal cortex (RDLPFC, white boxed in
the figure) peaks after about 3 seconds from t0. The postulated function of the
dorsolateral prefrontal cortex includes associating concepts, e.g. words [11]. The
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Fig. 2. Weights of ROI for cognitive activities over time
The figure shows the learnt weights of the feature functions. Each feature function
corresponds to an ROI after a latency from the time of interest t0 for a specific cognitive
activity. Red colours represent large weights and blue colours for small weights. Upper:
weights for reading a sentence, ROIs are shown with 8 slices along the Z-axis (vertical)
of the brain; Lower: comparison between weights for reading a sentence and those for
seeing a picture at slice Z4.
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area’s response in seeing a picture is less obvious. In contrast, when seeing a
picture, the weight of the right-frontal eye field (RFEF, golden boxed) rises at
t0. Frontal eye field is reported responsible for eye movement [12].

4 Conclusion

In this paper, we propose to use CRF to model the relations between high-level
mental states and the fMRI brain images. The structure CRF allows the model
to explore temporal relations in fMRI data. Experiment on real data shows the
advantage of CRF, and alludes to functions of anatomical parts of the brain
from a statistical perspective.

In the future, we can incorporate high order features defined on subsets of
the anatomical ROIs in the model in order to capture the interactions between
ROIs. We can also explore model selection methods to automatically balance
the model complexity.
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Abstract. Objective: 16-channel EEG data during intermittent episodes of epilepsy 
is recoded and analyzed to find lesions source and relationship between brain areas 
for temporal lobe epilepsy (TLE) patients by causal analysis method. 

Methods: There are 8 patients with temporal lobe epilepsy, 5 males and 3 
females, aged between 19 to 47 years, the average age of 30.63 years. 16-channel 
EEG in 8 patients was recorded by Stellate Video EEG. Sample time = 20s (sample 
points = 4000), Sampling frequency 2 0 0sf H z= . Directional transfer functions is 
used to direct the information transduction between  each channel of the EEG 
signals, which can reflect the causal relationship between each channel and 
determine the location of the lesions source. (In this paper, we used eConnectome 
software that developed by Biomedical Functional Imaging and Neuroengineering 
Laboratory at the University of Minnesota, directed by Dr. Bin He). 

Results: Causality results of 8 patients during intermittent episodes of EEG 
20s are as follows: 6 patients’ lesions source are located on channels T5 and F7 
in left tempora, One of 5 cases’ are located on channel T5 in the left posterior 
temporal, One of 1 case is located on channel F7 in the left anterior temporal. 
And 2 patients’ lesions source are located on channels T4 and T6 in the right 
tempora, in the 2 patients, 1 case’s lesions source is located on channel T4 in 
right middle temporal, 1 case’s lesions source is located on channel T6 in right 
posterior temporal. Causality results consistent with the clinical diagnosis. 

Conclusions: Research of EEG on causal analysis of directional transfer 
function can effectively determine the lesions source of seizure, and effectively 
calculate the transmission direction of the multi-channel information, which is 
to provide support in the clinic for determine the source of seizure. 

Keywords: temporal lobe epilepsy (TLE), Lesions source, EEG, Directed 
transfer function, causality. 

1   Introduction 

Temporal lobe epilepsy (TLE) is the common types of epilepsy. Patients with TLE 
seizure in various forms, such as twitch, absence, paresthesia, mood disorders and so 
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on. The Lesions source of TLE is often clear localized and most located in temporal 
lobe, and a few outside temporal lobes such as in the insular cortex, orbital gyrus and 
thalamus. TLE can be divided into hippocampal epilepsy, amygdala epilepsy and 
lateral temporal lobe epilepsy by anatomic site. 

Almost 70% of patients with TLE become to refractory epilepsy patients, who 
were ineffective drug therapy. Surgery is one of the treatments of refractory epilepsy. 
To determine the lesion source is the key point of successful surgical treatment, and is 
one of the most hot research issues at home and abroad. 

Currently, through the 16-channel dynamic EEG, 128 guided long range video 
EEG monitoring, CT scan examination, routine MRI examination sequence, SPECT 
examination, DSA inspection, auxiliary interictal and induced seizures PET / CT 
examination, and combination with the clinical features of seizures, source of 
epileptic lesions can be roughly localization. 

And through the recording of intracranial EEG, source of epileptic lesions can be 
precisely localized. Intracranial electrical stimulation can determine the various 
functional areas of cortex, such as the sports area, language area, sensory area. 

Non-invasive EEG reflects the electrical activity of brain or functional state of 
brain. Abnormal discharge of epileptic lesions can be recorded in EEG. It is the most 
common neural electrical activity signal. The typical waveforms of epileptic EEG are 
spike, sharp wave, spike-slow wave integrated, sharp -slow wave integrated, rhythmic 
changes in seizures. 

Nowadays interesting results of EEG synchronization of the nonlinear correlation 
have been reported in many papers [1]. Numerical analysis and statistical analysis are 
widely used in EEG analysis. There are too many common analytical tools in EEG 
analysis, such as correlation dimension; point correlation dimension; mutual 
dimension; and Ivanov entropy Cole Moge and independent component analysis 
(ICA) [2]. In recent years, causality analysis of the development is one of the most hot 
research issues. 

The first truly multichannel estimator of direction of propagation--Directed 
Transfer Function (DTF) based on the multichannel autoregressive model was given 
by Kamin´ ski and Blinowska (1991). DTF is an estimator of the intensity of activity 
flow between structures, depending on frequency of the signal. DTF function is 
sensitive to the time delay of signals. If we assume that the propagation of activity is 
connected with the information transfer we can imply that the high value of DTF 
indicates the information flow (including direction) between two given structures. 
Thus, we can detect the influence of one structure onto another [3]. 

In this paper, we use eConnectome software which developed by Biomedical 
Functional Imaging and Neuroengineering Laboratory at the University of Minnesota, 
directed by Dr. Bin He. EConnectome is an open-source software package for 
mapping and imaging brain functional connectivity from electrophysiological signals. 
Brain activity is distributed in the three-dimensional space and evolves in time. The 
spatio-temporal distribution of brain electrical activity and the network behavior 
provide important information for understanding the brain functions and dysfunctions. 
As part of the efforts of the Human Connectome project, which shall be aimed at 
mapping and imaging structural and functional neural circuits and networks, 
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eConnectome provides a tool for investigators to map and image brain functional 
connectivity from electrophysiological signals, at both the scalp and cortex level. The 
software can also be used to perform scalp EEG mapping over a generic realistic 
geometry head model, and cortical current density imaging in a generic realistic 
geometry boundary element head model constructed from the standard Montreal 
Neurological Institute brain. The current release allows functional connectivity 
imaging from EEG. The visualization module is jointly developed with Drs. Fabio 
Babiloni and Laura Astolfi at the University of Rome "La Sapienza". The 
development and execution environment of the software requires MATLAB in 
Windows operating system [4]. 

2  Methods 

2.1  The Clinical 16-Channel EEG Signals from the Patients with TLE 

In this paper, 8 cases of TLE by clinically diagnosed were collected (5 males and 3 
females; age 19 years to 47 years, the average age of 30.63 years). All the patients’ 
clinical symptoms and EEG consistent with the 1981 and 1989 International League 
Against Epilepsy's classification of epileptic seizures and epilepsy syndrome 
standards in TLE. 

16-channel video EEG was recorded with Stellate, which is a 16-channel 
video-EEG recording system, with a bandpass filter of 0.5 - 70Hz. EEG sampling rate 
is 200Hz. EEG data trails of 20s of duration are acquired. EEG recording electrodes 
placement is consisted with 10/20 system, as shown in Fig.1. 

 

Fig. 1. 16-channel EEG electrodes were placed as shown above 

Nasion (between the eyes above the nose concave point) is marked as Nz. Occipital 
protuberance (head back bulge point) is marked as Lz. Left and right preauricular 
points are marked as A1 and A2. Then draw a longitude line through that points  
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( Lz and Nz ). The line was divided equally at 10%. Draw parallels through these 
equal points. Electrodes were placed along the parallel of 10% or 20% of multiple 
locations. 

2.2  Causal Analysis of 16-Channel EEG on Directional Transfer Function 

Neural dynamics are often usefully interpreted in the frequency domain. In this paper, 
a frequency-domain interpretation of Directed Transfer Function (DTF) is used in 
order to detect and quantify directional relationships between each channel, during the 
intermittent seizures of epilepsy. DTF was proposed by (Kaminski and Blinowska, 
1991) and used to determine the directional influences between any given pair of 
channels in a multivariate data set. This is an estimator characterizing at the same 
time direction and spectral properties of the brain signals, and requires only one 
multivariate autoregressive model to be estimated from all the EEG channel 
recordings. DTF is an estimator of the intensity of activity flow between structures, 
depending on frequency of the signal. DTF function is sensitive to the time delay of 
signals. If we assume that the propagation of activity is connected with the 
information transfer we can imply that the high value of DTF indicates the 
information flow (including direction) between two given structures. Thus, we can 
detect the influence of one structure onto another. 

Use ( )X t  to represents the 16 EEG, and use ( )nx t (n=4000)to represent the n 

discrete time points of EEG. Specifically, let ( )16, 4000ijX x i j= = =  denote 

the measurement from 16 channels at time 20s. 

1,1 1,4000

16,1 16,4000

x x

x x

 
 =  
  

X

  

(1)

Application of autoregressive methods of EEG analysis can be show as follow: 

1

( ) ( ) ( ) ( )
p

n

X i A n X n i E i
=

= − +       
(2)

Here E is the vector of not uniformly zero mean uncorrelated white noise. The p is 16 
in the AR model. In order to make X not equal, we make more convenient way of 
expressing the same concept is that coefficients A are not uniformly zero under 
suitable statistical criteria [5]. 

To examine the causal relations in the spectral domain, we Fourier transform (2) to 
the frequency domain yields 

)()()( fEfXfA =   (3)

Causal analysis with directional transfer function calculated for each channel of 
information between the brain signals the direction of conduction.  
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The DTF function 2
i jλ describing flow from channel i to channel j is defined as 

the square of the absolute value of the complex transfer function of the AR model, 
divided by the sum of these values for row i of matrix A [6]. 


= p

fA

fA

1

2

2

ij2
ij

)(

)(
λ       (4)

In this paper, we use eConnectome software that developed by Biomedical Functional 
Imaging and Neuroengineering Laboratory at the University of Minnesota, directed 
by Dr. Bin He. The DTF method is used in this software. EEG is calculated in the 
frequency domain and processed by MATLAB program. And the results were 
obtained. (http://www2.imm.dtu.dk/~pch/Regutools/)  

3   Results 

3.1   The Results of Patients with Left-TLE  

In this paper, 16-channel EEG data which is collected of 6 patients with left-TLE is 
analyzed accurately. The 20s segments of EEG waveforms of 16 electrodes and the 
results can be seen in Fig.2. Additionally in Fig.2a (Fig.2c, Fig.2e, Fig.2g, Fig.2i, 
Fig.2k) we present the EEG registration corresponding to the time span of clinical 
symptoms. For the first patient, as shown in Fig2.b, the channel T5 in left-temporal 
lobe is lesions source, indicating the highest flow of signals from this area. The 
channel P4 in parietal region, the channel C4 in occipital region, and the channel Fp2 
in frontal region are influenced by the source electrode. For the second patient, as 
shown in Fig.2d, the channel T5 in left-temporal lobe is lesions source. The channels 
O1, O2 in occipital region, the channel Fp1 in frontal region, the channels P3 , p4 in 
parietal region, and the channels C3,C4 in central region are influenced by the source 
electrode. For the third patient, as shown in Fig.2f, the channel F7 in left-temporal 
lobe is lesions source. The channels F3, F4 in frontal region are influenced by the 
source electrode. For the fourth patient, as shown in Fig.2h, the channel T5 in 
left-temporal lobe is lesions source. The channels Fp1, Fp2 in prefrontal region, the 
channels F3, F4 in frontal region, the channels C3, C4 in central region, and the 
channels P3 , p4 in parietal region ,are influenced by the source electrode. For the 
fifth patient, as shown in Fig.2j, the channel T5 in left-temporal lobe is lesions source. 
The channels Fp1, Fp2 in frontal region, the channel F4 in right-frontal region ,and 
the channel T4 in right-temporal lobe are influenced by the source electrode. For the 
sixth patient, as shown in Fig.2l, the channel T5 in left-temporal lobe is lesions 
source. The channels Fp1, Fp2 in prefrontal region, and the channel F4 in right-frontal 
region are influenced by the source electrode. 
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Fig. 2. In the 6 patients with left-TLE group, The 16-channel EEG and causality results are as 
shown above. (a) (c) (e) (g) (i) (k) are the EEGs of the first patient to sixth patient, (b) (d) (f) 
(h) (j) (l) are the causality results of the first patient to sixth patient. 

3.2   The Results of Patients with Right-TLE 

In this paper, 16-channel EEG data which is collected with two patients with 
right-temporal lobe epilepsy is analyzed exactly. The 20s segments of EEG 
waveforms of 16 electrodes and the results can be seen in Fig.3. Obviously, in Fig.3a 
(Fig.3c,) we present the EEG registration corresponding to the time span of clinical 
symptoms. For the seventh patient, as shown in Fig.3b, the channel T4 in 
right-temporal lobe is lesions source. The channels O1, O2 in occipital region, and the 
channel T5 in left-temporal lobe are influenced by the source electrode. For the eighth 
patient, as shown in Fig.3b, the  channel T6 in right-temporal lobe is lesions source. 
The channels O1, O2 in occipital region and channels C3, C4 in frontal region, the 
channels F3, F4 in frontal region and the channels P3, p4 in parietal region are 
influenced by the source electrode. 

 

Fig. 3. In the 2 patients with right-TLE group, The 16-channel EEG and causality results are as 
shown above. (a) (c) are the EEGs of the first patient to sixth patient, (b) (d) are the causality 
results of the first patient to the sixth patient. 
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4   Conclusion 

Through the analysis of above two groups of patients, DTF algorithm can be used to 
determine the location of the source of epileptic focus, and effectively calculate 
transmission direction of information between multi-channel EEG of help to the 
clinical lesions initially identified the source of seizures.  

5   Discussion  

In this paper, patients of unilateral epilepsy are selected, whose characters are clear. In 
addition, we discuss information transmission of patient with bilateral TLE, shown in 
Fig.4, whose lesions source is the left temporal lobe lesions F7 and right temporal lobe 
T6.    

 

Fig. 4. The 16-channel EEG and causality results are as shown above. (a) is the EEG of the 
patient , (b) is the causality result of the patient. 

Fig.4 shows that patient with bilateral TLE has right medial temporal lesions and 
limitations of the left temporal lobe perfusion lowered. Therefore, the right medial T6 
lesion effects on other brain regions, the limitations of the left temporal parietal F7 
reduced blood perfusion, indicating that the lesions are located in these regions. In 
recent years, cases of brain regions on both sides have been a wide range of 
researched, bilateral research has important significance. 
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Abstract. Networks of living neurons exhibit diverse patterns of activity, which 
are always operating far from equilibrium in the mammalian central nervous 
system. In this study, a blocker of glutamate transporter was employed to detect 
if nonlinear interactions changed when extra glutamate acted as a potent 
neurotoxin to neural activity in hippocampus of epileptic Wistar rats. A 
hypothesis was made that a decrease of complexity of information could be 
occurred by accumulation of glutamate in hippocampus. An investigation was 
performed to measure intracranial EEG, which were obtained from two parts of 
brain in three rat’s groups, by using multifractal detrended fluctuation analysis. 
The results demonstrate that the change of nonlinear interactions in neural 
network can be clearly detected by multifractal analysis. Moreover, small 
fluctuation in activity of network exhibited a decrease in multifractal behavior, 
suggested that the complexity of information transmitting and storing in brain 
network was weakened by glutamate accumulation. 

Keywords: multifractal detrended fluctuation analysis, epileptic rats, glutamate 
transporter. 

1 Introduction 

Nonlinear dynamics has been shown to be important in describing complex neural 
networks and time series, such as electroencephalogram (EEG) [1]. Previous 
investigations indicated that there were non-trivial long-range correlations within the 
human EEG signals [2], which was one of fractal features related to self-similar 
fluctuations [3]. However, neural dynamical systems, driven by multiple-component 
feedback interactions, actually showed non-equilibrium, variable fractal behaviors, 
multifractal [4], and their fractal features were hard to be characterized by traditional 
fractal measurements, such as detrended fluctuation analysis and multiscale entropy 
[5]. In this case, the method of multifractal analysis becomes a more reasonable 
approach for measurement of the fractal characteristics of EEG signals. The earliest 
studies of the nonequilibrium of cardiac interbeat interval time series revealed that the 
healthy subjects showed more multifractal structure than diseased subjects. Moreover, 
studying multifractal EEG using wavelet transform modulus maxima (WTMM) 
method was employed as a new direction for brain dynamics [6]. Recently, Kantelhardt 
et al. developed a new mathematical algorithm named Multifractal detrended 
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fluctuation analysis (MF-DFA), which made analyzing multifractals in nonstationary 
time series feasible [7]. MF-DFA is based on a generalization of detrended fluctuation 
analysis (DFA) ， and allows more reliable multifractal characterizations for 
multifractal nonstationary time series than the method of WTMM [8].   

Glutamate is the primary excitatory neurotransmitter in the mammalian central 
nervous system and acts as a potent neurotoxin, implicated as a neurotoxic agent in 
several neurologic disorders including epilepsy, ischemia, and certain 
neurodegenerative diseases. The termination of neurotransmission is mediated by 
sodium-dependent high affinity glutamate transporters, which play an important role in 
maintaining the extracellular glutamate concentration below neurotoxic levels. A 
disturbance in glutamate-mediated excitatory neurotransmission has been implicated as 
a critical factor in the etiology of adult forms of epilepsy. Manipulation of glutamate 
transporter expression can lead to various neurologic dysfunctions. For example, in 
epileptic mice deficient in GLT-1, it has shown lethal spontaneous seizures and 
increased susceptibility to acute injury. Disruption of transporter activity could lead to 
changes in network activity as a result of enhanced interneuron excitability. Changing 
glutamate transporter may affect the patterns of complicated EEG and the structure of 
brain network, particularly when associated with neuronal diseases, such as epilepsy.  

In the present study, disruption of glutamate transporter activity could lead to 
changes in neural network activity as a result of enhanced interneuron excitability, 
particularly seizures when associated with neuronal diseases such as epilepsy. 
Therefore, MF-DFA was employed to analyze continuous EEG time series obtained 
from intracranial depth electrodes placed in the dentate gyrus (DG), which was studied 
as the focus of temporal lobe epilepsy in hippocampus，and the perforant pathway 
(PP) investigated as the path for transmitting information from the entorhinal cortex. 
The changes in nonlinear dynamic were found by multifractal analysis among three 
groups of animals. And decreasing multifractals caused by hyperexcitability in neural 
network oscillations were discussed as well. 

2 Methods 

2.1  Multifractal Detrended Fluctuation Analysis 

The approach of multifractal detrended fluctuation analysis (MF-DFA) was employed 
to calculate the singular spectrum of the intracranial EEG signals, the details of 
algorithm can be found in the reference [7].  

2.2  Surrogate Data Analysis 

Whether the MF-DFA analysis truly reflects a multifractal behavior in the EEG or just a 
broad probability density function for the values is tested by simply shuffling the 
original intracranial EEG sequences to construct surrogate data. The results are 
subsequently compared with that of the original sequences for all three groups, 
respectively. The averaged result was obtained from surrogate data, which were 
shuffled 20 times for each segment of original intracranial EEG.  
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2.3  Animal Modeling and Local Field Potential (Intracranial EEG) 

The experiments were performed on 18 male Wister rats weighing 304±13 g. The rats 
were randomly divided into 3 groups, which were control group, epilepsy group and 
TBOA group. TBOA was administrated intracerebrally in hippocampus for TBOA 
group. The signals of local field potential (intracranial EEG) were sampled and filtered 
by high- and low-pass filters set at 0.3Hz and 300 Hz. All the signals were digitized 
with sampling frequency of 250 Hz (PowerLab/8S, AD Instruments, Australia).  All 
the data are expressed as the Mean ± SEM. Significant differences would be taken 
when P < 0.05. 

3  Decreases of Multifractality from Normal State to Epileptic 
Model 

Fig1a illustrates MF-DFA measurement and multifractal singularity spectrum of 
intracranial EEG in hippocampal DG, obtained from the control and epilepsy groups. 
Both h(q) curves show dependence on q, i.e. the values of h(q) decrease along with 
increase of q. It was found that the multifractal scaling exponent sloped faster in the 
control group compared to that of the epilepsy group (P<0.05 – 0.01, *P<0.05, 
**P<0.01). Furthermore, to investigate the variation of scaling behavior quantitively, 
the values of slope at each scale of h(q) curves was employed to describe the 
complexity from small fluctuation to large fluctuation. It was found that there were 
larger slopes at scales from 1 to 9. In addition, the multifractal singularity spectrum 
(Fig1b), which shows two separated f(α) curves, can be generated via a Legendre 
transform. There is a wider scaling exponent distribution in the control data. Fig2c 
shows the group data of αΔ , and it can be seen that the strength of multifractality is 
greater in the control group than that in the epilepsy group (0.82±0.03 vs. 0.68±0.02, 
*P<0.05). 

 

Fig. 1. Comparison of the singularity spectra, obtained from MF-DFA analysis, between the 
control and epilepsy groups 
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According to the result from Fig.1c, the αΔ values indicate significant weakness in 
the complex structure of dynamic system in epilepsy group over that of the control 
group. In this case, the complexity of information transmission and storage in DG 
neural network is weakened. Moreover, the study of segment slope in MF-DFA curves 
revealed that it was the large fluctuation of oscillation contributing to the weakened 
complexity in epilepsy group. 

4  Changes of Multifractality between Epileptic Rats and TBOA 
Injection Rats in Hippocampal DG 

In the present study, a hypothesis was tested that effects on glutamate transporters were 
correlated with complexity of neural network oscillations and a loss of multifractality 
could be associated with brain pathology. Fig2a illustrates the results of MF-DFA 
measurement of intracranial EEG in hippocampal DG obtained from the epilepsy and 
TBOA animals, respectively. After TBOA was injected, h(q) curve on most q scales 
kept relatively constant value, especially for h(2), which was the Hurst exponent 
(1.24±0.03 vs.1.20±0.03, P>0.05). However, there are significant differences of the 
slops at scales -2 and -3 between these two groups (-0.06 ± 0.004 vs. -0.05 ± 0.005, *P 
< 0.05). Thus, the generalized Hurst exponent in epilepsy group was decreased much 
greater compared to that in TBOA group. It can be seen that value of h(q) in epilepsy 
group decreased from 1.64±0.04 to 1.14±0.03 at scales varying from -10 to 10, while it 
reduced from 1.53±0.02 to 1.11±0.03 in TBOA group. Fig2b shows multifractal 
singularity spectrums obtained from an epileptic rat and TBOA one, respectively. The 
group data of Δα are represented in Fig2c, however, it was found that there was no 
significant difference between these two groups (0.68 ± 0.02 vs. 0.64 ± 0.02, P>0.05).  

 

Fig. 2. Comparison of the singularity spectra, obtained from MF-DFA analysis, between the 
epilepsy and TBOA groups in hippocampal DG 

Comparing MF-DFA results from epilepsy group and TBOA group, the constant 
value of Hurst exponent suggests that the fractal character of dynamic network may not 
have a change after TBOA injection. However, significant decrease in the slope of 
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TBOA on relatively small fluctuation MF-DFA curve was observed, indicating that the 
activities with small amplitude were less complex in TBOA group than that in epilepsy 
group. Based on the MF-DFA curves through slope of segment in Fig2a, it showed 
significant difference (P<0.05) between epilepsy group and TBOA group. Thus, 
according to the decrease of complexity, it was found that accumulation of glutamate 
brought seizures, and caused the decreasing complexity of information storing and 
transmitting in the neural network at that time. The glutamate transporters were 
inhibited by using DL-TBOA, which induced accumulation of glutamate in synaptic 
space and glial cells dysfunction. The dysfunction, evoked by nerotoxity of glutamate, 
enhanced neuronal hyperexcitability which led to more regular behavior. This suggests 
that the reduced complexity of neural network oscillations in hippocampus may be 
associated with brain dysfunction induced by nerotoxity of glutamate. 

5  Decreases of Multifractality from Epileptic Model to TBOA 
Injection 

Fig3a shows MF-DFA measurement and multifractal singularity spectrum of 
intracranial EEG in hippocampal PP, obtained from the epilepsy and TBOA groups, 
respectively. It can be seen that the value ( )h q  in epilepsy group decreased 
from1.49±0.02 to 0.80±0.02, while the value ( )h q in TBOA group reduced from 
1.49±0.04 to 0.99±0.05. The generalized Hurst exponent in the epilepsy group declines 
faster than that in the TBOA group. The slopes of ( )h q  in the epilepsy group are 
significantly steeper than that in the TBOA group at scales from -4 to 1 ((P<0.05 – 0.01, 
*P<0.05, **P<0.01). Fig3b presents multifractal singularity spectrums obtained from 
an epileptic rat and TBOA one, respectively. It can be seen that the strength of 
multifractality is greater in the epilepsy group than that in the TBOA group (0.86±0.04 
vs.0.69±0.04,* P<0.05, Fig 3c). 

 

Fig. 3. Comparison of the singularity spectra, obtained from MF-DFA analysis, between the 
epilepsy and TBOA groups in hippocampal PP 
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While the use of TBOA inhibited the glutamate transporters, the inhibition caused 
accumulation of glutamate in neural network of DG, and has the neurotoxicity for 
dysfunction of neurons and glial cells. The dysfunction evoked by neurotoxicity of 
glutamate is what we conclude that enhanced excitability leads to more regular 
behavior, which shows smaller degree of complexity in DG. The seizures were 
triggered in entorhinal cortex by glutamate accumulation from DG in TBOA group. A 
previous study indicated that in models of temporal lobe epilepsy, an entorhinal cortex 
delivers excessive, synchronous, excitatory synaptic input from PP to DG. In the 
dynamic system of entorhinal cortex, hyperexcitability leads to more synchronized 
activity, indicating that the input to DG has smaller degree of complexity. 

6  Conclusions 

In the present study, we discussed the multifractal behavior in the neural network to 
clarify how the multifractality is related to physiological states in hippocampus of rats. 
The issue was addresses as to whether multifractal characterizations of intracranial 
EEG signals, could be detected by the method of MF-DFA. Furthermore, the 
hypothesis was tested that effects on glutamate transporters were correlated with 
complexity of neural network oscillations and a loss of multifractality could be 
associated with brain pathology. Since DL-TBOA can induce glutamate accumulation, 
which evokes sustained seizures and excitatory neurotoxic effect, the results show that 
the weakened activity of neuronal network can be detected by MF-DFA. In summary, 
this study presents that the analysis of MF-DFA can be applied to determine fractal 
characteristics in EEG signals. Our results demonstrate that (1) Multifractal properties 
of brain neuron signals obtained from DG and PP in hippocampus were related to the 
complexity of information transmission and storage in the dynamic neural network in 
the brain; (2) the complexity of information of neural network in hippocampus could be 
significantly weakened by epilepsy; (3) the changes of multifractal behavior induced by 
glutamate accumulation suggests that the neural information could be undermined by 
disruption of glutamate transporter activity in epileptic animals.  
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Abstract. The classification of P300 response has been studied ex-
tensively in the last decade mainly due to its increasing use in Brain
Computer Interfaces (BCIs). Most of the current work involves the clas-
sification of P300 response that are produced from the BCI Speller
Paradigm. However, this visual stimulation paradigm is ineffective when
studying the visual analytics of subjects. Under this situation, studies
have shown that the magnitude and latency of the P300 response are
affected by the cognitive workload of the task as well as the physiolog-
ical condition of the subject. In this preliminary study, by using visual
oddball paradigm, we investigate and compare the performances of two
classifiers, namely the Linear Discriminant Analysis (LDA) and Discrete
Hidden Markov Model (DHMM), when the P300 response is affected by
variations in magnitude and latency.

Keywords: P300, Oddball Paradigm, Hidden Markov Model, Linear
Discriminant Analysis.

1 Introduction

P300 is a characteristic waveform in human EEG, which correlates to the hu-
man cognitive process in identifying rare task-relevant stimuli among a series of
task-irrelevant stimuli. In recent years, P300 responses have been utilized and
widely used in Brain Computer Interface (BCI) to provide disabled people an
alternative way to interact and communicate with the outside world [1]. The
P300 Speller is one such BCI system that has been widely researched. As de-
scribed originally in [2], the interface comprises of a 6 x 6 matrix of characters.
Each row and each column are sequentially and randomly illuminated which is
commonly known as the P300 Speller Paradigm. To spell a character, the user
focuses attention on one of the cells in the matrix. The row- and column-wise
flashes generate both the rare (target character) and frequent set of EEG data.
Although the P300 response in this case is generated from the target illumi-
nation, the delayed responses from the preceding illuminations will have a side
effect on the shape and form of the P300 and this is affected by the frequency
and duration of the flash as well as the spatial separation of the cells. However,
other BCI applications like those involving the study of visual analytics rely on
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the Oddball Paradigm of stimuli presentation [3]. In this case, the target (rare)
and non-target (frequent) stimuli are presented sequentially over time. The pre-
sentation rate and duration are usually controlled to minimize spillover signals
affecting the potential P300 response. This paper focuses on the P300 response
generated by the latter paradigm.

In current P300-based BCI, classical classifiers such as Linear Discriminant
Analysis (LDA) [4][5] and Support Vector Machine (SVM) [6] are commonly
adopted. They achieve this by making a classification decision based on the
value of a linear or non-linear combination of the features subject to respec-
tive objective criteria. When building these classifier models for P300 response
classifications, critical assumption was made with respect to the P300 response
remaining stationary throughout the acquisition period. However, studies have
shown that the P300’s amplitude, duration and latency fluctuate due to changes
with the subject’s physiological conditions and the degree of difficulty of the
interfacing task of the BCI [7]. Additionally, previous studies revealed that P300
response is usually associated with other types of ERP components such as the
N100 and N200 which have different spatial patterns and latency profiles [7][8].
Therefore, we argue that the nonstationary nature of the P300 response may
not be adequately addressed by the classifiers mentioned above [4][5]. Alterna-
tively, dynamic Bayesian networks such as the Hidden Markov Model (HMM)
has the potential to deal with the dynamic behaviour of ERP components by
modelling them as state transitions as described in [7]. However, there have been
no reported works in comparing the performances of these classifiers in relation
to the classification of P300 response in the presence of magnitude and latency
fluctuations. This is also partly attributed to the lack of appropriate datasets
that can be used to perform this experimental comparison.

In this paper, we selected the LDA and HMM classifiers for comparison against
their ability to maintain desired levels of classification accuracy with varying
P300 response characteristics. We also address the implication of training sample
size on the performances of these classifiers. We begin by describing the P300
dataset, based on the oddball paradigm visual stimulation concept that was used
to facilitate this experiment.

2 Datasets

Existing P300 datasets like those found in the BCI Competition dataset [1] are
generated using the BCI Speller Paradigm and are therefore not suitable for
our intended study into the classification of Oddball Paradigm generated P300
response. For this reason, we collected an in-house dataset using the Oddball
Paradigm of visual stimuli presentations aim originally at assessing the efficacy
of 2D and 3D visualisation modalities [9]. This earlier study revealed that the
magnitude and latency of the emitted P300 response for the majority of the
subjects are affected by the degree of analytic task given. For example, the
following observations were made: (a) A lowering of P300 response magnitude
was encountered when the analytic task is switched from 2D to 3D visualisation.
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(b) A strong increase in the P300 latency when the difficulty of the analytic task
increases. Therefore, this dataset is appropriate for our purpose.

2.1 Experiment Setup

To produce the dataset, 11 healthy subjects were recruited. The EEG signals
were recorded from 32 channel scalp electrodes following the international 10-
20 system. Signals were referenced to the average between both left and right
mastoid and acquired at a rate of 1000 Hz.

2.2 Experiment Procedure

In each session, 400 visual stimuli were presented where a cube was used as the
non-target (80%) while a sphere was used as the target (20%). Each stimulus
lasted for 100 ms, followed by one second of black screen. Subjects were asked
to press a key whenever a target stimulus is spotted. Each subject was tested
over six sessions on the same day where in each session, the test were carried out
at three levels of occlusion (0%, 30% and 70% occlusion) for both 2D and 3D
visualization. Fig. 1 shows an example of a subject’s grand average P300 signals
obtained from channel Cz for different experiment sessions which are depicted
as 2d00, 2d30, 2d70, 3d00, 3d30 and 3d70.

Fig. 1. (a) Amplitude intensity map and (b) the corresponding time signals from a
subject’s grand average P300 signals at channel Cz for different sessions

2.3 Data Pre-processing and Screening

EEG signals were bandpass filtered between 1-8 Hz and downsampled to 25 Hz.
Later, 80 target trials and 320 non-target trials were extracted from each session.
Each trial contains 600 ms of EEG signals starting from the stimulus onset. To
remove eye blinks, any trial whose signal amplitude in channel Fp1 exceeded
the threshold of 50 μV was rejected. Furthermore, after eye blink rejection, to
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ensure there is sufficient data left for training and building a HMM model, any
dataset which has one of its sessions containing less than 50 target trials was
again rejected. After screening, the datasets from four different subjects, totaling
24 sessions were used subsequently in our study.

2.4 Single Trial and Average of Multiple Trials

Averaging of multiple trial data is a common technique to deal with noise. To
examine the effect of averaging on the classifiers’ performance, extra datasets are
generated from the recording. In these datasets, all the target and non-target
trials are created by averaging across different combination of single trials in the
original session (i.e. across three and five trials).

3 Classifiers

3.1 Linear Discriminant Analysis (LDA)

LDA is one of the most popular algorithms used in BCI application due to its
low computational requirement and the ease of use [6]. It is a linear classifier
which uses hyperplane to separate the data from different classes through the
projection of feature vector from high dimensional space into lower dimensional
space. To maximize separability, LDA uses the projection w which maximizes the
distance between different classes’ means and minimizes the interclass variances.

In a two-class problem, by assuming that both classes have an equal covariance
matrix, the projection can be easily obtained by using the following equation:
w = S−1

w (m1−m2) where Sw is the average covariance matrix from both classes
while m1 and m2 represent the mean of the feature vectors in each respective
class. For classification, a threshold c is calculated where given any input vector x
it will be classified to target class if wT x > c and non-target class if wT x < c, or
vice versa. The input vector x is created by concatenating time samples from each
selected channel. In this study, LDA was implemented to serve as a benchmark
for our HMM classifier.

3.2 Hidden Markov Model (HMM)

In general, a standard HMM is defined and characterized by its model param-
eters λ. This is usually written in compact notation as λ = {π, A, B} where π
represents the initial state probability vector, A represents the state transition
probability matrix and B represents the state emission probability matrix.

Since each subject only had to respond to the target stimuli, we assumed
that there existed a consistent waveform in the target stimuli while in the non-
target stimuli, only random waveform was observed. Based on this assumption,
a single HMM model configuration was used. During training, this HMM model
was built based on the target training samples. Then, it was tested across the
target and non-target training samples. For each training sample, the likelihood
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of the sample belonging to the HMM model was computed. After that, by finding
the mean likelihood scores of the training samples from each respective class,
the threshold which separates these two classes was estimated and later used in
classification.

To build a HMM model, training usually involves model initialization and
re-estimation. Derivations of the formula for likelihood computation and HMM
model re-estimation are beyond the scope of this paper. More details can be
found in [11]. Our focus is on the issue of the model initialization.

Given a multi-channel EEG signal, in every time instant, amplitude values
from different channel electrodes project a particular potential map or spatial
pattern onto the scalp. Studies have shown that at single-trial level, P300 signal
exhibits semi-stationary temporal structure and these potential maps at different
time instant can be described by a few representative spatial patterns [13].

This suggests that a discrete HMM (DHMM) can be built where a shared
codebook of spatial patterns can be used to represent these potential maps. To
build the shared codebook for DHMM, first, all the EEG signals from both classes
were concatenated. Later, L numbers of representative spatial patterns were
determined by using the K-mean clustering algorithm. To mimic the sequential
time structure of P300 signals, the left-to-right model with a maximum of two
state jumps was used. In this HMM model topology, jumping back to previous
states is not allowed.

There is no immediate recommendation to justify which is the best HMM
model. In this work, DHMM models with different combinations of number of
state N and codebook size L were tested. The range of N was between 4 and 10
while the range of L was 16, 32 and 64. Later, the best performing combination
was chosen for comparison. In our experiments, 10 states and a codebook size
of 64 were used.

4 Performance Metrics

To determine the performance of the P300 response classification, two evalua-
tion measures such as the True Positive Rate (TPR) and False Acceptance Rate
(FAR) are used. TPR is defined as the probability of a target stimulus being
classified correctly as a target while FAR is associated as the probability of a
non-target stimulus being misclassified as a target. However, these two measures
are often affected by the classifier’s threshold. To depict the trade-off relationship
between TPR and FAR for a given classifier, the Receiver’s Operating Charac-
teristic (ROC) curve was used in our study. To build the ROC curve for each
classifier, the respective TPRs and FARs can be obtained by sweeping through
all possible thresholds.

5 Comparison Protocol

We are interested in determining the classifiers’ ability to adapt to variations in
the magnitude and latency of the P300 response which was observed when the
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subjects perform different levels of stimulus recognition task [9]. The challenge
of BCI systems is to eliminate, if not reduce, the need for user’s training and
adaptation. We are also interested in studying the impact of the training data
on the performance of the classifiers. For this reason, we conducted three tests
aim at addressing these issues:

Test 1: Subject specific five-fold cross-validation was performed independently
for each session (see Section 2.2) of the dataset.

Test 2: For each subject, the classifier was trained with samples obtained from
one selected session and tested across the samples from the remaining sessions.
After that, the test was repeated by selecting another training session. The test
is completed when all six different sessions have been selected.

Test 3: This test is an extension of Test 1 whereby the five-fold leave-one-out
test was performed across all six session datasets with one segment of samples
used for training while the remaining four segments were used for testing. In
addition, during training, the samples from all other sessions were also included.

For all these tests, only unseen data are used for classification. To present the
results of the classification, the ROC curves were averaged across different ses-
sions and subjects. Besides that, the signals from the following eight electrodes:
Fz, Cz, Pz, P3, P4, PO7, PO8, Oz were used in our tests because this electrode
configuration was shown to provide the best general classification outcome as
proposed in [4][5]. In addition, we also performed all the tests on (a) single trial,
(b) average of three trials, and (c) average of five trials. These tests are designed
to determine the impact of signal averaging on the classification performance.

6 Results

The results of Test 1 reveal the following: (a) Noise or magnitude fluctuation
in the EEG signals have a negative impact on all the classifiers (see Fig. 2.a),
(b) Classifications involving averaged signals (Fig. 2.b and 2.c) improve signif-
icantly suggesting it is a good method for noise suppression. (c) Overall, LDA
outperformed the DHMM.

Test 2 attempts to investigate the subject specific generalisation ability of
the classifiers as the majority of the test samples are not taken from the same
session pool. It can be seen from Fig. 3 that all the classifiers perform relatively
poorly compared to Test 1 which is attributed to latency shift in P300 signals.
However, there is a relative slight increase in performance across all classifiers
when averaged signals are used.

On the contrary, Fig. 4 shows the Test 3 results when we increased the size and
representation of P300 training samples. In this case, the LDA classifier improved
its robustness for the latency shift, resulting in performance improvement even
in single trial samples. The ability to maintain good performances on single trial
signal (see Fig. 4.a) also makes LDA a strong candidate for real-time P300-based
BCI applications using the Oddball Paradigm.
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Fig. 2. Averaged ROC curves of LDA and DHMM for Test 1

Fig. 3. Averaged ROC curves of LDA and DHMM for Test 2

Fig. 4. Averaged ROC curves of LDA and DHMM for Test 3

7 Conclusion

In this study, we investigated the performance of different classifiers in P300
response classification under different scenarios. Based on the observations, it
was observed that the fluctuations in P300 magnitude and latency have negative
impacts on the classifier’s performance. We showed that it is possible to build
a robust subject-dependant classifier from a training set which comprises of
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P300 signals with different latencies. Although the DHMM generally performs
poorer compared to the LDA in most of the tests, it is still a promising classifier
to consider especially when limited training data is available. Future work will
include adopting these classifiers and implementing them in a visual analytics
BCI application.
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Abstract. Brain machine interface (BMI) is an interface that uses brain activity 
to interact with computer-based devices. We introduce a BMI system using 
electroencephalography (EEG) and the reinforcement learning method, in 
which event-related potential (ERP) represents a reward reflecting failure or 
success of BMI operations. In experiments, the P300 speller task was conducted 
with adding the evaluation process where subjects counted the number of times 
the speller estimated a wrong character. Results showed that ERPs were evoked 
in the subjects observing wrong output. Those were estimated by using a 
support vector machine (SVM) which classified data into two categories. The 
overall accuracy of classification was approximately 58%. Also, a simulation 
using the reinforcement learning method was conducted. The result indicated 
that discriminant accuracy of SVM may improve with the learning process in a 
way that optimizes the constituent parameters.  

Keywords: Brain-machine interface, Event-related potential, P300 speller. 

1   Introduction 

Rapid development in neuroimaging techniques has followed a considerable number 
of studies of the brain machine interface (BMI) as well as the development of the 
practical system. The most recent study has focused on BMI for medical use, such as 
facilitating communication for people with physical handicaps [1]. However, since 
present models hardly reflect individual differences of users, further investigation is 
needed to allow the adaptation to the sensitivity and affectivity of each user. Although 
a lot of studies have proposed making an adaptable interface through training the user, 
the accessibility and usability of these interfaces are still poor. 

We introduce a BMI system that allows learning and that can be adjusted to users 
by optimizing the interpretation of measured brain activity. To do this, we used a 
reinforcement learning method [2]. In our previous study we investigated the BMI 
system involving a process of reinforcement learning [3], in which the input-output 
communication of BMI was characterized by whether or not the P300 event related 
potential (ERP) was elicited which would indicate that it was a reward signal. The 
result showed that the presence or absence of P300 can be found in the lead learning 
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process in a way similar to other systems using reinforcement learning. To expand 
those perspectives, we conducted an experiment with the conventional P300 speller 
system [4] and assessed whether using the reinforcement learning and ERP-based 
learning process improved its performance. 

2   Proposed System 

A proposed BMI system estimates reward signals by analyzing the recorded ERP 
which shows the failure or success of the preceding operation. This section introduces 
the materials and concepts involved in this system. 

2.1   ERPs  

Event related potential is a component of brain waves involving a positive/negative 
deflection in the voltage. It is generally known that ERP is evoked by external stimuli 
as well as by human cognitive process such as perception, recognition, and attention, 
those of which has been observed using the oddball paradigm and other similar 
methods. The most intensively studied component of ERP is P300, in which a positive 
peak appears at about 300 ms after stimulus onset. We used the oddball paradigm 
during which frequent stimuli (non-target) and infrequent stimuli (target) were 
presented in a random sequence, and the user counted the number of times the target 
was presented.  

2.2   P300 Speller 

The P300 speller [4][5] is a commonly used system which presents a selection of 
characters arranged in a 6 x 6 matrix with one of the rows and columns flashing at 
random while the user focuses attention on one of the 36 character cells on the matrix. 
The row and column intensifications that intersect at the attended cell represent the 
target stimuli, which occur with a probability of 1/6. The presentation of characters that 
is selected by the speller may constitute a P300 ERP evoked in response to a target 
flash. 

2.3   BMI System with Reinforcement Learning 

Reinforcement learning is an algorithm involving adjustment of parameters towards 
maximizing the received reward. As the reward is used to guide the learning process, 
it plays a critical role in the success of learning. Our previous study has discussed 
how measured ERP was a reward since it reflected the failure or success of the 
preceding task [3]. A framework of the conventional BMI system and the proposed 
BMI is show in Fig. 1. There were two tasks in the experiments: one with a P300 
speller and one involving counting errors. 
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Fig. 1. Typical BMI and proposed system  Fig. 2. Experimental design of P300 speller task 

3  Method 

The ERP response was estimated using a P300 speller task and the applicability of our 
system to the speller was assessed. 

3.1   Experimental Procedure 

Nine healthy males (aged 20 - 24) participated in this study, all of whom had no 
experience using the P300 speller paradigm. Each provided the written informed 
consent set out in the institutional guidelines of the Nagaoka University of 
Technology. Subjects sat in front of and watched a computer screen, which presented 
a 6 x 6 matrix on which cells alphabetic letters were arranged. The EEG was recorded 
from 64 electrodes placed in accordance with the international 10-20 system. 

P300 Speller. The procedures of the P300 speller task is shown in Fig. 2.  Subjects 
were instructed to determine the target character and when the task started, they 
focused attention on the target presented on the matrix and counted the number of 
times it was flashed. Matrices flashed 18 times for each selection. Upon selection, the 
speller estimated the target character (Fig. 2(c)). The selection and estimate were 
repeated for 36 sessions. To avoid artifacts due to eye blinking, the blinking period 
was set between trials (Fig. 2(d)).  

Error-counting task. Having finished the P300 speller task, output characters were 
presented. Those in which the output character was not the target represented target 
stimuli. The subject counted the number of times that target stimuli were presented. 
The frequency of the target presentation during the error-counting task was 20%. The 
experiment consisted of 12 sessions each of which contained 36 trials.   
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3.2   Experimental Result 

The EEG time course during the error-counting task is shown in Fig. 3. The result of 
the target trial showed a large positive potential (peak latency of 500-ms) and a 
negative potential (peak latency of 300-ms). This was not the case in the nontarget 
trials, which suggested that measurement of ERPs during the error-counting task can 
present failure or success of the preceding task of P300 speller. 

3.3   Applicability of Reinforcement Learning 

We used support vector machine (SVM) to determine the EEG data of the target and 
nontarget trials on the basis of whether or not P300 was evoked by the stimulus 
presentation. The SVM training used data for the first six sessions and testing another 
six sessions. The measured EEG wave from 0 to 800 ms which was averaged for 
every 240 ms represented a feature vector; thus, a single measurement site constituted 
a 10-dimensional space. We computed and used 17 feature vectors with each 
connected to the following sites, respectively: Fz, Cz, Pz, PO7, Oz, PO8, FCz, C3, 
C4, CPz, P7, P3, P4, P8, PO3, POz, PO4, O1, and O2.   

The number of data used in the analysis. The SVM discrimination rate for target 
and nontarget trial data are shown in Table 2. The average discrimination accuracy of 
target trials and non-target trials were 57.2% and 59.7%. 

 

 

Fig. 3. Average EEG time course during error counting task measured at Fz, Cz and Pz from 
subject 1 to 10. Blue, red, and green curves represent data from target trial, nontarget trial, and 
the difference between the two. 

3.4   Applicability of Reinforcement Learning 

We used support vector machine (SVM) to determine the EEG data of the target and 
nontarget trials on the basis of whether or not P300 was evoked by the stimulus 
presentation. The SVM training used data for the first six sessions and testing another 
six sessions. The measured EEG wave from 0 to 800 ms which was averaged for 
every 240 ms represented a feature vector; thus, a single measurement site constituted 
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a 10-dimensional space. We computed and used 17 feature vectors with each 
connected to the following sites, respectively: Fz, Cz, Pz, PO7, Oz, PO8, FCz, C3, 
C4, CPz, P7, P3, P4, P8, PO3, POz, PO4, O1, and O2.   
The number of data used in the analysis. The SVM discrimination rate for target and 
nontarget trial data are shown in Table 2. The average discrimination accuracy of 
target trials and non-target trials were 57.2% and 59.7%. 

Table 1. Number of training/test data    Table 2. Discrimination accuracy of SVM 

Target Nontarget Target Nontarget
1 34 165 39 173
2 33 165 40 160
3 39 163 37 173
4 38 178 41 175
5 56 174 40 168
6 35 165 41 173
7 36 162 34 165
8 27 103 38 136
9 37 174 40 174

Subject No.
Trainning data Test data Subject No. C σ Target

[%]
Nontarget

[%]

1 4 38.67 59.5 82.1
2 2 22.55 81.8 69.4
3 2 21.63 73 58.9
4 4 22.89 52.6 61.1
5 4 27.62 2.63 90.9
6 7 29.81 57.1 47.9
7 4 25.81 67.7 47.9
8 2 24.44 44.4 63.1
9 2 31.35 75.7 20.1  

4   Reinforcement Learning 

We evaluated an actor-critic reinforcement learning method used in the proposed BMI 
system. The learning algorithm, simulation method, and results are described in the 
following subsections. 

4.1   Learning Model 

The proposed model is shown in Fig. 4. An actor-critic method, a kind of Temporal 
Difference (TD) algorithm, was used which consisted of the two components: one is 
the actor which selected actions and another was the critic which evaluated the action 
made by the actor. This evaluation provides the TD error as: 

　　 )1()()()( −−+= iViViriE γ . (1)

where r is the reward, V the value function implemented by the critic in a given state, 
and γ the discount factor. The reward was given as follows: 

 
(2) 

The actor-critic method was used to optimize the parameters σ and C of the SVM 
model which determine the accuracy of the classification. We set candidate values of 
those parameters as shown in Table 3, and in the estimation process one of those was 
selected with a given probability. The selected values of σ and C  were written 
as nσ  and nC , respectively, where n is an index number shown in Table 3. Here, 

)(nσσPr and )|n(n σCCPr represent the probabilities on which candidates values σn  

and Cn  can be selected, respectively. The P300 speller system received those 

parameters and designed discriminant functions. Calculation of critics used the  
 

Nontarget1 　　　　−=b
　Target1 　　　　　　　 == ar
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Fig. 4. Proposed model 

parameter values ，，Cσ  )(nσσPr , and )|n(n σCCPr , followed by the result providing 

the TD-error which was sent to actors. There were two types of actor, Actor-1 and 
Actor-2, the former updated )(nσσPr  and the latter )|n(n σCCPr .  

4.2   Actor 

The computation of the actor used the adaptive Generalized Radial Basis Function 
(GRBF). The i-th input to actors is expressed as: 

　))(Pr,()(
1 σσσε nnis A ⋅=  (3)

　))|(Pr,()(
2 σε nnnis CCC
A ⋅=  (4)

where  05.0=ε is a constant. Here, )(
1

is A and )(
2

is A  represents input to Actor-1 and 

Actor-2, respectively. The basis function )(sb A
k  is given by the following equation: 
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Here, A
kc is the center of the k-th basis function and AM the matrix that determines a 

form of the basis function. The initial values ).,　.(c A 10551 =  and )08.0,2.0( 　=AM   
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Table 3. Candidate parameter valuesσ and C  

Index number 1 2 3 4 5 6 7 8 9 10

σ 22.72 30.32 33.35 36.69 44.4 48.84 53.72 59.1 65.01 71.52
C 0.1 0.2 0.4 0.7 1 2 4 7 10 20

σ 26.72 39.34 43.29 47.63 52.4 57.67 70.02 77.12 85.08 94.22
C 0.2 0.4 0.7 1 2 4 7 10 20 40

Parameter (Subject No.3)

Parameter  (Subject No.4)

 

are given. AL  represents the number of units and increases with the learning process; 
the newborn is added if none of existing basis functions exceed the threshold 

0075.0=A
thb . A new unit is initialized by )(isc AA

k = .  

The actor output )(nσσPr  is calculated as follows: 
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where σN is the numbers of the candidate values. Similarly, )|(nPr σnCC  is 
calculated by: 

))|(Pr,()|(
1

, σσ nnnbwnnP CCC

l

l

A
l

A
lCCC

A
C


=

=　  (9)

 =

=
CN

m C

CC
CC

mP

nP
nn

1 )(

)(
)|(Pr 　σ  (10)

where CN  is the number of the candidate value, and Aω  is the weight of the basis 

function. A new weight is added if every basis function A
kb is less than A

thb . 

4.3   Critic 

The computation of the critic used adaptive GRBF. The i-th input to critics is 
expressed as: 

　))|(,),(,()( σσσσ εε nnPnnPnis CCC
C ⋅⋅=  (11)

The critic output )(iV is calculated by: 
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The basis function )(sbC
k  is given by the following equation: 
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Here, C
kc  represents the center of the k-th basis function, C

kM the matrix that 
determines a form of the basis function. The initial values )1.0,5.5,1.0,5.5(1 　　　=Cc  

and )08.0,2.0,08.0,2.0( 　　　=CM  are given. Here, Cω is the weight of the basis 

function and C
nL  the number of units. The new unit is added if none of existing basis 

functions exceed the threshold 01.0=C
thb , and it is initialized by )(isc CC

k =  

and 0=C
kω . 

4.4   Update 

Having calculated the critic output, the actor updates A
k,σω , A

kC ,ω , )(nσσPr and 

)|n(n σCCPr . A
k,σω A

kC ,ω  are incremented by: 

　))(Pr,()( ,, σσσσσ ηΔ nnbiEw A
ka

A
k ⋅⋅=  (15)

　))|(Pr,()( ,, σηΔ nnnbiEw CCC
A

kCa
A

kC ⋅⋅=  (16)

where 1.0=ση  is the learning rate. The estimated value function is updated by: 

)()()( iEiViV C ⋅+← γ  (17)

where 01.0=Cγ  is the learning rate. TD error )(iE  was minimized using the 
steepest descent method defined as follows: 

C
k

C
kcC

k

wbiE
w

iViVir Δηγ =⋅⋅∝
∂

−++∂
)(

))()1())(( 2

　

　

 (18)

where 001.0=Cη  is the learning rate. 

 

Fig. 5. Selection of SVM parameters (σ and C) by Subject-3 (left) and Subject-4 (right). 
Candidate values (ID 1 to 10) are listed in Table 3. Colored cells in (a) – (c) represent the 
frequency when corresponding parameter values are used, and colored cell in (d) represents 
accuracy rate of P300 speller. 
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4.5   Simulation of Reinforcement Learning Process 

Method. Two healthy males, Subject-3 and -4 in the above-mentioned experiment, 
participated in this experiment. Subjects undertook the P300 speller task shown in 
Fig. 2 which repeated two sessions (72 trials); each trial consisted of 180 times the 
matrix flashed in a random sequence.We used EEG signals for the first session to 
implement the discriminant function while the second was used for estimation by 
SVM. The SVM parameters σ and C were selected from the candidate values 
shown in Table 3. The probability of whether the correct reward value was used 
constituted the ERP discriminant accuracy rate of the subject shown in Table 2. Thus, 
for example, learning by Subject-3 takes 73% and 58.9% probabilities that provide 
reward r = 1 and r =－1, respectively. 

Estimation results. The tendency of the selected parameter values for each subject 
and the accuracy rate of the speller when applying each parameter value is shown in 
Fig.5. The results showed that the parameter value that provides a high rate of 
accuracy is selected in accordance with the increased number of the learning. This  
correlation suggests the applicability of learning. Changes in the discriminant 
accuracy of the speller are shown in Fig. 6. The results of Subject-3 showed a marked 
increase during the early stage of the learning process. This may have resulted from 
the higher accuracy in P300 detected from Subject-3. On the other hand, the result of 
Subject-4 showed a slight and overall increase. Since providing wrong rewards may 
mislead the learning process, further investigation on the ERP-based learning system 
may involve improving the feature extraction technique for measured ERPs to 
accurately convey the user’s intention to the system. 

 
Fig. 6. Changes in level of discriminant accuracy of P300 speller. Each data point indicates the 
moving average of the last 36 points. 

5   Conclusion 

We investigated the P300 speller system that involves the process of the 
reinforcement learning in which algorithm  changes in EEG signals reflected the 
user’s intention and provided the reward. The presence or absence of P300 ERP 
during a task was used as a measure of the reward and thus indicated whether the 
output of the speller was correct. The SVM discriminant rate was 57.2% with the 
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target trials and 59.7% with the nontarget trials. The actor-critic learning was used in 
the proposed system, and altered the SVM parameters and thus reduced the erroneous 
outputs of the speller. As a result, the output accuracy increased with the learning 
process. These results suggest that the reinforcement learning system may facilitate 
adjustment and thus allow the ERP-based BMI system more accessible to users. 
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Abstract. We study on computer simulations to infer a network struc-
ture of the hippocampal CA3 culture slice, which is not yet found even
in physiological experiments. In order to find the network structure, we
have to understand dynamical mechanisms of how to establish two power
law distributions of spontaneous activities observed in the CA3 cultured
slice. The first power law is the probabilistic distribution of firing fre-
quency in a neuron. The second is of synchrony size that means a rate of
co-active neurons within a time bin. In this work, we show that the power
law observations significantly rely on the two network mechanisms: (1)
high-frequency firing of interneurons by feedback from pyramidal cells,
(2) log-normal distribution of synaptic weights.

Keywords: Hippocampus, CA3, Spontaneous activity, Power-law
distribution, Log-normal distribution, Inhibitory interneurons.

1 Introduction

CA3 in the hippocampus is a significantly important region for information pro-
cessing such as associative memory [1]. The network structure has been thought
as a recurrent network. Pyramidal cells and inhibitory interneurons in the hip-
pocampal CA3 are mutually connected with the other local neurons [2][3].

Takahashi et al. have suggested that CA3 network is structured for facilitating
synchronization of neuronal activities [4] (The synchronization might be related
functionally to associative memory). For this suggestion, high-speed functional
multineuron calcium imaging (fMCI) is effectively used to measure spontaneous
activities of neurons in a CA3 network on an organotypically cultured slice. The
fMCI is allowed to simultaneously record Ca2+ activities in hundreds of neurons
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in an image resolution with the single-neuron level. It can not only detect a
temporal sequence of spikes of each neuron, but also identify easily the neuron’s
position on a CA3 slice. In the experiment using the fMCI, they found that a
so-called synchrony size is approximately distributed under the power law. The
synchrony size, which is one of important measurements for estimating implicit
connectivities between neurons, is defined as a rate of co-active neurons during
the spontaneous activities. The CA3 network exhibited a very large synchronous
event where around 50% neurons were activated. From the data recordings ob-
tained in the fMCI experiment, connectivities of neurons were also estimated.
However, in the experiments, there still exist problems as follows: (1) the proba-
bilistic distribution of firing frequency, (2) the synaptic weight distribution and
(3) identification of neuron types (at least, straightforwardly, pyramidal cell or
inhibitory interneuron).

In this paper, we do computer simulations on spontaneous activities in CA3
slice culture observed by using the fMCI. In the simulations, an excitatorily and
inhibitorily recurrent CA3 network is constructed, using a dynamically plau-
sible spiking model proposed by Izhikevich [5], in order to demonstrate two
statistic properties on the simulations: One is the probabilistic distribution of
firing frequency while the other is the probabilistic distribution of synchrony
size. Interestingly enough, both the statistic properties follow the power law.
Essential mechanisms to find the power law of the probabilistic distribution are
(1) log-normally distributed synaptic weights and (2) high-frequency firing of
inhibitory interneurons driven by pyramidal cell’s feedback. More interestingly,
in the second we also show that inhibitory interneurons are predominantly in
the high-frequency range.

2 Materials and Methods

2.1 Experimental Data

We used experimental data for Ca2+ activities in hippocampal CA3
slice culture, which are always available on the following website:
http://hippocampus.jp/data/. They are records for the temporal sequence of
spikes of all neurons by fMCI. In this work, 14 sampling data of them are em-
ployed. The sampling rate is 500 Hz and recording time is 130 sec. The number
of neurons for each data is about 53–137. 1, 193 is the total number of neurons
in 14 slices. Here it is noticed that we do not know neuron type, a pyramidal cell
or an interneuron in all of the data, but neuron positions are easily identified on
the slice in the data.

We showed statistic properties found in spontaneous activities of 1, 193 neu-
rons summed up with 14 slice data (Fig.1). The maximum frequency is 2.331 Hz
and the firing frequency decreased smoothly according to the ranking (Fig.1 (a)).
141 neurons did not fire during the recording. Figure 1 (b) shows the probabilis-
tic distribution of firing frequency. The distribution also exhibits the linearity
on a log-log scale. The probabilistic distribution of firing frequency is appar-
ently under a power law P (f) ∼ fα, where f is the firing frequency in neurons.
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Fig. 1. Stochastic properties of 1, 193 neurons from 14 slices. (a)The distribution of
firing frequency. All neurons are ranked according to its firing frequency and sorted
by the ranking. (b)The power law distribution of firing frequency (α = −2.189). The
probability of firing frequency was calculated in each 0.1 Hz bin. (c)The power law
distribution of synchrony size (β = −3.451). Synchrony size is the percentage of co-
active neurons within the time bin of 10ms. The probability of synchrony size was
calculated in each 2% bin. (d) The location of 1, 193 neurons. We plotted the location
of each neuron in an x-y coordinate.

P (f) is the probability function for f (Fig.1 (b) α = −2.189). Figure 1 (c) shows
the probabilistic distribution of synchrony size. As referred to the previous re-
port [4], the probability obeys a power law distribution P (n) ∼ nβ . n is the
synchrony size and P (n) is the probability of n. The probability of synchrony
size exhibited the linearity on a log-log scale (Fig.1 (c) β = −3.451). Figure 1 (d)
shows the location of all neurons within the local rectangle region in the CA3
slice (250 μm by 400 μm).

2.2 CA3 Slice Model

We construct a CA3 recurrent network consisting of excitatory and inhibitory
interneurons, by using Izhikevich’s model [5]. The Izhikevich model is given by

v′i = 0.04v2
i + 5vi + 140− ui + Ii(t), (1)

u′
i = a(bvi − ui), (2)

where i is neuron index. vi is the membrane potential and ui is the membrane
recovery variable. a is the rate of recovery. b is the sensitivity of the recovery
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variable. Ii(t) is the inputs from other neurons to ith neuron, and calculated by
the following equation:

Ii(t) = Inoise
i (t) +

Ni∑
j

wij

N fired
j∑
k

δ(t− tkj − τij), (3)

where Inoise
i (t) is the noise input defined in the next section 3. Ni is the total

number of presynaptic neurons of ith neuron and wij means the synaptic weight
between ith and jth neurons. Nfired

j is the number of firing of jth neuron. δ(·) is
the Dirac delta function and tkj is kth firing timing of jthe neuron. τij (=1 [ms])
is the synaptic delay between ith and jth neurons.

if vi ≥ 30, then
{

vi ← c
ui ← ui + d.

(4)

Let ith neuron fire a spike when vi arrives at 30. Then vi and ui are abruptly
reset to c and ui + d, respectively. An excitatory neuron was modeled by an
intrinsic bursting neuron, so that we set parameters as follows: a = 0.02, b =
0.2, c = −55, d = 5. We also modeled an inhibitory interneuron as a fast spiking
neuron, so that we set parameters as follows: a = 0.1, b = 0.2, c = −65, d = 2.

Since we assume that the ratio of pyramidal cell to inhibitory interneuron
is 10 : 1 in the hippocampus, as referred to [6], our model is thus set up with
100 excitatory neurons and 10 inhibitory interneurons (Fig.2). The locations
of neurons are within the region of 250 μm by 400 μm (Fig.1 (d)). Neurons
in hippocampal CA3 have over 1, 000 μm long axon [2] [3]. Although the long
axon enables neurons to connect with other neurons in the region, the axon
density of a given neuron is high near the parent neuron [2]. Based on such
a neurophysiological experiment result, we have an additional assumption that
neurons were locally connected each other, but a part of the connections is the
long-range connection. The connectivity density among CA3 pyramidal neurons
in a cultured slice is 28.8 % [4]. Excitatory neurons connected to nearest 28
excitatory neurons and all inhibitory interneurons within a range where there
are connected excitatory neurons. The connection probability from inhibitory

Fig. 2. Structure of CA3 slice model. Black and Gray dots mean an excitatory neuron
and an inhibitory interneuron, respectively. As a matter of convenience, 100 excitatory
neurons and 10 inhibitory neurons are plotted on outside and inside circle, respectively.
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Fig. 3. Activities evoked by noise input in CA3 slice model without connections. (a)The
distribution of firing frequency (0.069–0.469 Hz). (b)The firing frequency of each neuron
in a certain trial. A gray scale means the frequency. Dots on an outside circle mean
excitatory neurons and dots on an inside circle mean inhibitory interneurons.

interneurons to excitatory neurons is 60 % [6]. Inhibitory interneurons connected
to 61 nearest neighbors of the excitatory neuron. The connections were rewired
with probability 25% and attached to randomly selected neurons, but inhibitory
interneurons were attached only to excitatory pyramidal cells. Here it is noticed
that let there be no inhibitory connections among inhibitory interneurons.

3 Results

Using the CA3 slice model, we obtained simulation results of the activities of
1, 100 neurons from 10 trials in each condition. In each trial, we recorded the
activities of 110 neurons for 130 sec. Synaptic weights and noise inputs were
defined in each condition.

When all connections are pharmacologically blocked, CA3 pyramidal neurons
spontaneously fire at a mean frequency 0.2–0.4 Hz [7]. We defined noise input
Inoise
i (t) to simulate the spontaneous activity of the slice, in which neurons have

no connections with each other. In each time step, we applied the input to each
neuron. The strength of input to each neuron comes from normal distribution
(μ = 0, σ = 3).

Figure 3(a) shows the firing frequency of 1, 100 neurons in 10 trials. All synap-
tic strength was set as 0. All neurons fired at low frequency (< 0.5 Hz) by the
noise input applied to excitatory and inhibitory interneurons. The firing fre-
quency of inhibitory neurons is lower than those of excitatory neurons (Fig.3(b)).

We defined synaptic weights of all kinds of connections: excitatory-excitatory
(E-E), excitatory-inhibitory (E-I) and inhibitory-excitatory (I-E). The strengths
of E-E connections are randomly selected within a range of 0 to 8.1. The strengths
of E-I connections are randomly selected within a range of 0 to 16.55. The
strengths of I-E connections are randomly selected within a range of −8.1 to 0.

Figure 4 shows the activities of 1, 100 neurons in 10 trials. All synaptic
strength was set as above and the noise input is applied to each neuron. The
maximum firing frequency (2.377 Hz) was consistent with the experimental data.
The firing frequency drastically decreased according with ranking (Fig.4(a)) and
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Fig. 4. Activities evoked by noise input in CA3 slice model with connections. (a)The
distribution of firing frequency (0.277–2.377 Hz). (b)The probability distribution of
firing frequency (α = −1.331). (c)The power law distribution of synchrony size (β =
−4.0324). (d)The firing frequency of each neuron in a certain trial.

the distribution was inconsistent with the experimental data. The probabilistic
distribution of firing frequency did not exhibit any linearity on a log-log scale
(Fig.4(b)). The probabilistic distribution of synchrony size shows the linearity on
a log-log scale (Fig.4(c) β = −4.032). The probabilistic distribution of synchrony
size is similar to the experimental data. This indicates that the two distributions
do not rely on each other. The firing of inhibitory interneurons evoked by the
noise input was at low frequency in CA3 model without connections (Fig.3(a)),
but the firing frequency of inhibitory interneurons is relatively higher than those
of excitatory neurons (Fig.4(d)). This means that the inhibitory interneurons
were driven by excitatory inputs. Inhibitory interneurons ranked in the top of
the distribution. The drastic decrease in the distribution comes from the dif-
ference between the firing frequencies of excitatory and inhibitory interneurons.
Thus it is expected that the high-frequency firing of excitatory neurons may
prevent the drastic decrease.

It has been reported that the distribution of synaptic strength in visual cortex
layer 5 can be fitted by a log-normal distribution [8]. The distribution has a heav-
ier tail and strong connections probably exist in the network. On the assumption
of the log-normal distribution of synaptic weights, it is expected that strong
excitatory connections enable excitatory neurons to fire at high-frequency for
avoiding the drastic decrease in the distribution. Therefore, we set the synaptic
weight of a connection as randomly selected value from a log-normal distribu-
tion (E-E connections: μ = log(1.7) + σ2; E-I connections: μ = log(3.4) + σ2;
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Fig. 5. Activities evoked by noise input in CA3 slice model with log-normally dis-
tributed connections . (a)The distribution of firing frequency (0.246–3.008 Hz). (b)The
probability distribution of firing frequency(α = −2.318). (c)The power law distribution
of synchrony size (β = −4.082). (d)The firing frequency of each neuron in a certain
trial.

I-E connections: μ = log(1.7) + σ2, All connections: σ = log(2.0)). The synaptic
weight of I-E connections was multiplied by −1.

Figure 5 shows the activities of 1, 100 neurons in 10 trials. All synaptic
strength obeyed a log-normal distribution and the noise input is applied to
each neuron. The maximum firing frequency (3.008 Hz) was higher than the
experimental data, but the firing frequency smoothly decreased according with
the ranking (Fig.5(a)). Both of distributions exhibit linearity on a log-log scale
(Fig.5(b) α = −2.318) (Fig.5(c) β = −4.082). A part of excitatory neurons fired
at higher frequency than previous condition (Fig.5(d)). The log-normal distri-
bution of synaptic weights properly caused a gradient of the firing frequency of
neurons and the distribution of firing frequency exhibited linearity on a log-log
scale. However, the minimum firing frequency was still high.

The minimum firing frequency is similar to the firing frequency evoked by
noise input. Thus, we modified noise input to decrease the minimum firing
frequency. In each time step, we applied a noise input to each neuron. The
strength of the input to each neuron comes from individual normal distribu-
tion (μ = 0, σ = 2–3 randomly selected for each neuron). Figure 6 shows
the firing frequency of 1, 100 neurons in 10 trials. All synaptic strength was
set as 0.
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Fig. 6. Activities evoked by noise input with gradient in CA3 slice model without con-
nections. (a)The distribution of firing frequency (0–0.385 Hz). (b)The firing frequency
of each neuron in a certain trial.
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Fig. 7. Activities evoked by noise input with gradient in CA3 slice model with log-
normally distributed synaptic weights. (a)The distribution of firing frequency (0.008–
2.6615 Hz). (b)The probability distribution of firing frequency(α = −1.986). (c)The
power law distribution of synchrony size(β = −3.194). (d)The firing frequency of each
neuron in a certain trial.

The maximum firing frequency evoked by the noise input was kept, but the
minimum firing frequency decreased (Fig.6(a)). Then, most of the inhibitory
interneurons and a part of the excitatory neuron did not fire (Fig.6(b)).

We set the synaptic weight of a connection as randomly selected value from
a log-normal distribution (E-E connections: μ = log(2.1) + σ2; E-I connections:
μ = log(4.8) + σ2; I-E connections: μ = log(2.2) + σ2, All connections: σ =
log(2.0)). The strength of I-E connections was multiplied by −1.
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Figure 7 shows the activities of 1, 100 neurons in 10 trials. The maximum fir-
ing frequency (2.662 Hz) was slightly higher than the experimental data (Fig.7
(a)). On the other hand, the minimum firing frequency became low. A few exci-
tatory neurons fired at the same frequency with inhibitory interneurons (Fig.7
(d)). Both of distributions also exhibit linearity on a log-log scale (Fig.7 (b)
α = −1.986) (Fig.7 (c) β = −3.194). The distributions of firing frequency and
synchrony size were consistent with those of experimental results. The firing of
neurons in CA3 cultured slices was reproduced in the CA3 slice model.

4 Discussion and Conclusion

In this work, we have found two important network structures to find power
law distributions of firing frequency or of the synchrony size: the high firing
frequency of interneurons driven by pyramidal cell’s feedback input and the log-
normal distribution of the synaptic weights. The two structures were predicted
within a framework of the CA3 slice network model simulating on spontaneous
activities of neurons in the hippocampal CA3 cultured slices [4]. Power law
phenomena are observed in the other brain regions (e.g. [9]). Therefore, these
two findings may be common features in the brain, but they are not yet found
even in developmental experiments using the fMCI. We will have to wait for
experimental confirmation for our results. On the other hand, the topology of
CA3 slice is already estimated from the experiments (e.g.[4]). The investigation
of the relationship between the topology and the spontaneous activity of CA3
slice is needed in future research.

We have found that the high-frequency level of rankings in the distribution of
firing frequency was occupied by inhibitory interneurons. Inhibitory interneurons
did not fire at high frequency by noise input, but their high-frequency firings were
driven by excitatory neurons. This may indicate the experimental finding that
inhibitory interneurons in CA3 fire relatively high-frequency than excitatory
neurons and they may be driven by excitatory neurons.

In the slice model, we have assumed that log-normally distributed synaptic
weights are observed among neurons in the hippocampal CA3 because such log-
normal distribution of synaptic weights is already found among neurons in visual
cortex [8]. Under the assumption of the log-normal distributed synaptic weights,
unbalance between the firing frequencies of excitatory and inhibitory neurons was
reduced. The reduction smoothed the probabilistic distribution curve of firing
frequency and reproduced the linearity of the distribution on a log-log scale.
This may indicate that the synaptic weights among neurons in the hippocampal
CA3 also obey a log-normal distribution.
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Abstract. Effective vigilance level estimation can be used to prevent
disastrous accident occurred frequently in high-risk tasks. Brain Com-
puter Interface(BCI) based on ElectroEncephalo-Graph(EEG) is a rel-
atively reliable and convenient mechanism to reflect one’s psychological
phenomena. In this paper we propose a new integrated approach to pre-
dict human vigilance level, which incorporate an automatically artifact
removing pre-process, a novel vigilance quantification method and finally
a hierarchical Gaussian Mixed Model(hGMM) to discover the underly-
ing pattern of EEG signals. A reasonable high classification performance
(88.46% over 12 data sets) is obtained using this integrated approach.
The hGMM is proved to be more powerful against Support Vector Ma-
chine(SVM) and Linear Discriminant Analysis(LDA) under complicated
probability distributions.

Keywords: EEG, Vigilance estimation, Quantification, Mixture model.

1 Introduction

EEG recordings can be interpreted for both medical diagnosis and psychological
activity estimation used in BCI systems. An EEG-based BCI system provides
an effective way to predict the vigilance level and is proved to be powerful in
avoiding serious accidents incurred by losing vigilance [1]. Estimation of human
vigilance level is a typical pattern recognition task that involves data prepro-
cessing, feature extraction and finally classifying to a specific category. Unfor-
tunately, several distinguished properties related to EEG signals present great
challenges to predict vigilance level. The difficulties involved in processing real
world EEG signal include its sensitivity to artifacts, ineffective learning due to
inaccurate labels and the great diversity of patterns between different people or
even between different time with the same person [2].

Previous studies have shown that disposal of artifacts plays an important
role to guarantee the robustness of vigilance prediction [3]. Artifact avoidance,
rejection and removal are the 3 mostly used strategies to handle artifacts. An
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efficient algorithm aimed at detecting and removing artifacts automatically was
developed in [4]. The work will lay a foundation to improve and ensure our classi-
fication performance. With a relatively clean EEG recordings, many researchers
focused on feature extraction intending to reveal neurophysiological phenom-
ena [5]. Time-series information and power spectral density are the generally-
accepted features related to EEG recordings [6]. Both of them will be explored
in our study to provide adequate information for subsequent analysis. Also many
researchers engaged in specific learning strategies. An infinite Gaussian Mixture
Model based on Bayes inference was proposed to avoid overfitting in the train-
ing process when dealing with high dimensional data [7]. However, it turns out
unpractical for its high computational complexity due to the process of model
inference.

In this study, we propose an integrated approach to analyze EEG recordings
for the purpose of predicting vigilance levels. To handle the undesired artifacts
that made significantly impact on EEG signals, a Blind Source Separation(BSS)-
based artifact removal approach was used for preprocessing [4]. Since there’s
few acceptable rules for labeling vigilance scales, we develope a novel vigilance
qualifying method which is described in detail in Section 2. Both the spatial
and spectral information were implemented for our feature extractor. Finally
the hierarchical Gaussian Mixture Model was investigated to accomplish both
classification and regression task [8]. The posterior probability presents the reli-
ability of each classification rather than only a result of category information. To
verify the expressive ability provided by hGMM, we compared classification per-
formance with other general methods such as SVM and LDA over 12 data sets.
Regression performance based on posterior probability calculated by hGMM was
also explored to prove the correctness of mixture model.

The rest of this paper is organized as follows. The experiment environment
and data acquisition is presented in detail in Section 2. In Section 3, we discussed
the main framework of our integrated approach. Experiment results are discussed
for both classification and regression task in Section 4. Finally, conclusions and
directions for future work are given in Section 5.

2 Data Acquisition and Quantification

To verify the performance and reliability of the integrated approach we pro-
posed, we conducted extensive experiments to collect adequate data based on
our simulated driving system. Each experiment collects one data set once a day
at noon. A subject is asked to perform a monotonous task sustained about 1
hour after lunch with inadequate sleep in the previous night [9]. We developed a
reasonably new approach to label the vigilance scales associated to EEG signals.
Having these EEG recordings and its related labels, we could go deep into our
classification study, which is discussed in section 4.

2.1 Data Acquisition

Data acquisition will account for surprisingly large part of the cost of our
study. To collect an adequately large and representative set of samples for the
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subsequent training and testing, we invited 10 healthy volunteers to participate
in our experiment. Each of them accomplished 2 experimental trials with inter-
val more than 7 days. It took us nearly one month to complete this group of
experiments.

Simulated Driving System. Our simulated driving system mainly consists
of a software-based simulator, a signal collection system and other necessary
facilities(e.g. a 19 inch LCD, a comfortable chair, etc.) [9]. The whole system is
located in an isolated noise-free room which has normal brightness and constant
temperature between 24◦C∼26◦C.

During the experiment, the simulator would emit a series of traffic signs ran-
domly on the computer screen. The sign is rectangle or triangle-shaped and the
main component will be in one of the 4 colors(red, blue, yellow or green). The
sign was shown every 7±0.5 sec for a duration of 1 sec successively, with the
interval the screen being filled with pure black. There is also a rectangle panel
with 4 colored buttons that the subject should hold during the experiment. The
subject is supposed to push the corresponding button in their panel accurately
and promptly once the sign appeared on the screen.

The 64-channel NeuroScan system sampling at 500Hz was employed for col-
lecting EEG signals to ensure the integrity of neurophysiological information and
being available for research in the future. With data recorded in our previous
studies, we have 40 sets of data available.

2.2 Quantification Strategy

There is no gold standard for scoring vigilance scales[10]. But for classification
task later, we must find an appropriate strategy to quantify vigilance levels. We
developed a reasonable qualifying approach considering both the respond time
and the error rate he/she pushes the button within a window along 30sec. Our
quantification method presents good agreement with the subject’s real vigilance
state which is monitored by a camera. The mistake credit is assigned as follows:
• sti− >acc− >sti− >acc− >. . . // normal responding sequence

if (diff< 0.2s) mistakei = 1 // ineffective input.(too fast)
else if (diff< 2s) // effective input.

if (sti != acc) mistakei = 1 // wrong input.
else mistakei = 0 // right and prompt input.

else mistake = 2 // ineffective input.(too slow)
• sti− >acc− >acc− >. . .− >acc− >sti // abnormal responding sequence

mistakei = 0 // too nervous and is regarded as maintaining
// high vigilance level. (rarely happened)

• acc− >sti− >sti− >. . .− >sti− >acc // abnormal responding sequence
mistakei = 3 //asleep or distracted

Here ’sti’ stands for a sign emitting on the screen and the ’acc’ means the
subject’s response. ’diff’ stands for the time between a ’sti’ followed by an ’acc’.
mistakei is assigned to a penalty(0,1,2,3) when it encountered with a sti. The
error rate of a particular moment is defined as follows:



hGMM to Estimate Vigilance Level Based on EEG 383

Err =
∑|sti|

i=1 (mistakei)
3 ∗ |sti| (1)

where |sti| represents the number of ’sti’ within a 30sec long window and Err
always lies in 0∼1. Note that the vigilance level presents negative correlation
with Err, with high Err means low vigilance level which is dangerous. The cor-
responding EEG recordings will be labeled every 5sec. Low vigilance level would
be labeled as 3 if Err>0.4 at the moment, middle vigilance level labeled as 2 if
0.2<Err<0.4, otherwise high vigilance level labeled as 1.

3 Methods

Given the raw EEG recordings and associated labels, our vigilance estimation
system mainly entails the following 3 steps. Firstly, the raw signal was prepro-
cessed to remove artifacts caused by EOG and EMG and filtered to specific
frequency bands of our interest. Secondly, feature extraction was done to find
relevant and effective features for subsequent classification and regression tasks.
Both the spatial and spectral information are considered to be promising dis-
tinguishing features and are implemented in our study. Finally, we employed
the hierarchical Gaussian Mixture Model to discover the underlying probabilis-
tic representation of EEG signals. Consequently the approximate model can be
used to classify the vigilance levels and to calculate the posterior probability to
illustrate the reliability of each classification, which can be converted to regres-
sion easily.

3.1 Filtering and Artifact Removal

Table1 listed our prior knowledge about the EEG rhythms. Having known that
meaningful information involved in EEG signals were mainly lying in frequency
band 1∼40(Hz) [11] and the signals were sampled at high frequency 500Hz, it
could be firstly downsampled to 100Hz to accelerate the speed of computation
in the following process without loss of significant neural activities [12].

Table 1. Frequency band of EEG

δ rhythms θ rhythms α1 rhythms α2 rhythms β rhythms γ rhythms

0.5-3.5Hz 4-7Hz 8-11Hz 11-13Hz 14-25Hz 26-35Hz

Also we know that artifacts, such as EMG and EOG, would distort the original
weak EEG signal seriously. It must be detected reliably and the adverse effect
caused by it is supposed to be eliminated before data analysis. Of the 3 mostly
used methods[3], artifact removing strategy was applied to tackle our problem
for its automaticity. Specifically, a BSS-based technique was used to distinguish
the EEG-related signals and EEG-unrelated signals and then we used SVM to
identify and remove artifact automatically. For a thorough description of this
preprocess, please reference to [4].
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3.2 Feature Extraction

Having obtained the artifact-free EEG signals, we could now devoted ourself to
selecting and designing features. Note the fact that changes of one’s physiology
status would produce corresponding changes of power density of specific spectral
band[13]. Thus we use Short Time Fourier Transformation(STFT) to calculate
the power spectral density and recognize the density as features[14].

Also the coefficients of AutoRegreesion model could supply the spatial infor-
mation about EEG signals. To incorporated adequate information involved in
EEG signals,we combine both temporal and spatial information as features[6].
Note that the order of autoregression is a smoothing parameter that control the
dimension of the feature. There’s a tradeoff between adequate information and
the curse of dimensionality[15]. The order of autoregression model was finally
determined by 10 fold cross-validation.

3.3 Hierarchical Gaussian Mixture Model

Although the underlying probability densities of real world EEG data are of-
ten difficult to approximate, it would be powerful to both classification and
regression problems if we could obtain it. For this reason we introduced latent
variables to form a hierarchical Gaussian Mixture Model to express arbitrarily
complicated model[8].

p(x | ωk) =
|ωk|∑
i=1

πiN (x | μi,Σi) (2)

where ωk is the kth category and the class conditional distribution p(x | ωk)
is organized as gaussian mixture model. We applied the well-known EM algo-
rithm to calculate the unknown parameters (πi, μi,Σi | ωk) to maximize the log
likelihood[16].

lnp(Xk | πk, μk,Σk) =
N∑

n=1

ln{
|ωk|∑
i=1

πiN (xn | μi,Σi)} (3)

Given the class conditional probability above, we could calculate the posterior
probability quite easily as follows. The posterior probability will be used to
indicate the reliability of each classification and to form the regression.

p(ωk | x) =
p(x | ωk)p(ωk)∑K

k=1 p(x | ωk)p(ωk)
(4)

4 Experiment and Results

In this section, we will validate the effectiveness of the integrated hGMM ap-
proach we proposed above. Firstly 12 data sets with readily distinguished fea-
tures were selected for analysis. Both of them either hold their one vigilance level
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Table 2. Average Classification Rate over 12 data sets

hGMM SVM LDA

a1 88.46% 80.77% 73.19%
b4 77.81% 72.95% 59.28%
c10 63.95% 58.16% 52.41%
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Fig. 1. The vertical axis indicates error rate the subject responded, with low error rate
represent high vigilance level. The horizontal axis is the time course of this trial lasting
about 5×800sec. This figure shows good agreement between quantified vigilance level
and the prediction result.

all the while or have regular changes. The starting and ending 5min recordings
were removed to avoid environmental noise. Because too many information is no
better than no information at all, which is known as occum’s razor rule[15], we
decided to use relatively small number of channels located in the central part
of scalp(a1 means channel {10}, b4 means channel {10,18:20}, c10 means chan-
nel{10,18,20,26,30,46,50,55:57}). This scenario also makes sense in the real-world
applications where too many electrodes on scalp is impossible.

The widely used classification approach involving SVM and LDA were used
for the purpose of comparison with hGMM. A RBF-kernel SVM was used for
classification[17]. To select optimal parameters with each of the 3 models, ex-
tensive experiments were conducted based on 10 fold cross-validation, with 2
representative data sets merged for testing data.

We conducted extensive classification experiments on selected 12 data sets
to show the performance of the integrated approach. Table2 shows that high
classification rate can be obtained when using hGMM with only one chan-
nel. With increasing number of channels, which means increase of features, the
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classification rate was degraded for all of the 3 methods consistently. We believe
it is a promising property to utilize as we pointed out above.

Finally, to predict vigilance level continuously and reliably, we investigated
the regression ability based on hGMM. The posterior probability of label 3 were
supposed to reflect the subject’s vigilance level. The posterior probability is
averaged over a 30sec long window to avoid extensive oscillation. We obtained a
continuous prediction curve which could catch the main trend of vigilance level,
as illustrated in Fig.1.

5 Conclusions

In this paper, we proposed a new integrated approach to predict vigilance level
automatically and continuously based on EEG signals. With adequate and ef-
fective preprocessing, we obtained a reliable and reasonable high classification
performance against 2 traditional method SVM and LDA over 12 data sets.
The regression performance based on posterior probability of hGMM is proved
to be promising and needed further study to improve its generalization ability.
Furthermore, to deal with artifact in EEG recordings more naturally, we will
investigate the hierarchical Dirichlet Mixture Model to improve the robustness
of our method.
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Abstract. This paper focus on the analysis of the navigation task in a
3D virtual tunnel. We localized the neural structures responsible for ego-
centric and allocentric reference frame processing in horizontal and ver-
tical plane and also analyzed specific segments of the tunnel traverse. We
identified intrahemispheric coherences in occipital-parietal and temporal-
parietal areas as the most discriminative features for this task. They have
10% lower error rate comparing to single electrode features. The behav-
ioral analysis of navigation reveals that 35% of the participants adopted
two types of egocentric reference frames in the vertical plane.

Keywords: frames of reference, spatial navigation, EEG, 3D environ-
ment, coherence.

1 Introduction

The human ability to represent space, orient in an environment, create spatial
mental images and talk about the environment from various perspectives is re-
lated to the adoption of various frames of reference. The basic classification of
the reference frames involves spatial coordinate systems based on egocentric and
allocentric frames of reference [4]. In the egocentric frame the position of ob-
jects is encoded with reference to the body of the observer or to relevant body
parts [5]. Spatial positions can also be coded in allocentric coordinates that are
independent from the observer’s current position.

The fMRI research in humans revealed differences between the utilization of
egocentric and allocentric frames of reference. Committeri et al. [2] attribute
egocentric coding mainly to the dorsal stream (BA 7) and connected frontal
areas, whereas allocentric coding requires both dorsal and ventral regions. The
recent fMRI study [6] implicates posterior parietal and frontal associated regions
involved in processing the egocentric frame. Allocentric navigation is attributed
to the specific parietal subregions and also to the hippocampal and retrosplenial
region. These studies are based on a static stimuli experiments. Schönebeck et
al. [8] researched reference frames in dynamic environment and conducted a task
built in a virtual reality environment consisting of a traverse through a tunnel
with straight and turned segments. Gramann et al. [10] replicated this scenario
and recorded an EEG signal to identify neural correlates responsible for specific
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Fig. 1. Visualization of the tunnel task in a 3D environment. The head position is
shown at the beginning and the end of the tunnel traverse for specific frames of reference
(egocentric vs. allocentric) and specific planes (horizontal vs. vertical). The dark bar
represents a computer screen with two arrows standing for the selection period.

frames of reference processing. They localized higher mean source activation in
the BA 7 (parietal cortex) for subjects adopting an egocentric frame and BA 32
(anterior cingulate gyrus) for subjects adopting an allocentric frame of reference.
In the most recent EEG research [11] based on the tunnel task, stronger alpha
blocking was identified in or near the right primary visual cortex (BA 17) for
subjects adopting an egocentric reference frame in the turned segment of the
tunnel and stronger alpha blocking of the occipito-temporal, bilateral inferior
parietal (BA 7), and retrosplenial cortical areas (BA 26,29,30) in the first straight
and turned segments for participants adopting an allocentric frame.

Our research is the extension of the mentioned studies. We would like to com-
pare the specific parts of the tunnel traverse in horizontal plane with Gramann
et al. results [10] [11], but we want also to administer the tunnel task in vertical
plane. Vidal et al. [9] administered a reference frame study in a 3D environment
and concluded that the spatial updating process was more accurately performed
for a terrestrial strategy (the head turns only in the horizontal plane) and to
some extent a subaquatic strategy (the head turns in both the horizontal and
vertical plane) than for a weightless (yaw and pitch turns) navigational style.
Our goal is the identification of neural correlates responsible for the terrestrial
navigation (resembling the allocentric strategy in the tunnel task administered in
the vertical plane) and subaquatic navigation (resembling the egocentric strategy
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in vertical tunnels). We hypothesize different brain areas involved in processing
of mentioned reference frames in the vertical plane.

2 Methods

The experimental sample consisted of 38 participants (7 females and 31 males).
All subjects had normal or corrected-to-normal vision, they were under no med-
ication affecting the EEG signal and were neurologically intact. The subjects
were required to keep the track of their implied virtual 3D position with re-
spect to their starting position within the tunnel traverse (see Fig. 1). A fixation
cross was present for 6s prior to each trial. Each tunnel consisted of a 10s tra-
verse through the first straight segment, 6s through the turned segment and 10s
through the second straight segment. The bend of the turned passage varied
between 30 and 90 degrees at intervals of 15 degrees representing the angular
rotation of the participant’s head. A total of 20 tunnels were presented to a
subject, i.e. 5 tunnels with variable curvature for 4 directions (up, down, left,
right). The tunnels were administered pseudo-randomly. There were two three-
dimensional arrows displayed on the black screen at the end of each tunnel,
representing the correct response within the egocentric or allocentric reference
frame. The subject’s choice is answers the question: what reference frame did
he/she adopt as the navigation system. The answers were evaluated to identify
the subject’s preferred reference frame. Participants selecting the same frame of
reference in above 80 % were considered as representative (native) users of the
particular reference frame.

The EEG signal was recorded from 19 electrodes, positioned under the 10-
20 system. We performed a visual inspection of each EEG signal prior to data
analysis in order to detect obvious technical and biological artifacts. The sig-
nal was divided into the segments of constant length (1s), and the following
parameters were calculated: statistical parameters, mean and maximum values
of the first and second derivation of the samples and absolute/relative power
for five EEG frequency bands. The EEG coherences, the correlation between the
EEG electrodes, and the mean and maximum correlation values for each segment
were computed. The wavelet transform was also applied to the signal segments.
Daubechies 4 was used as the mother wavelet, and the signals were decomposed
into 4 levels standing for standard EEG frequency bands. We also calculated the
mean and maximum values of the wavelet coefficients obtained after applying
the wavelet transform to the first and second derivative of the EEG signal. The
data was processed in PSGLab Toolbox that is developed in our laboratory [7].

The next step was feature selection. The input matrix for each subject con-
sisted of 1916 features (93 features per electrode + correlations and coherences)
for the duration of the experiment. We employed PRTools [12] for this part of
the analysis. We removed outliers and normalized the data. The features were in-
dividually evaluated using the inter/intra distance to preselect 50 best features.
In the next step we applied forward feature selection algorithms to choose 5 best
features from the preselected subset. Then we performed 7-fold cross-validation
and employed naive Bayes classifier to calculate error rate of the best features.
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3 Results

The administration the tunnel task in the vertical plane resulted in new nav-
igation strategies compared to the horizontal plane. The experimental sample
consisted of participants natively adopting the egocentric reference frame in both
planes (24 %), participants natively adopting the allocentric frame in both frames
(22 %) and participants adopting an egocentric frame for horizontal navigation
and an allocentric frame for vertical navigation (11 %). Some subjects (30%)
reinterpreted the instruction and did the mental u-turn at the end of tunnel
and then adopted egocentric strategy. We also excluded 5 subjects (13 %) who
answered randomly.

At the first stage we analyzed data from 17 participants adopting egocentric
and allocentric strategy in both planes (9 egocentric and 8 allocentric frames of
reference). The mean error rate of the best 5 features for both planes was 7.55 %.
The dataset for whole tunnel traverse was split to the two subsets and the best
features for the horizontal and vertical plane were calculated. The coherences in
the theta and gamma band were the most discriminative features distinguish-
ing egocentric and allocentric strategies for the horizontal plane, namely theta
and gamma intrahemispheric coherence in the right temporal lobe and gamma
coherence in the right frontal lobe. There were also interhemispheric coherences
between the orbitofrontal electrodes in the theta band and the temporal elec-
trodes in the delta band. The most discriminating features for the vertical plane
were interhemispheric coherence between the temporal lobes in the theta band.
Unlike the horizontal plane, there were intrahemispheric coherences between the
right parietal and occipital area and the left temporo-occipital area in the beta
band. A timeline of best feature (excluding coherences) is shown in Fig. 2. It
can be seen that the group mean values differentiate between the navigation
strategies.

We did also the analysis for the separate parts of tunnel. The best features
for the first segment of the tunnel were concordant with the results for the
whole tunnel, namely intrahemispheric theta coherences in left temporal lobe,
beta coherence in the right parieto-occipital area and gamma coherence in left
frontal lobe. The exception was the gamma activity in the left orbitofrontal lobe
as the discriminative feature for the first straight segment. The best feature in
the turned segment was the interferometric coherence in theta band between
orbitofrontal electrodes. The other features were similar to the first straight
segment. The same results were obtained for the second straight segment except
the signal changes in the left temporal lobe.

The summarized differences between the allocentric and egocentric groups
were visualized on scalp projections. Fig. 3 shows the mean activity in five spec-
tral bands for allocentric and egocentric strategies (columns 1 and 2) and their
difference maps (columns 3-8) for the specific planes or parts of the tunnel. There
are no visible differences between the horizontal and vertical planes (columns 4
and 5), but there is a change in the beta band activity for the second straight
segment of the tunnel (column 8).
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Fig. 2. Timeline of the best feature changes (coherences excluded) within a tunnel
traverse. There is a visualization of the mean feature values for specific strategies and
averaged feature values for each participant. The x-axis represents time in seconds, and
the y-axis represents feature values.

4 Discussion

The experiment revealed new findings regarding the adoption of egocentric and
allocentric reference frames in a 3D environment. We identified native adoption
of terrestrial navigation [9] (resembling allocentric strategy) in the vertical plane
for the group of participants navigating egocetrically in horizontal plane. They
represented body in the upright position at the end of the vertically oriented
tunnels, so there was no angular rotation of the head direction. On the other
hand none of the subjects adopted an allocentric frame in the horizontal plane
and an egocentric frame (resembling subaquatic navigation) in the vertical plane.

The neurobehavioral results of our study are partially consistent with previous
studies. Gramann et al. [10] localized higher mean source activity in BA 7 for the
egocentric frame of reference, but the allocentric strategy was linked to activation
in the anterior cingulate cortex (BA 32). A different type of analysis based
on event-related spectral perturbations [11] revealed stronger alpha blocking
in BA 17 for subjects adopting an egocentric reference frame in the turned
segment of the tunnel and stronger alpha blocking in BA 7 and BA 26, 29, 30
for participants adopting an allocentric reference frame. We detected differences
in beta band coherence in the left occipital-parietal lobe. The coherences were
higher for the allocentric strategy, but the detail analysis of beta activity in
the separate electrodes (P4 and O2) revealed higher values for the egocentric
group of participant. We can interpret this as coherent low beta activity in
this electrodes for the allocentric frame of reference, but the egocentric strategy
resulted in non-coherent higher activity in beta band.
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Fig. 3. Difference maps for the horizontal and vertical planes, and for both planes, and
specific parts of the tunnel. The rows represent basic spectral bands. Average values for
the egocentric and allocentric groups are given in columns 1 and 2. Columns 3-8 stand
for difference maps. The values were calculated as the mean of all tunnel traverses.

The data for the horizontal plane indicates as the discriminative features in-
trahemispheric coherences in the gamma band in the left temporal lobe. Left
intrahemispheric coherence in the gamma band stands for higher coherence of
the egocentric group, but further analysis revealed higher gamma activity in
both electrodes (T3-T5) for the allocentric group. We can interpret this as low
coherent gamma activity for the egocentric frame of reference, while the allocen-
tric strategy resulted in non-coherent higher activity in these electrodes. Gamma
activity is associated with cognitive functions and multimodal integration. These
results differ from the EEG study that adopts the tunnel task [10]. The list of
best features also includes interhemispheric coherences but it is not possible to
interpret the contralateral scalp locations in terms of brain structures, because
they can reflect indirect, common/shared activity of the subcortical brain re-
gions. In contrast to previous studies, we detected changes in the gamma band
in the left frontal areas (electrodes Fp1 and F7) in horizontal navigation and
also in vertical plane navigation. There was higher coherence for the egocentric
strategy but analyses of specific electrodes revealed low coherent activity for
the egocentric frame of reference and non-coherent higher activity in gamma
band for the allocentric reference frame. The left frontopolar area is involved in
memorizing tasks [3]. Thus, the difference in left frontal gamma coherence that
we observed may be related to the different memory processing involved in the
allocentric strategy.

At the next stage we compared the discriminative features for the horizontal
and vertical plane. The differences between specific planes are manifested in
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the absence of theta coherence in the orbito-frontal cortex (Fp1-Fp2) for the
vertical plane. It may be attributed to the lower number of eye movements in
the vertically oriented tunnels. There is also a shift in theta coherence from T5
and T6 for the horizontal plane to T3 and T4 for the vertical plane. The most
interesting observation is the absence of coherence in the beta band between P4
and O2 in horizontal plane. The results in the vertical plane cannot be compared
with other EEG studies, as this is the first attempt to measure the frames of
reference in a 3D environment.

We also compared results for the separate segments of tunnel traverse with the
previous studies. For the first straight part of the tunnel Gramann et al. [10] re-
search higher mean source activity in bilateral occipital-temporal network, with
additional activation in frontal cortex for the egocentric frame and activation
within a bilateral temporal-occipital network for the allocentric strategy. The
similar activity for both strategies were located in BA 19,29 and 21. Our results
revealed differences in the interhemispheric theta band coherences (T3-T4 and
T5-T6) in terms of higher coherences for the allocentric strategy. From the spec-
tral point of view we observed lower theta activity in both temporal lobes for
allocentric group. There was also coherence in the beta band between P4 and
O2 electrode and coherence in frontal left orbito-frontal lobe as a discriminative
feature similar to analysis of the whole tunnel.

In the turned segment Gramann et al. [10] localized higher activity in fronto-
parietal network (BA 7), with dominance over the left hemisphere for egocentric
strategy and left anterior cyngulate gyrus (BA 32) for allocentric group. We
localized areas similar to the first segment, but also coherence in theta band
between orbito-frontal areas (Fp1, Fp2) in terms of higher activity for egocen-
tric strategy. Theta activity is associated with the heading changes [1] so the
differences between allocentric and egocentric group in theta band should stand
for different processing in the turned segment. The analysis of the whole tunnel
traverse in specific planes uncovered absence of intrahemipheric theta coher-
ence in orbito-frontal areas for vertical plane that confirms our hypothesis about
different eye movements for specific planes.

At the second straight segment Gramann et al. [10] attributed egocentric
strategy to the activity bilaterally within a fronto-parietal network (BA 7) in-
cluding regions that were activated both with the onset of the tunnel movement
and during the turn in the tunnel passage. Allocentric strategy was manifested in
right hemispheric activation pattern comprising the temporal cortex. We found
similar set of features for this part of tunnel as for the turned segment. There
were not difference in the theta coherence of frontal areas (Fp1-Fp2) that would
confirm the eye movement artifact hypothesis for the turned segment.

5 Conclusion

Administering the tunnel task in the vertical plane provided new insights into
the area of spatial navigation. We should conclude that there are differences in
the EEG activity for the navigation in the horizontal and vertical plane. Future
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steps in our research will focus on the difference when two types of egocentric
reference frame are adopted within navigation in the vertical plane in order to
identify the neural correlates of these strategies.
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Abstract. This paper demonstrates the ability to study the human
reading behaviors with the use of Electroencephalography (EEG). This
is a relatively new research direction because, obviously, gaze-tracking
technologies are used specifically for those types of studies. We suspect,
EEG, with the capability of recording brain-wave activities from the
human scalp, in theory, could exhibit potential attributes to replace
gaze-tracking in such research. To prove the concept, in this paper, we
organized a BCI experiment and propose a model for effective classifying
EEG data in comparison to the accuracy of gaze-tracking. The results
show that by using EEG, we could achieve comparable results against
the more established methods while demonstrating a potential live EEG
applications. This paper also discusses certain points of consideration for
using EEG in this work.

Keywords: BCI, Artificial Neural Network, EEG, Reading tasks, Signal
Processing.

1 Introduction

We conducted an experiment where we capture test participants EEG activities
while they perform reading tasks. We analyzed a set of EEG features such as
the frequency activations of EEG alpha, theta, beta bands etc.... to identify the
key factors showing user engagement level in reading. The results are analyzed
for each individual participant against the whole set of participants. Our aim
is to verify the following hypotheses: “For each participant, can we effectively
identify the link between EEG brain activities and his level of engagement in
the reading task?” and “Overall, can we achieve a general method to effectively
identify the link between EEG brain activities and the level of engagement in
the reading task?” For this paper, together with analyzing these hypotheses,
we also propose a method of processing EEG signals that is effective enough to
be considered for a real-time classification system. We use an Artificial Neural
Network (ANN) technique to validate the efficiency of the proposed approach.

2 Backgrounds

2.1 General

Reading is an activity that most human today perform on a very regular basis.
We read and process information so much that reading skill becomes an almost
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second nature to us. The conjecture we propose here is based on that statement.
So comprehensive and comfortable are we in reading words, texts, that we would
show, intentionally or not, certain behaviors that could be used to interpret our
perception of the contents we read. Understanding the meaning of words in sen-
tences and paragraphs places a certain strain on a person’s cognitive process.
Depends on various contexts, such strains could go unnoticed by most of us.
An example of such process would be, in order to comprehend a text, a per-
son needs to build up linkages of information that he previously obtained with
the current text. That cognitive process would be more significant if the text
contains more information that he would, deliberately or not, associate back to.
That assumption is reasonably correct because a normal person can only keep
seven pieces of information (±2) in their short-term memory [4]. We had some
success in [6] in identifying such a process using gaze-tracking technique. For
this experiment, however, we would like to validate the results with EEG. Such
use of EEG is a brain-computer interaction technique that monitors brain-wave
activities from the human scalp. We suspect that the EEG signals would exhibit
those aforementioned cognitive activities during reading tasks. A point for con-
sideration in doing research with EEG is to deal with eye movement artifacts
in EEG signals. Eye muscles produce considerable EEG signal noises and tra-
ditionally, EEG researchers would remove them from the signal analysis[8]. For
this paper, however, we would like to propose a different approach to that by
not eliminating the effect of eye movements from our analysis of reading tasks.
Reading tasks have one unique characteristic that supports our view: a persons
eye movements tie quite robustly to their engagement to the contents being read.
The increase/decrease in the amount of skipping forward and back-tracking ac-
tivities found in the gaze correlate with the increase/decrease of the cognitive
load in reading [6]. Studying of reading without regard to eye-gaze could limit
the potential outcome. As our aim is to identify the same link through the use
of EEG instead of gaze-tracking technology, we would like to take advantage of
this “good noise.

Another point for consideration is that the EEG signal, by nature, is stochas-
tic. In regards to this experiment, it suggests that the 19 different participants
EEG data should be processed and analyzed individually. In this paper, however,
we will try both approaches: consider each participant individually vs. all par-
ticipants as a whole. We then in turn compare the outcomes. We also compare
the results with the gaze data we collected from our previous experiment [6].

2.2 Preliminary Analysis

For the initial analysis, we ran time-frequency analysis on the raw EEG data,
as suggested by Makeig[7]. We would like to observe the differences in time-
frequency distributions of EEG signals captured from a person reading a relevant
against irrelevant piece of text (English paragraphs). This analysis is performed
on the first raw EEG channel (Fp1) of each participant using Fourier Transform
and the time resolution is going to be (time taken to read, in milliseconds,
over 512 epochs). The initial observation has revealed that there is a lack of
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apparent and consistent features that could help distinguished the two classes.
Having said that, there is a minor difference that can be spotted by observing
those spectrographs - that is, there are more drops in amplitudes found on
the spectrographs of EEG signals recorded from reading irrelevant paragraphs
compared to the one obtained from reading relevant paragraphs.

Figure 1 demonstrates the above observation. It includes spectrograms gener-
ated by analyzing the EEG signal a participant reading two relevant paragraphs
(Left-hand Side) and two irrelevant paragraphs(Right-hand side). The circled
spots are some of the locations where the drops in amplitude can be identified.

Fig. 1. A distribution of cell movement distances throughout reading activity of a
paragraph

The initial analysis has showed to us that there is a possibility that, using
statistical machine learning techniques, we could effectively classify the two cases.
For that purpose, we are going to use a standard Artificial Neural Network
configuration as the foundation. Optimization will be considered if the initial
results are promising.

3 Experiment

We have 19 participants for this experiment. The experiment involves the par-
ticipant reading some paragraphs from a computer screen while the computer
captures their brain-wave activities via EEG equipment. In total there were ten
paragraphs for the participants to read. Seven of the paragraphs were taken from
the paper “Keyboard before Head Tracking Depresses User Success in Remote
Camera Control” by Zhu et al.[1]. The remaining three paragraphs were extracts
from various sources (miscellaneous paragraphs).

Five of the paragraphs from the paper were chosen for the amount of use-
ful information that was contained within and they are relevant to each other.
The other five paragraphs (two from the aforementioned paper and the three
miscellaneous ones) were chosen because of their generality and lack of specific
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technical information - they are irrelevant with the other five and also are irrel-
evant between themselves. Care was taken to make sure that this fact was not
obvious to experiment participants.

3.1 Setups

For each of the 19 volunteer participants, the general instructions are to read as
if they were just reading any regular piece of text, and that they would not be
questioned about the paragraphs read at the end of the trial. For recording EEG
signals, which are very sensitive, we also paid attention to eliminate as much
external distraction as possible during each trial. The experiment is designed
to help show which participants could look at the bigger picture even when
the information is out of sequence and scattered. Hence, the paragraphs were
presented to participants in different orders to prevent any specific paragraph
ordering from affecting the results. Figure 2(a) shows one of the paragraphs
that each participant read. The screen for reading is about 72 cm away from the
participant face. The head position of participant is secured with a chin rest.
This is to minimize head/face movements (intentionally or not) - which could
greatly affect the EEG signals. The EEG equipment we used in this experiment is
BioSemi ActiveTwo. We recorded with 16 channels marked and placed according
to the 10-20 system .These 16 channels are as followed: Fp1, Fp2, F4, Fz, F3, T7,
C3, Cz, C4, T8, P4, Pz, P3, O1, Oz, O2. Figure 2(b) shows one participant setup
with the 16 electrodes. The recording was continuously throughout the trial of

(a) One of the reading paragraphs (b) EEG electrodes layout

Fig. 2. One example of the paragraphs and The EEG electrodes

each participant. After reading through 10 paragraph (a trial) - the recording is
stopped and stored for offline analysis. Timestamps are marked to indicate the
start and end of each reading of a paragraph.

3.2 Signal Processing

The EEG signals were originally collected at 1024 Hz, which in turn were down-
sampled to a rate of 256 samples per second. We ran a low-pass filter of 60Hz
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to eliminate unwanted EEG frequencies. The time-domain EEG signal is then
be broken into epochs (windows) of one second. Fourier-Transformation (FFT)
is performed on each window - for each of the 16 channels. The data from the
FFT is binned into four frequency ranges: Delta, (0-4Hz), Theta (4-8Hz), Alpha
(8-13Hz) and Beta(13-30Hz). Figure 3(b) show the output of FFT with the
color-coded ranges. A peak detector (sensitivity of 0.7) is run on the FFT bins

(a) Signal processing process (b) visualisation of an FFT trans-
formed for 16 channels of an epoch

Fig. 3. Signal Processing Blocks and FFT transformation

to detect peak values for each EEG band. Since we are interested in the activities
of the four EEG bands (Alpha, Beta, Theta and Gamma), a window (epoch) will
have four features representing it. Since we have 16 channels, our regular dataset
will have 64 features (4 x 16). The same process 3(a) , will be applied on the
subsequence epochs until the end of EEG recording. The samples are labeled
“1” to indicate reading relevant text against “0” for reading irrelevant text.
We choose FFT because it is a very efficient transformation algorithm. Using
it results in a signal processing capable of perform live (real-time) EEG signal
processing. Optimization of window size could further improve the performance
of this model.

3.3 Classification

Artifical Neural Network. With the dataset we captured, we think it will
be sufficient for us to utilize a standard ANN configuration. The ANN setup
we constructed for this experiment is a feed-forward, back-propagation network.
This network has one hidden layer containing 20 hidden neurons and one output.
As for the neural network optimization algorithm, we took the advantage of the
Levenberg-Marquardt optimization (ML) training algorithm. The output value
is described as [3],[6],[5]:

yT
1 = gO(b1 +

∑
j

W1j · gH(bj +
∑

k

wjk · xT
k )), (1)

The back-propagation training algorithm, being Levenberg-Marquardt opti-
mization, will be represented by the formula[3] [6]:

δw = (JT J + I · μ)−1JT e (2)
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The training performance is calculated using the Mean Square Error func-
tion. The training process is expected to stop once the performance (error) is
minimized to the goal.

4 Evaluation and Comparison

4.1 For Individual Participants

We divided our dataset into smaller groups by participant - we called them
P1, P2 all the way to P19. The average sample size of reach group is about
57 samples. For each group, we ran our constructed ANN with 10-Fold cross-
validation. The results are shown in table 1.

Table 1. ANN classification results for 19 participants (individual)

Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

P1 0.928 0.966 0.872 P11 1.000 1.000 1.000

P2 0.918 0.891 0.963 P12 0.927 1.000 0.833

P3 0.986 0.977 1.000 P13 0.968 1.000 0.920

P4 0.924 0.921 0.929 P14 1.000 1.000 1.000

P5 0.781 0.667 0.929 P15 1.000 1.000 1.000

P6 0.931 0.889 1.000 P16 0.972 1.000 0.941

P7 0.984 1.000 0.958 P17 0.966 0.962 0.972

P8 1.000 1.000 1.000 P18 1.000 1.000 1.000

P9 0.900 0.871 0.947 P19 0.985 1.000 0.963

P10 0.979 1.000 0.944 Average 0.955 0.955 0.956

The results table above demonstrates the effectiveness of our method (data
processing and classification). The average accuracy rate is about 95 percent,
which is quite encouraging for the task of classifying EEG signals. There is still
minor inconsistency in the achieved results - with P5 achiving about high 70%
accuracies. It indicates that further studies could be done to investigate the
profiles of these participants.

In relation to a real-time system for predicting this kind of scenario, we show
that even with a relatively small effort of training i.e. reading tasks of only
10 paragraphs, we can still achieve a quite successful classification result. The
potential for a working system based around this experiment is very promising.

4.2 For the Whole Dataset

This section explains our initial attempts in this work i.e. to actively identify
an EEG pattern for the particular scenario - regardless of the individuals from
whom we collected the EEG signal. For that purpose, we classified the whole
dataset with the same ANN setup. This is to confirm our hypothesis that there
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Table 2. ANN classification results for 19 participants (together)

Method Accuracy Specificity Sensitivity

EEG 0.817 0.889 0.716

Gazetrack 0.8283 0.8687 0.7879

is a general” EEG pattern. Similarly, we validated the results with 10-Fold cross
validation.

In this section, we also compare this result with EEG with the results we
achieved with gaze-tracking data collected from the previous experiment [6]. The
comparison is made with the result of Group B dataset where the experiment
setup is almost identical to this experiment. The results are as followed

The results we got show that the overall dataset provides lower accuracy than
the individual dataset. This is expected because EEG signals are variable or
subjective in a number of aspects (time, person to person, mood, etc). We can
also see that the accuracy we obtain with EEG is almost on par with the one
obtained from gaze-tracking devices. This is very encouraging.

The accuracy we got here also suggests that by increasing the amount of
training together with further optimization of ANN configurations, we could
improve it to a more desirable level . This result has laid the foundation for
further research work in this area.

5 Conclusion

This paper exhibits the capability of using EEG and statistical machine learning
algorithms to distinguish different types of human brain activities. The results
of this study, from the preliminary analysis stage throughout the final results
have shown that there are certain relationships between EEG signals captured
from the human brain to the way a person reads or perceives the information
while reading. It may not give the definite answer to our hypotheses; and still
suggests improvement could be made toward confirming them.

The scenarios we defined in this paper maybe a bit unnatural and forced, but
it shows that we are in the right direction on the quest to establish a better
model of the thinking brain from the BCI perspective.
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Abstract. EEG signal has been regarded as an reliable signal for vig-
ilance estimation for humans who engage in monotonous and attention
demanding jobs or tasks, research work in this area have made satisfying
progress and most of these methods or algorithms are based on the pat-
tern recognition and clustering principal. Inspired by the HMM(Hiden
Markov Model), we proposed a probability method based on the (PSD)
Power Spectral Density distribution of the energy changes to estimate
the vigilance level of humans using only one ICA(Independent Compo-
nent Analysis) component of EEG signal. We firstly extract the specific
frequency band energy feature using (CWT)Continuous Wavelet Trans-
form, then analyze different vigilance states energy data to get the energy
distribution information and vigilance states transformation probability
matrix, finally use the energy distribution and vigilance states trans-
formation matrixes to estimate vigilance level. Experiments result show
that the proposed method promising and efficiently.

Keywords: Band Frequency, Energy, Histogram, Probability.

1 Introduction

It’s a very difficult task for humans keeping their vigilance level at a certain
level who take on monotonous and attention demanding jobs or tasks such as
driving,guarding, etc., so research on vigilance level estimation is a very im-
portant work for reducing the traffic accidents and avoiding the potential ac-
cident disaster. Many research work have been done in this area which based
on biomedical feature such as head position estimation, eyelid movement, face
orientation and gaze movement (pupil movement)[1], etc. and get many satisfy-
ing experiment result. EEG signal have been regarded as an efficient methods
used for vigilance estimation and many efforts have been made in this field and
got some significant progress, however, due to the nature of low signal-to-noise
ratio for EEG signals, vigilance estimation based on EEG into application still
face many obstacle to remove. Many algorithms and approaches have been pro-
posed or used in the EEG signal analysis, CSP(common spectral pattern), ICA
and PCA(Principal Component Analysis)have been used in dimension reduc-
tion or feature selection. FFT(Fast Fourier Transform), DWT(Discrete Fourier
Transform) and STFT(Short Time Fourier Transform) are also applied into the

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 404–412, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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feature extraction and some other pre-processing work and many classifier such
as SVM(Support Vector Machine), HMM and SR(Sparse Representation) are the
mostly used for estimating the vigilance level[5]. some supervise cluster and un-
supervise cluster method have also been applied into the research work. However,
Most of previous research are based on pattern recognition and clustering prin-
cipal, human vigilance is divided into 3 or more degrees such as wake, drowsy
and sleepy), so the humans’ vigilance estimation work is to classify the EEG
signal into different classes which corresponding to different vigilance degrees.
There exist two drawbacks in this algorithm framework, first, as we all know
that vigilance changes is a continuous process, mechanically segmenting the pro-
cess from wake to sleep into different classes can not accurately reflect the true
characteristics of these changes. second, it is not an easy job to label the vigi-
lance level exactly. Many researchers combine the EEG and EOG or other signal
to label the vigilance states and then a variety of biological characteristics are
used to predict the degree of alertness and get a relatively high estimation ac-
curacy, however, which will result in much computation cost. In this paper, we
consider to use both the error rate and response time of the participant’s test in
simulation environments to determine different vigilance states. As mentioned
above, EEG recoding is a non-stationary and extremely sensitive signal and can
easily be polluted by the noisy, so noisy remove preprocessing work is impor-
tant for the following vigilance estimation stage.In this paper we adopted the
method proposed by [2] to remove the artifacts based on the pattern recognition
theory. EEG data used in this paper are collected in a simulation environment
from one hundred people aged 18-28 and we only use one ICA component and a
complex wavelet transformation was used to extract the γ-band frequency, 1-3
order transformation probability matrix and different states generator probabil-
ity matrix based on energy value are also got from the above band frequency.
Then we apply the state transformation matrix and states generator probability
to estimate vigilance degree.

This paper is structured as follows: In section 2 the experiment environment
for EEG data acquisition is introduced. In section 3, the EEG preprocessing
methods are given, and in section 4 the experiment result is presented. Finally,
conclusions and future work are given in section 5.

2 Data Acquisition

More than one hundred young men aged 18-28 participated in our EEG vigilance
analysis data collection experiment. This experiment is a monotonous visual
task, Subjects were required to sit in a comfortable chair, two feet away from
the LCD and wear a special hat with 64 electrodes connected to the amplifier
of the NeuoScan system. In front of the subjects is a LCD which four colors of
traffic signs were presented randomly and each color has more than 40 different
traffic signs. The interval and duration of the traffic signs displayed on the screen
is 5.5∼7.5 including 5∼7 seconds black screen and 500 millisecond respectively.
The subjects are asked to recognize the signs’ color on the screen and press the
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corresponding color button laid on the response pad. We do these experiments
in a small soundproof room with normal illumination. Each experiment started
at 13:00 after lunch and lasted for one hour or more. Every subject participated
two experiments, One data was for training and the other is for testing.

For each session, the visual stimulus sequence and response sequence are
recorded by the NeuroScan Scan software sampled at 500Hz. Meanwhile, a total
of 62 EEG channels are recorded by the NeuroScan system sampled at 500Hz
synchronously, and filtered between 0.1 and 40Hz using band-pass filter. The
electrodes are arranged based on extended 10/20 system with a reference on the
top of the scalp.[3]

3 Method

In this section, we will describe the method we used to estimate humans’ vigi-
lance degree based on EEG recording. To begin with, we will give the introduc-
tion of the pre-process work. Then we will present our vigilance degree estimation
algorithm based on the γ-band frequency energy distribution.

3.1 Data Preprocessing

In the data pre-processing stage, we first remove the EEG signals collected using
the damaged channels and then eliminate the artifacts caused by the EMG and
EOG signal by the method in [2]. As we all know that the potential generated on
the scalp where the electrode placed on is the summation of the potential value
generated around it even all of the scalp, so the ICA (Independent Component
Analysis) method is applied to the EEG signals to get the mapping matrix which
used to find the approximate independent components.

3.2 Feature Extraction

In this stage, we will implement the feature extraction operation. Due to the
non-stationary nature of the EEG signal from each electrode of the NeuroScan
system, the sampling data of EEG are divided into many overlapping epochs
and each epoch contains 200 new sampling data and 200 duplicate data from
the previous epoch, so each epoch corresponds to EEG signal of 4 seconds and
for each epochs, we use the ICA mapping matrix to get the independent com-
ponent. We choose only one component from the ICA components and then to
extract the energy feature using the Continuous Wavelet Transformation. The
wavelet function we used in our experiment is the complex Morlet wavelet func-
tion because of its good resolution both in time domain and frequency domain.
The function defined [4] by

ψ(x) =
1√
πfb

exp{2iπfcx}exp{−x2

fb
} (1)

where fc denote denote the central frequency, and fb is a bandwidth parameter,
fc and the variance σf are related by fb = 1

2π2σ2
f
. In this way we can accu-

rately obtain the wavelet coefficient of the EEG signals at the specific time and
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frequency-band by adjusting the parameter values of the Morlet wavelet func-
tion. In this paper, we tend to set fc = 35 and fb = 5, which corresponding to
the γ-band frequency, because the γ-band energy can give a better estimation
result. After continues wavelet transformation operation, we get the energy value
of the γ-band frequency of all of vigilance states data including wake, drowsy,
sleep states and the transition between states.[5] We don’t want to give an exact
division about human’s vigilance, what we need is just the task of non-wake
states detection.

3.3 States Determination

Generally speaking, precision state division is an almost impossible job, it is the
same for us. Here we consider both the response time of the recognition behav-
ior and recognition error ration of the subjects’ in the task of color recognition
as the indicator for vigilance state determination. The following is the response
time and the recognition error rates of one subject. From the left two charts we
can see that the first experiment data is divided into 1171 overlapping epochs
and from the 1st to the 561th epochs, in this session the subject is in the drowsy
states, during which the subject cannot response to the color stimuli timely and
exactly. Drowsy state in this experiment data can easily be determined, how-
ever, not all of experiment data in such case. There are a total of 1935 epochs
in the second experiment data and the top is response time graphic and the
below is the color judgement error rate graphic. In the response time graphics,
the shortest response time is about 300 milliseconds(at the 394th epochs) and
the longest is 1000 milliseconds(at the 968th epochs). In the session between 1st

Fig. 1. Response time and recognition error rate. Figure 1 is the four charts about
response time and error rate of one subject in two experiments. The left two charts
are the response time and error rate charts respectively of one subject in the first
experiment and the right two are the second experiment result.
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and the 394th epochs the subject’s response time is not very long, but in the
error rate graphic the judge error rate is above 70%. We regarded this session to
be the drowsy states in which states the subject can able to timely respond to
external color stimuli but can hardly make the right judgments. From the 395th
epochs to the 1586th, the error rates is very hight and only a few session has a
relatively low error rate, in this period of time, we can believe that the subjects
in a state of extreme fatigue, the session between the 1587 ∼ 1935 epochs, the
subject in the state of clear-headed. As mentioned previously, We compute the
wavelet coefficient of the γ-band frequency find that human’s vigilance states
have a close relationship with the energy’s distribution. We find that the energy
value is inversely-proportional relation to the vigilance degree, generally speak-
ing, energy is low when the humans in the state of clearly-headed and vice versa
at the γ-band frequency. In order to give more detail evidence, We also give
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Fig. 2. Energy distribution of wake data and drowsy data. In each graphic, the red
line denote the wake state energy distribution, while the green line is the drowsy state
energy distribution.From Figure 2, we know that it is nearly impossible to distinguish
between the wake and drowsy states using the δ-band frequency, the β or γ-band
frequency may be the optimal choice in the vigilance estimation work based on energy
distribution.

the energy distribution of EEG recordings in wake and drowsy states, actually,
because of the difficulties in states determination work, we can only give approx-
imate estimation about the energy distribution. In Figure 2, we illustrator the
energy distribution of wake and drowsy states at different band frequency using
histogram with 20 bins.

3.4 Probability Matrix Computation

Inspired by HMM, we try to estimate human’s vigilance degree using the prob-
ability method. Our algorithm do it by the following step:
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1. we calculate the energy distribution’s histogram in different vigilance states
as well as the whole process histogram get three vectors Vc, Vd, Vw where Vc

corresponding to the clearly-headed state, Vd to drowsy state and Vw to the
whole process. Vi(i = c, d, w) are matrixes where each element denote the
number of the energy in the corresponding to range.

2. Compute the probability in the time sequence by:

Pc = Vc/Vw, Pd = Vd/Vw (2)

Actually, Pc and Pd are the posterior probability which means that the
probability of the subject in the clear-headed states or drowsy state given
the specific band frequency.

3. We can also get 1-order, 2-order, 3-order states transformation matrix T1, T2,
T3 by the event probability Pc and Pd. Basically, we can just only compute
posterior probability one matrix Pd or Pc to detect the drowsy degree or
vigilance level, when the human’s drowsy degree is high or vigilance level is
low the controlling center will send out a warning.

4. Compute the states probability given the vector V by the following:

pd = Pd(V ), or pc = Pc(V ) (3)

We can also combine the previous state into the computation of the states
probability by:

pd = Pd(V ) +
−1∑

i=−N

Ti(V )Wi (4)

where Ti denote the transformation probability matrix, Wi is the weight and
N is the order.

4 Experiment Result

In order to test our algorithm, we used two data set collected from the same sub-
ject in two experiment, firstly, we compute the wake and drowsy state PSD of the
training data by using histogram method and get the state occurrence probability
matrix and 1-order, 2-order and 3-order states transformation matrixes; then we
used the fatigue state occurrence probability matrixes and 1-order, 2-order and
3-order states transformation matrixes to estimate the wake state degree from
the first data set, the experiment result is give by Figure 3. From the Figure 3,
we can see that, basically, our algorithm can make a relative accurate estimation
to the human’s vigilance changes,and just like what we thought, the β, λ-band
frequency give better predictions result than the other band frequencies energy
because of the the β, λ band frequency have more exact determination bounder
which the illustrator displayed in Figure 2.

Then we use the wake state occurrence probability matrixes and 1-order, 2-
order and 3-order states transformation matrixes to estimate the wake state
degree from the first data set and also give a satisfy estimation result which
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Fig. 3. Drowsy State Estimation Result over Train Data. The horizontal coordinate
denote the number of epoch and vertical coordinate is the probability score of drowsy
state occurrence.
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Fig. 4. Wake State Estimation Result over Train Data. Y axis denote the wake degree,
while In Figure 3 it denote drowsy degree.

displayed in Figure 5. In Figure 5 we only displayed two estimation result which
based on β, λ band frequency energy data. In the above figure, we haven’t nor-
malized the Y axis values or given the estimation score instead of the initial
calculated data, because we cannot give an appropriate method based on our
algorithm framework right now. In our future work, we will committed to solve
this problem. In order to further verify the validity of our proposed algorithm,
we used the obtained state occurrence and 1-3 order transformation matrixes
calculated by the training data to validate the test data, the experiment result
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are given in Figure 5 and Figure 6. Figure 5 is the fatigue degree and Figure 6
is the wake degree. Comparing Figure 1- the subject’s response time and color
recognition error rate, we can find that the proposed algorithm can basically
estimate the subject’s vigilance level. Since only one ICA component is used in
the experiment, our algorithm having a good real time capabilities.

0 500 1000 1500 2000
0

5

10

15
β band

0 500 1000 1500 2000
0

5

10

15
γ band

0 500 1000 1500 2000
0

5

10

15
γ band

0 500 1000 1500 2000
0

5

10

15
γ band

Fig. 5. Estimation Result of Drowsy
Degree over Test Data
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Fig. 6. Estimation Result of Wake Degree
over Test Data

5 Conclusion and Future Work

In this paper, we proposed a statistical algorithm for vigilance estimation based
on EEG recordings. We use only one ICA component and then extract energy
feature of the λ frequency band with Morlet Wavelet. Inspired by the markov
model, histogram method is used to compute the wake and drowsy state proba-
bility and 1,2 and order transformation matrix. We used one data for template
and another for test, the experiment result show that our proposed algorithm
frame reliable and effective. Our job is just at an initial stage, more effort should
be paid in solving the following problem:

1. More accurate and reliable method for vigilance states division.More accu-
rate and reliable method for vigilance states division.

2. Design better algorithms based on the work and give a more accurate ex-
periment result.

3. More reliable criterion to assess the estimation results based on our algorithm
framework.
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Abstract. We present a recurrent multimodal model of binding writ-
ten words to mental objects and investigate the capability of the network
in reading misspelt but categorically related words. Our model consists
of three mutually interconnected association modules which store men-
tal objects, represent their written names and bind these together to
form mental concepts. A feedback gain controlling top-down influence is
incorporated into the model architecture and it is shown that correct set-
tings for this during map formation and simulated reading experiments is
necessary for correct interpretation and semantic binding of the written
words.

Keywords: Words and Concepts, Multimodal binding, Self-Organizing
networks, Bigrams.

1 Introduction

We use a network of recurrent self-organizing modules to model aspects of the
reading process within the cortex. As perceptions of the world around us are
experienced by combining sensory inputs of different modalities with internal
world-models learned within the mind, our network consists of models of five
cortical areas, two of which process the sensory information and three others
represent a two-level hierarchical model of the world. Such an architecture is
motivated by the fact that the neural processing first takes place in mainly
unimodal (visual, auditory, etc.) hierarchies in the brainstem and sensory cortices
of the cerebrum. The unimodal percepts then converge in multimodal association
areas such as STS (Superior Temporal Cortex). At this level we have highly
abstracted, semantic representations of objects. We attach words to these mental
objects and thus build conceptual representations.

The world in our work consists of a set of animals defined in terms of percep-
tual features and qualities and we bind the written animal names to the learned
mental objects representing them. The processing and binding of written names
to mental objects follows a similar methodology to [19,9]. However, we have im-
proved working of the network by adding feedback gains to control the level of
modulation feedback from the modeled bimodal integration area.
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The neuronal circuitry involved in reading is undoubtedly complex and much
current research concentrates on an area called VWFA (Visual Word Form Area)
in left fusiform gyrus [13] where prelexical, i.e., strings of letters, and lexical pro-
cessing of word forms [5] takes place. One of the more complete representations
of cortical areas involved in the process of reading resulting from intensive fMRI
investigation is given in [4]. Fig.2.1 (available electronically) presents 13 inter-
connected cortical areas, arranged in five groups: visual input, visual word form,
access to meaning, access to pronunciation and articulation, and top-down at-
tention and serial reading. In our work we use a much simplified model consisting
of just five ‘cortical’ areas. One of the basic premises of our modelling framework
is the concept of a ubiquitous “neuronal code”, which implies a unified way of
representing information exchanged by modules of the network.

At the beginning of our consideration is the problem of coding words in neo-
cortex, since several methods based on letter combinations and positioning with
increasing sophistication have been proposed [3,8,20]. We will employ here a rel-
atively straightforward method called open bigram coding as presented in [20,4]
and described further in Section 3.1. The other fundamental consideration is
how and where conceptual representations are stored in neocortex. We adopt
the unitary system hypothesis as argued in [1].

2 Model Description

As a hierarchical model of reading combining bottom-up sensory integration
with top-down processing our model follows principles similar to those presented
in [7], which describes a multi-layered model for processing of features, letters
and words in cortex. For a related neurocomputational account of map-based
processing and its role in language and speech comprehension and production,
see also [11,12].

In our approach, which stems from our earlier works on multimodal integration
[19,2,18] self-organized modules form low dimensional labels. These labels are
used as afferent signals to up-stream modules, and may represent any type of
perceptual, conceptual or lexical ‘features’. Such universal feature labelling is
consistent with the neurocomputational modelling approach of [6].

As noted above, we do not attempt to represent each and every cortical area
taking part in perceptual and semantic processing of mental objects or in higher-
level language and related cognitive tasks. Rather our aim is to represent a subset
of language processing in a smaller number of modules aggregating the processes
of several cortical areas. The model consists of 5 processing modules divided into
3 layers, connected as shown in Figure 1. The processing pathway for visual and
associated perceptual information for the mental object is depicted on the left
hand side of the figure (P and MO) while word processing paths are included
on the right (Wrd and UW). These pathways then converge and binding occurs
within a hypothetical high-level bimodal association area, M+W.

Each module consists of a number of artificial neuronal units randomly located
in a circular area. Relative positions of ‘neurons’ inside the circle are described
by a position matrix V. The total number of neurons is selected in proportion
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Fig. 1. The network of simulated cortical maps: Wrd – Sensory Word map, UW –
Unimodal Association Word map, P – Sensory Percepts map, MO – Mental Objects
map, M+W – Bimodal Association map: mental objects and written names

to the number of objects represented by the module, with rows in the weight
matrices W characterizing the synaptic strengths in each module. The main
functions for each map is described below:

– Percepts map (P) encodes basic perceptual features, such as size, colour,
form of locomotion and social behaviour for each object within the category:
Animals.

– Mental Objects map (MO) is a map of perceivable “mental objects” and se-
mantic relationships for the object category, i.e. a topographically organised
map of a set of 30 animals arranged according to perceptual features.

– Word map (Wrd) models letter and letter position processing in VWFA.
Input to this module take the form of word bigrams based on the possible
pairings of 26 English/Latin letters.

– Unimodal Word map (UW) performs sub-lexical processing of words and
projects these as written names for lexical binding within the bimodal asso-
ciation map.

– ‘Bimodal’ association map (M+W) is responsible for binding perceivable
mental objects to their written names in order to form a set of labelled
mental concepts.

Sensory modules in Figure 1 operate on a relatively large number of afferent
signals and produce a low-dimensionality efferent signal labeling the sensory
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object. Association modules, in turn use these labels as their afferent signals
and produce efferent labels encoding positions of activated neuronal patches
within these maps. The operation of a cortical module is functionally equivalent
to mapping the higher dimensionality input space to a three-dimensional output
space. More specifically, the label information consists of a three-dimensional
vector encoding the relative location of the most excited neuron within a given
cortical patch, supplemented by the post-synaptic activity level of this neuron.

3 Operation of Recurrent Network

The processing modules within the network model are interconnected via feed-
forward sensory processing pathways and feedback connections from the bimodal
integration module (M+W) (see Figure 1). Feedback gain terms, gmo and guw

are also shown on these recurrent pathways. The effect of these is discussed below
and in Section 3.2.

It is assumed that during normal operation association modules perform static
non-linear mappings of the form:

yMW = f(WMW · xMW) , xMW = [yMO,yUW]
yMO = f(gMO ·WMOMW · yMW + WMOP · yP)
yUW = f(gUW ·WUWUW · yMW + WUWSW · ySW)

where x and y represent input and output signals, respectively and f(·) describes
the Winner-Takes-All function. For the bimodal association module we can write
the following dynamic equation:

yMW(t + 1) =M(yMW(t),yMO(t),yUW(t)) (1)

which formally describe the recurrent and non-linear nature of the network that
may result in complex time behaviour. From the simulation perspective, the
trained network is observed to settle immediately if we apply exogenous stim-
uli that are congruent with the endogenous thoughts or initial conditions. In
other words, if the labels in the network are known and congruent, the network
quickly converges to a stable state. See [19] for behaviour of a similar network
for incongruent inputs.

3.1 Preprocessing of Percepts and Word Bigrams

Prior to training of the maps, a preprocessing step is performed to produce the
sensory-based semantic and letter bigram information for the separate perceptual
and written word/lexical pathways. Open bigram encoding [20,4] is used in the
present model. The purpose of this is to encode attribute lists of the former
and relative letter positioning of associated words for the later into a consistent
numerical format for the self-organised maps. To ensure computational efficiency
all inputs and weight vectors are projected on the unity hypersphere. Working
with unity vectors makes it easy to compare them by calculating relevant inner
products and allows us to use a simplified dot-product learning law [10].
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3.2 Sequential Development of Maps

The map training sequence approximately follows that of the widely accepted
model of neural ontogenesis and cortical map formation. In general, maps and
their interconnections are trained using the Kohonen learning law[10], normalised
Hebbian learning [14,15,16], or combination of both as in [11,12]. In particular,
the processing and adaptation to sensory and learned label information is prop-
agated in a feedforward or bottom-up direction and feedback processing subse-
quently comes into play in a recurrent optimisation of the higher level maps.1

Feedforward training of unimodal sensory maps. The first training step
involves initial organisation of the unimodal maps, MO and UW. To train the
map of mental objects, MO, feature vectors xP describing the animals are first
encoded by the auxiliary module, P as a dimensionally reduced label, yP and
used as input to MO. A competitive learning process then encodes these inputs
as a map of mental objects organised according to their perceptual semantics.
Following training, the object categorizing module P is disconnected and the sig-
nal yP is interpreted as thought commands used for recalling items stored within
module MO. The UW map is trained independently using the topographically
organised word bigram representations from the Wrd module.

Feedforward training of bimodal integration map. The next step is to
train the bimodal map M+W using combined inputs from MO and UW. Through
statistical pairing of randomly presented mental object and word label informa-
tion from each of the unimodal maps, an initial bimodal map of lexically-bound
concepts, in this case of a named set of animals, is formed.

Feedback training of sensory and bimodal maps. Following completion
of the feedforward training steps, the three association modules forming the
recurrent part of the network are trained together. This time, after each learning
step we perform several relaxation steps running the network as in Eqn (1), until
all efferent signals in the network are constant. There is a limit on the number
of iterations imposed that is important in the initial learning stages. Once the
maps are fully developed, the network stabilizes quickly after a small number of
iterations depending on congruence between the perceived mental objects and
associated written words or names.

As a result of this training step, the unimodal maps, MO and UW are opti-
mised and re-organised to reflect contextual information transmitted from the
bimodal integration layer. The M+W module in turn is adjusted so as to repre-
sent the statistical correlations between the unimodal data encoded in the label
information yMO and yUW. A notable new feature of the model architecture
presented in Figure 1 are the feedback gain terms, gMO and gUW . The effect
of reducing the feedback gain is to attenuate the significance of the feedback
relative to feed-forward signals.
1 Note that while no recurrent feedback from higher level modules is used in the initial

feedforward training steps, self-organisation of the maps assumes local recurrent con-
nections across the map output layer in order to implement the required competitive
learning process.
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In order to ensure that inputs to the MO and UW modules are properly
bounded and that weight vectors remain on the unity hypersphere, a novel al-
gorithm is employed in which the inputs and gain values are effectively spatially
decomposed and then re-assembled within the neuronal units.

3.3 Testing Response of Network to Word Stimuli

Following training of the maps, the operation of the network is essentially as fol-
lows: The written word excites cortical patches in the word bigram map, Wrd,
and via the forward path from this low-level sensory area, patches within the
unimodal association area UW and bimodal binding area, M+W are also excited.
A similar pattern of activation is produced via the feed-forward pathway from
the ‘perceptual’ mental objects area MO to M+W. These direct feed-forward
paths assure that the binding process is rapid – at least in the case of congruous
thoughts and inputs. In the case of discrepancy or incongruity between the men-
tal object and a written word (for example misspelt word, or mismatch between
word and perceived object) a feedback loop is automatically activated from the
M+W area back to the MO and UW modules. This initiates a recurrent cy-
cle that typically converges on a globally sensible solution, assuming that no
contradictory input is presented and that one actually exists.

As in the feedback training step, the gain terms gMO and gUW can be set
separately during the testing or operational phase. In this way the effect of con-
trollable feedback upon the hierarchically organised set of trained maps, or equiv-
alently, top-down influence on the simulated reading process can be explored.
An initial set of results showing some of these effects are presented below.

4 Simulation Results

Preliminary results show the development of activities over time in the modules
of our simulated network when thought commands about different mental ob-
jects, in this case animals and their associated written names are simultaneously
presented. This perceptual or mental binding task is considered central to lan-
guage understanding during the activity of reading. The simulation scenario is
also similar to the fMRI-based study of recognition of spoken words representing
animals when subjects are cross-modally primed for different animals [17].

As an example of the operation of the network in recognition of words corre-
sponding to known mental objects, consider the situation where the multimodal
computational network is initialised to a particular animal, while being presented
with the perceptual features of another animal and a misspelt version of the word
for that animal. The response of the network to this situation is presented in
Figures 2 and 3.

In the maps depicted in these figures, neuronal positions are marked with the
yellow dots and the map area is tessellated with respect to the peaks of neuronal
activities for each stimulus. We can identify the neuronal patches for various
animals, e.g., ‘dog’, ’frog’ and ’goat’. The objects or written names are ‘placed’
in the relevant cortical area during the learning process. Once the learning is
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presents a misspelled word “grog”, the perceptual map, Per, presents object “frog”,
and the initial state was “dog”. Both feedback gains are as during training, (g=0.6).
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420 A.P. Papliński, L. Gustafsson, and W.M. Mount

completed, the cortical area responds with an activity pattern characteristic to
each stimulus.

At the starting point, the MO module thinks ‘dog’, whereas the unimodal
word association module UW reads the orthographically similar word ‘grog’. The
bimodal association map, M+W is arbitrarily initialized with a mental object
‘dog’. This initial state is marked on three maps in Figures 2 and 3 with the
‘�’. Since these positions have been learned during the training procedure, the
relative post-synaptic strengths are initially at their maximum value, as seen in
the upper right hand side of both figures.

In the first case, Figure 2, relatively low feedback gains, gUW = gMO = 0.6
have been used during the reading test phase. In this scenario, although the
bimodal map M+W and mental objects map, MO converge to a ‘frog’ solution,
the response of the unimodal word area UW arrives at a point on the class
boundary between ‘frog’ and ‘goat’. This indicates uncertainty in recognition of
the word for the animal most closely matching the stimulus (‘grog’), implying
that the network as a whole has not been able to successfully bind the correct
name ‘frog’ to the corresponding mental object. This level of uncertainty is
indicated by the final value of relative post-synaptic strengths, in which the
response of MO and M+W is stronger than that of UW.

Now compare this with the situation in Figure 3 when a greater level of
feedback gain, gUW = gMO = 0.9 has been used during testing. In this case the
network quickly settles to a solution when the thought prevails; the final response
of all maps including UW is consistent and the network as whole converges
rapidly on the ‘frog’ conclusion. The level of confidence in this outcome is further
indicated by the high levels of the relative post-synaptic strengths.

Effectively, the network has acted to correct the spelling of the distractor
word through application of contextual knowledge contained within the inter-
connected association modules. This result is a simple demonstration of how
semantic priming on a known set of mental objects within a category can be ef-
fectively represented within the model. In probabilistic (empirical Bayes) terms,
it also suggests how new beliefs, hypotheses or perceptions of the world can be
inferred when a network conditioned by given prior beliefs or initial conditions
is presented with new sensory evidence.

5 Discussion

For the direct comparison above to be possible, it is necessary that exactly
the same trained hierarchical network be used in each case. In this example, a
feedback gain setting of gUW = gMO = 0.6 was used during recurrent phase
in the formation process (as described in Section 3.2). More varied simulation
results can be obtained if different feedback gain values are used, however due
to space limitations examples of the types of aberrant behaviours that can be
produced as a result are not considered at this time.

In general, reducing the feedback gain during map formation will result in
a overall network that responds well to new and less predictable inputs (such
as words and non-words) but which lacks the contextual knowledge required to



Binding Written Words into Concepts 421

correctly associate these inputs with cross-modal percepts and mental objects.
Conversely, applying too great a level of feedback during recurrent training step
results in a network with a tendency to become “locked up” in previously known
states or thoughts and less able to adapt to new sensory information.

This suggests that an optimal level of feedback gain is required in order to
realise a reading network which can effectively employ previously learned knowl-
edge to correctly perceive and learn new words.

One possibility for future research would be to use the feedback gain within
an incremental learning regime in which global reinforcement feedback is used
to assess the utility of the learned set of maps at a particular setting of feedback
versus feedforward bias. The feedback gain g could then be decreased if the
network became ‘stuck’ and unable to adapt to new inputs or sensory evidence
and increased if a stronger belief in the prior state or conditions was deemed
to result in a better overall performance. Adopting of such a ’self-supervised’
approach could be a way to incorporate a process analogous to selective attention
in a straightforward and integrated way which works to optimise the efficiency
of the learning process.

The complete simulation software is available from the first author.

6 Conclusion

We have presented a model for binding written names to perceptually-based se-
mantic objects and provide preliminary results to demonstrate how this can be
used in modelling cognitive functions basic to reading. This includes automatic
‘correction’ of misspelt words when a similar known word that is bound to an
active mental object or by extension, object category is attended to. Such cogni-
tive processes are of fundamental importance to the particular human activity of
reading. The introduction of controllable feedback gain increases the behavioural
repertoire of the model, presenting an opportunity to explore a number of other
effects on learning and cognitive behaviour within the outlined computational
framework.

In the interest of maintaining structural simplicity, several assumptions have
been made in the model. For convenience specific visual and other perceptual
modalities, conceptual categories and semantic relationships are combined in
a “mental objects map”. This simplification is computationally efficient as it
allows this information to be encoded as arbitrary lists of attributes. In a more
comprehensive and biologically realistic model, the auxiliary ‘P’ module could
be divided into specific sensory modalities or sub-modalities, used to represent
visual, tactile, spatial or other features related to mental object categories such
as plants, animals or tools.

The representation of the mental objects would then involve a multimodal
integration of such features and binding of these to their associated names. From
the lessons gained through this modelling exercise and through experiments in
lexical binding of spoken names to mental objects, we hope to extend the model
to integrate structurally separate processing pathways and perform multimodal
and transmodal binding across auditory and written language modalities.
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ject. In: Pŕıncipe, J.C., Miikkulainen, R. (eds.) WSOM 2009. LNCS, vol. 5629, pp.
191–199. Springer, Heidelberg (2009)

16. Monner, D., Reggia, J.A.: An unsupervised learning method for representing simple
sentences. In: Proc. Int. Joint Conf. Neural Net., Atlanta, USA, pp. 2133–2140
(June 2009)

17. Noppeney, U., Josephs, O., Hocking, J., Price, C., Friston, K.: The effect of
prior visual information on recognition of speech and sounds. Cerebral Cortex 18,
598–609 (2008)
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Abstract. During emergency scenarios, the large number of possible influences 
inter se between cognitive and affective states of the individuals involved 
makes it difficult to analyse their (collective) behaviour. To study the behaviour 
of collectives of individuals during emergencies, this paper proposes a 
methodology based on formalisation of empirical transcripts and agent-based 
simulation, and applies this to a case study in the domain of the 7/7 London 
bombings in 2005. For this domain, first a number of survivor statements have 
been formalised. Next, an existing agent-based model has been applied to 
simulate the scenarios described in the statements. Via a formal comparison, the 
model was found capable of closely reproducing the real world scenarios. 

Keywords: London bombings, agent-based simulation, contagion. 

1   Introduction 

During large-scale emergencies such as terrorist attacks or natural disasters, the 
involved persons may behave in unexpected ways. For example, some individuals 
may immediately start panicking and ‘lose control over their actions’, whereas others 
may emerge as ‘calm leaders’ helping other people. Especially in larger crowds, the 
numerous possible influences of mental states within individuals (e.g., person A has 
the belief that he will die, and therefore starts panicking) and between individuals 
(e.g., person B manages to calm down person A) makes it very difficult to predict 
how a certain crowd will behave in a particular situation. Nevertheless, gaining more 
insight into the dynamics of these processes is very useful, since it enables policy 
makers to explore possibilities for developing procedures and interventions that may 
minimise the number of casualties in such emergency scenarios (e.g., providing 
emergency exits at appropriate locations, or equipping patrollers with intelligent 
devices that recommend escape routes). In line with recent developments [2,13], this 
paper proposes to study such dynamics using agent-based simulations. 

More specifically, to be able to analyse the dynamics of mental states and their 
intra- and interpersonal interaction in emergency scenarios, an agent-based simulation 
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model ASCRIBE (Agent-based Social Contagion Regarding Intention Beliefs and 
Emotions) has been developed [9]. This model has been inspired by several concepts 
from Social Neuroscience [6,7], including the concepts of mirror neuron (i.e., a type 
of neuron that fires not only when an individual performs an action, but also when 
he/she observes this action performed by someone else [10,11]) and somatic marker 
(i.e., a feeling induced by a certain decision option considered by an individual, which 
helps the individual make decisions by biasing that option [1,7]). Based on these 
concepts, the ASCRIBE model describes how for different individuals in a crowd, the 
strength of their beliefs, intentions and emotions may evolve. 

The main goal of the current paper is to show how the model can be used to 
analyse the dynamics of individuals’ mental states for a real world incident. To this 
end, a case study is undertaken which analyses the London bombings of July 7th, 
2005. To test the applicability of the model to this case, a research methodology is 
followed that consists of a number of steps. First, a set of survivor statements which 
were extracted from the ‘Report of the 7 July Review Committee’ [12], have been 
formalised using a dedicated ontology. Next, the ASCRIBE model has been applied 
to generate a number of simulation runs for fragments of the scenarios described in 
the survivor statements. And finally, the results of the simulations have been 
compared with the formalised survivor statements, both in an informal and in a formal 
manner (using an automated tool). 

The remainder of this paper is organised as follows: Section 2 provides a brief 
description of the London bombings. Section 3 explains how statements of survivors 
of the attack were obtained and converted to formal notation. Section 4 summarises 
the main mechanisms of the ASCRIBE model and Section 5 shows how the model 
was applied to the London bombings scenario. Section 6 discusses the (formal) 
comparison between the simulation runs and the formalised statements and Section 7 
concludes the paper with a discussion. 

2   London Bombings  

The London bombings of July 7, 2005 (also referred to as 7/7) involved 4 suicide 
bombers triggering explosions on the London Underground and Bus transport 
network. Two of these bombings took place on underground trains outside Liverpool 
Street and Edgeware Road stations and a third one between King’s Cross and Russell 
Square. These bombs went off at around 8:50 in the morning during the ‘rush hour’ 
when most commuters travel to their workplaces. The fourth bomb went off on a 
double-decker bus at Tavistock Square about an hour later. 52 people were killed and 
more than 770 were injured, see [12]. 

3   Formalisation of Survivor Statements 

Below, Section 3.1 describes how statements of survivors of the attack were obtained, 
and Section 3.2 explains how these were converted to formal notation. 
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3.1   Survivor Statements  

The July 7 Review Committee was set up to ‘identify the successes and failings of the 
response to the bombings and to help improve things for the future…’ [12] and 
submitted its report to the London Assembly in June 2006. Information from nearly 
85 individuals was obtained as part of this report to the London Assembly. These 
accounts consist of unstructured narratives from individuals involved in the incident 
and run into 299 pages of text. Of these, 21 are fairly detailed accounts of the 
experiences of the respective survivors depending on the proximity to the explosion 
of the concerned survivor, the evacuation process and after-effects on survivors 
including the psychological. 12 accounts relate to a public hearing held on 23 March 
2006 and 9 relate to private meetings with the chairman of the Review Committee. 
The rest of the accounts consist of information provided by survivors and affected 
persons through email and letters.  

The July 7 Review Committee also obtained information and views from nearly 40 
organisations. These accounts consist of unstructured narratives and written 
submissions of officials from a broad range of organisations including the police, fire 
brigade, ambulance, hospitals, local authorities, telecommunication companies and 
business associations and  run into 284 pages of text. For the purposes of this paper, 
only transcripts of individual survivors in their original form have been included in 
the analysis. 

Statements of survivors are publicly accessible and available as a consolidated 
Volume 3 of the July 7 Review Report, in pdf as well as rich text format. The 
statements have been anonymised and so the names in the statements do not refer to 
the actual identity of the survivor. An example of a transcript of a survivor given the 
name ‘John’ and who was at the Edgeware Road Station site of the bombings, is 
shown in Figure 1 below.  

 

 

Fig. 1. Extract from John’s transcript at the July 7 Review Committee hearing 

The transcript was parsed into phrases that as far as possible conveyed a single idea 
leaving the statement in its original form. These phrases were treated as indications 
for ‘cues’ that help explain the behaviour and thoughts of the survivor. References to 
the location, time and elapsed time were also put alongside the cues. These have been 
either explicitly stated or inferred from surrounding statements in the transcript for the 
survivor. Each of the phrases was then formalised according to the scheme explained 
in the following sub-section. An extract from the parsing table for ‘John’s transcript’ 
is shown below in Figure 2. 
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Fig. 2. Parsing table for John’s transcript 

3.2   Formalisation 

As a first step towards formalisation of the survivor statements, a time stamp has been 
assigned to each cue. Since little information is known about the actual time and 
duration of the events, we simply used natural numbers to describe the timing of the 
subsequent events (i.e., we say that they took place at time point 0, 1, 2, and so on). 
After that, the content of the cues was analysed in more detail, to make an inventory 
of the classes of concepts they refer to. In general, each cue turned out to refer either 
to a belief or an action. Moreover, each belief or action belonged either to the survivor 
himself, or another individual at the scene. For example, the statement ‘there was a 
massive bang’ refers to a belief of the speaker himself (namely that a blast had 
occurred), whereas the statement ‘I put my hands and arms over my ears and head’ 
refers to an action of the speaker. Similarly, the statement ‘a young woman sitting 
next to me asked me if I was OK’ refers to an action of another individual. 
Furthermore, two types of beliefs could be distinguished, namely, beliefs that are 
triggered by an external stimulus (e.g., ‘there was a massive bang’) and those 
triggered by an internal stimulus or thought (e.g., ‘I thought I was going to die’). 

Table 1. Domain Ontology 

Predicate informal meaning

has_belief(a:AGENT, b:BELIEF) agent a has belief b 

has_internal_belief(a:AGENT, b:BELIEF) agent a has (internally triggered) belief b 

performed(a:AGENT, ac:ACTION) agent a performs action ac 

Sort elements

AGENT {john, man_in_front, young_woman, …} 

ACTION {protect_head, rub_eyes, …} 

BELIEF {blast_has_occurred, risk_of_injury, …} 
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Based on this analysis of the content of the cues, a formal domain ontology (or 
signature) has been developed. For this purpose, the LEADSTO language has been 
used, which is an extension of order-sorted predicate logic [4]. In this language, the 
domain under analysis can be described in terms of sets of sorts and subsorts 
relations, constants in sorts, functions, and logical predicates over sorts. An overview 
of the domain ontology developed for the current case study is provided in Table 1.  

Note that the predicates have been chosen in such a way that they can be easily 
mapped onto concepts in the ASCRIBE model. These predicates have generic names. 
The elements of the sorts are domain-specific, and depend on the particular scenario. 

After development of the domain ontology, the actual formalisation of the cues 
was done. To this end, for each survivor, the following algorithm was executed(?) 
(described in pseudo-code): 
 
start with an empty specification 
for t = time step 1 to last-time do 
1. determine whether the cue at time t refers to a belief (either ‘internal’ or 

‘external’) or action 
2. determine to which agent the cue belongs  
3. select the appropriate predicate from the domain ontology 
4. express the cue formally using that predicate, and add the result to the 

specification, annotated with time step t 
end 
 

As an illustration, Figure 3(a) shows (a visualisation of) the resulting formalisation 
of the survivor statement that was shown in the earlier Figure 1, in an example trace. 
In this figure, which contains a fragment of 30 time steps, time is on the horizontal 
axis; a box on a line indicates that an event is true at that time point. 

As a final step, the events included in the formal traces needed to be connected to 
concepts within the ASCRIBE model, enabling us to apply the model to the scenarios 
under investigation. The main concepts present in ASCRIBE are beliefs, intentions, 
and emotions, which may be related either to specific world states or to decision 
options (see Section 4 for details). Thus, as an example, the ‘external beliefs’ were 
translated into ‘beliefs about the positiveness of the situation’ and ‘belief options’ in 
ASCRIBE, the ‘internal beliefs’ were translated into ‘emotions’ (of fear) in 
ASCRIBE, and the ‘actions’ were translated into ‘intention options’ in ASCRIBE. For 
the belief and intention options, two types of actions were distinguished, namely 
‘protective actions’ (e.g., covering one’s ears) and ‘social actions’ (e.g., comforting 
another passenger). Moreover, during these translations, numerical values (from the 
set {0, 0.1, 0.2, …, 0.9, 1}, where 0.5 represents a neutral value) have been assigned 
to the strength of each state. For example, the belief that a blast has occurred clearly 
refers to a very negative situation (e.g., value 0.1), whereas the belief that help is 
underway refers to a positive situation (e.g., value 0.9). To guarantee inter-observer 
reliability, as a pre-test, part of the survivor statements have been formalised 
separately by two different observers. When comparing the results, the differences 
turned out to be small: besides minor interpretation errors, the distance between the 
numerical scores of the two observers never were greater than 0.2. 

An example of the outcome of this final step is shown in Figure 3(b). Note that this 
figure corresponds to the same scenario as in Figure 3(a), but that a larger fragment 
(of 70 time steps) has been taken. As shown in the first graph, the positiveness of this 
agent (named John) fluctuates during the scenario. Initially (i.e. right after the 
explosion), he has some rather negative beliefs about the situation, but based on the 
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development of the events, he starts to have some more positive beliefs from time 
point 20. The same pattern is repeated in the period between time point 40 and 70. 
Similarly, the other graphs show John’s level of emotion (fear in this case), and the 
extent to which his actions are ‘protective’ or ‘social’ actions. Note that the graphs 
only show some values, that is when the information has been available; at the other 
time points nothing is shown. In Section 5, these kinds of information bits will be 
used for simulating the scenarios. In particular, the information shown in the first 
graph (beliefs about the situation) will be used as input for the ASCRIBE model, 
whereas the information from the other three graphs (emotions, protective and social 
actions) will be used to compare with the output of the model.   

 

Fig. 3. Example formal trace – qualitative (a) and quantitative (b) information 

4   Simulation Model 

To simulate the dynamics of beliefs, emotions and intentions of individuals involved 
in the 7/7 London bombings of 2005, the agent-based model ASCRIBE [9] was used 
and implemented in Matlab. For a complete overview of ASCRIBE, see [9]. In this 
section, the model is only briefly summarised and explained in terms of how it was 
tailored  to the 7/7 London bombings case. The main concepts present in the original 
ASCRIBE model [9] are beliefs, intentions, and emotions. For the current purpose, the 
following specific states for the agents were taken, namely 1 emotional state per agent 
(fear), 2 intentional states per agent (either to perform a protective or social action) 
and 3 beliefs (one about the ‘positiveness’ of the situation and two about whether an 
agent should perform a protective or social action):   

fear of agent A      qfearA(t) 
intention indication for action option O of agent A  qintention(O)A(t) 
belief in X (either about situation or action) of agent A  qbelief(X)A(t) 

In Figure 4, which is adapted from [9], an overview of the interplay of these different 
states within the model is shown. It is assumed that at the individual level the strength 
of an intention for a certain action option depends on the person’s beliefs (cognitive 



 Analysis of Beliefs of Survivors of the 7/7 London Bombings 429 

responding) in relation to that option. It is also assumed that beliefs may generate 
certain emotions (affective responding), for example that of fear, that in turn may 
affect the strength of beliefs (affective biasing). Note that it is assumed that these 
latter emotions are independent of the different action options. The contagion of all 
the different states between individuals is based on the concept of a mirror neuron 
(e.g., [10,11]) in Neuroscience. When states of other persons are mirrored by some of 
the person’s own states, which at the same time play a role in generating their own 
behaviour, then this provides an effective basic mechanism for understanding how in 
a social context, individuals affect each other’s mental states and behaviour.  

 

Fig. 4. The interplay of beliefs, emotions and intentions in the 7/7 London bombings context 

Note that all mirroring processes take place through interaction between agents, 
whereas the other processes shown in Figure 4 occur internally, within an individual 
agent. An overview of the different intra- and interpersonal interaction processes is 
given in Table 2.  

Table 2. The different types of processes in the model 

from S to S' type description 
belief(X) fear internal affective response on information; for example,  

on threats and possibilities to escape 
fear fear interaction emotion mirroring by nonverbal and verbal interaction;  

for example, fear contagion 
fear belief(X) internal affective biasing; for example, 

adapting openness or expressiveness 
belief(X) belief(X) interaction belief mirroring by nonverbal and verbal interaction; for example,  

of information on threats and action options 
belief(X) intention(O) internal cognitive response on information; for example, 

aiming for a protective action based on the danger of the situation 
intention(O) intention(O) interaction intention mirroring by nonverbal and verbal interaction; for  

example, of tendency to aim for a social action 

 
The central idea of the model is based upon the notion of contagion strength γSBA 

which is the strength with which an agent B influences agent A with respect to a 
certain mental state S (which, for example, can be an emotion, a belief, or an 
intention). It depends on the expressiveness (εSB) of the sender B, the strength of the 

affective 
biasing 

affective 
responding 

emotion 
mirroring 
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mirroring 
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mirroring 

cognitive 
responding 

intention 

belief emotion 
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channel (αSBA) from sender B to receiver A and the openness (δSA) of the receiver: γSBA 
= εSB αSBA δSA. The level qSA for mental state S of agent A is updated using the overall 
contagion strength of all agents B not equal to agent A: γSA = ΣB≠A γSBA. Then the 
weighed external impact qSA*: for the mental state S of all the agents B upon agent A, 
is determined by: qSA* = ΣB≠A γSBA qSB / γSA. Then, state S for an agent A is updated by: 

qSA(t+Δt) =  qSA(t) +  ψSA γSA [ f(qSA*(t), qSA(t)) - qSA(t)] Δt (1)

Here ψSA is an update speed factor for S, and f(V1, V2) a combination function. This 
expresses that the value for qSA is defined by taking the old value, and adding the 
change term, which basically is based on the difference between f(qSA*(t), qSA(t)) and 
qSA(t). The change also depends on two factors: the overall contagion strength γSA (i.e., 
the higher this γSA , the more rapid the change) and the speed factor ψSA.  

Within the definition of the combination function f(V1, V2) a number of further 
personality characteristics determine the precise influence of the contagion. First, a 
factor ηSA is distinguished which expresses the tendency of an agent to absorb or 
amplify the level of a state S, whereas another personality characteristic βSA represents 
the bias towards reducing or increasing the value of the state S. Thus, the combination 
function f(V1, V2) is defined as follows: 

    f(V1, V2)  =  ηSA [ βSA (1 – (1 - V1)(1 - V2)) + (1-βSA) V1V2 ] + (1 - ηSA) V1 (2)

In the ASCRIBE model, the effects of emotions on beliefs are calculated with the 
formulae in Section 4.1 of [9]. Instead of using these formulae here, the values for 
beliefs about the situation and action options were taken from the empirical data as 
explained in Section 2 and 3. Here, we assume the effects of emotions on beliefs are 
implicitly present in these input values.  

The effect of the emotion fear on beliefs is expressed by the following formula:  

    qfear,A*(t) = νA · (B≠A γfearBA ⋅ qfearB / γfearA) +  
                       (1 - νA)·(X   ωX,fear,A .(1 – pXA)·rXA·qbelief(X)A ) 

(3)

In formula 3, information has an increasing effect on fear if it is relevant and non 
positive, through informational state characteristics rXA  denoting how relevant, and 
pXA denoting how positive information  X is for person A. The influence depends on 
the impact from the emotion fear by others (the first factor, with weight vA) in 
combination with the influence of the belief present within the person. This qfear,A*(t)  
is used in the equation describing the dynamics of fear: 

qfearA(t+Δt) =  qfearA(t) +  γfearA [ f(qfearA*(t), qfearA(t)) - qfearA(t)] Δt 

with 

f(qfearA*(t), qfearA(t)) = ηfearA [ βfearA (1 – (1 - qfearA*(t))(1 - qfearA(t))) + (1-βfearA) qSA*(t) qSA(t) ] 

 + (1 - ηfearA) qfearA*(t) 

Furthermore, the specific state qemotion(O)A was left out of the current model, since this 
state was not mentioned in the survivor reports and it is not realistic to use in these 
simulations. Therefore, the effect of emotions on intentions in ASCRIBE is left out in 
the current model, leaving the effect of beliefs on intentions calculated as follows: 

qbeliefsfor(O)A(t) = X   ωXOA qbelief(X)A / X   ωXOA 
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where ωXOA indicates how supportive information X is for option O. The combination of 
the group’s aggregated intentions with an agent’s own belief for option O is made by 
a weighted average of the two: 

qintention(O)A**(t) = (ωOIA/ωOIBA)qintention(O)A*(t)  + (ωOBA/ωOIBA) qbeliefsfor(O)A(t) (4)

γintention(O)A* = ωOIBA γintention(O)A (5)

where ωOIA and ωOIBA  are the weights for the contributions of the group intention 
impact (by mirroring) and the own belief impact on the intention of A for O, 
respectively, and  

ωOIBA =ωOIA+ωOBA 

The overall model for the dynamics of intentions for options becomes: 

qintention(O)A(t + Δt) = qintention(O)A(t) + γintention(O)A* [ηintention(O)A (βintention(O)A (1 - (1- 

qintention(O)A**(t))(1-qintention(O)A(t)))  + (1-βintention(O)A) qintention(O)A**(t)  qintention(O)A(t))   

+ (1 - ηintention(O)A) qintention(O)A**(t)  - qintention(O)A (t)] ⋅ Δt 

(6)

5   Simulation Results 

Multiple survivor reports of the London bombings at 7-7-2005 were formalised, as 
described in Section 2 and 3. As an illustration, in this section the simulation results 
of the ASCRIBE model for one particular instance of this data is shown, namely for 
the scenario described in Section 3, involving the survivor named John. In the 
survivor report of John, the beliefs, emotions and intentions of 3 other persons were 
mentioned as well, therefore the simulation in Matlab was made for 4 agents in total. 
The beliefs of the situation and for the two action options (social action or protective 
action) were taken as inputs of the model. The fear value of John, and the values for 
his intentions to act in a protective or social manner, were produced by the ASCRIBE 
model as outputs. These output values (all between 0 and 1) are shown in Figure 5 
and can be compared to the emotion fear and social and protective actions stated in 
the survivor report, which were formalised and are shown in Figure 3(b). The patterns 
in Figure 5, outputted by the ASCRIBE model, correspond quite well with the 
patterns in the formalised empirical data from the survivor report in Figure 3(b). For 
example, in Figure 3(b) it can be seen that survivor John had a high fear level of 0.9 at 
three points in his report. In the left graph in Figure 5 it can be seen that through the 
interactions with the other agents and the internal affective responding, agent John 
also has a high fear value, fluctuating between 0.7 and 0.9. The right graph in Figure 
5 shows that at the beginning, John aims more for protective actions than social 
actions, which seems the logical thing to do in a dangerous situation. Over all time 
steps, John shows a decrease in his aiming for protective actions in the first 10 time 
steps, followed by an increase till time step 15 and than another decrease till time step 
30. This pattern can also be seen in Figure 3(b), where John’s stated protective actions 
in his report started high, then decreased, increased and finally decreased. In Figure 
3(b) it can also be seen that John stated that he performed social actions, formalised 
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by the value 0.6, around time steps 20-25 and 60-70. Figure 5 shows that the 
ASCRIBE model as well outputs social actions around the value 0.6, around time 
steps 20-25 and 60-70. The difference between Figure 3(b) and Figure 5 is, that in 
Figure 5 all values change dynamically over time, they are continuous, and in Figure 
3(b) the values are only available for certain points in time, taken from the survivor 
report. As a consequence, the total pattern of the real world data is not directly visible 
in the formalisation, like in Figure 3(b), but is visible when simulated by the 
ASCRIBE model. To further validate the ASCRIBE model against the real world 
data, a formal check was performed, where the real world data and the simulation 
results from the ASCRIBE model were compared automatically. This is explained in 
the next section.  

 

Fig. 5. The values for fear and intentions for actions of survivor John 

6   Formal Comparison 

To formally compare the simulation results in Section 5 with the formalised 
transcripts presented in Section 3.2, the TTL Checker Tool [3] has been used. This 
piece of software enables the researcher to check whether certain expected (dynamic) 
properties, expressed as statements in the Temporal Trace Language (TTL) [3], hold 
for a given trace (defined as a time-indexed sequence of states). Since the tool can 
take both simulated and empirical traces as input, it can be used to check 
(automatically) whether the generated simulation runs show similar patterns to the 
real world transcripts. 

Using the TTL Checker Tool, a number of dynamic properties have been verified 
against the traces described in Section 3.2 and 5 (which we will refer to as empirical 
traces and simulation traces, respectively). Some of these properties are presented 
below. To enhance readability, they are represented here in an informal notation, 
instead of a formal TTL notation. Note that the letters mentioned in the round 
brackets are parameters, which can be filled in when checking the property using the 
Checker Tool. 
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P1(a:agent, i1,i2:interval, m:trace) - ‘More positiveness implies more social actions’ 
For intervals i1 and i2 within trace m, if the average positiveness of agent a’s beliefs about 
the situation is higher in i1 than in i2, then agent a will perform more social actions in i1 
than in i2. 
 
P2(a:agent, i1,i2:interval, m:trace) - ‘More positiveness implies less protective actions’ 
For intervals i1 and i2 within trace m, if the average positiveness of agent a’s beliefs about 
the situation is higher in i1 than in i2, then agent a will perform more protective actions in i2 
than in i1. 
 

These dynamic properties (among several others, which are not shown due to space 
limitations) have been checked against the empirical and the simulation traces (where 
for all agents a, the interviewed persons were filled in). To create the intervals, all 
traces have been split up into relevant sub-scenarios (e.g., a part in which a person is 
present within a train carriage, or is present outside the train), and each sub-scenario 
has been cut into two equal halves, which we call intervals. Thus, by checking 
property P1 and P2 for all sub-scenarios, we basically checked whether it was the case 
that people who became more positive during a sub-scenario stopped protecting 
themselves and started to help others, and vice versa. Surprisingly, this property 
turned out to hold for almost all sub-scenarios of the empirical traces. This is an 
interesting finding, which can be potentially explained by the phenomenon that 
positive people are more open to external stimuli [8]. In addition, the property holds 
true for the simulated traces for the exact same sub-scenarios as in the empirical 
traces. Although this is obviously not an exhaustive proof of the correctness of the 
ASCRIBE model, it illustrates that the model can be used to reproduce similar 
patterns found in realistic scenarios. 

7   Discussion 

In this paper, it has been shown how the dynamics of individuals’ mental states in a 
real world emergency can be analysed, through formalising survivor reports of the 7/7 
London bombings in 2005 and evaluating them against generated simulations of the 
same case study with the ASCRIBE model. It is quite rare to work with this type of 
real world data of survivors of a terroristic attack. Nevertheless, the ASCRIBE 
simulations in Section 5 showed that it can simulate corresponding patterns in the 
empirical data of the 7/7 London bombings. The formal check of dynamic properties 
in Section 6 also shows that the ASCRIBE model can be used to reproduce similar 
patterns found in emergency scenarios, as in evacuation after a terrorist attack.  

So far, the results show that the ASCRIBE model can reproduce patterns in the 
dynamics of beliefs, intentions and emotions of people involved in a terroristic attack 
in the real world. The results are promising, and although the transcription work is 
quite time consuming, the current analysis model has been set up in a generic manner, 
which means large parts can be re-used for the analysis of other real world incidents 
or disasters. 

The current paper should mainly be seen as a proof-of-concept. The methodology 
turns out to be applicable to analysis of parts of the 7/7 bombings case study. In future 
work, the authors intend to analyse reports of a larger number of survivors, and to 
address more and different case studies, thereby better testing the robustness of the 
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model. In addition, a more extensive evaluation is planned, using a quantitative 
measure for the correctness of the simulation results. 
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Abstract. Function connectivity analysis is set to probe the whole-
brain network architecture. Only several specific areas have to be fo-
cused when a specific modal is considered. To explore the microscopic
subnetworks in auditory modality, the mean shift algorithm is proposed
to cluster the fMRI time courses in the corresponding activation areas
and several heuristic conclusions are obtained. 1) The voxel degree dis-
tribution supports scale-free hypothesis, but the exponential is relatively
small. 2) More global subnetworks appear in the more abstract cognition
process. 3) At least half of the subnetworks are local networks and they
seldom cross with each other, acting as independent modules.

Keywords: Function subnetwork, fMRI, scale-free, modular.

1 Introduction

Our brain experiences continuous and complex cognition processes every day.
The cortical network dynamics could be peeked from fMRI, which digitize the
blood oxygen level dependent (BOLD) signal. Exploring the network architec-
ture, the mechanisms underlying neuronal signal integration and modularization
not only do help to the understanding of the human cognition, but also are
heuristic for artificial intelligence.

The whole-brain functional connectivity supports complex network hypothesis
[1]. Egúiluz et al.[2] firstly reported the scale-free topological structure of a large-
scale brain network by calculating the temporal correlation between voxels. By
calculating the degree distribution of voxels, Buckner et al. [3] proposed there
may be hierarchical function hubs in the brain networks. And interesting, latter,
Tomasi et al. [4] obtained similar results by calculating the function connection
density, enhancing the scale-free hypothesis.

Besides, the brain has hierarchical modular network architecture in macro-
scopic scale. Adams et al. [5] used visual and auditory object matching tasks
to identify the brain areas underlying basic and subordinate cognition process.
Davis et al. [6-7] used multiple speech conditions to explore the brain regions
that are involved in spoken language comprehension, found that the hierarchi-
cal auditory system could be fractionated into sound based and more abstract
� This work is supported by National Natural Science Foundation of China (61071180).
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(a) (b) (c) (d)

Fig. 1. Activated areas for S-B and A-S contrasts in auditory modality is shown in (a)
and (b) respectively. The ROIs are shown in (c) and (d).

higher-level process. Later, Okada’s experiments [8] also supported the experi-
ment results.

But what’s the network likes in each area and in each modality? Only sev-
eral specific areas have to be focused when a specific modal is considered. For
example, if we are mainly interested in semantic dynamics, it’s better to ana-
lyze the network structure in the corresponding areas. In this paper, we try to
explore the function subnetwork architecture in auditory task study. Our con-
clusions on scale-free network and local subnetwork modularization are heuristic
for auditory function subnetwork modeling.

To explore the function subnetwork architecture, we detect the activation
area by SPM8 [9] and then the function subnetworks is analyzed by mean shift
[10] clustering. The experiment material is introduced in Section 2. Mean shift
algorithm is introduced and applied to functional space clustering in Section
3. We discuss in detail the subnetwork architecture in Section 4. Finally, we
conclude in Section 5.

2 Material

Analysis were conducted based on an open dataset available at the fMRIDC
site[11], which was used by Adams and Janata in 2002 to compare the neural
circuits of auditory and visual object categorization[5]. Briefly, 12 undergraduate
volunteers were presented with 3 runs, each consisting of 4 blocks of stimulus
trials. Each bock represented a different task (auditory, visual, or semantic)
and was divided into 2 epochs of 15 trials each. During one epoch, participants
matched objects to subordinate-level words and in the other they matched ob-
jects to basic-level words. 270 acquisitions were made in each run from each
subject. Each acquisition consisted of 64 contiguous slices using a gradient EPI
pulse sequence with the following parameters: TR = 2s; TE =35 ms; matrix size
=64 × 64; resolution =3.75 × 3.75 × 5.0 mm3; interslice spacing = 0 mm. Two
sets of high-resolution T1-weighted anatomical images were also obtained. And
we only adopted the high resolution set with 124 sagittal slices.

SPM8 was the main tool for image pre-processing [9]. All runs were realigned
to the first volume of the first run. The structural image was co-registered to this
mean (T2) image. Finally all the images were spatially normalized to a standard
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Tailarach template [12] and smoothed using a 6mm full width at half maximum
(FWHM) isotropic Gaussian kernel. And also, we use the default p > 0.05(FWE)
to detect the activated voxels. Subordinate-Basic (S-B)contrasts for auditory
modality and Auditory-Semantic (A-S) contrasts were computed. And the
contrasts were then entered into a random-effects analysis and SPMs for the
group data were created. SPMs were thresholded at p < 0.01 (uncorrected).

The statistical significant cortex areas are shown in Fig.1. With S-B con-
trast, the areas mainly located in IFS (inferior frontal sulcus) and IFG (inferior
frontal gyrus) , and with the A-S contrast, the activated areas mainly located in
STG(superior temporal gyrus), STS (superior temporal sulcus) and FG (fusiform
gyrus). The two contrasts seldom overlap with each other, A-S contrast mainly
reflects the basic-level auditory cognition whereas the S-B contrast reflects the
subordinate-level auditory cognition.

3 Mean Shift Clustering

To explore the fMRI time courses, we have to learn their distribution at first.
Though many clustering techniques, like Fuzzy C-Means (FCM) and Gussian
Mixture model (GMM), have been applied to fMRI time courses analysis, the
similarity measure and cluster number are hard to choose [13]. The mean shift
algorithm estimates the density adaptively [11], and we use it to analyze the
fMRI time courses. We firstly briefly review it as follows.

3.1 Basic Mean Shift

Assume xi,i = 1, · · · , N are in d dimensional space Rd. The multivariate kernel
density estimator

f̂K (x) =
1

nhd

N∑
i=1

k

(∥∥∥∥x− xi

h

∥∥∥∥2
)

(1)

based on a spherically symmetric kernel K with bounded support satisfying
K (x) = ck,dk

(
‖x‖2

)
> 0 ‖x‖ < 1 is an adaptive nonparametric estimator

of the density at location x in the feature space. The function k (x), only for
x ≥ 0,is called the profile of the kernel, and the normalization constant ck,d

makes K (x) integrates to one. The function g (x) = −k̇ (x) can be defined when
the derivative of k (x) exists. Using g (x) for profile, the kernel G (x) is defined
as G (x) = cg,dg
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Input: Normalized xi,i = 1, · · · , N
1 for i = 1; i ≤ N ; i + + do
2 x ← xi;
3 Initialize m (x) w.r.t ‖m(x)‖ > ε;
4 while ‖m(x)‖ > ε do

5 m (x) =

N∑
i=1

fx(xi)g

(
d2(x,xi)

hx

)
N∑

i=1
g

(
d2(x,xi)

hx

) − x;

6 x = f−1
x (x + m (x));

7 Save x;

8 end

9 end
Output: All x

Algorithm 1. Basic Mean Shift Algorithm

is called the mean shift vector. Since mean shift always points to the higher
density regions, it can be used as a hill climbing method in optimization, for
example, clustering. In some condition, mapping the samples into another space
would facilitate the analysis. If fx (xi) is the mapping function, and fx

−1 (xi)
is the inverse mapping, then formulae (2) could be written as shift calculation
formulae (line 5) in Algorithm 1. And d (x,xi) is the distance measure in mapping
space.

3.2 Functional Mean Shift

The fMRI signal at location i is denoted si =
(
s1

i , · · · , sL
i

)
, i = 1, · · · , N . L is

the length of scans. Since the functional networks are widely considered as the
synchronization between remote issues, we try to probe the similarities between
fMRI courses.

Similar to [14], it’s better to discuss the time courses in functional space, which
is a unit sphere �N−2 with N normalized points. In fMRI study, each normalized
time course could be considered as a point scattered in the functional space. In
Riemannian geometry, the sphere is a simple manifold, and geodesic distance
(formulae (4)) could be used to describe how close two points are [13]

d(x, y) = θ, cos (θ) = 〈x, y〉 . (3)

With exponential mapping function

y = expx (v) = x cos θ + v sin θ/‖v‖, (4)

where θ = ‖v‖, and logarithm inverse mapping

v = logxy = θ (y− x cos θ)/‖y− x cos θ‖, (5)
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(a) (b)

Fig. 2. All subnetworks in the activation areas for run 1 and subject 1. No matter in
S-B (left), or in A-S (right), some subnetworks are limitted in a single region but other
subnetworks extends over multiple regions.

the mean shift vector (2) could be written as

mG(x) =

N∑
i=1

logx (xi) g
(

d2(x,xi)
hx

)
N∑

i=1

g
(

d2(x,xi)
hx

) . (6)

When the mean shift iteration stops, the voxels points to the same target voxel
having very similar time courses and could be considered to belong to the same
subnetwork. Then the activation areas could be fractionated to many subnet-
works. The clustered subnetworks for run 1 and subject 1 are shown in Fig.2.
According to the extent, the subnetworks could be divided into local networks
and global networks. The local networks are limited into a continuous activa-
tion region but the global extends to several regions. And the local networks
seldom overlap with each other. We will analyze these statistical features of the
subnetworks.

4 Characterize the Function Subnetwork

According to the above analysis, the activation areas could be fragmented into
many subnetworks. And we would like to quantify these issues in this part.

4.1 Scale-Free Subnetwork

If one voxel points to another voxel in one mean-shift step, we draw a direction
edge between them1. Then the voxel degrees are calculated by summing the
income edges. It is curious that the voxels with larger degree seldom have stable

1 The edge could be understood as the correlation between voxels. When many voxels
converge to the same voxel, they could be seen as the deformations of the voxel.
The deformations may be induced by physical movement, biochemical process, or
channel noises. And note that only one-step mean-shift-vector is used.



440 S. Song and H. Yao

10

20

30

40

10
20

30
40

5

10

15

20

A
xi

al

Sagittal Coronal

(a)

10

20

30

10
20

30
40

5

10

15

20

25

A
xi

al

SagittalCoronal

(b)

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

10
4

Aud−Sem

Aud−Sem (fitting)

Sub−Bas

Sub−Bas (fitting)

P(k)~k−1.2876

P(k)~k−1.1084

(c)

Fig. 3. The average voxel degrees for all subjects for A-S and S-B are shown in (a)
and (b). The size of degree is represented by the size of red sphere. And the degree
distributions are plotted in (c).

income edges. That is, for example, voxel A coverges to voxel B in one subject,
but it converges to voxel C in another subject. This may be explained by the
local function area differences between brains. The same cortical sub-area may
play different roles between subjects.

But, the phenomenon is not random. Because in statistics, it can be found
easily from Fig.3(a) and (b) that some voxels have larger income degrees, while
some other voxels have smaller income degrees. So we speculate that these “hub”
voxels may have very similar roles for all subjects.

The voxel distribution is plotted in Fig.3(c). It’s interesting that S-B and
A-S are scale-free networks with very similar fitting curves. Furthermore, the
exponentials, -1.2876 for A-S and -1.1084 for S-B, are smaller when compared to
[2], which demonstrates that much less voxels have very large degree and much
more voxels have very small degree in auditory areas. Whether these statistical
features are universe in all modalities is waiting for future work.

4.2 Global Subnetworks

One of the aims of original name verification experiments is to identify the neu-
ral circuitry involved in the process of auditory identification and categorization.
Generally speaking, the subordinate categorization needs more widespread par-
ticipation of regions, because subordinate cognition may involve the feedback
from high-level cortical areas, like IFS, IFG, and so on. To integrate neural in-
formation from related cortical regions, more remote interactions are necessary.
So, more global subnetworks would appear in S-B case. We calculate the propor-
tion of global network for both S-B and A-S cases. And the bar map is shown
in Fig.4 (a). As it easily can be seen, the proportion of global networks in S-
B is far more than that in A-S case. The average rate is 14.28% for A-S, and
38.84% for S-B. Our result could be seen as neurobiological evidence for the
global participation in more abstract cognition process.

4.3 Network Modularization

Though many global works exists in the activated areas, we should note that
at least half subnetworks are local networks (Fig.4 (a)). What’s more, the most
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(a)

(b) (c)

Fig. 4. Features of subnetworks. The proportion of global subnetworks for all runs and
all subjects are plotted in (a). And the overlaps between the 100 largest subnetworks
are shown in (b) (S-B case) and (c) (A-S case).

interesting is that these local subnetworks nearly don’t cross with each other. To
explore the relationships between subnetworks, we calculated overlaps between
the 100 largest subnetworks for all runs and all subjects. When calculating the
overlap matrix, the isolated voxels are excluded. Now that the overlap matrix is
symmetric, only the above triangle part is shown in Fig.4 (b) and Fig.4(c) for
convenience.

Two conclusions can be drawn easily. Firstly, comparison of the overlap matrix
between S-B case and A-S case shows that more network intersections appears
in more abstract cognition process, which support the conclusion of section 4.2.
Secondly, larger networks tend to overlap with several other larger networks,
while the smaller networks are nearly isolated. So the ROI network may be
constructed by a few larger intersected sub-networks and many modularized
smaller sub-networks.

Modularization means that these local subnetworks play more independent
roles in cognition process, which is a necessary base for hierarchical architecture
hypothesis and is typical for scale-free networks [1].

5 Conclusions

In this paper, we try to explore the function subnetwork architecture in auditory
modality. We re-analyze the name verification experiments and many heuristic
conclusions are obtained. It should be noted that there must be some suppres-
sion mechanism in the thalamencephalon that activate cortical areas selectively.
But it is beyond our topic here and only the network architecture in auditory
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activated areas is focused. The conclusions on scale-free network and modular-
ization would be heuristic for artificial networks. Our future works will focus on
the function subnetworks modeling and the more microscopic level architecture
analysis.
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Abstract. We present the results of an ongoing research in the area of
symbol grounding. We develop a biologically inspired model for ground-
ing the spatial terms that employs separate visual what and where sub-
systems that are integrated with the symbolic linguistic subsystem in
the simplified neural model. The model grounds color, shape and spatial
relations of two objects in 2D space. The images with two objects are
presented to an artificial retina and five-word sentences describing them
(e.g. “Red box above green circle”) with phonological encoding serve as
auditory inputs. The integrating multimodal module is implemented by
Self-Organizing Map or Neural Gas algorithms in the second layer. We
found out that using NG leads to better performance especially in case
of the scenes with higher complexity, and current simulations also reveal
that splitting the visual information and simplifying the objects to rect-
angular monochromatic boxes facilitates the performance of the where
system and hence the overall functionality of the model.

Keywords: self-organization, categorization, symbol grounding, spatial
relations, linguistic description.

1 Introduction

The core problem of embodied cognitive science is how to ground symbols to the
external world. We are looking for a system interacting with the environment
that is able to understand its internal representations which should preserve
constant attributes of the environment, store them as concepts, and connect
these to the symbolic level. This approach to the meaning representation is
different from the classical symbolic theory based on formal semantics of truth
values, which cannot guarantee correspondence of the symbolic level with the
external world.

In this article we propose an extended version of the classical grounding ar-
chitecture [1] that implements the multimodal representations in the framework
of the perceptual symbol system proposed by Barsalou [2]. The main innova-
tion is the processing of symbolic input by a separate auditory subsystem and
the integration of auditory and visual information in a multimodal layer that
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incorporates the process of identification of symbols with concepts. Our theory
is similar to grounding transfer approach [3] but unlike it, our model works in a
fully unsupervised manner.

Our approach was tested in the area of spatial cognition. In our models, we
consider the evidence that the information about the location and identification
of an object in space are processed separately. Studies with humans [4] revealed
two separate pathways involved in processing of visual and spatial information:
The dorsal where pathway is assumed to be responsible for spatial representa-
tion of the object location, while the ventral what stream is involved in object
recognition and form representation.

In our previous experiment [5] we compared two versions of the visual subsys-
tem, analyzing the distinction between what and where pathways, by proposing
different ways how to represent object features (shape and color) and object
position (in a spatial quadrant). Model I contained a single self-organizing map
(SOM; [6]) that learned to capture both what and where information. Model II
consisted of two SOMs for processing what information (foveal input) and where
information (retinal input). Comparison of both models confirmed the effective-
ness of separate visual processing of shape and spatial properties that led to a
significant decrease of errors in the multimodal layer.

Both models assume the existence of the higher layer that integrates the
information from two primary modalities. This assumption makes the units in
the higher layer bimodal (i.e. they can be stimulated by any of the primary
layers) and their activation can be forwarded for further processing. Bimodal
(and multimodal) neurons are known to be ubiquitous in the association areas
of the brain [7]. See also discussion in [5] for the relation of our model to several
other connectionist models.

2 Motivation

The first goal of experiments presented here is the more detailed analysis of the
information processing in the where system. We tested two types of inputs for
this subsystem, namely full retinal images projected to where system (the same
as previously) and simplified version of retinal projections (the color information
was omitted and the object shapes were simplified to rectangular monochromatic
boxes. The results should help us decide, whether this simplification is important
for enhancing the overall model performance.

In [5] we also identified the difference in the effectiveness of the SOM com-
paring to Neural Gas (NG) algorithm [8] in the multimodal layer in favour of
lower NG error rates. The higher error rate in SOM should be attributed to its
fixed neighborhood function (while NG uses flexible neighborhood) that imposes
constraints to the learning process in multimodal layer. The second goal of the
current experiment is hence the analysis of the neighborhood function in SOM.
We presented stimuli with increasing fuzziness in the spatial location (see Fig. 2)
and compared error rates of SOM and NG algorithms.
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Fig. 1. The two-layer multimodal architecture used in our experiments

3 The Model

We adopted the model from [5] to test the architecture with a simplified type
of inputs and variable level of fuzziness. The inputs (similar to previous mod-
els) consisted of two objects in 2D environment and their linguistic descriptions.
The scenes contained the trajector and the base object in different spatial con-
figurations. The position of the base is fixed in the center of the scene and the
trajector position is fuzzy with variable level of fuzziness (Fig. 2). We trained
the model using scenes with 3 colors (red, green, blue), 5 object types (box, ball,
table, cup, bed) and 4 spatial relations (above, bellow, left, right) that means 840
combinations of two different objects in the scene. There were 42000 examples
(50 instances per spatial configuration) in the training set.

3.1 Visual Subsystem

The visual subsystem is formed by an artificial retina (28×28 neurons) and an
artificial fovea (two visual fields consisting of 4×4 neurons) that project visual
and spatial information about the trajector and the base to the the primary
unimodal visual layers. These layers are both made of SOMs that differentiate
various positions of two objects (resembling where pathway) from retinal pro-
jection and color and shape of objects (resembling what pathway) from foveal
projection. The color of each pixel was encoded by the activity level. Both maps
were trained for 100 epochs with decreasing parameter values (unit neighborhood
radius, learning rate).
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Fig. 2. Simplified visual inputs with varying levels of spatial fuzziness

3.2 Auditory Subsytem

Auditory inputs (English sentences) were encoded as phonological patterns rep-
resenting word forms using PatPho, a generic phonological pattern generator
that fits every word (up to trisyllables) onto a template according to its vowel-
consonant structure [9]. It uses the concept of syllabic template: a word repre-
sentation is formed by combinations of syllables in a metrical grid, and the slots
in each grid are made up by bundles of features that correspond to consonants
and vowels. In our case, each sentence consists of five 54-dimensional vectors
with component values in the interval (0,1). These inputs are sequentially fed
to RecSOM [10] that learns to represent inputs (words) in the temporal con-
text (hence capturing sequential information). RecSOM output, in terms of map
activation, feeds to the multimodal layer, to be integrated with the visual path-
way. RecSOM units become sequence detectors after training, topographically
organized according to the suffix (the last words).

Since RecSOM, unlike SOM, is not common, we provide its mathematical
description here. Each neuron i ∈ {1, 2, ..., N} in RecSOM has two associated
weight vectors: wi ∈ Rn – linked with an n-dimensional input s(t) (in our case,
the current word, n = 54) feeding the network at time t and ci ∈ RN – linked
with the context y(t − 1) = [y1(t − 1), y2(t − 1), ..., yN(t − 1)] containing map
activations yi(t− 1) from the previous time step.

The output of a unit i at time t is yi(t) = exp(−di(t)), where

di(t) = α · ‖s(t)−wi‖2 + β · ‖y(t− 1)− ci‖2.

Here, ‖ · ‖ denotes the Euclidean norm, α > 0 and β > 0 are model parameters
that respectively influence the effect of the input and the context upon neuron’s
profile. Their suitable values are usually found heuristically (in our model, we
used α = β = 0.1). Both weight vectors are updated using the same form of
SOM learning rule:

Δwi = γ · hik · (s(t)−wi),



Bio-inspired Model of Spatial Cognition 447

Δci = γ · hik · (y(t − 1)− ci),

where b is an index of the best matching unit at time t, b = argmini{di(t)}, and
0 < γ < 1 is the learning rate. Neighborhood function hib is a Gaussian (of width
σ) on the distance d(i, b) of units i and b in the map: hib = exp(−d(i, b)2/σ2).
The ‘neighborhood width’, σ, linearly decreases in time to allow for forming
topographic representation of input sequences.

3.3 Multimodal Integration

Outputs from both visual SOMs and auditory RecSOM are projected to the
multimodal layer (SOM or NG). The main task for the multimodal layer is to
find and learn the categories by merging different sources of information. We
compared SOM and NG algorithms that are both unsupervised and based on
the competition among units, but NG uses a flexible neighborhood function, as
opposed to the fixed neighborhood in SOM.

For clarity, we explain NG algorithm briefly here. NG shares with SOM a
number of fetaures. In each iteration t, an input vector m(t) is randomly chosen
from the training dataset. Subsequently, for all units in the multimodal layer we
compute di(t) = ‖m(t)−zi‖ and sort the NG units according to their increasing
distances di, using indices l = 0, 1, ... (where l(0) corresponds to unit b, the
current winner). Then we update all weight vectors zi according to

Δzi = ε · exp(−l(i)/λ) · (m(t)− zi) (1)

with ε as the adaptation step size and λ as the so-called neighborhood range. We
used ε = 0.5 and λ = n/2 where n is number of neurons. Both parameters are
reduced with increasing t. It is known that after sufficiently many adaptation
steps the feature vectors cover the data space with minimum representation error
[8]. The adaptation step of the NG can be interpreted as gradient descent on a
cost function.

Inputs for the multimodal layer are taken as unimodal activations (from both
modalities) using the k-WTA (i.e. winner-takes-all) mechanism, where k most
active units are proportionally turned on, and all other units are reset to zero
(in the models, we used k = 6 for visual layers). The motivation for this type of
output representation consists in introducing overlaps between similar patterns
to facilitate generalization. On the other hand, the output representation in the
multimodal layer is chosen to be localist for better interpretation of results and
the calculation of error rate.

4 Results

We trained the system with the fixed sizes of unimodal layers (30×30 units) and
the multimodal layer (29×29). After the training phase, the system was tested
by a novel set of inputs. All inputs were indexed for the error calculation in the
second layer. Then we measured the effectiveness of this system, based on the
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percentage of correctly classified test inputs. To calculate the accuracy of neuron
responses, we applied a voting algorithm after training to label each neuron in
the layer based on its most frequent response. Then we measured the accuracy of
this system, based on the percentage of correctly classified test inputs. At first,
we compared the error rate in unimodal where layer trained with full retinal
images or simplified monochromatic rectangles standing for objects in the scene.
Results are shown in Fig. 3. It can be seen that simplified input significantly
reduce the error for all levels of spatial fuzziness which could be explained by
reduced variability of inputs that are topographically mapped in the SOM.

The analysis of the model behavior revealed that the trajector shape and the
spatial term representations are the most difficult task components for visual
unimodal systems which is caused by their variability and fuzziness. The model
analysis also confirmed that simplified projection of retinal images to the where
system resulted in lower error rates compared to full retinal images (Fig. 3).
This leads us to the conclusion that it is possible to simplify the information
projected to the where system to optimize the speed and effectiveness of our
architecture.

Fig. 3. The error rates in the where system as a function of input types and the levels
of spatial fuzziness

Next we compared SOM and NG algorithms in the multimodal layer using
the simplified where system. The calculation of the error rates was the same as
for the unimodal layers. Fig. 4 shows a lower error rate for NG in all levels of
fuzziness and the high error rates for SOM regardless of the fuzziness level.

The poorer result of multimodal SOM compared to NG could most probably
be attributed to the fixed neighborhood function which imposes constraints the
learned nonlinear mapping. There was a 70% error rate for all levels of fuzzy
inputs, so the multimodal SOM is able to represent neither fuzzy inputs nor
distinct inputs. We observed a different type of clustering in unimodal layers
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Fig. 4. Comparison of two models for different type of inputs. The error rates in the
where system as a function of levels of spatial fuzziness.

that are transferred to the multimodal layer at which the SOM is not able to
adapt to the joint outputs from unimodal layers. The results of NG algorithm
for the same input data confirm this hypothesis. There was a 25% error rate only
for highly overlaping inputs (compared to 70% error rate for all type of inputs
for SOM. The effectiveness of NG for less fuzzy inputs was even better.

5 Conclusion

Previous models of symbol grounding (see Discussion in [5]) deal with the lexical
level but our model goes beyond words because it is able to represent sentences
with fixed grammar via RecSOM. It finds the mapping of the particular words to
the concepts in the multimodal layer without any prior knowledge, so the system
proposes the solution to the binding problem. The system design allows us in
principle to append other modalities and still represent discrete multimodal cat-
egories. The hierarchical representation of the sign components is the important
advantage of our model. It guarantees better processing and storing of represen-
tations because the sign (multimodal level) is modifiable from both modalities
(the sequential “symbolic” auditory level and the parallel “conceptual” visual
level). The separate multimodal level provides a platform for the development
of subsequent stages of this system (e.g. inference mechanisms). Further tests
of this approach should focus on scaling up this architecture to more complex
mappings.
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Abstract. This study investigates the feasibility of Bens Spike Algorithm 
(BSA) to encode continuous EEG spatio-temporal data into input spike streams 
for a classification in a spiking neural network classifier. A novel evolving 
probabilistic spiking neural network reservoir (epSNNr) architecture is used for 
the purpose of learning and classifying the EEG signals after the BSA 
transformation. Experiments are conducted with EEG data measuring a 
cognitive state of a single individual under 4 different stimuli. A comparison is 
drawn between using traditional machine learning algorithms and using BSA 
plus epSNNr, when different probabilistic models of neurons are utilised. The 
comparison demonstrates that: (1) The BSA is a suitable transformation for 
EEG data into spike trains; (2) The performance of the epSNNr improves when 
a probabilistic model of a neuron is used, compared to the use of a deterministic 
LIF model of a neuron; (3) The classification accuracy of the EEG data in an 
epSNNr depends on the type of the probabilistic neuronal model used. The 
results suggest that an epSNNr can be optimised in terms of neuronal models 
used and parameters that would better match the noise and the dynamics of 
EEG data. Potential applications of the proposed method for BCI and medical 
studies are briefly discussed.  

Keywords: Spatio-Temporal Patterns, Electroencephalograms (EEG), Stochastic 
neuron models, evolving probabilistic spiking neural networks. 

1   Introduction 

EEG refers to the recording of electrical brain signal activity that is acquired along the 
head scalp as a result of neuronal activity in brain. In clinical aspect, EEG have been 
used in clinical recording of the brain electrical activity over a period of time and 
usually employs 19 electrodes / channels that are placed over various locations on the 
scalp. In neurology, the main diagnostic application of EEG is in the case of epilepsy, 
as epileptic seizure creates clear spike activities that can be measured in standard EEG 
equipment [1], [2].  
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A clinical application of EEG is to show the type and location of the activity in the 
brain during a seizure. It is also commonly used to evaluate people who are having 
problems related to brain functionality such as coma, tumours, long-term memory 
loss, or stroke. In computer science, there have been many studies that focus on EEG 
applications for Brain Computer Interfaces (BCI). EEG data analysis has been 
explored for a better understanding of the information processing capability of the 
mammalian brain. EEG can also be potentially used in biometric systems. Given that 
the brain-wave pattern of every individual is unique, EEG can be used for developing 
person identification or authentication systems [3], [4]. 

Having in mind the importance of the accurate analysis and study of EEG signals, 
we are aiming in this paper to propose a method for EEG data transformation into 
spike trains and their accurate classification.   

The rest of the paper is structured as follows: Section 2 describes related researches 
and motivations. Section 3 presents the proposed methodology that is been used in 
this experimentation. Section 4 contains comparative experimental results along with 
discussions. Finally, Section 5 summarizes the conclusion and future directions of our 
study. 

2   Related Works 

Spiking neuron networks (SNN) have been used for EEG analysis in some researches, 
and have shown remarkable performance in comparison to other traditional methods 
for classification task. In [5], the authors have proposed a method for the creation of 
spiking neural networks for EEG classification of epilepsy data for the purpose of 
epileptic seizure detection. Their experiment used a simple 3-layer feed-forward 
architecture (having input layer, hidden layer, output layer) which resulted in an 
average classification accuracy of approximately 90.7%. 

In a recent study [6], the researchers analysed rat’s EEG data using reservoir 
computing approach (echo state network) for epileptic seizure detection in real-time,  
based on a data from  4 EEG channels. It is a two class problem, where they had to 
classify the EEG signals for detection of seizure and tonic-seizure. The reservoir was 
made of 200 Leaky Integrate-and Fire (LIF) neurons, where 20% and 80% of the EEG 
data was used for training and testing respectively. The results of this study claimed 
that the performance was higher than the other four traditional methods in terms of 
detection time, which was around 85% accuracy in 0.5 seconds for seizure and 85% 
accuracy in 3 seconds for tonic-seizure. However, this study was done by using EEG 
data from a  rat,  acquired from only 4 channels and the frequency for detecting 
seizure/s was known in advance  (8, 16 and 24 Hz). 

Hence, recent studies on SNN and reservoir computing for EEG application shows 
that many of them produced comparatively good results while utilizing a deterministic 
neuronal model. However, in one of our recent work [7], we have shown that 
replacing the deterministic with the probabilistic spiking neuron models yields better 
results. 

In this study we aim to analyze the feasibility of BSA spike encoding scheme along 
with a SNN reservoir such as LSM using probabilistic spiking neuron models for 
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complex spatio-temporal human EEG data, acquired from 64 channels. In the 
following we have described the design of our experiment and its setup. 

3   Methodology 

The framework for classification of spatio-temporal data based on evolving 
probabilistic spiking neural network reservoir (epSNNr) paradigm is presented in 
Fig.1. At first, each channel of spatial-temporal data (EEG) is transformed into trains 
of spikes by the encoder module. Then the trains of spikes are distributed into spatio-
temporal filter which employs the latest reservoir paradigm (i.e. LSM) that utilizes 
several stochastic neuron models as liquid generators [7]. Further, the filter generates 
liquid state for each time step. These states are fed into a readout function for training 
and testing the classification performance using a pre-defined type of a classifier. 

 

Fig. 1. Framework for EEG spatio-temporal pattern learning and classification based on epSNNr 

3.1   Spike Encoder 

In our methodology we have incorporated BSA spike encoding scheme. So far, this 
encoding scheme has only been used for encoding sound data. However, since EEG 
signals also fall under the frequency domain, we hypothesised that BSA encoding will 
be suitable to transform EEG signals into spike representation. The key benefit of 
using BSA is that the frequency and amplitude features are smoother in comparison to 
the HSA (Hough Spiker Algorithm) spike encoding scheme [8]. Moreover, due to the 
smoother threshold optimization curve, it is also less susceptible to changes in the 
filter and the threshold [8]. Studies have shown that this method offers an 
improvement of 10dB-15dB over the HSA spike encoding scheme. According to [8], 
the stimulus is estimated from the spike train by  

 

where, tk represents the neurons firing time, h(t) denotes the linear filters impulse 
response and x(t) is the spike of the neuron that can be calculated as 
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For this particular dataset, we have set the Finite Impulse Response (FIR) filter size to 
20, and the BSA threshold to 0.955. 

 

Fig. 2. The top figure shows the Actual one channel EEG signal for the duration of 20ms. The 
middle figure is the spike representation of the above figure obtained using BSA. The bottom 
figure shows the actual one channel EEG signal that has been superimposed with another signal 
(dashed lines) which represents the reconstructed EEG signal from the BSA encoded spikes. 
The similarity between the two signals is obvious that illustrates the applicability of the BSA 
transformation. 

However, when the spike train x(t) is applied with a discrete FIR filter, the Eq.2 
can be represented as  

 

where, M refers to the number of filter taps. A more detailed explanation is given in 
[8]. 
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3.2   Evolving Probabilistic Spiking Neuron Network Reservoir (epSNNr)  

In epSNNr, we have replaced the deterministic LIF neurons of a traditional LSM with 
probabilistic neural models that have been comprehensively described in [7]. The 
probabilistic approach has been inspired by biological neurons that exhibit substantial 
stochastic characteristics. Therefore, incorporation of non-deterministic elements into 
the neural model may provide us with advantage due to the brain-like information 
processing system. In our reservoir we have used the standard Leaky Integrate and 
Fire (LIF) neuron model as well as probabilistic models such as Noisy Reset (NR), 
Step-wise Noisy Threshold (ST) and Continuous Noisy Threshold (CT) (see fig.3. for 
an illustration of the difference between the three stochastic neuronal models).  
The advantage of stochastic neural models has been demonstrated in a previous study 
[7]. 

Table 1. The following table provides the parameter setting that has been used in our experimental 
setup for the epSNNr 

 

3.3   Dataset 

RIKEN EEG Dataset was collected in the RIKEN Brain Science Institute in Japan. It 
includes 4 stimulus conditions (4 classes): Class1 - Auditory stimulus; Class2 -Visual 
stimulus; Class3 - Mixed auditory and visual stimuli; Class4 -No stimulus. The EEG data 
were acquired using a 64 electrode EEG system that was filtered using a 0.05Hz to 500 
Hz band- pass filter and sampled at 2KHz. According to the sample rate, the dataset is 
instable. In this preliminary proof of concept investigation we collected a small number 
of data points: 11 epochs from 50 epochs (1988-2153 samples/epoch/50ms) of each class 
(4 classes are 44 epochs) which have closer rate as possible. We used 80% (9 epochs) 
and 20% (2 epochs) for training and testing respectively.  
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Fig. 3. Evolution of the post-synaptic potential u(t) and the firing threshold over time (blue 
(dark) and yellow (light) curves respectively recorded from a single neuron of each of the three 
stochastic neural models used in this paper vs the standard LIF model. The input stimulus for 
each neuron is shown at the top of the diagram. The output spikes of each neuron are shown as 
thick vertical lines above the corresponding threshold curve (from [7]) 

4   Experiments and Discussions 

The experimental setup of this study is presented in Fig.1. All networks have the same 
network topology and the same connection weight matrix. A detailed description of 
the network generation and parameterisation is given in Table 1. We construct a 
reservoir having a small-world interconnectivity pattern as described in [9]. In order 
to make a standard comparison in our further investigation, the recurrent SNN is 
generated by using Brain[10] whose grid alignment is similar to the CSIM’s (A neural 
Circuit Simulation) default LSM setting having 135 neurons in a three-dimensional 
grid of size 9 × 5 × 3.  In this grid, two neurons A and B are connected with a 
connection probability 

 

The sample rate of the EEG dataset is extremely higher than usual EEG datasets, 
where each epoch belonging to a class (having 1988-2153 samples/epoch) was 
encoded into 50ms spike trains which are then transformed to 500ms, in order to 
normalise the parameters and simulation time steps.  

The liquid responses from the network, which are shown in fig.4, were mapped 
into 25ms time-bins (20 time−bins/epoch). This particular setting resulted in an 
optimal accuracy for this experimental setup. There are two readout functions in this 
investigation. The first is none-adaptive Naivebayes whose Numeric estimator 
precision values are chosen based on analysis of the training data. The Second is 
Multi-Layered Perceptron(MLP) which utilizes 139 sigmoid nodes for hidden layer 
(number of input attributes plus 4 stimuli), 0.3 for learning rate, 0.2 for momentum, 
500 training iterations, and validate threshold was set to 20.  
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In conventional method, parameters of Naivebayes and MLP were setup in the 
same way as the proposed method but MLP included only 68 sigmoid nodes for 
hidden layer (64 input plus 4 stimuli). 

The state time-bins from 1st to 9th epoch were used for training set (equivalent to 
80%) and 10th to 11th epoch were used as test set.  From table 2, it can be seen that 
the traditional classifiers do not perform optimally on the raw EEG data. However, 
when the raw EEG is applied with BSA spike encoder and is passed through epSNNr 
with various stochastic models and classifiers such as Naivebayes and MLP, they 
perform especially well. For our experiment we had considered various other 
classifiers but they were found to be inappropriate due to their inability to handle 
complex spatio-temporal EEG data.  

The accuracy obtained from epSNNr that utilizes Naivebayes have the same result 
for all the neuronal models, however the root mean squared error (RMSE) values (see 
Fig.5.) shows significant difference particularly for the ST model with Naivebayes, 
which is found to be the lowest, signifying the highest performance and stability in 
comparison with deterministic and other probabilistic models for this experiment. 

Our main results prove that transforming EEG signals into spike trains using the 
BSA spike encoding scheme results is significantly higher classification accuracy. A 
second result is that using a stochastic neuronal model in the epSNNr (e.g. the ST 
model) may lead to an improved accuracy (see the classification results for the MLP 
classifier from Table 2 and the root mean square error results from Fig.5). 

5   Conclusion and Future Works 

In this study, we have shown that BSA spike encoding scheme is suitable for 
encoding EEG data stream. Moreover, we have also addressed the question whether 
probabilistic neural models are principally suitable liquids in the context of LSM. We 
have experimentally shown that, the performance of the epSNNr improves when a 
probabilistic model of a neuron is used, compared to the use of  a deterministic LIF 
model of a neuron, and the classification performance of the EEG data in an epSNNr 
depends on the type of the probabilistic neuronal model used. The results suggest that 
an epSNNr can be optimised in terms of neuronal models used and parameters that 
would better match the noise and the dynamics of EEG data. Moreover, previous 
researches have had never incorporated 64 EEG channels. Our results have indicated 
potential advantages of using epSNNr along with the viability of BSA encoding 
scheme for EEG data streams that are spatio-temporal in nature which may contribute 
to BCI and medical studies. However, noise reduction and/or feature extraction 
methods, and optimization algorithm could also be employed possibly for both local 
and global optimization in our future study, since various parameters in the 
framework need to be adjusted.  

However, further study on the behavior of the epSNNr architecture under different 
conditions is needed and more experiments are required to be carried out on EEG 
datasets. 
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Fig. 4. The reservoir using ST Model response of one epoch of auditory stimulus is shown, 
where x axis represents time in 500ms and y axis is neurons 

Table 2. The following table provides Classification Accuracy (%), for various methods 

 

Several methods will be investigated for the improvement of the epSNNr: Using 
dynamic selection of the ’chunk’ of input data entered into the epSNNr; A new 
algorithm for an evolving (adaptive) learning in the epSNNr will be developed so that 
the reservoir learns to discriminate better states that represent different class data. 
Using more complex probabilistic spiking neuron models, such as [11], would require 
dynamic optimization of its probabilistic parameters. We intend to use a gene 
regulatory network (GRN) model to represent the dynamics of these parameters in 
relation to the dynamics of the spiking activity of the epSNNr as suggested in [12]. 
Each of the probability parameter, the decay parameter, the threshold and other 
parameters of the neurons, will be represented as a function of particular genes for a 
set of genes related to the epSNN model, all genes being linked together in a dynamic 
GRN model. Furthermore, various parameters such as the connection probability, size 
and shape of the network topology shall also be tested. In this respect the soft winner-
take-all topology will be investigated [13]. For applications that require on line 
training we intend to use evolving SNN classifier [14], [15]. Finally, implementation 



 EEG Classification with BSA Spike Encoding Algorithm 459 

of the developed models on existing SNN hardware [16], [17] will be studied 
especially for on-line learning and object recognition applications such as intelligent 
mobile robots [18]. 

 

Fig. 5. This figure shows the Root Mean Squared Error (RMSE) for various stochastic neuron 
models when applied to Naivebayes and MLP classifiers 
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Abstract. This paper presents a new learning algorithm with an adap-
tive structure for Spiking Neural Networks (SNNs). STDP and anti-
STDP learning windows were combined with a ’virtual’ supervisory neu-
ron which remotely controls whether the STDP or anti-STDP window
is used to adjust the synaptic efficacies of the connections between the
hidden and the output layer. A simple new technique for updating the
centres of hidden neurons is embedded in the hidden layer. The struc-
ture is dynamically adapted based on how close are the centres of hidden
neurons to the incoming sample. Lateral inhibitory connections are used
between neurons of the output layer to achieve competitive learning and
make the network converge quickly. The proposed learning algorithm was
demonstrated on the IRIS and the Wisconsin Breast Cancer benchmark
datasets. Preliminary results show that the proposed algorithm can learn
incoming data samples in one epoch only and with comparable accuracy
to other existing training algorithms.

Keywords: spiking neurons; supervised learning; spike response model;
online learning; offline learning, adaptive structure, classification.

1 Introduction

Inspired by the human brain, artificial neural networks (ANNs) acquire informa-
tion from the surrounding environment and through learning store the knowl-
edge in synaptic weights [1]. The main interest for studying SNNs lies in their
close resemblance with biological neural networks. While significant progress has
already been made in understanding neuronal dynamics, considerably less has
been achieved in developing efficient spiking neural learning mechanisms. To
date, a number of supervised and unsupervised learning methods have been de-
veloped; unfortunately, most of them do not scale up and require retraining in
a continuously changing environment. The development of efficient learning ap-
proaches for SNNs is crucially important in order to increase their applicability
to solve real world problems and create intelligent system that are capable of
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handling continuous streams of information, scaling up and adapting to contin-
uously changing environments.

SpikeProp was an adaptation of the classical backpropagation algorithm. Per-
formance on several benchmark datasets demonstrated that SNNs with fast tem-
poral coding can achieve comparable results to rate-coded networks [2]. But it is
slow if used in an online setting. Belatreche et al. [3] proposed a derivative-free
supervised learning algorithm. An evolutionary strategy (ES) was used to min-
imise the error between the output firing times and the corresponding desired
firing times. This algorithm achieved a better performance than the SpikeProp
algorithm, however, since the algorithm was an ES-based iterative process, the
training procedure was extremely time-consuming and is not suitable for online
learning.

Legenstein et al. [4] presented a Supervised-Hebbian learning method (SHL)
that enabled different transformation from input spike trains to output spike
trains quite well although parameters continued to be changed even if the neu-
ron had already fired at the particular points in time. ReSuMe developed by
Ponulak [5] integrated the idea of learning-windows with the novel concept of
remote supervision. It was shown that the desired temporal sequences of spikes
can be learned efficiently by this method with a LSM (Liquid State Machine)
network. The authors claim that since the synaptic weights are updated in an
incremental manner the method is suitable for online processing. Desired pre-
cise output spike timing is crucial to ReSuMe learning. Glackin [6] presented
a three layer feedforward FSNN (Fuzzy SNN) topology for classification and
comparable results with other existing approaches were produced. The authors
claim ReSuMe training was employed between the hidden neurons and output
neurons, however it is not the precise spike times that are relevant instead the
number of spikes of output neurons are important.

Fixed network architectures were employed in the above approaches, with the
number of neurons in the hidden layer is set in advance. However for maximum
adaptability, as is needed in a changing environment, it is desirable that the
structure as well as the weights adapts to new data.

This paper provides a new learning procedure with an adaptive structure for
classification using a SNN. STDP and anti-STDP learning windows were inte-
grated with a ’virtual’ supervisory neuron that controls remotely whether the
STDP or anti-STDP window is used and the synaptic efficacies are adjusted
between the hidden layer and output layer. No actual supervisory spike train
existed. A simple new technique for updating the centres of hidden neurons is
embedded in the hidden layer. The structure of the hidden layer is dynamically
adapted based on how close to the centers of hidden neurons are the incoming
sample. Lateral inhibitory connections are used between neurons of the output
layer to achieve competitive learning and make the network converge quickly.

The remainder of this paper is structured as follows: Section 2 describes
the structure design and the learning procedure. Section 3 presents preliminary
test results for training of SNNs using the IRIS and Wisconsin Breast Cancer
Benchmark datasets. Finally section 4 concludes the paper.
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2 Learning and Structural Adaptation

2.1 Network Topology and Simulation Setup

Figure 1 presents the proposed network topology that consists of a three layer
feedforward SNN. There are no neurons in the hidden layer initially, as they
are added dynamically as the incoming data is received. Every input neuron
represents a feature in each instance, every output neuron represents a class.
There are lateral inhibitory connections in the output layer neurons.

Fig. 1. A three layer feedforward SNN with adaptive structure

There is a vector representing the centre of every added hidden neuron. A new
simple technique for updating the centres of the hidden neurons is embedded in
the hidden layer, and the structure of the hidden layer is dynamically adapted
based on how close the incoming information is to the centres of the hidden
neurons. The weights between the input layer and hidden layer remains fixed
once initialised. The centres of the hidden neurons are continuously adjusted
(i.e. learned) as the samples are propagated into the network.

The weights between the hidden layer and output layer are learned in a su-
pervised mode using equation (1) . The two opposite learning processes STDP
and anti-STDP are combined together to update the relevant synapses. Figure
2 shows the learning windows of STDP and anti-STDP. The STDP window is
used to increase the weights when a spike is produced at the desired output
neuron and the anti-STDP window is used to decrease the weights when a spike
is produced at the undesired neuron. The ’teacher’ controls just whether STDP
or anti-STDP window is used, no actual supervisory spike train exists. Rate de-
coding are employed and the sample is treated as correctly classified when the
maximum number of spikes are produced at the correct output class neuron.

W d(sd) =
{

+Ad ∗ exp(−sd

τd ) if sd > 0
0 if sd ≤ 0

W l(sl) =
{
−Al ∗ exp(−sl

τ l ) if sl > 0
0 if sl ≤ 0

(1)

In Equation 1 above sd denotes the relative timing of the post-synaptic spike
produced on desired output neuron and pre-synaptic spikes, sl denotes the rela-
tive timing of the post-synaptic spike produced on undesired output neuron and
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Fig. 2. Learning windows for STDP and anti-STDP [5]

pre-synaptic spikes. Ad and Al determine the maximum amounts of synaptic
modification. τd and τ l determine the range of pre- to postsynaptic inter spike
intervals over which synaptic strengthening and weakening occur.

Adding lateral inhibitory connections is the simplest way to ensure competi-
tive learning of neurons. When lateral inhibitory connections are added between
output layer neurons, the spikes produced by one output neuron inhibit the other
output neurons. So the speed of convergence is greatly improved.

2.2 Learning Procedure

The following sequential steps describe this new learning procedure.

1. The first data sample X1 = [x11, x12, , x1m] is normalized to the range [10
40]. This range is chosen arbitrarily, and m is the dimension of the dataset;
Poissonian encoding is employed and is the encoded data is passed for train-
ing into the hidden layer. The first hidden neuron (Num neuron H = 1) is
instantiated and its weights initialised. Then the weights relevant to this neu-
ron, and the weights between this neuron and the neurons in the output layer
are trained using the described method. The weights between the input neu-
rons and hidden neuron will be kept the same after their initialisation. The
centre of the first hidden neuron is given by the vector Ci = 〈x1i, x2i, · · ·xmi〉,
and x1i = x11, · · · , xmi = x1m. Set Nsample(i) = 1 , i=1 represents the first
hidden neuron.

2. A training sample (nth observation, n > 1)Xn = [xn1, xn2, · · · , xnm] is nor-
malised to the range [10 40]. Poissonian encoding is employed and is the
encoded data is passed for training into the hidden layer. The distance be-
tween this sample and the centre Ci ( i is in the range of [1, Num neuron H ])
of every hidden neuron using the Matlab Euclidean distance weight function
(dist) is calculated and we find the hidden neuron (i) that has minimum
distance (D min ) with this sample. The minimum distance (D min ) with
a chosen distance value of threshold (Threshold) is compared.

3. If D min is less than the Threshold, this sample will be routed to the hidden
neuron that has minimum distance with this sample. The weights between
this hidden neuron and the neurons in the output layer will be trained using
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the described method. The centre of this hidden neuron will be updated
based on equation 2; Nsample(i) will be updated by increasing one.

X1i =
X1i ∗Nsample(i) + Xn1

Nsample(i) + 1
, · · · , Xmi =

Xmi ∗Nsample(i) + Xnm

Nsample(i) + 1
(2)

4. But if D min is greater than the Threshold, a new hidden neuron (the
jth hidden neuron) in the hidden layer will be added (Num neuron H =
Num neuron H +1) , the weights relevant to this new added neuron will be
initialised, the network structure will be updated, and the weights between
the added hidden neuron and output neurons will be trained using the de-
scribed method. The centre of the added hidden neuron is given by the vector
Cj = 〈x1j , x2j , · · ·xmj〉, and x1j = xn1, · · · , xmj = xnm. Set Nsample(j) = 1.

3 Experiments and Results

The proposed learning procedure has been applied to a spiking network of SRM
(Spike Response Model) neurons as shown in figure 1. The IRIS and Wisconsin
Breast Cancer datasets were used to evaluate the performance of the proposed
procedure and the results obtained have been compared with previous work.

3.1 IRIS Dataset Classification

Data Preparation. The IRIS dataset consists of 150 instances with four fea-
tures, there are 50 instances for each class. Four input neurons represent four fea-
tures in each instance, three output neurons represent three classes. The dataset
was partitioned for cross-validation to test for generalisation. Five folds of data
were formed in such a way that there were 10 data samples for class 1, class 2
and class 3 respectively in each fold. Four folds of data samples were employed
for training, and one fold for testing.

Simulation Results. Figure 3 shows the change of number of hidden neurons
during training with threshold set at 0.4 (left) and 0.8 (right). Table 1 presents
the IRIS results for all 5 folds with the distance value of threshold set at 0.8 and
0.4. Table 2 compares the proposed method with other algorithms.

Table 1. IRIS Results (iteration = 1)

Threshold Fold 1 2 3 4 5 AV G SD

Number of hidden neurons 13 14 14 13 15
0.8 Accuracy for Trainingset(%) 95.8 97.5 98.3 95.8 95.0 96.5 1.4

Accuracy for Testingset (%) 100 93.3 96.7 93.3 96.7 96.0 2.8

Number of hidden neurons 49 48 50 45 48
0.4 Accuracy for Trainingset(%) 96.7 98.3 99.2 97.5 97.5 97.8 0.9

Accuracy for Testingset(%) 100 96.7 93.3 100 96.7 97.3 2.8
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Fig. 3. Evolution of the number of RBF hidden neurons during training

Table 2. Compared the proposed method with other algorithms

Algorithm Trainingset T estingset Properties

SpikeProp 97.4%+/- 0.1 96.1%+/- 0.1 Supervised,batch,fixed structure
FSNN 97.8% 95.0% Supervised,batch,fixed structure
Proposed method 97.8%+/- 0.9 97.3%+/- 2.8 Hybrid,one epoch,adaptive(Th=0.4)

96.5%+/- 1.4 96.0%+/- 2.8 Hybrid,one epoch,adaptive(Th=0.8)

3.2 Wisconsin Breast Cancer Dataset Classification

Data Preparation. The Wisconsin Breast Cancer dataset consists of 699 in-
stances with 9 features with values in the range [1, 10]. Nine input neurons rep-
resent nine features in each instance, two output neurons represent two classes.
The dataset was partitioned for cross-validation to test for generalisation. Five
folds of data were formed in such a way that there were 88 class 1 and 47 class 2
data samples in each fold. Four folds of data samples were employed for training,
and one fold of data samples were employed for testing.

Simulation Results. Figure 4 shows the change of number of hidden neurons
during training with threshold set at 10.77 (left) and 10 (right). Table 3 presents
the Wisconsin results for all 5 folds with the distance value of threshold set at
10.77 and 10. Table 4 compares the proposed method with other algorithms.

Table 3. Wisconsin Results (iteration = 1)

Threshold Fold 1 2 3 4 5 AV G SD

Number of hidden neurons 6 6 6 6 7
10.77 Accuracy for Trainingset(%) 97.4 97.2 97.2 97.0 97.2 97.2 0.1

Accuracy for Testingset(%) 98.6 97.9 97.9 95.8 94.4 96.9 1.8

Number of hidden neurons 10 11 10 8 11
10 Accuracy for Trainingset(%) 97.2 97.0 97.4 97.4 97.6 97.3 0.2

Accuracy for Testingset(%) 98.6 98.6 97.2 95.8 95.8 97.2 1.4
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Table 4. Compared the proposed method with other algorithms

Algorithm Trainingset T estingset Properties

SpikeProp 97.6%+/- 0.2 97.0%+/- 0.6 Supervised,batch,fixed structure
FSNN 97.6% 95.3% Supervised,batch,fixed structure
Proposed method 97.3%+/- 0.2 97.2%+/- 1.4 hybrid,one epoch adaptive(Th=10)

97.2%+/- 0.1 96.9%+/- 1.8 hybrid,one epoch adaptive(Th=10.77)

3.3 Analysis of Results

Preliminary experiments have shown that the network employing this learning
procedure, with only one pass training, can reach similar levels of performance
as compared with previously presented work that employed batch training. This
new algorithm is a one pass training, but previously acquired knowledge is able
to be retained, it would not be required to access previously used data if sub-
sequent training sessions were conducted. As a cost, one additional parameter
(e.g. Threshold) needs to be tuned. The learning for hidden neurons is per-
formed independently of the class of the presented sample, the smaller the value
of threshold, the more the number of hidden neuron grow and a better perfor-
mance of the network for training datasets is attained. How to choose a value
for the threshold will depend on the demanded size of the obtained network and
the acceptable level of performance required. A smaller threshold can correctly
classify two input patterns that become the closest to the centre of one hidden
neuron, however more hidden neurons would be added. Although a bigger thresh-
old can be selected to limit the number of hidden neurons that will be added to
the network; however it is very hard to obtain the desired performance by just
varying the threshold. For large datasets, many added hidden neurons may affect
the learning speed, the resultant network may be over-trained as a number of
the hidden neurons may be redundant. Embedded pruning process would solve
this problem. In the learning processes, it is possible that some centres of hidden
neurons are very close to each other, the hidden neuron is pruned to reduce the
complexity of the resulting network. The removal of unnecessary hidden neurons
may enable knowledge to be extracted more easily, and reduce the number of
free parameters which in turn, improve learning speed. It’s especially important
for online system.

For both the IRIS and Wisconsin Breast Cancer datasets, we use five-fold cross-
validation, the results also show very good stability of the learning algorithm.

4 Conclusion

This paper presents a simple training algorithm that is suitable for online learn-
ing for spiking neural networks which use spike trains to encode input data. It
was shown that the proposed algorithm can benchmark datasets in one pass
using a simple three layer feedforward spiking neural network with a dynam-
ically adaptive hidden layer. A new simple clustering technique was used for
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dynamically adapting the hidden layer structure. In addition, lateral inhibitory
connections were used between the output neurons for competitive learning.

The same procedure works on the IRIS and Wisconsin Breast Cancer datasets.
The algorithm determines the number of hidden neurons during training stage
dynamically. The primary goal of this research is to develop an efficient and scal-
able online learning strategies for biologically plausible spiking neural networks
based on synaptic plasticity. In that direction, this work presents a significant
contribution. In this paper, because the benchmark datasets were used for simu-
lation, the value of Threshold is chosen assuming that the whole training dataset
is known. But in a continuously changing environment, the data is presented
temporally. In order to meet this requirement and set this value efficiently, we
intend to employ a small value of Threshold at the beginning and adapt the
value of Threshold during training based on the performance and also a pruning
process will be embedded during training. Future work will demonstrate these
online capabilities of the algorithm using time varying and dynamic datasets.
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Abstract. We present a minimal neuron model that captures the essence
of the persistent firing behavior of interneurons as discovered recently
in the field of Neuroscience. The mathematical model reproduces the
phenomenon that slow integration in distal axon of interneurons on a
timescale of tens of seconds to minutes, leads to persistent firing of ax-
onal action potentials lasted for similar duration. In this model, we con-
sider the axon as a slow leaky integrator, which is capable of dynamically
switching the neuronal firing states between normal firing and persistent
firing, through axonal computation. This model is based on the Izhike-
vich neuron model and includes additional equations and parameters to
represent the persistent firing dynamics, making it computationally ef-
ficient yet bio-plausible, and thus well suitable for large scale spiking
network simulations.

Keywords: neuron model, slow integration, persistent firing, spiking
network, axonal computation.

1 Introduction

In the classic viewpoint about the information flow in the nervous system, synap-
tic inputs are received and integrated in the dendrites on a timescale of millisec-
onds to seconds, and when the depolarized somatic membrane potential exceeds
the threshold, action potentials are triggered at the axon hillock and propagate
along the axon. However, this convention view of neuron was challenged by the
recent findings [21] of slow integration induced persistent firing in distal axons
of rodent hippocampal and neocortical interneurons. It was found that the slow
integration from tens of seconds to minutes in distal axon, leads to persistent fir-
ing of action potentials lasted for similar duration [21]. To trigger such persistent
firing, axonal action potential firing was required but somatic depolarization was
not, implying that axon may perform its own neural computations without any
involvement from soma or dendrites. Interestingly, in paired recording with one
neuron being stimulated, persistent firings were observed in the other unstimu-
lated cell, suggesting that axons could communicate with each other, although
such communication mechanism remains unknown yet.

The possible functions of the persistent firing were suggested to be related
to working memory [21]. The ability to maintain the persistent firing of action
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potentials without on-going stimulation provides a mechanism of storing the
information for a short period of time. This mechanism is similar to our working
memory [1,5,6], which actively holds a limited amount of information [16] in the
absence of stimuli. For example, when someone tells you a telephone number
and you try to remember it, the working memory keeps the number series on-
line in your head before you dial it, for a period of several seconds to tens of
seconds without rehearsal [18]. Working memory has been extensively explored
from perspectives of highly abstract top levels in the domains of psychology,
neuroscience and anatomy, but there are much less works from perspectives of
bottom level of biological neurons [4,9,15,23]. It is still unknown how working
memory is represented within a population of cortical neurons.

To understand the neural correlative of working memory, we need to combine
the experimental studies of animal and human nervous system with numerical
simulation of the animal or human brain based on bio-plausible spiking neu-
rons. Over the past decades, there are many biologically inspired neural model
proposed and utilized in large scale brain simulations [2,14,13,8]. Depending on
the level of abstraction, there are roughly two kinds of neuron models. One of
them focuses on detailed and complex description of channel dynamics and bio-
physics basis, for example, the Hodgkin-Huxley model [10] and compartment
models [3]. The second kind of model focuses on capture the spiking nature and
essential elements of the behavior with simplified complexity, for example, leaky
integrated and fire model and spiking neuron models such as Izhikevich [12],
Wilson [25], Hindmarsh-Rose [19], Morris-Lecar [17], FitzHugh-Nagumo [7], and
Resonate-and-Fire [11] models. Among these models, Izhikevich neuron model
is of particular interest for large-scale neural simulation as the model is capable
to reproduce rich spiking and bursting behaviors and computationally efficient.

In this paper, we present a new neuron model that captures the essence of the
persistent firing behavior of neurons, and remains to be computationally efficient.
This persistent firing neuron model is based on the Izhikevich model and includes
additional equations and parameters to represent the persistent firing dynamics.
Section 2 describes the mathematical model of persistent firing neurons. Section
3 describes the simulation results of the neuron model with two stimulation
protocols. In the final section we conclude and discuss the implications of this
work.

2 Persistent Firing Neuron Model

This persistent firing neuron model is based on the Izhikevich model, which can
be described by the equations (1)-(3) [12]:

v′ = 0.04v2 + 5v + 140− u + I (1)
u′ = a(bv − u) (2)

with the after-spike resetting:

if v ≥ 30mV, then

{
v ← c,

u← u + d
(3)
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where v and u are the membrane potential and membrane recovery variable,
respectively. ′ = d/dt, where t is the time, a describes the time scale of u, b
represent the sensitivity of u to the subthreshold fluctuations of v, c is the after-
spike reset value of membrane potential, and d describes the after-spike reset
of u.

By modifying the a, b, c, d variables in equations (1) - (3), different firing
patterns can be generated. Thus, it is possible to define different firing states of
a neuron, for example, normal firing or persistent firing. One important concept
of our model is to dynamically switch the neuronal firing states by selecting
different variable set of a, b, c, and d on the fly.

The concept of the neuron in the model is illustrated in Fig. 1. We consider
the axon as a slow leaky integrator, which is capable to alter the neuronal firing
states through its own computation. We can model the persistent firing behavior
as the axonal leaky integrator controlled switching of normal firing and persis-
tent firing states of a neuron. In the normal firing state, the neuron dynamics
are described by the equations (1) - (3). In most cases, stimulus is required to
trigger and maintain the firing activities. In the persistent firing state, the pa-
rameters of the model are chosen such that the neuron is in an oscillatory state,
in which the neuron can keep firing action potentials without the presence of
any stimulus. This may explain the in the persistent firing phenomenon as ob-
served in Sheffield’s experiment [21], the firings of axonal action potentials can
be sustained without any dendritic inputs.

Mathematically, the model is described by equations (1), (2), (4) - (7).

w′ = −fw (4)

if v ≥ 30mV, then

⎧⎪⎨⎪⎩
v ← c,

u← u + d,

w ← w + e

(5)

if w ≥ wp, then (a, b, c, d, e)← (a, b, c, d, e)p (6)

if w ≤ wn, then

{
(a, b, c, d, e)← (a, b, c, d, e)n,

w ← wn

(7)

where w is dimensionless variable that describes the potential of the axonal
leaky integrator, e describes the after-somatic-spike axonal accumulation in the
normal firing state, f describes the rate of the leak, wp is the upper threshold
value of w to trigger the persistent firing, wn is the lower threshold value of w to
stop the persistent firing, (a, b, c, d, e)p and (a, b, c, d, e)n describe the parameter
sets of a, b, c, d, e variables in persistent firing state and in normal firing state,
respectively.

In contrast to the somatic leaky integrator which accounts for the integration
of dendritic inputs, the axonal leaky integrator has a larger time constant for its
integration and leakage, as described by e and f . Therefore, the axon integrates
the incoming spikes generated in the axon hillock on a larger timescale, from
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dendrites

soma axon

synapse

Fast somatic integration Slow axonal integration

Persistent
firing

Normal
firing

Axonal computation unitSomatic computation unit

Fig. 1. The concept of neuron in the persistent firing neuron model. There are two com-
putational units, somatic computation unit and axonal computation unit, accounting
for fast and slow integrations, respectively.

tens of seconds to minutes. When the potential in the axonal leaky integrator
exceeds the axonal threshold of persistent firing, wp, persistent firings will be
triggered, and the neuron will be in an oscillatory state as determined by the
(a, b, c, d, e)p variables.

When the neuron is in the persistent firing state, if there is no somatic spikes
accumulated in the axon, the potential w decreases at the rate of f due to the
leaky nature of the axonal integrator. When w reaches the lower threshold, wn,
the neuron will return to the normal firing state, and the a, b, c, d, e variables
will be reset to (a, b, c, d, e)n.

3 Simulation Results

Using our model, the persistent firing neuronal behaviors can be simulated with
various stimulation protocols. We have implemented a MATLAB program based
on equations (1), (2), (4) - (7). The parameters used in the simulation is summa-
rized in Table 1. As the persistent firing behaviors were observed in the inhibitory
interneurons [21], which exhibit the fast spiking firing pattern [12], we choose the
parameters in the model to reproduce the fast spiking behavior for interneurons
in the firing state. When the neuron is persistently firing, the chosen parameters
set the neuron in oscillatory state.

The simulation results with step/pause stimulation protocol [21] are shown in
Fig. 2. We applied 1-second current step of 15 mA during each 5-second sweep
to the simulation model. During the sweeps of step/pause input stimulus, it is
observed that the fast spiking pattern appears when the synaptic input stimulus
is presented and disappears when the stimulus is removed. When w accumulates
to a level higher than the upper threshold, wp, persistent firing occurs, after
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Table 1. Simulation parameters

Step/pause protocol (Fig. 2) Long pulse protocol (Fig. 3)

(a, b, c, d, e)p = (0.1, 0.3, -85, 0, 0) (a, b, c, d, e)p = (0.1, 0.3, -85, 0, 0)
(a, b, c, d, e)n = (0.1, 0.2, -65, 2, 0.02) (a, b, c, d, e)n = (0.1, 0.2, -65, 2, 0.012)

f = 5 × 10−4 f = 8 × 10−4

wn = 0.2, wp = 1.9 wn = 0.2, wp = 2.1

a b

c

d e

Fig. 2. Simulation of persistent firing neuronal behaviors with step/pause protocol.
(a) The waveform of the input stimulation of synaptic current I, consisting of a pulse
train with 1-second current step of 15 mA during each 5-second sweep. There are 17
sweeps in this run. (b) The time response of w, which represents the potential of the
axonal leaky integrator. (c) The time response of v, which describes the membrane
or axonal potential. Persistent firing is observed after the 17th sweep. (d) The fast
spiking waveform of v as observed in (c) when the 15mA current step is present. (e)
The oscillatory waveform of v when the neuron is in the persistent firing state.
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which w decreases monotonically due to axonal leakage and no stimulus, as
described in equation (4). The persistent firing ends when w is lower than the
lower threshold of persistent firing, wn. It should be noted that in this model,
when the interneuron is in the persistent firing state, the resting potential is
about 20 mV below the one for the fast spiking mode, which is intended to
match the data from patch-clamp recordings in the persistent firing neurons
[21]. We can emulate this phenomenon through switching the parameter c in
equation (5) between cp and cn.

We also applied the stimulation with a 40-second long pulse of 15 mA current
to the persistent firing neuron model with a different parameter set (see Table
1). The simulation results are shown in Fig. 3. The persistent firing is triggered
shortly after input stimulus is removed, and lasts for more than a minute.

a ba b

c

Fig. 3. Simulation of persistent firing neuronal behaviors with long pulse stimulation
protocol. (a) The input stimulus. A pulse of current with 15mA amplitude lasts 40
seconds as the synaptic input to the neuron. (b) Time response of w, the variable
describing the potential of the axonal leaky integrator. (c) Time response of v, which
describes the membrane or axon potential. The waveforms of fast spiking and persistent
spiking are the same as Fig. 2 (d) and (e), respectively.

By tuning the parameters of e, f, wp and wn, we can set different time scales
for the axonal slow integration, allowing the model to accommodate different
types of neurons with persistent firing behavior.

4 Discussion

In this paper, we present a minimal model that captures the essence of the persis-
tent firing behavior of neurons. The mathematical model presented in this paper
reproduces rich spiking behavior of biological persistent firing neurons through



Axonal Slow Integration Induced Persistent Firing Neuron Model 475

only three equations, two of which describe the Izhikevich neuron model. The
model is computationally efficient yet bio-plausible, and thus well suitable for
large scale spiking network simulation, enabling further investigation of possible
functions of persistent firing and their roles in animal and human brain.

For example, we can study the relationship between working memory and
persistent firing and neural correlative of working memory with computer sim-
ulation. By incorporating the persistent firing neuron model in spiking network
simulations, we can simulate a more bio-plausible and realistic memory system
in animal or human cortex. Recently, we proposed an initial framework of arti-
ficial cognitive memory with the objective of developing a novel function-driven
memory technology in comparison to conventional density-driven storage tech-
nology [22]. The model presented in this paper can be used in the simulation
of cognitive memory architectures under the framework of artificial cognitive
memory.

Due to the computational simplicity of our model, it is rather straightfor-
ward to implement the model in hardware, either in digital circuits or analog
circuits. There have been several circuit implementations of Izhikevich neuron
model [20,24]. It is intuitive to add a leaky integrator emulating the axon in the
circuits, for controlling the a, b, c, d, e parameters which may be stored in mem-
ory devices, e.g. non-volatile memory, or current sources in analog circuits. The
silicon implementation of this neuron model and spiking network will enable a
considerably faster emulation of the neural systems in a highly parallel manner.
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Abstract. Hippocampus, a major component of brain, plays an im-
portant role in learning and memory. In this paper, we present our
brain-inspired cognitive model which combines a hippocampal circuitry
together with hierarchical vision architecture. The structure of the sim-
ulated hippocampus is designed based on an approximate mammalian
neuroanatomy. The connectivity between neural areas is based on known
anatomical measurements. The proposed model could be used to explore
the memory property and its corresponding neuron activities in hip-
pocampus. In our simulation test, the model shows the ability of recalling
character images that it had been learned before.

Keywords: Hippocampus, Brain inspired model, Hierarchical vision
architecture, memory, HMAX, Object recognition, Learning.

1 Introduction

There are many things humans find easy to do while they are tough for com-
puters, such as visual pattern recognition, understanding spoken language and
navigating in a complex world, due to difficulty of the preprogrammed intelligent
systems in learning, adaptation and cognition. This challenge has intrigued a lot
of research approaches in artificial intelligence (e.g., see [1], [2]). Despite decades
of research, there are few algorithms that achieves human-like performance on
a computer. In human-like intelligence research, memory is considered to be a
fundamental part of the intelligent systems [3]. Hippocampus, which is a major
component of the brain, plays an important role in the formation of memories
and spatial navigation [4]. A hippocampal-like structure can greatly contribute
to the development of human-like intelligence system.

The research of hippocampus has been carried out for hundreds of years. Many
subregions of hippocampus have been identified. At a macroscopic level, highly
processed neocortical information from all sensory inputs converges onto the
media temporal lobe where the hippocampus resides [5]. These processed signals
enter the hippocampus via the entorhinal cortex (EC). Within the hippocampus
[6][7][8], there are connections from the EC to all fields of the hippocampal
formation, including the dentate gyrus (DG), CA3 and CA1 through perforant
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pathway, from the dentate gyrus to CA3 through mossy fibers, from CA3 to
CA1 through schaffer collaterals, and then from CA1 back to entorhinal cortex.
There are also strong recurrent connections within the CA3 region. Based on
the research work of hippocampus, many cognitive tasks have been tested with
the hippocampal-like structure, especially in spatial navigation tasks [9][10][11].

On the other side, recognition of visual objects is a fundamental cognitive task
for intelligence behavior. Computer vision systems are far from viewing as well as
human beings doing. In neuroscience point of view, the problem of object recog-
nition is also very challenging. It requires several levels of understanding like:
biological mechanisms, level of circuits and information processing. Generally,
vision processing in brain is modeled as a hierarchical process with information
flowing from the retina to the lateral geniculate nucleus, occipital and temporal
regions of the cortex [12]. Based this idea, many interesting hierarchical model
of object recognition in cortex have been proposed such as HMAX model [13]
and GWM model [14].

In this paper, we describe our brain inspired cognitive system which combines
a hippocampal circuitry together with hierarchical vision architecture. The pro-
posed cognitive structure is designed for the vision based intelligence task. In
this design, the structure of the simulated hippocampus is inspired from Darwin
series’ [15] hippocampus model which is based on an approximate mammalian
neuroanatomy. The HMAX [13] hierarchical vision architecture is adopted as a
computational model of object recognition in cortex. This brain inspired model
not only enables us to study the intelligence behavior such as learning and mem-
ory in the brain, but also enables us to record and analyzed all the neuron activ-
ities in each sub-area of hippocampus. In the simulation test, the model shows
the ability of recalling character images that it had been learned before.

2 Brain Inspired Cognitive System

The brain inspired cognitive model includes two parts: hierarchical vision ar-
chitecture and hippocampual circuitry. The schematic of the neural structure
is shown in Fig. 2. The hierarchical vision architecture is often used to model
the information process in vision system biologically. The hippocampal circuitry
is inspired from the Darwin series’ [9] hippocampus model which includes DG
CA3 and CA1. EC connects the vision cortex and hippocampal circuitry which
composes of two layers; one is for input and the other is for output.

2.1 Vision Input

Visual information in cortex is considered to be processed through ventral visual
pathway [16] running from primary visual cortex V1 over extrastriate visual area
V2 and V4 to inferotemporal cortex IT. It is classically modeled as a hierarchical-
layer structure. Here, we adopt the HMAX [13] hierarchical vision architecture
which is a computational model of object recognition in cortex. A description of
information process in HMAX model is given in Fig. 1. It consists of four layers
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with linear and non-linear operations. The first layer, namely S1, performs a
linear oriented filter and normalization to the input image. In the next layer
(C1), outputs of S1 with same orientation and near location are selected by a
maximum operation. In the next stage (S2), outputs from C1 with near location
are combined to form more complex features. The C2 layer is similar to C1 layer:
by pooling output S2 with same type and near location by a maximum operation
together. The information in C2 becomes more invariant to position and scales
but preserve feature selectivity which may correspond roughly to V4 in visual
cortex [13]. The output of the C2 layer is mapped to the inferotemporal cortex
(IT) as in a ventral cortical pathway (HMAX→IT). Then the neuronal states of
IT are projected to the hippocampus via EC.

Fig. 1. HMAX model for the object recognition [13]. The circuitry consists of a hierar-
chy of layers of visual process by using two different type of pooling method: weighted
sum (WSUM) and maximum (MAX). The first layer S1 performs a linear oriented
filter and normalization to the input image. In the next layer C1, outputs of S1 with
same orientation and near location are selected by a maximum operation. In the stage
S2, outputs from C1 with near location are combined to form more complex features.
The C2 layer is similar to C1 layer: by pooling together output of S2 with same type
and near location by a maximum operation. The output of the C2 layer is mapped to
the IT as in a ventral cortical pathway.

2.2 Hippocampus Circuitry

Connection Structure. Inside the structure, inputs from all sensory regions
converge on the input layerd of EC (ECin). The ECin connects to all fields of
the hippocampal formation, including the DG, CA3 and CA1 through perforant
pathway (ECin→DG, ECin→CA3, ECin→CA1). The DG connects with CA3
through mossy fibers (DG→CA3). The CA3 connects with CA1 through schaffer
collaterals (CA3→CA1), and CA1 connects back to entorhinal cortex output
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Fig. 2. Schematic of the regional and functional neuroanatomy of brain inspired struc-
ture. (A) Ellipses denote different neural area; boxes denote different device; arrows
demote projections from one area to another. Input to the neural system is an image.
The neural structure contains neural areas such as simulated visual cortex (HMAX);
inferotemporal cortex (IT). Inside the hippocampus, there are neural areas including
dentate gyrus (DG), CA3 and CA1 subfields which receive inputs via entorhinal cor-
tex;. In this system, a theta rhythm (TR) signal is used to inhibit neural areas to keep
activity level stable.

(CA1→ECout). There are also strong recurrent connections with in the CA3
region (CA3→CA3). In the system structure, a theta rhythm signal (TR) is
used to inhibit neural areas to keep activity level stable [17] (TR→ECin, Ecout,
DG, CA3, CA1). The TR activity follows a half cycle of sinusoidal wave:

TR(n) = sin(mod(
nπ

N
, π)) (1)

where n is the time step; N is the number of steps that are required for the
hippocampus to reach a stable state for a new input.

Neuronal Dynamic. Neuronal units in this system are simulated by a mean
firing rate model. The mean firing rate range of each neuronal unit is from 0 (no
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firing) to 1 (maximal firing). The state of a neuron unit is calculated based on
its current state and contributions from other neuron units. The postsynaptic
influence on unit i is calculated based on equation:

Posti(t) =
M∑

j=1

[wijsj(t)] (2)

where sj(t) is the activity of unit j; wij is the connection strength from unit j
to unit i; Posti(t) is the postsynaptic influence on unit i; M is the number of
connection to unit i.

The new activity is determined by the following activation function:

si(t + 1) = Φ(tanh(Posti(t) + εsi(t))) (3)

Φ(x) =

{
0 x < δfire

i

x otherwise
(4)

where ε controls the persistence of unit activity from previous state; δfire
i is

firing threshold.

Synaptic Plastic. In learning and memory, synaptic plasticity is one of the
key issue for the neural network to learn and store the memory. Experimental
data from the visual cortex led to a synaptic modification rule, namely BCM
rule. The model has two main features [18]: (1), synapses between neuron units
with strong correlated firing rates are potentiated; (2),it assumes that a neuron
processes a synaptic modification threshold which control the direction of weight
modification. In this paper, the synaptic plastic is based on a modified BCM
learning rule [9].

Δcij(t + 1) = ηsi(t)sj(t)BCM(si(t)) (5)

BCM(s) =

⎧⎪⎨⎪⎩
−s s ≤ Θ

2

s−Θ Θ
2 > s ≤ Θ

tanh(s−Θ) otherwise

(6)

where si(t) and sj(t) are activities of postsynaptic and presynaptic units, respec-
tively; η is the learning rate. The threshold is adjusted based on the postsynaptic
activity.

ΔΘ = 0.25(s2
i (t)−Θ) (7)

3 Learning of an Input Image

In this cognitive model design, the HMAX returns the key information of the
input image. EC processes this vision information and passes it to the hip-
pocampus region including DG, CA3 and CA1. DG is often considered to have
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the function of capturing the abstract information from EC area. In our design,
the self-inhibition of DG is very strong. It inhibits more surrounding neurons
comparing to the self-inhibition in CA3 and CA1 area. Due to the competitive
learning process, the key information from EC will be remained in DG area.
The CA3 is considered to store the memory information in hippocampus. In the
design, a strong recurrent connection is included in CA3 model. The stabilized
response of CA3 will then activate the corresponding pattern of CA1.
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Fig. 3. The response of neurons in hippocampus to input image ‘A’ in a simulation
cycle with different steps; top to bottom: input image, neuron activity of IT, ECin,
DG, CA3 and CA1.

In the simulation test, a 20x20 pixel black and white character image ‘A’
is input to the system. In the hippocampus, the neuron areas require several
steps to stabilize to a new input. As shown in Fig. 3, after about 20 steps,
the whole system becomes stable. Here, the theta cycle is chosen to be 20 in
the simulation. In CA1 area, the neuron shows a stable pattern to the input
character. This pattern can be recalled if the input image is ‘A’ character.

To associate the pattern in CA1 to the input character, we create an output
neuron area as shown in Fig. 2. It has the same size as the input image. The
connection weight between CA1 neuron and output neuron is updated according
to the BCM learning rule by Equation (5) and (6). As shown in Fig. 4, with two
round of training, the hippocampus can recall the input character and show it
in output neuron area.
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Fig. 4. Learning and recalling the input image by hippocampus; First two cycle is
training for input ‘A’, the next two cycle is training for input ‘C’, in the testing stage
image ‘A’ and ‘C’ are input to the system alternatively; top to bottom: input image,
neuron activity of IT, ECin, DG, CA3 and CA1.

4 Conclusion

Hippocampus is a major component of the brain which plays an important role
in learning and memory. In this study, we develop a brain inspired neural model
to analyze these properties. The model includes a hippocampal circuitry and
hierarchical vision architecture. This system allows us to track all the neural
activities during different scenario of experiments. The system is found to be
able to recall the input image that it has been trained previously. The analysis
of this study may contribute to a better understanding of learning and memory
functions in the hippocampus region.
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Abstract. This paper presents a brain-inspired neural architecture with
spatial cognition and navigation capability. It captures some navigation
properties of rat brain in hidden goal hunting. The brain-inspired system
consists of two main parts. One part is hippocampal circuitry and the
other part is hierarchical vision architecture. The hippocampus is mainly
responsible for the memory and spatial navigation in the brain. The vi-
sion system provides the key information about the environment. In the
experiment, the cognitive model is implemented in a mobile robot which
is placed in a spatial memory task. During the navigation, the neurons in
CA1 area show a place dependent response. This place-dependent pat-
tern of CA1 guides the motor neuronal area which then dictates the robot
move to the goal location. The results of current study could contribute
to the development of brain-inspired cognitive map which enables the
mobile robot to perform a rodent-like behavior in the navigation task.

Keywords: Hippocampus, Brain-inspired model, Place-dependent
response, Spatial memory, HMAX, Object recognition, Neurobotics.

1 Introduction

The autonomous capabilites of robots and learning systems, for example,
autonomous navigation, learning and autonomous self-reconfiguration, have at-
tracted increasing interests [1,2]. Navigating in a complex world is easy for hu-
mans, yet it is a tough problem for the robots. A cognitive mechanism that
converts the odometric and perceptual information into a guild map is still a
challenging problem in robotics area. To address this problem, simultaneous lo-
calization and mapping (SLAM) is widely studied. In this approach, a mobile
robot develops a map of its environment while simultaneously localizes itself
within this map [3]. In the implementation, SLAM algorithm often requires a
precise reference location. Many multi-hypothesis techniques such as Kalman
filter [4] or Particle filter [5] are used to have a practical and robust SLAM
algorithm.

Compared with SLAM in robotics area, animals such as rat and primates have
inborn ability to navigate in a complex environment. Neurophysiological studies
suggest that hippocampus, a major component of brain, plays an important role
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in memory and spatial navigation [6][7]. The discovery of hippocampus neural ac-
tivities in rat navigation experiment led to a theory that the hippocampus might
act as a cognitive map: a neural representation of the layout of the environment [8].
This spatial navigation ability arouses a great interest to incorporate rat’s adap-
tive navigation model in mobiles robots. Barrera et. al [9] have proposed a neural
structure to mimic “place field” property of hippocampus and guild a robot to
search for the goal. Wyeth and Milford [10] proposed a more biological based spa-
tial cognition model which includes two parts: pose cells which function as grid
cells in entorhinal cortex (EC) and experience map which functions as place cells
in CA1 and CA3. The robot controlled by the hippocampal-like system achieved
a great performance of simultaneous navigating and localization in the lab.

Inspired from the rat’s navigation and prior art on brain-inspired navigation
method, we target to develop a brain based cognitive model for the robot spatial
navigation. The proposed model should have a brain-inspired neural architecture
which can build, update, integrate and use the map simultaneously throughout
its traveling period. In our architecture, the brain model is designed based on an
approximate mammalian neuroanatomy [11][12][13]. The key part of the brain
system is hippocampus circuitry which includes dentate gyrus (DG), CA3 and
CA1. The hippocampus receives inputs from virtually all association areas in the
neocortex via entorhinal cortex (EC). The connections between all these neural
areas are based on known anatomical measurements. In this design, vision and
orientation are implemented as sensory inputs. Vision input is an important
information for the robot navigation. In our design, a computational model of
object recognition in cortex is adopted to work as hierarchical vision system.

In this paper, we will describe the implementation of our brain-inspired cogni-
tive model. To explore the spatial navigation ability of the robot, we implement
the model in a mobile robot which is placed in a spatial memory task. The exper-
iment environment is a plus maze where the robot is commanded to search for a
hidden goal. This maze experiment has been used in the rodent studies of spatial
memory [14]. In the test, the region of CA1 shows a place-dependent response
during the maze navigation. This place-dependent pattern of CA1 guides the
motor neuronal area which dictates the robot move to the goal location. In the
goal searching test, the robot is found to be able to remember the direction of the
goal that it found previously. Because of the simulated model of hippocampus,
we can trace the population activities of the neurons and functional connections
inside the hippocampus. This analysis reveals the contributions of the place-
dependent response in hippocampus. The study results could be greatly helpful
in developing the cognitive map for the navigation.

2 Brain-inspired Cognitive System

The Brain-inspired neural structure incorporates a hippocampal circuitry, En-
torhinal cortex, sensory cortical regions and motor cortical regions. The schematic
of the neural structure is shown in Fig. 1. The hippocampal circuitry is inspired
from the Darwin series’ [15] hippocampus model which includes DG CA3 and
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CA1. The model for sensory inputs contains two regions; visual pathway for
camera input and orientation pathway for compass input.

Visual information in cortex is considered to be processed through ventral
visual pathway [16] running from primary visual cortex V1 over extrastriate
visual area V2 and V4 to inferotemporal cortex IT. It is classically modeled as a
hierarchical-layer structure. Here, we adopt the HMAX [17] hierarchical vision
architecture which is a computational model of object recognition in cortex. It
consists of four layers (S1, C1, S2, C2) with linear and non-linear operations
(shown in Fig. 1 B). The output of the C2 layer is mapped to the inferotemporal
cortex (IT) as in a ventral cortical pathway. Another visual input is the color
information where four colors, red, green, blue, yellow, are filtered from camera
input. The filtered images are mapped to IT in a ventral cortical pathway. Then
the neuronal states of IT are projected to the hippocampus via EC.

Head direction is activated by the compass input and mapped to the anterior
thalamic nucleus (ANT) and to motor area (Mhdg). The neural states of ANT
are also projected to the hippocampus via EC.

Fig. 1. Schematic of the regional and functional neuroanatomy of brain-inspired struc-
ture. (A) Ellipses denote different neural area; boxes denote different device; arrows
demote projections from one area to another. The neural structure contains neocortex,
entorhinal cortex and hippocampus circuitry. (B) HMAX model for the object recog-
nition [17]. The circuitry consists of a hierarchy of layers of visual process by using two
different type of pooling method: weighted sum (WSUM) and maximum (MAX).

Inside the hippocampus, inputs from all these sensory regions converge on the
input layerd of EC. The EC connects to all fields of the hippocampal formation,
including the dentate gyrus (DG), CA3 and CA1 through perforant pathway.
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The DG connects with CA3 through mossy fibers. The CA3 connects with CA1
through schaffer collaterals, and CA1 connects back to entorhinal cortex out-
put. There are also strong recurrent connections with in CA3 regions. Synaptic
strengths of the plastic connection inside the hippocampus are modified accord-
ing to a BCM learning rule [15]. The synaptic strengths between CA1 to motor
cortical area (Mhdg) are modified by a temporal difference reinforcement learn-
ing rule [15] based on the reward system.

The motor cortical area dictates the moving direction of the robot. To es-
timate the optimal moving direction from the motor cortical area, we adopt a
Maximum Likelihood (ML) estimator method. Deneve et al. [18] have shown
that ML estimation can be done with a biologically plausible neural network. In
this paper, we use a recurrent neural network to read the neuronal activities in
motor cortical area. The recurrent neural network is composed of a population of
neurons with bell-shaped tuning curves. Neurons in the network communicated
through symmetric lateral connections. The input of the network is the neuronal
activities of Mhdg which are multi-modal noisy hill. By tuning the parameters of
the network, the activity of the network should converge over time to a smooth
hill which is unimodal. Once the smooth hill is obtained, its peak position is an
estimate of the direction of motion.

3 Device, Task and Environment in the Simulation

Analyzing the hippocampus function in brain is challenging due to the difficulty
of recording neuronal activities simultaneously from many neuronal areas and
multiple neuronal layers. A possible solution is to build an artificial hippocampus
model and implement it in real environment [15]. Many neuro-robotic systems
[19][15][20][21][22] have been developed whose behaviors are guided by the sim-
ulated neural systems. In this paper, instead of carrying out the experiment in
real environment, we test the system in a simulated environment. An advantage
of doing the experiments in the simulated environment is that the experiment
can run as long as we need without worrying about the damage of hardware.
Also, the cost is much lower comparing to the real hardware implementation. In
this implementation, the task is to navigate the plus-maze as shown in Fig. 2.
The simulated environment is developed in Webots which is a dynamic simula-
tion software based on open dynamic engine (ODE). All the real world sensors
such as vision, compass, distance sensor and DC motors can be modeled in this
environment.

The maze is similar to the experiment of Darwin XI [15] which was imitating
the environment used in the studies of rodent hippocampal place activity [14].
The robot explored the maze autonomously and made a choice of direction at
the intersection. On each trial, the robot starts from any arm as indicated by
the “�” in the Fig. 2 and enters an arm among the rest of the arms. A hidden
goal platform is placed randomly at end of a maze arm. To provide the cue for
the robot, visible walls are placed outside the maze arm which have different
shapes and colors. As for the experimental robot, a camera is mounted on the
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head to provide the visual input; a compass is also mounted on the head to
provide the orientation input; IR sensors are mounted on the body to detect the
intersection and 1 additional IR sensor is mounded at the bottom to detect the
hidden goal platform. In the experiment, the robot moves based on the visual
and orientation input. A reward system is given to the neural system depending
on the goal hunting results.

Fig. 2. Neuro-Cognitive Robotics Platform. The maze has four cue walls with different
shapes and colors; a hidden platform is placed randomly at the end of a maze arm; the
camera and compass mounted on the robot head provide the vision and orientation
inputs for the robot; the IR sensors are only used to detect the interception; in the
experiment, the robot can start journey at any starting points marked by the red “�”
in the maze.

4 Simulation Results

We implement the brain-inspired model in a mobile robot which is placed inside
a simulated plus maze environment and commanded to search for a hidden goal
(shown in Fig. 2). The scenario of the simulation is designed as following: the
robot starts from a starting point as marked by the red “�” in Fig. 2; checks
the three possible directions at the intersection; makes the choice based on the
neuron activities; checks the reward when the robot reaches the end of the maze
arm. This scenario is repeated to see how the robot searches the hidden goal in
an unknown environment.

In the experiment, the hippocampus shows a place dependent response in CA1
area. When the robot moves to the end of maze arm and looks at the image shown
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Fig. 3. Place dependent pattern of CA1 in different location. (A) Robot reaches the
end of each arm. (B) The response of CA1 at each arm. The arrow indicates the facing
direction.

on the wall. The neuron activity in CA1 area shows different pattern for each
maze arm. This place related pattern is shown in Fig. 3 Since the hippocam-
pus shows different pattern when it stands at different location, this property
helps the robot to remember the location it has seen before. In this place field
response, about 57 neurons in total in CA1 area out of 400 neurons are fired
when pass all four different locations. The ratio is similar to the experiment of
Darwin XI [15].

When the robot reaches the intersection, it looks to the left, front and right
sequentially. Fig. 4 B shows the neuron activity in CA1 area when the robot
stays at intersection point. For the same heading direction, the response of CA1
is similar with the case when the robot reaches at end of the wall as shown in Fig.
3. It shows that although the robot see the image in different distance, it still
can recognize the image. Then, based on the neuron response in Mhdg area, the
robot chooses a direction with the highest neuron activity. Mhdg area consists
60 neurons which corresponding to 0-359 degree in direction. If the environment
is new to the robot, the four directions have similar neuron activity level (as
shown in Fig. 4 C upper sub-figure). After the robot has found a hidden goal in
the maze arm, a positive reward will be given to this direction. The robot will
get the knowledge of this goal location according to the reinforcement learning
rule. In the case when the robot has not found the hidden goal in a maze, a
negative reward will be given to the system. The information of no goal in this
arm will be learned. Fig. 4 C (bottom sub-figure)shows the neuron activity of
Mhdg area after given the reward. After the robot has found the hidden goal
in west arm, a positive reward is given. The neuron activity around 270 degree
becomes stronger. When the robot reaches at the end of north arm, no hidden
goal is found. In this case, a negative reward is given. The neuron activity around
180 degree becomes weaker.
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Fig. 4. A comparison of positive reward and negative reward to the neuron states in
Mhdg area. (A) robot stays at interception point and make the choice of direction (B)
The response of CA1 with different heading (C) The neuron state of Mhdg area before
knowing the environ (upper sub-figure) and after reward training (lower sub-figure).

5 Conclusion

Hippocampus is a major component of the brain which plays an important role
in spatial navigation. In this paper, we have presented our brain-inspired neural
architecture for the spatial navigation. The model includes a hippocampal cir-
cuitry, hierarchical vision architecture and other sensory input cortical regions
and motor output cortical regions. This system allows us to track all the neu-
ral activities during different scenario of experiments. In the experiments, the
place-dependent response is observed in CA1 area in hippocampus model. The
robot is found to be able to remember the direction of the goal that it found
previously. The analysis of this study may contribute to a better understanding
of place-dependent response and spatial memory in the hippocampus region.
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Abstract. One of the functional roles of the hippocampus is the stor-
age and recall of associative memories. The hippocampus CA3 region
has been hypothesized to function as an associative network. Dual oscil-
lations have been recorded in brain regions involved in memory function
in which a low frequency theta oscillation is subdivided into about seven
subcycles of high frequency gamma oscillation. In this paper, the compu-
tational model of hippocampus CA3 proposed by Jensen et al. is realized
using the Spike Response Model (SRM). The SRM-based network is able
to demonstrate the same memory storage capability with added simplic-
ity and flexibility. Different short term memory items are encoded by
different subset of principal neurons and long term associative memory
is maintained in the synaptic modifications of recurrent collaterals. The
formation of associative memory is demonstrated in simulations.

Keywords: Hippocampus, CA3, associative memory, spike response
model, theta cycle, gamma cycle.

1 Introduction

Mimicting brain-style intelligence has intrigued enormous efforts in the past
decades (see, e.g. [1,2]). One of the most widely studied regions of the brain,
the hippocampus, is believed to be the storage location of declarative memo-
ries. Computational modelling of these brain regions using biologically realistic
neurons provides insights to how the brain handles such memory functions.

Pantic et al. examined the use of dynamic synapses in a stochastic Hopfield-
like network to store and retrieve memories [19]. Sato & Yamaguchi demon-
strated a hierarchical architecture for object-place association by modelling the
EC layer II and CA3 regions [22]. Sommer & Wennekers demonstrated a biologi-
cally realistic CA3 network which uses gamma oscillations as a means to retrieve
excitatory associative memories [23]. Cutsuridis et al. explored the biophysical
mechanisms to achieve the storage and recall of spatial-temporal patterns using
a microcircuit model of the CA1 region [6]. Fleischer & Krichmar studied how
sensory information is mapped using a model of the medial temporal lobe and
the hippocampus [8].

In this paper, we propose a SRM-based [14] computational model of the hip-
pocampus CA3 region for the storage and retrieval of a sub-category of declara-
tive memory known as associative memory. The architecture of the hippocampus
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model is inspired by Jensen et al. [10]. The SRM neuron is chosen for its sim-
plicity in implementation as well as flexibility in defining varied neuron charac-
teristics. The SRM is simple to implement because it is fully defined by only two
continuous kernel functions. In addition, both synaptic plasticity and intrinsic
neuronal plasticity can easily be realized using the SRM neuron.

2 Hippocampus

The hippocampus resides within the medial temporal lobe of the brain. At the
macroscopic level, highly processed neocortical information from all sensory in-
puts converges onto the medial temporal lobe [12]. These processed signals enter
the hippocampus via the entorhinal cortex (EC). Within the hippocampus [21],
there are connections from the EC to all parts of the hippocampus, including the
dentate gyrus (DG), CA3 and CA1 through perforant pathway, from the DG to
CA3 through mossy fibres, from CA3 to CA1 through schaffer collaterals, and
then from CA1 back to EC. There are also strong recurrent connections within
the DG and CA3 regions. Figure 1 depicts the broad overview of hippocampus.

Dual oscillations have been recorded in hippocampus in which a low fre-
quency theta oscillation is subdivided into about seven subcycles of high fre-
quency gamma oscillation [4]. The theta rhythm in the hippocampus refers to
the regular oscillations of the local field potential at frequencies of 4-12 Hz which
has been observed in rodents [25]. It is thought that different information can
be stored at different phases of a theta cycle [18]. This type of neural informa-
tion representation is commonly known as phase encoding. It is also proposed
that the theta rhythm could work in combination with another brain rhythm
known as the gamma rhythm, of frequencies 40-100 Hz [4], to actively maintain
auto-associative memories [13,10].

EC

DG CA3 CA1

Fig. 1. Block diagram of hippocampus
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Fig. 2. Overview of CA3 model using
SRM
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3 Model of CA3

The proposed computational model is a simplified network of the subcortical area
and hippocampus that incorporates two major network components; namely: the
synaptic input from EC to CA3, and CA3 itself. The network architecture and
dynamics is inspired by the works of Jensen et al. [10]. An overview of the
hippocampal CA3 architecture used in this paper is shown in Fig. 2. The EC
and DG is modelled as the input layer while the hippocampal CA3 region is
modelled as a recurrent network. All pyramidal cells in the CA3 also accept an
oscillatory input that is used to model the theta rhythm. Feedback inhibition
from interneurons is applied to all pyramidal cells.

3.1 Spike Response Model

This paper presents the CA3 model using the Spiking Response Model (SRM)
neurons [14]. The SRM neuron is preferred to the integrate and fire (I&F) neu-
ron model due to its flexibility in defining the neuron response and the synaptic
response. While the characteristics of an I&F neuron is defined by several pa-
rameters, the characteristics of a SRM neuron is defined by a continuous kernel
function. The kernel function may be designed to model neurons with differ-
ent characteristics like those found in a biological nervous system. Neurons in
the hippocampus has been observed to change in intrinsic neuronal excitabil-
ity [26,15]. It was postulated that changes in the after-hyperpolarization (AHP)
in the cells caused its firing frequency to change [11]. Persistent concomitant
changes in the intrinsic neuronal excitability and long term synaptic modifica-
tions have been shown [7]. Similar to synaptic plasticity, intrinsic plasticity is
bidirectional and input- or cell- specific. Intrinsic plasticity increases the relia-
bility of the input-output function and improves the temporal precision of the
neuronal discharge [5]. While intrinsic plasticity is modelled as a static func-
tion in this paper, the SRM neuron model has the potential to be extended to
incorporate such forms of intrinsic plasticity dependent learning in future works.

Mathematically, the membrane potential of a neuron i under the SRM model
is described by a state variable ui. A spike is modelled as an instantaneous event
that occurs when the membrane potential ui exceeds a threshold Vthres. The
time at which ui crosses Vthres is said to be the firing time t

(f)
i . The set of all

firing times of neuron i is denoted by

Fi =
{
t
(f)
i ; 1 ≤ f ≤ n

}
= {t|ui(t) = Vthres ∧ u′

i(t) > 0} , (1)

where n is the length of the simulation. After a spike has occurred at t
(f)
i , the

state variable ui will be reset by adding a negative contribution ηi(t− t
(f)
i ) to ui.

The kernel ηi(s), known as the refractory function, vanishes for s ≤ 0 and decays
to zero for s →∞. The refractory kernel defines a refractory period immediately
following a spike during which the neuron will be incapable of firing another
spike. The neuron may also receive input from presynaptic neurons j ∈ Γi where

Γi = {j|j presynaptic to i} . (2)
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A presynaptic spike increases or decreases the state variable ui of neuron i by
an amount wijεij(t− t

(f)
j ). The weight wij is known as the synaptic weight and

it characterises the strength of the connection from neuron j to neuron i. The
kernel εij(s) models the response of neuron i to presynaptic spikes from neurons
j ∈ Γi and vanishes for s ≤ 0. In addition to spike input from other neurons,
a neuron may receive external input hext, for example from non-spiking sensory
neuron. Under the SRM model [14], the state ui(t) of neuron i at time t is hence
given by (3).

ui(t) =
∑

t
(f)
i ∈Fi

ηi

(
t− t

(f)
i

)
+
∑
j∈Γi

∑
t
(f)
j ∈Fj

wijεij

(
t− t

(f)
j

)
+ hext(t) . (3)

The kernels ηi(s) and εij(s) fully define neuron i under the SRM neuron model
described in (1) to (3). The response kernels can be adapted to give rise to
different neuronal characteristics. The kernels can be configured to adapt SRM to
function like the I&F model. With appropriate selection of the response kernels,
the SRM neuron can even approximate the Hodgkin-Huxley conductance-based
neuron model [14]. Hence, the SRM offers flexibility in defining neurons with
different characteristics.

3.2 Pyramidal Cells

A pyramidal cell is fired when its membrane potential ui exceeds threshold Vthres

= 10 mV (see [9] for approximate value). In hippocampal pyramidal cells, ac-
tion potentials are followed by after-hyperpolarizations (AHPs) [20]. In addition,
pyramidal cells exhibit an after-depolarization (ADP) after spike during cholin-
ergic [24] or serotonergic modulation [3] or as a result of metabotropic glutamate
receptors involved in the conversion of AHP to ADP [20]. In the SRM neuron,
both AHP and ADP are modelled by the refractory kernel ηi(t− t

(f)
i ) of a pyra-

midal cell i. (see (4)).

ηi(s) = Vrefr(s) = AAHP exp
(
− s

τAHP

)
+ AADP

s

τADP
exp
(

1− s

τADP

)
, (4)

where AAHP = −3.96 mV, τAHP = 5 ms (see [24] for approximate value), AADP

= 9.9 mV, and τADP = 200 ms (see [20] for approximate value).
The theta oscillatory signal in Fig. 2 is modelled by (5).

hext(t) = Vtheta(t) = Atheta sin (2πft + φ) , (5)

where Atheta = 4.95 mV, f = 6 Hz, and φ = −π/2.
For synaptic transmission between pyramidal cells in the recurrent collater-

als, the response kernel εij denotes an excitatory postsynaptic potential (EPSP)
VEPSP. The synaptic transmission is mediated by synaptically released glutamate
binding to AMPA (α-amino-3-hydroxy-5-methyl-4-isoazole-proprionic acid).
AMPA receptors activate and deactivate within a few milliseconds of presynaptic
glutamate release. This synaptic input is modelled by (6).
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εij(t) = VEPSP(t) =
AAMPA

aN

(
t− t

(f)
j − tdelay

τAMPA

)
exp

(
1−

t− t
(f)
j − tdelay

τAMPA

)
.

(6)

where AAMPA = 23.1 mV, τAMPA = 1.5 ms (see [10] for approximate value),
N denotes the number of pyramidal cells/interneurons in the network, and the
delay in the recurrent feedback is tdelay = 0.5 ms. The constant a = M/N denotes
the sparseness of pyramidal cells for information coding with M denoting the
number of cells representing a memory pattern.

For synaptic transmission from an interneuron to pyramidal cells, the response
kernel εij denotes an inhibitory postsynaptic potential (IPSP) VIPSP. VIPSP rep-
resents the net GABAergic inhibitory feedback to the pyramidal cells from one
interneuron. This inhibitory effect is modelled in (7) by assuming the interneu-
rons fire in synchrony by recurrent excitation of the pyramidal cells.

εij(t) = VIPSP(t) =
AGABA

aN

(
t− t

(f)
j

τGABA

)
exp

(
1−

t− t
(f)
j

τGABA

)
, (7)

where AGABA = −5.94 mV, t
(f)
j refers to the spike time of interneuron j, τGABA

= 4 ms (see [16] for approximate value).

3.3 Interneurons

The response kernel εij of interneuron i to presynaptic spikes from pyramidal
cell j is modelled by (8). The synaptic transmission wij from pyramidal cell j to
interneuron i is assumed with unit weight. The interneuron is also assumed with
no refractory (η(s) = 0). This set-up simply serves as a signal from a pyramidal
cell to initiate IPSP to other pyramidal cells via the inhibitory feedback from
the interneurons.

εij(t− t
(f)
j ) =

{
4 mV (see [16] for approximate value) if (t− t

(f)
j ) = 0 ,

0 mV if (t− t
(f)
j ) �= 0 .

(8)

3.4 Synaptic Modification

Associative LTM memory storage is achieved by synaptic modifications that fol-
low the Hebb-rule; simultaneous presynaptic and postsynaptic activity enhances
synaptic efficacies. The following equations ((9)-(11)) are defined for synaptic
modifications [10]. The synaptic strength from pyramidal neuron i to neuron j
is determined by (11).

ipost(s) =
s

τpost
exp
(

1− s

τpost

)
, (9)
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bglu(s) = exp
(
− s

τNMDA,f

)(
1− exp

(
− s

τNMDA,r

))
, (10)

∂wij

∂t
=

ipost(t− t
(f)
j ).bglu(t− t

(f)
i − tdelay)(1 − wij)

τpp
+(

ipost(t− t
(f)
j )

τnpp
+

bglu(t− t
(f)
i − tdelay)

τpnp

)
(0 − wij) . (11)

where τpost = 2.0 ms, τpp = 50 ms, τpnp = τnpp = 250 ms, and τdelay is the
time taken for an action potential to travel from the soma to the synapses of the
recurrent collaterals, ipost is the postsynaptic depolarization dynamics, and bglu

is the kinetics of the NMDA channels. Using the kinetics of the NMDA receptors
[17], τNMDA,f = 7.0 ms, and τNMDA,r = 1.0 ms.

4 Results and Discussion

Figure 3 shows the repetitive firings of neurons in the network. A memory item
is represented by the coincident firing of a subset of neurons. In Fig. 3, external
input Vin (simulation of spikes from input layer) representing seven different
memories are introduced into the network. Each of the input patterns is encoded
by five pyramidal neurons (M = 5).

The first memory is inserted into the memory buffer at 160 ms by an external
input that synchronously fires five of the pyramidal neurons. This firing triggers a
short AHP and then a slowly rising ADP in the neurons. The ADP subsequently
causes the neurons to fire on next theta cycle. The membrane potential of each
group of five neurons is represented by a line in the membrane potential subplot
of Fig. 3. When a neuron fires, the ADP is reset, making it possible for the same
processes to occur on the next theta cycle. The second memory is inserted at
500 ms which causes the synchronous firing of the another group of five neurons.
This memory is repeated in this sequence in the next theta cycle. The ADP
causes persistent firing and controls the timing of the firing of each group of
neurons such that the neurons that encode the first memory fires before neurons
that encode the second memory and so forth for the rest of the memory items.
The feedback inhibition VIPSP follows each action potential from the pyramidal
neurons. This inhibition serves to restrict the firing of each group of neurons to
discrete phases of the theta oscillation. Each memory item is repeated in the
order of its introduction to the network.

Figure 4 illustrates the synaptic matrix; the size of the square at location i, j
denotes the synaptic strength of the connection from neuron j (y-axis) to neuron
i (x-axis). The repetition of memories in the short term memory network gradu-
ally leads to the build up of synaptic strength in LTM. Here, hetero-associative
memory is also gradually formed due to the repeated presentation of the same
sequence of memory items. Figure 4 also illustrates neuron group (neuron 1 to
5) of the first memory item are hetero-associated with neuron group of second
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Fig. 3. Mechanism of STM network Fig. 4. Synaptic matrix
representation of LTM

memory item. Each neuron group in the CA3 network is hetero-associated with
the next neuron group. This results in the formation of associative memory in
the form sequential memory in LTM.

5 Conclusion

Simulation results showed that the proposed CA3 model using SRM neurons
can capture multiple memory items in real time and incorporate them into LTM.
The interaction between AHP, ADP and feedback inhibition led to the sustained
firing of memory items in their order of introduction once every theta cycle. Con-
sequently, the repeated firing of memory items led to the gradual incorporation
of each item in LTM via modification of the synaptic strengths between groups
of neurons. The simplicity of the SRM neuron model is demonstrated without
any compromise in network functionality.
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Abstract. We propose a new neuro-robotics network architecture that can 
generate goal-oriented behavior for visually-guided multiple object manipulation 
task by a humanoid robot. For examples, given a “sequential hit” multiple 
objects task, the proposed network is able to modulate a humanoid robot’s 
behavior by taking advantage of suitable timing for gazing, approaching and 
hitting the object and again for the other object. To solve a multiple object 
manipulation task via learning by examples, the current study considers two 
important mechanisms: (1) stereo visual attention with depth estimation for 
movement generation, dynamic neural networks for behavior generation and (2) 
their adaptive coordination. Stereo visual attention provides a goal-directed shift 
sequence in a visual scan path, and it can guide the generation of a behavior plan 
considering depth information for robot movement. The proposed model can 
simultaneously generate the corresponding sequences of goal-directed visual 
attention shifts and robot movement timing with regards to the current sensory 
states including visual stimuli and body postures. The experiments show that the 
proposed network can solve a multiple object manipulation task through 
learning, by which some novel behaviors without prior learning can be 
successfully generated.  

Keywords: Multiple object manipulation task, visual attention shifts, behavior 
generation, stereo visual attention, multiple time-scale recurrent neural 
networks. 

1   Introduction 

To achieve the visual-guided manipulation tasks for multiple objects by a humanoid 
robot, for example, approaching and hitting one object then again another object, the 
visual attention and robot movement need to switch to a specific object corresponding 
to a specified task in time. Humans control gaze shifts and fixations (visual attention) 
proactively to gather visual information for guiding movements, which is highly 
related to a specified task [1]. In addition, visual attention can effortlessly detect 
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(location) and help to recognize (identification) an interesting area or object within 
natural or cluttered scenes through the selective attention mechanism with various 
visual features [2] – [4].  

The current study, based on the previous study [5], examines how a humanoid robot 
can learn to manipulate multiple objects in a sequence by acquiring adequate visual 
attention shifts and movement timing with depth information. The stereo visual attention 
system selects a specific object region with depth information among several candidate 
areas with multiple objects from input images [5], [6]. The behavior system sequentially 
plays pre-defined specific behavior such as walking and approaching an object. Another 
essential idea is to utilize a functional hierarchy and to integrate the stereo visual 
attention and behavior sequence generation by employing a new dynamic neural network 
model called the multiple timescale recurrent neural network (MTRNN) [7], [8]. In this 
work, Yamashita et al.’s work for single object manipulation is extended to multiple 
objects by localizing each object's characteristics, through time, by visually selective 
attention. And previous Jeong et al.’s work for multiple object manipulation in the same 
location is extended to different object locations with depth information. It means that a 
current task needs to correctly choose the walking in a distance and approaching behavior 
commands to the specific object through time. 

Previous research has shown that a set of primitive behaviors are acquired in the 
fast dynamic network for lower-level activities, while the sequencing of these 
primitive behaviors in the slow dynamic network develop into higher-level activities 
[5]. In the current model, the function of a sequence generation by a visual attention 
shift and behavior shift are considered to be attained in the slow dynamics network 
along with the one for sequencing of the primitive behaviors such as walking to and 
hitting the object. The output command sequences of the visual shift and behavior 
shift from this slow dynamics network are sent to a hard-wired gaze system and a 
behavior system to attend target objects to localize the target objects and to achieve 
behavior control through time, respectively. In our experiment, the robot learns to 
perform visual attention shifts with depth information and behavior shifts followed by 
acquired behavior patterns through supervisor; the robot sequentially attends and 
approaches to an object before hitting it and then to the other object. 

This paper is organized as follows: In Section 2, we present the proposed new 
neuro-robotics architecture that is combined with a stereo visual attention system, 
behavior system and a new dynamic neural network model known as MTRNN. In 
Section 3, we present the experiment and its results. The discussion and conclusions 
follow in Section 4. 

2   Visually-Guided Behavior Planning Generation 

2.1   Overall Architecture 

Fig. 1 describes the overall information flow in the proposed model. When receiving a 
desired task as the inputs in the slow dynamics of MTRNN, the MTRNN 
simultaneously predicts how the robot behavior command (bt+1) and visual attention 
command (vt+1) change through time. The inputs for the MTRNN consist of visual 
attention command (vt), robot behavior command (bt) and a visual stimuli (st). Here,  
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the visual attention command represents 3 object categories (red, green, blue colors) 
to be attended and behavior command represents 3 different behavior categories 
(walk, turn, hit). 

   

Fig. 1. Proposed neuro-robotics architecture. Inputs for the MTRNN: vt (visual attention 
command at time t: 3 dimensions vector (red, green, and blue)), st (visual stimuli at time t: 2 
dimensions vector (encoding object location information such as angle and depth)), bt (behavior 
command at time t: 3 dimensions vector (walk, turn, and hit)), Outputs of the MTRNN: vt+1, 
bt+1. Z

-1 (time delay unit), In-Out (input and output unit), FAST (fast context unit: time constant τ=2), SLOW (slow context unit: time constant τ=30).  

Each vector with 2 and 3 dimensions is transformed by a topology preserving map 
(TPM) to cluster as 64 TPM units and 16 TPM units in our experiments. The stereo 
visual attention system receives a visual attention command from the MTRNN and 
the retina image from the robot’s vision. The spatial location of a target object is 
encoded by using an angle between robot body and objects together with depth 
information obtained from the stereo-type visual attention system [4], [6]. The spatial 
location of a target object is used for helping the robot movement shifts such as 
turning or walking to the object. The spatial location of a target object, the  
visual attention command and behavior command are fed back to the inputs of the 
MTRNN. 

2.2   Stereo Saliency Map for Visual Attention and Depth Estimation 

In the current study, the dynamic neural network generates not only a goal-directed 
arm behavior signal, but also a visual attention command to a vision system with a 
stereo visual attention to find a specified object and complete the task. In the course  
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of detecting an object to achieve the object manipulation task, stereo bottom-up 
processing work together for selective attention on a specified object region in an 
input scene. The MTRNN generates a goal-directed visual attention sequence in time 
at a test mode. Then, a localized area selected by a bottom-up SM model is tested for 
matching how much the selected area meets the visual characteristics of an object for 
a specific manipulation task generated by the MTRNN. For example, if a visual 
attention command from the MTRNN is to find a blue object, then only the blue 
characteristic is intensified in a bottom-up SM (wanted feature information), the other 
color is inhibited (unwanted feature information). After successfully localizing 
corresponding landmarks on both the left image and right image, we are able to get 
depth information by means of the stereo visual attention model [6]. 

2.3   MTRNN for Coordination of Attention and Behavior Sequences 

The MTRNN is a type of the continuous time recurrent neural network (CTRNN) 
model in which neurons have different time scales; therefore, the MTRNN has the 
functional hierarchy characteristic [7], [9], [10]. From this characteristic, neurons with 
a fast time constant encode a set of primitive behaviors, and neurons with a slow time 
constant prepare for the compositional sequences of these primitives behavior. The 
MTRNN has three groups of neural units in present study, namely input-output units 
(68), fast context units (70) and slow context units (30). Among the input units, the 
first 36 units (i = 1-36) correspond to the visual input (angle and depth), the next 16 
units (i = 37-52) correspond to the visual attention command and the last 16 units (i = 
53-68) correspond to the behavior command, respectively. The 8 dimensional inputs 
were thus transformed into 68 dimensional sparsely encoded vectors by a topology 
preserving map (TPM) with 3x106 training epochs [11], [12]. This transformation 
reduces the redundancy of the input trajectories for units. The size of the TPMs is 36 
(6 × 6) for vision sense information, 16 (4 × 4) for the visual attention command and 
16 (4 × 4) for the behavior command. The fast context units are connected with the 
input-output units of which synaptic weights are determined through learning by 
examples. The activation of these neurons is calculated by Eq. (1) 

, , ,( / )i i t i t ij j t
j

du dt u w xτ = − +
 

(1)

where ui,t is the membrane potential of each i-th neural unit at time step t and xj,t is the 
neural state of the j-th unit, and wij is synaptic weight from the j-th unit to the i-th unit. 
The time constant τ is defined as the decay rate of a unit’s membrane potential. If the τ 
value is large, the activation of the unit changes slowly, because the internal state 
potential is strongly affected by history of the unit’s potential. On the other hand, if 
the τ value is small, the effect of history of the unit’s potential is also small, and thus 
it is possible for activation of the unit to change quickly. The fast context units with 
small time constant (τ = 2) whose activity changed quickly, whereas the slow context 
unit with a large time constant (τ = 30) whose activity, in contrast, changed much 
more slowly. 
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3   Experiments and Results 

3.1   Experiment Setting; Humanoid Robot and Workbench 

A humanoid robot NAO was used in the role of a physical body interacting with the 
environment. To calculate the disparity information for depth, we installed stereo 
camera modules on the NAO’s head as shown in Fig. 2.  

 

Fig. 2. Stereo camera module on NAO's head 

The stereo cameras have 640x480 resolutions, 76mm distance between two cameras, 
5.1mm focal length and 4.8mm CCD width. A workbench was set as shown in Fig. 3.  

 

Fig. 3. Workbench for robot experiments 

Two cardboard towers with different color marks are located in similar height 
(52cm from floor) at the same level as the robot’s eye. The positions of the color 
marks were fixed and the NAO’s initial position is shown in Fig. 3. Two target color 
marks are located about 80cm and 139cm in front of NAO, respectively. 

3.2   Visually-Guided Multiple Objects Manipulation Task 

In the current experiment, the robot was trained for multiple objects manipulation task 
as shown in Fig. 4. Our multiple object manipulation task considering visually guided  
 



506 S. Jeong et al. 

behavior information is; first, NAO attends and approaches to the first target of a red 
mark, then hitting the object as shown in Figs. 4 (a) and (b). Second, NAO detects and 
approaches the other target 2 of a blue mark, then again hitting the second object as 
shown in Figs. 4 (c) and (d). After training the behavior sequences, the tests were 
conducted by a regeneration of them. Then, the experiment was further conducted by 
a generalization test with untrained situation. Four teaching sequences were used to 
train for each NAO position that was learned by the error backpropagation through 
time (BPTT) algorithm, with 5x103 training epochs [7]. It was considered that a trial 
was successful if the two objects were sequentially and successfully knocked down by 
the robot during the course of the experiment. 

    
(a)                      (b) 

    
(c)                      (d) 

Fig. 4. Multiple objects manipulation task: (a) attending and approaching first target, (b) hitting 
the first target, (c) attending and approaching the second target, (d) hitting the second target 

3.3   Task generation Results 

Fig. 5 shows examples of behavioral sequences of the given task. In vision sensation 
as shown in Fig. 5 (a), solid line represents the angle between robot body and a target 
object and dashed line represents depth information of selected object. In the case of 
vision sensation, the angle and depth information are fed back to robot according to a 
robot interaction with environment. In the visual attention command as shown in Fig. 
5 (b), the solid, dashed and gray lines are the sequences of attention command signals 
to focus on the red color, the green color and the blue color marks, respectively. In the 
behavior command as shown in Fig. 5 (c), the solid, dashed and gray lines are the 
sequences of behavior commands for walking, turning and hitting of the objects, 
respectively. The detail robot behavior is as follows: first, the robot was initially set 
by home position. The MTRNN simultaneously generates a sequence both for the 
visual attention command and for the behavior command. Using the output values of 
MTRNN, the robot can autonomously shift the visual attention and behavior 
generation. 
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(a) 

 
(b) 

 
(c) 

Fig. 5. The results of behavioral sequences of the given task 

(1) From the initial step to 6th step: according to the visual attention (red attention 
command is dominant) and behavior command (walk behavior command is 
dominant), the robot detects, attends, and walks to the red target object. (2) At the 7th 
step: after encoding the location of the target object considering, humanoid robot hits 
the red target object by robot hand, in which the robot is finding to the red target 
object (behavior command for hitting is dominant). (3) From the 8th step to 12th step: 
the robot detects, attends and walks to the blue target object by suitable behavior 
command (blue attention command and walk behavior command are dominant). (4) 
At the final 13th step: the robot hits the target blue object (behavior command for 
hitting is dominant). 

4   Conclusion and Further Works 

For achieving the visually-guided multiple object manipulation tasks for neuro-
robotics via learning by example, we proposed a new dynamic behavior sequence 
generation model in which the visual attention shift and motor behaviors shifts are 
associated with task specific manners. The proposed model can generate goal-directed 
behavior concerning the current sensory states including visual stimuli through 
interaction with a real environment. We will consider an active perception of an 
object which utilizes texture and appearance of objects to generate the complex top-
down attention using high-level visual cognition for achieving the high-level object 



508 S. Jeong et al. 

manipulation task. Also, we will introduce a reinforcement learning paradigm for 
acquiring an improved perception with depth estimation and behavior shift skills, 
which has been inspired by McCallum’s model. 
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Abstract. Complex-valued associative memory (CAM) can store multi-
level patterns. Dynamic complex-valued associative memory (DCAM)
can recall all stored patterns. The CAM stores the rotated patterns,
which are typical spurious states, in addition to given training patterns.
So DCAM recalls all the rotated patterns in the recall process. We in-
troduce strong bias terms to avoid recalling the rotated patterns. By
computer simulations, we can see that strong bias terms can avoid re-
calling the rotated patterns unlike simple bias terms.

Keywords: complex-valued associative memory, dynamic neuron,
rotated patterns, bias terms.

1 Introduction

Several advanced associative memory models have been proposed since Hopfield
proposed Hopfield associative memory (HAM) (Hopfield[1,2]). Complex-valued
associative memory (CAM) is one of them (Jankowski et al.[3]). Chaotic asso-
ciative memories can recall all the stored patterns. Nakada and Osana[8] pro-
posed Chaotic complex-valued associative memory (CCAM). Kitahara et al.[4]
quantified and simplified CCAM after Nagumo and Sato[7]. In this paper, the
quantified version is referred to as Dynamic complex-valued associative memory
(DCAM).

CAM has an inherent property of rotation invariance. For a pattern vector
z, patterns exp(θ

√
−1)z are called the rotated patterns. CAM stores not only

training patterns but also their rotated patterns. Rotated patterns correspond
to inversed patterns of the HAM. When the complex-valued neurons are K-
level neurons, there are K − 1 rotated patterns for each training pattern. In
recall process, DCAM recalls all the rotated patterns. In general, we cannot tell
training patterns from rotated patterns because of rotation invariance.

We introduce bias terms to DCAM in order to avoid recalling the rotated
patterns. Lee[5] and Muezzinoglu et al.[6] have simply introduced bias terms. It
is equivalent to appending a neuron which constantly outputs one. Simple use
of bias terms, however, is almost in vain for DCAM. So we introduce strong
bias terms. We examined the effect of strong bias term by computer simulations.
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The appearance of rotated patterns gradually reduced as the bias terms became
stronger. For too strong bias terms, however, DCAM recalled some spurious
patterns which are not rotated patterns.

2 Complex-Valued Associative Memory

First, we construct complex-valued neurons. A complex-valued neuron receives
and produces a complex number. Let K be a positive integer greater than two.
And let a real number θK and complex numbers sk be as follows:

θK =
π

K
, (1)

sk = exp(2kθK). (2)

The integer K is a resolution factor to divides the complex unit circle into K
quantization levels. The set {sk} is the set of states of complex-valued neurons.
The states of complex-valued neurons are determined by a complex-signum func-
tion f(·). The complex-signum function f(·) is defined as follows:

f(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s0 0 ≤ z < θK

s1 θK ≤ z < 3θK

s2 3θK ≤ z < 5θK

...
sK−1 (2K − 3)θK ≤ z < (2K − 1)θK

s0 (2K − 1)θK ≤ z < 2π

(3)

Next, we construct complex-valued associative memory (CAM). Let a complex
number wji be the connection weight from the neuron i to the neuron j. And
let zi be the state of the neuron i. Then the input sum Sj to the neuron j is
defined as follows:

Sj =
∑
i�=j

wjizi. (4)

The neurons are updated in sequence. We restrict the connection weights as
follows:

wji = wij , (5)

where w stands for the complex conjugate of w. This restriction makes CAM
reach a stable state.

Suppose the state z = (z1, z2, · · · , zN ), where N is the number of neurons, is
stable. Then the following equation holds for all j:

zj = f(Sj). (6)
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Consider a rotated pattern of z. There exists k such that the rotated pattern is
expressed by skz = (skz1, skz2, · · · , skzN ). The following equation holds true for
the rotated pattern:

f(
∑
i�=j

wjiskzi) = skf(
∑
i�=j

wjizi) = skzj . (7)

Therefore the rotated patterns are also stable.
Finally, we describe the learning method. Hebbian rule has often been used.

Let zp = (zp1, z2, · · · , zpN) be the training pattern p. Then the connection
weights wji are given as follows:

wji =
∑

p

zpjzpi. (8)

Given a training pattern zq to CAM, we can calculate the input sum Sj to the
neuron j as follows:

Sj =
∑

p

zpjzpizqi (9)

= (N − 1)zpj +
∑
p�=q

zpjzpizqi. (10)

The first term help CAM recall the training pattern q and the second term is
the cross-talk term.

3 Dynamic Complex-Valued Associative Memory

CAM surely reaches a stable state. we introduce dynamic complex-valued neuron
to get out of stable states and search all stable states. Let z(t) and S(t) be the
neuron output and input in time t, respectively. A dynamic complex-valued
neuron behaves as follows:

z(t + 1) = f(S(t + 1)− α

t∑
d=0

kdz(t− d)), (11)

where α and k are the scaling factor and the damping factor, respectively. The
second term help CAM move to the opposite state. When CAM keep a stable
state, the effect of the second term increases and CAM can get out of the stable
state.

DCAM can recall all the training patterns. However it also recalls all the
rotated patterns of training patterns. We need the system which can recall only
training patterns.
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Fig. 1. Patterns A0, B0 and C0 are the training patterns. Patterns A1, B1 and C1
are the rotated patterns by 2π/3. Patterns A2, B2 and C2 are the rotated patterns by
4π/3.

4 Bias Terms

To destroy rotation invariance, bias terms have often been used. Bias terms are
considered as neurons which constantly produce one. Let wj0 be the bias term
of the neuron j. Then the neuron input Sj is defined as follows:

Sj =
∑
i�=j

wjizi + wj0. (12)

By hebbian rule, wj0 are often determined as follows:

wj0 =
∑

p

zpj. (13)

The effect of the bias terms is few, because of quantification. We introduce strong
bias terms as follows:

wj0 = C
∑

p

zpj , (14)

where C is a parameter to control the strength of bias terms. In case of C = 0,
there exist no bias terms. In case of C = 1, conventional bias terms are used.

5 Computer Simulations

We carried out computer simulations to examine the effect of bias terms. The
conditions were as follows:

1. K = 3
2. N = 400
3. α = 17
4. k = 0.98
5. The number of training patterns was three.

To visualize the recall process, we used the training patterns A0, B0 and C0
in Fig. 1. Each dot stands for the state of the neuron. White, gray and black
correspond to s0, s1 and s2, respectively. The patterns A1, B1 and C1 are the
rotated patterns of A0, B0 and C0 by 2π/3, respectively. The ones A2, B2 and
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Table 1. Appeared pattterns in case of C = 0

patterns periods

A0 0 - 17 125 - 130
B0 19 - 31 141 - 154
C0 158 - 171

A1 65 - 79
B1 46 - 59

A2 94 - 112
B2 114 - 117
C2 180 - 192

others 35 - 43 62 - 63 82 - 91 119 - 123 133 - 138
174 - 175 198 - 199

Table 2. Appeared patterns in case of C = 100

patterns periods

A0 0 - 9 59 - 68 160 - 170
B0 12 - 26 173 - 191
C0 30 - 56 121 - 143 194 - 199

C1 75 - 89

C2 99 - 118

others 70 - 71 93 - 97 146 - 147 149 - 150 154 - 155

C2 are the rotated patterns of A0, B0 and C0 by 4π/3, respectively. In recall
process, we regarded the continuously appeared patterns as recalled patterns.

We carried out computer simulations in case of C = 0, 1, 100, 200, 300 and
400. In case of C = 0, DCAM has no bias terms. In case of C = 1, it has
conventional bias terms. In case of C = 100, 200, 300 and 400, it has strong bias
terms. Figures 4-7 show the simulation results between t = 0 and t = 199.

In case of C = 0 (Fig. 2), the simulation result is Table 1. Others stand
for spurious patterns except rotated patterns. The typical patterns of them are
mixture patterns. All the training patterns appeared. However, many rotated
patterns also appeared. Moreover, other patterns including mixture patterns
also appeared. The simulation result in case of C = 1 (Fig. 3) is almost same
as that in case of C = 0. Therefore simple bias term does not help avoiding
spurious patterns.

In case of C = 100 (Fig. 4), the simulation result is Table 2. All the training
patterns appeared. Rotated patterns of A0 and B0 disappeared. The other spu-
rious patterns less frequently appeared. However, the appearances of spurious
patterns remained.

In case of C = 200 (Fig. 5), the simulation result is Table 3. All the training
patterns appeared and any rotated patterns disappeared. The other spurious
patterns appeared only in initial periods and disappeared after t = 14. The
stable states recalled in initial periods are considered to be attracted by the bias
terms, because the bias terms prompt DCAM to recall the mixture pattern of all
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Table 3. Appeared patterns in case of C = 200

patterns periods

A0 0 - 3 51 - 73 129 - 146
B0 15 - 25 76 - 98 149 - 172
C0 29 - 47 101 - 126 178 - 199

others 5 - 7 8 - 13

Table 4. Appeared patterns in case of C = 400

patterns periods

A0 70 - 88 130 - 145 191 - 199
B0 35 - 43 91 - 105 148 - 161
C0 52 - 67 111 - 126 171 - 186

others 2 - 7 8 - 13 14 - 16 17 - 21 23 - 30 31 - 32
46 - 50 165 - 168

Table 5. The frequency of appeared patterns

patterns

C A0 B0 C0 A1 B1 C1 A2 B2 C2 others

0 88 88 4 87 84 3 85 99 4 232

1 86 92 3 86 84 3 86 83 3 234

100 82 103 95 19 22 39 30 36 45 245

200 134 134 134 0 0 0 0 0 0 2

300 150 150 149 0 0 0 0 0 0 5

400 184 184 125 0 0 0 0 0 0 246

the training patterns. After the mixture pattern was taken into the second term
of expression (11), the mixture pattern disappeared. Therefore, the strong bias
terms helped DCAM avoid appearances of spurious patterns. The simulation
result in case of C = 300 (Fig. 6) is almost same as that in case of C = 200. So
we can see that the behavior is not sensitive to the parameter C.

In case of C = 400 (Fig. 7), the simulation result is Table 4. All the train-
ing patterns appeared and any rotated patterns disappeared. However the other
spurious patterns more frequently appeared. Therefore the parameter C is con-
sidered to be too large.

Moreover we summarize the simulation results until t < 10000. Table 5 shows
that frequencies of training patterns, rotated patterns and the other patterns
for each C. In case of C = 0 or 1, the pattern C0 hardly appeared. In case of
large C, all training patterns almost equally appeared. In case of C = 100, the
appearances of rotated patterns reduced. In case of C ≥ 200, all the rotated
patterns disappeared. In case of C = 200 or 300, we can see that the other
patterns disappeared after initial periods. from Table 5 and Fig. 5 and 6. These
are considered as ideal cases. In case of C = 400, many other patterns appeared.
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Fig. 2. Recall process in case of C = 0. In this case, there were no bias terms.

Fig. 3. Recall process in case of C = 1. In this case, the conventional bias terms were
used.
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Fig. 4. Recall process in case of C = 100

Fig. 5. Recall process in case of C = 200
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Fig. 6. Recall process in case of C = 300

Fig. 7. Recall process in case of C = 400
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6 Conclusion

The conventional DCAM recalls not only training patterns but also their rotated
patterns. We introduced strong bias terms to avoid recalling the rotated patterns.
When the proper bias terms were used, DCAM behaved as follows.

1. All the training patterns were recalled.
2. Any the rotated patterns of training patterns disappeared.
3. Only in initial periods, mixture patterns appeared. After that, no spurious

patterns appeared.

Moreover, we can see that the behavior is not sensitive to the parameter C.
Our proposed method can be regarded as appending C constant neurons pro-

ducing one. Then the substantive number of neurons is N+C and the correlations
between training patterns become higher.

References

1. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences of the United
States of America 79(8), 2554–2558 (1982)

2. Hopfield, J.J.: Neurons with graded response have collective computational prop-
erties like those of two-state neurons. National Academy of Sciences of the United
States of America 81(10), 3088–3092 (1984)

3. Jankowski, S., Lozowski, A., Zurada, J.M.: Complex-valued multistate neural ssso-
ciative memory. IEEE Transaction on Neural Networks 7(6), 1491–1496 (1996)

4. Kitahara, M., Kobayashi, M., Hattori, M.: Chaotic rotor associative memory. In:
Proceedings of International Symposium on Nonlinear Theory and its Applications,
pp. 399–402 (2009)

5. Lee, D.L.: Improvements of complex-valued hopfield associative memory by us-
ing generalized projection rules. IEEE Transaction on Neural Networks 17(5),
1341–1347 (2006)

6. Muezzinoglu, M.K., Guzelis, C., Zurada, J.M.: A new design method for the
complex-valued multistate hopfield associative memory. IEEE Transaction on Neu-
ral Networks 14(4), 891–899 (2003)

7. Nagumo, J., Sato, S.: On a response characteristic of a mathmatical neural model.
Kybernetik 10(3), 155–164 (1972)

8. Nakada, M., Osana, Y.: Chaotic complex-valued associative memory. In: Proc. Inter-
national Symposium on Nonlinear Theory and its Applications, pp. 493–496 (2007)

9. Zemel, R.S., Williams, C.K.I., Mozer, M.C.: Lending direction to neural networks.
Neural Networks 8(4), 503–512 (1995)



Widely Linear Processing

of Hypercomplex Signals

Tohru Nitta

National Institute of Advanced Industrial Science and Technology (AIST),
Tsukuba Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki, 305-8568 Japan

tohru-nitta@aist.go.jp

Abstract. In this paper, we formulate a Clifford-valued widely linear
estimation framework. Clifford number is a hypercomplex number that
generalizes real, complex numbers, quaternions, and higher dimensional
numbers. And also, as a first step, we will give a theoretical founda-
tion for a quaternion-valued widely linear estimation framework. The
estimation error obtained with the quaternion-valued widely linear es-
timation method is proven to be smaller than that obtained using the
usual quaternion-valued linear estimation method.

1 Introduction

The widely linear (WL) estimation method has been proven mathematically to
be effective for estimation problems using complex-valued data. Estimation using
WL uses complex conjugate parameters in addition to complex-valued param-
eters [1]. It has been applied to communications [2,3] and adaptive filters [4],
together with so-called augmented complex statistics, a concept introduced by
Picinbono et al. Moreover, an extension of the WL method to quaternion-valued
case has been presented [5], which fully exploits available statistical informa-
tion. A quaternion, a four-dimensional number invented by W. R. Hamilton in
1843, is an extension of a complex number. Quaternion algebra has been used in
fields such as robotics, computer vision, neural networks, signal processing, and
communications (e.g. [6,7]).

In this paper, we formulate a Clifford-valued widely linear estimation frame-
work. And also, as a first step, we present a theoretical foundation for quaternion-
valued WL estimation: it is proved that the estimation error obtained using the
quaternion-valued WL estimation method is smaller than that obtained using
the usual quaternion-valued estimation method.

2 The Clifford Algebra

This section briefly describes the Clifford algebra or geometric algebra [8].
Clifford algebra Clp,q is an extension of real, complex numbers, and quater-

nions to higher dimensions, and has 2n basis elements. The subscripts p, q such
that p + q = n determine the characteristics of the Clifford algebra. Note that

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 519–525, 2011.
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commutativity does not hold generally. For example, in the case of n = 2, p =
0, q = 2, the number of basis is 22 = 4, which corresponds to the basis of quater-
nions.

The quaternion is defined over R with three imaginary units: i, j, k such that

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1 (1)

where R denotes the set of real numbers. Every quaternion can be written
explicitly as

q = a + bi + cj + dk ∈ Q, a, b, c, d ∈ R (2)

and has a quaternion conjugate

q∗ = a− bi− cj − dk (3)

where Q denotes the set of quaternions. This leads to the norm of q ∈ Q

|q| =
√

qq∗

=
√

a2 + b2 + c2 + d2. (4)

The commutativity does not hold: pq �= qp for any p, q ∈ Q. The above descrip-
tion on quaternions may help with the understanding of the Clifford algebra.

We now define the Clifford algebra. Let the space Rn+1 be given with the

basis {e0, · · · , en}. And also, let p ∈ {0, · · · , n}, q def
= n−p be given. Assume that

the following rules on the multiplication hold:

e0ei = eie0 = ei (i = 1, · · · , n), (5)

eiej = −ejei (i �= j; i, j = 1, · · · , n), (6)

e2

0 = e2

1 = · · · = e2

p = 1, (7)

e2

p+1
= · · · = e2

p+q = −1. (8)

Then, the 2n basis elements of the Clifford algebra Clp,q are obtained:

e0; e1, · · · , en; e1e2, · · · , en−1en; e1e2e3, · · · ; · · · ; e1e2 · · · en, (9)

where e0 is a unit element. The addition and the multiplication with a real
number are defined coordinatewise. For example, for x = a3e3 + a9e9 ∈ Cl9,3

and y = b9e9 + b32e3e2 ∈ Cl9,3,

x + y = (a3e3 + a9e9) + (b9e9 + b32e3e2)

= a3e3 + (a9 + b9)e9 + b32e3e2. (10)

And, for any β ∈ R and x = a14e1e4 + a361e3e6e1 ∈ Cl9,3,

βx = β(a14e1e4 + a361e3e6e1)

= βa14e1e4 + βa361e3e6e1. (11)
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Furthermore, we assume that the following condition holds:

e1e2 · · · en �= ±1 if p− q ≡ 1 (mod 4). (12)

The algebra thus obtained is called Clifford algebra Clp,q.
The conjugation in Clp,q is defined in the following way. For any x ∈ Clp,q,

we describe

x = [x]0 + [x]1 + · · ·+ [x]n, (13)

where
[x]k

def
=
∑

A∈Pn
|A|=k

xAeA, (14)

Pn is the set containing the subsets of {1, · · · , n},

ei1i2···ip

def
= ei1ei2 · · · eip , (15)

and i1i2 · · · ip of ei1i2···ip in the left hand side of (15) means a set {i1, i2, · · · , ip}.
Then, for any x ∈ Clp,q, the Clifford conjugation x∗ ∈ Clp,q is given as follows:

x∗ = [x]0 − [x]1 − [x]2 + [x]3 + [x]4 − · · · (16)

i.e.,

([x]k)∗ = [x]k for k ≡ 0, 3 (mod 4), (17)

([x]k)∗ = −[x]k for k ≡ 1, 2 (mod 4). (18)

3 The WL Model

In this section, the complex-valued WL model and the quaternion-valued WL
model are reviewed, and the Clifford-valued WL model is formulated.

3.1 The Complex-Valued WL Model

Let y ∈ C be a scalar complex-valued random variable to be estimated in terms
of an observation that is a complex-valued random vector x ∈ CN where C is a
set of complex numbers, and N is a natural number. That is, y is a true value
and x is an observed value. In complex-valued linear mean square estimation
(LMSE), the problem is to find an estimate written as

ŷL = hHx, (19)

where h ∈ CN , and H represents the complex conjugation and transposition.
Then, the objective of the problem is to find the parameter h ∈ CN that
minimizes the estimation error E|y − ŷL|2.
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In the meantime, the complex-valued widely linear mean square estimation
(WLMSE) problem can be stated as follows: Consider the scalar ŷ defined as

ŷ = hHx + gHx∗, (20)

where g, h ∈ CN , and v∗
def
= a− bi is the complex conjugate of v = a + bi ∈ C.

Then, the objective of the problem is to find parameters g, h ∈ CN that minimize
the estimation error E|y − ŷ|2.

Picinbono et al. gave a theoretical foundation for the complex-valued WLMSE
described above: it was proved that the estimation error obtained using the
complex-valued WLMSE method is smaller than that obtained using the usual
complex-valued LMSE method: E|y− ŷL|2 ≥ E|y− ŷ|2 where the equality holds
only in exceptional cases [1].

3.2 The Quaternion-Valued WL Model

The quaternion-valued WL model is a natural extension of the complex-valued
WL model described in Sect. 3.1. Let y ∈ Q be a scalar quaternion-valued
random variable to be estimated in terms of an observation that is a quaternion-
valued random vector x ∈ QN . That is, y is a true value and x is an observed
value.

In quaternion-valued linear mean square estimation (LMSE), the problem is
to find an estimate written as

ŷL = hHx, (21)

where h ∈ QN , N is a natural number, and H represents the quaternionic
conjugation and transposition.

The quaternion-valued WLMSE problem can be stated as follows: Consider
the scalar ŷ defined as

ŷ = hHx + gHx∗, (22)

where g, h ∈ QN , N is a natural number, H represents the quaternionic conjuga-

tion and transposition, and v∗
def
= a−bi−cj−dk is the quaternionic conjugate of

v = a+bi+cj+dk ∈ Q. Then, the objective of the problem is to find parameters
g, h ∈ QN that minimize E|y − ŷ|2.

Took and Mandic derived an augmented quaternion least mean squares
(AQLMS) algorithm for quaternion-valued adaptive filters based on the
quaternion-valued WL model, and confirmed its effectiveness via computer simu-
lations [5]. Actually, the experimental results on the Lorenz attractor, real-world
wind forecasting, and data fusion via quaternion spaces support the approach.
Consequently, computer simulations proved that the quaternion-valued WL es-
timation method is superior to the usual quaternion-valued linear estimation
method. However, no theoretical proof for the superiority of the quaternion-
valued WL estimation method on estimation errors has been given to date, as it
has been for the complex-valued WL estimation method. In the complex-valued
setting, Picinbono et al. proved that the estimation error obtained with the
complex-valued WLMSE is smaller than the error obtained using the complex-
valued LMSE [1].
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3.3 The Clifford-Valued WL Model

In this section, the Clifford-valued WL model is formulated, which is a general-
ization of the complex-valued and quaternion-valued WL models.

Let y ∈ Clp,q be a scalar Clifford-valued random variable to be estimated in
terms of an observation that is a Clifford-valued random vector x ∈ ClNp,q where
N is a natural number. That is, y is a true value and x is an observed value.
In Clifford-valued linear mean square estimation (LMSE), the problem is to find
an estimate written as

ŷL = hHx, (23)

where h ∈ ClNp,q, and H represents the Clifford conjugation and transposi-
tion. In the meantime, the Clifford-valued widely linear mean square estimation
(WLMSE) problem can be stated as follows: Consider the scalar ŷ defined as

ŷ = hHx + gHx∗, (24)

where g, h ∈ ClNp,q, and v∗ is the Clifford conjugate of v ∈ Clp,q. Then, the

objective of the problem is to find parameters g, h ∈ ClNp,q that minimize
E|y − ŷ|2.

4 A Theoretical Foundation of the Quaternion-Valued
WL Model

In this section, we show the superiority of the quaternion-valued WLMSE method
as a first step to investigate the property of the Clifford-valued WLMSE method
formulated in Sect. 3.3. The main result is as follows: the estimation error ob-
tained using the quaternion-valued WL estimation method is smaller than that
obtained using the usual quaternion-valued linear estimation method, except
in rare cases. The result is obtainable in the same manner described by [1].
However, the noncommutativity of the quaternion products must be considered
during the analysis (xy �= yx for any x, y ∈ Q).

Define

X
def
=

{
Z(ω) = hHx(ω) + gHx∗(ω)

∣∣∣∣ g, h ∈ QN

}
. (25)

Therein, X is a set of scalar quaternion-valued random variables that constitutes
a linear space, and which becomes a Hilbert subspace of the one-dimensional
quaternion-valued Hilbert space Y = {z(ω) ∈ Q} with the scalar product <

z, w >
def
= E[zw∗] (z, w ∈ X). Then, for a true value y ∈ Y , an observed value

x ∈ QN , and the estimate ŷ ∈ X , the following equations hold:

(y − ŷ) � x, (26)

(y − ŷ) � x∗, (27)
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where u � v means that all the components of v are orthogonal to u with the
scalar product < · , · > (u ∈ Q, v ∈ QN ). From (26) and (27), we obtain

E[xy∗] = E[xŷ∗], (28)

E[x∗y∗] = E[x∗ŷ∗]. (29)

Consequently, from (22), (28), (29), the following equations hold:

Γ1h + Cg = r, (30)

CHh + Γ2g = s∗, (31)

where Γ1

def
= E[xxH ], Γ2

def
= E[x∗xT ], C

def
= E[xxT ], r

def
= E[xy∗], s

def
= E[yx].

Eqs. (30) and (31) yield

g = (Γ2 − CHΓ−1

1
C)−1 · (s∗ − CHΓ−1

1
r), (32)

h = (Γ1 − CΓ−1

2
CH)−1 · (r − CΓ−1

2
s∗). (33)

Then, the estimation error εWL is calculable from (22), (30), and (31) as follows:

ε2

WL
def
= E|y − ŷ|2

= E|y|2 − (rHh + sT g). (34)

The estimation error εL in the quaternion-valued LMSE can be obtained using
(21) as shown below.

ε2

L
def
= E|y − ŷL|2

= E|y|2 − rHΓ−1

1
r. (35)

Then, from (30) and (32), (34), (35), the quantity δε2 can be expressed as

δε2 def
= ε2

L − ε2

WL

= (s∗ − CHΓ−1

1
r)H · (Γ2 − CHΓ−1

1
C)−1 · (s∗ − CHΓ−1

1
r), (36)

which is the difference between the estimation error of the quaternion-valued
LMSE and that of the quaternion-valued WLMSE. Eq. (36) is nonnegative be-
cause the matrix Γ2 − CHΓ−1

1
C is positive-semidefinite. Furthermore, (36) is

equal to zero only when one of the following conditions holds:

s∗ − CHΓ−1

1
r = 0, (37)

ŷ = y. (38)

Eq. (37) is an exceptional case, and (38) means that the true value y can be
estimated with probability of one, which is a rare case.
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5 Conclusions

We have formulated a Clifford-valued WL model, and have presented a theoret-
ical foundation for the quaternion-valued WL estimation method. It was proved
that the estimation error obtained using the quaternion-valued WL estimation
method is smaller than that obtained using the usual quaternion-valued linear
estimation method, except in rare cases. In our future studies, we will proceed
with analyses of the Clifford-valued WL estimation.

Acknowledgements. The author extends special thanks to Prof. B. Picinbono,
the Laboratoire des Signaux et Systèmes, Supélec, Gifsur Yvette, France for help
in resolving several questions.
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Neural Networks in Their Generalization Ability
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Abstract. We compare the generalization characteristics of complex-valued and
real-valued feedforward neural networks when they deal with wave-related sig-
nals. We assume a task of function approximation. Experiments demonstrate
that complex-valued neural networks show smaller generalization error than real-
valued ones in particular when the signals have high degree of wave nature.

Keywords: Complex-valued neural network, function approximation, general-
ization.

1 Introduction

Researches on general complex-valued networks have revealed various aspects of their
dynamics. However, at the same time, it is true that a complex number is represented
by a pair of real numbers, namely, real and imaginary parts, or amplitude and phase.
Actually a variety of useful neural dynamics are obtained by paying attention to the
real and imaginary parts [7] [1] [8] or amplitude and phase [2] [3] . This fact sometimes
leads to an assumption that a complex-valued neural network is almost equivalent to
a double-dimensional real-valued neural network. However, complex-valued networks
has only smaller degree of freedom at the synaptic weighting.

In this paper, we compare complex- and real-valued neural networks by focusing
on their generalization characteristics. Generalization is one of the features most use-
ful and specific to neural networks widely. We investigate the generalization ability of
feedforward complex-valued and double-dimensional real-valued neural networks, in
particular when they learn and process wave-related data for function approximation
or filtering. We observe the characteristics by feeding signals that have various degrees
of wave nature by mixing a sinusoidal wave and white noise. Computer experiments
demonstrate that the generalization characteristics of complex-valued neural networks
are different from those of double-dimensional real-valued neural networks dependently
on the degree of wave nature of the signals.

2 Construction of Experiments and Learning Dynamics

We organize our experiment as follows.

– Preparation of input signals: Variously weighted summation of (A) sinusoidal wave
and (B) non-wave data, i.e., white noise having random amplitude and phase (or
real and imaginary parts).
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– Definition of task to learn: Identity mapping, which is expected to show the learning
characteristics clearly, for the above signals with various degrees of wave nature.

– Evaluation of generalization: Observation of the generalization error when the input
signals shifts in time, or when the amplitude is changed.

2.1 Forward Processing and Learning Dynamics

Complex-valued neural network. We consider a layered feedforward network hav-
ing input terminals, hidden neurons, and output neurons. In the case of a CVNN,
we employ a phase-amplitude-type sigmoid activation function and the teacher-signal-
backpropagation learning process [3] [6] with notations of

zI = [z1, ..., zi, ..., zI , zI+1]
T (Input signal vector) (1)

zH = [z1, ..., zh, ..., zH , zH+1]
T (Hidden-layer output signal vector) (2)

zO = [z1, ..., zo, ..., zO]T (Output-layer signal vector) (3)

WH = [whi] (Hidden neuron weight matrix) (4)

WO = [woh] (Output neuron weight matrix) (5)

where [·]T means transpose. In (4) and (5), the weight matrices include additional
weights wh I+1 and wo H+1, equivalent to neural thresholds, where we add formal
constant inputs zI+1 = 1 and zH+1 = 1 in (1) and (2), respectively. Respective sig-
nal vectors and synaptic weights are connected with one another through an activation
function f(z) as

zH = f
(
WHzI

)
, zO = f

(
WOzH

)
(6)

where f(z) is a function of each vector element z (∈ C) defined as

f(z) = tanh (|z|) exp
(√
−1 arg z

)
(7)

Figure 1 is a diagram to explain the supervised learning process. We prepare a set of
teacher signals at the input ẑI

s = [ẑ1s, ..., ẑis, ..., ẑIs, ẑI+1 s]
T and the output ẑO

s =
[ẑ1s, ..., ẑos, ..., ẑOs]

T (s = 1, ..., s, ...S) for which we employ the teacher-signal back-
propagation learning. We define an error function E to obtain the dynamics [6] [3] as

E ≡ 1

2

S∑
s=1

O∑
o=1

∣∣∣zo(ẑ
I
s)− ẑos

∣∣∣2 (8)

∣∣wnew
oh

∣∣ = ∣∣∣wold
oh

∣∣∣−K
∂E

∂ |woh|
(9)

argwnew
oh = arg wold

oh −K
1

|woh|
∂E

∂(argwoh)
(10)
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Fig. 1. Schematic diagram of the learning process of complex- and double-dimensional real-
valued feedforward neural networks for pairs of input-output teachers

∂E

∂ |woh|
=(

1− |zo|2
)

(|zo| − |ẑo| cos (arg zo − arg ẑo)) |zh| cos (arg zo − arg ẑo − argwoh)

− |zo| |ẑo| sin (arg zo − arg ẑo)
|zh|

tanh−1 |zo|
sin (arg zo − arg ẑo − arg woh) (11)

1

|woh|
∂E

∂(arg woh)
=(

1− |zo|2
)

(|zo| − |ẑo| cos (arg zo − arg ẑo)) |zh| sin (arg zo − arg ẑo − arg woh)

+ |zo| |ẑo| sin (arg zo − arg ẑo)
|zh|

tanh−1 |zo|
cos (arg zo − arg ẑo − arg woh) (12)

where (·)new and (·)old indicates the update of the weights from (·)old to (·)new,
and K is a learning constant. The teacher signals at the hidden layer ẑH =

[ẑ1, ..., ẑh, ..., ẑH ]T is obtained by making the output teacher vector itself ẑO

propagate backward as

ẑH =
(
f
((

ẑO
)∗

ŴO
))∗

(13)

where (·)∗ denotes Hermite conjugate. Using ẑH, the hidden layer neurons change their
weights by following (9)–(12) with replacement of the suffixes o,h with h,i [4] [5].

Double-dimensional real-valued neural network. Similarly, the forward processing
and learning of a double-dimensional real-valued neural network are explained as fol-
lows. Figure 1 includes also this case. We represent a complex number as a pair of real
numbers as zi = x2i−1 +

√
−1 x2i. That is, we have a double-dimensional real input
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vector zI
R, a double-dimensional hidden signal vector zH

R , and a double-dimensional

output signal vector zO
R . A forward signal processing connects the signal vectors as

well as hidden neuron weights WH
R and output neuron weights WO

R through a real-
valued activation function fR as

zI
R = [

real & imaginary︷ ︸︸ ︷
x1, x2 , ..., x2i−1, x2i, ..., x2I−1, x2I , x2I+1, x2I+2]

T(
= zI

)
(Input signal vector) (14)

zH
R = [x1, x2, ..., x2h−1, x2h, ..., x2H−1, x2H , x2H+1, x2H+2]

T

(Hidden-layer output signal vector) (15)

zO
R = [x1, x2, ..., x2o−1, x2o, ..., x2O−1, x2O]T

(Output-layer signal vector) (16)

WH
R = [wRhi] (Hidden neuron weight matrix) (17)

WO
R = [wRoh] (Output neuron weight mateix) (18)

zH
R = fR

(
WH

RzI
R

)
, zO

R = fR

(
WO

RzH
R

)
(19)

fR(x) = tanh (x) (20)

where the thresholds are wR h 2I+1
, wR h 2I+2

, wR h 2H+1
, and wR h 2H+2

with for-
mal additional inputs x2H+1 = 1, x2H+2 = 1, x2H+1 = 1 , and x2H+2 = 1. We
employ the conventional error backpropagation learning.

3 Computer Experiments

3.1 Experimental Setup

We add white Gaussian noise to a sinusoidal wave with various weighting. Then the
degree of wave nature is expressed as the signal-to-noise ratio S/N where S/N = ∞
means complete wave, while S/N = 0 corresponds to complete non-wave. The network
parameters are as follows: Number of input neurons I= 16, hidden neurons H= 25,
output neurons O= 16, learning constant K= 0.01, and the learning iteration is 3,000.

3.2 Result

Figure 2(a) shows an example of the learning curve when S/N = ∞, i.e., the signal is
sinusoidal. We find that the learning is successfully completed for both of the CVNN
and RVNN. The learning errors converge almost at zero, which means that there is only
slight residual error at the learning teacher points.

After the learning, we input other input signals to investigate the generalization. As
mentioned above, the wavelength is adjusted to span over the 16 neural input terminals.
For example, we gradually move the input signal forward in time while keeping the
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Fig. 2. An example of (a)learning curve, and (b)amplitude and (c)phase when the input sig-
nal gradually sifts in time in the real-valued and complex-valued neural networks (RVNN and
CVNN) when no noise is added to sinusoidal signals (S/N = ∞)
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amplitude unchanged at a = 0.5. Figures 2(b) and (c) present examples of the output
amplitude and phase, respectively, showing from left-hand side to the right-hand side
the ideal output of the identity mapping, the RVNN outputs, and CVNN outputs of
the 16 output neurons. The horizontal axes present the time shift t normalized by the
unit-wave duration.

In Fig.2(b), we find that the output signals of the RVNN deviate greatly from the ideal
ones. The learning points are plotted at t = 0.5, where the output amplitude is almost
0.5 for all the neurons. However, with the time course, the amplitude values fluctuate
largely. Contrarily, the CVNN amplitude stays almost constant. At the learning point
t = 0.5, the value is slightly larger than 0.5, corresponding to the slight non-zero value
of the residual error in the learning curve. In Fig.2(c), the ideal output phase values
on the left-hand side exhibit linear increase in time. In the RVNN case, though the
phase values at t = 0.5 are the same as those of ideal outputs, the values sometimes
swing strongly. In contrast, the CVNN output phase values increase orderly, which is
almost identical with the ideal values. In summary, the CVNN presents much better
generalization characteristics than the RVNN when the degree of wave nature is high,
i.e., S/N =∞.

We also investigated the results for various S/N , which represents the degree of
wave nature. We find that in the parameter region of high degree of wave nature, the
generalization of the CVNN is much better than that of the RVNN.

4 Conclusion

This paper investigated numerically the generalization characteristics in the feedfor-
ward complex-valued and real-valued neural networks (CVNN and RVNN). We com-
pared a CVNN and a double-dimensional RVNN in a simple case where the network
works for function approximation or as a filter. Computer experiments demonstrated
that the CVNN exhibits better generalization characteristics in particular for signals
having high degree of wave nature.
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Abstract. An automatic music transcription method is proposed. The
method is based on a generative model that takes into account the trans-
lation of spectrum for an instrument and the sound path from the instru-
ment to a microphone. The fundamental frequency (note), the spectrum
of the instrument (basis pattern) and the sound path are estimated simul-
taneously using an extended complex nonnegative matrix factorization.
The effectiveness of the proposed method is confirmed by synthetic data.

Keywords: Music transcription, Non-negative matrix factorization,
Translation of spectrum, Sound path estimation.

1 Introduction

One of the important functions of music information retrieval (MIR) systems to
be equipped is automatic music transcription [1–7].

Although an instrument’s sounds have less variety in spectrum compared to
speech signals, music sounds have more harmonics and consist of several tones
of several instruments, that makes the problem more difficult than it seems.

Another difference of MIR problems is the existence of sound paths from
source signals to microphones, which can be neglected in speech recognition
since a speaker often stands in front of a microphone. In our cases, however, the
condition under which a music was recorded strongly affects the transcription
performance. For example, the performance of a transcription system for a music
is much lower when the system is trained with musics in different CD than
when with musics in the same CD [8, 9]. This fact has little been considered in
constructing transcription systems so far.

We tackle the problem of automatic music transcription by making a gener-
ative model that takes the facts mentioned above into account. We set a sound
path to a microphone after the conventional model, that is, the product of sound
pattern activations and basis patterns Another difference from the conventional
model is to introduce a prior knowledge to basis patterns. We assume that the
basis pattern of a tone is similar to (or almost the same as) those of other tones
for the same instrument (Fig. 1).

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 532–540, 2011.
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Fig. 1. Spectra of different tones are almost translation of each other

The estimation of the model parameters from a given spectrogram is for-
mulated as a matrix factorization. Non-negative matrix factorization (NMF)
methods [10] would seem suitable for this problem since the power spectrum of
a sound is non-negative but sound signals and their spectra are essentially com-
plex values and additivity does not hold in our cases as shown later. A complex
NMF proposed in [11] is a method to cope with this difficulty. We extend the
complex NMF so that it is applicable to our model.

The rest of the paper is organized as follows: Section 2 shows a generative
model of instrument sounds that combines activations, basis patterns and sound
paths. In section 3, a method for estimating each component of the model simul-
taneously is described, which is based on complex non-negative matrix factoriza-
tion. Some results of experiments are given in section 4 and section 5 concludes
the paper.

2 A Generative Model for Instrument Sounds

Our model consists of a set of activations that correspond to notes, a set of
basis patterns each of which expresses the spectrum of a tone for an instrument,
and a set of sound paths that are represented by finite impulse response (FIR)
filters. The complex signal Yf,t of frequency f = 1, . . . , F at time t = 1, . . . , T is
modeled as

Yf,t ≈ Xf,t = rf

∑
k

Bf,kAk,t exp (jφk,f,t) (1)

where Ak,t, Bf,k and rf denote the activations, basis patterns and frequency
responses of a sound path, respectively. Their details are shown in the following
subsections.

2.1 Activations

In this work, we consider only Western polyphonic music and assume that music
consists of note symbols. Activations are expressed as a matrix A = {Ak,t}
where Ak,t is the loudness of a specific note k at time t that corresponds to
an instrument and a pitch. Note that A has a sparse representation, that is,
Ak,t = 0 for almost all k and t.
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2.2 Basis Patterns

A row vector Bk of a basis-pattern matrix B = {Bf,k} represents the spectrum
of a note of an instrument. For a specific instrument, the spectra for different
notes have similar forms, that is, a spectrum vector is approximately expressed
as a translation of another. In the following, we consider only one instrument
but the discussion can easily be applied to the cases with more instruments.

The similarity of spectra has been utilized in the literature [12–14]. Eggert
et al. restricted the basis-patterns Bk to translation-invariant ones within an
instrument. This means that Bk is expressed as

Bk = Sk−1b (2)

where S is a shift matrix

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . . 0

...
. . .

. . .
. . .

...

0 0
. . .

. . . 1
0 0 · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3)

and b is a constant vector to be estimated [12]. Note that the lowest and left-most
element should be one for making theoretical treatment easier [9]. Raczynski et
al. initialized the basis matrix with zeros everywhere but at positions corre-
sponding to harmonic frequencies of consequent notes of the equal temperament
scale [13]. Ochiai et al. introduced a penalty function that evaluates a similarity
of two spectra for adjacent pitches, taking into account the pitch shift [14]. Our
model employs the simplest way used in [12].

2.3 Sound Paths

Our model settles a sound path between an instrument and a microphone
(Fig. 2). The path depends on the condition under which each music was recorded
and has a frequency response denoted by r = {rf}.

3 Complex Non-negative Matrix Factorization

Such a model as (1) is solved by non-negative matrix factorization (NMF) meth-
ods [10]. There are a lot of work on MIR systems based on NMF [12–14], however,
conventional NMF methods are not suitable in treating sound signals. This is
because the facts that sound signals are essentially complex and the absolute
value of the sum of two complex numbers is not equal to the sum of the absolute
values of the two, |a + b| �= |a|+ |b|, in general.

Kameoka et al. proposed a complex NMF to cope with this problem, that
introduces a time-varying phase spectrum φk,f,t to each factor Bf,kAk,t [11].
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Fig. 2. Schematic view of the proposed model. A sound path is settled from an instru-
ment to a microphone

The factor is replaced with rfBf,kAk,t due to a sound path r in our case as
shown in (1). Hence, we modify the complex NMF so as to match our model in
the following.

Considering the maximum likelihood estimation and additive white Gaussian
noise, we minimize the squared errors,

Ψ(θ) =
∑
f,t

|Yf,t −Xf,t|2 + 2λU (4)

=
∑
f,t

∣∣∣∣∣Yf,t − rf

∑
k

Bf,kAk,t exp (jφk,f,t)

∣∣∣∣∣
2

, +2λU, (5)

where λ controls the balance of two terms and θ = {r, b, A, φ}, under the con-
straints ∑

f

r2

f = 1,
∑

f

b2

f = 1, (6)

that remove the ambiguity of scales. Here,

U =
∑
k,t

|Ak,t|p (0 < p < 2) (7)

is a regularization term to introduce sparseness to the matrix A.
Thanks to the property of translation-invariance on B, r and b do not have

ambiguity under mild conditions. Intuitively speaking, r and b have only 2F
degrees of freedom (DoG) in total while the matrix diag(r)B has FT DoG.
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An efficient iterative algorithm for minimizing Ψ(θ) can be derived using an
auxiliary function Ψ+(θ, θ̄) in a similar way to [3, 11]. When Ψ+(θ, θ̄) satisfies

Ψ(θ) = min
θ̄

Ψ+(θ, θ̄), (8)

it is known that Ψ(θ) is non-increasing under the updates,

θ̄ ← arg min
θ̄

Ψ+(θ, θ̄), θ ← arg min
θ

Ψ+(θ, θ̄). (9)

In this study, we employed an auxiliary function derived using Jensen’s inequal-
ity,

Ψ+(θ, θ̄) ≡
∑
k,f,t

1

βk,f,t

∣∣∣∣∣∣Ȳk,f,t − rf

∑
f ′

(Sk−1)f,f ′bf ′Ak,t exp (jφk,f,t)

∣∣∣∣∣∣
2

+ U+

(10)

≥
∑
f,t

∣∣∣∣∣∣Yf,t − rf

∑
k

∑
f ′

(Sk−1)f,f ′bf ′Ak,t exp (jφk,f,t)

∣∣∣∣∣∣
2

+ U (11)

= Ψ(θ), (12)

where

U+ =
∑
k,t

(
p|Āk,t|p−2

2
A2

k,t + |Āk,t|p −
p|Āk,t|p

2

)
≥ U (13)

and ∑
k

Ȳk,f,t = Yf,t,
∑

k

βk,f,t = 1 βk,f,t > 0. (14)

Note that equality in (11) holds only when

Ȳk,f,t = rf

∑
f ′

(Sk−1)f,f ′bf ′Ak,t exp (jφk,f,t)

+ βf,t,k

⎛⎝Yf,t −
∑

k

rf

∑
f ′

(Sk−1)f,f ′bf ′Ak,t exp (jφk,f,t)

⎞⎠ (15)

and Āk,t = Ak,t.
The explicit update rules of r, b, A and φ are given below. Note that we relax

the constraints in (6) at first and then normalize r and b. Solving the equations
from necessary conditions,

∂Ψ+

∂rf
= 0,

∂Ψ+

∂bl
= 0,

∂Ψ+

∂Ak,t
= 0, (16)
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we get

rf =

∑
k,t

Ak,t

βk,f,t

∑
f ′(Sk−1)f,f ′bf ′�

[
Ȳ ∗

k,ft exp(jφk,f,t)
]

∑
k,t

A2

k,t

βk,f,t

(∑
f ′(Sk−1)f,f ′bf ′

)2
, (17)

bl =

∑
k,f,t

rfAk,t(S
k−1)f,l

βk,f,t
�
[
Ȳ ∗

k,f,t exp(jφk,f,t)
]

∑
k,f,t

r2

fA2

k,t(S
k−1)2f,l

βk,f,t

−

∑
k,f,t

rfA2

k,t(S
k−1)f,l

βk,f,t

(∑
f ′(Sk−1)f,f ′bf ′ − (Sk−1)f,lbl

)
∑

k,f,t

r2

fA2

k,t(S
k−1)2f,l

βk,f,t

, (18)

Ak,t =

∑
f

rf

βk,f,t

∑
f ′(Sk−1)f,f ′bf ′�

[
Ȳ ∗

k,ft exp(jφk,f,t)
]

∑
f

r2

f

βk,f,t

(∑
f ′(Sk−1)f,f ′bf ′

)2

+ λp|Āk,t|p−2

. (19)

The fact of

(Sk−1)f,l =

{
1 for k = l− f + 1

0 otherwise
(20)

simplifies (18) to

bl =

∑
f,t

rfAk′,t
βk′,f,t

� [Ȳ ∗
f,t exp(jφk′,f,t)

]−∑f,t

rfA2
k′,t

βk′,f,t

(∑
f ′ Sf,f ′,k′bf ′ − Sf,l,k′bl

)
∑

f,t

r2
fA2

k′,t
βk′,f,t

,

(21)

where

k′ = l − f + 1, 1 ≤ k′ ≤ K. (22)

As for φk,f,t, we rewrite Ψ+ by separating terms dependent of φ and the rest,
that is,

Ψ+ = c− 2
∑
k,f,t

rfAk,t

βk,f,t

∑
f ′

(Sk−1)f,f ′bf ′
∣∣Ȳk,f,t

∣∣ cos (Ck,f,t − φk,f,t) (23)

where Ck,f,t is determined by

cosCk,f,t =
�
[
Ȳk,f,t

]∣∣Ȳk,f,t

∣∣ , sin Ck,f,t =
�
[
Ȳk,f,t

]∣∣Ȳk,f,t

∣∣ (24)
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and c is a constant independent of φk,f,t. (23) means that Ψ+ is minimized when
φk,f,t = Ck,f,t.

The free parameter β in (14) is adaptively set as

βk,f,t =
Ak,t

∑
f ′(Sk)f ′bf ′∑

n An,t

∑
f ′(Sk)f ′bf ′

(25)

according to [11].

4 Experiments and Results

To confirm the effectiveness of our algorithm, we carried out some experiments
as below.

(a) Note activations. Each column (b) Basis patterns. Each column shows
shows the note id at a time. the spectrum of a note.

(c) Frequency responses of sound paths for cases 1 and 2.

Fig. 3. True note activations, basis patterns and frequency responses (two cases) of
sound paths used in the experiments
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Since the problem of music transcription is an ill-posed problem, we synthe-
sized monaural sound samples to clarify true note activations, basis patterns and
frequency responses of sound paths (Fig. 3).

Figure 4 shows the results of our algorithm for λ = 0.1. The algorithm can
estimate the true note activations and frequency responses almost correctly. Note
that the frequency response takes zero at frequencies where no sound signals
exist.

(a) Note activations for cases 1 and 2.

(b) Frequency responses of sound paths for cases 1 and 2.

Fig. 4. Estimated note activations and frequency responses of sound paths for sparse-
ness parameter λ = 0.1

5 Conclusions

We proposed an automatic music transcription method based on a generative
model that takes into account the translation of spectrum for an instrument
and the sound path from the instrument to a microphone. The activations and
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the basis patterns of the instrument are estimated simultaneously as well as
the response frequency of the sound path, by extending a complex nonnegative
matrix factorization. The effectiveness of the proposed method was confirmed
by experiments with synthetic data.
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Abstract. Computer vision system is one of the newest approaches for
human computer interaction. Recently, the direct use of our hands as nat-
ural input devices has shown promising progress. Toward this progress,
we introduce a hand gesture recognition system in this study to recognize
real time gesture in unconstrained environments. The system consists of
three components: real time hand tracking, hand-tree construction, and
hand gesture recognition. Our main contribution includes: (1) a sim-
ple way to represent the hand gesture after applying thinning algorithm
to the image, and (2) using a model of complex-valued neural network
(CVNN) for real-valued classification. We have tested our system to 26
different gestures to evaluate the effectiveness of our approach. The re-
sults show that the classification ability of single-layered CVNN on un-
seen data is comparable to the conventional real-valued neural network
(RVNN) having one hidden layer. Moreover, convergence of the CVNN
is much faster than that of the RVNN in most cases.

Keywords: Hand gesture recognition, Human computer interaction,
Complex-valued neural network.

1 Introduction

The advent of new technologies of human computer interaction has proved that
conventional approaches like the keyboard, mouse and pen are not the most
efficient and natural ways to interact with the computer. Even though the mouse
and the keyboard have made computers more accessible for many decades, but
the growing interest in new computer usage has brought to light the need for
natural way of human computer interaction. The human hand is the main tool
for natural communication, therefore a large variety of techniques have been used
for modeling the hand. This model has to be simple so that the computation
can be done in real time and as much descriptive that it can give varieties of
gestures.

Starner and Pentland [1] studied Human-computer interaction using hand
gestures, their algorithm could show promising results in recognizing American
Sign Language(ASL), but the algorithm is computationally expensive and limits
the resolution of the input frames when applied in real time.

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 541–549, 2011.
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The use of inductive learning for hand gesture recognition has been explored
in [2], which can learn the temporal spatial information of the hand gesture
in real time, Nevertheless, it has the weakness of limited gesture that can be
modeled.

While in [3], a DataGlove with 18 sensors is used to recognize the hand pat-
terns, which exist in the raw sensor data of the DataGlove. A pattern of 300
hand gestures is used to train and test different gestures, using back-propagation
learning algorithm. The recognition system achieves good performance in real
time, the weakness of this approach is the requirement of special hardware like
DataGloves.

In our approach, we try to achieve an accurate result for large numbers of
gestures (for example, English characters) in real time by using Kinect camera
[4]. The system can be applied to various background, changeable lighting of the
environment and different kinds of human colors. To achieve that, we construct
simple representation of human hand (Hand-Tree) after applying edge detection
with thinning algorithm (Fig.1) to the input image, we then define gestures
for each English characters that is distinguishable by our algorithm. At the
same time, these gestures are designed to make the user change between each
representation with minimum effort so that the user can type using his hand
instead of the keyboard.

Fig. 1. The left image is a human hand after applying edge detection algorithm, while
the image on the right is showing the branches that were produced after applying
thinning algorithm to the image

We used two layer complex-valued neural network CVNN [5], due to the nature
of the data that we can collect from the generated Hand-Tree. Where each real-
valued input is encoded into a phase between 0 and π of a complex number of
unity magnitude, and multiplied by a complex-valued weight. The weighted sum
of inputs is then fed to an activation function. The activation functions map
complex values into real values, and their role is to divide the net-input space
into multiple regions representing the classes of input patterns.
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2 Procedures

In the project presented, the hardware we used is a Kinect’s camera [4], while
the software platform is OpenCV [6], for real time image frame capturing and
processing.

Fig. 2, shows the modules that represent the complete system. First, the image
from the Video Input module projects to Hand Location module as well as the
Image Processing module, the Image Processing module processes the area of the
image where the hand have been located. After that, the image will be feed to
Hand Tree Construction module that feed backs to Locate Hand module about
the accurate location of the hand. The final step is the recognition part that uses
complex-valued neural network (CVNN) to recognize the gesture. The following
subsections describe in detail each stage of the system.

 

Fig. 2. Human hand gesture recognition system, showing its module and the connec-
tions between them

2.1 Detecting and Tracing the Human Hand

The first step is to detect where the hand is among the other things in the
image. To do that, we should first delete the background by using the depth
map that Kinect’s camera provides. The result is shown in Fig. 3. We see only
the completed human body in the result.

Fig. 3. Simple illustration of background deletion, the image in the left is the source
image, the image in the middle is the depth map that Kinect’s camera provides, and
the image in the right is the result after deleting the background
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Next step, is to delete the areas which don’t have the same color as human
skin. The result of this process shows the location of the human hand and face.
we use HSL representation of color to identify the color of human skin, since
HSL representation identifies the color of human skin more accurately than RGB
representation. Lastly, we identify the hand from face (Fig. 4).

Fig. 4. The result after skin detection, showing human hand with two states, in the
left is the human hand with the fingers are together, and in the right when the fingers
are apart

The hand area has a different hue comparing with that of the face, but the
difference is small. So we have to support it by other method, i.e. , at the
beginning the system depends on the motion of the hand to distinguish it from
the face, after that the system knows the location of the hand by the feed back
of the Hand Tree Construction part of the system.

From Fig. 4, we can notice that when the fingers are gathered we lose some
information about each finger state, to solve this problem we use a sequence of
image processing algorithms to gather the information about the human hand
fingers, as described in next section.

2.2 Image Processing

After locating the human hand in the image, the system filters the location as
shown in Fig. 5.

First, the system applies an edge detection filter to the location of the hand
(Sobel Edge Detection [7]). This filter scan the image for any pixels that have
different value than its neighbor pixels and assigns a high value for that pixel.

Next, by thresholding the result of the edge detection algorithm the system
deletes the noisy edges. but it causes some disconnected parts in the edges of
the hand which will effect the result of thinning algorithm. To avoid that the
program makes a Dilation on the image, this results in the connection between
the disconnected parts.

After that, thinning algorithm is applied [8], this algorithm generates one line
of pixels representing each segment of the image.

Finally, we got a hand representation as lines that connects with each other
with nodes, now this step aims to read that representation. The system creates
pairs of data by detecting the nodes and traces the line that connects these nodes
to calculate the length and the angle of these lines, the length of the line which
connects two nodes and its relative angle can be calculated as shown in Fig. 6.
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Fig. 5. The image filters that applied in real-time for the hand location, that produce
connected branches of line which represent the fingers of human hand

Hand Tree 

f 

d 

g 

c 

b 

a 

e 

h 

i 

θ1 θ2 
θ3 θ4 

θ5 

θ6 

θ7 
θ8 

Two fingers  

Three fingers 

Four fingers 

Five fingers 

Fig. 6. The left side of the figure is the Hand-Tree branches and nodes that have been
generated from the result of the thinning algorithm, in the right side is the pairs of
data that can be abstracted from these branches

2.3 Hand Gesture Representation

Since the CVNN processes complex-valued information, it is necessary to map
real input values to complex values in order to solve real-valued classification
problems. After such mapping, the neuron processes information in a way simi-
lar to the conventional neuron model except that all the parameters and variables
are complex-valued, and computations are performed according to complex al-
gebra. As illustrated in Fig. 7, the neuron, therefore, first sums up the weighted
complex-valued inputs and the threshold value to represent its internal state
for the given input pattern, and then the weighted sum is fed to an activation
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function which maps the internal state (complex-valued weighted sum) to a real
value. Here, the activation function combines the real and imaginary parts of
the weighted sum.

y
RfC

1

xm

wm

w1

w2

x1

x2

θ

Fig. 7. Model of a complex neuron. The sign
∑

sums up the weighted inputs wjxj(1 ≤
j ≤ m) and the bias θ. fC→R is an activation function that maps the complex- valued
internal state to a real-valued output y [5].

By Eulers formula, as given by Eq.1, a complex value z is obtained.

z = eiϕ = sin(ϕ) + i ∗ cos(ϕ). (1)

Let the net-input of a complex neuron be z = u+iv, then we define the activation
functions, Eq.2:

fC→R(z) = (fR(u)− fR(V ))2. (2)

where fR(x) is defined as Eq.3:

fR(x) = 1/(1 + exp(−x)). (3)

where x, u, v ∈ R, the activation functions combine the real and imaginary parts.
The real and imaginary parts are first passed through the same sigmoid function
individually. Thus each part becomes bounded within the interval (0,1).

The learning rule is derived from gradient-descent learning rule for a CVNN
similar to the work in [6]. We deal with the CVNN without any hidden units.

3 Results

A pattern set with 26 hand gestures are collected, each gesture with 10 samples
from one minute video, The set is used to train the neural network, and the
testing stage is done online.

We test the system robustness in simple data collection and noise deletion
tasks, the system could work in 10 frames per second (fps) and could read the
hand state for 90% of the time.
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For recognizing the English character, we defined distinguishable gestures of
the hand to represent each character, these gestures have been chosen so that it
will be easier for the system to recognize them while taking in consideration a
human’s natural skills to move from one gesture to other, and since our algorithm
detects the edges between the fingers even though the fingers are stuck together.
This allows us to design a simple representation for each character as shown in
Fig. 8.

a b c d e f

g h i j k l

m n o p q r

s t u v w x

y z

Fig. 8. Hand gesture for each English character, we can notice that the gestures are
differing in the number of fingers and the angles they make with each other

First, we test the system with real-valued neural network RVNN to recognize
the patterns that exist in these data. The selected design approach for the neural
network topology uses a feed-forward network with a single hidden layer. We use
supervised learning algorithm for modifying the weight of the neural network. The
training method selected is back-propagationusing a variable learning rate. These
choices are selected because of their simple structure and low computational cost.

The number of input neurons are determined by the maximum number of
Hand Tree branches, which is 9, and because each branch has both length and
angle that means the input layer of our network should have at least 18 neurons.
Accordingly, neural network model has 18 input and 26 output nodes.

The determination of the optimal number of neurons in the hidden layer is
achieved by starting at a very low value and increasing until the network can
be trained to an acceptable error level. The optimal number of neurons in the
hidden layer is determined to be 30 in our study.

Table 1 show us the result of testing 26 english characters for one minute in
10 fps, and that after trained the neural network with the training set of these
character with samples taken for one second (10 frames) for each gesture, as we
can see each gesture have different recognition rate, and that due to the edges
that have created from each finger. In the table, the correct percentage refer to
percentage that the output neuron fires to the correct input pattern, incorrect
is when the wrong neuron fires, and undetected is when no neuron reach its
threshold to produce output.
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Table 1. The result of testing 26 english character in real time

Gesture Correct Incorrect Undetected
a 64% 9% 27%

b 59% 11% 30%

c 84% 5% 11%

d 81% 12% 7%

e 71% 16% 13%

f 68% 6% 26%

g 89% 8% 3%

h 82% 13% 5%

i 79% 15% 6%

j 76% 16% 8%

k 96% 3% 1%

l 93% 7% 0%

m 94% 4% 2%

n 89% 7% 4%

o 92% 6% 2%

p 87% 10% 3%

q 89% 8% 3%

r 90% 7% 3%

s 92% 7% 1%

t 85% 3% 12%

u 90% 7% 3%

v 84% 4% 12%

w 82% 8% 10%

x 80% 6% 14%

y 75% 5% 20%

z 64% 9% 27%

Total 82% 8% 10%

Target Error 

Epoch 

CVNN 

RVNN 

Fig. 9. Learning processes of the two-layered RVN, and single-layered CVN

Second, we test the system with two layer complex-valued neural network
CVNN to compare it with RVNN. The input of the CVNN is in complex do-
main, which allows as to represent each fingers length and angle as one complex
number, and because we have 5 fingers and 3 structural branches (Fig. 6) the in-
put layer consist of eight complex-valued neurons, while the output layer consist
of 26 neurons that represent english alphabets.

Regarding the learning convergence, single-layered CVNNs required far less
training cycles (epochs), in almost all the cases, to reach the minimum validation
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error than the RVNN counterpart as can be seen in Fig. 9. In other words,
learning convergence of CVNN is faster than that of the RVNN.

4 Conclusion

We have developed a hand gesture recognition system, which is shown to be
robust for detecting various gestures, and we tested our system to distinguish
among 26 differed gestures (English Alphabet). The system is fully automatic
and it works in real-time. It is fairly robust to ignore the noise. The advantage
of the system lies in the ease of its usage. The Users do not need to wear a glove,
neither is there a need for an uniform background.

By using Kinect depth map and the human skin caller we could isolate human
hand from the rest of the image, then we used a sequence of image filters to
generate a descriptive representation of human hand we call it ”Hand-Tree”,
this representation allows as to use a CVNN for learning and recognition stage,
the results shows that a single-layered CVNN is much faster in learning than the
RVNN in terms of number of epochs for reaching the minimum validation error.
Generalization ability of the single-layered CVNN is comparable to two-layered
RVNN in such problem.

Furthermore we can improve the result by adding hidden neurons to CVNN
for better Generalization.

Acknowledgments. This study was supported by grants to K.M. from
Japanese Society for promotion of Sciences and Technology, and the University
of Fukui.
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Abstract. Complex-valued neural networks (CVNNs) bring in nonholo-
morphic functions in two ways: (i) through their loss functions and (ii)
the widely used activation functions. The derivatives of such functions
are defined in Wirtinger calculus. In this paper, we derive two popular
algorithms—the gradient descent and the Levenberg-Marquardt (LM)
algorithm—for parameter optimization in the feedforward CVNNs using
the Wirtinger calculus, which is simpler than the conventional deriva-
tion that considers the problem in real domain. While deriving the LM
algorithm, we solve and use the result of a least squares problem in the
complex domain,‖b − (Az + Bz∗)‖min

z
, which is more general than the

‖b −Az‖min
z

. Computer simulation results exhibit that as with the real-

valued case, the complex-LM algorithm provides much faster learning
with higher accuracy than the complex gradient descent algorithm.

Keywords: Complex-valued neural networks (CVNNs), Wirtinger
calculus, gradient descent, Levenberg-Marquardt, least squares.

1 Introduction

With the advancement in technology, we see that complex-valued data arise in
various practical contexts, such as array signal processing [1], radar and magnetic
resonance data processing [2,3], communication systems [4], signal representa-
tion in complex baseband [5], and processing data in the frequency domain [2].
Since neural networks are very efficient models in adaptive and nonlinear signal
processing, the extension of real-valued neural networks (RVNNs) to complex-
valued neural networks (CVNNs) has gained a considerable research interest in
the recent years. The key features of CVNNs are that their parameters are com-
plex numbers and they use complex algebraic computations. Although complex-
valued data can be processed with RVNNs by considering the data as double
dimensional real-valued data, several studies have shown that CVNNs are much
more preferable in terms of nonlinear mapping ability, learning convergence,
number of parameters, and generalization ability [6].
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An important fact in the CVNNs is that they bring in nonholomorphic func-
tions in two ways: (i) with the loss function to be minimized over the complex
parameters and (ii) the most widely used activation functions. The former is
completely unavoidable as the loss function is necessarily real-valued. The second
source of nonholomorphism arises because boundedness and analiticity cannot
be achieved at the same time in the complex domain, and it is the boundedness
that is often preferred over analyticity for the activation functions [6]. Although
some researchers have proposed some holomorphic activation functions having
singularities [7], a general consideration is that the activation functions can be
nonholomorphic. In such a scenario, optimization algorithms are unable to use
standard complex derivatives since the derivatives do not exist (i.e., the Cauchy-
Riemann equations do not hold). As an alternative, conventional approaches cast
the optimization problem in the real domain and use the real derivatives, which
often requires a tedious computational labor. Here computational labor is meant
for human efforts associated with the calculation of derivatives in analytic form.

An elegant approach that can save computational labor in dealing with non-
holomorphic functions is to use Wirtinger calculus [8], which uses conjugate
coordinate system. A pioneering work that utilizes the concept of conjugate co-
ordinates is by Brandwood [9]. The author formally defines complex gradient
and the condition for stationary point. The work is further extended by van dan
Bos showing that complex gradient and Hessian are related to their real coun-
terparts by a simple linear transformation [10]. However, neither of the authors
has cited the contribution of Wilhelm Wirtinger, a German mathematician, who
originally developed the the central idea. Today the Witinger calculus is well
appreciated and has been fruitfully exploited by several recent works [11,12].

Although the Wirtinger calculus can be a useful tool in adapting well known
first- and second-order optimization algorithms used in the RVNN to the CVNN
framework, only few studies can be found in the literature [13]. In [13], the
Wirtinger calculus has been utilized to derive a gradient descent algorithm for a
feedforward CVNN. The authors employ holomorphic activation functions and
show that the derivation is simplified only because of the holomorphic functions.
It is further stated that the evaluation of gradient in nonholomorphic case has
to be performed in the real domain as it is done traditionally.

In this paper, we argue that the Wirtinger calculus can simplify the gradi-
ent evaluation in nonholomorphic activation functions too, which is the original
motivation of the Wirtinger calculus. Our gradient evaluation is more general
and the CVNN with holomorphic activation function becomes a special case.
A major contribution of this paper is that we derive a popular second-order
learning method, Levenberg-Marquardt (LM) algorithm [14], for CVNN param-
eter optimization. We find that a key step of LM algorithm is a solution to the
least squares problem ‖b− (Az + Bz∗)‖min

z
in the complex domain, which is

more general than the ‖b−Az‖min
z

. Here z∗ denotes the complex conjugate of

a column vector z. A solution to the least squares problem has been carried
out with a proof in this paper. All computations regarding gradient descent and
LM algorithm are carried out in complex matrix-vector form that can be easily
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implemented in any computing environment where computations are optimized
for matrix operations.

An important aspect of our derivations is that we use functional dependency
graph for a visual evaluation method of derivatives, which is particularly useful
in multilayer CVNNs. Because the Wirtinger calculus essentially employs con-
jugate coordinates, a coordinate transformation matrix between the real and
conjugate coordinates system plays an important role in adapting optimization
algorithms in the RVNNs to the CVNNs. It turns out that the Wirtinger calcu-
lus, the coordinate transformation matrix, and the functional dependency graph
are three useful tools for deriving algorithms in the CVNN framework.

The remainder of the paper is organized as follows. Section 2 presents complex
domain derivations of two popular algorithms—the gradient descent and the LM
algorithm —for CVNN parameter optimization, along with a brief discussion of
the Wirtinger calculus. Computer simulation results are discussed in Section 3.
Finally, concluding remarks are given in Section 4.

2 Complex Gradient Descent and Complex-LM
Algorithm Using Wirtinger Calculus

2.1 Wirtinger Calculus

Any function of a complex variable z can be defined as f(z) = u(x, y)+ jv(x, y),
where z = x+jy and j =

√
−1. The function is said to be holomorphic (complex

derivative exists) if the Cauchy-Riemann equations holds, i.e., ux = vy, vx =
−uy; otherwise, it is nonholomorphic (complex derivative does not exist). Non-
holomorphic functions, however, can be dealt with conjugate coordinates, which
are related to the real coordinates by(

z
z∗

)
=

(
1 j
1 −j

)(
x
y

)
. (1)

From the inverse relations, x = (z + z∗)/2 and y = −j(z − z∗)/2, Wirtinger
defines the following pair of derivatives for a function f(z) = f(z, z∗):

∂f

∂z
=

1

2

(
∂f

∂x
− j

∂f

∂y

)
,

∂f

∂z∗
=

1

2

(
∂f

∂x
+ j

∂f

∂y

)
. (2)

The derivatives are called R-derivative and conjugate R-derivative, respectively.
Wirtinger calculus generalizes the concept of derivatives in the complex do-

main. It is easy to see that the Cauchy-Riemann equations are equivalent to
∂f
∂z∗ = 0. Rigorous description of the Wirtinger calculus with applications can
be found in [16,17]. The attractiveness of Wirtinger calculus is that it enables us
to perform all computations directly in the complex domain, and the derivatives
obey all rules of conventional calculus, including the chain rule, differentiation of
products and quotients. In the evaluation of ∂f

∂z , z∗ is considered as a constant
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and vice versa. Here are some useful identities that we use extensively in the
derivation of learning algorithms presented in the next subsections.(

∂f

∂z

)∗
=

∂f∗

∂z∗
; for f is real,

(
∂f

∂z

)∗
=

∂f

∂z∗
(3)

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗ Differential rule (4)

∂h(g)

∂z
=

∂h

∂g

∂g

∂z
+

∂h

∂g∗
∂g∗

∂z
Chain rule (5)

∂h(g)

∂z∗
=

∂h

∂g

∂g

∂z∗
+

∂h

∂g∗
∂g∗

∂z∗
Chain rule (6)

2.2 The Complex Gradient Descent Algorithm

The gradient of a real-valued scalar function of several complex variables can
evaluated in both real and conjugate coordinates systems. In fact, there is a one
to one correspondence between the coordinate systems. Let z be a n-dimensional
column vector, i.e., z = (z1, z2, . . . , zn)

T ∈ Cn, where zi = xi + jyi, i = 1, . . . , n
and j =

√
−1. Then

c �
(

z
z∗

)
⇔ r �

(
x
y

)
=

(
�(z)
�(z)

)
and they are related as follows

c =

(
z
z∗

)
=

(
I jI
I −jI

)(
x
y

)
= J

(
x
y

)
= Jr (7)

Note that J−1 = 1

2
JH , where H denotes the Hermitian transpose. Consequently,

the real gradient and the complex gradient are related by a linear transformation.
The relation guides the algorithm derivation directly in the complex domain. It
is established that the complex-gradient of a real-valued function is evaluated as

∇z∗f = 2
∂f

∂z∗
[13].

In the following derivation of complex gradient descent algorithm, we will
consider a single hidden layer CVNN for the sake of notational convenience only.
The forward equations for signal passing through the network are as follows

y = Vx + a; h = φ(y); v = Wh + b; g = φ(v) . (8)

Here x is the input signal and h and g are the outputs at hidden and output layer,
respectively; the weight matrix V connects the input units to the hidden units,
while the matrix W connects the hidden units to the output units; the column
vectors a and b are the biases to the hidden and output units, respectively; and
φ is any activation function (holomorphic or nonholomorphic) having real partial
derivatives. When the function takes a vector as its argument, each component
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is mapped individually yielding another vector. The gradient descent algorithm
minimizes a real-valued loss function

l(z, z∗) =
1

2

∑
k

e∗kek =
1

2
eHe , (9)

where e = d−g denotes the complex error and d the desired signal. The negative
of complex gradient can be written as

−2
∂l

∂z∗
= −2

(
∂l

∂z

)∗
= −2

(
∂l

∂zT

)H

. (10)

We find that it is convenient to take derivative of a scalar or a column vector
with respect to a row vector as it gives the Jacobian naturally. Now

−2
∂l

∂zT
= −

∂
(
eHe

)
∂eT

∂e
∂zT

−
∂
(
eHe

)
∂ (eT )

∗
∂e∗

∂zT
[Eq. (5) in vector form] (11)

= eHJz + eT (Jz∗)
∗

[Eq. (3)] (12)

Here, we define two Jacobian matrices, Jz =
∂g
∂zT

and Jz∗ =
∂g

∂ (z∗)T
. Taking

Hermitian transpose to both side of Eq. (12) yields the negative of complex-
gradient

−∇z∗ l = JH
z e +

(
JH
z∗e
)∗

(13)

It is clear from Eq. (13) that in order to evaluate complex-gradient all we need
is to compute a pair of Jacobians, Jz and Jz∗ . It should be noted that the
Jacobians have the form of P + jQ and P − jQ, respectively, because of the
definition of derivatives in the Wirtinger calculus. Here P and Q are complex
matrices since g is complex-valued. Consequently, we can compute the other one
while computing one of the Jacobians. In the feedforward CVNN, parameters
are structured in layers. We find that it is very much efficient to compute the
Jacobians visually if we draw a functional dependency graph, where each node
denotes a vector-valued functional and each edge connecting two nodes is labeled
with the Jacobian of one node w.r.t. the other. Figure 1 depicts the functional
dependency graph for a single hidden layer CVNN. To evaluate the Jacobian of
the right most node (i.e., network’s output) w.r.t. any other node to its left, we
just need to follow the possible paths from the right most node to that node.
Then the desired Jacobian is the sum of all possible paths, where for each path
the labeled Jacobians from right to left are multiplied successively. For example,
in Fig. 1,

Jy =
∂g
∂yT

= ΛvWΛy + Λv∗W∗ (Λy∗)
∗

(14)

where Λv denotes the Jacobian of right node g w.r.t. its left node v. Fortunately,
we can reuse the computation from right to left. We only need to look for Ja-
cobian to the immediate rightmost nodes, presumably the Jacobian are already
computed there. Thus Eq. (14) can be alternatively computed as

Jy = JhΛy + Jh∗ (Λy∗)
∗
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Fig. 1. Functional dependency graph of a single hidden layer CVNN

It is now a simple task to find the update rule for the CVNN parameters. We
note from Eq. (8) that Jb = Jv and Ja = Jy. Thus update rules for the biases
at hidden and output layer are

Δa = α
(
JH
a e +

(
JH
a∗e
)∗)

; Δb = α
(
JH
b e +

(
JH
b∗e
)∗)

(15)

Here α is the learning rate. Extending the notation for vector gradient to matrix
gradient of a real-valued scalar function [13] and using Eq. (8), the update rules
for hidden and output layer weight matrices are given by

ΔV = (Δa)xH ; ΔW = (Δb)hH . (16)

2.3 The Complex LM Algorithm

The LM algorithm is a widely used batch-mode fast learning algorithm in the
neural networks that also yields higher accuracy in function approximation than
the gradient descent algorithm [15]. Basically, it is an extension of Gauss-Newton
algorithm. Therefore, the Gauss-Newton algorithm will be first derived in the
complex-domain.

The Gauss-Newton method iteratively re-linearizes the nonlinear model and
updates the current parameter set according to a least squares solution to the
linearized model. In the CVNN, the linearized model of network output g(z, z∗)
around (ẑ, ẑ∗) is given by

g(ẑ + Δz, ẑ∗ + Δz∗) ≈ ĝ + JzΔz + Jz∗Δz∗ [Eq. (4) in vector form] (17)

The error associated with the linearized model is e = ê − (JzΔz + Jz∗Δz∗)
Then the Gauss-Newton update rule is given by the least squares solution to
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‖ê− (JzΔz + Jz∗Δz∗) ‖. So we encounter a more general least squares problem,
‖b− (Az + Bz∗) ‖min

z
, than the well known problem, ‖b−Az‖min

z
.

Proposition 1. Let A and B are arbitrary complex matrices of same dimen-
sion. Then a solution to the least squares problem, ‖b − (Az + Bz∗) ‖min

z
, is

given by the following normal equation

CH

(
b
b∗

)
= CHC

(
z
z∗

)
; where C =

(
A B
B∗ A∗

)
. (18)

Proof. From Eq. (7), we know that the conjugate coordinates are related to the
real coordinates by the transformation matrix J, while J−1 = 1

2
JH . The error

equation and its complex conjugate associated to the least squares problem are

e = b− (Az + Bz∗) (19)

e∗ = b∗ − (A∗z∗ + B∗z) (20)

Combining Eqs. (19) and (20) to form a single matrix equation and applying the
coordinate transformation, the problem can be transformed to real coordinate
system, for which the normal equation for least squares problem is well known.
This gives the following equation

JH

(
e
e∗

)
= JH

(
b
b∗

)
− JHC

(
1

2
JJH

)(
z
z∗

)
;

[
1

2
JJH = I

]
(21)

It can be shown that JHC 1

2
J is a real-valued matrix. Because it is now com-

pletely in the real coordinate system, we can readily apply the normal equation
of the form PTq = PT Px, for real-valued matrices. Noting that the ordinary
transpose and Hermitian transpose is the same in the real-valued matrices, the
normal equation for the least squares problem of Eq. (21) is

1

2
JHCHJJH

(
b
b∗

)
=

1

2
JHCHJJHC

(
1

2
JJH

)(
z
z∗

)
(22)

Equation (22) immediately yields the following complex normal equation

CH

(
b
b∗

)
= CHC

(
z
z∗

)
�

According to Proposition 1, the least squares solution to ‖ê−(JzΔz + Jz∗Δz∗) ‖
gives the the following Gauss-Newton update rule(

Δz
Δz∗

)
= H−1GH

(
ê
ê∗

)
(23)

where G =

(
Jz Jz∗

(Jz∗)
∗

(Jz)
∗

)
and H = GHG =

(
Hzz Hz∗z
Hzz∗ Hz∗z∗

)
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The matrix H can be considered as an approximation to the Hessian matrix
that would result from the Newton method. Note that when H = I, the Gauss-
Newton update rule reduces to the gradient descent algorithm. There is also a
pseudo-Gauss-Newton algorithm [17], where the off-diagonal block matrices of
H are 0. The pseudo-Gauss-Newton update rule then takes a simpler form

Δzpseudo−Gauss−Newton = H−1

zz

(
JH
z ê +

(
JH
z∗ ê
)∗)

. (24)

When the activation functions in the CVNN are holomorphic, the output func-
tion g(z) is also holomorphic. Then the Gauss-Newton update rule resembles
the real-valued case

Δzholomorphic =
(
JH
z Jz

)−1

JH
z ê (25)

It can be observed that all the computations use the Jacobian matrices ex-
tensively, which can be evaluated visually and efficiently from the functional
dependency graph of Fig. 1. It thus shows the simplicity of our derivation using
the Wirtinger calculus.

The LM algorithm makes a simple modification to the Gauss-Newton algo-
rithm of Eq. (23) in the following way(

Δz
Δz∗

)
=
(
GHG + μI

)−1

GH

(
ê
ê∗

)
(26)

The parameter μ is varied over the iterations. Whenever a step increases the
error rather than decreasing, μ is multiplied by a factor β. Otherwise, μ is di-
vided by β. A popular choice for the initial value of μ is 0.01 and β = 10. The
algorithmic steps of complex-LM is same as the steps of real-LM [15], except for
the parameter update rule derived above.

3 Computer Simulation Results

Computer experiments were performed in order to verify the algorithms pre-
sented in the previous section. The algorithms were implemented in Matlab to
utilize its matrix computing environment. We took a problem for experiment
from [6], where the task is to learn a set of given patterns (see Table 3 of [6]).
We trained a 2-4-1 CVNN using the complex gradient descent learning algorithm
and two variants of complex-LM algorithm. Note that the LM algorithm uses
Gauss-Newton update rule as its basic constituent, which has a variant called
pseudo-Gauss-Newton method. Accordingly, we call the variants as complex-LM
and pseudo-complex-LM. For all learning algorithms, the training was stopped
when the error (mean squared error (MSE)) goal was met, or a maximum num-
ber of iteration has been passed. We used the same activation function of [6] in
the hidden and output layer, which is nonholomorphic.

The number of iterations required to meet error goal (MSE = 0.001) were 32
and 82 for the complex-LM and the pseudo-complex-LM, respectively.
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Fig. 2. Learning curves of complex gradient descent, complex-LM, and pseudo-
complex-LM algorithm

The complex gradient descent, however, failed to reach the error goal. Figure
2 shows the learning curves for first 300 iterations. Note that the LM algo-
rithms stopped long before. The experimental result suggests that the complex-
LM along with its variant has very fast learning convergence with much lower
MSE than the complex gradient descent algorithm, which resembles the learning
characteristics in the RVNNs. Furthermore, the complex-LM is faster than the
pseudo-complex-LM since the latter is an approximation to the former. But the
pseudo-complex-LM involves less computation.

The application of complex-LM algorithms, however, is limited by the number
of parameters of CVNN, because computation of a matrix inversion is involved
in each iteration, while the matrix dimension is in the order of total number
of learning parameters. Therefore, the complex-LM algorithms are very useful
when the number of parameters are reasonable for matrix inversion and/or a
high accuracy in the network mapping is required, such as system identification
and time-series prediction problems in the complex domain.

4 Conclusions

In this paper, the complex gradient descent and the complex-LM algorithm have
been derived using the Wirtinger calculus, which enables performing all compu-
tations directly in the complex domain. The use of the Wirtinger calculus also
simplifies the derivation. In course of complex-LM derivation, we have encoun-
tered a general least squares problem in the complex domain. We have presented
a solution with proof and used the result for derivation in this paper. We identify
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that the Wirtinger calculus, the coordinate transformation between conjugate
and real coordinates, and the functional dependency graph of Jacobians greatly
simplify adaptation of the algorithms known for the RVNN to the CVNN frame-
work. Computer simulation results are provided to verify the derivations, and
it is shown that the complex-LM as well as its variant, the pseudo-complex-
LM, have much faster learning convergence with higher accuracy in nonlinear
mapping by the CVNN.
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Abstract. Recently, models of neural networks in the real domain have
been extended into the high dimensional domain such as the complex
and quaternion domain, and several high-dimensional models have been
proposed. These extensions are generalized by introducing Clifford alge-
bra (geometric algebra). In this paper we extend conventional real-valued
models of recurrent neural networks into the domain defined by Clifford
algebra and discuss their dynamics. We present models of fully connected
recurrent neural networks, which are extensions of the real-valued Hop-
field type neural networks to the domain defined by Clifford algebra. We
study dynamics of the models from the point view of existence condi-
tions of an energy function. We derive existence conditions of an energy
function for two classes of the Hopfield type Clifford neural networks.

Keywords: Clifford algebra, Hopfield neural network, Clifford neural
network, Energy function.

1 Introduction

In recent years, there have been increasing research interests of artificial neural
networks and many efforts have been made on applications of neural networks
to various fields. As applications of the neural networks spread more widely,
developing neural network models which can directly deal with complex num-
bers is desired in various fields. Several models of complex-valued neural net-
works have been proposed and their abilities of information processing have
been investigated[1,2]. Moreover those studies are extended into the quaternion
numbers domain, and models of quaternion neural networks are proposed and
actively studied[2,11]. These extensions are generalized by introducing Clifford
algebra (geometric algebra). Recently Clifford algebra has been recognized to be
powerful and practical framework for the representation and solutions of geo-
metrical problems. It has been applied to various problems in science and engi-
neering [13,14]. Neural computation with Clifford algebra is, therefore, expected
to possess superior ability of information processing and to realize superior
computational intelligence.
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In this paper we extend conventional real-valued models of recurrent neural
networks into the domain defined by Clifford algebra and discuss their dynamics.
We present models of fully connected recurrent neural networks, which are exten-
sions of the real-valued Hopfield type neural networks to the domain defined by
Clifford algebra. We also discuss dynamics of those models from the point view
of existence of an energy function. We have already derived existence conditions
and proposed energy functions for Hopfield type complex and quaternion valued
neural networks [9,10,11]. Those results can be revisited from the point of view
of Clifford algebra models [12]. In this paper we discuss existence conditions of
an energy function for two classes of the Hopfield type Clifford neural networks:
hyperbolic and dual valued neural networks. Comparisons are also made among
the results of those neural networks and that of complex valued neural networks.

2 Clifford Algebra

In this paper we consider the finite dimensional Clifford algebra defined over the
real field R. Its outline is given in this section. See [4,5] in detail.

2.1 Definition

Let Rp,q,r denote a (p+ q + r)-dimensional vector space over the real field R. Let
a commutative scalar product be defined as ∗ : Rp,q,r × Rp,q,r → R. That is,

a ∗ b = b ∗ a ∈ R for a, b ∈ Rp,q,r.

For Rp,q,r, the canonical basis, denoted by R
p,q,r

, is defined as totally ordered
set

R
p,q,r

:= {e1, · · · , ep, ep+1, · · · , ep+q, ep+q+1, · · · , ep+q+r} ⊂ Rp,q,r (1)

where the {ei} have the property

ei ∗ ej =

⎧⎪⎪⎨⎪⎪⎩
+1, 1 ≤ i = j ≤ p,
−1, p < i = j ≤ p + q,

0, p + q < i = j ≤ p + q + r,
0, i �= j

(2)

The combination of a vector space with a scalar product is called a quadratic
space denoted by (Rp,q,r, ∗). Clifford algebra is defined over the quadratic space
(Rp,q,r, ∗) by introducing so called Clifford product (geometric product) denoted
by ◦. The Clifford algebra over (Rp,q,r, ∗) is denoted by G(Rp,q,r) or simply
Gp,q,r.
[Definition of Clifford Algebra Gp,q,r]

Let Gp,q,r denote the associative algebra over the quadratic space (Rp,q,r, ∗)
and let ◦ denote the product. Note that the field R and the vector space Rp,q,r

can both be regarded as subspaces of Gp,q,r. The Gp,q,r is said to be Clifford
algebra if the followings are satisfied.
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– Gp,q,r is a vector space equipped with vector addition + and multiplication
with scalar (α ∈ R).

– There exists the product ◦ which satisfies the following properties.
1. The algebra is closed under the product ◦, that is, a ◦ b ∈ Gp,q,r for all

a, b ∈ Gp,q,r.
2. Associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ Gp,q,r.
3. Distributivity: a ◦ (b + c) = a ◦ b + a ◦ c for all a, b, c ∈ Gp,q,r.
4. Scalar multiplication: α ◦ a = a ◦ α = αa, for all a ∈ Gp,q,r, α ∈ R.
5. Let a ∈ Rp,q,r ⊂ Gp,q,r; then a ◦ a = a ∗ a ∈ R

Note that the commutativity is not imposed on the Clifford product ◦, that
is, it is non-commutative.

2.2 Basic Properties and Algebraic Basis

The elements of Clifford algebra Gp,q,r are called multivectors whereas the el-
ements of Rp,q,r are called vectors. For multivectors a, b ∈ Gp,q,r, the Clifford
product a ◦ b is expressed as a sum of its symmetric and antisymmetric parts:

a ◦ b =
1

2
(a ◦ b + b ◦ a) +

1

2
(a ◦ b− b ◦ a).

If a and b are vectors, that is, a, b ∈ Rp,q,r, the following relation holds.

(a + b) ◦ (a + b) = (a + b) ∗ (a + b)

⇔ a ◦ a + a ◦ b + b ◦ a + b ◦ b = a ∗ a + 2a ∗ b + b ∗ b

⇔ 1

2
(a ◦ b + b ◦ a) = a ∗ b

Let express the antisymmetric part as a ∧ b := 1

2
(a ◦ b − b ◦ a), then a ◦ b =

a ∗ b + a∧ b. The product ∧ is called the outer or wedge product. In particular,
for basis vectors ei, ej in Rp,q,r, ei ◦ ej = ei ∧ ej since ei ∗ ej = 0 (i �= j) from
(2), which implies

ei ◦ ej = −ej ◦ ei. (3)

We are now in the position to construct a basis of the Clifford algebra Gp,q,r,
which is called an algebraic basis of Gp,q,r. From now on, the Clifford product
will be denoted by juxtaposition of symbols. For example, a◦b is now written as
ab. Since the Clifford product is associative, (a ◦b)◦c or a◦ (b ◦c) is written as
abc. Also, the product operator

∏
refers to the Clifford product of the operands,

for example,
∏

3

i=1
ai = a1a2a3.

Consider the Clifford product of a number of different elements of the canon-
ical basis R

p,q,r
of Rp,q,r, called a basis blade, which plays an important role to

construct a basis of the Clifford algebra Gp,q,r.
Let A be an ordered set and let A[i] denote the ith elements of A. That is, if

A = {2, 3, 1}, then A[2] = 3. A basis blade in Gp,q,r denoted by eA is defined;
let A ⊂ {1, 2, · · · , p + q + r}, then

eA =

|A|∏
i=1

R
p,q,r

[A[i]]. (4)
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where |A| denotes the number of elements of the set A. The number of the factors
under the Clifford products in each basis blade eA, that is, |A| is called grade.
For example, if A = {2, 3, 1}, then eA = e2e3e1 and its grade is 3.

Given a vector space Rp,q,r with a canonical basis R
p,q,r

in (1), there are
2p+q+r ways to combine the {ei} with the Clifford product such that no two
of these products are linearly independent, that is, there exist 2p+q+r linearly
independent basis blades. The collection of 2p+q+r linearly independent basis
blades forms an algebraic basis of Gp,q,r. The choice of basis is arbitrary, however,
it is useful to choose an ordered basis, called the canonical algebraic basis, defined
as follows. Let I = {1, 2, · · · , p + q + r}, its power set is denoted by P [I] and
its ordered power set is denoted by PO[I]. For example, if I = {1, 2, 3}, then
PO[I] = {{∅}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} where ∅ is the empty
set. The canonical algebraic basis of Gp,q,r, denoted by Gp,q,r is defined:

Gp,q,r := {eA : A ∈ PO[I]}

where we let e∅ = 1 ∈ R. For example, let p + q + r = 3 and consider R3 :=

Rp,q,r with a canonical basis R
3

= {e1, e2, e3}. The canonical algebraic basis G3

of G3 is then given by G3 = {1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3}. A general
multivector of Gp,q,r is written as a linear combination of the elements of the
canonical algebraic basis Gp,q,r thus defined, that is, a ∈ Gp,q,r is written as:

a =

2
p+q+r∑
i=1

a(i)Gp,q,r[i] (5)

where a(i) ∈ R. Recall that Gp,q,r[i] denotes the ith element of Gp,q,r.
The absolute value (modulus) of a ∈ Gp,q,r, denoted by |a|, is defined as

|a| =

⎛⎝2
p+q+r∑
i=1

a(i)2

⎞⎠1/2

.

3 Models of Hopfield Type Clifford Neural Networks

In this section we present models of fully connected recurrent neural networks,
which are extensions of real valued Hopfield neural networks into the domain of
the Clifford algebra. In the previous section we write the multivectors, that is,
elements of the Clifford algebra, in boldface like a ∈ Gp,q,r. From now on, we
write them in normal face like a ∈ Gp,q,r for simplicity.

We consider a class of Clifford neural networks described by differential
equations of the form:⎧⎪⎨⎪⎩ τi

dui

dt
= −ui +

n∑
j=1

wijvj + bi

vi = f(ui) (i = 1, 2, · · · , n)

(6)
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where n is the number of neurons, τi is the time constant of the ith neuron, ui

and vi are the state and the output of the ith neuron at time t, respectively, bi is
the threshold value, wij is the connection weight coefficient from the jth neuron
to the ith one and f(·) is the activation function of the neurons. In the model
ui, vi, bi and wijare multivectors, that is, the elements of the Clifford algebra
Gp,q,r: ui ∈ Gp,q,r, vi ∈ Gp,q,r, bi ∈ Gp,q,r, wij ∈ Gp,q,r. The time constant τi is
a positive real number: τi ∈ R, τi > 0. wijvj is the Clifford product of wij and
vj in Gp,q,r: wij ◦ vj . The activation function f(·) is a nonlinear function which
maps from a multivector to a multivector: f : Gp,q,r → Gp,q,r. For a multivector

u(t) =
∑2

p+q+r

i=1
u(i)(t)Gp,q,r[i], its time derivative is defined by

d

dt
u(t) :=

2
p+q+r∑
i=1

d

dt
u(i)(t)Gp,q,r[i].

Note that the neural network described by (6) is a direct Clifford domain exten-
sion of the real-valued neural network of Hopfield type.

Since in Gp,q,r, the Clifford product is non-commutative, we can consider
other two models: one is the model in which the second term

∑n
j=1

wijvj of the

right side of (6) is replaced by
∑n

j=1
vjwij and the other is the model in which

the second term is replaced by
∑n

j=1
w∗

ijvjwij where w∗
ij could generally be any

multivecter in Gp,q,r different from wij , but it is useful in the Clifford algebra
to let ∗ be an involution operator. The involution is an operation that maps an
operand to itself when applied twice: (w∗)∗ = w.

In the followings we investigate dynamics of Hopfield-type Clifford neural
networks described by (6). In particular we discuss existence conditions of an
energy function for three basic classes of the networks: Clifford neural network
of class G1,0,0, G0,1,0 and G0,0,1 which are isomorphic to the hyperbolic, complex
and dual numbers, respectively. Note that the Clifford product of G1,0,0, G0,1,0

and G0,0,1 is commutative.

4 Existence Conditions of Energy Functions

4.1 Definition of Energy Functions

It is well known that one of the pioneering works that triggered the research
interests of neural networks in the last two decades is a proposal of models for
neural networks by Hopfield et. al. [6,7,8]. He introduced the idea of an energy
function to formulate a way of understanding the computation performed by fully
connected recurrent neural networks and showed that a combinatorial optimiza-
tion problem can be solved by them. The energy functions have been applied
to various problems such as qualitative analysis of neural networks, synthesis
of associative memories, optimization problems etc. ever since. It is, therefore,
of great interest to investigate existence conditions of energy functions and to
obtain energy functions for the neural networks (6).
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One of the important factors to characterize dynamics of recurrent neural net-
works is their activation functions which are nonlinear functions. It is therefore,
important to discuss which type of nonlinear functions is chosen as activation
functions for Clifford neural networks (6). In the real-valued neural networks,
the activation is usually chosen to be a smooth and bounded function such as a
sigmoidal function. Recall that, in the complex domain, the Liouvill’s theorem
says that ‘if f(·) is analytic at all points of the complex plane and bounded, then
f(·) is constant’. Since a suitable f(·) should be bounded, it follows from the
theorem that if we choose an analytic function for f(·), it is constant over the
entire complex plain, which is clearly not suitable. In the complex-valued neural
networks in [9], in place of analytic function, a function whose real and imagi-
nary parts are continuously differentiable with respect to the real and imaginary
variables of its argument, respectively, is chosen for the activation function and
the existence conditions of an energy function are derived[9].

Although the Liouvill’s theorem is in general not valid for Clifford algebras,
in this paper as a first step we choose the following functions as activation
functions for the Clifford neural networks (6). Letting f (i), i = 1, 2, · · · , 2p+q+r

be real value functions: f (i) : R2
p+q+r → R, the nonlinear function on the Clifford

algebra f(u) : Gp,q,r → Gp,q,r is described as follows:

f(u) =

2
p+q+r∑
i=1

f (i)(u(1), u(2), · · · , u(2
p+q+r

))Gp,q,r[i] (7)

where

u =

2
p+q+r∑
i=1

u(i)Gp,q,r[i]. (8)

We assume the following conditions on the activation function f(u) : Gp,q,r →
Gp,q,r of the neural networks (6).

(i) f (l)(·), (l = 1, 2, · · · , 2p+q+r) are continuously differentiable with respect to
u(m), (m = 1, 2, · · · , 2p+q+r).

(ii) f(·) is a bounded function, that is, there exists some M > 0 such that
|f(·)| ≤ M .

We are now in the position to give the definition of energy functions for the
Clifford neural networks (6). If the neural network (6) is real valued, that is, ui,
vi, bi and wij are all real, ui ∈ R, vi ∈ R, bi ∈ R, wij ∈ R and the activation
function is a real nonlinear function f : R → R, the existence condition of
an energy function which Hopfield et. al. obtained is that the weight matrix
W = {wij} is a symmetric matrix (wij = wji) and the activation function is
continuously differentiable, bounded and monotonically increasing. The following
function E : Rn → R was proposed as an energy function for the network.

E(v) = −1

2

n∑
i=1

n∑
j=1

wijvivj −
n∑

i=1

bivi +
n∑

i=1

∫ vi

0

f−1(ρ)dρ (9)
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where v = [v1, v2, · · · , vn] ∈ Rn and f−1 is the inverse function of f . Hopfield
et. al. showed that, if the existence conditions hold, the network (6) has the
function E(v) and it has the following property; the time derivative of E along
the trajectories of (6), denoted by dE

dt

∣∣
(6)R is less or equal to 0, dE

dt

∣∣
(6)R ≤ 0,

and furthermore dE
dt

∣∣
(6)R = 0 if and only if dvi

dt = 0 ( i = 1, 2, · · · , n ).

We define an energy function for the Clifford neural networks (6) by the
analogy to that for Hopfield type real-valued neural networks as follows.

Definition 1. Consider the Clifford neural network (6). E is an energy function
of the Clifford neural network (6), if the following conditions are satisfied.

(i) E(·) is a mapping, E : Gp,q,r → R, and bounded from below.
(ii) The derivative of E along the trajectories of the network (6), denoted
by dE

dt

∣∣
(6)

, satisfies dE
dt

∣∣
(6)

≤ 0. Furthermore, dE
dt

∣∣
(6)

= 0 if and only if
dvi

dt = 0 ( i = 1, 2, · · · , n ).

4.2 Existence Conditions for Clifford Neural Networks of Classes
G1,0,0, G0,1,0 and G0,0,1

The canonical basis of the Clifford algebra G1,0,0, G0,1,0 or G0,0,1 is given by

Gp,q,r = {1, e1}.

where e1e1 = 1 for G1,0,0, e1e1 = −1 for G0,1,0 and e1e1 = 0 for G0,0,1. An
element of G1,0,0, G0,1,0 or G0,0,1 is described as follows.

x = x(0) + x(1)e1. (10)

We need the following assumptions on the weight coefficients and the activation
functions of (6).

Assumption 1. The weight coefficients of the Clifford neural networks (6) of
the class G1,0,0, G0,1,0 or G0,0,1 satisfy the following conditions.

For the class G1,0,0,

wji = wij (i, j = 1, 2, · · · , n). (11)

For the class G0,1,0,

wji = w∗
ij (i, j = 1, 2, · · · , n) (12)

where ∗ is defined: for w = x(0) + x(1)e1 ∈ G0,1,0, w∗ = x(0) − x(1)e1.
For the class G0,0,1,

wji = wij and w
(1)

ij = 0 (i, j = 1, 2, · · · , n) (13)

where wij = w
(0)

ij + w
(1)

ij e1.
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The activation function (6) in the Clifford Algebra G1,0,0, G0,1,0 and G0,0,1 is
described by

f(u) = f (0)(u(0), u(1)) + f (1)(u(0), u(1))e1,

where u = u(0) + u(1)e1.

Assumption 2. The activation function f of the Clifford neural networks (6)
of the class G1,0,0, G0,1,0 or G0,0,1 is an injective function and satisfies

(i)
∂f (0)

∂u(0)
> 0, (ii)

∂f (0)

∂u(1)
=

∂f (1)

∂u(0)
, (iii)

∂f (0)

∂u(0)

∂f (1)

∂u(1)
− ∂f (0)

∂u(1)

∂f (1)

∂u(0)
> 0 (14)

for all u ∈ G1,0,0, u ∈ G0,1,0 or u ∈ G0,0,1.

Because of the injectivity and boundedness of f , there exists the inverse function
of f , denoted by g = f−1 : G1,0,0 → G1,0,0, G0,1,0 → G0,1,0 or G0,0,1 → G0,0,1.
We express g as u = g(v):

g(v) = g(0)(v(0), v(1)) + g(1)(v(0), v(1))e1 (15)

The following lemma holds.

Lemma 1. If f satisfies Assumption 2, there exists a scalar function G(·) :
G1,0,0 → R, G0,1,0 → R or G0,0,1 → R such that

∂G

∂v(0)
= g(0)(v(0), v(1)),

∂G

∂v(1)
= g(1)(v(0), v(1)) (16)

This lemma can be proved by defining the function G(v) as

G(v) :=

∫ v(0)

0

g(0)(ρ, 0)dρ +

∫ v(1)

0

g(0)(v(0), ρ)dρ (17)

We now propose candidates of the energy functions for the Clifford neural net-
works (6) of the classes G1,0,0, G0,1,0 and G0,0,1 as follows. For the network of
the classes G1,0,0 and G0,0,1,

E(v)=−
n∑

i=1

n∑
j=1

{
1

2
Sc (viwijvj + 2bivi)−G(vi)

}
(18)

where v = [v1, v2, · · · , vn]T ∈ Gn
1,0,0 or v = [v1, v2, · · · , vn]T ∈ Gn

0,0,1 and Sc(·) is

defined; for x ∈ Gp,q,r, Sc(x) = x(0). For the network of the class G0,1,0,

E(v) = −
n∑

i=1

n∑
j=1

{
1

2
Sc (v∗i wijvj + 2b∗i vi)−G(vi)

}
(19)

where v = [v1, v2, · · · , vn]T ∈ Gn
0,1,0.

The following theorem is obtained.
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Theorem 1. If the Clifford neural networks (6) of the classes G1,0,0, G0,1,0 and
G0,0,1 satisfy Assumptions 1 and 2, then there exists an energy function which
satisfies Definition 1.

This theorem can be proved as follows. Calculating the time derivatives of the
function (18) or (19) for the networks (6) and using Lemma 1, we can show that
the conditions of Definition 1 of energy functions hold.

The existence conditions of energy functions thus obtained are ones on the
connection weight coefficients wij and the activation function f(·). Note that the
existence conditions of energy functions for the Clifford neural networks of the
class G0,1,0 are equivalent to those of the complex valued neural networks in [9].
As examples of the functions which satisfy Assumption 2,

f(u) =
u

1 + |u| (20)

f(u) = tanh(u(0)) + tanh(u(1))e1 (21)

can be considered. Equation (20) has the same form as that of the complex-
valued function which is often used in the complex-valued neural networks[9].
The function (21) is a split activation function, that is, each component of its
argument is transformed separately.

It is expected that the energy functions (18) and (19) can be applied to various
problems. In the real valued neural networks energy functions have been applied
to various problems such as qualitative analysis of neural networks, synthesis
of associative memories and optimization problems. In [9] and [11], qualitative
analysis of the complex valued and quaternion valued networks is performed by
utilizing energy functions and some results are obtained. The similar results can
be obtained for the Clifford neural networks of classes G1,0,0, G0,1,0 and G0,0,1

by utilizing the energy functions (18) and (19).

5 Conclusions

Recently, models of neural networks in the real domain have been extended into
the high dimensional domain such as the complex and quaternion domain. These
extensions are generalized by introducing Clifford algebra (geometric algebra).
In this paper we extend conventional real-valued models of recurrent neural net-
works into the domain defined by Clifford algebra and discuss their dynamics.
We presented models of fully connected recurrent Clifford neural networks, which
are extensions of the real-valued Hopfield type neural networks to the domain
defined by Clifford algebra. We also studied dynamics of the proposed models
from the point view of existence conditions of an energy function. The existence
conditions were discussed for three classes of Hopfield type Clifford neural net-
works defined in G1,0,0, G0,1,0 and G0,0,1. Further work is underway in deriving
the existence conditions for more general classes of Hopfield type Clifford neural
networks.
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Abstract. This paper addresses the problem of detecting a subset of the most rel-
evant features and observations from a dataset through a local weighted learning
paradigm. We introduce a new learning approach, which provides simultaneously
Self-Organizing Map (SOM) and double local weighting. The proposed approach
is computationally simple, and learns a different features vector weights for each
cell (relevance vector) and an observation weighting matrix. Based on the lwo-
SOM and lwd-SOM [7], we present a new weighting approach allowing to take
into account the importance of the observations and of the variables simultane-
ously called dlw-SOM. After the learning phase, a selection method is used with
weight vectors to prune the irrelevant variables and thus we can characterize the
clusters. A number of synthetic and real data are experimented on to show the
benefits of the proposed double local weighting using self-organizing models.

Keywords: self-organizing maps, weighting, feature selection.

1 Introduction

The data size can be measured in two dimensions, the size of features and the size
of observations. Both dimensions can take very high values, which can cause prob-
lems during the exploration and analysis of the dataset. Models and tools are therefore
required to process data for an improved understanding.

Feature selection is commonly used in machine learning, wherein a subset of the
features available from the data are selected for application of a learning algorithm.
The best subset contains the features that give the highest accuracy score.

In order to find out relevant features, we combine feature weighting with variable
selection techniques. In variable selection, the task is reduced to simply eliminating
variables which are completely irrelevant. Variable weighting is an extension of the se-
lection process where the variables are associated to continuous weights which can be
regarded as degrees of relevance. Continuous weighting provides a richer feature rele-
vance representation. Consequently, it is necessary to develop a simultaneous algorithm
of clustering and variables weighting/selection.

The models that interest us in this paper are those that could make at the same time
the dimensionality reduction and clustering using Self-Organizing Maps (SOM) [12] in

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 570–579, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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order to characterize clusters. SOM models are often used for visualization and unsu-
pervised topological clustering. Its allow projection in small spaces that are generally
two dimensional. Some extensions and reformulations of the SOM model have been
described in the literature [2], [13], [15].

We find several important research topics in cluster analysis and variable weighting
[6], [14], [9], [4], [8]. In [4], the authors propose a probabilistic formalism for variable
selection in unsupervised learning using Expectation-Maximization (EM). Grozavu et
al. [7] proposed two local weighting unsupervised clustering algorithms (lwo-SOM
and lwd-SOM) to categorize the unlabelled data and determine the best feature weights
within each cluster. Similar techniques, based on k-means and weighting have been
developed by other researchers [14], [10].

The both adaptive local weighting approaches, lwo-SOM and lwd-SOM depend on
the initial data, if the confidence is given to the observations we will weight the ob-
servations using the lwo-SOM, contrarily we will look on the data distribution when
weighting the distance using the lwd-SOM. It is difficult to extract this information
from a dataset, and sometimes weighting the observations can give better results than
weighting the distances and vice versa, relatives to the dataset. Therefore, we introduce
another weighting approach, which integrates both adaptive local weighting methods
called dlw-SOM (double local weighting Self-Organizing Map).

Hence, these weight vectors are used for local variable selection that allows us to
characterize clusters with the best subset of variables. For variable selection task we
use the statistical approach Scree Test of Cattell which is initially proposed to select the
principal components [3].

The rest of this paper is organized as follows: we present the proposed approach
dlw-SOM (double local weighting) in section 3, after introducing the classical Self-
Organizing Maps (SOM) in section 2. In the section 4, we show the experimental results
on several data sets. These data sets allow us to illustrate the use of this algorithm for
topological clustering. Finally we offer some concluding comments of proposed method
and further research.

2 Classical Self-Organizing Map (SOM)

Self-organizing maps are increasingly used as tools for the visualization of data, as they
allow projection in low, typically bi-dimensional spaces. The basic model proposed by
Kohonen consists of a discrete set C of cells called “map”. This map has a specific
topology defined by an undirected graph, which is usually a regular, two-dimensional
grid. For each pair of cells (j,k) on the map, the distance δ(j, k) is defined as the length
of the shortest chain linking cells j and k on the grid. For each cell j this distance de-
fines a neighbouring cell; a kernel positive function K (K ≥ 0 and lim

|y|→∞
K(y) = 0) is

introduced to determine the neighbouring area. We define the mutual influence of two
cells j and k by Kj,k . In practice, as for classical topological maps, we use a smooth

function to determine the size of the neighbouring area: Kj,k = exp(−δ(j,k)

T ). Using
this kernel function, T becomes a parameter of the model. As in the Kohonen algorithm,
we decrease T from an initial value Tmax to a final value Tmin.
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Let �m be the Euclidean data space and E = {xi; i = 1, . . . , N} a set of observa-
tions, where each observation xi = (x1

i , x
2

i , ..., x
m
i ) is a vector in �m. For each cell

j of the grid (map), we associate a referent vector (prototype) wi = (w1
i , w2

i , ..., wm
i )

which characterizes one cluster associated to cell i. The set of referent vectors is de-
noted by W = {wj ,wj ∈ �m}|W|

j=1
. Unlike k-means, the SOM is not optimizing any

well-defined cost function [5]. However, SOM can be seen as a constrained k-means,
in which the distance is weighted using a neighbouring function K. In this case, we
determine the set of parametersW by minimizing the objective function:

R(χ,W) =

N∑
i=1

|W|∑
j=1

Kj,χ(xi)
‖xi −wj‖2 (1)

where χ assigns each observation xi to a single cell in the map C. This cost function
can be minimized using both stochastic and batch techniques [12].

3 Double Local Weighting SOM : dlw-SOM

One of the significant limitations of the classical SOM algorithms is that they treat
all features equally. This is not desirable for many applications of clustering, in which
observations are defined by a large number of features. A cluster provided by SOM
is often characterized by only a subset of features rather than by the entire features
set. The presence of other features may therefore prevent the discovery of the specific
cluster structure associated to each cell. The relevance of each observation and feature
changes from one cluster to another.

dlw-SOM provides a principal alternative to classical SOM and overcomes some
limitations mentioned previously. Indeed, the proposed clustering algorithm and feature
weighting aims to select the optimal prototypes, observations and feature weights at the
same time. Each prototype wj = (w1

j , w2

j , ..., wm
j ) corresponding to cell j is allowed

to have its own set of local features weights π
(o)

j = (π
(o)1

j , π
(o)2

j , ..., π
(o)m
j ) and its own

set of local distance weights π
(d)

j = (π
(d)1

j , π
(d)2

j , ..., π
(d)m
j ) respectively. We denote

the set of weight vectors (|Π | = |W |) by Π = {πj , πj ∈ �m}|Π|
j=1

for both observation
and distance weighting.

For the double local weighting process, we introduce the both weights in the SOM
objective function, and we obtain:

Rdlw−SOM (χ,W , Π(d), Π(o)) =

|N |∑
i=1

|W|∑
j=1

Kj,χ(xi)
(π

(d)

j )β‖π(o)

j xi −wj‖2 (2)

where Π(d) are the distance weights, Π(o) the observations weights and β is the
discrimination coefficient.

As we combined two types of the weighting techniques, contrarily to precedent
weighting approaches, the minimization of the Rdlw−SOM objective function is made
in four steps:
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1. Minimize Rdlw(χ, Ŵ , ˆΠ(d), ˆΠ(o)) with respect to χ by fixing Ŵ , ˆΠ(d) and ˆΠ(o).
The expression is defined as follows:

χ(xi) = arg min
j

(
(π

(d)

j )β‖π(o)

j xi −wj‖2
)

(3)

2. Minimize Rdlw−SOM (χ̂, W, Π̂d, Π̂o) with respect to W by fixing χ̂, ˆΠ(d) and
ˆΠ(o). The prototype’s vectors are updated using the following expression:

wj(t + 1) = wj(t) + ε(t)Kj,χ(xi)
(π

(d)

j )β
(
π

(o)

j xi −wj(t)
)

(4)

3. Minimize Rdlw−SOM(χ̂, Ŵ , ˆΠ(d), Π(o)) with respect to Π(o) by fixing χ̂, Ŵ and
ˆΠ(d). The update of the observation weights vectors π(o)

j(t + 1) are made using
the following expression:

π
(o)

j (t + 1) = π
(o)

j (t) + ε(t)Kj,χ(xi)
(π

(d)

j (t))βxi

(
π

(o)

j (t)xi −wj(t)
)

(5)

4. Minimize Rdlw−SOM(χ̂, Ŵ , Π(d), ˆΠ(o)) with respect to Π(d) by fixing χ̂, Ŵ and
ˆΠ(o). The update of the distance weights vectors π(d)

j(t + 1) are made using the
following expression:

π(d)
j(t + 1) = π

(d)

j (t) + ε(t)Kj,χ(xi)
β(π

(d)

j (t))β−1

(
π

(o)

j (t)xi −wj(t)
)

(6)

The proposed method is presented in the Algorithm 1.

3.1 Complexity of the dlw-SOM

As the dlw-SOM has four optimization steps it is clearly that we increase the computa-
tional complexity compared to the both lwo-SOM and lwd-SOM weighting approaches.
Analyzing the computational complexity for all phases we can extract:

– Finding the best matching unit will take into account the weights (double weighting
distance) and it will be : O(π(d) + (π(o) + N ×m× |W|))

– The affectation phase will use the both matrix weights, and the complexity cost is:
O(π(d) + (π(o) + N ×m× |W|)) ;

– For the observations weights computing, the cost is: O(π(d) + (π(o) + m × N ×
|W|));

– Finally, the computational cost for the distance weights is: O(π(d) + π(o) + N ×
m× |W|))

As the size of the weights matrix are the same for the map size, the total computational
cost for the dlw-SOM is O(2|W | + |W | × N × m). Even dlw-SOM increases with
two phases the learning of the SOM, the algorithm is still efficient due to its linear
complexity and improves a good scalability. As we can see, the complexity depends in
a bigger part on the map size (number of |W|) because for each cell, the algorithm will
compute the prototype and the both weights, but, thanks to the usually small number of
cells, the complexity time does not grow significantly.
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Algorithme 1. The dlw-SOM learning algorithm

Input: Data set X; Iter - number of iterations
Initialization Phase:
Randomly initialize the prototype matrix W ;
Randomly initialize the observation weight matrix Π(o);
Randomly initialize the distance weight matrix Π(d);

for t = 1 to Iter do
Learning Phase:
Present a learning example x and find the BMU (Best Matching Unit) computing the double
weighted Euclidean distance (expression 3);
Updating Phase:
Compute the new prototypes w using the expression 4;
Compute the observations weights π(o) using the expression 5
Compute the distance weights π(d) using the expression 6

end for

3.2 Cluster characterization

In our case, we use the weight set Πo and prototype setW provided by dlw-SOM. We
apply the process of characterization using selection in clusters associated to cells and
group of cells after clustering the map. For map clustering we use traditional hierarchi-
cal clustering combined with Davies-Bouldin index to choose optimal partition [16],
and the prototype matrix weighted by the Πd.

We then used an established statistical method, scree method, to select the most im-
portant features. The subjective scree test is a graphical method first proposed by [3].

The basic idea of scree test is to generate, for a principal components analysis (PCA),
a curve associated with eigenvalues, allowing random behaviour to be identified (a sim-
ple line plot). Cattell suggests to find the place where the smooth decrease of eigenval-
ues appears to level off to the right of the plot. To the right of this point, presumably,
one finds only ”factorial scree”. The acceleration factor indicates where the elbow of
the scree plot appears. It corresponds to the acceleration of the curve, i.e. the second
derivative. Frequently this scree is appearing where the slope of the hill change drasti-
cally to generate the scree. It is why many researches choose the criterion eigenvalue
where the slope change quickly to determine the number of components for a PCA.
It is what Cattell named the elbow. So, they look for the place where the positive ac-
celeration of the curve is at his maximum. Hence, in our case, we use this method to
choose the variables represented by their relevance vector Π . The purpose is to detect,
the ’scree’ where the slope of the relevance graph changes radically which corresponds
to the position of the variable from which the pertinence π becomes not significant. The
number of variables retained is equal to the number of values preceding this ’scree’. We
therefore needed to identify the point of maximum deceleration in the curve.

4 Experimental Results

We have performed several experiments on five known problems from the UCI Repos-
itory of machine learning databases [1].
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– Waveform data set: This data set consists of 5000 instances divided into 3 classes. The orig-
inal base included 40 variables, 19 are all noise attributes with mean 0 and variance 1. Each
class is generated from a combination of 2 of 3 ”base” waves.

– Wisconsin Diagnostic Breast Cancer (WDBC): This data has 569 instances with 32 variables
(ID, diagnosis, 30 real-valued input variables). Each data observation is labelled as benign
(357) or malignant (212). Variables are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in
the image.

– Isolet data set: This data set was generated as follows. 150 subjects spoke the name of each
letter of the alphabet twice. Hence, we have 52 training examples from each speaker. The
speakers are grouped into sets of 30 speakers each, and are referred to as isolet1, isolet2, iso-
let3, isolet4, and isolet5. The data consists of 1559 instances and 617 variables. All variables
are continuous, real-valued variables scaled into the range -1.0 to 1.0.

– Madelon data set: MADELON is an artificial dataset, which was part of the NIPS 2003
feature selection challenge. This is a two-class classification problem with continuous input
variables. MADELON is an artificial dataset containing data points grouped in 32 clusters
placed on the vertices of a five dimensional hypercube and randomly labelled +1 or -1. The
five dimensions constitute 5 informative features. 15 linear combinations of those features
were added to form a set of 20 (redundant) informative features. Based on those 20 features
one must separate the examples into the 2 classes (corresponding to the +/-1 labels).

– SpamBase data set: The SpamBase data set is composed from 4601 observations described
by 57 variables. Every variable described an e-mail and its category: spam or not-spam. Most
of the attributes indicate whether a particular word or character was frequently occurring in
the e-mail. The run-length attributes (55-57) measure the length of sequences of consecutive
capital letters.

To evaluate the quality of clustering, we adopt the approach of comparing the results to
a ”ground truth”. We use the clustering accuracy for measuring the clustering results. In
general, the result of clustering is usually assessed on the basis of some external knowl-
edge about how clusters should be structured. The only way to assess the usefulness of
a clustering result is indirect validation, whereby clusters are applied to the solution of
a problem and the correctness is evaluated against objective external knowledge. This
procedure is defined by [11] as ”validating clustering by extrinsic classification”, and
has been followed in many other studies. Thus, to adopt this approach we need labelled
data sets, where the external (extrinsic) knowledge is the class information provided by
labels. Hence, if dlw-SOM finds significant clusters in the data, these will be reflected
by the distribution of classes. Thus a purity score can be expressed as the percentage of
elements of the assigned class in a cluster.

In this paper, we also validate our approaches in supervised case. We used the K-
fold cross validation technique, repeated s times for s = 5 and K = 3, to estimate the
performance of dlw-SOM. For each run, the dataset was split into three disjoint subsets
of equal size (we do 15 runs for each data set). We used two subsets for training and
then tested the model on the remaining subset using all variables and selected variables
(selected on the cells or on the clusters). The labels generated were compared to the real
labels of the test set for each run. As, the result of the proposed method is a topolog-
ical map it is difficult to compare to well known clustering methods in literature, and
we chose to compare the results with the classical SOM, lwo-SOM and lwo-SOM by
fixing same parameters for all approaches.
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4.1 Results on Waveform

We used this data set to show the good progress of the dlw-SOM. All observations are
used for learning a map with 26× 14 cells dimension. The learning algorithm provides
three vectors for each cell: the referent vector wj = (w1

j , w2
j , ..., wm

j ), the observations

weight vector π
(o)

j = (π
(o)1

j , π
(o)2

j , ..., π
(o)m
j ), and the distance weight vector π

(d)

j =

(π
(d)1

j , π
(d)2

j , ..., π
(d)m
j ) where m = 40.

Before analyzing the dlw-SOM result, we display on 3D visualization the referent
vector and weight vectors provided by the traditional SOM and our approach (Figure
1). The axes X and Y indicate respectively the variables and the referent indexes. The
amplitude indicates the mean value of each component. Observing the graph (1(b)) we
find that the noise represented by variables from 22 to 40 is clearly detected with low
amplitudes. This visual analysis of results are clearly with the new proposed dlw-SOM
algorithm. The graph of prototypesW show visually that variables associated to noise
is irrelevant with low amplitude. The dlw-SOM algorithm provides well results because
the weight vectors work as filter for observation and estimates the referents which reflect
this filtering. In order to verify that it is possible to select automatically the variables
using our algorithms, we apply the selection task on all parameters of the map before
and after map clustering. This task consists of detecting the abrupt changes for each
input vector represented as a signal graph. The prototypes of the map changes and it can
be seen that the variables [1− 21] has a bigger importance compared to variables [22−
40] that means that dlw-SOM detect easy the relevant variables. Analyzing the distance
weights (Figure 1(c)) we can detect the influence of the observations weights (Figure
1(d)) on the distance: the distance weights is bigger where observations weights are
more important. The distance weights depend on the observations weights because the
observations computation phase is done before the assignment of the distance weights
during the learning process.

In order to characterize clusters obtained with the dlw-SOM map we apply the
feature selection ScreeTest on the prototypes matrix. The test shows that the relevant
features are [2 − 21] and irrelevant are 1 and [22 − 40] which are representatives for
waveform dataset. The figure 2 shows the relevance of each corresponding variable
coupled with a relevant prototype. The red colour (darker) corresponds to the most rel-
evant features compared to green colour (less dark) - for irrelevant features. Compared
to SOM, lwo-SOM and lwd-SOM, we can detect easily the form of waves and the vari-
able’s relevance for each prototype. This is due to the combination of the both local
weights.

In order to evaluate the relevance of selected variables, we compute purity score
by running a 3-fold cross-validation five times, and we obtain a purity score equals to
82.5% for the SOM, 83.4% for lwd-SOM, 83.9% for lwo-SOM and finally, 84.5 for the
dlw-SOM.

After dlw-SOM map clustering with the referents W , which are already double
weighted, we obtain 3 clusters which is significant for our example. This means that
when here is no cluster (labels) knowledge, the observation and variable weighting
helps to find the pureness clusters, and to characterize them.
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(a) (W provided by SOM) (b) (W provided by dlw-SOM)

(c) Π(d) provided by dlw-SOM (d) Π(o) provided by dlw-SOM

Fig. 1. 3D visualization of the referent matrix and weight matrices. The axes X and Y indicate
respectively the variables and the referent indexes. The amplitude indicates the mean value of
each component of map 26 × 14 (364 cells).

Fig. 2. Cluster characterization using double weighting SOM
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5 Results on Others Data Sets

We tested our algorithm on additional data sets with different characteristics. To demon-
strate the interest of the simultaneous clustering and double weighting, we use the ref-
erent and weight vector to cluster the map. Using the proposed algorithm, we show the
results obtained after feature selection on the Isolet, Madelon, WDBC and SpamBase
data sets.

Table 1 provides a comparative result of classification accuracy corresponding to dif-
ferent data set after running a 3-fold cross-validation five times. We compare different
case of variables selected with the proposed approach(dlw-SOM) and the traditional
SOM, lwo-SOM and lwd-SOM. We observe the performance of dlw-SOM is superior
compared to other three methods in different case (using all variables, selected variables
by cell and selected variables by cluster). We observed that the proposed method dlw-
SOM has significantly better performance in different cases and they are more stable.

Table 1. Comparison of purity score with ±SD after running a 3-fold cross-validation five times
(15 runs for each). b/a - before and after segmentation; Sel f. - selected variables by the cell; Sel
cl. - selected variables by cluster

Db. b/a method
sel/cl SOM lwo-SOM lwd-SOM dlw-SOM

b. 0.7786±0.05 0.7975±0.04 0.7792±0.047 0.7991±0.037
Isolet Sel f. 0.7409±0.052 0.7863±0.043 0.7608±0.041 0.7906±0.036

Sel cl. 0.6786±0.061 0.7821±0.047 0.7796±0.048 0.7926±0.043
b. 0.8941±0.042 0.9203±0.037 0.9052±0.041 0.9274±0.034

wdbc Sel f. 0.8923±0.047 0.9152±0.04 0.9023±0.043 0.9207±0.041
Sel cl. 0.891±0.046 0.9145±0.041 0.9014±0.042 0.9185±0.041
b. 0.8958±0.041 0.8669±0.041 0.8568±0.043 0.8727±0.038

Spam Sel f. 0.8579±0.039 0.8754±0.04 0.8727±0.043 0.8761±0.04
Sel cl. 0.6184±0.044 0.8564±0.041 0.8534±0.042 0.869±0.039

made- b. 0.6541±0.041 0.6803±0.04 0.6752±0.039 0.6917±0.042
lon Sel f. 0.6608±0.038 0.7017±0.041 0.6914±0.04 0.6984±0.04

Sel cl. 0.6524±0.052 0.7163±0.042 0.7089±0.047 0.7025±0.045

6 Conclusions and Future Work

In this paper, we presented a new approach to perform SOM clustering and observa-
tions and variable weighting simultaneously. Compared to lwo-SOM and lwd-SOM,
the proposed dlw-SOM algorithm can characterize clusters by determining the variable
weights and observations weights within each cluster.

Our approach demonstrates its efficiency and effectiveness in dealing with high di-
mensional data for simultaneous clustering and weighting. We also show that through
different means of visualization, that the weighted learning approaches provide various
information that could be used in practical applications. The superiority of dlw-SOM is
established experimentally. The distance used is valid for continuous feature; its exten-
sion to accommodate other kinds of variables (categorical, mixed) may be investigated.
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Abstract. In on-line machine learning, predicting changes is not a triv-
ial task. In this paper, a novel prediction approach is presented, that
relies on a committee of experts. Each expert is trained on a specific
history of changes and tries to predict future changes. The experts are
constantly modified based on their performance and the committee as
a whole is thus dynamic and can adapt to a large variety of changes.
Experimental results based on synthetic data show three advantages: (a)
it can adapt to different types of changes, (b) it can use different types of
prediction models and (c) the committee outperforms predictors trained
on a priori fixed size history of changes.

Keywords: Committee of experts, on-line learning, concept changes,
prediction.

1 Introduction

Different types of concept changes exist in the litterature. Concept drifts [9]
refer to the change of the statistical properties of the concept’s target value.
For example, the behavior of customers in shopping might evolve with time
and thus the concept capturing this behavior evolves as well. The speed of the
change can be gradual or sudden. A sudden drift is sometimes referred to as a
concept shift [7,8]. Another type of change, known as virtual concept drift [6],
pseudo-concept drift [4], covariate shift [1] or sample selection bias [3] occurs
when the distribution of the training data changes with time. In this context,
several problems should be adressed:

– What is the optimal size of the memory in order to predict well the future
trends? A long history may allow for more precise predictions, but it can
also be misleading in case of sudden change of regime. This is the basis of
the well-known stability-plasticity dilemma.

– What is the nature of the change ruling the evolving environment? Do we
consider change as a stable function or can the change itself vary with time?

Most current approaches assume that the change is a temporal function that
can be learnt using standard temporal series methods, for instance using linear
regression [2] or a hidden markov model [8]. Therefore, they consider the change
as a stable function that can be predicted using time information only.

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 580–588, 2011.

c© Springer-Verlag Berlin Heidelberg 2011
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In this paper, we suggest a general approach to anticipate how a concept
changes with time. We solve the stability-plasticity dilemma by using a com-
mittee of experts where each expert is a predictor trained on its own history
size. Our method is inspired by [5] where a dynamic committee of experts is
used to learn under concept drift. By analogy, we use a committee of experts
to learn under concept change drift. Therefore, we look at the bigger picture by
considering the change itself as a dynamic function that can vary with time.

The rest of this paper is organized as follows. Section 2 discusses related
works. We present our approach in Section 3. In Section 4, we test our approach
on two scenarios: the first is designed to show how our committee allows a fast
adaptation to sudden changes while preserving a good prediction accuracy on
gradual changes, the second mixes different types of predictors: neural networks
and polynomial regression models. Finally, Section 5 summarizes our results.

2 Related Work

In learning under concept drift, some approaches aim at removing the effect
of change [4] while others suggest techniques to detect change and adapt their
model accordingly [5]. The PreDet [2] algorithm is one of the few works directly
related to ours. It anticipates future decision trees by predicting for each node
the evaluation measure of each attribute, this value being used to determine
which attribute will split the node. The system uses linear regression models
trained on a fixed size history to predict future changes. The size of the history
requires a priori knowledge on the speed of change. Another prediction system,
RePro [8], stores the observed concepts as a markov chain. Once a change is
detected, it uses the markov chain to predict the future concept. It assumes that
concepts repeat over time.

3 Prediction Algorithm

The prediction scenario works as follows. The training examples are received in
data sets or batches of fixed size. A training example is represented by a pair
(x, y), where x ∈ Rp is a vector in a p-dimensional feature space and y is the
desired output or target.

For each batch Si a concept Ci is learnt. The concept Ci can be a classification
rule, a decision tree or any other model that learns the model of the training
data in Si. By analyzing the sequence of concepts

(
C1, ..., Ci

)
, the future concept

Ci+1 is predicted. The main parts of the prediction algorithm are presented next.
The pseudo-code is shown in Algorithm 1.

To simplify the discussion, we represent a concept C as a vector of parameters
of dimension n: C = [c1, c2, ..., cn]. If the concept is a neural network for example,
it can be represented as a vector of the network weight values.

After each batch Si is received, a concept Ci is learnt. A change sample δt

corresponds to a change between two consecutive concepts: δt = (Ct, Ct+1). At
timestep t + 1, the total history of changes is the sequence

(
δ1, ..., δt

)
.



582 G. Jaber, A. Cornuéjols, and P. Tarroux

3.1 Building the Committee

In our approach, a committee of predictors is learned, each of which trained on
a different history size.

The algorithm starts by defining a set of predictors with possibly different
structures. For instance, the predictors can be neural networks with different
numbers of hidden neurons and activation functions, or they can be decision
trees, linear regression models, Bayes rules, SVMs etc. The set of predictors will
be referred to as the “base of predictors” and has size n base.

The committee P is initially empty. When the first change sample δ1 is ob-
served, a base of predictors b1 trained on δ1 is added to the committee. When
the second change sample δ2 is observed, each predictor in the base b1 adds
δ2 to its history and is retrained. In addition, a new base of predictors b2,
trained on δ2 only, is added to the committee. This process continues until a
maximum number of base of predictors max base in the committee is reached.
At this point, the base of predictors {b1, b2, ..., bmax base} have history sizes:
{max base, max base−1, ..., 1} respectively. In subsequent steps, the committee
P is updated. At each timestep t, a small but significant number of predictors
(e.g. 25%) is selected and their history size is increased; the history size of the
remaining predictors remains unchanged. The worst n base predictors are re-
moved from the committee and replaced with a new base of predictors trained
on the last seen change δt−1 only.

3.2 Prediction

At timestep t, each committee member p ∈ P give its prediction of the next
concept C̃p

t+1
.

C̃p
t+1

= [c̃p
(t+1,1), ..., c̃

p
(t+1,n)

] (1)

where c̃p
(t+1,i) is the i-th parameter of the concept Ct+1, predicted by the p-th

predictor for timestep t + 1.
Each predictor in the committee predicts all the parameters of the next con-

cept. However, the final prediction of the committee is formed by selecting
the best prediction for each parameter c(t+1,i) of the concept independently.

This is motivated by the fact that selecting the whole predictions C̃p
t+1

=
[c̃p

(t+1,1), ..., c̃
p
(t+1,n)

] of a predictor p assumes that all the parameters c(t+1,i)

evolve at the same speed, which may not be the case. The final prediction of the
committee is: C̃t+1 = [c̃(t+1,1), ..., c̃(t+1,n)], where ∀i ∈ {1, .., n}

c̃(t+1,i) = argmin
p∈P

‖ c(t+1,i) − c̃p
(t+1,i) ‖ (2)

We choose the best predictions by defining an evaluation function eval(p, i)
that measures the performance of a predictor p in predicting the parameter

i of the concept C. Equation 2 then becomes: c̃(t+1,i) = c̃p∗

(t+1,i), where p∗ =

argmaxp∈P

(
eval(p, i)

)
.
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Algorithm 1. The Concept Change Prediction Algorithm

P ← φ, t ← 2, maxsize P = n base ∗ max base
C1 ← train(C1,S1)

while batches are received do
Ct ← train(Ct,St)
δt−1 = (Ct−1, Ct) {the last sample change}

{Remove the lowest performing predictors}
if size(P) >= maxsize P then

for k = 1 → n base do
{p ∈ P has the lowest prediction performance}
P ← P \ p

end for
end if

{Update remaining predictors}
for k = 1 → size(P) do

pk ∈ P is the kth predictor
histk is the history size of pk

r ← rand[0, 1]
if r >= 0.75 then

histk ← histk + 1
end if
Retrain pk on the last histk sample changes

end for

{Add new predictors}
bt is a base of predictors trained on δt

P ← P ∪ bt

{Predict next concept change}
H ← φ is the set of predictions
for k = 1 → size(P ) do

pk ∈ P is the kth predictor
H ← H ∪ C̃pk

t+1

end for

C̃t ← φ is the final prediction
if H 
= φ then

for i = 1 → size(n) do
p∗ = arg maxp∈P

(
eval(p, i)

)
c̃(t,i) = c̃p∗

(t,i)

end for
end if

end while
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4 Experiments

The first experiment in Section 4.1 is designed to show how the prediction com-
mittee adapts to different types of change. In the second experiment, in Section
4.2, we show that by mixing different types of predictors in our committee (neu-
ral networks, polynomial regression models), we take advantage of each type of
predictor and get better prediction results. Finally, we show that our predictors,
whose history size change dynamically with time, outperform predictors trained
on a fixed size window.

4.1 Experiment 1

We simulate a concept drift by continuously moving the hyperplane correspond-
ing to a decision function (the target concept) in a d-dimensional space. A hy-

perplane is described by the equation
∑d−1

i=1
wixi = w0.

Sequence of concepts. For each slowly modified hyperplane, we generate a
batch of 1000 training examples (x, y), where x ∈ [0, 1]d is a randomly generated

vector of dimention d and y = sign(
∑d

i=1
wixi − w0). The value of w0 is set to

1/2
∑d

i=1
wi so that nearly half of the y’s are positive and the other are negative.

In this experiment, d = 6 and the hyperplane weights wi are initially set to
random values, that are gradually incremented, not necessarily with the same
increment for each weight, until time step 101, then decreased until they reach
their initial values. We learn a sequence of perceptrons each of which trained on
the corresponding batch of training examples.

Prediction. In order to predict the perceptron changes, we use feed-forward
neural networks that anticipate the new values of the perceptron weights given
the current ones. The maximum size of the committee is set to 10 predictors.

At timestep t, each predictor in the committee gives its prediction of the
next hyperplane weights. For each weight wi, we define the best predictor as
the committee member that predicted wi with the least mean error on previous
timesteps t−1, t−2 and t−31. At timestep t, we also compute for each predictor
its mean square error on all the weights to predict. The worst predictor on
previous timesteps t− 3, t− 2 and t− 1 is removed.

Results and Discussion. The prediction results for the perceptron weight w1

is presented in Figure 4.1. The same behavior is observed for the other weights.
The committee predicts well when the weight value increases. When the values
start suddenly to decrease at time step 101, it corrects its prediction error rapidly
and regains its former prediction performance afterwards. This ability to adapt
to rapid changes is due to the dynamic committee of predictors whose members

1 In all our experiments, we evaluate the predictors’ performance on a window size
of 3. The window size is set to a small value to adapt to the recent predictors’
performance
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Fig. 1. The prediction results of the perceptron weight w1 in the time interval [85, 115],
during which the weight suddenly starts decreasing. The line with asterisks represents
the real value of w1 whereas the line with circles represents the predicted value.

are trained on different history sizes. We show in Figure 2 the evolution in the
history size of three of the committee members.

The predictor A is added to the committee at timestep 2. Its history keeps
growing until timestep 105 where it is replaced by a new predictor, trained on a
history of size 1. Indeed, the sudden change in the weight value deteriorates the
predictor’s performance, causing its elimination from the committee. Predictor
B is added at timestep 8, and is also removed soon after the sudden change.
Predictor C, added to the committee at timestep 5, is replaced before the sud-
den change because it is the lowest performing committee member. It is also
common for a newly added predictor to be replaced soon after it is added to the
committee, as we see for predictor C during time interval [90, 130]. This occurs
when the change is gradual and thus the performance of a newly added predictor
will be bad compared to the other committee members.

4.2 Experiment 2

In this section, the hyperplane in a six-dimensional space undergoes more com-
plex changes in the weight values than in experiment 4.1 (see Figure 3). A se-
quence of 250 different hyperplanes (H1, H2, ..., H250) is generated, where each
hyperplane Hi = [wi,1, wi,2, ..., wi,6] is represented by its weight vector.

Neural Networks vs Polynomial Regression. In this first set of experi-
ments, we tested our prediction approach using different types of predictors. We
were specially interested in comparing neural networks and polynomial regres-
sion models as predictors.
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Fig. 2. The evolution in the history size of three of the committee predictors

Fig. 3. The evolution of the six weights of the hyperplane described in experiment 4.2

In each experiment, we compared feed-forward neural predictors to simple
predictors which consider the next hyperplane equals to the current one. The
prediction results are reported in exp. 1,2 and 3 of Table 1. Our prediction
approach beats the simple prediction approach in nearly 85.6% of the time.

In the second set of experiments, we tested our prediction approach using
polynomial regression models instead of neural networks as predictors. We re-
peated the previous tests using a base of predictors that consists of 3 polynomial
predictors with degree 1,2 and 3 respectively. The results are reported in exp. 4,
5 and 6 of Table 1. Globally, neural networks beat polynomial regression mod-
els by having a smaller prediction error when they are better than the simple
prediction scenario. On the other hand, polynomial regression models beat the
neural networks by having a smaller prediction error on average.
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Table 1. The prediction results with different predictor types and committee
sizes, using our prediction approach. Exp is the index of the experience. Base of
Pred. is the base of predictors; 1 FF stands for one feed forward neural network and 3
PR stands for three polynomial regression models with degree 1,2 and 3 respectively.
Max. Base of Pred. is the maximum number of base of predictors in the committee.
During the experiments, we predict the weights of 250 hyperplanes. For each prediction,
we compute the prediction MSE: the mean square error between the predicted values
and the real values. The S b O MSE is the percentage of time our prediction MSE is
smaller than the simple prediction MSE. The S b O MSE ratio is the ratio between the
simple prediction MSE and our prediction MSE, when our prediction MSE is smaller
than the simple prediction MSE. The S O MSE ratio is the ratio between the simple
prediction MSE and our prediction MSE.

Exp. Base of Pred. Max. Base of S b O Per. (%) S b O MSE ratio S O MSE ratio
Pred.

1 1 FF 8 85.94 3.61 2.05

2 1 FF 13 85.94 4.03 0.26

3 1 FF 20 85.14 5.02 0.77

4 3 PR 8 89.95 2.11 1.68

5 3 PR 13 91.16 2.19 1.76

6 3 PR 20 89.55 2.27 1.77

7 1 FF, 3 PR 8 87.95 3.18 1.30

8 1 FF, 3 PR 13 89.95 3.38 1.77

9 1 FF, 3 PR 20 85.94 3.64 1.88

Table 2. The prediction results using predictors with a fixed size history. Exp
is the index of the experience. Predictor is the type of predictor used in the experience;
1 FF stands for one feed forward neural network. History Size is the fixed history size
of the predictor. The last three columns are explained in Table 1.

Exp Predictor History Size S b O Per. (%) S b O MSE ratio S O MSE ratio

1 1 FF 3 82.32% 4.4 0.21

2 1 FF 5 87.95% 3.9 1.7

3 1 FF 9 70.28% 2.44 1.07

4 1 FF 15 17.67% 1.4 0.29

5 1 FF growing 4.47% 1.2 0.0108

In the third set of experiments, we mixed both type of predictors: the base of
predictors contains a feed forward neural network and 3 polynomial regression
models with degree 1, 2 and 3 respectively. The prediction results are reported in
exp. 7, 8 and 9 of Table 1. By mixing neural networks with polynomial regression
models, we take advantage of both types of predictors: the S O MSE ratio and
the S b O MSE Per. increase compared to when we only used neural networks
while the S b O MSE ratio increases compared to when we only used polynomial
regression models.
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Dynamic History Size vs Fixed History Size. Prediction performances are
compared with our committee and with predictors using a fixed history size. Five
experiments were conducted. In the first four experiments, the history size was
set to 2, 4, 8 and 15 respectively. In the fifth experiment, the history size of the
predictor grows with time. The results are reported in Table 2. It appears that
using fixed window size predictors requires a priori knowledge of the suitable
window size for the prediction task. Choosing the wrong window size might give
catastrophic results.

5 Conclusion

We have presented an approach to predict future concept changes using a dy-
namic and diverse committee of experts. Each expert in the committee is a
predictor that anticipates the future changes of an evolving concept, taking into
account the observed history of changes. The committee can be comprised of dif-
ferent types of experts (neural networks, polynomial regression models, SVMs
etc...) with different history sizes. It is also dynamic by constantly updating its
members. The experiments show that the diversity in the history size allows
us to adapt to different types of changes while using multiple types of experts
improves the prediction results.
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Abstract. Utilizing multimodal features to describe multimedia data
is a natural way for accurate pattern recognition. However, how to deal
with the complex relationships caused by the tremendous multimodal
features and the curse of dimensionality are still two crucial challenges.
To solve the two problems, a new multimodal features integration method
is proposed. Firstly, a so-called Feature Relationships Hypergraph (FRH)
is proposed to model the high-order correlations among the multimodal
features. Then, based on FRH, the multimodal features are clustered into
a set of low-dimensional partitions. And two types of matrices, the inter-
partition matrix and intra-partition matrix, are computed to quantify the
inter- and intra- partition relationships. Finally, a multi-class boosting
strategy is developed to obtain a strong classifier by combining the weak
classifiers learned from the intra- partition matrices. The experimental
results on different datasets validate the effectiveness of our approach.

Keywords: hypergraph, multimodal features, boosting.

1 Introduction

To recognize objects better, human’s cognitive system usually combines different
types of features. For example, it is difficult to separate pear from banana by
using color feature alone because both are of yellow. Similarly, it is difficult to
separate apple from pear by using the shape feature alone. However, if we use
both the color and shape features, these fruits can be easily classified. Motivated
by such instance, researchers have been working to improve the recognition ac-
curacy by integrating multiple features in the recogntion process. In contrast
with the conventional single modal based approaches, the multimodal based ap-
proaches exploit richer cues from different types of features. If such different
types of features are integrated optimally, a great improvement can be made in
the process of pattern recognition.

The existing multimodal feature integration can be grouped into two cate-
gories based on the way these features are represented, i.e., multi-cue integration
and modality identification integration.
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Multi-cue integration treats each type of feature as one modality. In the
literature, a series of multi-cue integration [1,2,3] have been proposed. Multiple
Kernel Learning(MKL) [1] linearly combines kernels computed from different
types of features into a more expressive one. As a generalized version of MKL,
LPBoost [2] adopts a boosting strategy to integrate multimodal features. By
exploring the complementary property of different types of features, Multi-view
Spectral Embedding [3] obtains a physical meaningful embedding of the multi-
modal features. It is noticeable that, multi-cue integration treats each type of
feature as one modality, which is heuristic-based, because the interdependencies
between different types of features are left unexplored.

To overcome the limitation of multi-cue integration, modality identification
integration [17,4] is proposed. Zhou et al. [17] concatenates different types of
features into one modality. Aiming at an optimal combination of multimodal
features, Wu et al. [4] rearranges features in different modalities by a modality
identification step. And different modalities of features are further integrated
together in the kernel space by Support Vector Machine(SVM). Although better
recognition accuracy is observed in [4], the binary correlation between different
multimodal features is not consistent with the real condition, e.g., an object
tracked by multiple cameras.

In this paper, by constructing a Feature Relationships Hypergraph(FRH) to
model the high-order correlations among the multimodal features, a new feature
integration method is proposed. To alleviate the curse of dimensionality, we in-
tend to obtain a set of low-dimensional partitions from the input multimodal
features. To deal with the complex relationships among multimodal features, we
intend to obtain a classifier which describes the inter- and intra- partition rela-
tionships. Targeting this aim, firstly, a new measure called shared entropy, is pro-
posed to describe the high-order correlations among multimodal features. And
an efficient FRH construction algorithm is presented accordingly. Next, based
on the FRH, we cluster the multimodal features into a set of low-dimensional
partitions and obtain the inter- and intra- partition matrices. To model the inter-
and intra- partition’s structure, a multi-class boosting strategy is developed to
combine the weak classifiers learned by the intra-partition matrices into a strong
one. And the combining process is constrained by the inter-partition matrix.

2 Feature Relationships Hypergraph

As mentioned in Section 1, the relationships among the multimodal features are
very helpful to find their complementation for recognition. But the relationships
among the multimodal features are too complicated to be described by using the
binary correlation only. For instance, when recognizing an object by using the
multi-view images, the multimodal features describe the object from different
aspects/views, thus the binary correlation is unable to capture the complemen-
tary relationships among these features. Therefore, it is necessary to find a new
measure to describe the high-order correlation among the multimodal features.
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2.1 High-Order Correlations among Multimodal Features

Given a set of multimodal features X1, X2, · · · , Xm (m ≥ 1), the joint entropy [8]
measures the amount of information contained in X1, X2, · · · , Xm, i.e.,

J(X1, X2, · · · , Xm) =
∑

x1,x2,··· ,xm

P (x1, x2, · · · , xm) log
2
P (x1, x2, · · · , xm) (1)

where P (x1, x2, · · · , xm) is the joint probability of X1, X2, · · · , Xm. Based on
joint entropy, a new measure called shared entropy, is defined to discribe the
high-order correlation among X1, X2, · · · , Xm, i.e.,

S(X1, X2, · · · , Xm) = (−1)0
m∑

i=1

Ji + (−1)1
∑

1≤i<j≤m

Jij + · · ·+ (−1)m−1J1,2,··· ,m

(2)
Shared entropy measures the amount of information shared in X1, X2, · · · , Xm,
and a larger S(X1, X2, · · · , Xm) implies the higher X1, X2, · · · , Xm are corre-
lated. An visual illustration of the shared entropy is given in Fig. 1. When m = 1,
shared entropy reduces to the entropy of a single feature, and when m = 2, shared
entropy reduces to information gain [8]. Note that, as an entropy-based measure,
shared entropy only measures the correlation among nominal features directly.
To measure continuous features, it is necessary to discretize them into nominal
features beforehand, as in [6].

S(X1) S(X2)

S(X3)

S(X1,X2, X3)
S(X1,X2)
S(X1,X3)
S(X2,X3)

S(X1) S(X2)

S(X3)

(b) Large shared entropy
of X1, X2 , X3

(a) Small shared entropy
of X1, X2 , X3

Fig. 1. A graphical illustration of shared entropy(The three circles represent
S(X1), S(X2)and S(X3) respectively. S(X1, X2),S(X1, X3) and S(X2, X3) are repre-
sented by the overlaps colored with gray+green, gray+red and gray+blue respectively.
S(X1, X2, X3) is represented by the overlap colored with gray. The larger the gray
overlap is, the higher X1, X2 and X3 are correlated.)

2.2 Hypergraph

Hypergraph [5] is a generalization of classic graph wherein the edges, called
hyperedges, are arbitrary non-empty subsets of the vertex set. In a hypergraph
G = (V , E), V is the vertex set; E is the hyperedge set wherein each hyperedge
e ∈ E is a subset of V . The degree of each vertex v ∈ V , is defined as: σ(v) =∑

v∈e,e∈E w(e), where w(e) is the weight associated with hyperedge e ∈ E . For
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each hyperedge e ∈ E , its degree δ(e) is the number of vertices connected by this
hyperedge. In our approach, the largest degree of a hyperedge within hypergraph
G is defined as the depth of G. Given a δ-degree hyperedge e and a (δ−1)-degree
hyperedge e

′
, if e

′ ⊂ e, then e is called the child hyperedge of e
′
and conversely,

e
′
is called the parent hyperedge of e.

2.3 Efficient FRH Construction

As the shared entropy measures the high-order correlation among the multimodal
features, it is natural to analogize this correlation to a weighted hyperedge which
connects multiple vertices. Motivated by this analogy, we propose Feature Rela-
tionship Hypergraph(FRH) to model multimodal features and their correlations.
In detail, each vertex of an FRH represents a multimodal feature; each hyperedge
of an FRH connects multiple multimodal features and represents the correlation
among them; the correlation, measured by shared entropy, is assigned as the
weight of this hyperedge.

Based on the concept of FRH, intuitively, given a set of input multimodal
features X1, X2, · · · , Xm, the construction of an FRH can be deemed as the con-
struction of a set of hyperedges, i.e., identifying whether multimodal features in
a candidate hyperedge are highly correlated. Unfortunately, if we construct an
i-degree hyperedge (1 ≤ i ≤ ξ) in a straightforward way, we have to evaluate
Ci

m candidate hyperedges, where ξ is the degree of an FRH. That is to say, to

construct an ξ-depth FRH, we have to evaluate
∑ξ

i=1
Ci

m candidate hyperedges,
which is computational intractable when ξ is large.

To accelerate the construction of FRH, we make use of the observation that
the shared entropy among a set of multimodal features X1, X2, · · · , Xξ is lower
and upper bounded, i.e.,

η ≤ S(X1, X2, · · · , Xξ) ≤ S(X ) (3)

where X ⊆ {X1, X2, · · · , Xξ}; η is a threshold representing the minimum shared
entropy of hyperedges in FRH, that is to say, hyperedge whose shared entropy is
less than η fails to be constructed. (3) means that if we want to construct a hyper-
edge connects X1, X2, · · · , Xξ, we must ensure that all subsets of X1, X2, · · · , Xξ

are connected beforehand. Thus a dynamic programming [7] based algorithm is
proposed to accelerate the construction of FRH.Based on the concept of dynamic
programming, we decompose the construction of a hyperedge into a set of sepa-
rate sub-procedures, each sub-procedure identifies whether the candidate hyper-
edges’ one parent hyperedge can be constructed. If one parent hyperedge fails to
be constructed, then the construction of the current candidate hyperedge is ter-
minated. Therefore, in contrast with the aforementioned straightforward way, the
dynamic programming based hyperedge construction is accelerated since fewer
candidate hyperedges are evaluated. Based on the theoretical analysis above, we
present the details of efficient FRH construction in Algorithm 1.
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Table 1. Efficient FRH construction(Algorithm 1)

input: m multimodal features: X1, X2, · · · , Xm;The depth of FRH: ξ;
The minimum value of shared entropy of FRH:η

output: A set of hyperedges L1, L2, · · · ,Lξ

begin:
1. L1 = {X1, X2, · · · , Xm}
2. for i = 2 to ξ

Set e as the first hyperedge in Li−1;

do begin

Set e
′

as the hyperedge next to e in Li−1;

do begin

3. if (|e ∩ e
′
| == 1)

Construct a candidate hyperedge: ec ← e ∪ e
′
;

else

Break;

Reset count to 0 and search the parent hyperedges of ec
in Li−1;

If one parent hyperedge is found, then count ← count + 1;

4. if(count == i − 2 && η ≤ S(ec
))

Insert ec
into Li ; Assign S(ec

) as the weight of ec
;

Mark all parent hyperedges of ec
as removing hyperedges;

else

Set e
′

as the hyperedge next to e′
in Li−1;

end until(e
′

== null)
Set e as the hyperedge next to e in Li−1;

end until(e == null)
5. Remove all marked hyperedges;

end for;
end

3 Boosting Compositional Partitions

To alleviate the curse of dimensionality, based on FRH, we cluster the multi-
modal features into a set of partitions, each containing limited number of mul-
timodal features. In our approach, we employ Community Learning by Graph
Approximate (CLGA) [10] to cluster on FRH. In detail, given the adjacent ma-
trix A of an FRH as computed in [5], CLGA outputs a set of partitions {Pi}γ

i=1

as well as an inter-partition matrix B ∈ Rγ×γ , and a set of intra-partition matrix
{Di}γ

i=1
can be obtained accordingly.

3.1 Intra-Partition Kernel Matrices

Since each intra-partitionmatrix Di (i ∈ [1, γ]) corresponds to a graphGi, we learn
the walk kernels [9] corresponding to the γ graphs {Gi}γ

i=1
, each representing the

structure partition Pi. Specifically, given a pair of intra-partition graphs Gi and
G′

i corresponding to a pair of samples, their walk kernel is learned by comparing

all possible walks, a finite sequence of neighboring vertices, between Gi and G′
i .

Thus walk kernel [9] encodes the sub-structure of Gi. The computation of the p-
length(p ≥ 1) walk kernel between Gi and G′

i is formulated from (4) to (6):

The 1-length walk kernel between Gi and G′
i starting from vertex v in Gi and

vertex v
′
in G′

i is computed as:

k1(Gi,G
′
i , v, v

′
) = k(v, v

′
) (4)
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where k(v, v
′
) is the basis kernel between a pair of vertices v and v

′
. In this

paper, RBF kernel is used as the basis kernel. Based on Eq. 4, the p-length walk
kernel between Gi and G′

i starting from vertex v in Gi and vertex v
′

in G′
i is

computed recursively as:

kp(Gi,G
′
i , v, v

′
) = k(v, v

′
) ∗

∑
r∈Nv

Gi
,r′∈Nv

′
G′

i

kp−1(Gi,G
′
i , v, v

′
) (5)

where N v
Gi

is the set of neighboring vertices of v in graph Gi. The final walk

kernel between Gi and G′
i is:

kp(Gi,G
′
i) =

∑
v∈VGi

,v′∈VG′
i

kp(Gi,G
′
i , v, v

′
) (6)

where VGi is the set of vertices in Gi.

3.2 Boosting Compositional Partitions

The intra-partition kernel matrices encode the structure within each partition.
To encode the structure between partitions, we make use of the inter-partition
matrix B, a symmetric matrix whose diagonal elements are 1(representing the
relevance of each partition with itself) and the off-diagonal elements are between
0 and 1 (representing the relevance of two different partitions). Specifically, given
γ partitions {Pi}γ

i=1
, we construct a compositional partition CP with τ partitions

that all pairs of partitions in CP are highly related, i.e.,∏
P∈{Pi},P ′∈{Pi}

B(P, P
′
) > δp (7)

where δp is a tuning parameter. We collect all CP s into the set CP:

CP = {CP |
∏

P∈{Pi},P ′∈{Pi}

B(P, P
′
) > δp ∧ |CP | = τ} (8)

For each CP ∈ CP, we train a SVM classifier C. Based on {Ci}λ
i=1

(λ = |CP| is
the number of compositional partitions in CP), we develop a multi-class boosting
algorithm to integrate the λ weak classifiers{Ci}λ

i=1
into a strong one C. The

details of the boosting algorithm are presented in Algorithm 2.

4 Experimental Results and Analysis

To validate the performance of our approach, we experiment on two datasets,
i.e., Corel [11] and our emotional speech dataset. The experiment runs on a
system equipped with Intel E8500 CPU and 4GB RAM. The algorithm of our
approach is implemented on Matlab 2008b platform.
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Table 2. Boosting compositional partitions(Algorithm 2)

input: λ classifiers {Ci}λ
i=1; Training data {xj, lj}Ntr

j=1
Iteration number of boosting: T

output: A strong classifier C(x)

begin:
1.Set the training sample weights wj =

1
Ntr

, j = 1, 2, · · · , Ntr ;

2.for t = 1 to T

a).Select a classifier C(t)
from {Ci}λ

i=1 by: arg minC(t)∈{Ci}
∑Ntr

j=1 wj

∏
(lj �= C(t)

(xj));

b).Compute weighted training error: errt
=

∑Ntr
j=1 wj

∏
(lj �=C(t)(xj ))∑Ntr

j=1 wj

;

c).at ← log
(1−errt)

errt + log(K − 1);

d).Update the sample weight: wj ← wj · exp[at∏
(lj �= C(t)

(xj)];

e). Re-normalize wj ;

3.Return C(x) = arg maxk

∑T
t=1 at ·

∏
(lj = C(t)

(x));

end for;
end
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Fig. 2. Average recognition accuracy of the compared methods(Full means no integra-
tion is applied; AI(F.) and AI(KL) mean adaption feature integration with Frobenius
norm and KL-divergence respectively; SK(L) and SK(G) mean super kernel integra-
tion with linear and Gaussian kernel respectively; LP-β and LP-B are two versions of
Multiclass LPboost [2]; HI means our FRH based integration.)
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4.1 Multimodal Object Recognition on Corel

Corel [11] contains 7700 images from 77 categories, which makes it a large
and heterogeneous image dataset. For each category, we employ 50 images for
training and leave the rest for testing. Five types of features, i.e., 1).64-dim
color histogram; 2).64-dim color texture moment; 3).300-dim SIFT histogram
on grayscale images; 4).1000-dim SIFT histogram on H,S,V images; 5).3400-dim
PHOG [19] histogram on 4 levels of a pyramid, are extracted to describe each
image.

In Fig. 2(a), we compare our approach with 4 well-known dimensionality reduc-
tion methods, i.e., linear LDA [14], kernel LDA [14] (with RBF kernel), Locality
Sensitive Discriminative Analysis (LSDA) [12] and Trace Ratio Criterion(TRC)
[20]. Besides, to demonstrate the advantage of our approach over other feature in-
tegration methods, we further compare our approach with 5 well-known feature
integration methods, i.e., adaptation cue integration [16], super kernel integra-
tion [4], MKL [1], SMO-MKL [21] and LPboost [2]. Towards a fair comparison,
recognition on multimodal features with no integration is evaluated also.

The experimental settings are as follows: linear SVM [14] is chosen as the
classifier; the number of nearest neighbours in LSDA is tuned from 0 to 10; for
MKL [1], SMO-MKL [21] and LPBoost [2], we follow the experimental settings
in [2] and [21]; for our approach, the depth of FRH, ξ, is set to 4; the num-
ber of partition, γ, is tuned from 1 to 10 and the best recognition accuracy is
achieved when γ = 5; the length of walk kenrel, p, is tuned from 1 to 10 and
the best recognition accuracy is achieved when p = 6; the iteration number of
compositional partition boosting, T , is set to 200.

4.2 Multimodal Speech Emotion Recognition

Our emotional speech dataset contains 450 sentences emotional speech labeled
with five different emotions: happiness, surprise, neutral, sad and anger. We se-
lect 150 sentences for training and leave the rest for testing. six types of acoustic
features [13], i.e., pitch, log energy, the first three formant frequencies, 13-dim
MFCCs, 13-dim PLCCs and 10-dim LSFs are extracted.

Table 3. Number of hyperedges, recognition accuracy and time consumption of FRH
construction v.s. the value of η(η < 0.2 is not evaluated because over 36h is consumed)

η 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

# of hyperedges 98432 56433 23432 5615 1452 532 110 17

Accuracy(%) 92.6 92.2 91.3 91.0 90.6 88.2 85.2 78.3

Time consumption(s) 73244 43223 20011 5000 976 332 100 14

First of all, using the same experimental settings as in Experiment 1 (except
γ = 3), we report the recognition accuracy of the 10 methods in Fig. 2(b).

In Table 3, we report the number of hyperedges in FRH, recognition accuracy
and the time consumption in FRH construction,under different value of η, the
threshold of shared entropy in FRH. As seen, a smaller value of η implies more
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number of hyperedges, more time consumption of FRH construction and a higher
recognition accuracy.

In Fig. 3(a), we report the recognition accuracy with increasing value of p,
the length of walk kernel(η = 0.6). As seen, recognition accuracy increases when
p > 1 and peaked in p = 5; however, when p > 5 recognition accuracy decreases.
This observation is consistent with the theoretical analysis in [9].

In Fig. 3(b), we report the error rate with increasing value of T , the iteration
number of compositional partition boosting. For comparison, we also present the
error rate of boosting the multimodal features directly(with no integration). As
seen, the error rate(both training and testing) of boosting multiple compositional
partition is significantly lower than boosting multimodal features directly, which
demonstrates a better generalization ability of the former.
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Fig. 3. Recognition accuracy v.s. the value of p(left) and Error rate v.s. the value of
T (right)

5 Conclusions

This paper introduces a new multimodal feature integration method by exploit-
ing the high-order correlations among the multimodal features. A new measure,
called shared entropy, is proposed to discribe high-order correlations among mul-
timodal features. And an efficient FRH construction algorithm is proposed based
on dynamic programming. Experimental results demonstrate that multimodal
features relationships are better represented and the curse of dimensionality is
efficiently alleviated.

Acknowledgments. This work is supported by National Natural Science Foun-
dation of China (60873124), Program for New Century Excellent Talents in
University (NCET-09-0685), and the Natural Science Foundation of Zhejiang
Province (Y1090516).

References

1. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality,
and the SMO algorithm. In: Proc. of ICML (2004)

2. Gehler, P., Nowozin, S.: On Feature Combination for Multiclass Object Classifica-
tion. In: Proc. of ICCV (2009)



598 L. Zhang et al.

3. Xia, T., Tao, D., Mei, T., Zhang, Y.: On Combining Classifier. IEEE
TPAMI 17(10), 226–239 (1998)

4. Wu, Y., Chang, E.Y., Chang, K.C., Smith, J.R.: Optimal multimodal fusion for
multimedia data analysis. In: Proc. of ACM Mulitmedia (2004)

5. Zhou, D., Huang, J., Scholkopf, B.: Learning with hypergraphs: Clustering, Clas-
sification, and embedding. In: Proc. of NIPS (2006)

6. Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An enabling technique.
In: Data Mining and Knowledge Discovery, pp. 393–423 (2002)

7. Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization. John
Wiley (1998)

8. MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge
University Press (2003)
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Abstract. This paper introduces a probabilistic self-organizing map for topo-
graphic clustering, analysis of categorical data. By considering a parsimonious
mixture model, we present a new probabilistic Self-Organizing Map (SOM). The
estimation of parameters is performed by the EM algorithm. Contrary to SOM,
our proposed learning algorithm optimizes an objective function. Its performance
is evaluated on real datasets.

Keywords: unsupervised learning, mixture models, Self-Organizing Maps,
categorical data.

1 Introduction

Data visualization is an important step in the exploratory phase of data analysis. This
step is more difficult when it involves binary data and categorical variables [1, 27].
Self-organizing maps are being increasingly used as tools for visualization, as they al-
low projection over small areas that are generally two dimensional. The basic model
proposed by Kohonen [17], was only designed for numerical data, but it has been suc-
cessfully applied to treating textual data, [20]. This algorithm has also been applied to
binary data following transformation of the original data [13, 23]. Developing genera-
tive models of the Kohonen map has long been an important goal. These models vary in
the form of the interactions, and they assume the hidden generators may follow in gen-
erating the observations. Some extensions and reformulations of the Kohonen model
have been described in the literature. They include probabilistic self-organizing maps
[2] which define a map as a gaussian mixture and use the maximum likelihood approach
to define an iterative algorithm.

In [28], the authors propose a probabilistic generalization of Kohonen’s SOM which
maximizes thevariational free-energy that sumsdata log-likelihood and Kullback-Leibler
divergence between a normalized neighbourhood function and the posterior distribution
on the given data for the components. We have also Soft topographic vector quantiza-
tion (STVQ), which uses some measure of divergence between data items and cells to
minimize a new error function [9, 10]. Another model, often presented as the proba-
bilistic version of the self-organizing map, is the Generative Topographic Map (GTM)
[4, 19]. However, the manner in which GTM achieves the topographic organization is
quite different from those used in the SOM models. In GTM mixture components are
parameterized by a linear combination of nonlinear functions of the locations of the

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 599–607, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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components in the latent space. The GTM was developed for continuous data. A spe-
cific GTM model was subsequently developed for binary data by adopting a variational
approximation to the binomial likelihood [9]. Also, in [18], the authors concentrate on
modelling binary coded data where only the presence or absence of a variable is of
interest. In contrast to other approaches, the model is linear. The model is seen as a
Bernoulli analogue of the multinomial decomposition model. In [15], the main of the
proposed method is to speed-up convergence of EM, and second to yield same results
(or not so far) than traditional EM using categorical data. Others similar techniques
have been developed to cluster large data sets [11, 21].

Here, we concentrate on modelling qualitative data using binary coding. This model
involves use of the probabilistic formalism of the topological map used in [2]; therefore,
it consists of estimating the parameters of the model by maximizing the likelihood of the
data set. The learning algorithm that we propose is an application of the EM standard
algorithm, [25]. Some variants are proposed to speed-up EM in reducing the time spent
in the E-step in the case of categorical data, [15]. In this paper we proposed a new
method called WeCSOM (Weighted Categorical Self-Organizing Map) which combine
the benefits of SOMs, K-mode [12] algorithm and mixture models to design a new
mixture for categorical data.

The rest of this paper is organized as follows: we present the principle of probabilistic
map and categorical data in section 2. Our proposed approach is presented in sections
2.1 and 2.2. In sections 3, we present different results and, finally the paper ends with a
conclusion and some future works for the proposed methods.

2 Categorical Data and Probabilistic Self-organizing Map

As with a traditional self-organizing map, we assume that the lattice C has a discrete
topology (discrete output space) defined by an undirect graph. Usually, this graph is a
regular grid in one or two dimensions. We denote the number of cells in C as Ncell. For
each pair of cells (c,r) on the map, the distance δ(c, r) is defined as the length of the
shortest chain linking cells r and c.

2.1 General Probabilistic Formalism

To define the model of topological maps based on mixture models we associate to each
cell c of the map C a density function fc(x) = p(x|θc) whose parameters are denoted
by θ. Following the bayesian formalism, presented in [22, 2], we assume that each
observation x is generated by the following process: We start by associating to each cell
c ∈ C a probability p(x|c) where x is a vector in the data space. Next, we pick a cell c∗

from C according to the prior probability p(c∗). For each cell c∗, we select an associated
cell c ∈ C following the conditional probability p(c|c∗). All cells c ∈ C contribute to the
generation of x with p(x|c) according to the proximity to c∗ described by the probability
p(c|c∗). Thus, a high proximity to c∗ implies a high probability p(c|c∗), and therefore
the contribution of c to the generation of x is high.
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Due to the ”Markov” property, p(x|c, c∗) = p(x|c), the probability distribution of
the observations generated by a cell c∗ of C is a mixture pc∗(x|c∗) of probabilities
completely defined from the map as:

pc∗(x|c∗) =
∑
c∈C

p(c|c∗)p(x|c).

The generative model considers the mixture of probabilities, given by :

p(x) =
∑

c,c∗∈C

p(c, c∗,x) =
∑

c,c∗∈C

p(x|c)p(c|c∗)p(c∗) =
∑
c∗∈C

p(c∗)pc∗(x), (1)

with
pc∗(x) = p(x|c∗) =

∑
c∈C

p(c|c∗)p(x|c), (2)

where the conditional probability p(c|c∗) is assumed to be known. To introduce the
self-organizing process in the mixture model learning, we assume that p(c|c∗) can be
defined as:

p(c|c∗) =
KT (δ(c, c∗))∑

r∈C KT (δ(r, c∗))
,

where KT is a neighbourhood function depending on the parameter T (called tempera-
ture): KT (δ) = K(δ/T ), where K is a particular kernel function which is positive and
symmetric ( lim

|x|→∞
K(x) = 0). Thus K defines for each cell c∗ a neighbourhood re-

gion in C. The parameter T allows control of the size of the neighbourhood influencing
a given cell on the map. As with the Kohonen algorithm, we decrease the value of T
between two values Tmax and Tmin.

2.2 The Proposed Model

In the following, let we focus on categorical data. Let be a set of N instances x1, . . . ,xN

described by n categorical attributes x1, . . . ,xn. The data matrix is noted x and de-
fined by x = {(xj

i ); i = 1, . . . , N ; k = 1, . . . , n}. Each instance xi is represented as
[x1

i , . . . , x
n
i ] and for each attribute xj , we note cj the number of categories. We consider

a restricted latent class model [16], then the conditional distribution in p(xi|c) is now
given as the product of univariate single distributions

p(xi|c) = fc(xi|wc, εc) =
n∏

k=1

fc(x
k
i |wk

c , εk
c ),

where wc = (w1
c , . . . , wn

c ) represents the vector of categories and εc = (ε1
c , . . . , ε

n
c ) is

a vector of probabilities. Taking

fc(x
k
i |wk

c , εk
c ) = (1 − εk

c )1−d(xk
i ,wk

c )

(
εk

c

ck − 1

)d(xk
i ,wk

c )

,
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where d(a, b) = 1 if a = b and 0 otherwise, we define a parsimonious model where the
parameter c consists of (wc, εc) with wc is the mode of the the component and εc is a k-
dimensional vector of probabilities indicating the degree of heterogeneity. The density
fc(xi|wc, εc) expresses that, for c, the attribute xk takes category wk

c with the greatest

probability (1 − εk
c ) and takes each other category with the same probability εk

c

(ck−1)
.

Note that, setting the clustering problem under the classification maximum likelihood
approach, the authors in [16] have defined a generalization of the kmodes criterion
and proposed better fit criteria. In our situation, we can assume that the parameter εk

c

depends only on a cell c ∈ C. Then, the model mixture generator becomes:

p(x) =
∑
c∗∈C

p(c∗)
∑
c∈C

p(c|c∗)fc(x,wc, εc). (3)

Therefore, the parameters θ = θC ∪ θC
∗

which define the model mixture generator (3)
are constituted of the parameters (θC = {θc, c = 1..Ncell}, where θc = (wc, εc)), and
all the prior probabilities, also called mixing coefficients (θC

∗
= {θc∗ , c∗ = 1..Ncell}

where θc∗ = p(c∗)). The difficulty now is to define the cost function and the learning
algorithm for estimating all these parameters dedicated to categorical data.

2.3 Cost Function and Optimization Algorithm

The learning algorithm is based on maximizing the likelihood of the observations by
applying the EM algorithm [6]. Learning is facilitated by introducing N hidden vari-
ables Ξ = (ξ1, . . . , ξN ); each hidden variable ξ = (c, c∗) indicates which of the cell
pairs c and c∗, generate the corresponding data observation x. We introduce the hidden
variable ξ = (c, c∗) in expression (3):

p(x) =
∑

ξ∈C×C
p(x, ξ) =

∑
c,c∗∈C

p(c∗)p(c|c∗)fc(x,wc, εc). (4)

We define a binary indicator variable α
(c,c∗)

i which indicates the hidden generator that

may follow in generating the observation xi as: α
(c,c∗)

i =

{
1 for ξi = (c, c∗)
0 otherwise

}
Us-

ing expression (4), and the binary indicator α
(c,c∗)

i , we can define the classification
likelihood of the observations using the hidden variables as follows:

LT (x, Ξ; θ) =
N∏

i=1

∏
c∗∈C

∏
c∈C

[
θc∗p(c|c∗)fc(x,wc, εc)

]α(c,c∗)
i

.

The log-likelihood becomes:

ln LT (x,Ξ; θ) =

N∑
i=1

∑
c,c∗∈C

α
(c,c∗)
i

[
ln(θc∗) + ln

(
KT (δ(c∗, c))

Tc∗

)
+ ln(fc(x,wc, εc))

]
,

where Tc∗ =
∑

r∈C KT (δ(r, c∗)). The application of the EM algorithm [7] for the
maximization of log-likelihood requires QT (θt, θt−1) to be maximised for a fixed tem-
perature T defined as:
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QT (θt, θt−1) = E
[
ln LT (x, Ξ; θt)|x, θt−1

]
,

where θt is the set of the parameters estimated at the tth step of the learning algorithm.
However, the E-step calculates the expectation of log-likelihood with respect to the
hidden variable while maintaining the established parameter θt−1. During the M-step,
after updating QT (θt, θt−1) from the previous step, we maximize the QT (θt, θt−1)
with respect to θt, (θt = arg maxθ(Q

T (θ, θt−1))). The two-steps increase the function
likelihood. The function QT (θt, θt−1) is defined as:

QT (θt, θt−1) =

N∑
i=1

∑
c∗∈C

∑
c∈C

E(α
(c,c∗)

i |xi, θ
t−1)

×
[
ln(θc∗) + ln

(
KT (δ(c∗, c)

Tc∗

)
+ ln(fc(x,wc, εc))

]
where E(α

(c,c∗)

i |xi, θ
t−1) = p(α

(c,c∗)

i = 1|xi, θ
t−1) = p(c, c∗|xi, θ

t−1), with

p(c, c∗|xi, θ
t−1) =

p(c∗)p(c|c∗)p(x|c)
p(x)

.

The function QT (θt, θt−1) breaks into three terms

QT (θt, θt−1) = QT
1 (θC , θt−1) + QT

2 (θC
∗
, θt−1) + QT

3 (θt−1) (5)

where

QT
1
(θC , θt−1) =

n∑
k=1

N∑
i=1

∑
c∈C

∑
c∗∈C

p(c, c∗|xi, θ
t−1) ln(fc(x

k, wk
c , εk

c )),

QT
2
(θC

∗
, θt−1) =

N∑
i=1

∑
c∗∈C

∑
c∈C

p(c, c∗|xi, θ
t−1) ln(θc∗),

QT
3
(θt−1) =

N∑
i=1

∑
c∗∈C

∑
c∈C

p(c, c∗|xi, θ
t−1) ln

(
KT (δ(c∗, c)

Tc∗

)
.

The parameters θC and θC
∗

indicate the parameters estimated at the tth step. The first
term QT

1 (θC , θt−1) depends on θc,k = (wk
c , εk

c ); the second term QT
2 (θC

∗
, θt−1) de-

pends on θc∗ , and the third term is constant. Maximizing QT (θt, θt−1) with respect to
θc∗ and θc can be performed separately including the parameter wc and εc. The maxi-
mization of QT (θt, θt−1) leads to the updates that are calculated using the parameters
estimated at the t− 1th step. The expressions are defined as follows:

θc∗ = p(c∗) =

∑
xi∈A p(c∗|xi, θ

t−1)

N
(6)

where
p(c∗|xi, θ

t−1) =
∑

c∈C p(c, c∗|xi, θ
t−1) and p(c|xi, θ

t−1) =
∑

c∗∈C p(c, c∗|xi, θ
t−1).
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Each component of wc = (w1
c , . . . , wk

c , . . . , wn
c ) and εc = (ε1

c , ε
2
c , . . . , ε

k
c , . . . , εn

c ) is
then computed as follows:

wk
c = argmin

e=1,...,ck

N∑
i=1

p(c|xi, θ
t−1)d(xk

i , wk
c ) (7)

and

εk
c =

∑N
i=1

p(c|xi, θ
t−1)d(xk

i , wk
c )∑N

i=1
p(c|xi, θt−1)

, (8)

The application of EM for the maximization gives rise to the iterative algorihtm of
WeCSOM. The version of the WeCSOM algorithm for a fixed T parameter is presented
in the following way:

Algorithm 1. Principal stages of the learning algorithm WeCSOM

1. Initialization (iteration t = 0) Choose the initial parameters (θ0) and the number of
iterations Niter .

2. Basic Iteration at a constant T (iteration t ≥ 1) Calculate all the parameters
θt = {θc∗ ,wc, εc} from the previous parameters θt−1 associated with each cell c and c∗

by applying the formulas: (6), (7) and (8).
3. Repeat the basic iteration until t > Niter .

The WeCSOM learning algorithm allows us to estimate the parameters maximizing the
log-likelihood function for a fixed T . As in the SOM algorithm, we decrease the value
of T between two values Tmax and Tmin, to control the size of the neighbourhood
influencing a given cell on the map. For each T value, we get a likelihood function LT ,
and therefore the expression varies with T . When decreasing T , the learning algorithm
of WeCSOM is defined in the Algorithm 2.

Algorithm 2. Algorithm WeCSOM varying T

1. Initialization Phase (iteration t = 0): Choose Tmax, Tmin and Niter . Apply the principal
stages of WeCSOM algorithm described above for the value of T fixed to Tmax.

2. Iterative step: We assume that the previous parameter θt are known. Compute the new

value of T by applying the following formula: T = Tmax

(
Tmin
Tmax

) t
Niter−1

.

For fixed value of the parameter T , apply the basic iteration described in the principal
stages, which estimates the new parameter θt+1 using the formulas (6), (7) and (8).

3. Repeat the Iterative step while t ≤ Niter .

We can define two steps in the operating of the algorithm:

– The first step corresponds to high T values. In this case, the influencing neigh-
bourhood of each cell c on the map is important and corresponds to higher values
of KT (δ(c, r)). Formulas (6), (7) and (8) use a high number of observations to
estimate model parameters. This step provides the topological order.

– The second step corresponds to small T values. The number of observations in
formulas (6), (7) and (8) is limited. Therefore, the adaptation is very local. The
parameters are accurately computed from the local density of the data.
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3 Experimentations and Validations

To evaluate the quality of clustering, we adopt the approach of comparing the results to a
”ground truth”. We use the clustering accuracy for measuring the clustering results. This
is a common approach in the general area of data clustering. This procedure is defined
by [14] as ”validating clustering by extrinsic classification”, and has been followed
in many other studies [1,29]. Thus, to adopt this approach we need labeled data sets,
where the external (extrinsic) knowledge is the class information provided by labels.
Hence, if the WeCSOM finds significant clusters in the data, these will be reflected by
the distribution of classes. Therefore we operate a vote step for clusters and compare
them to the behavior methods from the literature. The so-called vote step consists in the
following. For each cluster c ∈ C:

– Count the number of observation of each class l (call it Ncl).
– Count the total number of observation assigned to the cell c (call it Nc).
– Compute the proportion of observations of each class (call it Scl = Ncl|Nc).
– Assign to the cluster the label of the most represented class (l∗ = argmaxl(Scl).

A cluster c for which Scl = 1 for some class labeled l is usually termed a ”pure”
cluster, and a purity measure can be expressed as the percentage of elements of the
assigned class in a cluster. The experimental results are then expressed as the fraction of
observations falling in clusters which are labeled with a class different from that of the
observation. This quantity is expressed as a percentage and termed ”purity percentage”
(indicated as Purity% in the results).

To test the performance of our approach we used many publics data sets extracted
from the UCI repository [3]. The table 1 summarizes a short description of these data
sets.

Table 1. Description of the used datasets for the validations

Data set Size nb. of classes
Zoo 101 × 16 7

Congressional vote 435 × 16 2
Wisconsis-B-C 699 × 9 2

Nursery 12960 × 8 2
Car 1728 × 6 4

Post-Operative 90 × 8 3

To conduct experimental comparison and to verify the efficacy of our proposed
model, we compare our method with the RTC (Relational Topological Clustering), [24].
We choose this method because it is based on the same principle of the Kohonens model
(conservation of the data topological order) and uses the Relational Analysis formalism
by optimizing a cost function defined by analogy with Condorcet criterion. One disa-
vantage of the RTC method is that this approach treats all the features equally. We use
the same categorical data sets obtained from UCI repository [3] and used in [24].

For each dataset we learned a map of different sizes (from 5x5 to 10x10) and we
indicate in the table 2 the purity of clustering for RTC technique and WBSOM. The
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results illustrate that the proposed technique increase the purity index compared to the
RTC and also presents the advantage to treat directly the categorical data without using
the binary coding.

We compared also the performance of our method with the result provided in [29]
that used a version of K-modes clustering method dedicated to categorical data. Table 3
lists the classification error obtained with different methods. We compute the fraction of
observations falling in clusters which are labeled with a class different from that of the
observation. We can observe that our results are much better then the results provided
by K-modes [29]. Also we improve the error rate compared to BinBatch algorithm
which represents the classical SOM approach dedicated to binary data using Hamming
distance.

Table 2. Comparison between RTC et WeCSOM using purity index. RTC : Relational Topologi-
cal Clustering dedicated to categorical data using the Relational Analysis formalism.

Purity: % Size map RTC WeCSOM
Zoo (5 × 5) 97.84 98.13

Nursery (6 × 6) 78.69 81.52
Car (10 × 10) 80.17 82.19

Post-Operative (5 × 5) 78.21 81.34

Table 3. Comparison of the classification performances reached by K-modes, BinBatch and WeC-
SOM clustering algorithms

Error rate: % K-modes BinBatch WeCSOM
Wisconsis-B-C 13.2 3.87 2.34

Zoo 16.6 2.97 1.87
Congressional vote 13.2 5.91 5.77

4 Conclusion

This study reports the development of a computationally efficient EM approach to max-
imize the likelihood of the data set to estimate the parameters of a probabilistic self-
organizing map model dedicated to categorical variables. This algorithm has the advan-
tage of providing a prototype with the same coding as the input data. The extention of
the proposed method to the co-clustering will be an interesting future work for dealing
with large-scale problems.
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Abstract. Many problems, like feature selection, involve evaluating ob-
jects while ignoring the relevant underlying properties that determine
their true value. Generally, an heuristic evaluating device (e.g. filter,
wrapper, etc) is then used with no guarantee on the result. We show
in this paper how a set of experts (evaluation function of the objects),
not even necessarily weakly positively correlated with the unknown ideal
expert, can be used to dramatically improve the accuracy of the selec-
tion of positive objects, or of the resulting ranking. Experimental results
obtained on both synthetic and real data confirm the validity of the
approach. General lessons and possible extensions are discussed.

Keywords: Ensemble methods, unsupervised learning, feature selec-
tion, ranking.

1 Introduction

Imagine you are asked to identify students who have taken a course in some
subject. All you have is a set of handouts from a collection of students, some of
whom have followed the course of interest. Because you do not know the specifics
of the target course, you do not know how to evaluate the handouts in order to
single out the students you are looking for. However, you can use the services
of a set of colleagues who do not know either, a priori, how to recognize the
“positive” students, but have the ability to grade the copies using their own set
of evaluation criteria. These can be quite diverse. For instance, a grader might
be sensitive to the color of the paper, the margins, the thickness of the paper
and the number of pages. Another could count the number of underlinings and
use the length of the name and the color of the ink to evaluate the student’s
handouts. And a third one could measure the number of dates cited in the copy,
the average length of the sentences, and the average space between lines.

Would that help you in identifying the students who have taken a course,
unknown to you? And by combining in some way the various evaluations and
rankings of your “experts”, could you somehow increase your confidence in de-
tecting the right students?

While grading students using a bunch of unknowledgeable and weak experts
might certainly interest many of us, the problem outlined above is just one
illustration of a much larger set of applications.
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Actually our research on this subject started when, some years ago, a biologist
came to us for asking our help in discovering the genes that were involved in the
response of cells to weak radioactivity level. The organism studied was the yeast
Saccharomyces cerevisiae and its 6,135 genes. Thanks to microarray technology,
their activity level in conditions where low radiation doses were present and
conditions where no such radioactivity existed was measured. All together, 23
microarrays were obtained. In a way, our students here were the genes and
their handouts were their profile of responses to the 23 conditions. We did not
know what kind of profile was relevant to identify the genes that interested the
biologist, but we had some techniques, like SAM [1], ANOVA [2,3], RELIEF [4,5]
and others, that could be used to rank the genes according to some statistical
patterns or regularities found in the profiles of the genes.

This paper shows how, in the absence of supervised information, can we still
attain a high precision level in finding the “positive” instances in a large collec-
tion, given that we can make use of a varied set of “weak” experts and generate
samples according to some null hypothesis.

Our paper is organized as follows. Section 2 provides a more formal definition
of the problem and discusses why existing approaches using ensemble techniques,
like Rankboost [6] and other similar methods, are inadequate. The bases of our
new approach and the algorithm for a single iteration are presented in Section
3. Experimental results, on synthetic data as well as real data, are then reported
in Section 4, while Section 5 describes the extension of the method to multiple
iterations. Finally, lessons and perspectives are discussed in Section 6.

2 The Problem and Related Works

2.1 Definition of the Problem

We can define the problem we are interested in as follows.

– A sample S of objects (e.g. students, genes, features) of which it is strongly
suggested that some are “positive” objects, while the others are to be con-
sidered as “negative” ones (e.g. students who did not take the target course,
genes not sensitive to radioactivity, irrelevant attributes).

– A set E of “experts”, also called graders, who, given an object, return a value
according to their own set of criteria.

Note that nothing is known beforehand about the alignment of our “experts”
with the ideal grader. As far as we know, some experts may tend to rank objects
similarly as the target expert, but other may well rank them in a somewhat
reverse order, while still others may be completely orthogonal to the target
regularities (e.g. it might be expected that the number of letters of the name of
the students do not provide any information about the courses they have taken).

In this truly unsupervised setting, is it then possible to use such a set of
experts, or a subset thereof, in order to rank the objects in the sample S with
some guarantee about the proximity with the target ranking (one that would
put all the positive objects before the negative ones)?
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2.2 Related Works

In the ranking problem, the goal is to learn an ordering or ranking over a set
of objects. One typical application arises in Information Retrieval where one is
to prioritize answers or documents to a given query. This can be approached in
several ways. The first one is to learn a utility or scoring function that evaluates
objects relative to the query, and can therefore be used to induce an ordering.
This can be seen as a kind of ordinal regression task (see [9]). A second approach
consists in learning a preference function defined over pairs of objects. Based on
this preference function, or partial ordering, one can then try to infer a complete
ordering that verify all the known local constraints between pairs of objects.

Both of these approaches need training data which, generally, takes the form
of pairs of instances labeled by the relation � (must precede or be at the same
rank) or  (must follow). In the case of the bipartite ranking problem, there
are only two classes of objects, labeled as positive or negative, and the goal is to
learn a scoring function that ranks positive instances higher than negative ones
[8]. Ensemble methods developed for supervised classification have thus been
adapted to this learning problem using a training sample of ordered pairs of
instances. Rankboost [6] is a prominent example of these methods.

Another perspective on the ranking problem assumes that orderings on the
set of objects, albeit imperfect and/or incomplete, are available. The goal is then
to complete, merge or reconcile these rankings in the hope of getting a better
combined one. This is in particular at the core of Collaborative Filtering where
training data is composed of partial orderings on the set of objects provided by
users. Using similarity measures between objects and between users, the learning
task amounts then to completing the matrix under some optimization criterion.

In [7], another approach was taken where, starting from rankings supposedly
independent and identically corrupted from an ideal ranking, the latter could
be approximated with increasing precision by taking the average rank of each
object in an increasing number of rankings. However, the underlying assumptions
of independence and of corruption centered on the true target ranking were
disputable and the experimental results somewhat disappointing.

Above all, all these methods rely on supervised training data, either in the
form of labelled pairs of instances, or in the form of partial rankings. In the latter
case, these rankings are supposed to be mild alterations of the target ranking.

In this paper, the problem we tackle does not presuppose any learning data.
Furthermore, the evaluation functions or “experts” that are considered are not
supposed to be positively correlated with the target evaluation function.

3 A New Method

3.1 The Principle

Let us return to the situation outlined in the introduction where the task is
to distinguish the students in a university who have taken a course in some
discipline of which you do not know the characteristics. Given our ignorance on
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both the expert’s expertise for the question at hand, and on the target concept,
the situation might seem hopeless. However, the key observation is that the
sample at hand is not a random sample: the sample of students very likely
includes positive instances (students) to some significant extent (e.g. more than
could be due to accidental fluctuations in the background of students). This
provides us with a lever.

We consider now pairs of experts, and measure their correlation both a priori,
by averaging on all possible ranking problems, and on the target problem. If the
two experts are sensitive to the “signal” in the sample, then their correlation on
this sample will differ from their a priori one.

This observation is at the basis of the ensemble method we propose. Instead
of relying on a combination of separate experts, it uses pairs of experts both
to detect experts that are relevant and to assign them a weight. The utterly
unsupervised, and seemingly hopeless, task is tamed thanks to the measurements
of correlations of higher orders between experts.

3.2 Formal Development

Let d be the number of objects in the target sample S (e.g. the students) and
suppose two graders or experts rank the elements of S.

In case the experts were random rankers, the top n elements of each ranking
would be equivalent to a random drawing of n elements. Therefore the size k of
their intersection would obey the hypergeometric law :

H(d, n, k) =

(
n
k

)
·
(

d−n
n−k

)(
d
n

) (1)

where H(d, n, k) denotes the probability of observing an intersection of size k
when drawing at random two subsets of n elements from a set of size d.

For instance, in the case of the intersection of two subsets of 500 elements
randomly drawn from a set of 6,135 elements, the most likely intersection size is
41. It can be noticed that k/n = n/d (e.g. 41/500 ≈ 500/6,135).

In other words, if two totally uncorrelated graders were asked to grade 6,135
copies, and if one looked at the intersection of their 500 top ranked students,
one would likely find an intersection of 41. However, two graders using exactly
the same evaluation criteria would completely agree on their ranking no matter
what. Then the intersection size k would be equal to n for all values of n. The
opposite case of two anti-correlated graders would yield two opposite rankings
for any sample. The intersection size would therefore be zero up to n = d/2 and
then grow up as 2(n− d/2)/n.

There is therefore a whole spectrum of possible correlation degrees between
pairs of experts, from ‘totally correlated’, to ‘maximally anti-correlated’, going
through ‘uncorrelated’ (case of the hypergeometric law) as shown on Figure 1.

As an illustration, Figure 2 shows the curve obtained for the pair of “ex-
perts” ANOVA and RELIEF when they ranked samples of possible genes. It
appears that the two methods are positively correlated. The curve stands above
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Fig. 1. Illustration of the classes of possible correlation curves between pairs of experts.
The x-axis stands for n, the size of the top n ranked elements considered in each
ranking. The y-axis represents the size of the intersection k(n). Any curve between the
“totally correlated” one and the “anti-correlated” one are possible.

the diagonal) at approximatively two standard deviations above, except for the
tail of the curves. This “over-correlation” starts sharply when the intersection
is computed on the top few hundreds genes in both rankings, and then it lev-
els off, running approximatively parallel to the a priori correlation curve. This
suggests that this is in the top of both rankings that the genes present patterns
that significantly differ from the patterns that can be observed in the general
population of instances. Actually, the fact that the relative difference between
the curves is maximal for n ≈ 180 and n ≈ 540 would imply that it is best to
consider the top180 or the top540 ranked genes by ANOVA on one hand and by
Relief on the other hand because they should contain the largest number of
genes corresponding to information that is specific to the data.

3.3 Estimating the Number of Positive Instances

Following the computation of the hypergeometric law, one can compute the
number of combinations to obtain an intersection of size k when one compares
the top n elements of both rankings.

Let us call kcorr the number of elements that the two experts tend to take
in common in their top n ranked elements, and k+

corr the number of positive
elements within this set. Then the probability of observing a combination as
described on Figure 3 is:

H”(k, k−
corr, k

+

corr, p1, p2, n, d) =
a︷ ︸︸ ︷(

n− p1

k−
corr

) b︷ ︸︸ ︷(
d− p− (n− p1)

n− p2 − k−
corr

) c︷ ︸︸ ︷(
p1

k+ − k+
corr

) d︷ ︸︸ ︷(
p− p1

p2 − k+ − k+
corr

)
(d

n)
(2)

where the overbraces refer to the sets indicated in Figure 3.
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Fig. 2. The x-axis stands for the number n of top-ranked features (e.g. genes) consid-
ered. The y-axis stands for the ratio of the intersection size to n. Left: (Top curve) the
intersection size for the true data. (Center curve): the mean intersection size due to
the a priori correlation between ANOVA and Relief (with some standard deviation
bars). (Lower curve): the intersection size explainable by randomness alone. Right:
Curve of the relative difference, with respect to n, of the observed intersection size k
and the intersection size kcorr due to a priori correlation between ANOVA and Relief.
The curve focuses on the beginning of the curve, for n < 2, 000, since this is the more
interesting part.

In this equation, k, kcorr, n and d are known. And since kcorr is independent
on the classes of the objects, one can estimate that k+

corr/kcorr = p/d. The
unknown are therefore: k+, p1 and p2. When there is no a priori reason to believe
otherwise, one can suppose that the two experts are equally correlated to the
ideal expert, which translates into p1 = p2, and there remains two unknowns
only, p1 and k+. Using any optimization software, one can then look for the
values of p1 and k+ which yield the maximum of Equation 2.

In the case of the low radiation doses data, the maximum likelihood principle,
applied with d = 6, 135, n = 500, kcorr = 180 and k = 280 yields p = 420 ±
20 and p1 = 340 ± 20 as the most likely numbers of total relevant genes and
of the relevant genes among the top500 ranked by both methods. From these
estimations, a biological interpretation of the tissues of the cell affected by low
radioactivity was proposed [10].

3.4 Experimental Results on Synthetic Data

In these experiments, d = 1, 000 genes, or features, were considered, whose value
were probabilistically function of the condition. For each feature, 10 values were
measured in condition 1 and 10 values in condition 2. The relevant features were
such that condition 1 and condition 2 were associated with two distinct gaussian
distributions. The difference δ between the means μ1 and μ2 could be varied,
as well as the variance. The values of the irrelevant features were drawn from
a unique gaussian distribution with a given variance. In the experiments reported
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Fig. 3. The sets involved in the generative model of the intersection size k when the
correlation a priori is taken into account (see Equation 2)
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Fig. 4. The values of artificial genes. For each relevant genes, 10 values are drawn from
distribution 1, and 10 from distribution 2, while the 20 values for the irrelevant genes
are drawn from a unique distribution.

here, the number p of relevant features was varied in the range [50, 400], the
difference δ ∈ [0.1, 5] and σ ∈ [1, 5]. The smaller δ and the larger σ, the more
difficult it is to distinguish the relevant features from the irrelevant ones.

Figure 5 shows the results for p ∈ {50, 200, 400}, δ = 1 and σ = 1 (left), and
for δ = 2 (right). Predictively, the curves are much more peaked in the case of a
larger signal/noise ratio. Indeed, on the right curves, the value of p can be guessed
directly. However, even in the less favorable case (Figure 1, left), the value of p
can be retrieved quite accurately using equation 2 and the maximum likelihood
principle. After computation, the values p = 50, 200, 400 emerge rightly as the
more likely ones.

These results obtained in this controlled experiments and others not reported
here show the value of considering pairs of experts in this strongly unsupervised
context. But is it possible to use more than one pair of experts?
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Fig. 5. The correlation curves obtained for various values of p, in a difficult setting
(left), and a milder one (right)

4 Towards Higher Order Combinations of Experts and
Rankings

A combination of experts must be weighted according to the value of each expert.
But how to proceed when no information is a priori available on the value of
the various experts for the task at hand?

Measuring the difference in the correlation of pairs of experts on average and
on the sample S as described in Section 3 allows one to make such a distinction.
On one hand, experts that are blind to the target regularities won’t show any
over or under correlation with any other expert on the sample S since they do
not distinguish in any way the positive instances. On the other hand, experts
that are not blind and tend either to promote positive instances towards the top
(resp. the bottom) of the ranking will show over-correlation on S with experts
that do the same, and under-correlation with experts that do the opposite. Two
classes of experts will thus appear, the ones positively correlated with the target
ranking and the ones negatively correlated. If, in addition, we assume that the
positive instances are a minority in S, it is easy to discriminate the “positive”
class form the “negative” one. Because we measure correlation by comparing
the top n ranked elements of the experts, the correlation curve rises much more
sharply for the positive experts, that put the positive instances towards the top,
than for the negative ones that put the rest of the instances towards the top.

Knowing the sign of the weight of each expert is however too crude an infor-
mation in order to obtain a good combined ranking. We are currently working
on a scheme to compute the value of the weight that each expert should be given
in order to reflect its alignment with the unknown target evaluation function.

5 Lessons and Perspectives

This paper has presented a new totally unsupervised approach for ranking data
from experts diversely correlated with the target regularities. One key idea is to
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measure and exploit the possible difference between a priori correlation existing
in pairs of experts and their correlation on the actual data to be ranked. We
have shown how to measure these correlations and how to estimate from them
relevant parameters through a maximum a posteriori principle.

The use of pairs of experts in order to overcome the lack of supervised in-
formation is, to our knowledge, new. The experimental results obtained so far
confirm the practical and theoretical interest of the method. We have also sug-
gested ways to use multiple pairs of experts in a boosting like process. Future
work will be devoted to the precise design of such an algorithm and to extensive
experimentations. They will include comparisons with other co-learning methods
specially designed for unsupervised learning (see for instance [11]).
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Abstract. Data mining methods are helpful in analyzing large amount
of sequence and structure information of proteins. Classifiers can do a
good job in achieving accurate mechanism classification of glycoside hy-
drolases which have different physicochemical properties. This classifica-
tion method is not limited by reaction conditions. In this paper, a new
method is proposed to classify the catalytic mechanism of a certain gly-
coside hydrolase according to their sequence and structure features by
using several classifiers. Through making a comparison of the classifica-
tion results achieved by the k-nearest neighbor (kNN) classifier and the
Naive Bayes (NB) classifier and Multilayer Perceptron (MLP)classifier,
the kNN classifier is approved to be an ideal choice in classifying and
predicting the catalytic mechanisms of glycoside hydrolases with various
physicochemical properties.

Keywords: Mechanism classification, K-Nearest Neighbor, Glycoside
hydrolase.

1 Introduction

Glycoside hydrolases are playing key roles in the development of biofuels as
well as in the food and pulp industries. The number of studies on sequences
and structures of Glycoside hydrolases is increasing at an amazing speed. It has
been proven that the functions and catalytic mechanisms of enzymes are closely
related with both the sequences and three dimensional structure information[1].
A reasonable data mining and analysis of those sequence and structure data can
help to solve many mysteries about the functions and catalytic process of most
glycoside hydrolases. Classification is an important research area in data mining.
Compared with traditional experiential methods, a classification by using data
mining techniques is not limited by reaction conditions and is suitable for most
glycoside hydrolases with various physicochemical properties.
� Corresponding author.

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 617–624, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



618 F. Yang and L. Wang

In this paper, a classification of catalytic mechanisms of glycoside hydrolases
based on their sequence and three-dimensional structure features by using three
data mining methods was introduced.It is the first time to make a classification
of the mechanisms of glycoside hydrolases according to both their sequences and
structure features. This classification will assist the study on figuring out the
catalytic process of each glycoside hydrolases and enhance our understanding
of the mechanisms of glycoside hydrolases. More than 200 pieces of glycoside
hydrolases spreading over 46 GH families were selected. The kNN classifier was
chosen to be our primary classifier. The classification results achieved by the
kNN classifier were compared with that achieved from the other two classifiers,
including the Multilayer Perceptron classifier(MLP) and the Naive Bayes(NB)
classifier.

2 Material and Method

Normally there are two mechanisms[2] for glycoside hydrolases to perform their
functions. Inverting enzymes perform a single-displacement mechanism with
a net inversion of an anomeric carbon configuration, while retaining enzymes
adopt a double-displacement mechanism with a net retention of a substrate
configuration [3]. Moreover, in most GH families, all the members within the
same family adopt same catalytic mechanism[4].Inspired by a new approach
proposed by L.C. Borro, S.R.M. Oliveira, etc[5], which is used to predict en-
zyme classes from protein structure with the help of classifies[6], an experiment
to classify and predict the catalytic mechanisms of glycoside hydrolases using
data mining techniques was established. The process of this method is shown
in Fig. 1. At first, glycoside hydrolase data was collected from the PDB protein
database, (http://www.rcsb.org/pdb/home/home) and the PDBsum database
(http://www.ebi.ac.uk/pdbsum). Then, the features were selected carefully and
the class sizes were balanced to gain a reliable classification result. At last, k-
Nearest Neighbor classification method was used to categorize samples into one
of catalytic mechanisms. Two other classifiers were also adopted as comparison
bases.

2.1 Data Collection

In this research, each glycoside hydrolase was assigned into one of the two dif-
ferent catalytic mechanisms according to their sequence and structure features.
We selected 136 pieces of retaining enzymes within 29 GH families and 67 pieces
inverting ones spread over another 17 families to make up a data set. We de-
fined that the Class A consists of retaining enzymes, and Class B contains all
inverting ones. It is a data set large enough to ensure our classification reliable
and accurate.

2.2 Representative Feature Selection and Data Processing

Some attributes that contain the same information or well correlated in the whole
data set, will be identified as redundancy features. The accuracy of classification
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Fig. 1. Process of glycoside hydrolases classification

algorithm would be severely degraded with noisy and irrelevant features. Also if
features and their scales are not consistent with their importance, the classifica-
tion accuracy would be influenced[7]. In our study, many efforts had been done
to exclude the factors which would reduce the credibility.

Firstly, the transit sequences, NP bind sequences, region sequences, etc are
excluded, since the number of amino acids of a sequence is too small to extract
representative features [6]. Also, if there are two or more chains within one se-
quence, entire chains were included in our data set. Even though some features
overlap among these chains, we regarded each chain as a unique one because
they may distinguish one kind of mechanism from other one. Many redundancy
features were removed after a sound trade off and a carefully selection. 19 fea-
tures of each glycoside hydrolase were extracted. They are unique and playing
important roles in distinguishing retaining glycoside hydrolases from inverting
ones. Take the charged residues such as the Asp, Glu for example, they are
conserved residues and usually exist in the active sites for enzymes. Retaining
enzymes and inverting glycoside hydrolases usually have different kinds of those
conserved residues, and the number of charged resides are not the same. Since
different glycoside hydrolases have various numbers of charged residues, some
retaining glycoside hydrolases may have more Glu, while inverting ones usually
have both Asp and Glu in their active sites. The theoretical PI of retaining and
inverting enzymes are not same. The features chosen in this research can be
divided into three categories:

(1) We extracted some sequence information, including the number of charged
residues or the number of amino acids, etc, since the sequence of a protein is
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unique to that protein, and defines the structure and function of the protein.
These features are listed in Table 1.

Table 1. Sequence features after selection

Attributes Description

NumOfAAs Number of amino acids
Carbon Number of carbon (C)

Hydrogen Number of hydrogen (H)
Nitrogen Number of nitrogen (N)
Oxygen Number of oxygen (O)
Sulfur Number of sulfur (S)

NumOfAtom Number of atoms

(2) Structure features are selected because function of a protein is directly de-
pendent on its three dimensional structure. They are searched from the PDB-
sum structure database (http://www.ebi.ac.uk/pdbsum/)[8] and displayed
in Table 2.

Table 2. Structure features after selection

Attributes Description

R-factor Residual factor or reliability factor
R-free Free R value

Resolution Resolution

(3) Several physico-chemical parameters of a protein sequence were chosen to
construct this data set. They are regarded as important factors in predicting
protein functions and the catalytic mechanisms of enzymes. Thses patame-
ters are listed in Table 3.

Table 3. Physico-chemical features after selection

Attributes Description

MolWeight Molecular weight
Theoreticalpl Theoretical pl

NegCharResidue Number of negatively charged residues
PosCharResidue Number of positively charged residues

ExtCoefALLCys
Extinction coefficients based on the assumption
that all cysteine residues appear as half cystines

ExtCoefNoCys
Extinction coefficients based on the assumption
that no cysteine appears as half cystine

InstabilityIndex Instability index
Aliphaticlndex Aliphatic index

Gravy Grand average of hydropathicity



Research on Classification Methods of GH Mechanisim 621

Secondly, the range of those selected classification properties is wide, the class
sizes should be balanced at first to gain a reliable classification result. All numeric
values in the given data were normalized into a range from 0 to 1. Then, uniform
distribution of class sizes was made[5].

After data processing, half of the sample population was selected to make
up a training data set randomly. The training data set includes both retaining
enzymes and inverting ones. This step is known as supervised learning. The
remaining half was regarded as the testing data set used for evaluating the
classification performance of the learned model.

2.3 Classification Methods

K-Nearest Neighbor (kNN)
The k-Nearest Neighbor algorithm (kNN) is a method for classifying objects
based on closest training examples in the feature space. It is a type of instance-
based learning, and the nearer neighbors contribute more to the average than
the farther ones. This classifier is simple and suitable for a binary classification.
In our research, it was adopted as a chief classifier for its predominant features.
Given a query vector X0 and a set of N labeled instances {xi, yi} , the task
of the classifier is to predict the class label of x0 on the predefined P classes.
New examples were classified by choosing the majority class among the k closest
examples in the training data. It has been demonstrated that through feature
selection and data processing effectively, the kNN classifier can improve its per-
formance significantly [9]. In our research, a 2-fold cross-validation was used and
the value of ”k” was 1.With this classifier, the catalytic mechanisms of glyco-
side hydrolases are divided into two categories: inverting enzymes and retaining
enzymes in our research.

The implementation of the kNN classifier available at Weka version3.6.4
(http://www.cs.waikato.ac.nz/ml/weka) was chosen in this research. Weka is
a software environment for knowledge analysis. This software is composed of a
collection of machine learning algorithms used for data-mining tasks, clustering,
association rules, and visualization.

Comparison between Different Classifiers
Further studies have been carried out to approve that the kNN classifier is
sensitive and proper for analyzing our data set[10]. The other two classifiers: the
Naive Bayes[11] and the Multilayer Perception classifier[12] are selected as the
control. Detailed discussion and analysis on the classification accuracy achieved
from those three classifiers were made.

3 Results and Discussion

In this research, the result achieved by the kNN classifier was demonstrated in
Figure 2, showing that 69.9507% of 203 enzymes were correctly classified. It
was a satisfying result compared with the results from the other two classifiers.
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Table 4 displayed a more detailed explanation related to the results achieved by
the kNN classifier. The two classes considered in our research were presented
in the first column. The number of instances classified correctly in a given class
divided by the number of instances in that class is called the TP rate, which is an
abbreviation of true-positives rate. Consequently, the false-positive rate is equal
to 1 minus the recall of the test, where recall corresponds to the number of true-
positives divided by the sum of true-positives and false-negatives. Precision refers
to the proportion of true-positives in a given class divided by the total number
of enzymes classified in that class. F-measure means a harmonic measure that
gets the most of both precision and recall, and it is defined as:

F −measure = 2
precision× recall

precision + recall
(1)

Besides that, the weighted average(Weighted Avg.) of A and B classes were pro-
vided in the last row. According to the results, it is known that the kNN classifier
is proper and helpful to make an accurate classification. However, we also have to
point out that, the kNN classifier seems to do a better job when recognizing re-
taining enzymes, which owns a larger quantity of more than 130 pieces of enzymes.
The TP rate could be as high as 0.831. By contrast, when it was used to classify
those inverting enzymes with only 80 pieces available for our study, the TP rate
was just 0.433, which was relatively lower. Shown by Figure 2, the classification
accuracy is 65.5172 % and 66.9951% using Naive Bayes classifier and Multilayer
Perceptron classifier, respectively. The detailed description of classification accu-
racies by using the two classifiers are given in Table 4.
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Correctly Classified Instances

Incorrectly Classified Instances
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Mean absolute error

Root mean squared error
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Correctly Classified
Instances

Incorrectly Classified
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error Rela�ve absolute error Root rela�ve squared
error

NB 0.6552 0.3448 0.1278 0.3939 0.5090 0.8886 1.0824
MLP 0.6700 0.3300 0.2565 0.3277 0.5390 0.7392 1.1461
KNN 0.6995 0.3005 0.2796 0.3043 0.5429 0.6865 1.1545

Comparison of three classifiers

Fig. 2. Comparison of the three classifiers
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Table 4. Detailed accuracy of the three classifiers

Classiffier class TP Rate FP Rate Precision Recall F-Measure ROC Area

kNN A 0.831 0.567 0.748 0.831 0.787 0.629
B 0.433 0.169 0.558 0.433 0.487 0.629

Weighted Avg. 0.7 0.436 0.685 0.7 0.688 0.629

Naive Bayes A 0.846 0.731 0.701 0.846 0.767 0.56
B 0.269 0.154 0.462 0.269 0.34 0.56

Weighted Avg. 0.655 0.541 0.622 0.655 0.626 0.56

Multilayer Perception A 0.75 0.493 0.756 0.75 0.753 0.675
B 0.507 0.25 0.5 0.507 0.504 0.675

Weighted Avg. 0.63 0.412 0.671 0.63 0.671 0.675

After a careful analysis and comparison of the results achieved from the three
classifiers adopted in our research, the kNN classifier demonstrated the high-
est accuracy and provided a satisfying and reasonable classification of catalytic
mechanisms among glycoside hydrolases families.

4 Conclusion

Through selecting 19 attributes from the known features, a data set was con-
structed and processed. After applying this data set in the kNN classifier, Naive
Bayes classifier and the multilayer perception classifier, we approved that the
kNN classifier would be the most reliable one in making classification of glyco-
side hydrolases with an accuracy as high as 69.9507%. This result indicated that
once one gets a new piece of glycoside hydrolase, one could be capable to pre-
dict its catalytic mechanism by extracting several sequence or three dimensional
structural features. The main contributions of this study can be summarized as
following:

(1) In contrast with some traditional methods, the method adopted in our study
is more convenient and trouble-free. It would not be limited by reaction con-
ditions and is available for most glycoside hydrolases with different physico-
chemistry properties.

(2) This method is demonstrated to have a strong mathematical foundation
and is easy to implement. Just by selecting proper representative features to
consist a data set, and then the kNN classifier could help to make a relatively
satisfying classification.

(3) In order to increase the classification accuracy, the data used in this study
was preprocessed to balance the class sizes. Both the sequence parameters
and the three dimensional features were extracted.

The successful classification in this study donates that if one acquires a new
sequence or a sequence whose catalytic mechanism is unknown, one can easily
assign them into one of the two classes based on sequence and structure infor-
mation by using data mining techniques. To move forward a single step, once
one knows what kind of catalytic mechanism those enzymes use, one would be
able to change the reaction process of several enzymes.
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Abstract. Protein structure prediction (PSP) remains one of the most
challenging open problems in structural bioinformatics. Simplified mod-
els in terms of lattice structure and energy function have been proposed
to ease the computational hardness of this combinatorial optimization
problem. In this paper, we describe a clustered meme-based evolutionary
approach for PSP using triangular lattice model. Under the framework of
memetic algorithm, the proposed method extracts a pool of cultural in-
formation from different regions of the search space using data clustering
technique. These highly observed local substructures, termed as meme,
are then aggregated centrally for further refinements as second stage of
evolution. The optimal utilization of ‘explore-and-exploit’ feature of evo-
lutionary algorithms is ensured by the inherent parallel architecture of
the algorithm and subsequent use of cultural information.

Keywords: PSP, evolutionary approach, meme, memetic algorithm, data
clustering.

1 Introduction

Proteins are composed of linear chains of amino acids (residues) and regulate al-
most all cellular functions in an organism. The three dimensional folded structure
of proteins (tertiary structures) play key roles in their functionality. According
to Anfinsen’s thermodynamic hypothesis, proteins fold into tertiary structures
of minimum free energy (native state) which can be predicted from the corre-
sponding amino acid sequences [2]. However, incomplete knowledge of folding
mechanism, absence of an established perfect energy function as well as appar-
ently complex and irregular structures in three-dimensional space make the PSP
problem ever so difficult, which encourages researchers adopting simplified lat-
tice and energy models to ease the computational hardness of the problem so
as to explain essential functional properties of proteins. The prevailing strat-
egy to determine protein structures has been to determine a self-avoiding walk
(SAW) embedding of amino acids in 3D lattice space (conformation) that results
in overall minimum energy. Energy function has been modelled that captures
the idea of assigning energy between amino acids pairs placed within neigh-
bouring positions in the lattice. The problem is shown to be NP-Complete [5]
even for the simplest of Hydrophobic-Polar (HP) energy function [8] on dis-
crete rectangular lattice model. Being a hard combinatorial optimization prob-
lem, PSP has been approached by approximation algorithms [1,9], constraint
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programming [6,20,28], stochastic local search algorithms (e.g., simulated an-
nealing [4,15], tabu search [4,17], REMC [26]), evolutionary algorithms (e.g.,
genetic algorithm [19,27], hybrid tabu search [14], ant colony optimization [25],
EMC [18]) etc.

Evolutionary algorithms (EAs) in combination with local optimization pro-
cedures have been shown to improve precision where EA alone leads to sub-
optimal solution [21]. “Memetic algorithm” (MA) stems from the term meme [7]
to denote a smaller part of gene that remains unchanged over the evolution.
Hence memes are regarded as units of cultural inheritance [22]. The concept
of memetic algorithm has evolved as a family of population-based metaheuris-
tics that employ a local search (LS) step as a distinctive part within its main
evolutionary cycle of standard recombination and mutation operators. The em-
phasis of MAs for PSP thus lies in the use of LS. Krasnogor et al. [16] first
proposed a multimeme algorithm for PSP which employs six different LS meth-
ods (later extended to fuzzy logic-based local searchers [24]), and self-adaptively
select from this set which heuristic to use for different stages of the search or
for different individuals in the population. Bazzoli and Tettamanzi [3] presented
an MA where LS can self-adaptively act towards either exploitation or diver-
sification of fitness, according to its degree of convergence within the popula-
tion. More recently, Islam et al. [12,13] proposed an MA that incorporates a
guided local search based on the exploitation of domain knowledge that can be
explained by well-known schema preservation technique. These methods have
been tested on the HP model proteins using small-to-medium sized instances on
2D and 3D rectangular lattices [3,12,13,16] and small instances on 2D triangular
lattice [16].

In this paper, we intend to reintroduce the concept of original meme definition
in the standard MA approach to PSP. We restate “meme” to be highly observed
local substructures from diverse areas of landscape which can be utilized to
improve individuals under the traditional MA framework. The overall process
ideally takes advantage of two-stage data clustering technique that explores the
underlying landscape in Stage-1 and exploit the knowledge in Stage-2. In section
2, we describe the outline of our proposed memetic framework to approach PSP
on triangular lattices. In the process, we discuss population initialization and
meme generation technique, which are unique to our approach. Apart from the
reason that research is lacking on triangular lattice PSP with population based
EAs, our choice of the triangular lattices is further motivated by the fact that 3D
triangular lattice (also known as FCC lattice) has been shown to yield very good
approximations of real protein structures [23]. Also triangular lattices do not
suffer from the bipartiteness of the rectangular lattice, which allows interactions
only between amino acids of opposite parity in the sequence. In section 3, we
discuss how memes can be utilized in clustered framework. The simulation results
are shown at the end for selected benchmarks. As meme is being suggested as a
unit of cultural information; therefore, to avoid any confusion, we will call our
proposed approach as “cultural memetic algorithm”.
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2 Cultural Memetic Algorithm

For the PSP problem, memes are sub-structures that become fossilised when the
population converges towards a particular local minima. Memes can preserve
domain knowledge of local minima efficiently and can help to explore and ex-
ploit the entire search space effectively. However, since genetic drift drives all
individuals to one local minima, a single set of population will fail to identify
memes corresponding to different regions of the search space.

(a) stage-1 cluster (b) stage-2 cluster (c) Clustered MA

Fig. 1. Cultural memetic algorithm framework

Our proposed algorithm aims to explore different areas of the landscape in
parallel and exploit the acquired knowledge in the form of memes to guide the
search process towards global minima. Assuming a powerful enough method is
available for combining promising solutions covering important interactions of
decision variables in a problem, clustering can be used very efficiently to search
the solution space thoroughly. We take advantage of an initial data set clus-
tering technique to help in both exploring multiple local minima and covering
as many individuals as possible efficiently. Each cluster is populated capitaliz-
ing natural way of protein generation and then undergoes evolution under the
memetic framework of standard crossover, mutation and local search operators.
Once the population has sufficiently converged following a convergence criteria,
memes are extracted from the best set of individuals. Memes from all Stage-1
clusters are then transferred to a Stage-2 cluster where the knowledge, contain-
ing memes from different regions, is exploited to generate new individuals. The
evolutionary process then continues under the memetic framework with an ad-
ditional meme-based mutation technique. The overall architecture is shown in
Fig. 1.
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2.1 Population Initialization

A protein conformation can be specified as a sequence of moves taken on the
lattice from one residue to the next. Absolute encoding of a move depends on
entire orientation whereas relative encoding depends on the last move taken
(see fig. 2(a)). Similar substructures in different conformations are represented
by same relative move sequence which may have different absolute move rep-
resentations depending on its orientation on lattice geometry. Traditionally an
individual for PSP is generated using random relative move sequence which can
not guarantee a SAW individual, necessitating a SAW-checking procedure to
validate and re-generate if required. This process is repeated until the necessary
number of individuals is generated.

In general, consider C = (A,B,C,E,F) to be possible relative move set in
2D triangular lattice model (move D is prohibited to avoid immediate backward
move). An individual is represented by a relative move sequence emanating from
C (see fig. 2(b)). Since a conformation can always start with A, a protein of
length n can be defined by (n− 2) subsequent moves. There can be Np = 5n−2

possible individuals, some of which may be non-SAW. A sequence of minimum

(a) Relative move (b) Sequence

Fig. 2. (a) relative move-set and (b) a conformation for triangular lattice. Black beads

present ‘H’, white beads present ‘P’ residues. 3 H-H contacts contributes to total energy of -3.

4 residues can have two non-SAW conformations by forming loop like structures
ACC or AEE. For n > 4, such a loop may form at the beginning in worst case
with 5n−4 possible moves for remaining residues. Irrespective of the appended
moves after the loop, the conformations remain non-SAW. Hence, the possible
number of non-SAW conformations is Nw = 2×5n−4. The worst case probability
of generating a non-SAW individual is Pw(tri) = Nw

Np
= 2×5n−4

5n−2 = 2
52 = 0.08 for

2D triangular lattice and Pw(fcc) = 4×11n−4

11n−2 = 4
112 = 0.033 for FCC lattice.

In our proposed Dynamic Individual generation (DIG) method [13] which
follows Nature, i.e., amino acids joining one by one to form the sequence, an
individual is generated by using relative moves together with coordinates of the
lattice points. For each residue ri at position i, the process stores a possible set
of relative moves, SPi = (A,B,C,E,F), and the set is updated according to the
move mi taken at that position. Before finalizing any random move out of set
SPi for ri, we verify whether the lattice point is already occupied by another
residue rj<i or not. If not occupied, then the move is implemented for ri and
the point is updated accordingly. Otherwise, the move is discarded from SPi and
another random move is chosen from the truncated SPi . If SPi becomes empty,
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Fig. 3. Examples of close-ended local substructures

the process recognizes that the previous move from residue ri−1 is possibly a
wrong choice and passes the control back to ri−1. SPi−1 is updated by removing
that wrong move and a new move is taken from the truncated move set. This
process is continued until all moves are generated for the individual. The worst
case scenario causing maximum back tracking occurs only with a close-ended
local substructure (see fig. 3). If the number of moves forming such structure is
Ls then the probability of such formation is (1

5 )Ls . Therefore the probability of
being trapped into those structures reduces exponentially with Ls. The proposed
method guarantees that it will come out of any close-ended substructures after
visiting all the lattice points inside and it will never revisit that path again.

2.2 Meme Generation

The meme generation process requires a systematic identification of substruc-
ture that best suits a particular segment of the conformation. Memes identified
from different basins of attraction can be treated as a database for transferring
knowledge to new or existing individuals. Once the population is perceived as
converged, meme identification technique comes into play. In our case, the suf-
ficient population convergence is decided based on two main criteria: (i) Best
fitness value in the population remains fixed for a pre-specified nc generations,
and (ii) Difference in fitness values of the top 75% (i.e. 3

4 -th of total individuals)
of the individuals are within a pre-specified close range Δ.

Meme Identification. A meme can be identified by finding a highly probable
move sequence in particular positions, having at least two consecutive moves
each of which have an independent probability greater than a specified threshold
to occupy those positions. The structure of a meme is therefore described by a
triplet containing the relative move sequence, its start position and end position.
In general, consider a conformation Ci in any lattice model and C to be a set of
all possible relative moves with size |C|. The proposed meme technique is generic
and applicable to any lattice model.

We first construct a two dimensional matrix MCi : (n−2)×C with rows defining
the n−2 positions of moves and the columns describing the actual moves Cq. The
matrix MCi is populated as [arq]r=1,···,n−2;q=1,···,|C|. Now, if the r-th position of a
conformation Ci is Cq , then arq = ε×F (Ci), otherwise arq = 0. ε is fixed to -1 and
F (Ci) is the fitness of Ci. To determine a highly probable meme, which is likely to
occur in subsequent generation, we obtain matrix Γ =

∑N
i=1 MCi. Multiplying Γ

with a column vector [1 · · · 1]T results in another vector Γ = [ρ1 · · · ρn−2]T . The
r-th row of Γ represents the cumulative weight ρr of r-th position for all conforma-
tions. The probability of occurrence of each move at this r-th position is obtained
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from multiplying Γr by 1/ρr. By doing so for each position, we obtain another ma-
trix Γ

′
that contains significant information about the probability of occurrence of

moves at a given position. To classify whether a move is highly probable in a given
position, we define a cut-off value, χ = 0.4+ 1

|C| . If at least two consecutive moves

in the matrix Γ
′
have value greater than χ, then this highly probable set of moves

is identified as a meme.
To treat a substructure and its reflection same, a simple modification is applied

on Γ
′
. We add up pairs of columns of matrix Γ

′
to generate Γ r where the pairs

represent relative move directions that are reflection of each other:

∀i{Γ r[i, x] = Γ r[i, y] = Γ
′
[i, x] + Γ

′
[i, y]}, if Cx = reflection(Cy)

For example, in 2D triangular lattice, relative moves B and F are reflections of
each other; the same applies to moves C and E. Move A has no corresponding
reflection (or reflection of A is A itself). Therefore memes are identified from
columns of Γ r representing moves A, B, C only. Note that, since move D is
absent in any valid conformations, there is no such corresponding column in Γ r.

Meme Validation. The memes generated as above need to be validated against
individuals with best fitness values. It is also possible that few memes identified
from Γ r are non-SAW. A non-SAW meme can be removed from the meme set or
part of it can be redefined as new meme. Let S(ε) be the identified meme-set and
S(I) be the best individual set. The meme validation method checks whether a
meme ε ∈ S(ε) exists in any of the best individual or not. If a full match is found,
then it will be added to a new meme-set Sn(ε). Otherwise the portion of the
meme that matches will be considered as a new meme and added to Sn(ε). Note
that memes in S(ε) ignores the reflective part of the moves, therefore during
the search, moves in the best individuals are matched against each move in the
meme and its reflection. The matched meme are corrected accordingly when
added to Sn(ε). In this process, common features that represent best individuals
are extracted from the best individual set and passed to other individuals as
improvement features.

The meme validation technique is illustrated here with an arbitrary exam-
ple sequence HPHPHHHPPPHHHHPPHH. Five individuals with fitness (E)
from the best individual set S(I) at some stage of the evolutionary search are
listed below with the corresponding weighted matrix Γ r. Applying meme iden-
tification technique with reflection property into consideration, rows in Γ r rep-
resent moves {A,B,C,E,F} and columns represent positions of the moves in
conformations. By applying cut-off value, χ= 0.6 on Γ r, three candidate memes
are identified namely (ACACBB,1,6), (BA,9,10) and (AACBA,13,17). How-
ever, these memes are generic and might not be present in any of the best
individuals or might be present in different reflected form, therefore need to
be validated. Applying meme validation technique to these three memes gives
rise to the actual memes; (AEA,1,3), (CBF,4,6), (BA,9,10), (AACBA,13,17)
(see Fig. 4).
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Conformation E
C1 AEAFECBFEAFBFACBA -13
C2 ABACBFECACFBAACBA -13
C3 AECEFBAAFEAACAEFA -13
C4 AEAFECECBACEAACBA -12
C5 ABACBFECBACEAACBA -12

Γ r =

⎡⎢⎢⎢⎣
A : 1 0 .8 0 0 0 .2 .2 .2 .6 .2 .2 .6 1 0 0 1
B : 0 .4 0 .4 .6 .6 .2 .2 .6 0 .4 .4 .2 0 0 1 0
C : 0 .6 .2 .6 .4 .4 .6 .6 .2 .4 .4 .4 .2 0 1 0 0
E : 0 .6 .2 .6 .4 .4 .6 .6 .2 .4 .4 .4 .2 0 1 0 0
F : 0 .4 0 .4 .6 .6 .2 .2 .6 0 .4 .4 .2 0 0 1 0

⎤⎥⎥⎥⎦
T

Fig. 4. Examples of individuals with validated memes (gray)

Fig. 5. Examples of optimum structures with memes

The potential gain from incorporating memes are observable from two opti-
mum structures ACFCFBFBCABEAACBA and AEBEFCAAEFAAAACBA

(see Fig. 5) with fitness -15 where meme (AACBA,13,17) is present. Also note
that (CFB,4,6), a reflection of meme (CBF,4,6), is present in the first optimum
structure. We may conclude that although memes are generated from random
basins of attraction, on many occasions the global optimum are led from these
basins especially which shows that memes remain common to the search regions
of interest.

3 Clustering MA

The proposed method for clustering works in two stages. At Stage-1, κ number of
clusters are populated and evolved independently for Iκ number of generations.
Memes are extracted from best individuals of each cluster and used to populate
the single Stage-2 cluster. Here, we generate Nκ = N/κ individuals incorporating
the memes from each cluster, N being the population size at Stage-2. The new
individuals will then evolve inside the cluster under the same memetic framework
with an additional mutation operation based on meme replacement.

3.1 Population Initialization with Memes

Let the meme-pool returned by the i-th stage-1 cluster be Si(ε). An individual is
first generated using the DIG method (see Sec. 2.1). Then memes ε ∈ Si(ε) are
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sequentially selected to be incorporated into the individual in the appropriate
positions. If the individual becomes non-SAW for a ε, then the reflection of ε is
tried. If the individual remains non-SAW, next meme from Si(ε) is tried. The
process is repeatedly applied until a valid individual is generated.

3.2 Meme-Based Mutation

All memes generated from different stage-1 clusters and new memes generated at
stage-2 cluster during evolution form the stage-2 meme pool Ss2(ε). An iterative
procedure similar to individual generation is employed here that tries to improve
an individual by replacing part of the individual by appropriate meme ε ∈ Ss2(ε).
Each meme (and its reflection) is tried separately to be incorporated into the
selected individual and from the new set of mutated individuals, the best one is
kept and replaces the original individual. A reflection of each meme is used to
ensure no information loss.

4 Experimental Evaluation

Experiments are performed on the selected benchmark sequences from Table 1
with lengths ranging from 36–64. The benchmark is selected to perform a di-
rect comparison with an existing hybrid evolutionary method, namely hybrid
genetic algorithm (HGA) with twin removal approach [10,11]. It is noteworthy
to mention that, for shorter sequences, Stage-1 clusters are efficient enough to
identify global minima without using meme information, therefore we consider
only moderate sized sequences for our experiments. Two sets of experiments
are done. The first set deals with comparative performance analysis between
the proposed individual generation method DIG and the traditional method to
generate an initial population of 100 individuals.

Table 1. Benchmark sequences for HP model protein. Here, E∗ gives the optimum fitness

for 2D triangular and 3D FCC lattices.

Id Len. Sequence E∗(Tri) E∗(Fcc)
s1 36 3P2H2P2P5P7H2P2H4P2H2PH2P -24 -38
s2 48 2PH2(P3H)5P10H6P2(2H2P)H2P5H -43 -74
s3 54 H4(HP)4HP4(H3P)P2(H3P)HP4H4(PH)H -41 -77
s4 60 2P3HP8H3P10HPH3P12H4P6HPH2(HP) -70 -130
s5 64 12H2(PH)2P2(2H2P)3(H2PH)P2(P2HP)3(PH)11H -75 -132

Besides initialization, more than 50% new random individuals are required
across generation to generation to replace existing individuals to ensure diver-
sity and combat premature convergence problem. Hence, individual generation
process has an overall effect on the performance of MA. Table 2 shows that
DIG performs better than traditional method in terms of both runtime and the
diversity of population.
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Table 2. Performance analysis for DIG in triangular lattices

2D Triangular FCC

Id
Time(hh:mm:ss) Divergence Time(hh:mm:ss) Divergence
DIG Traditional DIG Traditional DIG Traditional DIG Traditional

s1 0.0376 0.398 0.9560 0.9448 0.177 0:25.6 0.9165 0.8779
s2 0.0602 4.872 0.9630 0.9513 0.521 5:22.9 0.9341 0.8823
s3 0.0904 15.966 0.9663 0.9541 0.564 15:30.7 0.936 0.8865
s4 0.1284 49.060 0.9674 0.9560 0.708 1:02:01.7 0.9377 0.8885
s5 0.3576 01:44.800 0.9686 0.9575 0.746 2:09:48.8 0.9392 0.8899

The next set of experiments deals with the performance analysis of our pro-
posed clustered cultural memetic approach. For each sequence, the implemented
program is run 5 times with the following parameters:

– Size of the population in each generation, N = 100
– Number of Stage-1 clusters, κ = 5
– Maximum number of generations per cluster = 20
– Mutation rate = 0.05
– Crossover rate = 1.0
– Fraction of population on which local search will be applied = 0.4
– Fraction of population removed when premature convergence occurs = 0.9
– Number of best individuals used for meme generation = 10

We have used one-point mutation, one-point crossover with roulette-wheel se-
lection strategy and pull-move based local search introduced in [4]. In Table 3,
we report the minimum energy (best fitness), their average and standard devi-
ation observed from Stage-1 and Stage-2 clusters. The results from Stage-1 and
Stage-2 clusters are indicators of the improvement that can be obtained from
incorporating meme information.

Table 3. Performance analysis for CMA in triangular lattices

2D Triangular FCC
Id ECMA Es−1(μ ± σ) Es−2(μ ± σ) EHGA ECMA Es−1(μ ± σ) Es−2(μ ± σ) EHGA

s1 -24 -22.43 ± 0.77 -23.4 ± 0.55 -19 -38 -36.92 ± 0.90 -37.8 ± 0.45 -51
s2 -43 -40.15 ± 1.81 -42.6 ± 0.55 -32 -74 -68.80 ± 2.17 -73.2 ± 0.96 -69
s3 -41 -37.84 ± 1.28 -40.8 ± 0.45 -23 -73 -66.68 ± 2.38 -71.4 ± 1.67 -59
s4 -69 -65.44 ± 1.87 -68.0 ± 0.71 -46 -126 -122.75 ± 2.31 -123.2 ± 0.45 -117
s5 -71 -65.36 ± 3.36 -70.6 ± 0.55 -46 -128 -120.75 ± 3.03 -124.2 ± 3.03 -103

5 Conclusion

One of the most important aspects of applying population-based metaheuristics
to multimodal functions is identifying as much near-optimal solutions as possible
to analyze the underlying fitness landscape and understand the parameters of
the problem at hand. Thus, our method is significantly better than related evolu-
tionary algorithms and sets standard for future researchers working on EA based
PSP on triangular lattice models. As our proposed clustered algorithm is easily
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scalable in a grid or distributed architecture environment, it provides another
great advantage related to computational cost. The ability to continue evolu-
tion process in parallel helps faster exploration and then exploiting the cultural
knowledge guide the search process towards newer regions of the search space.
Comparison with actual global minimum energy, though, shows that our method
has limitations in finding the global minima for longer sequences. This can be
overcome partly by fine tuning the various memetic parameters and also by us-
ing specialized improvement operators which is being pursued actively within
the group. These studies are focused to see whether extracted memes can reflect
the secondary structures of proteins when considering elaborate energy models.

References

1. Agarwala, R., et al.: Local rules for protein folding on a triangular lattice and
generalized hydrophobicity in the HP model. In: Proc. SODA 1997, pp. 390–399
(1997)

2. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181,
223–230 (1973)

3. Bazzoli, A., Tettamanzi, A.G.B.: A Memetic Algorithm for Protein Structure Pre-
diction in a 3D-Lattice HP Model. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne,
D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf,
F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp.
1–10. Springer, Heidelberg (2004)
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6. Dal Palù, A., et al.: A constraint solver for discrete lattices, its parallelization, and
application to protein structure prediction. Software-Practice and Experience 37,
1405–1449 (2007)

7. Dawkins, R.: The Selfish Gene. Oxford University Press, New York (1976)
8. Dill, K.A., et al.: Principles of protein folding - A perspective from simple exact

models. Protein Science 4, 561–602 (1995)
9. Hart, W.E., et al.: Fast protein folding in the hydrophobic-hydrophilic model within

three-eights of optimal. In: ACM Symposium on Theory of Computing, pp. 157–168
(1995)

10. Hoque, M.T., Chetty, M., Dooley, L.S.: A Hybrid Genetic Algorithm for 2D FCC
Hydrophobic-Hydrophilic Lattice Model to Predict Protein Folding. In: Sattar,
A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 867–876. Springer,
Heidelberg (2006)

11. Hoque, M.T., et al.: Protein folding prediction in 3d fcc hp lattice model using
genetic algorithm. In: Proc. CEC 2007, pp. 4138–4145 (2007)

12. Islam, M. K., Chetty, M.: Novel Memetic Algorithm for Protein Structure Pre-
diction. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS, vol. 5866, pp. 412–421.
Springer, Heidelberg (2009)

13. Islam, M.K., et al.: Clustered Memetic Algorithm for Protein Structure Prediction.
In: Proc. CEC 2010, pp. 1–8 (2010)



A Memetic Approach to Protein Structure Prediction in Triangular Lattices 635

14. Jiang, T., et al.: Protein folding simulations of the hydrophobic–hydrophilic model
by combining tabu search with genetic algorithms. The Journal of Chemical
Physics 119(8), 4592–4596 (2003)

15. Kapsokalivas, L., et al.: Two Local Search Methods for Protein Folding Simulation
in the HP and the MJ Lattice Models. In: Proc. BIRD 2008, pp. 167–179 (2008)

16. Krasnogor, N., Blackburne, B.P., Burke, E.K., Hirst, J.D.: Multimeme Algorithms
for Protein Structure Prediction. In: Guervós, J.J.M., Adamidis, P.A., Beyer,
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Conflict Resolution Based Global Search Operators
for Long Protein Structures Prediction
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Abstract. Most population based evolutionary algorithms (EAs) have struggled
to accurately predict structure for long protein sequences. This is because con-
ventional operators, i.e., crossover and mutation, cannot satisfy constraints (e.g.,
connected chain and self-avoiding-walk) of the complex combinatorial multi-
modal problem, protein structure prediction (PSP). In this paper, we present novel
crossover and mutation operators based on conflict resolution for handling long
protein sequences in PSP using lattice models. To our knowledge, this is a pio-
neering work to address the PSP limitations for long sequences. Experiments car-
ried out with long PDB sequences show the effectiveness of the proposed method.

Keywords: crossover by conflict resolution, mutation by conflict resolution,
clustered memetic algorithm.

1 Introduction

Protein structure prediction (PSP) is one of the oldest and most challenging problems
in structural bioinformatics. Since native states of proteins can be determined with the
minimum free energy conformation [1], this implies that it is essentially a computa-
tional problem. Despite the research over past 30 years, no truly accurate ab initio
method exists to predict protein structures from amino acid sequence [5]. This is be-
cause our knowledge and computation power is simply insufficient to search the entire
search space of such a high complexity [6]. Since protein structures have an enormous
impact in medicine and pharmaceutical industry, researchers are interested in finding
near optimal in-silico solutions [5]. Evolutionary algorithms (EAs) are prominent for
finding such near-optimal solutions but they fail to succeed if the protein sequences are
long. Different EAs have been used to solve PSP problem including genetic algorithm
(GA) [15], ant colony optimization (ACO) [18], immune algorithm (IM) [2], estimation
of distribution algorithm (EDA) [17], and memetic algorithm [10,11,12]. A comprehen-
sive review on the advances on ab initio PSP on lattices with natural computing can be
found in [21]. So far, none of these EAs attempted to determine long protein structures
(greater than 150 amino acids) using their proposed methods.

Multi-modal PSP problem is also a constrained combinatorial problem as it needs
to find a sequence of moves so that the structure remains as a connected chain and
self-avoiding-walk (SAW) on a lattice [21]. This means that conventional crossover or
mutation operator may not necessarily be successful in all the cases as they do not
guarantee SAW. Moreover, the situation worsens when dealing with long protein se-
quences [11]. Again, success of crossover depends on the parents’ conformations and it

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 636–645, 2011.
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Fig. 1. (a) One possible conformation in HP model protein for the sequence PPPHPHHHHHP.
Topological contact for HH is shown in dotted line. Total energy for the conformation is −2 in HP
model because there are two HH contacts. (b) Table showing contact energy for HP model. (c) a
typical search space with three BOAs, β1, β2, and β3, and four different individuals are pointed as
x1, x2, x3, and x4. Individuals x1 and x2 are in basin β1 whereas x3 and x4 are in basin β3.

often fails due to reproduction error [16] (when parents come from two different basins
of attraction (BOA)) and twins [8] (same child as parent). Conventional mutation will
also have problem to form valid conformations due to the SAW constraint.

To overcome the problems of conventional crossover and mutation, in this paper we
propose a novel generic crossover technique (crossover-by-conflict-resolution) and a
mutation technique (mutation-by-conflict-resolution) for the constrained combinatorial
problem. The proposed crossover operator can produce valid child conformation irre-
spective of the parents’ structures with equivalent computational cost as needed for a
conventional operation. To the best of our knowledge, no previous attempts to solve
longer sequences on lattice models using population based EAs are reported. We have
especially focused on longer protein sequences (more than 200 amino acids studied
in [20]). The rest of the paper is organized as follows: Section 2 gives a little back-
ground of related topics; Section 3 explains proposed method; empirical results are
presented in Section 4 and finally the paper concludes with a short summary.

2 Backgrounds

This section provides a brief background on the on-lattice PSP problem and global
search operators.

2.1 PSP Using Lattice Models

A lattice-based PSP represents conformations of proteins as non-overlapping en-grafting
of the amino-acid sequence on a lattice. One of the most studied lattice models is the HP
model [4] where a protein’s primary structure is simplified as a linear chain of amino
acids identified as either H (hydrophobic) or P (polar);σ = {H, P}+. In HP model, when
two H residues are topological neighbour (TN) — not neighbour in the chain but neigh-
bour in the lattice — lowers the total energy by one (see Fig. 1(b)). Let ξ(Ai, A j) be the
contact energy in the HP model defined as
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ξ(Ai, A j) =

{−1, if Ai and A j are TNs and both are H residues;
0, otherwise. (1)

PSP using lattice model is an optimization problem, which searches for a conformation
in the given lattice (Fig. 1(a)) such that fitness of the conformation, in terms of total
contact energy, is minimized [17]. This optimization problem is now finally defined in
the following equation:

Minimize
∑
L−1
i=1
∑
L

j=i+1 ξ(Ai, A j)
given (A1, A2, . . . , AL) is a conformation on a lattice.

}
(2)

1: procedure GenerateChildren (P(t) = {xt
1, · · · , xt

P
}) � P(t) is the parent population set at iteration t

2: C(t) ← ∅
3: while Termination criteria T is NOT satisfied do
4: while True do
5: Select xi & x j randomly from P(t) where 1 ≤ i, j ≤ P and i � j
6: Initialize c � c will be the child generated from parent xi & x j

7: crossPoint ← Rand(1,L)
8: ret ← doCrossover(xi ,x j , ref c, crossPoint)
9: if ret =True AND c � P(t) then

10: C(t) ← C(t) ∪ c
11: break

Fig. 2. A generic framework for children generation using crossover operator

2.2 Global Search Operators

Crossover and mutation are mainly used to modify individuals where selection plays
vital role of controlling diversity in the population [14]. Here we mainly focus on the
effective modification of individuals in terms of information sharing; besides both op-
erators have to maintain the constraint of SAW and generate output in reasonably short
time. EAs e.g., genetic algorithm (GA) and memetic algorithm (MA), maintain a pop-
ulation to increase performance by sharing information directly between individuals.
This communication is achieved mostly by crossover operator [13]. Design purpose of
crossover operator is to communicate and construct individuals with building blocks
of the particular BOA where the solution converges; whereas the idea of mutation is to
disrupt an individual [7]. As the solution converges to local minima of a BOA, mutation
disrupts building blocks to divert the solution to another BOA. So, adaptive control of
the mutation rate is the key to control convergence [19].

3 Proposed Method

PSP being a constraint combinatorial problem a conventional crossover operator (e.g.,
1-point crossover, n-point crossover) or mutation operator cannot guarantee satisfying
combinational constraint namely SAW. We propose new crossover and mutation tech-
niques which will not only serve routine purpose of crossover and mutation but will
also satisfy the combinatorial constraint. The proposed crossover and mutation tech-
niques are termed as crossover-by-conflict-resolution (CCR) and mutation-by-conflict-
resolution (MCR) respectively.
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1: procedure CrossoverByConflictResolution (P1 = (a1, a2, · · · , aL), P2 = (b1 , b2, · · · , bL), ref C, p,
maxAttempts) � P1 & P2 are parents, C = child, p = crossover point, maxAttempts = maximum
allowable attempts

2: if attempts = 0 then � attempts is a global variable initialized to 0
3: for i = 1 to p do
4: Ci ← ai � ith element of child C is Ci
5: else if attempts = maxAttempts then
6: return False
7: if p = L + 1 then � L is the length of the and individual
8: return True
9: e← ∅ � Here e is the set of not allowed moves

10: f← GetPossible(Cp−1) � GetPossible(Cp−1) returns a set of all allowable moves from all possible
move set C based on Cp−1

11: repeat
12: attempts ← attempts + 1
13:

Cp ←
{

select({ap , bp} − e) if ({ap, bp} − e) = ∅ and rand ≤ α
select(f − e) otherwise

� select(A) returns any element of set A with equal likelihood. rand returns a uniformly distributed real
value from the range [0, 1).

14: if SatisfyConstraint((C1, · · · ,Cp)) = True then
15: C ← (C1 , · · · ,Cp)
16: if CrossoverByConflictResolution(P1, P2, ref C, p + 1) = True then
17: return True
18: e← e ∪ Cp
19: if f = e then
20: return False
21: until True

Fig. 3. Proposed crossover technique, crossover-by-conflict-resolution, for PSP

3.1 Conventional Crossover

Conventional crossover (CC) generates a set of children, C(t) = {ct
1, · · · , ct

|C|}, from the
parent population set, P(t), then merges the two sets (selection) into one population
of size P based on the best fitness value on a fast convergence architecture [14]. CC
operator works by selecting two parents P1 = (a1, a2, · · · , aL) and P2 = (b1, b2, · · · , bL)
using any random process (e.g., pure random selection, roulette-wheel selection [14])
from P(t). Parents are randomly split at a crossover point p and first part of the first
parent is joined with the second part of the second parent to make first child C1 =

(a1, a2, · · · , ap, bp+1, · · · , bL) and the second child is build from the first part of second
parent and the second part of the first parent, C2 = (b1, b2, · · · , bp, ap+1, · · · , aL). Then,
based on the fitness comparison of these two children, best one is considered as the new
child. It is necessary that the child generated in this way is verified for SAW. So it might
happen that, none of the children is a SAW. In algorithm DoCrossover shown in Fig. 2
performs this verification by returning true or false (line 8).

Analysis As the search begins, the individuals are not in their compact structures but as
the solution converges, they become compact because the conformation tries to form a
hydrophobic core [8]. So, combining two individuals to produce a new child often fails
for the following two reasons:

1. Parents from different BOA: If we chose parents, say x1 ∈ β1 and x3 ∈ β3 of
Fig. 1(c), where subsections of those individuals have less or no similarity, crossover
will fail to produce either a SAW or a fit individual when parts of them join with
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each other. This type of error is already identified in literature as reproduction er-
ror [16].

2. Parents from same BOA: If we chose individuals e.g., x1 ∈ β1 and x2 ∈ β1 of
Fig. 1(c), they, by definition of convergence in genetic like process, will have some
common parts in the individuals’ chromosome and they will remain unchanged for
rest of the convergence [7, 3]. An individual xi can be considered as a sequence of
moves xi = (a1, · · · , aLc). If we consider there are nm number of common parts,
ε1, · · · εnm , and each has a start and end position, εi : (asεi

, · · · , aeεi
), to identify

their location in a chromosome, where ∀i(eεi−1 < sεi < eεi < sεi+1 ). CC operator
will not change these segments , but will increase the number of these stable parts
when the two selected parents will have complementary section of part εi at the
crossover point. This implies that the number of different individuals possible from
the outcome of crossover will reduce subsequently, thereby increasing the number
of same child generation as the solution converges.

3.2 Conflict Resolution Based Crossover

The purpose of crossover is to share information of the two selected parents in the
offspring. There are a number of crossover techniques available in literature including
1−point crossover [7] to n−point crossover and a parametrized (P0) uniform crossover
[3, 19] which end up with either reproduction error or no way to explore new individ-
uals of the same BOA. To overcome these limitations, we propose a generic crossover
technique (see Fig. 3) ) by resolving conflict occurring due to a constraint.

Here, the procedure CrossoverByConflictResolution (see Fig. 3) is a recursive pro-
cedure which checks all possible allowable moves at a particular point with a higher
priority (α) to the moves that belong to either of the parents (line 13). If any move
violates the constraint, it is added to the “not-allowed” list e (line 18). As long as the
constraint is satisfied the algorithm moves forward to select the next move recursively
(line 16) and if e = f, obviously it means that the previous move was an incorrect move
so it goes back to previous call by returning False (line 20).

Analysis. The proposed CCR algorithm will always return in a finite time with ei-
ther True or False. When a successful crossover happens (p = L + 1), it generates
a child satisfying the constraint. Child generated by proposed algorithm sometimes do
contains genes (moves) which do not belong to any of its parents (conflict points) but
the child will still carry most of the information from its parents which is the main
goal of crossover [13]. This actually helps to overcome the most common problems of
conventional crossover:

1. Parents from different BOAs: If the parents are from different BOAs (e.g., x1 & x4

of Fig. 1(c)), this process will reduce reproduction error for the conflict resolution
process.

2. Parents from same BOA: If the parents are from the same BOA (e.g., x1 & x2 of
Fig. 1(c)), it will increase the possibility to generate new individual of that BOA.
As explained earlier, in CC, child of same BOA will have the common parts,
{ε1, · · · εnm}, and the rest of the genes will be chosen from either of the parents
in conventional crossover. If the total length of these fixed parts is m =

∑m
i |εi| and
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the total length of the chromosome (conformation) is L, then number of possible
different children of that BOA is ≤ 2 × (L − m) in CC. On the other hand the pro-
posed CCR technique opens up the scope to choose children from |f|L where f is
the set of all possible moves at a particular position (though parents’ moves have
higher priority). So, the proposed technique will have longer exploitation range in
the search space.

Given a protein of length L, 1-point CC needs on an average O(L/4) time to verify
a SAW (only needs to verify SAW for shorter segment) whereas the proposed CCR
method has a complexity of at least O(L/2) (considering all first moves are valid) and
at max (2L + |C|) as maximum attempts are set to 2L. If we consider an exhaustive CC
where all possible crossover points (L−1) will be taken serially, the total complexity will
be (L − 1) ×O(L/4) = O(L2/4). To make it computationally equal, proposed technique
can have at least approximately L/8 runs ( L

2/4
2L+|C|) ≈ L/8). Thus, a single run of CCR is

equivalent to 8 runs of 1-point crossover. In general, it can be shown that a single run
of CCR is equivalent to 4(n+ 1)/n runs of n-point crossover. In other words, this means
that less number of runs can be applied to CC with the increase of crossover points to
make it equivalent to CCR.

3.3 Conflict Resolution Based Mutation

In PSP problem when the solution converges, the structures become more compact as
hydrophobic amino acids attempt to form a hydrophobic core. But as the individuals
become compact, it gets difficult to mutate them due to SAW constraint. Hence, instead
of regular mutation, we propose a mutation-by-conflict-resolution (MCR). The algo-
rithm is similar to the crossover one (see Fig. 3) where only one parent is present and
priority will be given to parent genes except at the point of mutation where a gene will
be chosen other than the parent’s gene. In this way, the generation of individual will
not be equivalent to a conventional single point mutation; rather it will be similar to
macromutation where a number of genes will be mutated to satisfy the constraint (e.g.,
SAW).

Based on type of encoding, mutation plays different role in PSP. Two main stream
of encodings used for PSP problem in lattice models are absolute and relative encod-
ing [11, 12] though there exists a better encoding in terms of reduction of unwanted
variation, non-isomorphic encoding [9]. For absolute encoding mutation just change
direction at the point of mutation whereas in relative encoding mutation rotates the
structure from the point of mutation (shown by example in [8]). This means that muta-
tion in relative encoding will have higher mobility than mutation in absolute encoding.
For this, mutation in relative encoding will be more difficult than mutation in absolute
encoding.

4 Results

To test the performance of proposed techniques, a simple memetic algorithm (SMA) ar-
chitecture (P(t)→ LS (pull move, mutation based)→ P′(t)→ GS (crossover(P′(t)))→
C(t) → selection(P′(t),C(t)) → P(t + 1)) has been used. Based on the experimental
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Fig. 4. Sensitivity test for α

result, a reasonable combination of the parameter values are applied on our previously
proposed more robust EA framework, clustered memetic algorithm (CMA) [11, 12].

4.1 Crossover

To choose a suitable value for α which determines the amount of priority that will be
given to parents’ moves, we have run a sensitivity test on α— run crossover for each of
the possible values of α, on each of the possible crossover points; and record how many
new children can be successfully produced from a given number of parent sets (6 in our
case). A population size of 4 is maintained in SMA. In each iteration t, we run CCR on
6 possible parent pairs with α = (0, 0.1, · · · , 1) and for each value of α CCR has been
done at (1, 6, 11, · · · , �L/55) points and number of successes are recorded. A success
is defined as a new valid conformation that does not exist in the existing population. A
surface plot (see Fig. 4) has been taken for the number of average success for iterations
6 to 15 found by applying CCR on PDB 1BQS [20] on a 2D square lattice. Fig. 4 shows
that if α is too high (100% − 90%) crossover fails most of the time and for rest of the
values of α, no such influence on success. Another important finding came out from the
experiment — success rate is higher when crossover point lies in the first half of the
sequence or at the end of the sequence.

Complexity of CC and CCRα=0.5 are equalled by running 1-point CC sequentially for
all point n and CCRα=0.5 for n/8 times. Whenever a valid child is found using any of the
methods, it is locally optimized using steepest ascent local search with pull moves. As
a performance measure of the CCRα=0.5 and 1-point CC, the number of successful child
generated from same set of parents is calculated. For experiment, following parameters
are considered: population size = 4, number of crossover per iteration = 6, maximum
iteration = 100, α = 0.5 in a SMA. Simulation terminates when either both of the
crossovers fails to produce a success on a particular iteration, or iteration count reaches
to maximum iteration. In the experiment we have used two long sequences (PDB 1B0F
(218 length) and PDB 1BQS (209 length)) from [20] on a 2D square lattice. The lat-
tice is chosen because it has the lowest degree of freedom (4 possible directions only)
which ensures that in each BOA, there will be the lowest number of possible individuals
among all other lattices. The number of success is also a measure of the capability of
exploitation of the basin. Results are shown in Fig. 5. Average number of success for
CC is 0.25 and for CCR is 3.06 in Fig. 5(a) whereas 0.11 and 2.4 respectively for CC
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Fig. 5. Crossover features analysis of conventional (CC) and proposed (CCR) techniques in terms
of success. Success for PDB 1B0F is shown in (a) and for PDB 1BQS in (b).

and CCR in Fig. 5(b), out of the 6 tries. So, the expected success from CCR is almost
45.5% (3 success out of 6).

4.2 Mutation

To closely observe the relationships and differences between mutations using absolute
encoding and relative encoding, we have applied 50 mutations at each iteration on same
individual in a SMA architecture where population size is 2. We have tested the perfor-
mance for the long protein sequence PDB 1B0F on a 2D square lattice model between
traditional mutation and proposed MCR. From Fig. 6(a), it is clear that mutation us-
ing relative encoding takes longer time than mutation using absolute encoding which
actually supports our theoretical analysis (see Section 3.3). It also suggests that MCR
takes relatively less time than conventional mutation. Fig. 6(b) suggests that different
mutations do not show any significant impact on fitness value. The time shown here in
Fig. 6 is the total time where fitness is the average of the 50 mutations taken at each
iteration.

4.3 CMA with Long Proteins

Finally, an experiment has been carried out with our proposed CMA [11, 12] where
divide and conquer based niching technique has been introduced using a number of
preliminary clusters and a main cluster. Domain knowledge of a BOA, where each
preliminary cluster converges due to genetic drift, in the form of substructures (memes)
are passed to main cluster. Main cluster utilizes this domain knowledge to exploit the
BOAs and effectively uses the substructures. In main cluster, the CCR is used in place
of CC; and in preliminary clusters, CCR is applied only when CC is failed. MCR is used
throughout the simulation in place of conventional mutation. Results are shown for long
protein sequences on different lattices in Table 1. Note that we have not concentrated on
the extensive simulation here instead focus was on incorporating our proposed methods
with CMA. For that, only five long HP sequences found in [20] are tested for all four
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Fig. 6. Effect of different mutation techniques on an individual for PDB 1B0F is shown here. (a)
and (b) show time and fitness analysis for the individual.

Table 1. Performance analysis for CMA on different lattices. Ebest is the best result and Eavg(μ±σ)
is the average and standard deviation taken from 5 runs.

2D Square 2D Triangular 3D Cubic FCC
PDB ID Len Ebest Eavg(μ ± σ) Ebest Eavg(μ ± σ) Ebest Es−1(μ ± σ) Ebest Eavg(μ ± σ)
1B0F 218 -95 -90.6± 3.05 -187 -183.4 ±2.70 -162 -153.4± 6.80 -385 -382.4 ±2.07
1BQS 209 -86 -78.2± 4.38 -165 -158.8± 3.63 -135 -131.6± 2.19 -334 -329.2± 4.87
1CWR 211 -56 -54± 1.41 -106 -103.6± 1.82 -94 -89.2± 3.11 -224 -222.4± 1.67
1NQC 217 -64 -61.2± 1.64 -136 -125.6± 6.15 -112 -107.8 ±3.35 -274 -265.8± 6.30
1RTG 210 -73 -70.2± 1.92 -145 -142.6± 1.82 -128 -122.4 ±4.04 -359 -312.8± 25.96

prominent lattice models [12]. All the result shown in Table 1 based on 5 simulation
runs only and have the following CMA parameters — population size = 4, number of
preliminary cluster = 5, maximum main cluster iteration = 100. Results with extensive
simulation will be shown in our future work.

5 Conclusion

Protein structure prediction on lattice models is both multi-modal and constraint com-
binatorial problem. By using different niching techniques population based EAs handle
multi-modality of a problem efficiently but no effective method is present to handle
constraint. The conventional crossover operator which is considered as an effective way
to transfer information will not work for the constraint problem like, PSP. This paper
points out the reasons of this failure and proposed an effective way to handle this. The-
ory and experiment suggest that for the first few iterations CC shows good results but as
the structures get into their compact state it fails whereas proposed one brings success.
Though proposed mutation does not have any significant effect still it takes relatively
less time.
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Abstract. This paper presents a study for investigating the feasibility
of applying personalised modelling on single nucleotide polymorphisms
(SNPs) data for disease analysis. We have applied our newly developed
integrated method for personalised modelling (IMPM) on a real-world
biomedical classification problem, which makes use of the SNPs data for
crohn’s disease prediction. IMPM method allows for adaption and moni-
toring an individual’s model and outperforms global modelling methods
for the SNPs data classification. Personalised modelling method produces
a unique personalised profiling for an individual, which holds the promise
of a new generation of analytical tools that can be used for personalised
treatment.

Keywords: Integrated method for personalised modelling, IMPM, SNPs,
evolutionary computation.

1 Introduction

Being able to accurately predict an individual’s disease risk or drug response
and using such information to personalised treatment is a major goal of clinical
medicine in the 21st century. With the advancement of microarray technolo-
gies, collecting personalised genetic data on a genome-wide (or genomic) scale
has become quicker and cheaper [1]. Such personalised genomic data may in-
clude: DNA sequence data (e.g. Single Nucleotide Polymorphisms (SNPs), gene
sequence, protein expression data, etc. Many world-wide projects have already
collected and published a vast amount of such personalised data. For example,
Genome-wide Association Scan (GWAS) projects have so far published for over
100 human traits and diseases and many have made data available for thousands
of people.

However, conventional approaches in medical statistics and computing (or
bioinformatics) are not designed to fully utilise the available data banks and
incorporate genetic, clinical, environmental, nutritional data to accurately pre-
dict the clinical outcome for an individual patient and use this information in
clinical practice. We have recently developed an integrated optimisation method
for personalised modelling (IMPM) [2] at dealing with such tasks. The dataset
available in UK WTCCC data bank (http://www.wtccc.org.uk) is used in this

B.-L. Lu, L. Zhang, and J. Kwok (Eds.): ICONIP 2011, Part I, LNCS 7062, pp. 646–653, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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study, which includes multivariate personalised data of DNA SNPs and clinical
variables. If this case study is successful, this approach will be used for the de-
velopment of a prognostic system to accurately predict clinical outcomes and
appropriate treatment of Crohn’s disease (CD) patients in New Zealand and
will be further applied for other diseases.

2 Background and Related Work

2.1 Crohn’s Disease

Crohn’s disease (CD) is a chronic and debilitating autoimmune disorder of the
gastrointestinal tract. It is a major subtype of inflammatory bowel disease (IBD)
which is diagnosed endoscopically and characterized by recurring episodes of ab-
dominal pain, diarrhoea and weight loss. As a consequence of ongoing inflamma-
tory “flares”, a large number of CD patients will develop strictures and fistulae
during the course of disease which can seriously impact the quality of life and
often requires surgery [3]. The incidence of CD is increasing dramatically in
industrialised countries worldwide, including New Zealand [4,5].

Unfortunately, there is currently no completely effective clinical strategy for
treating crohn’s disease. Current treatment paradigms used in the clinic are
the so-called “step-up” and “top-down” approaches. Whether or not a patient
should be given step-up or top-down treatment for IBD is a controversial topic in
clinical gastroenterology. The main issue is that it is difficult to accurately predict
which of the two approaches will provide the favorable outcome for an individual
patient. The inheritance risk probability of Crohn disease is unclear, because
a variety of genetic and environmental factors are reported to be involved in
literature. Therefore, using accurate predictive tools to identify high-risk patients
and give personalised treatment is a major goal for clinicians in CD research.

2.2 SNPs Data Analysis

SNPs genotypes are of great importance for understanding of the human genome,
and are the most common genetic variations between human beings. On average,
SNPs occur in nucleotides at the rate of 3 ∼ 5%, which means approximately
10 million SNPs occur in human genome. SNPs are found in the DNA among
genes, and most of them have no effect on human health or disease development.
However, when SNPs occur within a gene or in a regulatory region near a gene,
they may have a direct impact on disease development through affecting genes
function. Therefore, some SNPs act as biomarkers that allow scientists to locate
the genes associated with disease.

At present, there is no effective way to measure how a patient will respond to
a particular drug treatment. In many cases, a treatment can be effective for a
group of patients, but is not effective for others at all. The knowledge discovered
from SNPs study can help researchers build clinical decision support systems
to predict an individual’s response to certain drugs and environmental factors
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(e.g. toxins) and the risk of particular disease development. Also, SNPs offer a
new way to track the inheritance of disease genes within societies, especially for
studying complex diseases, such as CD, cancer and diabetes.

3 The IMPM Method

We applied our newly developed method (IMPM) [2] for personalised modelling
and its implementation for CD risk evaluation using SNPs data in this study.
IMPM creates a personalised model for a new input vector and then optimises
the aspects of the personalised model (features, neighbouring samples and model
parameters) in terms of the training performance achieved from the local neigh-
bourhood of the sample. Next, a personalised model and personalised profile are
derived using the selected features and the neighbouring samples with known
outcomes. The new sample’s profile is compared with average profiles of the
other outcome classes in the neighbourhood (e.g. good outcome, or bad outcome
of disease or treatment). The difference between the new sample’s and average
profile’s important features may need to be modified through treatment if it is
possible. Figure 1 illustrates a functional block diagram of IMPM.

( 1 ) Data 
( 4 ) Kx  nearest 

neighbour
selection and Dx

creation 

( 3 ) Vx feature
selection 

----------------- 

( 5 ) Feature
ranking Wx 

( 6 ) Model Mx
creation and 

model accuracy 
Ax evaluation 

( 7 ) Personalised 
profiling and 
improvement 

scenarios design 

( 2 ) New 
input 

vector x 
Output 

Local Error E 

Local Error E 

Fig. 1. A functional block diagram of IMPM

Algorithm 1 briefly summarises IMPM method. Procedures 3-8 are repeated
a number of iterations or until a desired local accuracy of the model for a local
data set Dx is achieved. The optimised parameters of the personalised model
Vx, Kx and Dx is global and can be achieved through multiple runs using an
evolutionary algorithm (EA).

Initially, the assumption is made that all q variables from a set V have equal
absolute and relative importance for a new sample x in relation to predicting its
unknown output y. The numbers initially for Vx and Kx may be determined in
a variety of different ways without departing from the scope of the method. For
example Vx and Kx may be initially determined by an assessment of the global
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Algorithm 1. IMPM algorithm
1: Data collection, data filtering, storage and update;
2: Compiling the input vector for a new patient x;
3: Select a subset of relevant variables (features) Vx to the new sample x from a global

variable set V ;
4: Dx = fsel(Kx, Vx) | Kx ∈ D, Vx ∈ V ;

// Select Kx samples from the global data set D and form a neighbourhood Dx of
similar samples to x using the variables Vx;

5: Wx = frnk(Dx, Vx)
// frnk is a ranking function for ranking Vx variables within Dx in order of impor-
tance to the outcome, and Wx is a weight vector;

6: Mx = F (Px, Vx, Dx)
Px is a set of model parameters, F is a function for training and optimising and
Mx is a candidate model;

7: Generating a functional profile F(x) for the person x using the selected variable
set from Vx, along with the average profiles of the samples from Dx belonging to
different outcome classes, e.g. Fi and Fj ;

8: Performing a comparative analysis between F(x), Fi and Fj to identify the variables
V ∗

x | V ∗
x ∈ Vx are the most important for the person x if a treatment is needed.

dataset in terms of size and distribution of the data. Minimum and maximum
values of these parameters may also be established based on the available data
and the problem analysis. A classification or prediction module is applied to
the neighbourhood Dx of Kx data samples to create a personalised candidate
model Mx using the already defined variables Vx, variable weights Wx and a
model parameter set Px. Principally, any types of classification or prediction al-
gorithms can be used, such as: KNN; WKNN; TWNFI [6], etc. A local accuracy
(local error Ex), that estimates the local accuracy of the personalised prognosis
(classification) for Dx using the obtained model Mx. This error is a local one,
calculated in the neighbourhood Dx, rather than a global accuracy, that is com-
monly calculated for the whole problem space D. The local error can be used
for model optimisation and is calculated as follows:

Ex =

Kx∑
j=1

(1 − dxj) · Ej

Kx
(1)

where: dxj is the weighted Euclidean distance between the new testing sample x
and training sample sj from Dx, which takes into account the variable weights
Wx; Ej is the error between the outcome predicted by Mx for sample sj and its
real output.

The model obtaining best accuracy is stored for the purpose of a future im-
provement and optimisation. The optimisation procedure iteratively returns to
all previous procedures to select another set of parameter values for the pa-
rameter vector Px until the model Mx with the best accuracy is achieved. The
method also optimises parameters Px of the classification/prediction procedure.
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Once the optimal model M∗
x is derived, an output value y for the new input

vector x is calculated using M∗
x . After the output value y for the new input

vector x is calculated, a personalised profile Fx of input vector x (a patient)
will be derived and assessed against possible desired outcomes for the scenario.
The ability offering the unique profiling is a major novelty of this personalised
modelling method. The profile Fx of new sample x can be formed as a vector:

Fx = {Vx, Wx, Kx, Dx, Mx, Px, t} (2)

where t represents the time of the model Mx creation. At a future time (t + Δt)
the person’s input data will change to x∗ (due to changes in variables such as
age, weight, protein expression values, etc.), or the data samples in the data set
D may be updated and new data samples are added. A new profile F′

x derived
at time (t + Δt) may be different from the current Fx.

The average profile Fi for every class Ci in the data Dx is a vector containing
the average values of each variable of all samples in Dx from class Ci. The
importance of each variable (feature) is indicated by its weighting in the weight
vector Wx. The weighted distance from the person’s profile Fx to the average
class profile Fi (for each class i) is defined as:

D(Fx, Fi) =
v∑

l=1

|Vlx − Vli| · wl (3)

where wl is the weight of the variable Vl calculated for the data set Dx.
In order to find a smaller number of variables, as global markers that can

be applied to the whole population X , IMPM repeats step 2 - step 7 for every
individual x. All variables from the derived sets Vx are then ranked based on their
likelihood to be selected for all samples. The top m variables (most frequently
selected for individual models) are taken as a set of global set of markers Vm.
The steps 1-8 will be applied again with the use of Vm as initial variable set
(instead of using the whole initial set V of variables). In this case personalised
models and profiles are obtained within a set of variable markers Vm that would
make treatment and drug design more universal across the whole population X .

4 Experiment Setup

4.1 Data

The raw SNPs data used for Crohn’s disease (CD) prediction is accessible from a
UK’s public data bank - Wellcome Trust Case Control Consortium (WTCCC).
The raw SNPs data is originally used in genome-wide association (GWA) studies
of 14,000 cases of 7 major diseases and a shared set of 3,000 controls [7]. Our
work is a feasibility investigation of personalised modelling on SNPs data for CD
prediction, in which a pre-processed subset from raw SNPs data is used. This
subset is suggested to be evaluated for computational modelling by the experts
and data provider. The SNPs data used in this experiment contains 106 samples
(49 controlled samples vs. 57 diseased samples). Each sample is represented by
44 features (42 SNPs plus 2 clinical factors).
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5 Experiment Result and Discussion

In this case study, all the experiments are carried out on a PC with Matlab
environment. The same SVM algorithm is used for classification in this case
study for a fair comparison. The SVM classification model is derived from the
widely used LibSVM package [8].

5.1 IMPM vs. Global SVM

The experiment consists of two modelling techniques for SNPs data analysis: (1)
global SVM modelling; (2) personalised modelling (IMPM). The classification
accuracy obtained by global SVM modelling on the SNPs data is 70% (class
1: 63%, class 2: 75%). The optimised parameters for global SVM model are:
c=200, γ = 0.01. IMPM, as the personalised modelling method produces a
better classification accuracy than the global SVM model, which achieves 73%
classification accuracy (class 1: 76%, class 2: 70%). More importantly, it provides
a unique model for each testing sample.

It is clear that we can extract useful information and knowledge from the
experiment using IMPM method over this SNPs dataset:

1. The average number of selected features is around 17;
2. The average size of personalised problem space (neighbourhood) is 70;
3. Age is an important clinical factor for crohn’s disease prediction, which has

been selected 98 out of 106 times.
4. Four SNPs are more frequently selected than others (i.e. they are more in-

formative in terms of crohn’s disease prediction).
These 4 SNPs are: X10210302 C, X17045918 C, X2960920 A, X7970701 G.

The discovered information and knowledge are of great importance to create a
profile for each patient sample, and can be helpful for tailored treatment design
and drug response and unknown types of disease diagnosis.

5.2 Reproducibility Evaluation

The main goal of this experiment is to evaluate the reproducibility of IMPM for
SNPs data analysis. Here we are interested in whether the proposed personalised
modelling based method is capable of producing highly consistent outcome for
one sample? More specifically, this experiment is aiming to answer the questions:

1. What is the performance of proposed personalised modelling based method
using global optimisation?

2. What is the variance of the local accuracy calculated from the global opti-
misation?

3. What is the frequency of each features to be selected during this experiment
(20 runs)?

4. How many features should be selected for a successful prediction in general?
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Hence, we randomly select one sample (sample 392) from the SNPs data and
perform IMPM on it for 20 runs. IMPM creates an applausable prediction out-
come: the prediction for sample 392 is always correct through all 20 runs. The
average local accuracy for this sample through 20 runs is 82.45%. In addition,
the personalised modelling method seems to work effectively on sample 392, as
the computed local accuracy through 20 runs is very stable - the highest one is
83% and the lowest is 81%.

Figure 2.a illustrates the selecting frequency of each feature for testing sample
392 during 20 runs. Here Age is still selected as an important feature for CD
prediction, as it has been always selected in 20 runs. The next top 5 selected
features are:

Feature Id SNP Id Selecting frequency(/20times)
20 X4252400 T 19
24 X2155777 T 18
12 X7683921 A 14
9 X2270308 T 13
23 X10883359 G 13

It seems that SNP X4252400 T and X2155777 T are two decisive factors for
predicting CD risk specifically for sample 392.

Figure 2.b summarises the number of selected features in each run. It is easy
to elicit that using approximately 15 ∼ 16 SNPs plus the feature of Age could
lead to the successful prediction for sample 329. This finding is in agreement
with the previous outcome from the experiment reported in last section.
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Fig. 2. An example: The experimental results of sample 392 of SNPs datga for CD
prediction

Personalised modelling based method works consistently well on a sample
(#392) for CD risk prediction. The prediction outcome is reliable and the local
accuracy is reproducible. For personalised medical treatment design, this study
suggests that our method should run several times over the testing sample, to
find the most informative features (SNPs) through different runs, i.e. the most
commonly selected features in different testing runs.
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6 Conclusion and Future Direction

In this paper, we have demonstrated the strength of personalised modelling over
global modelling for Crohn’s disease classification over this specific SNPs data.
The experiment clearly shows that the proposed integrated method for person-
alised modelling (IMPM) has a major advantage, when compared to global or
local modelling. The proposed IMPM leads to a better prognostic accuracy and
a computed personalised profile. With global optimisation, a small set of vari-
ables (potential markers) can be identified from the selected variable set across
the whole population. This information can be utilised for the development of
new efficient personalised treatment or druges.

Our current efforts are on the interdisciplinary collaboration from medicine
and computer science for the modelling development of personalised risk proba-
bility evaluation. Despite the improved outcome produced by our IMPM method,
the method still needs to take into account the probability of risk evaluation.
Such risk probability evaluation can be more accurate and realistic for real world
biomedical analysis problems.
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Lea and his research team at Environmental Science & Research (ESR) institute
in New Zealand, who provided the pre-process SNPs data.
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Improved Gene Clustering Based on Particle Swarm 
Optimization, K-Means, and Cluster Matching 

Yau-King Lam, P.W.M. Tsang, and Chi-Sing Leung 

Abstract. Past research has demonstrated that gene expression data can be 
effectively clustered into a group of centroids using an integration of the 
particle swarm optimization (PSO) and the K-Means algorithm. It is entitled 
PSO-based K-Means clustering algorithm (PSO-KM). This paper proposes a 
novel scheme of cluster matching to improve the PSO-KM for gene expression 
data. With the proposed scheme prior to the PSO operations, sequence of the 
clusters’ centroids represented in a particle is matched that of the corresponding 
ones in the best particle with the closest distance. On this basis, not only a 
particle communicates with the best one in the swarm, but also sequence of the 
centroids is optimized. Experimental results reflect that the performance of the 
proposed design is superior in term of the reduction of the clustering error and 
convergence rate. 

Keywords: Gene clustering, K-Means, Particle Swarm Optimization (PSO), 
PK-Means, Vector Quantization (VQ). 

1   Introduction 

Gene clustering becomes popular nowadays because of matured microarray 
technology and increasing power of computing. In the DNA microarray experiment, a 
numerical value of gene expression level in dataset can be attained from the well-
prepared the genes of interest through the laser excitation of hybridized targets and 
software [1]. Microarray technology allows monitoring huge amount of gene 
expression level simultaneously for whole genome though a single chip only [2]. 
There is a demand to observe and analyze interactions among thousands of genes in 
the massive data sets. A cluster analysis plays an important role to extract useful 
information from the massive raw data. Techniques of class prediction and discovery 
are discussed [3] in order to intend for applying to mining significant biological 
process of genome or organ. 

Many proposed gene clustering techniques have been reviewed and surveyed 
recently [4]. The types of these techniques include partitive techniques (such as K-
Means and Genetic K-Means Algorithm), neural network techniques (such as Self-
Organizing Map) and Graph theoretic methods. State of the art applications invoke 
certain limitations documented in the literature. For example, new hybrid techniques 
developed for gene clustering has been slow because of the increased algorithmic 
complexity. It is not easy to choose suitable method(s) for a given gene expression 
dataset. However, a classic K-Means [5] is still one of popular methods to cluster 
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gene expression data effectively in which we are interested. The drawback of K-
Means is well known that it is easy to be trapped in local optimized results early. In 
order to improve performance of K-Means, some advanced evolutionary algorithms 
based on K-Means are proposed, such as, PK-Means [6] which is integration of 
Particle Pair Optimizer [6] and K-Means clustering algorithm. The clustering results 
of the evolutionary algorithm outperform that of K-Means due to a factor of 
exploration added. It is found that the algorithm may not give an insight into the 
problem of sequence of the clusters’ centroids represented in the particle position. 
Although a particle can find a better position by sharing information with the best 
particle position, an arbitrary sequence of the centroids may lead to diverge the 
clustering results contained in the particle position probably. We find that there 
should be certain relationship amongst the clusters between the two particles. After 
we have an insight to this interesting observation, we propose a novel method called 
cluster matching, which is an extra step to match and rearrange the sequence of 
clusters in the particle swarm optimization based K-Means clustering algorithm, to 
enhance the clustering results further. Each cluster’s centroid in a particle will match 
its corresponding centroid in the best particle by the closest distance. As a result, not 
only a particle can learn from the best particle, but also communication can be done in 
the level of clusters’ centroids contained in the particle position. 

This paper is presented as follows. Section 2 describes an overview of the PSO-
based K-Means clustering algorithm (PSO-KM). In section 3, a novel scheme of 
cluster matching, which is used to enhance the PSO-KM, will be described with 
illustration. This is followed by the experimental evaluation on the proposed scheme 
to show its significance in the following section. The proposed method has been 
compared with the original version of PSO-KM, the classic K-Means algorithm and a 
newer gene clustering algorithm (PK-Means). A summary of key features is drawn in 
the final section. 

2   The PSO-Based K-Means Clustering Algorithm (PSO-KM) 

The PSO-based K-Means clustering algorithm, named as PSO-KM hereafter, is the 
integration of the particle swarm optimization (PSO) [7] and the classic K-means 
clustering [5]. The former is used to explore the clusters’ centroids contained in a 
particle position and the latter is used to exploit the centroids for a clustering result.  

For representation of the clustering problem in the PSO algorithm, each particle 

position niX,  consists of K clusters’ centroids, each of which is a D-dimensional 

vector, as follows, 

 
( )1,,1,,0,,, ,,, −= Knininini zzzX  , (1) 

where n is the iteration number for the i-th particle position. The velocity vector niV ,  

of this particle towards its next position is denoted by  

 ( ) ( )ninininini XGrcXPrcwVV ,22,,11,1, −+−+=+  , (2) 
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where w  is the inertia weight;
niP,

 is the best position of the particle; G  

represents the globally best position for the whole swarm; 1c  and 2c are called 

acceleration factors; 1r  and 2r are two random numbers within [ )1,0 . After the 

velocity is updated, it is limited to prevent from being in excess of its maximum 
velocity if any. With the velocity vector available, the particle position is updated by 

 1,,1, ++ += ninini VXX  . (3) 

In order to search the clustering solution locally, one K-Means iteration is 
performed to the particle position followed and its fitness is evaluated. An overview 
of the whole algorithm is depicted in Fig 1. 

 

Fig. 1. Summarized steps of the PSO-KM 

The objective of the partitioning process is to minimize the error by Mean Squared 
Error (MSE), which is used to measure the compactness inside the clusters, as 
follows:  
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where 
iy is a data point i , jz is its cluster’s centroid and j

C is its cluster. 

3   The Proposed Scheme for the PSO-KM Algorithm 

The novel method is proposed to increase the quality of exploration conducted by PSO 
operations. The method is named as Clusters' Matching (CM). This is an extra step, 
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which consist of sequence matching and rearrangement, inserted before conducting the 
PSO operation (according to Eqs.(2) and (3)) of the PSO-KM. This kind of the clustering 
scheme is referred to as “PSO-KM(CM)”. The First step is to match sequence of the 
clusters, contained in the particle position, with reference to the clusters in the position of 
the global best by the nearest distance. The same thing is done again for the particle best 
position and the global best position which is kept as the reference. Totally, there are two 
passes of the sequence matching. It aims to raise the quality of exploring region around 
the two matched clusters which came from the particle position (or its best position) and 
the global best position. (It is noted that storage order of clusters contained in a particle is 
not important as a potential solution.)  

The key steps of the matching are noted as follows. First, the “Nearest” matrix is 
constructed as shown in Fig. 2. There are clusters in the current particle position in the 
column and the clusters in the global best position in the row respectively. There can 
be any possible matching order between the row and the column. An example of 5 
clusters for the matching results is illustrated as shown in Fig. 3. The marker 
“Nearest” is placed in the cell between the two clusters with the closest distance to 
indicate the match; other combinations are blocked shown by the marker “X”. This 
kind of the matching will be repeated until all have been matched. Here, the greedy 
strategy is applied to the matching process. Consequently, the matching results are 
shown in the Fig. 3. The clusters’ pair is one-to-one matching and unique. This is the 
matching between the particle position and the global best; another matching between 
the particle best and the global best is done in similar manner. 

 
 The global best position 
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  Cluster 0 Cluster 1 Cluster 2 … Cluster (K-1) 

Cluster 0           

Cluster 1           

Cluster 2           

…           

Cluster (K-1)           

Fig. 2. The “Nearest” matrix constructed for matching K centroids in both particle position and 
its reference position (The matching not started yet at that time) 
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  Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Cluster 0 X X Nearest X X 

Cluster 1 X Nearest X X X 

Cluster 2 Nearest X X X X 

Cluster 3 X X X X Nearest 

Cluster 4 X X X Nearest X 

Fig. 3. An example of matching 5 clusters from the matching results obtained by the “Nearest” 
matrix 
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The second step of the proposed method is sequence rearrangement depicted by 
using the above example as follows. As the matching results are available, the 
sequence of the clusters contained in the current particle position is rearranged 
according to the matching results. It is illustrated in Fig. 4. It is reminded that the 
information inside the particle is unchanged. 

 

Fig. 4. The difference in the sequence of the clusters contained in the particle position before 
and after the rearrangement 

The overview of the proposed scheme is illustrated in Fig. 5.  

 

Fig. 5. The proposed scheme for matching clusters’s centroids before PSO operation 

4   Experimental Evaluation 

Two popular gene expression datasets, which are Lymphoma [8] and Yeast cell-cycle 
[10], are chosen to evaluate the proposed method. The missing values in the test 
samples are rectified by the KNN algorithm [9]. 

Performance of the proposed method is compared against its general version of the 
PSO-KM, the classic K-Means and the PK-Means [6].  The methods are applied to 
cluster the dataset into 256 clusters. To obtain reliable statistics, a total of 10 repeated 
trials for the data sets and the schemes are conducted. Experimental settings of the 
PSO-KM schemes are described in Table 1. 

Initial values of the velocity and its maximum velocity are set to be the dynamic 
range of each dimension respectively. For the K-Means experiment, the termination 
criterion is set to be the change of the MSE less than 0.001. The effects of the 
parameters in Table 1 are discussed as follows. The w  is set to be a typical value 
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between 0 and 1. General values of 1c and 2c  are about 2 for the general PSO, but 

there requires smaller values for clustering algorithm. It can be referred to PK-Means 
[6]. The two values are tuned by experiment. The swarm size of PSO is relatively 
small generally and it also works for clustering. 

Table 1. Key experimental settings for the PSO-KM and the PSO-KM(CM) schemes 

Parameters Values 

Swarm size 4 

w  0.7 

1c  0.2 

2c  0.2 

No. of maximum iterations 40 

 
The results of the MSE performance for the methods are listed in Table 2. It can be 

seen that the results of the classic K-Means clustering is the weakest for the test sets 
(The lower MSE value, the better result). The results of the PSO-KM get improved.  
The newer gene clustering scheme PK-Means [6] improves the clustering results 
further. The proposed PSO-KM(CM) amongst the methods is the optimized one.  

Table 2. Clustering results of the schemes in term of MSE 

Scheme No. of iterations MSE 
 (lymphoma data) 

MSE  
(yeast cell-cycle data) 

K-Means 14 24.468 5.853 
PSO-KM 40 22.067 5.636 
PK-Means 52 21.474 5.532 
PSO-KM(CM)  40 21.207 5.466 

 
 

The average variation of the MSE performance over iterations of the schemes with 
the data sets, obtained in a 10 typical runs, are shown in Fig. 6 and 7 respectively. 
From the results depicted in Fig. 6 and 7, it can be seen that the MSE of the K-Means 
algorithm converges faster mostly amongst all the methods. It is because of simplicity 
and efficiency of the classic K-Means. However, the MSEs for the two kinds of PSO-
KM enable to last to improve the MSE quality further. Although they can converge at 
similar time in term of iteration, the proposed method has capability of searching an 
optimal solution outstandingly at early stage in about the 7-th iteration. It is noted that 
PK-Means algorithm is converged slowly in time (second) due to 3 K-Means 
iterations conducted in a PK-Means iteration. Finally, the proposed method of the 
PSO-KM(CM) can provide the best solution.  
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MSE plot of the schemes in lymphoma data
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Fig. 6. MSE plots with iterations of the schemes in lymphoma data 

MSE plot of the schemes in yeast cell-cycle data
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Fig. 7. MSE plots with iterations of the schemes in yeast cell-cycle data 

5   Conclusion 

Gene cluster analysis is the first step in discovering the function of gene in 
bioinformatics. Although there are many clustering methods developed, K-Means is 
one of the popular methods for common gene clustering due to its simplicity. Later, 
evolutionary algorithm, such as Particle Swarm Optimization (PSO) is incorporated 
with the K-Means clustering to gain the capability of both exploration and 
exploitation. This kind of integrated algorithm can give better clustering results in 
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term of compactness within the clusters; it is found that there is still a room for 
improving the results. It is observed that sequence of clusters’ centroids represented in 
a particle position may cause the normal PSO operations to diverge undesirably. This 
paper proposes a novel scheme of cluster matching to improve PSO-based K-Means 
clustering algorithm (PSO-KM). With the proposed scheme, sequence of the clusters’ 
centroids represented in the particle position is matched that of the corresponding 
ones in the best particle with the closest distance. Thus, not only each particle 
communicates with the best one in the swarm, but also the sequence of the centroids 
is aligned optimally. A real two data sets are selected to evaluate the proposed scheme 
with the existing algorithms. Experimental results demonstrate that the PSO-KM with 
the proposed scheme can outperform its original version and other methods in term of 
compactness. Moreover, the proposed scheme makes the PSO-KM to converge faster 
with good compactness. 
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Comparison between the Applications of Fragment-Based 
and Vertex-Based GPU Approaches in K-Means 
Clustering of Time Series Gene Expression Data 

Yau-King Lam, Wuchao Situ, P.W.M. Tsang, Chi-Sing Leung, and Yi Xiao 

Abstract. With the emergence of microarray technology, clustering of gene 
expression data has become an area of immense interest in recent years. 
However, due to the high dimensionality and complexity of the gene data 
landscape, the clustering process generally involves enormous amount of 
arithmetic operations. The problem has been partially alleviated with the K-
Means algorithm, which enables high dimension data to be clustered efficiently. 
Further enhancement on the computation speed is achieved with the use of 
fragment shader running in a graphic processing unit (GPU) environment. 
Despite the success, such approach is not optimal as the process is scattered 
between the CPU and the GPU, causing bottleneck in the data exchange 
between the two processors, and the underused of the GPU. In this paper, we 
propose to realize the K-Means clustering algorithm with an integration of the 
vertex and the fragment shaders, which enables the majority of the clustering 
process to be implemented within the GPU. Experimental evaluation reflects 
that the computation efficiency of our proposed method in clustering short time 
gene expression is around 1.5 to 2 times faster than that attained with the 
conventional fragment shaders.  

Keywords: Gene clustering, K-Means, Graphics Processing Unit (GPU), 
General-purpose computation, Vertex shader program. 

1 Introduction 

With the availability of the microarray technology, which enables large amount of 
genetic data to be extracted in a short period of time, gene clustering has been 
identified as an important research in the past two decades. In brief, clustering is a 
technique to partition a given set of data points into different groups, in a way that 
each of them will exhibit similar pattern corresponding to certain functionality. 
Amongst other methods the K-Means clustering [1], on account of its simplicity and 
effectiveness, has become a popular means for gene clustering as well as other 
scientific applications. In the study of genetic data, the clustering of time series gene 
expression data, which could reflect a wide range of biological processes through the 
change of temporal patterns, is an important topic that has instigated numerous 
research works. One of the major problems is the size of the gene data set (in the 
order of ten thousands of genes), and the high dimensionality of the data, which result 
in generally long computation time. With the advancement of the graphic processing 
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unit, together with the shader programming technique, the above mentioned problem 
has been alleviated. It has been demonstrated that the implementation of the K-Means 
algorithm with the fragment shader is about 20 times faster than a commodity PC. 
However, we point out that the employing either the fragment or the vertex shader 
alone may not be the best solution in the context of gene clustering. Notably, the 
computation efficiency is lowered by the sharing of the task between the CPU and the 
GPU, leading to underused of the latter, as well as frequent exchange of large amount 
of data between the two processors. As such, we propose to employ an integration of 
both shaders [2] so that the majority of computation is conducted in the GPU. Our 
evaluations reveal that our approach is about 1.5 to 2 times faster than that based on 
fragment shader alone, and especially favorable for clustering short time-series gene 
expression datasets with a dimension of under 32. The 32 dimensions is the maximum 
value due to the hardware limitation of our method. We also note a lot of time-series 
expression data are short in length (with a dimension of 13 or less) [3], and could be 
efficiently clustered with our method.  

Organization of the paper is given as follows. In section 2, an overview of GPU 
accelerated K-Means is outlined. Realization of the K-Mean with the integration of 
the fragment and vertex shaders is presented in sections 3. Application of our 
porposed method in gene data clustering, with experiments evaluation, is given in 
section 4. This is followed by a conclusion. 

2 Fragment-Based Approach of GPU-Accelerated K-Means 

As mentioned in section 1, the K-means [1, 2] clustering is a popular tool for 
clustering gene expression data because of its simplicity and effectiveness. Grossly 
speaking, K-Means is a technique to partition a given set of N data points, based on 
certain similarity metric measurement (usually the Euclidean distance), into a set of K 
clusters (a.k.a. the centroids) in a D-dimensional Euclidean space. Two key steps, 
which are iterated repetitively, are involved in the K-Means algorithm. In the first 
step, each data point is assigned to be a member of the cluster with the nearest 
distance. In the second step, the centroids are updated from its newly assigned 
members. The process is repeated until the clustering error, generally measured in 
terms of the Mean Squared Error (MSE), is converged to a steady value. 

Although there are various schemes on utilizing the GPU to accelerate the K-means 
algorithm, the fragment shader-based approach [4] (refer as the fragment-based 
approach in this paper) is one of the most popular candidates. The method allocates 
the first (which involves heavy computation) and the second steps of the clustering 
process to the GPU and the CPU, respectively. On the part carried out in the GPU, 
each data point is represented by a fragment, and the nearest centroid is determined 
for each of the fragments. Significant computation advantage is gained by evaluating 
all the fragments, each conducted with its own fragment shader programming module, 
in a parallel fashion. The output of each fragment is a membership index pointing to 
the nearest centroid it belongs, which is then passed to the main memory of the CPU. 
In the latter, each centroid is recomputed from its newly assigned members.  
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Evidently, the GPU is not fully utilized in the clustering process, and the relatively 
slow data transfer between CPU and the GPU further imposes a bottleneck in the 
fragment-based approach.  

3 Vertex-Based Approach of GPU-accelerated K-Means 

To overcome the problems in the fragment-based approach, we proposed to employ 
an integration of the vertex and fragment shaders in realizing the K-Means algorithm. 
Although such integration has been explored in the past [2], it is the first time being 
applied in the context of gene expression clustering. The difference between the latter, 
as compare with other scientific applications such as image compression, is that gene 
data are rarely perfect. In general, an appreciable proportion of the dataset could be 
contaminated with noise so that values in some dimensions are missing. In this 
section, we shall focus on the mechanism of the combined shaders in realizing the K-
Means algorithm. Afterwards, in section 4, we shall describe the handling of the 
defective gene data, and the application of the GPU accelerated clustering process. 

In the combined shader approach, one vertex shader is collaborated with two 
fragment shaders (1 and 2). The centroids are stored in a set of textures, each storing 
our floating point numbers (commonly denoted by the symbols R, G, B, and A). As 
such, if each data is represented as a multi-dimensional vector, each texture is capable 
of storing four of its dimensions. Initially, two texture sets are established.  

The source data points (source vectors) are prepared in form of a display list, to be 
input to the vertex shader. Every time a "drawing" command is launched in the CPU, 
the source vectors will be input, as the position and texture coordinates in texture set 
1, to the vertex shader. Inside the vertex shader, the nearest centroid for each input 
vector is determined. Each vector is then redirected to an output position in texture set 
2, corresponding to the nearest centroid. 

Next, the fragment shader 1 is activated, and a blending function is conducted so 
that vectors in the same location in the texture set 2 will be accumulated. This is 
equivalent to updating the centroid value, but without averaging the result with the 
total number of constituting member.  To realize the averaging process, the fragment 
shader 2, is applied to divide the blended result of each cluster by the number of 
members, producing a new codebook of centroids. The process repeats and in each 
iteration the input is derived from texture set 2, which holds the results attained in the 
previous iteration.  

4 Application of the Proposed Method in Clustering Short 
Time-Series Gene Expression Data 

We applied the proposed method to cluster short time-series gene data. Due to noisy 
contamination, the data sets are generally imperfect and values in some of the  
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dimensions are missing in certain data points. To rectify this defect, we applied the 
KNN algorithm [5] to recover some of the lost information. However, genes which 
exhibit over 20% of missing values are discarded. To evaluate our method, we 
employed two well known short-time series gene expression data; namely the 
“sporulation” [6], and the “G27 TC1 trial 4 time-series” [7]. For simplicity sake, the 
latter one is hereafter referred to as "G27". Details of these two sets of gene 
expression data are listed in Table 1. 

Table 1. Read data sets for the experimental evaluation 

Real data set Dimensions No. of genes 
Sporulation 7 6023 
G27 5 23663 

 
The abovementioned no. of genes is number of preprocessed gene data. For the K-

Means experiment, the termination criterion is set to be the change of the MSE less 
than 0.001. 

We then applied the K-Means algorithm, which is realized with the proposed 
integrated shader implementation, to cluster the two sets of test data. All the 
evaluations are performed based on a computer equipped with the “Intel Core i7 920” 
CPU, and the “nVidia GTX260” GPU card. The program are developed with the 
Visual C++, and the shader programs are written in the nVidia "C for Graphics" (Cg) 
language. Each data set is clustered into different number of centroids (#Centroids) 
ranging from 16 to 512, and the computation efficiency in each case (measured in 
number of iterations per second) based on the CPU, the fragment shader, and our 
proposed method, are listed in Tables 2 and 3. We observe that the computation time 
is the longest with the CPU, and linearly proportional to the number of centroids. Our 
method exhibits the fastest performance, with the fragment-based approach in 
between. In general, our method is around 1.5 to 2 times faster than the fragment-
based approach. 

Table 2. Speed of the clustering approaches for sporulation data 

#Centroids  
\ Approaches 

CPU-based 
approach 

Fragment-
based approach

Vertex-based 
approach 

16 444 514 903  

32 239 553  839  

64 117 528  702  

128 62 423  804  

256 31 333  505  

512 16 240  360  

    Note: Speed is measured in number of iterations per second. 
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Table 3. Speed of the clustering approaches for G27 data  

#Centroids  
\ Approach 

CPU-based 
approach 

Fragment-based 
approach 

Vertex-based 
approach 

16 128  491  575  

32 64  440  681  

64 35  366  570  

128 19  270  488  

256 10  182  306  

512 5  110  198  

 
Next we would like to illustrate a detailed comparison between the performances of 

our proposed method with the CPU and the fragment-based approach, with Fig. 1 and 
2, respectively, showing the speed-up. In Fig. 1, we noted that the fragment-based 
approach is significantly faster than the computation with the CPU alone. Further 
observation can obtained from the results. The G27 data with higher data size can 
gain extra speed-up over that of the sporulation data regardless of their closer number 
of dimensions. Large data size can benefit processing power of GPU hardware. In 
addition, larger number of centroids can gain better speed-up for both data sets. As 
increasing number of centroids, their speed-ups are tending to settle down. 

Speed-up of Fragment-based approach to CPU-based approach
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Fig. 1. Speed-up of fragment-based approach to CPU-based approach for the two test sets 

In Fig. 2, we observe that our method is always faster than the fragment-based 
approach. With few exceptions, an improvement between 1.5 to 2 times is achieved.  
In brief, the vertex-based approach is capable of acceleration over the fragment-based 
approach in a constant-like ratio regardless of the different data sets. 
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Speed-up of Vertex-based approach to Fragment-based approach
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Fig. 2. Speed-up of vertex-based approach to fragment-based approach for the two test sets 

5 Conclusion 

This paper explores the feasibility of applying GPU based vertex shader in the 
realization of the K-Means algorithm for clustering short time-series gene expression 
data. We observe that despite the effectiveness of the approach, the computation 
efficiency is not optimal as the process, as well as the data, are scattered between the 
GPU and the CPU. To overcome the problem, we have proposed to apply a method 
that unifies the vertex and the fragment shaders, so that the majority of operations are 
conducted in the GPU. Experimental results reveal that our proposed method, when 
applied to the clustering of gene expression with a dimension of 32 or less, is about 
1.5 to 2 times faster than that obtained with the conventional fragment shader.  
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Abstract. Gene selection is one of the research issues for improving 
classification of microarray gene expression data.  In this paper, a gene 
selection algorithm, which is based on the modified Recursive Feature 
Elimination (RFE) method, is integrated with a Support Vector Machine (SVM) 
to build a hybrid SVM-RFE model for cancer classification.  The proposed 
model operates with a two-stage gene elimination scheme for finding a subset 
of expressed genes that indicate a disease.  The effectiveness of the proposed 
model is evaluated using a multi-class lung cancer problem.  The results show 
that the proposed SVM-RFE model is able to perform well with high 
classification accuracy rates. 

Keywords: Gene selection, microarray, recursive feature elimination, support 
vector machine, cancer classification. 

1 Introduction 

Gene expression profiling is a technique that uses the DNA (Deoxyribonucleic acid) 
microarray technology for measuring the expression (activity) level of various genes 
in a biological cell under certain conditions.  A normal cell if undergoes an 
uncontrolled growth will result in a cancerous cell.  The information obtained from 
the gene expression profiling in normal and cancerous cells can be compared, and this 
provides a clue to identify the cancer types accurately.  However, such analysis in 
gene expression profiling, when carried out manually by a human, can be laborious 
and time-consuming.  This is because the microarray often consists of a substantially 
large number of data samples.  In addition, each data sample normally comprises a 
great amount of genetic information (gene features).  As such, intelligent computing 
techniques can be exploited to facilitate analysis and classification of such data. 

From the literature review, many intelligent computing techniques, which include 
k-nearest neighbor, decision trees, artificial neural networks, and Kernel Methods 
(KMs), have been introduced to classify microarray gene expression data.  In this 
study, a Support Vector Machine (SVM) is utilized as the base classifier to process 
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microarray gene expression data. SVMs constitute a family of KMs which are able to 
produce good classification results [1].  The reason is that SVMs, which are based on 
statistical learning and optimization theories, demonstrate good generalization 
capabilities in undertaking separable/non-separable classification problems.  
However, the SVM model may not perform well with a set of gene expression data 
that are characterized as imbalanced, whereby the number of gene features is higher 
than the available number of samples.  Note that some of the gene features may be 
irrelevant, redundant, or noisy.  In this case, a gene selection algorithm, which either 
selects a subset of gene features that are relevant to a disease [2-4] or reserves the 
relevant gene features from being eliminated at the data level [5-8], is important for 
assisting the base classifier in learning useful information from the data samples 
effectively.  Such a gene selection algorithm not only provides a compact set of gene 
features for keeping the maximum amount of information with regards to a disease, 
but also produces better classification results. 

One of the popular gene selection algorithms is the Recursive Feature Elimination 
(RFE) method.  RFE has been integrated with SVM, i.e., SVM-RFE [5], to handle 
binary classification problems.  The SVM-RFE model has been extended to deal with 
multi-class gene selection problems [9].  In addition, a two-stage gene selection 
method based on SVM-RFE has been proposed [10].  However, the two-stage SVM-
RFE [10] model is applicable to binary classification problems.  In this study, we 
further extend the two-stage SVM-RFE model to undertake multi-class problems.  
We also modify the two-stage gene selection algorithm to improve its efficiency. 

The organization of this paper is as follows.  In section 2, the training algorithms 
of SVM, SVM-RFE, two-stage SVM-RFE and its modified version are explained.  In 
section 3, the classification performances of the modified two-stage SVM-RFE model 
are evaluated with a multi-class lung cancer problem.  The results are compared with 
those from other SVM classifiers.  Concluding remarks are presented in section 4. 

2 Gene Selection Algorithm and Support Vector Machine 

2.1 Support Vector Machine (SVM) 

SVM is a kernel-based method that searches for a set of hyperplanes that maximize 
the margin among themselves and the nearest data samples of arbitrary classes.  
Assume n data pairs nmyD mm ,...,1},,{ == x  are available for training, where 

p
m ℜ∈x  is a feature vector denoting the m sample, and },...2,1{ Kym ∈  is the class 

label of mx .  A multi-class linear SVM “one versus one” (SVM-OVO) [11] model, 

which is based on the construction of 
2

)1( −KK
 binary linear SVMs, is employed in 

this study.  In this case, each 
2

)1( −KK
 binary SVM is trained with nr,s data 

samples from two classes, where srKsr ≠∈  },,...,2,1{, .  SVM-OVO (or simply 

SVM) can be formulated as an optimization problem, as follows: 



670 P.L. Tan et al.  

Minimize ( ) ,
2

1
,

,

1

,2
, 

=

+=℘
srn

i

sr
isr,sr,sr,sr C ξwξw    (1) 

subject to ,1][ ,
,,

, sr
isri

T
sr

sr
i bz ξ−≥+xw     

,0, ≥sr
iξ     ,,...,1 ,srni =      

where C is a predefined parameter that controls the trade-off between training 
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is the class label for the classifier.  Given a data sample u, the decision function of 
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together to predict the class of a new data sample by using the majority voting 
strategy, i.e., 
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2.2 Support Vector Machine-Recursive Feature Elimination (SVM-RFE) 

While a microarray data set consists of many gene features, not all gene features in 
the data set are expressed to indicate a disease.  A gene selection algorithm is 
required to find a subset of gene features that is able to identify a disease accurately.  
The RFE part of SVM-RFE [5] produces a subset of optimum gene features from a 
trained SVM by eliminating particular gene features according to a ranking criterion 
(i.e., the weights).  Initially, the data samples with all gene features (i.e., p) are 
presented to SVM for training.  The weights of all existing genes, which are 
associated with the data samples during the training phase, are determined and sorted.  
The gene feature with the smallest weight is considered to have the least information, 
therefore, it is eliminated.  The process of training SVM, ranking the weights of all 
existing genes, and eliminating the least informative gene is repeated for (p-1) 
iterations.  The subset of gene features that leads SVM to give the highest accuracy 
rate is regarded as the optimal gene subset.  Nevertheless, the SVM-RFE model [3] 
performs gene selection for a binary problem.  Its extension to gene selection from a 
multi-class problem has been reported in [5,12].  The standard procedure of the 
multi-class SVM-RFE model is summarized as follows: 

1.  Train a multi-class SVM with the existing gene features. 

2.  Compute the ranking score of gene features, v  = 
sr

sr
,

2
,w . 

3.  Select the gene feature with the smallest ranking score. 
4.  Remove the selected gene feature from the training data set. 
5.  Repeat steps 1 to 4 until only a single gene feature remains in the training data set. 
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In this study, we adopt the standard multi-class SVM-RFE model as in [12] to further 
develop a two-stage SVM-RFE model, as explained in section 2.3. 

2.3 Two-Stage SVM-RFE and Its Modified Variant 

A two-stage SVM-RFE model has been proposed [10] to identify a subset of optimal 
genes from two consecutive selection processes.  The model is applicable to binary 
data sets.  The architecture of the two-stage SVM-RFE model is illustrated in Fig. 1. 

 

Gene subset, 
G2 

Gene subset, 
GN 

Original gene set, G 

SVM-
RFE 1 

Gene subset, 
G1 

The union of G1, G2, …, GN 

Final gene subset, 
G’ 

SVM-
RFE 2 

SVM-RFE N 

SVM-RFE by eliminating one gene at each step 

The 1St 
stage 

The 2nd 
stage  

Fig. 1. The two-stage SVM-RFE (figure adapted from [10]) 

According to [10], a “filter-out” factor, f, is utilized in the first stage to remove an 
arbitrary number of genes from multiple SVM-RFE models.  In this case, a few 
settings of f are introduced: if f<0, f={-1,-2,-3,…}, only f unit(s) of bottom-ranked 
gene will be eliminated at each step; if 0<f<1, a fraction of f bottom-ranked genes will 
be eliminated at each step; if f=0, the least possible bottom-ranked gene will be 
eliminated so that the number of remaining genes is the power of 2 at the first step 
and then half of genes are eliminated in the following steps.  All SVM-RFE models 
in the first stage can take different f values in order to yield multiple gene subsets.  It 
is argued [10] that if a gene is really informative, then it is likely to survive in at least 
one of the gene subsets; otherwise, it is considered as a redundant, noisy, or irrelevant 
gene.  The gene elimination process in the first stage is safeguarded by a predefined 
size of the final informative gene subset, S, so as to prevent informative loss.  In this 
case, a careful selection in the setting of S is required in order to ensure the 
reservation of relevant genes in the first stage, especially when f=0 or 0<f<1.  In the 
second stage, SVM-RFE is set with f= -1 so as to find a subset of optimal genes while 
avoiding a drastic loss in the number of informative genes. 
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Overall, the two-stage SVM-RFE model is sensitive to the f settings.  In addition, 
one should have a good knowledge on the settings of both f and S for a classification 
problem.  In view of the above limitations, a modified two-stage SVM-RFE model is 
proposed in this paper.  At the first stage of the proposed model, f is replaced by a 
threshold parameter against a ranking score.  Each SVM-RFE model is given a 
different threshold value.  In this case, genes with ranking scores lower than the 
threshold values are removed.  The terminating condition for each SVM-RFE in  
the first stage is also changed.  Each gene elimination process is terminated whenever 
the ranking of genes remains unchanged in subsequent steps.  Another note is that, in 
the second stage, the gene elimination process stops whenever only E number of 
genes remain in the data set, where E=the number of target classes (e.g. cancer).  
This is based on the assumption that each target class is expressed by at least a gene 
feature.  The modified two-stage SVM-RFE model adopts a multi-class gene 
selection algorithm as explained in section 2.2.  Therefore, it is able to overcome the 
limitations of the standard two-stage SVM-RFE [10] model for which the latter is 
designed to deal with binary classification problems only. 

3 The Experimental Study 

A five-class lung cancer data set [13] has been used for experimentation in this study.  
The data set consists of 203 data samples, which include 139 samples of 
adenocarcinomas (AD), 21 samples of squamous cell lung carcinomas (SQ), 20 
samples of pulmonary carcinoids (CD), 6 samples of small-cell lung carcinomas 
(SMC), and 17 samples of normal lungs (NL).  Each sample is described by 12,600 
genes.  The performance of the proposed SVM-RFE model is assessed in terms of 
classification accuracy.  For this, a stratified 10-fold cross-validation (CV) has been 
employed to train and evaluate its performance.  In each fold of CV, the proposed 
SVM-RFE model is trained from scratch with 90% of the data samples and tested 
with the remaining 10% of the data samples.  Both training and test sets contain 
proportional number of data samples with respect to the distribution of target classes.  
The training parameters are as follows: for all SVM-RFE models at both stages, C=8, 
and for each SVM-RFE model in the first stage, its threshold value is changed from 
0.0005 to 0.0014.  The proposed SVM-RFE model has been developed using the 
Matlab version of the LIBSVM tool [14]. 

Table 1 shows the results of the proposed SVM-RFE model trained with different 
threshold values during its first-stage gene selection.  Note that the higher the 
threshold values, the higher the numbers of eliminated genes; therefore fewer 
numbers of genes are available for classification.  The process of gene elimination 
continues in the second stage.  The classification results of the proposed SVM model 
are plotted in Fig. 2.  As can be seen in Fig. 2, the proposed SVM-RFE model shows 
improvements in classification results with the use of smaller numbers of genes.  The 
reason is that irrelevant, redundant, and/or noisy genes that would affect the 
performance of the classifier have been removed. The result starts to deteriorate when 
the number of relevant genes becomes too small.  The best results of the proposed 
SVM-RFE model and those from other SVM models are shown in Table 2. 
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Table 1. Accuracy results obtained from the first stage of the proposed SVM-RFE model 

Threshold Value Number of Genes Used (Units) Accuracy (%) 

0.0005 412 93.60
0.0006 354 93.60
0.0007 310 94.58
0.0008 282 94.58
0.0009 254 95.07
0.0010 227 95.07
0.0011 200 95.57
0.0012 188 95.57
0.0013 165 95.07
0.0014 154 95.57

 

 

Fig. 2. Classification accuracy of the second stage of the proposed SVM-RFE model 

Table 2. Performance comparison of the proposed SVM-RFE model and other SVM models 

Model Time (s) Number of Support 
Vector (Units) 

Accuracy 
(%) 

Number of 
Gene Used 

(Units) 

RBF SVM 122.91 203 68.47 12600 

Polynomial SVM 64.56 105 93.60 12600 

Linear SVM 72.89 95 93.60 12600 

Linear SVM-RFE 67724.13 57 99.01 24 

Proposed SVM-RFE 594.28 52 99.51 20 

 
The SVM-based models are trained with a full set of gene features utilizing 

different kernel functions, i.e., linear, polynomial and radial basis function (RBF), and 
a single SVM-RFE model.  The linear, polynomial, and RBF kernel-based SVM 
models take a shorter training time than the proposed SVM-RFE model; however, the 
former classifies a data sample using more numbers of gene features (some of them 
may not be relevant to the disease, hence a lower accuracy rate) and keeps higher 
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numbers of support vectors than the latter.  As compared with the SVM models using 
polynomial (with 93.60% from a stratified 10-fold CV) and RBF kernels (with 
68.47%), the proposed SVM-RFE model is able to classify the lung cancer data more 
accurately, i.e., 99.51%.  The average classification accuracy rate of the proposed 
SVM-RFE is very high.  The use of the stratified 10-fold CV method gives less 
biased results [15].  As such, the issue of over-fitting by the proposed SVM-RFE in 
its training process can be avoided.  Note that the accuracy rates achieved by the 
linear and polynomial SVM models are similar.  Indeed, the linear SVM is a variant 
of the polynomial SVM.  A microarray data set is characterized as imbalanced for 
which the number of gene features is larger than the number of data samples.  The 
data set, which has high dimensionality, can be deemed as a linear classification task 
[5].  As such, the data samples can be effectively handled by a linear SVM, without 
having to map to a higher dimensional feature space in order to improve the results 
(as per the principle of polynomial SVM). 

On the other hand, one can notice that the proposed SVM-RFE model consumes a 
far shorter training time than that of the linear SVM-RFE model for achieving a 
slightly better classification accuracy rate.  This is because the proposed SVM-RFE 
model is able to eliminate several genes in each iteration in the first-stage gene 
selection process whereas the linear SVM-RFE model eliminates only one gene in 
each iteration before termination.  In short, the proposed SVM-RFE model is able to 
perform with higher classification accuracy (as compared with SVM models with 
different kernels: linear, polynomial and RBF) with a more compact set of relevant 
genes (as compared with the aforementioned kernel-based SVM and SVM-RFE 
models) within a reasonable training duration (as compared with the linear SVM-RFE 
model which is regarded as the “slowest SVM-RFE” model [10]). 

4 Summary 

Microarray gene expression data samples are typically characterized as a type of 
imbalanced data set for which its number of gene features is far higher than its data 
samples.  Not all genes are useful for classifying a disease accurately; this is because 
the data set may consist of redundant, noisy, or irrelevant genes.  In this paper, a 
modified two-stage linear SVM-RFE model is proposed to identify a subset of 
optimal relevant genes to a cancer data set that consists of multiple output classes.  
While the original two-stage SVM-RFE model handles only binary problems, the 
proposed SVM-RFE model is able to undertake multi-class problems.  The 
effectiveness of the proposed model has been evaluated with a multi-class lung cancer 
data set.  A performance comparison among several SVM models has been 
conducted.  The experimental results have shown that the proposed SVM-RFE model 
is able to elicit a compact set of gene features within an acceptable training time for 
making accurate predictions of different types of lung cancers. 

For future work, additional experiments will be conducted to evaluate the 
performance of the proposed SVM-RFE model with other microarray gene expression 
data sets.  This will allow validation and verification of the proposed SVM-RFE 
model as a useful computing model for disease classification using microarray data. 
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Abstract. Accuracy of disease classification has always been a challenging goal 
of bioinformatics research. Microarray-based classification of disease states 
relies on the use of gene expression profiles of patients to identify those that 
have profiles differing from the control group. A number of methods have been 
proposed to identify diagnostic markers that can accurately discriminate 
between different classes of a disease. Pathway-based microarray analysis for 
disease classification can help improving the classification accuracy. The 
experimental results showed that the use of pathway activities inferred by the 
negatively correlated feature sets (NCFS) based methods achieved higher 
accuracy in disease classification than other different pathway-based feature 
selection methods for two breast cancer metastasis datasets. 

Keywords: Microarray-based classification, Pathway-based feature selection, 
Negatively correlated feature sets, Phenotype-correlated genes. 

1   Introduction 

Contemporary high-throughput technologies used in molecular biology such as 
microarray allow scientists to monitor changes in the expression levels of genes in 
response to changes in environmental conditions or in healthy people versus affected 
patients [1]. It provides a means to classify and diagnose the disease state at the gene 
expression level [2]. However, a huge number of genes and comparatively small 
number of samples often leave investigators frustrated when they try to interpret the 
meanings from the results. To do so, one needs to be able to remove redundant and 
irrelevant genes and find a subset of discriminative genes from the dataset. Selecting 
informative genes is crucial to improve the overall effectiveness of the microarray-
based diagnostics and classifications [2-5]. 

Several methods have been proposed to perform the feature selection task [2, 6-7]. 
However, different methods may produce different gene rankings or gene subsets. It is 
often difficult to decide which feature selection algorithm best suits a dataset because 
most of the time the performance of an algorithm varies with different datasets [8]. A 
number of pathway-based analysis methods have been proposed for disease 
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classification using expression profiles with more precision than using individual genes 
[9-10]. These methods, however, may lack discriminative power by disregarding 
member genes that have consistent, but not large, expression changes with different 
phenotypes. This issue has been alleviated by the use of negatively correlated feature 
sets (NCFS) for identifying phenotype-correlated genes (PCOG) and inferring their 
pathway activities at the pathway level. These NCFS-based methods were reported to be 
more precise and robust than the previous studies [11-12]. 

In this paper, pathway information from KEGG [13] was used to group the gene 
inputs according to their pathways and the different feature selection methods were 
used to identify a subset of member genes. These methods include CORG-based 
method [10], NCFS-i and NCFS-c method [11], genetic search method with logistic 
regression classifier subset evaluator, and ranker method with support vector machine 
(SVM) [12]. We tested these techniques by applying them to classify two breast 
cancer metastasis datasets and comparing their classification accuracies to identify the 
method that is the most effective to do this task. 

2   Material and Method 

2.1   Dataset 

We obtained two breast cancer datasets from large-scale gene expression studies by 
Pawitan et al. 2005 [14] and Wang et al. 2005 [15]. Pawitan et al.’s dataset 
(GSE1456) contains the gene expression profiles of 159 Swedish patients, where 
relapse class was detected in 40 patients while the remaining 119 were non-relapse. 
Wang et al.’s dataset (GSE2034) contains the gene expression profiles of 286 breast 
cancer patients from the USA, where relapse class was detected in 107 of them 
while the remaining 179 were non-relapse class. In this study, we did not consider 
the follow-up time or the occurrence of distant metastasis. We retrieved these breast 
datasets from the public database of Gene Expression Omnibus (GEO) [16]. These 
datasets can be analyzed readily with their expression levels. For genes with more 
than one probe in one platform, we chose the probe with the highest mean 
expression value. 

To obtain the set of known biological pathways, we referred to the pathway 
information from KEGG (Kyoto Encyclopedia of Genes and Genomes) database [13]. 
We downloaded manually curated pathways containing 204 gene sets.  169 pathways 
with more than 10 member genes were selected. These gene sets were compiled by 
domain experts and they provided canonical representations of biological processes. 

2.2   Method 

Expression data were normalized to z-score form before mapping onto the member 
genes in each pathway. These data were then used to identify representative set of 
gene by different feature selection methods. A comparison of the classification 
performance with the above-mentioned inferring methods was then made.  
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Data Preprocessing. Expression values gij were normalized to z-transformed score zij for 
each gene i and each sample j. To integrate the expression and pathway datasets, we 
overlaid the expression values of each gene on its corresponding protein in each pathway. 

Identifying Representative Sets of Genes in Pathways and Inferring Pathway 
Activities. Six pathway-based feature selection methods and three pathway inferring 
methods were chosen for comparison in this study. Pathway data was used to reduce 
the dimension of microarray expression matrix and to explain more about how these 
genes relevance to disease of interest. Within each pathway, a representative set of 
genes was searched by different pathway-based feature selection methods. A 
schematic diagram summarizing the overall methodology is shown in Fig. 1. 

 

Fig. 1. Schematic diagram of the overall methodology 

Expressed member gene (gPath). The expression matrix of all member genes in each 
pathway was used to measure its classification performance in terms of ROC area. 

CORG-based method (gCORG). To identify the representative set of genes 
(condition-responsive genes, CORG), member genes were first ranked by their t-test 
scores, in descending order if the average t-score among all member genes was 
positive, and in ascending order otherwise. For a given pathway, a greedy search was 
performed to identify a subset of member genes in the pathway for which the 
discriminative scores (DS, S(G)) was locally maximal [10]. The expression matrix of 
the representative set of genes and their inferred pathway activities were used to 
measure its classification performance in terms of ROC area. 



 Pathway-Based Microarray Analysis with Negatively Correlated Feature Sets 679 

NCFS-i method (gNCFS-i). All member genes in each pathway were first ranked by 
their t-scores in descending and ascending orders, if the average t-score among all 
member genes was positive and negative, respectively. Then, within each pathway, 
top ranked genes in these two different gene subsets were used to search for a 
representative set of genes (phenotype-correlated genes, PCOG) [11]. The expression 
matrix of the representative set of genes and their inferred pathway activities were 
used to measure its classification performance in terms of ROC area. 

NCFS-c method (gNCFS-c). This method was another modification from CORG-
based method [10] by incorporating negatively correlated feature sets (NCFS). The 
first set of CORG was identified then a second set of CORG which were negatively 
correlated to the first set was identified. These two set of genes were merged to be a 
representative set of genes in pathway [11]. The expression matrix of the 
representative set of genes and their inferred pathway activities were used to measure 
its classification performance in terms of ROC area. 

Genetic search with logistic regression classifier subset evaluator (gClassLR). In this 
work, genetic search with logistic regression classifier subset evaluator from WEKA 
[17] was chosen because the classification performance of their pathway markers 
quite similar to another method [12]. The expression matrix of this representative set 
of genes was used to measure its classification performance in terms of ROC area. 

Ranker with support vector machine attribute evaluator (gSVM). Top pathway markers 
ranked by SVM showed the highest classification performance in most breast cancer 
datasets in previous studies [6, 12]. Therefore, the ranker with SVM attribute evaluator 
was chosen to rank the member genes in each pathway. For a given pathway, a greedy 
search was performed to identify a subset of member genes in the pathway for which its 
ROC area was locally maximal. The expression matrix of this representative set of 
genes was used to measure its classification performance in terms of ROC area. 

Classification Performance Evaluation Measure. In this work, we evaluated the 
performance of a classifier based on the Area Under Curve (AUC) of the Receiver 
Operating Characteristic (ROC) curve. A final classification performance was 
reported as the ROC area using ten folds cross validation. WEKA (Waikato 
Environment for Knowledge Analysis) version 3.6.2 [17] was used to build the 
classifier by using logistic regression (Logistic). The results in ROC area were used to 
demonstrate the classification performance of different feature selection methods. 
Logistic regression (LR) is a standard method for building prediction models with a 
binary outcome and has been used for disease classification with microarray data [18]. 

3   Results and Discussion 

Breast cancer datasets GSE1456 and GSE2034 obtained from microarray platform 
GPL96 were prepared and mapped onto 169 pathways. These pathway expression 
matrices were used in the feature selection step with different methods. Table 1 
summarizes the results for the two breast cancer datasets used.  
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Table 1. The average, standard deviation (SD), maximum and minimum number of 
representative sets of genes obtained from different pathway-based feature selection methods 
for two breast cancer datasets GSE1456 and GSE2034 

 gPath gCORG gNCFS-i gNCFS-c gClassLR gSVM 

GSE1456       

Average 62.10 4.03 7.76 7.56 28.14 3.71 

SD 79.81 1.62 3.77 2.56 18.08 2.18 

Maximum 875 9 20 17 79 10 

Minimum 10 1 2 3 3 1 

GSE2034       

Average 62.10 4.66 9.76 9.54 33.35 4.43 

SD 79.81 2.35 3.98 4.05 28.09 2.69 

Maximum 875 14 20 24 128 10 

Minimum 10 1 2 2 3 1 

The range of member genes in each pathway varied from 10 to 875, with the 
average and standard deviation being 62 and 80, respectively. The average sets of 
genes selected by the two NCFS-based methods, NCFS-i method (gNCFS-i) and 
NCFS-c method (gNCFS-c), were 7.5 and 9.5 for GSE1456 and GSE2034, 
respectively. These sets were approximately twice as much as the CORG-based 
method (gCORG) and the ranker method with SVMAttributeEval (gSVM). NCFS-
based methods used two subsets of member genes in pathway which had high positive 
and negative t test scores or negatively correlated feature sets, called PCOG. On the 
other hand, CORG-based method used only one subset of member genes, called 
CORG, and disregarded member genes that had negative correlation to the CORG set 
[10]. gSVM ranked genes by their individual evaluations and evaluated the worth of a 
gene by using a support vector machine (SVM) classifier. Genes were ranked by the 
square of the weight assigned by the SVM [6]. The first maximum ROC score of top 
ranked genes were selected to be a representative set of genes with gSVM.  This gene 
set could have a small size like gCORG. The representative sets of genes selected by 
genetic search with logistic regression classifier subset evaluator (gClassLR) resulted 
in the highest number of genes at around 28 and 33 on the average and with 79 and 
128 genes as the maximum for GSE1456 and GSE2034, respectively. gClassLR 
performed a search using the simple genetic algorithm [19] and evaluated gene 
subsets of training data or a separated hold out testing set. It used logistic regression 
classifier to estimate the merit of a set of genes. This set of genes could be large. 
These results suggest that different pathway-based feature selection methods can 
produce different number of representative sets of genes with the same pathway 
expression matrix. 

In order to use pathway information for classification, representative sets of genes 
identified by different pathway-based feature selection methods and pathway 
activities inferred by the three methods were used as feature values in a classifier 
based on logistic regression (LR). Ten-fold cross-validation experiments were used to 
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test the predictive power of these representative sets of genes. This part of work 
evaluated all pathway-based feature selection methods using logistic regression and 
assessed the classification performance using the ROC area. Table 2 shows the 
average, standard deviation, maximum, and minimum values of the ROC area and the 
number of maximum ROC scores of the representative sets of genes for six different 
pathway-based feature selection methods in comparison to the pathway activities 
inferred by the three methods for two breast cancer datasets GSE1456 and GSE2034. 
For the GSE1456 dataset, gNCFS-i and gNCFS-c produced average ROC areas that 
were higher than gPath, gClassLR, and gCORG but lower than gSVM. The highest 
average ROC area was 0.699 for the gSVM method. For the GSE2034 dataset, the 
average ROC areas identified by gNCFS-i, gNCFS-c, and gClassLR were similar and 
higher than gPath and gCORG. The highest average ROC area was 0.643 using the 
gSVM method. For both breast datasets, use of pathway activities inferred from the 
three methods including CORG, NCFS-i, and NCFS-c were better than use of 
expression matrix of the representative sets of genes (Table 2). 

Table 2. The average, standard deviation (SD), maximum, and minimum ROC area and the 
number of maximum ROC scores of the representative sets of genes in six different pathway-
based feature selection methods and three pathway inferring methods for two breast cancer 
datasets GSE1456 and GSE2034 

 gPath gCORG gNCFS-i gNCFS-c gClassLR gSVM CORG NCFS-i 
NCFS

-c 

GSE1456          

Average 0.569 0.686 0.694 0.696 0.636 0.699 0.717 0.747 0.748 

SD 0.063 0.052 0.060 0.053 0.060 0.077 0.044 0.046 0.044 

Maximum 0.739 0.788 0.814 0.814 0.819 0.872 0.811 0.848 0.847 

Minimum 0.379 0.516 0.482 0.516 0.460 0.440 0.565 0.624 0.632 

No. Max 
ROC score 

0 1 0 0 0 25 13 71 82 

GSE2034          

Average 0572 0590 0.608 0.607 0.608 0.643 0.649 0.681 0.685 

SD 0.051 0.044 0.048 0.049 0.050 0.065 0.037 0.047 0.046 

Maximum 0707 0676 0.701 0.694 0.731 0.793 0.752 0.806 0.792 

Minimum 0443 0425 0.459 0.478 0.463 0.475 0.536 0.538 0.564 

No. Max 
ROC score 

0 0 0 0 0 22 12 65 81 

 
The highest classification performances using average ROC area of all 169 

pathways were found to be NCFS-based methods. The pathway markers inferred by 
the NCFS-based methods showed the highest number of maximum ROC scores for 
both datasets. Note that there were 169 pathways with member genes more than 10, as 
retrieved from KEGG database [13]. However, the summation of the number of all 
inferring methods was not equal to 169. The reason being the highest ROC area came 
from more than one method in some cases. The results from Table 2 show that gSVM 
was significantly better than the other five pathway-based feature selection methods 
with more maximum ROC scores for both datasets. The number of maximum ROC 
scores by the gSVM method was 25 and 22 for GSE1456 and GSE2034, respectively. 



682 P. Sootanan et al. 

These values were higher than the CORG-based method but lower than the NCFS-i 
and NCFS-c methods. The above results suggest that the use of pathway activities 
inferred by the NCFS-i and NCFS-c methods were better than the use of subsets of 
member genes in pathway in classification. Also, gSVM was the best pathway-based 
feature selection method based on gene expression values. 

4   Conclusions 

We have demonstrated that pathway activities inferred by NCFS-based methods can 
be used to effectively incorporate pathway information into expression-based disease 
classification, especially when comparing it to the use of expression values of 
representative sets of genes identified by different pathway-based feature selection 
methods. It can provide better classification performance to discriminate two classes 
due to the use of both positively and negatively correlated gene sets to represent 
phenotype of interest. In addition, the representative sets of genes identified by 
NCFS-based methods provided comparable performance to traditional SVM and 
better than CORG-based method and the use of genetic search with LR classifier 
subset evaluator. For future work, further improvements of the NCFS-based methods 
in terms of selecting reliable representative sets of genes and improvement in 
classification accuracy by using different classification techniques are planned for 
more disease types.  
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Abstract. In this work we utilize the inter-subject differences in the
electroencephalographic (EEG) signals evoked by visual stimuli for per-
son identification. The identification procedure is divided into classifica-
tion and verification phases. During the classification phase, we extract
the representative information from the EEG signals of each subject
and construct a many-to-one classifier. The best-matching candidate is
further confirmed in the verification phase by using a binary classifier
specialized to the targeted candidate. According to our experiments in
which 18 subjects were recruited, the proposed method can achieve 96.4%
accuracy of person identification.

Keywords: EEG, person identification, VEP.

1 Introduction

Conventional person identification methods include passwords, smart cards, and
a variety of biometric techniques. Passwords and smart cards are widely-used
because of the advantage of convenience. However, smart cards might be stolen,
simple passwords might be deciphered, and complicated passwords might be for-
gotten. Current biometric features such as iris, fingerprints, face, voice, palm, and
gait do not suffer the above-mentioned disadvantages, but they can be stolen,
duplicated, or even provided under violent threats. Brainwave is an emerging bio-
metric feature for person identification because of its uniqueness and consistency.
Moreover, brainwave is difficult to steal or duplicate and the characteristics em-
bedded in the brainwave when the subject is under threat are hardly the same
as those in normal situation. These advantages promote brainwaves as new keys
to safer person identification systems.
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Among all the non-invasive brainwave acquisition modalities, electroencepha-
lography (EEG) has the advantages of portability, easy operation, high tempo-
ral resolution, and low costs. To evaluate the uniqueness and consistency of the
characteristics in EEG signal, the work in [6] confirmed that the inter-subject
variation of EEG spectra where different subjects administered the same task
was larger than the intra-subject variation where the EEG signals of the same
subject were repeatedly acquired for several times. At first resting data was used
for person recognition and the identification rate ranged from 72 to 85% [10].
In 2003, Palaniappan and Ravi investigated the task-related EEG signals. By
extracting features from visual evoked potentials (VEPs), the identification ac-
curacy was improved to be larger than 90% [9]. The features in EEG signals
include autoregressive (AR) coefficients, coherence, and cross-correlation [7]. In
[1] the event-related potentials (ERPs) were utilized for person identification.
This work used the images of self-relevant objects as the visual stimuli and se-
lected prominent channels related to this experiment. Temporal domain features
such as P100, N170, and N250 were used in the signal analysis [4]. For simplicity
and practicability, the work [5] classified subjects simply by thresholding the
EEG power spectrum.

In this paper we present a person identification system using EEG signals.
Because resting state is prone to be more fluctuating, we adopt task-related
EEG signals evoked by visual stimuli in this work. Representative information is
extracted from the EEG signals of subjects and are used to train a many-to-one
classifier for person classification. The best-matching candidate of each classifi-
cation is further verified by using a binary classifier to exclude the intruder.

2 Materials

2.1 Participants and Paradigm

Eighteen subjects participated in this study (age ranges from 21 to 33 years
with mean 24 years, twelve males). All the subjects have normal or corrected-
to-normal visions. For five participants among all the subjects, EEG data were
acquired two times with an interval of more than one week.

The paradigm of data acquisition in this study is shown in Fig. 1. The subject
was seated comfortably in a silent room and was asked to watch a monitor
screen. The visual stimulus, an image containing either a small disk or a large
one (five times larger than the small one), was presented for one second followed
by another second of fixation image of a cross. The frequency ratio between the
stimulus images is one (large disk) to three (small disk). Around 250 trials were
acquired for each participant.

2.2 EEG Recording and Preprocessing

Thirty-two standard scalp electrodes were placed according to the International
10-20 System of Electrode Placement. We picked the channels related to the
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Fig. 1. Paradigm for data acquisition in this study. A trial consists of one-second
stimulus, an image containing either a small disk or a large one, and one-second fixation.

visual stimuli and P300 component in the frontal, frontal-central, parietal, and
occipital regions [3]. The ten channels we selected were Fz, FCz, Cz, CPz, P3, Pz,
P4, O1, Oz, and O2. This process will reduce the quantity of data and eliminate
the activities which are not induced by the events. The EEG data were recorded
with Scan 4.3 software and the sampling rate for data acquisition was 500Hz.
The earlobe electrodes A1 and A2 provided the reference. Signals were digitally
filtered within the 5-30 Hz band.

We used EEGLAB 9.0 [2] to perform the following signal preprocessing proce-
dure. The EEG data were first segmented into epochs starting from one second
before the stimulus onset to one second after stimulus onset. The baseline cor-
rection was applied to remove the DC drift. Epochs with burst activities during
the post-stimulus period were rejected (with the threshold values -50μV and
50μV). The trials evoked by the large disk events were used in the following
person identification analysis.

3 Methods

3.1 Feature Extraction

For each of the EEG channels, we applied a series techniques to extract features.
These techniques, described in the following, include dimension reduction, mor-
phological operation, power spectrum, and stochastic modeling.

Dimension Reduction. Principal component analysis (PCA) is a method for
reducing feature dimension. Its main idea is to find a set of basis, usually with
a much smaller dimension, to represent the original data set while preserving as
much as information measured by the variance of data distribution. If there is an
embedded non-linear manifold lying in a high-dimensional space and the dimen-
sion of the manifold is relatively low, this manifold can be well represented in a
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low-dimensional space [8]. Therefore, we also applied the locally linear embed-
ding (LLE) method to transform the data to a low-dimensional space while main-
taining the manifold structure manifested in the original high-dimensional space.
Firstly, we find a set of nearest neighbors for each data point Xi in D-dimensional
Euclidean space. Then we reconstruct, or represent, each data point by a linear
combination of its neighbors Xij with weightings Wij as the contribution of the
neighbor Xij to this linear combination for Xi. The reconstruction error is:

E(W ) =
∑

i

|Xi −
∑

j

WijXij |2 , (1)

where the sum of the weightings for each data point Xi equals one. The data point
Xi can be mapped to the corresponding point Yi in a low-dimensional space as:

Yi =
∑

j

WijYij , (2)

where the point Yij is the point in low-dimensional space corresponding to Xij

in the original high-dimensional space.

Morphological Features. The latency and amplitude of each EEG epoch
were computed as the morphologic features which contain VEPs (with the time
interval from 50 ms to 150 ms after stimulus onset) and ERPs (with the time
interval from 250 ms to 400 ms after stimulus onset).

Frequency Features. The discrete Fourier transform (DFT) were used to com-
pute the power spectrum for each epoch. In this work we focus on the frequency
band from 5 Hz to 30 Hz.

Stochastic Modeling. Considering the EEG signal as an autoregressive (AR)
process, we used the Yule-Walker equations to estimate the AR coefficients as
the features. To fit a p th-order AR model to the EEG data X(t), we minimize
the following prediction error by using the least squares regression:

X(t) =
P∑

i=1

a(i)X(t− i) + e(t) , (3)

where a(i) are the auto regression coefficients, e(t) represents the white noise,
and the time series can be estimated by a linear differential equation.

Time-Frequency Model. The wavelet transform uses a set of time-scale basis
to represent the original signal. Here we applied the Daubechies wavelets to
transform the time-domain EEG signals and obtained 250 coefficients as the
time-frequency features.
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3.2 Classification

For classification, we employed the support vector machine (SVM) and the k-
nearest neighbor (kNN) search method (k=9) as the classifier. To fairly evaluate
the accuracy of classification, we apply the 8-fold cross validation that separate
EEG data into training and testing data to obtain the average classification
accuracy for person identification.

3.3 Verification

The purpose of the verification procedure is to reconfirm the best-matching re-
sult of classification. For each of the eighteen subjects, we trained a SVM binary
classifier by using two groups of training data including EEG data of the targeted
subject and those of all others. We evaluate the binary classifier for verification
in terms of the true acceptance rate (TAR) and the false acceptance rate (FAR).
The best-matching subject from the classification procedure is verified by the
corresponding binary classifier. In addition, we modified the false classified data
in classification phase through iterative verification. The probability estimate,
which is a confidence level of classification, determines an ordered list of can-
didates having confidence levels larger than 80% of that of the best-matching
candidate.

4 Results

4.1 Temporal Characteristics in the Acquired Signals

We first verified whether the resting EEG or ERP is better for distinguishing
subjects’ identities. By applying the SVM classifier to categorize the pre-stimulus
(500 ms before onset) EEG signals among the eighteen subjects, the classification
accuracy was 12.2%. When the post-stimulus (500 ms after onset) ERP signals
were used for person identification, the classification accuracy achieved 25.3%.
Therefore the ERP contains more information for person identification than
resting EEG does.

4.2 Accuracy in the Classification Phase

Table 1 shows the classification accuracy comparison among seven features ex-
tracted from the 1000ms post-stimulus EEG signals with respect to single trial,
average of two trials, SVM, and kNN. The average of two trials can achieve
higher classification accuracy compared to single trial data because of higher
signal-to-noise ratio. Regarding the classifier, SVM outperforms kNN with re-
spect to various features.

Among the seven kinds of features, power spectrum achieves the best clas-
sification accuracy while the latency and amplitude generally lead to poor re-
sults. Fig. 2 shows the power spectrum of different subjects with the frequency
band ranging from 5 Hz to 30 Hz. We can see that within-subject variation of



Person Identification Using Electroencephalographic Signals 689

Table 1. Results of classification with different features and different classifiers. The
data of each subject acquired in the same experiment.

SVM kNN

Feature Single trial Avg (2 trials) Single trial Avg (2 trials)

Raw data 29.31% 80.86% 23.47% 76.38%
LLE 30.81% 86.69% 28.13% 83.44%
PCA 27.74% 83.48% 25.32% 81.28%
Latency 11.59% 35.23% 10.21% 33.56%
Amplitude 38.53% 50.82% 36.23% 45.19%
Power spectrum 72.03% 91.61% 60.01% 85.92%
AR 53.52% 62.54% 50.96% 60.57%
Wavelet 27.27% 85.41% 22.92% 77.26%

Table 2. TAR in the verification phase, which is the percentage of the best-matching
candidates in the classification phase that are accepted in the verification phase

Subject 1 2 3 4 5 6 7 8 9

TAR (%) 97.14 98.70 98.81 100 100 96.43 97.62 100 96.30

Subject 10 11 12 13 14 15 16 17 18

TAR (%) 97.96 100 100 98.57 100 100 100 100 100

the spectra of different trials is smaller than inter-subject variation. In order
to accommodate different information of the best two features, we combined
the power spectrum and LLE features after normalization and achieve 97.1% of
classification accuracy.

4.3 Accuracy in the Verification Phase

The true acceptance rate (TAR) measures the percentage of the best-matching
candidates in classification that are accepted by the binary classifier of verifica-
tion. Table 2 shows the TARs of eighteen subjects and their average is 97.9%.
The false acceptance rate (FAR) is zero, that means all the false classified data
were successfully rejected in the verification phase. After iterative verification
the overall accuracy of our system is 96.4%.

4.4 Classification Accuracy Over Time

For five participants among all the eighteen subjects, EEG data were acquired
two times with an interval of more than one week. The goal is to verify whether
the EEG data of the same subject is sufficiently stable for person identification
over a period of time. The average accuracy of the classification phase is 93.2%.
Table 3 shows the TAR, FAR and results of iterative verification. After iterative
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Fig. 2. The power spectrum of ten trials of two subjects (thick black lines represent
the averages of ten trials). Each trial shows the average results of ten channels.

Table 3. TAR, FAR, and results of iterative verification of data acquired from different
days

Subject 3 5 8 12 13

TAR (%) 78.57 100 97.92 83.33 100

Accepted/False classified 0/1 4/6 0/0 0/0 11/12

FAR (%) 0 66.67 - - 91.67

verification, the overall identification accuracy of our system is 85.7%, indicating
that the the performance of our system slightly degrades over time. One possible
remedy is to retrain the classifier by adding the data acquired over time so that
the classifier can be adapted to each subject. By using the two sets of EEG
data acquired at different times, the average accuracy of the classification phase
is improved from 93.2% to 98.4%, TAR is increased from 90.6% to 97.7%, and
FAR is decreased from 79.0% to 0%. After iterative verification, the overall
identification accuracy of our system is improved from 85.7% to 96.8%.

5 Discussion and Conclusions

The major causes affecting the accuracy of person identification using EEG sig-
nals include both external and internal interferences. The external interferences
deteriorate the quality of acquired signal whereas the internal interferences re-
sult in signal instability over time. From the calculated correlation between EEG
trials of different subjects, the EEG data of subjects having high correlation to
those of other subjects have more classification errors. Compared with the inter-
subject correlation, the intra-subject correlation between EEG trials acquired
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at different times is higher. Therefore, the brainwave signals are suitable for
biometric measures for person identification.

We have proposed a person identification system using visual-evoked EEG
signals. According to our experiments, we concluded that the combination of
power spectrum and LLE can extract informative features for distinguishing
subjects. The identification system contains the classification and verification
phases. In the classification phase, we use a multi-class classifier to perform
a one-to-many comparison for each acquired data. In the iterative verification
phase, the best-matching candidates are furthered verified sequentially by binary
classifiers according to their matching levels. The overall person identification
accuracy of the proposed system can achieve 96.4%.
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Abstract. Support vector machine (SVM) and support vector data de-
scription (SVDD) are the well-known kernel-based methods for pattern
classification. SVM constructs an optimal hyperplane whereas SVDD
constructs an optimal hypersphere to separate data between two classes.
SVM and SVDD have been compared in pattern classification exper-
iments, however there is no theoretical work on comparison of these
methods. This paper presents a new theoretical model to unify SVM
and SVDD. The proposed model constructs two optimal points which
can be transformed to hyperplane or hypersphere. Therefore SVM and
SVDD are regarded as special cases of this proposed model. We applied
the proposed model to analyse the dataset III for motor imagery problem
in BCI Competition II and achieved promising results.

Keywords: Kernel Methods, Support Vector Machine, Support Vector
Data Description, Brain-Computer Interface.

1 Introduction

Brain-Computer Interface (BCI) is an emerging research field attracting a lot
of research effort from researchers around the world. Its aim is to build a new
communication channel that allows a person to send commands to an electronic
device using his/her brain activities [1]. BCI systems have been provided for
severely handicapped people using their brain signals, and for patients with
brain diseases such as epilepsy, dementia and sleeping disorders [2].

The performance of a BCI system depends on data pre-processing, feature
extraction and classification methods used to build the classifier in that BCI
system. Currently, numerous pre-processing, feature extraction and classifica-
tion methods have been proposed and explored for BCI systems. For data pre-
processing and feature extraction, the following fetaures have been applied: raw
electroencephalograph (EEG) signals [3][4], band powers [5], power spectral den-
sity values [6], autoregressive parameters [7] and wavelet features [8]. For clas-
sification, perceptron and multi layer perceptron [7], various SVMs [7][9] and
linear discriminant analysis [7] methods have been applied.
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For feature extraction in EEG classification problems, most of currently used
features are uni-variate and extracted from single channels. However EEG sig-
nals recorded from multiple channels for a brain activity are correlated, features
extracted from the EEG signals should reflect relationships between those chan-
nels. To drive this remark, in this paper we propose a feature extraction method
[10] that uses windows as seen in the work of Anderson et. al. [11] and Brunner
et. al. [12]. For the signal of a pair of channels, instead of using a single window,
we use short moving windows having the same size and then combine them to-
gether with a pre-defined overlapping window parameter. We calculate bivariate
autoregressive model parameters for the current window and then slide to the
next window until end of the signal. All BVAR parameters are concatenated
from the first window to the last one with a pre-defined moving window step
or overlapping window to form a feature vector. Depending on the nature and
well known biological knowledge of mental tasks, we can select several pairs of
channels, and concatenate their corresponding feature vectors together to form
an entire feature vector for a trial.

For classification, Support Vector Machine (SVM) and Support Vector Data
Description (SVDD) are widely used in various real-world classification prob-
lems. SVM constructs an optimal hyperplane [13] and SVDD constructs an op-
timal hypersphere [14][15][16] to classify data. The choice of SVM or SVDD
depends on the ratio of data in two classes. It is seen that hyperplane is suitable
for balanced datasets whereas hypersphere is for imbalanced datasets where a
dataset appears as a dominant (major) class. SVM and SVDD have been com-
pared in pattern classification experiments, however there is no theoretical work
on comparison of these methods. This paper presents a new theoretical model
to unify SVM and SVDD. The proposed model constructs two optimal points
which can be transformed to hyperplane or hypersphere. Therefore SVM and
SVDD are regarded as special cases of this proposed model. Moreover the pro-
posed model can offer a set of decision boundaries consisting of hyperplane and
hypersphere shapes and hence it can provide a better data description to the
various datasets than the hyperplane and hypersphere. We apply the proposed
model to analyse the dataset III for motor imagery problem in BCI Competition
II and achieve promising results.

2 Generalised Support Vector Machine (GSVM)

2.1 Key Lemma

This lemma displays the relevance between the difference of square distances to
two points and the margin in the affine space Rd.

Lemma 1. Let M , A and B be the points in the affine space Rd. Let (H) :
wT x + b = 0 be the mid-perpendicular hyperplane of segment AB. The following
equality holds:

MA2 −MB2 = 2dist(M, H).AB.sign(B, H).sign(M, H)

where dist(M, H) is distance from M to (H) and sign(P, H) = sign(wT P + b).
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2.2 The Idea of GSVM

We consider the original SVM in an alternative view to derive the new model.
It can be reformulated in an alternative form as follows:

max
w,b

γ (1)

subject to
dist(M, H) ≥ γ for all M ∈ φ(X) (2)

where X is the training set, φ(X) is image of X through the transformation φ(.),
M is a feature vector in the training set, (H) : wT φ(x) + b = 0 is a hyperplane
in feature space, and dist(M, H) is distance from M to (H).

By referring to Lemma 1, it is able to transform the above optimisation prob-
lem to an equivalent form as follows:

max
A,B

( γ

AB

)
(3)

subject to (
MA2 −MB2

)
yM ≥ γ for all M ∈ φ(X) (4)

where yM is the label of M , A and B are two points in feature space, and
mid-perpendicular hyperplane of segment AB is the optimal hyperplane.

We convert the above optimisation problem to a more concrete form. Note
that the function in (3) is margin, i.e. the distance from the closest point in the
training set to the mid-perpendicular hyperplane of segment AB and this margin
is invariant when stretching or shrinking AB as long as the mid-perpendicular
hyperplane is unchanged. Therefore, without losing of generality we assume that:

min
M

(
MA2 −MB2

)
yM = 1 (5)

Consequently, we achieve new equivalent optimisation problem:

max
A,B

( 1
AB

)
or min

A,B

(
AB2

)
(6)

subject to (
MA2 −MB2

)
yM ≥ 1 for all M ∈ φ(X) (7)

Similar to SVM, we have a chance to extend the problem by applying the
slack variables as follows

min
A,B

(
AB2 + C

n∑
i=1

ξi

)
(8)

subject to (
MiA

2 −MiB
2
)
yi ≥ 1− ξi for all Mi ∈ φ(X)

ξi ≥ 0, i = 1, . . . , n (9)

where yi is the label of Mi.



Generalised Support Vector Machine for Brain-Computer Interface 695

2.3 Formulation of GSVM

To resolve the new optimisation problem (OP), for simplicity we can assume
that the equation of hyperplane is of (H) : wT x = 0 and it goes through the
origin in feature space. Since the objective function keeps invariant when sliding
AB along with its mid-perpendicular hyperplane, we can safely suppose that
A and B are symmetric through the origin as in Figure 1. Let us denote the
coordinate of points A, B and M in feature space as a, b and φ(x), respectively.
We have a + b = 0 and the new OP as follows

min
a,b,ξ

(
‖b− a‖2 + C

n∑
i=1

ξi

)
(10)

subject to (
‖φ(xi)− a‖2 − ‖φ(xi)− b‖2

)
yi ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n (11)

where φ is a transformation from the input space to the feature space.

Fig. 1. The hyperplane goes through origin and A, B are symmetric through the origin

We generalize the above OP by introducing a new parameter called “curving
degree” k. As explained later, this parameter governs the curving degree of
decision boundary. When k = 1, it is completely straight. Moreover, when k �= 1,
it becomes a spherical form with varied curving degree. We obtain the new OP
as follows:

min
a,b,ξ

(
‖b− a‖2 + C

n∑
i=1

ξi

)
(12)

subject to (
‖φ(xi)− a‖2 − k‖φ(xi)− b‖2

)
yi ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n (13)

where φ is a transformation from input space to feature space.



696 T. Le et al.

2.4 Solution

To derive the new OP, we refer to the Karush-Kuhn-Tucker (KKT) theorem. We
come up with the following OP:

min
α

(k
n∑

i=1

n∑
j=1

yiyjK(xi, xj)αiαj

−
n∑

i=1

((k − 1)yiK(xi, xi) + 1)αi)
(14)

subject to
n∑

i=1

αiyi =
k − 1

k
and 0 ≤ αi ≤ C, i = 1, . . . , n (15)

For classifying unknown vector x, the following decision function is used:

f(x) = sign(‖φ(x) − a‖2 − k‖φ(x) − b‖2)
= sign((1− k)K(x, x)− 2(1 + k)φ(x)a + (1− k)‖a‖2)
= sign((1− k)K(x, x)− 2(1 + k)φ(x) −k

k+1

n∑
i=1

αiyiφ(xi)

+(1− k)( −k
k+1

n∑
i=1

αiyiφ(xi))2)

= sign((1− k)K(x, x) + 2k
n∑

i=1

αiyiK(xi, x)

+k2(1−k)

(k+1)2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj))

(16)

2.5 Interpretation of GSVM

The decision boundary is of the following form:

‖φ(x) − a‖2 − k‖φ(x) − b‖2 = 0 (17)

To realize the shape of decision boundary, we need to interpret the above
equation. Two following lemmas are necessary.

Lemma 2. Let A and B be two distinct points in the affine space Rd. Con-
structing the fixed point P such that −→PA = k

−−→
PB(k �= 1). Then for all points M ,

the following equality holds:

MA2 − kMB2 = (1− k)MP 2 + PA2 − kPB2 (18)

Lemma 3. Let A and B be two distinct points in the affine space Rd. The pilot
of equation MA2 − kMB2 = 0 is one of the following forms:
i) If k = 1 then it is a hyperplane that goes through the midpoint of AB and
perpendicular to AB.
ii)If k �= 1 then it is a hypersphere with center P where −→PA = k

−−→
PB.
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Lemma 3 reveals that the pilot of decision boundary ruled by (17) is either hy-
perplane or hypersphere according to parameter k. This parameter also governs
the curving degree of decision boundary. That is why it is called curving degree
parameter. Moreover, the range of expression in GSVM is wider than both SVM
and SVDD. Therefore, it appears that new model is easier to fit the real datasets
than both SVM and SVDD in terms of hyperplane and hypersphere.

3 Combined Short-Window Bivariate Autoregressive
Feature (CSWBVAR)

3.1 Autoregressive model

Univariate autoregressive (UVAR) model is used to model single time-series with
assumption that each value of the series can be estimated by taking a weighted
sum of its previous values, plus white noise. Whereas, bivariate autoregressive
(BVAR) model is used to model two time-series with assumption that each
value of the two series can be estimated by taking a weighted sum of not only
the previous values of the same series but also values of other series.

Let X(t) = [X1(t), X2(t), ..., Xn(t)]T be n time-series in random process. In
BCI system, n is number of channels used for collecting brain signals. Let d be
the number of data samples of n channels. The pth-order MultiVariate AutoRe-
gressive (MVAR) model is formulated as follows:

X(t) =
p∑

i=1

AiX(t− i) + E(t) (19)

In (19), Ai, i = 1 . . . p are n × n coefficient matrices and E(t) is noise vector
which is a zero mean uncorrelated with the covariance matrix Σ. We assume
that X(t) is a stationary process. If n = 1, we have univariate AR model, and
n = 2, bivariate AR model.

To estimate Ai and Σ, we transfer (19) to Yule-Walker equations by multiply-
ing (19) from the right with XT (t− i), i = 1 . . . p and then taking expectation:

R(−k) +
p∑

i=1

AiR(−k + i) = 0 (20)

where R(l) is the covariance matrix of lag l of X(t).
To solve these equations with a specific order p, we use Levinson, Wiggins,

Robinson (LWR) algorithm. The correct order is identified by minimizing the
Akaike Information Criterion defined as in (21).

AIC(p) = 2log[det(Σ)] + 2
n2p

Ntotal
(21)

where Ntotal is the total number of data points from all trials.
In this paper, after visually inspecting the AIC curve, we chose the AR model

with order 6 which results to a local minimum.
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3.2 CSWBVAR Feature

Given a pair of channels and a time window, we calculate its BVAR coefficients.
This sequence will form a feature vector of the window having size of 4×p coef-
ficients. The feature vector of the trial is defined as the concatenation of these
sequences together with a pre-defined moving window step. Let w be the window
size and s be the moving window step, the feature vector size of a trial is

4× d− w + 1
s

× p (22)

Choosing the correct window size and moving window step parameters is the
most important task in our model. We can assume EEG signals are stationary by
setting the window size to a value between 40ms and 100ms. With the sampling
rate of 128Hz, each window has from 5 to 12 data points. They are too small to
estimate AR model coefficients. Increasing window size requires us to use adap-
tive algorithm to estimate AR model parameters. Fortunately, LWR algorithm
is an adaptive one. In our experimental design, we considered different window
sizes including 12, 32, 64, and 128 data points and the overlapping part between
two consecutive windows is 25%, 50% and 75% of the window size.

4 Experimental Results

The aim of our experiment is to demonstrate that the combination of our two
methods for feature extraction and classification will significantly improve the
performance of BCI systems. The chosen data set which has appropriate number
of channels was the well-known data set III provided by Department of Medical
Informatics, Institute of Biomedical Engineering, Graz University of Technol-
ogy for motor imagery classification problem in BCI Competition II [17]. In
data collection stage, a female normal subject was asked to sit in a relaxing
chair with armrests and tried to control a feedback bar by means of imagery
left or right hand movements. The sequences of left or right orders are ran-
dom. The experiment consisted of 7 runs with 40 trials in each run. There were
280 trials in total and each of them lasted 9 seconds of which the first 3 sec-
onds are used for preparation. The collected data set was equally divided into
two sets for training and testing. The data was recorded in three EEG chan-
nels which were C3, Cz and C4, sampled at 128Hz, and filtered between 0.5
Hz and 30 Hz. Most of current algorithms only applied to the channels C3 and
C4, and ignored the channel Cz. They argued that from brain theory, signals
from channel Cz provide very little meaning to motor imagery problem. We
truncated the first 3 seconds of each trial and used the rest for further process-
ing. All trials are pre-processed by subtracting the ensemble mean of all trials.
For each trial we extracted both CSWUVAR and CSWBVAR parameters with
different window sizes and moving window steps. We considered window sizes
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including 256, 384, and 512 data points, corresponding to 100ms-, 250ms-, 500ms-
, and 1s-segments. As with other previous work, we did not try experiments with
segment’s size greater than 1s due to keeping signal approximately stationary
and being comfortable with nature of brain signal. The overlapping part between
two consecutive windows was set to 25%, 50% and 75% of the window size.

The popular RBF Kernel K(x, x′) = e−γ‖x−x′‖2
is applied whereas the pa-

rameter γ is varied in grid {2i : i = 2j, j = −4, . . . , 1}. Moreover, for GSVM to
ensure that the decision boundary goes through the origin we applied the ex-
panded Gaussian transform φ′(x) = [φ(x), 1] which leads to the expanded RBF
Kernel where K ′(x, x′) = e−γ‖x−x′‖2

+ 1. The trade-off parameter C is selected
in grid {2i : i = 2j, j = −4, . . . , 1}. The curving degree k is searched in grid
{0.6 + 0.2i : i = 0, . . . , 5}, and ten folds cross-validation was employed.

We made comparison of three combinations of feature extraction and clas-
sification method which are CSUVAR+SVM, CSWBVAR+SVM, and CSWB-
VAR+GSVM. The chart in Figure 2 shows that the combination of new feature
extraction and classification methods significantly improve the performance of
classifier.

Fig. 2. Experimental results on extracted datasets with various window sizes/moving
sizes

5 Conclusion

We have proposed a combination of new feature extraction and new classification
methods to improve the performance of BCI systems. The experiment on the
dataset III for motor imagery problem in BCI Competition II shows that our
proposed methods can provide a significant improvement on classification over
BCI datasets.
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Abstract. A novel detective model for driver distraction was proposed in this 
study. Driver distraction is a significant cause of traffic accidents during these 
years. To study human cognition under a specific driving task, one virtual 
reality (VR)-based simulation was built. Unexpected car deviations and 
mathematics questions with stimulus onset asynchrony (SOA) were designed. 
Electroencephalography (EEG) is a good index for the distraction level to 
monitor the effects of the dual tasks. Power changing in Frontal and Motor 
cortex were extracted for the detective model by independent component 
analysis (ICA). All distracting and non-distracting EEG epochs could be 
revealed the existence by self-organizing map (SOM). The results presented 
that this system approached about 90% accuracy to recognize the EEG epochs 
of non-distracting driving, and might be practicable for daily life. 

Keywords: driver distraction, SOA, EEG, ICA, SOM. 

1   Introduction 

The drivers divert their attention away from focused driving to the other event means 
driver distraction. While driving, drivers must continually allocate their brain 
resources about attention to both driving and non-driving tasks. There is more 
electrical equipment in the car to help drivers reduce the overhand and enhance the 
entertainment, such as navigation system, integration center control system, or in-
vehicle entertainment system. They would increase risk since drivers may become 
easily distracted, thus making it likely that the problem of driver distraction [1]. There 
is increasing evidence that driver distraction is one major cause of car accidents [2]. 
The National Highway Traffic Safety Administration (NHTSA) reported that 
distraction accounts for about 20-30% of traffic accidents [3]. Recognizing driver’s 
attention related brain resources during driving is quite important.  

In several brain-computer interface (BCI) studies, most approaches are 
Electroencephalography (EEG) -based, because the EEG system is small and easy to 
take [4]. They depict a BCI as a pattern recognition system and emphasize the role of 
classification [5]. And it is also sensitive to variations in cognitive and behavioral 
states. In this study, we want to monitor the changing of EEG about distracted driving 
and identify “patterns” of brain activity through the classification algorithms. 
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Several methods have been proposed to analyzed and classify EEG data. During 
driving, the human may induce the artifact including eye movement, heartbeat, or 
breath, and switch attention to different levels when they confront driving and non-
driving task. Therefore analyzing the EEG data using independent component 
analysis (ICA) [6] and self-organization map (SOM) [7] has been proposed in this 
study. The ICA is extensively applied to separation, identify, and localize the EEG 
sources. By the results of component maps, ICA could show the brain areas of signal 
sources even though the noise, so the useful brain sources could be selected to analyze 
the phenomenon. SOM owns two characteristics which differ from traditional cluster 
algorithm [14-18]. This artificial neural network offers an easy visualization of 
topographic to analyze the relationship among data, and the neighboring neurons 
would be also adjusted to the input stimulus. 

2   Methods 

2.1   Experiment and Subjects 

The most concerned issue in dual task studies is the effect of distraction on driving 
because it directly related to public safety. With combining the technology of virtual 
reality (VR), a VR driving environment includes 3D surrounded scenes projected by 
seven projectors and a real car mounted on a 6-degree-of-freedom platform to provide 
the kinesthetic stimuli. There were two kinds of tasks were designed: unexpected car 
deviation and mental calculation to evaluate mathematical addition equations. The car 
would randomly drift to the right or left side from the third lane of the road during 
driving, and subject was forced to keep the car in the third lane from left. Calculation 
task was the two-digit addition equations. If the equation was right (wrong), the right 
(left) button on the steering wheel would be pressed. The allotment ratio of correct-
incorrect equations was 50-50. Every subject was asked to respond these two 
designed tasks as quick as they can with high accuracy. 

To provide different distraction level, the effect of stimulus onset asynchrony 
(SOA) was considered. Combining these two designed tasks and SOA condition, five 
particular cases were represented. The five cases are showed as below: 

(a) Case 1: Math equation is 400ms earlier than the occurrence of the deviation. 
(M\D) 

(b) Case 2: Car deviation and math equation occur simultaneously. (D&M) 
(c) Case 3: Car deviation is 400ms earlier than the appearance of the math equation 

(D\M) 
(d) Case 4: Just math equation occurs. (M) 
(e) Case 5: Just car deviation happens. (D) 

Fifteen healthy participants (all males), between 20 and 28 years of age, were 
recruited from the university population. The scalp EEG signals were recorded from 
36 channels. The contact impedance between EEG electrodes and the cortex was 
calibrated to be less than 10 kΩ. Each subject practiced about 15 minute to prevent 
learning effect. For this four-session experiment, subjects were required to rest for ten 
minutes between every two sessions to avoid fatigue. 
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2.2   Signal Processing and Feature Extraction 

The procedures of data analysis and feature processing are described here. The EEG 
data were recorded with 16-bit quantization level at a sampling rate of 500 Hz and 
down-sampled to sampling rate equaled 250 Hz. The data were cut-off frequency of 
50 Hz to remove high frequency noise. One more high-pass filter with a cut-off 
frequency of 0.5 Hz was utilized to remove DC drift. Because different cases with 
various combinations of driving and math tasks were designed, EEG signals from five 
cases were extracted separately. The extracted signal meant one EEG epoch. 

EEG source segregation, identification, and localization are very difficult because 
EEG data are collected from the human scalp induce brain activities within a large 
brain area. The ICA algorithm had been extensively applied to solve the problem of 
EEG source separation, identification, and localization since 1990s [8]. Subsequent 
technical experiments demonstrated that ICA could also be used to remove artifacts 
from both continuous and event related (single-trial) EEG data [9]. Based on these 
studies, ICs were selected and clustered semi-automatically based on their scalp maps, 
dipole source locations, and within subject consistency.  

The activation in Frontal areas was induced by mental task and the spectra in 
Motor component were difference between the single- and dual- task conditions. The 
brain activities in Frontal and Motor components were extracted to coalesce to form a 
bigger feature vector. Then the phase part of each EEG epoch was divided into ten 
intervals with 400ms, and each interval was applied Fast Fourier Transform. In each 
interval, 0~20 Hz for Fontal and 0~30 Hz for Motor components were reserved. The 
main difference in power spectra among all five cases were occurred in these low 
frequency [10]. Thus each case was represented by the power spectrum by 500 
dimensions (200 for the Frontal and 300 for Motor). This feature vector implicitly 
contained the time information of onset of different events. 

Although the subjects were asked to try their best to keep the same psychological 
and physical states during the whole experiment, there might be some variation 
among the subjects depending on ages, health conditions, and many other factors. The 
mean feature vector was calculated by every subject, and it was then subtracted from 
the feature vectors representing different cases for every particular subject to decrease 
the effect of diversity. The variation among subjects would play a dominant role in 
forming the maps without applying this procedure [11]. The normalization, Z-score, 
was applied to the feature vector after decreasing the subject variation. Finally, 
smoothing the power spectra was by seven EEG epochs, and the window was moved 
epoch by epoch circularly. 

2.3   Classification Algorithm 

To evaluate and analyze the phenomenon of driver distraction, one unsupervised 
method was applied. SOM is implemented through a neural network architecture that 
is similar with some ways to the biological neural networks [7]. SOM owns input 
layer and output layer to achieve dimension projection. The input layer receives the 
incoming data like organism get the stimulus. Not only the stimulated neuron but also 
the neighboring neurons are adjusted in each training process. When the unsupervised 
training processes are over, the output layer will adequately represent the input space. 
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It is similar that the brain under different type stimulus would be organized many 
special areas to handle variant reaction, such as reading, speaking, or smelling. The 
neurons in the brain with same functions would be clustered to the same areas during 
the growth of human. Thus, similar incoming signal will be projected near each other 
onto the near neurons on the map. SOM could offer an approach to brain activities 
that provides not only one classification for our distraction data but also a mechanism 
for visualizing the complex distribution of cognitive states. The high dimension data 
could also be projected to lower visualization dimension (usually 1-D, 2-D, or 3-D) to 
represent the distribution of the data. 

Three parameters, including neuron number, learning rate, and training steps are 
needed during SOM algorithm processed. The neuron number directly relates the 
performance of the trained map. In this study, 625 (25 * 25) neurons were defined to 
get good performance and less time consuming. Following the usual norm, two 
phases of training were employer [12]. In first phase, the learning rate was decreased 
from 1 to 0 in 75000 training steps, while the radius of the neighborhood was 
decreased from 25 to 1. In the second phase, learning rate decreased from 0.1 to 0 in 
50000 steps, while the neighboring radius decreased from 6 to 1. In this study, the 
maps were initialized, trained, and evaluated by SOM toolbox for MATLAB [13]. 

2.4   Distracted Detection System 

In this study, one detecting driver distraction model is proposed. The classifiers in our 
model are the majority vote by different classifiers which are nine trained maps. The 
EEG epochs of one subject were chosen to be the testing data, and the other EEG data 
were the training data. For each subject, nine maps were generated same as before 
setting. The unlabeled neurons in these nine maps would be labeled first by the 
shortest distance from the neighboring neurons to provide complete information about 
relations among neighboring. Each epoch of testing data located on one neuron of 
each map and could be estimated case which was this epoch was belonged.  

3   Results 

The EEG epochs were analyzed by our proposed methods and the main finding could 
be represented here. The first part is about the phenomenon of driver distraction. By 
ICA, the interesting components were also found in Frontal and Motor cortex. There 
are two maps trained by SOM in the second part. The distribution of EEG epochs 
could be verified the relationship of driver distraction among different cases. 

3.1   EEG Results 

The Motor component was active when subjects steered the car. Activations 
simultaneously related to attention in Frontal component appear. Therefore, ICA 
components, including Frontal and Motor, were selected for IC clustering to analyze 
cross-subject data based on their EEG characteristics. 

At first, IC clustering groups massive components from multiple sessions and 
subjects into several significant clusters. Cluster analysis, k-means, was applied to the 
normalized scalp topographies and power spectra of all 450 (30 channels x 15 
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subjects) components. Frontal and left Motor components were chosen to analyze 
distraction effects. Fig. 1 shows the scalp maps and equivalent dipole source locations 
for Fontal and left Motor clusters.  

 

Fig. 1. The scalp maps and equivalent dipole source locations after IC clustering. (a) Frontal 
Components (b) Motor Components (c) the 14 dipole sources for Frontal components (d) the 11 
dipole sources for Motor components. 

Fig. 2a shows the cross-subject averaged event related spectral perturbation 
(ERSP) in Frontal cluster corresponding to the five cases. The theta power increases 
in three dual task cases are slightly different from each other. Compared to the single 
math task (Case 4), the power in dual task cases is stronger. Especially, the power 
increase in case 1 is the strongest. On the beta band, it also shows power increases, 
which appear only in the math task and time-locked to mathematics onsets. Fig. 2d 
shows the cross subject average ERSP in the left Motor cluster corresponding to five 
cases. In Case 4, the alpha and beta power suppressions appear continuously. 
Compared with Case 4, the alpha and beta power suppressions in Case 5 are stronger 
and also longer. In other cases, the alpha and beta power suppressions also continue. 
This phenomenon is suggested to be related to steering the car back to the center of 
the third lane. The ERSP images mainly show spectral differences after an event since 
the baseline spectrum prior to event onsets had been removed. 

 

Fig. 2. ERSP without a significance test and the differences between cases 

In Fig. 2, columns (b) and (e) show the differences among three single task cases; 
columns (c) and (f) show the differences between single- and dual- task cases. In 
columns (b), (c), (e), and (f), a Wilcoxon signed-rank test is used to retain the regions 
with significant power inside the black circles. Columns (b) and (c) show the 
comparison of power increases between cases. The remained regions show greater 
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power increases in the single task case than in the dual task case. Columns (e) and (f) 
show compared power suppressions between cases. The remained regions show 
greater power suppressions in the dual task cases than in the single task case. 

3.2   SOM Results and System Performance 

In Fig. 3a, the map was trained by four conditions excluded Case 2 (D&M). The EEG 
epochs from two single conditions are clustered well to two almost perfect areas on 
the corner of this map. The other two dual conditions are also clustered to two almost 
perfect structures. In the second experiment, all EEG epochs are used to train the map 
shown in Fig. 3b. Two single conditions cover the bottom corner of this map, and the 
other areas represent the EEG epochs of the three dual tasks with SOA conditions. 
Here the EEG signals of Case 2 do not form a big compact clusters like the other four 
cases. The high accuracy of these two maps is exhibited in Table 1 which shows the 
average accuracy of correct labeling.  

Comparing these two maps and the accuracy, the EEG epochs of four or five 
conditions could be distinguished clearly. This is a good evidence that there are 
noticeable differences in the EEG spectrum when subjects drive distraction or not 
even though the distraction levels. There are many sub-areas in Fig. 3b to represent 
Case 2. When the subjects faced two events simultaneously, they might choose one 
task to respond first. The brain resources could be occupied by every special case, and 
the phenomenon of Case 2 could be similar to that special case. 

 

Fig. 3. Trained maps (a) four cases (b) five cases 

The SOM could indeed distinguish the difference of brain activities with high 
accuracy. The accuracy of each case is not so high, but three dual conditions are hard 
to recognize clearly. By the results of this model, we had two main clusters: single 
driving (absorbed) and distracted driving (distraction) conditions. The performance of 
the two conditions is shown in Table 2, especially the accuracy of distracted driving 
reached 85%. So this system could recognize the EEG epochs of one new coming 
subject to two clusters: focusing on driving or driver distraction. 
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Table 1. Average accuracy of each type map 

Condition Case 1 Case 2 Case 3 Case 4 Case 5 
4 cases 98.2 (1.2) X 97.8 (1.6) 99.2 (1.1) 99.7 (0.8) 
5 cases 97.1 (2.9) 93.1 (3.1) 95.7 (2.2) 97.9 (1.8) 98.6 (1.6) 

Table 2. Average of testing results 

Validation Distracted Driving Single Driving 
Percentage 84.1 (1.8) 91.5 (0.7) 

4   Conclusions 

This study proposed one detective model for driver distraction under multiple cases 
and different distraction levels. The major findings include the following: 1) the 
phasic changes in Frontal and Motor are related driver distraction; 2) one effective 
feature processing is applied to reduce the subjective variation of brain activities; 3) 
verifying the EEG epochs of distracting and non-distracting conditions is effective. 
The EEG epochs of single driving were clearly identified. For such dual tasks, our 
SOM based exploratory data analysis using EEG suggested existence of distinct 
signatures among the five cases. The Frontal and Motor components were the main 
activities area of responding multiple tasks during distracted driving. Furthermore, the 
recognition of distraction levels will help us to monitor the driver safety and warn 
them to pay more attention during driving for decreasing and avoiding the traffic 
accidents in our real-life driving. 
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Abstract. Common spatial pattern (CSP) is very successful in con-
structing spatial filters for detecting event-related synchronization and
event-related desynchronization. In statistics, a CSP filter can optimally
separate the motor-imagery-related components. However, for a single
trail, the EEG features extracted after a CSP filter still include features
not related to motor imagery. In this study, we introduce a linear dy-
namical system (LDS) approach to motor-imagery-based brain-computer
interface (MI-BCI) to reduce the influence of these unrelated EEG fea-
tures. This study is conducted on a BCI competition data set, which
comprises EEG signals from several subjects performing various move-
ments. Experimental results show that our proposed algorithm with LDS
performs better than a traditional algorithm on average. The results re-
veal a promising direction in the application of LDS-based approach to
MI-BCI.

Keywords: motor imagery, brain-computer interface, linear dynamic
system, common spatial pattern.

1 Introduction

Brain-computer interfaces (BCIs) are communication systems which enable users
to send commands to computers using only their brain activity, which is gener-
ally measured by electroencephalography (EEG) [1,2]. BCI technology has been
a promising tool for disabled people as well as for healthy people [3,4,5]. Motor
imagery is a very popular paradigm in BCI. EEG and event-related synchroniza-
tion/desynchronization (ERS/ERD) [6] have been employed for research on brain
functional activity for many decades and have become the scientific basis of mo-
tor imagery. Studies have shown that distinct phenomena such as ERD/ERS are
detectable from EEGs for both real and imagined motor movements in healthy
subjects [7,8,9]. Common spatial pattern (CSP) [10] is very successful in con-
structing spatial filters for detecting ERS/ERD. However, the features extracted
after CSP still contain unrelated EEG features.
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Fig. 1. The flow chart of our proposed algorithm for processing two-class motor imagery
EEG recordings

Mental states have the characteristic of continuity. It is a gradual process, and
so the EEG features extracted from mental states such as vigilance change con-
tinuously [15]. Recently, Shi and Lu [14] have applied linear dynamical system
(LDS) approach to vigilance estimation [11,12,13] from EEGs, and their experi-
mental results show that LDS can remove vigilance-unrelated signals effectively.
LDS is a kind of state space model, which can effectively remove vigilance-
unrelated features using the time dependency of vigilance changes. Motor im-
agery is also a kind of mental state which has the feature of continuity. In theory,
by making use of the time dependency of changes of motor imagery, LDS can
filter the motor-imagery-related EEG features more accurately. In this study, we
introduce the LDS-based approach to motor-imagery-based brain-computer in-
terface (MI-BCI). By using the LDS-based approach, EEG features are smoothed
and the unrelated EEG influences in the EEG features are reduced. Our exper-
imental results show that our proposed algorithm with LDS performs with a
higher accuracy than the traditional algorithm on average.

The remainder of this paper is organized as follows. Section 2 describe the
methodology and process of our proposed algorithm. Section 3 presents the ex-
perimental results. Finally, Section 4 discusses some conclusions.

2 Methodology

2.1 Main Idea

The flow chart of the process for our proposed algorithm with LDS in MI-BCI is
shown in Fig. 1. The M recorded EEG signals x(t) = [x1(t), x2(t), ..., xM (t)]T are
assumed to be linear mixtures of the underlying components s(t) = [s1(t), s2(t)]T :

x = A

[
s1

s2

]
(1)

Suppose s1 are motor-imagery-related components and s2 are unrelated com-
ponents. In traditional algorithms, we use CSP to extract the motor-imagery re-
lated components s̃1 which is an estimate of s1. Then we extract features F (s̃1)
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Raw EEG signals. Band-pass filter. Applying CSP.

                 Feature extraction. Processed by LDS.                Classification.

Fig. 2. Architecture of motor imagery-based brain-computer interface with linear dy-
namical system approach

from components s̃1 where F (s̃1) is calculated by feature extraction methods.
Suppose F (s1) are the features extracted from s1 which are pure motor-imagery
related components with no noise, then in the traditional algorithms, we use
F (s̃1) to estimate F (s1) and finally use a classifier such as a support vector
machine (SVM) [16] to classify F (s̃1).

In traditional algorithms, a CSP filter is used to optimally separate the motor-
imagery related components of left and right motor imagery in statistics [10].
However, for each single trail, the component s̃1 filtered by the CSP algorithm
may contain unrelated component. So s̃1 may not estimate s1 very precisely. As
a result, the features F (s̃1) extracted from s̃1 may include features unrelated to
motor imagery.

Based on this hypothesis, we try to smooth F (s̃1) into F̃ (s1) using LDS to

reduce the unrelated features. Compared with F (s̃1), F̃ (s1) is expected to be a
better estimate of F (s1). The architecture of the MI-BCI with LDS is shown in
Fig. 2.

2.2 Common Spatial Patterns

The CSP algorithm is effective in constructing optimal spatial filters that dis-
criminate two classes of EEG measurements in MI-BCI [10,17,18,19]. The spatial
filter maximizes the variance of signals of one class and at the same time mini-
mizes the variance of signals of the other class. Because band power is equal to
the variance of band-pass filtered signals, CSP performs very well as a spatial
filter for detecting ERS/ERD in EEG measurements and has been well used in
in BCI systems [20,21,22].

In this study, we extract one feature every 0.2 second, so a sequence of fea-
tures Y (i) is obtained in a single trail (7 seconds). The feature Y (i) is obtained
by calculating the variance of signals in the time interval of 0.2 second. Let
Y = 1

n

∑n
i=1 Y (i), so we can choose Ȳ as the extracted feature of the trail.

Let ȲclassA and ȲclassB be the selected features for two classes which are chosen
from four classes (left hand, right hand, tongue, and foot movements). Since CSP
maximizes the variance ratio of components of the two classes, we can classify
ȲclassA and ȲclassB by SVM.
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2.3 Linear Dynamical System

There are some motor-imagery-unrelated influences in the EEG features, so y(i)
probably contains noise. We design LDS to reduce these influences as well as to
smooth the EEG features.

The motor-imagery-unrelated influences of EEG features result in a difference
between the original EEG features Y calculated from traditional methods and
the motor-imagery-related EEG features Ym which can represent the feature of
motor imagery more accurately. Because mental state is time dependent, the
features Ym extracted from EEG components are also time dependent. If Y is
considered as the observation sequence of the latent state sequence Ym, we can
represent a state space model to filter out the above influences and recover the
Ym from Y in the form of LDS:

Ym(t) = AYm(t− 1) + v(t) (2)
Y (t) = CYm(t) + w(t), (3)

where A is the state transition matrix, C is the observation matrix, v(t) ∼
N (0, Γ ) and w(t) ∼ N (0, Σ) are the Gaussian variables, and the initial latent
state is assumed to be distributed as Ym(1) ∼ N (μ(0), V (0)), Eqs. (2) and (3)
can also be expressed in an equivalent form in terms of Gaussian conditional
distributions as follows,

p(Ym(t) | Ym(t− 1)) = N (AYm(t− 1), Γ ) (4)
p(Y (i) | Ym(t)) = N (CYm(t)Σ). (5)

The parameters of the LDS model are denoted by θ = {A, C, Γ, Σ, μ0, V0}. Ac-
cording to the LDS model, given the observations, the latent state Ym(t) can be
estimated from the posterior marginal distribution corresponding to p(Ym(t) | Y )
and this posterior marginal distribution is Gaussian,

p(Ym(t) | Y ) = N (μ(t), V (t)).

The mean μ(i) is just the maximum a posteriori (MAP) estimation of Ym(t).
For online inference, Y are the observations from Y (1) to Y (t). The parameters
of the marginal distribution, μ̂(t) and V̂ (t), can be determined by the following
forward recursions:

Pt−1 = A ˆVt−1A
T + Γ

Kt = Pt−1C
T (CPt−1C

T + Σ)−1

μ̂t = Aμ̂t−1 + Kt(Y t − CAμ̂t−1)
V̂t = (I −KtC)Pt−1,

where the initial conditions are:

K1 = V0C
T (CV0C

T + Σ)−1

μ̂1 = μ0 + K1(Y 1 − Cμ0)
V̂1 = (I −K1C)V0.
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For offline inference, Y is the whole sequence of observations from Y 1 to Y N .
The parameters of the marginal distribution, μ̃(t) and Ṽ (t), can be determined
by the online inference results and the following backward recursions:

Jt = V̂tA
T (Pt)−1

μ̃t = μ̂t + Jt(Ṽt+1 −Aμ̂t)
Ṽt = V̂t + Jt(Ṽt+1 − Pt)JT

t ,

where the initial conditions are:

μ̃N = μ̂N

ṼN = V̂N .

Though offline inference is more accurate than online inference, we use online
inference in this study, because immediate feedback is required in MI-BCI. Every
EEG feature with interval of 0.2 second is smoothed by LDS. The LDS model
runs in constant time because the size of input is limited which is the length of a
sequence of features obtained in a single trail (7 seconds). So the time complexity
of the LDS model is O(1). The parameters of the LDS model can be estimated by
the EM algorithm. However, these estimated parameters are locally optimized.
Because the form of parameters is relatively simple, we can test by hand and
determine the parameters.

3 Experimental Results

This section evaluates the performance of the proposed algorithm on BCI Com-
petition 3 data set 3a [23]. This data set comprises EEG signals from three
subjects who performed left hand, right hand, tongue, and foot movements. The
four classes of movements that should be discriminated were paired in six groups
to yield the 2-class motor imagery data sets. For the first two subjects, there
are 90 trails for each class and for third subject, 60. These data sets comprise a
training set and a testing set for each subject. Half of each session is the training
set and the other half is the testing set. Each trail has a duration of 7 sec. The
subjects performed motor imagery from time t = 3 sec to t = 7 sec of each trail.

We compare the traditional algorithm with the proposed algorithm with LDS
to see whether there is an increase in accuracy. The architecture of the CSP algo-
rithm for two-class motor imagery in this study is shown in Fig. 3. We filter the
EEG signals in 8-20 Hz and then use CSP to construct the spatial filter. We de-
compose the signals into 6 bands of 2 Hz, which are 8-10 Hz, 10-12 Hz, 12-14 Hz,
14-16 Hz, 16-18 Hz, and 18-20 Hz, respectively. Signals of each band are filtered
by CSP, and features of 6 bands, Y8−10, Y10−12, Y12−14, Y14−16, Y16−18, Y18−20,
are extracted by calculating the variance of components which are obtained
after CSP. Then, (Y8−10, Y10−12, Y12−14, Y14−16, Y16−18, Y18−20) as used as the
feature of a single trail. And, SVM is used as a classifier with radial basis func-
tion (RBF) kernel, and 5-fold cross validation for training. We need to estimate



714 J. Wu, L.-C. Shi, and B.-L. Lu

8-10 Hz

10-12 Hz

12-14 Hz

14-16 Hz

16-18 Hz

18-20 Hz

CSP

Feature 
extraction
and LDS

Classification
Action

Subject

Single trail EEG

Band-pass
 filtering

Spatial
filtering

CSP

CSP

CSP

CSP

CSP

Fig. 3. Architecture of CSP algorithm for two-class motor imagery EEG data

Table 1. Comparison of classification accuracy of the traditional algorithm and that
of our proposed algorithm

Data set Task 1/2 Task 1/3 Task 1/4 Task 2/3 Task 2/4 Task 3/4 Average Γ/C

k3b(original) 88.9% 85.5% 88.9% 80.0% 78.9% 64.4% 81.1%
k3b(with LDS) 91.1% 86.7% 92.2% 81.1% 83.3% 65.6% 83.3% 0.25

k6b(original) 63.3% 58.3% 86.7% 66.7% 90.0% 90.0% 75.8%
k6b(with LDS) 65.0% 65.0% 86.7% 70.0% 90.0% 90.0% 77.8% 0.03

l1b(original) 65.0% 66.7% 75.0% 68.3% 78.3% 63.3% 69.4%
l1b(with LDS) 75.0% 66.7% 75.0% 71.7% 78.3% 65.0% 72.0% 0.50

the parameters θ = {A, C, Γ, Σ, μ0, V0} of the LDS model. Considering the form
of parameters is relatively simple, they can be determined by hand. We only
need to enumerate Γ and C, while the other parameters A, Σ, μ0 and V0 have
constant values. We set A = 1, Σ = 1, V0 = 0.1 and let μ0 be the the first value
of the input sequence to the LDS model.

The experimental results of classification and values of parameter Γ/C are
shown in Table 1. The first six columns show the results for the two-class classi-
fication of recorded data, while the last column holds the average classification
accuracy over all tasks. Comparing the proposed algorithm with the traditional
algorithm, the performance for each subject steadily is improved about 2%. How-
ever, the overall classification accuracies of l1b and k6b are still relatively low.
The reason could be the poor performance of the subject on the practical motor
imagery task. In summary, from the experimental results it is clear that LDS is
effective for reducing motor-imagery-unrelated EEG features in MI-BCI.

4 Conclusions

In motor imagery, CSP filters can optimally separate the motor-imagery related
components of two classes, but for a single trail, the components filtered by
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CSP still contain unrelated component. In this paper, we introduced LDS to
MI-BCI, which is used to filter the motor-imagery-related EEG features more
accurately for a single trail and improve the classification accuracy of MI-BCI.
The traditional algorithm and the proposed algorithm with LDS were evaluated
on the four-class motor imagery data of BCI competition 3 data set 3a. The
experimental results show that after adding the LDS in the traditional algorithm,
the average classification accuracy rises about 2%. The experimental results
suggest LDS can effectively filter out the motor-imagery-unrelated EEG features
and reveal a promising direction in the application of LDS to MI-BCI.
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Abstract. Driver’s cognitive state monitoring system has been implicated as a 
causal factor for the safety driving issue, especially when the driver fell asleep 
or distracted in driving. However, the limitation in developing this system is 
lack of a major indicator which can be applied to a realistic application. In our 
past studies, we investigated the physiological changes in the transition of driv-
er’s cognitive state by using EEG power spectrum analysis and found that the 
features in the occipital area were highly correlated with the driver’s driving 
performance. In this study, we construct an EEG-based self-constructed neural 
fuzzy system to estimate the driver’s cognitive state by using the EEG features 
from the occipital area. Experimental results show that the proposed system had 
the better performance than other neural networks. Moreover, the proposed sys-
tem can not only be limited to apply to individual subjects but also sufficiently 
works in between subjects. 

Keywords: EEG, neural networks, fuzzy systems, driving cognition, machine 
learning. 

1 Introduction 

Motion-sickness is a common experience to everybody, and it has provoked a great 
deal of attentiveness in plenty of studies. The sensory conflict theory that came about 
in the 1970’s has become the most widely accepted theorem of motion-sickness 
among scientists [1]. The theory proposed that the conflict between the incoming  
sensory inputs could induce motion-sickness. Accordingly, new research studies have 
appeared to tackle the issue of the vestibular function in central nervous system 
(CNS). In the previous human subject studies, researchers attempt to confirm the 
brain areas involved in the conflict in multi-modal sensory systems by means of  
clinical or anatomical methods. Brandt et al. demonstrated that the posterior insula in 
human brain was homologous to PIVC in the monkey by evaluating vestibular  
functions in patients with vestibular cortex lesions [2]. In agreement with previous 
clinical studies, the cortical activations during caloric [3] and galvanic vestibular sti-
mulation [4] had been studied by functional imaging technologies such as positron 
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emission tomography (PET) and functional magnetic resonance imaging (fMRI). To 
overcome the temporal limitation of the two imaging modalities, some studies have 
investigated the vestibular information transmission in time domain. Monitoring the 
brain dynamics induced by motion-sickness because of its high temporal resolution 
and portability De Waele et al., for example, applied current pulse stimulation to  
patients’ vestibular nerve to generate vestibular evoked potentials [5]. 

The EEG studies related to motion-sickness can be divided into two groups accord-
ing to the types of stimuli: vestibular and visual. Vestibular stimuli were normally 
provided to the subjects with rotating chair [6], [7], parallel swing [8], and cross-
coupled angular stimulation [9] to induce motion-sickness. Theta power increases in 
the frontal and central areas were reported to be associated with  motion-sickness 
induced by parallel swing [8] and rotating drum [6], [7]. Chelen et al. [9] employed 
cross-coupled angular stimulation to induce motion-sickness symptoms and found 
increased delta- and theta-band power during sickness but no significant change in 
alpha power. Visually induced motion-sickness is also commonly studied in previous 
studies. Visually induced sickness can be provoked with an optokinetic drum rotating 
around the yaw axis. This situation can cause a compelling sense of self-motion 
(called vection). Vestibular cues indicate that the body is stationary, whereas visual 
cues report the body is moving. Hu et al. investigated MS triggered by the viewing of 
an optokinetic rotating drum and found a higher net percentage increase in EEG pow-
er in the 0.5-4 Hz band at electrode sites C3 and C4 than in the baseline spectra. [10]. 
This study employees ahe driving simulator comprised an actual automobile mounted 
on a Stewart motion platform with six degrees of freedom, providing both visual and 
vestibular stimulations to induce motion-sickness and accompanied EEG dynamics.  

Our past studies [11-14] had investigated the EEG activities correlated with motion 
sickness in a virtual-reality based driving simulator. We found that the parietal and 
motor brain regions exhibited significant alpha power suppression in response to ves-
tibular stimuli, while the occipital area exhibited motion sickness related power aug-
mentation in mainly theta and delta bands; the occipital midline region exhibited a 
broad band power increase. Based on these results, we think that both visual and ves-
tibular stimulations should be used to induce motion sickness in brain dynamic re-
search. Hence, we attempt to implement an EEG-based evaluation system to estimate 
subject’s motion sickness level (MSL) upon the major EEG power spectra from these 
motion sickness related brain area in this study. The evaluation system can be applied 
to early detect the subject’s MSL and prevent the uncomfortable syndromes occurred 
in advance in our daily life. 

2 Experiment Design and Setup 

2.1 Experimental Paradigm 

Unlike the previous studies, we provided both visual and vestibular stimuli to  
participant through a compelling VR environment consisting of 360o projection of VR 
scene and a motion platform with six degree-of-freedom to induce motion-sickness 
(shown in Fig. 1).  With such a setup, we expected to create motion-sickness in a 
manner that is close to that in daily life. During the experiment, the subjects were  
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asked to sit inside an actual vehicle mounted on a motion platform, with their hands 
holding a joystick to report their sickness level continuously.  The VR scenes simu-
lating driving in a tunnel were programmed to eliminate any possible visual distracter 
and shorten the depth of visual field such that motion-sickness could be easily in-
duced. A three-section experimental protocol (shown in Fig. 2) was designed to in-
duce motion-sickness. 

 

 

Fig. 1. VR-based Highway Driving Environment. (a) Snapshot of the virtual reality-based 
driving scene, (b) six degree-of-freedom motion platform. 

First, the baseline section contained a 10-minute straight road to record the sub-
jects’ baseline state. Then, a 40-minute motion-sickness section, which consisted of a 
long winding road, was presented to the subjects to induce motion-sickness. Finally a 
15-minute rest section with a straight-road condition was displayed for the subjects to 
recover from their sickness. The level of sickness was continuously reported by the 
subjects using a joystick with continuous scale on its side. The experimental setting 
successfully induced motion sickness to more than 80% of subjects in this study. 
 

 

Fig. 2. Experimental design of motion-sickness experiments 

2.2 Subjects 

Ten healthy, right-handed volunteers with no history of gastrointestinal, cardiovascular or 
vestibular disorders or of drug or alcohol abuse, taking no medication and with normal or 
corrected-to-normal vision participated in this experiment. EEG signals were recorded  
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with 500 Hz sampling rate by 32-channel NuAmps (BioLink Ltd., Australia).  
Simultaneously, during EEG recording, the level of sickness was continuously reported 
by each subject using a joystick with a continuous scale ranging 0 – 5. The subjects were 
asked to raise/lower the scale to a higher/lower level if they felt more motion sick  
comparing to the last condition. This continuous sickness level was reported in real time 
without interrupting the experiment rather than the traditional motion-sickness  
questionnaire (MSQ). 

2.3 Data Analysis 

The acquired EEG signals were first inspected to remove bad EEG channels and then 
down-sampled to 250 Hz. A high-pass filter with cut-off frequency at 1 Hz and transi-
tion band width 0.2 Hz was used to remove baseline-drifting artifacts, and a low-pass 
filter with cut-off frequency at 60 Hz and transition band width 7 Hz was to remove 
muscular artifacts and line noise. After the preprocessing procedures, the clean EEG 
signals will feed into the proposed evaluation system for further analysis. 

3 Proposed MS Level Estimation System 

The proposed evaluation system to estimate subject’s motion sickness level can be 
divided into five parts: independent component analysis (ICA), component clustering, 
time-frequency analysis, Feature Extraction by Principal Component Analysis (PCA), 
and Estimation part by applying linear regression, RBF Neural Network and Support 
Vector Regression with leave one out (LOO) cross validation. Figure 3 shows the 
system flowchart of the proposed motion sickness evaluation system. 

 

 

Fig. 3. System flowchart of the proposed motion sickness evaluation system 

Independent Component Analysis (ICA) was applied to EEG recordings to remove 
various kinds of artifacts, including blink artifact and indoor power-line noise, and to 
extract features of human’s cognition. Among components from all subjects, those 
with similar scalp topographies, dipole locations and power spectra were grouped 
using k-means clustering. 

After doing ICA process, component clustering was analyzed using DIPFIT2  
routines, a plug-in in EEGLAB, to find the 3D location of an equivalent dipole or 
dipoles based on a four-shell spherical head model. Among components from all  
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subjects, those with similar scalp topographies, dipole locations and power spectra 
were clustered. Ten component clusters recruited more than 10 components from 
multiple subjects with similar topographic maps were regarded as robust component 
clusters. In component clustering results, we find that not all subjects have every mo-
tion sickness related components because the level of motion sickness induced by 
vestibular and visual stimuli to each subject had the significant individual difference. 
According to MSQ results and subject’s self-response of motion sickness, we can 
confirm that each subject indeed felt sickness during the whole experiment session. 
Consequently, these extracted components are correlated with motion sickness. Then 
we can feed the ICA signals into the system and do time-frequency analysis. 

As previously mentioned, the extracted independent components are different in 
number and in location through subjects. To maintain the consistency of subject data, 
we proposed to project these components back on channel domain. The channels of 
interest (Fp1, Fp2, C3, C4, Pz, and Oz) in this study are those electrodes close to the 
MS-related component clusters stated in our previous study [11]. C3 and C4 are close 
to left and right motor region respectively. Pz and Oz mostly represent the activity of 
parietal, occipital, and occipital midline areas. Frontal electrodes (Fp1 and Fp2) are 
relatively distant from the MS-related component clusters, but they are included in the 
channels of interest. The reason is that forehead, which is not covered by hair, is a 
popular choice to place EEG sensors, and the state-of-art EEG-based BCI devices 
using dry sensor on forehead have been developed in recent years [15], [16]. 

Time-frequency analysis was used to investigate the dynamics of the ICA power 
spectra. In order to provide a temporal resolution of 30 seconds, the spectra of ICA 
activations were calculated using 30-sec length window with 150-sec overlap, and 
subdivided into several 250-point sub-windows with 125-point overlaps. Each 125-
point sub-window was zero-padded to 256 points for using 256-point fast Fourier 
transform (FFT) with ~1 Hz resolution in frequency. The linear power spectrum den-
sity (PSD) was then converted into a logarithmic scale (dB power). 

PCA [17] was then used to summarize the variances and extract first few principal 
components of the components’ PSD’s. In this study, the number of selected eigen-
vector was determined in the PCA training process. Leave-one-subject-out (LOSO) 
cross validation was performed to evaluate the estimation performance. In LOSO 
cross validation, each subject’s data was prepared as the testing data, and the data 
from the other 9 subjects were collected as the training data. PCA was performed on 
the training data to extract the eigenvectors for selection and projection. And then in 
the training data, another LOSO cross validation was performed repeatedly using 
from 1 to all 36 eigenvectors. Finally, the number of eigenvectors that support the 
least average AIC across 9 training subjects in the training process was used in the 
testing process. 

4 Experimental Results and Discussions 

In this study, we totally selected 10 subjects that were analyzed and applied to the 
modeling the estimation of our proposed MS level evaluation system. Figures 4 and 4 
were shown the correlation coefficients (CC) results and root mean square errors 
(RMSE) in comparison with the actual MS level and the estimation performance of 
our proposed system. To summary the all estimation performance from 10 subjects,  
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Table 1. Comparison results of the cognitive state estimation systems including correlation and 
RMSE performances in subject-dependent and cross-subject conditions 

Subject 
LR PCR 

CC RMSE CC RMSE 

1 0.6830 0.2454 0.8628 0.1893 

2 0.8023 0.2157 0.8477 0.2249 

3 0.6842 0.2639 0.7915 0.1601 

4 0.4774 0.3989 0.8832 0.2295 

5 0.3923 0.5748 0.6605 0.3327 

6 0.5086 0.2831 0.7494 0.2302 

7 0.8000 0.3355 0.8426 0.2434 

8 0.8689 0.1492 0.8101 0.1803 

9 0.6922 0.2496 0.7052 0.2313 

10 0.5635 0.2952 0.6791 0.2407 

Total 
0.6472 

±0.1568 
0.3011 

±0.1171 
0.7832 

±0.0803 * 
0.2262 

±0.0468 * 

Dimension 36 5.6±1.5 

*: Significant difference between LR’s and PCR’s performance (p < 0.05) tested by  
Wilcoxon signed rank test 

 
the average correlation coefficients were about 0.6472 and 0.7832 in corresponding to 
linear regression (LR) and principal component regression (PCR) [18], respectively. 
As for the RMSE performance, the average estimation results were 0.3011 and 0.2262 
in corresponding to LR and PCR, respectively. According to the estimation results in 
Table 1, we can see that the proposed MS level estimation system using PCR is better 
than using LR model. 

Through the experimental results on the system performance under different condi-
tions, we find that 1 subjects out of 10 subjects except subject 8 had the better CC 
estimation result via using LR. In conclusion, this study demonstrated that our pro-
posed EEG-based evaluation system could successfully estimate the motion sickness 
level reported by individual subject, we suggest that SVR model can be utilized to 
estimate the motion sickness level in the operational environment. Since the potential 
of real-time application is emerging and desired, nevertheless, we need to consider 
more about the complexity, instantaneity, and robustness of the system. These results 
let us open an emerging sight on the potential of real-time application. Nevertheless, 
the complexity, instantaneity, and robustness of the system still have to be considered 
for the implementation. 
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Fig. 4. Subjects 2’s (top) and 4’s (bottom) estimated MSL performance via using PCR 
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Abstract. Common spatial pattern (CSP) algorithm and principal com-
ponent analysis (PCA) are two commonly used key techniques for EEG
component selection and EEG feature extraction for EEG-based brain-
computer interfaces (BCIs). However, both the ordinary CSP and PCA
algorithms face a loading problem, i.e., their weights in linear combi-
nations are non-zero. This problem makes a BCI system easy to be
over-fitted during training process, because not all of the information
from EEG data are relevant to the given tasks. To deal with the loading
problem, this paper proposes a spare CSP algorithm and introduces a
sparse PCA algorithm to BCIs. The performance of BCIs using the pro-
posed sparse CSP and sparse PCA techniques is evaluated on a motor
imagery classification task and a vigilance estimation task. Experimental
results demonstrate that the BCI system with sparse PCA and sparse
CSP techniques are superior to that using the ordinary PCA and CSP
algorithms.

Keywords: sparse common spatial pattern, sparse principal component
analysis, EEG, brain-computer interface.

1 Introduction

Brain-computer interface (BCI) is usually defined as a direct communication
pathway between the brain and a computer or a device. And electroencephalo-
gram (EEG) is the most commonly used brain signals for BCIs. Over the
last twenty years, with the advances of signal processing, pattern recognition,
and machine learning techniques, the field of BCI research has made great
progress [1,2]. Through BCIs, people can directly control an external device just
by using EEG signals generated from motor imagery, visual evoked potentials,
or people’s mental states. However EEG signals are very noisy and unstable.
Therefore, relevant EEG components selection and feature extraction are very
important for BCIs. For traditional BCIs, spatial filters based on common spatial
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pattern (CSP) are usually used for selecting the relevant EEG components from
the linear combination of the original EEG signals of different channels [3], and
principal components analysis (PCA) technique is usually used for extracting
features from the linear combination of the original EEG features.

However, both the ordinary CSP and PCA algorithms face a loading problem,
i.e., their weights in the linear combinations for PCA and CSP are non-zero.
That problem makes a BCI system easy to be over-fitted during training process,
because not all of the EEG channels or the EEG features are relevant to the given
tasks. As a result, to develop efficient algorithms for EEG channel selection and
EEG feature selection is highly desirable.

In this paper, we introduce sparse loading representations for both CSP and
PCA algorithms. Our proposed sparse technique can accomplish EEG chan-
nel selection, relevant EEG component selection, and EEG feature selection.
For sparse PCA, Zou’s method is adopted [4], where PCA is considered as a
regression-type problem and elastic net is used to calculate the sparse loading
of PCA. The performance of a BCI system using sparse PCA is evaluated on an
EEG-based vigilance estimation task. For sparse CSP, we propose a novel sparse
CSP algorithm and consider CSP as a Rayleigh quotient problem. We use sparse
PCA and elastic net to calculate the sparse loadings of CSP. The performance of
a BCI system with our proposed sparse CSP algorithm is evaluated on a motor
imagery task from the BCI Competition III, Data sets IIIa [5]. Experimental re-
sults demonstrate that both BCI systems using sparse representation techniques
have outperformed the traditional BCI systems.

This paper is organized as follows. In Section 2, the sparse PCA and sparse
CSP algorithms are presented. In Section 3, the experimental setups and the
EEG data processing of vigilance task and motor imagery task are described.
In Section 4, experimental results are presented and discussed. Finally, some
conclusions are given in Section 5.

2 Sparse PCA and CSP Algorithms

As both sparse PCA and sparse CSP algorithms are based on elastic net, the
elastic net algorithm is briefly introduced first, and then sparse PCA and our
proposed sparse CSP algorithms are described.

2.1 Elastic Net

Consider a data set {X, Y }, here X = (x1, ..., xm) is the input set, xi =
(xi,1, ..., xi,n)T , i = 1, ..., m, is the i-th feature of input set, n is the number
of data, m is the feature dimension, and Y = (y1, ..., yn)T is the response set.
For linear regression model, a criterion is usually formed as

β̂ = argmin
β
|Y −Xβ|2, (1)
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where β is the linear coefficients to be estimated. However, the elements of β are
typically nonzero, even some features {xi} are almost not correlated with the
response set. This makes the linear regression model easy to be overfitted.

To solve this problem, various kinds of methods have been proposed. Lasso
is one of the famous methods, which adds a L1 norm penalty to the ordinary
criterion. The Lasso criterion is formed as

β̂ = argmin
β
|Y −Xβ|2 + λ|β|1, (2)

where λ is the penalty factor and | · |1 stands for L1 norm.
By tuning λ, Lasso can continuously shrink the linear coefficients toward zero

and accomplish feature selection, and then improve the prediction accuracy via
the bias-variance tradeoff. Lasso can be efficiently solved by the LARS algo-
rithm [6]. However, LARS has a drawback: the number of selected features is
limited by the number of training data or the number of linear unrelated features
in the training data. To overcome this promlem, naive elastic net and elastic net
have been proposed [7], which add a L2 norm penalty to the Lasso criterion.
The naive elastic net criterion is formed as

β̂ = argmin
β
|Y −Xβ|2 + λ1|β|1 + λ2|β|2, (3)

where λ1 and λ2 are the penalty factors.
The naive elastic net usually makes too much coefficients shrinkage, and causes

more bias to the ELM. But it only reduces a little variances. To correct the bias,
elastic net is proposed, whose solution is a rescaled naive elastic net solution
with a factor (1 + λ2). The elastic net criterion is formed as

β̂ = (1 + λ2)argmin
β
|Y −Xβ|2 + λ1|β|1 + λ2|β|2. (4)

Both naive elastic net and elastic net can be efficiently solved by the LARS-
EN algorithm [7]. The elastic net can simultaneously produce an accurate and
sparse model without the limitation of LARS.

2.2 Sparse PCA

Sparse PCA used in this paper was proposed by Zou et al. [4]. They reformulate
the PCA problem as a regression model and solve it by using the following four
theorems.

In theorem 1, let Zi denote the i-th principal component of X . The cor-
responding PCA loadings Vi can be calculated from the following regression
model,

β̂ = argmin
β
|Zi −Xβ|2 + λ|β|2, (5)

where λ can be assigned with any positive value, and Vi = β̂

|β̂| .
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In theorem 2, another connection between PCA and a regression model is
formed as

(α̂, β̂) = argmin
α,β

n∑
j=1

|X·,j − αβT X·,j|2 + λ|β|2 (6)

subject to |α|2 = 1,

where X·,j is the row vector of X , α and β are m× 1 vectors, and V1 = β̂

|β̂| .
In theorem 3, let α and β be m× k matrices. The connection between PCA

and a regression model is formed as

(α̂, β̂) = argmin
α,β

n∑
j=1

|X·,j − αβT X·,j|2 + λ

k∑
i=1

|βi|2 (7)

subject to αT α = Ik,

where Vi = β̂i

|β̂i|
, for i = 1, ..., k.

To achieve sparse loadings, a L1 penalty is added into (7)

(α̂, β̂) = argmin
α,β

n∑
j=1

|X·,j − αβT X·,j|2 + λ

k∑
i=1

|βi|2 +
k∑

i=1

λ1,i|βi|1 (8)

subject to αT α = Ik,

where λ1,i is the penalty factor. This is a naive elastic net problem, and can be
efficiently solved after fixing α.

In theorem 4, suppose the SVD of XT Xβ is XT Xβ = PΣQT . It is proved
that the solution of α in (8) should be

α̂ = PQT . (9)

Then Eq. (8) can be solved by alternated updating α̂ and β̂ until they converge.
When solving Eq. (8), only the covariance matrix of X is need. For more details,
please refer [4].

2.3 The Proposed Sparse CSP Algorithm

Let X denote the original EEG signals, where X is a p(channel)×l(time) matrix.
The CSP-based spatial filter is to determine some linear projections, y = vT X ,
that can maximize the variance (yyT or vT XXT v) of signals of one condition
and at the same time minimize the variance of signals of another condition in a
specific frequency band. The variance of a specific frequency band is equal to the
band-power. Then, CSP can be formulated as a maximum power-ratio problem
or a Rayleigh quotient problem as follows:

V̂ = {v|max
vT R1v

vT R2v
or max

vT R2v

vT R1v
} (10)
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where Ri is the covariance matrix of original EEG signals on condition i, and V̂
are the projection vectors or loadings of CSP.

Equation (10) can be solved as follows. Let

vT R2v = uT u, (11)

and then,

v = PΣ−1/2u, (12)

where P and Σ are the PCA decomposition of R2, R2 = PΣPT .
By applying Eqs. (11) and (12), vT R1v

vT R2v can be reformed as

uT Du

uT u
, (13)

where D = Σ−1/2PT R1PΣ−1/2.
It is easy to show that the i-th largest value of Eq. (13) is the i-th largest

eigenvalue of D, and u is the corresponding eigenvector. The i-th smallest value
of Eq. (13) corresponds to the i-th largest value of vT R2v

vT R1v . Usually, not two

projections but several projections corresponding to the large values of vT R1v
vT R2v

and vT R2v
vT R1v

are used for EEG spatial filtering. The loadings, v, of CSP can be
calculated by using Eq. (12) together with the eigenvectors corresponding to
some large eigenvalues or small eigenvalues of D.

To achieve sparse loadings of CSP, we can reformulate Eq. (12) as an elastic
net problem as follows:

v̂ = argmin
v
|u−Σ1/2PT v|2 + λ1|v|1 + λ2|v|2, (14)

and solve it by the LARS-EN algorithm.

2.4 Complexity Analysis of the Proposed Sparse CSP Algorithm

In EEG data analysis, the number of features, m, is usually less than the number
of data, n. Therefore, the complexities of the proposed spare CSP algorithm can
be analyzed only on m < n condition.

For elastic net, the time cost is O(m3 + nm2) [7], which is equivalent to the
cost of least square problem. For sparse PCA, the time cost is nm2 +pO(m3) [4],
where p is the number of iterations when solving the sparse PCA. As a result,
the cost of sparse PCA is comparable with the cost of the ordinary PCA, O(m3).

For our proposed sparse CSP algorithm, the extra time cost is kO(nm2 +m3)
in comparison with the ordinary CSP algorithm, where k is the number of com-
ponents extracted by CSP. The cost of ordinary CSP algorithm is O(m3 +nm2).
Therefore, the total cost of the proposed sparse CSP algorithm is (k+1)O(m3 +
nm2), which is comparable with the cost of the ordinary CSP algorithm.
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3 Experiment

3.1 Experimental Setup

Vigilance Task. This is a monotonous visual task [8,9,10]. The subjects are
asked to sit in a comfortable chair, two feet away from the LCD. There are four
colors of traffic signs being presented in the LCD randomly by the NeuroScan
Stim2 software. Each trial is 5.5∼7.5 seconds long, including 5∼7 seconds black
screen and 500 millisecond traffic signs presented. The subjects are asked to
recognize the sign color, and press the correct button on the response pad. A
total of 11 healthy subjects have participated in this experiment. After training,
each subject has finished at least two sessions (one for train, and others for
test). For each session, a total of 62 EEG channels are recorded by the NeuroScan
system sampled at 500Hz. Each session continues for more than one hour, during
13:00∼15:00 after lunch. The local error rate of the subject’s performance is used
as the reference vigilance level, which is derived by computing the target false
recognition rate within a 2-minute time window at 2-second step.

Motor Imagery Task. This data set comes from BCI Competition III, data
sets IIIa, provided by the Laboratory of Brain-Computer Interfaces (BCI-Lab),
Graz University of Technology [5]. It is a 4 classes (left hand, right hand, foot,
and tongue) cued motor imagery experiment from 3 subjects. After trial begin,
the first 2s were quite, at t=2s an acoustic stimulus indicated the beginning of
the trial, and a cross + is displayed; then from t=3s an arrow to the left, right,
up or down was displayed for 1 s; at the same time the subject was asked to
imagine a left hand, right hand, tongue or foot movement, respectively, until the
cross disappeared at t=7s. There are 60 trials per class for each subject. A total
of 60 EEG channels are recorded by the NeuroScan system sampled at 250Hz.

3.2 Data Processing

Vigilance Task. Six EEG channels (P1, Pz, P2, Po3, Poz, Po4) are used for
the vigilance estimation task, which are measured from the posterior regions of
the scalp. The vigilance estimation process consists of the following five main
components: a) a bandpass filter (1Hz-50Hz) is used to remove the low-frequency
noise and the high frequency noise; b) the power spectral density (PSD) of each
channel is calculated by every 2 seconds with a 2 Hz frequency resolution as
the original features; c) the features are smoothed with a 2 min moving-average
filter; d) the top 10 principal components of the PSD are calculated by the sparse
PCA algorithm as features; and e) a least square regression model is adopted
for vigilance estimation by every 2 seconds.

Each subject has an individual vigilance estimation model. For each vigilance
estimation model, one session of a subject is used for training, while other ses-
sions of this subject are used for test.
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Motor Imagery Task. All 60 EEG channels are used for motor imagery clas-
sification. The 4-class motor imagery data sets are paired into 6 groups of 2-class
motor imagery data sets for classification. The classification process consists of
the following four main components: 1) a bandpass filter (8Hz-32Hz) is used to
remove the noises and EEG signals which are unrelated to motor imagery; 2)
the top 10 motor imagery related EEG components are extracted by the pro-
posed sparse CSP algorithm; 3) the variance of each component in each single
motor imagery trial is calculated as the feature; and 4) SVMs with RBF kernel
is adopted as the motor imagery classifiers.

The classification model is trained for each subject and each pair of 2-class
motor imagery separately. For each classification model, half of each 2-class
motor imagery data set is used for training, while the other half is used for test.
The parameters used in SVMs are fine tuned by 5-fold cross validation.

4 Experimental Results

The performance of BCI system using sparse PCA is evaluated on the vigilance
estimation task. The parameter λ1 in sparse PCA is used to control the sparse-
ness of loadings. Instead of tuning λ1, we directly set the number of nonzero
coefficients in the loadings of sparse PCA. An early stopping strategy is used for
the LARS-EN algorithm. When the number of nonzero coefficients of βi meets
the predefined number, the LARS-EN algorithm used for solving the naive elastic
net in sparse PCA is stopped. In this study, without fine-tuning, λ is assigned
to 10−5, and the number of nonzero coefficients in each principal component
loading is set to 20.

For comparison, another BCI system with using the ordinary PCA is used
for vigilance estimation. There are totally 30 pairs of training and test data set
from the 11 subjects. The linear correlation coefficient and mean square error
between the estimated vigilance level and the reference vigilance level are used
for performance evaluation. The experimental results of vigilance estimation is
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Fig. 1. The result of linear correlation coefficient between the estimated vigilance level
and the reference vigilance level (left), and the result of mean square error between the
estimated vigilance level and the reference vigilance level (right)



732 L.-C. Shi et al.

0.6 0.8 1.0

0.6

0.8

1.0

Sparse CSP

O
rd

in
ar

y 
C

S
P

0.4

0.6

0.8

1.0

M
ea

n 
ac

cu
ra

cy

 

 

Subject−k3b Subject−k6b Subject−l1b

Sparse CSP
Ordinary CSP

Fig. 2. Comparison of classification accuracies of all 2-class motor imagery data set
from 3 subjects (left), and the means of two-class classification accuracies for each
subject (right)

shown in Fig. 1. From this figure it can be seen that the average performance
of the BCI with sparse PCA is better than that of the BCI system with the
ordinary PCA. For those data set the BCI with the ordinary PCA performed
well, and the BCI with sparse PCA also performed well. But for those data set
the BCI with the ordinary PCA didn’t perform well, and the BCI with sparse
PCA still performed well, or at least performed much better than the BCI with
ordinary PCA.

The performance of the BCI system with the proposed sparse CSP algorithm
is evaluated on the motor imagery task. There are totally 6 pairs of training
and test data set for each subject. The LARS-EN algorithm used in the sparse
CSP algorithm also adopts an early stopping strategy. The number of nonzero
coefficients in each CSP loading is set to 30, and λ2 is assigned to 0.01.

For comparison, a BCI system with the ordinary CSP algorithm is also applied
to the motor imagery classification. The experimental results are shown in Fig. 2.
From this figure it can be seen that, for most two-class data sets, the BCI system
with the proposed sparse CSP algorithm performed better than the BCI system
with the ordinary CSP algorithm; and for each subject, the average performance
of the BCI system with the proposed sparse CSP algorithm is better than that
of the BCI system with the ordinary CSP algorithm.

5 Conclusions

In this paper, sparse PCA and sparse CSP techniques are introduced to EEG-
based BCIs. And a novel sparse CSP algorithm has been proposed. The per-
formance of BCI systems with sparse PCA and sparse CSP algorithms have
been evaluated on a vigilance estimation task and a motor imagery classifica-
tion task. Experimental results demonstrate that the BCI systems with sparse
PCA and CSP techniques have outperformed the ordinary BCI systems. This
result indicates that sparse subspace learning technique is very useful for EEG
data processing, which can improve the robustness of EEG-based BCI systems.
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In addition, as the solution of LARS-EN is global optimal in comparison with
other spare subspace learning techniques such as non-negative matrix factor-
ization [11], the solutions of sparse PCA and sparse CSP can be much more
stable.
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Abstract. Information about the emotional state of users has become
more and more important in human-machine interaction and brain-
computer interface. This paper introduces an emotion recognition system
based on electroencephalogram (EEG) signals. Experiments using movie
elicitation are designed for acquiring subject’s EEG signals to classify
four emotion states, joy, relax, sad, and fear. After pre-processing the
EEG signals, we investigate various kinds of EEG features to build an
emotion recognition system. To evaluate classification performance, k-
nearest neighbor (kNN) algorithm, multilayer perceptron and support
vector machines are used as classifiers. Further, a minimum redundancy-
maximum relevance method is used for extracting common critical fea-
tures across subjects. Experimental results indicate that an average test
accuracy of 66.51% for classifying four emotion states can be obtained
by using frequency domain features and support vector machines.

Keywords: human-machine interaction, brain-computer interface,
emotion recognition, electroencephalogram.

1 Introduction

Emotion plays an important role in human-human interaction. Considering the
proliferation of machines in our commonness, emotion interactions between hu-
mans and machines has been one of the most important issues in advanced
human-machine interaction (HMI) and brain-computer interface (BCI) today [1].
To make this collaboration more efficient in both HMI and BCI, we need to equip
machines with the means to interpret and understand human emotions without
the input of a user’s translated intention.

Numerous studies on engineering approaches to automatic emotion recogni-
tion have been performed. They can be categorized into two kinds of approaches.
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The first kind of approaches focuses on the analysis of facial expressions or speech
[2][3]. These audio-visual based techniques allow noncontact detection of emo-
tion, so they do not give the subject any discomfort. However, these techniques
might be more prone to deception, and the parameters easily vary in different
situations. The second kind of approaches focuses on physiological signals, which
change according to exciting emotions and can be observed on changes of auto-
nomic nervous system in the periphery, such as electrocardiogram (ECG), skin
conductance (SC), respiration, pulse and so on [4,5]. As comparison with audio-
visual based methods, the responses of physiological signals tend to provide more
detailed and complex information as an indicator for estimating emotional states.

In addition to periphery physiological signals, electroencephalograph (EEG)
captured from the brain in central nervous system has also been proved pro-
viding informative characteristics in responses to the emotional states [6]. Since
Davidson et al. [7] suggested that frontal brain electrical activity was associated
with the experience of positive and negative emotions, the studies of associations
between EEG signals and emotions have been received much attention.

So far, researchers often use two different methods to model emotions. One
approach is to organize emotion as a set of diverse and discrete emotions. In this
model, there is a set of emotions which are more basic than others, and these
basic emotions can be seen as prototypes from which other emotions are derived.
Another way is to use multiple dimensions or scales to categorize emotions. A
two dimensional model of emotion is introduced by Davidson et al. [8]. According
to this model, emotions are specified by their positions in the two-dimensional
space as shown in Figure 1, which is spanned by two axes, valence axis and
arousal axis. The valence axis represents the quality of an emotion ranging from
unpleasant to pleasant. The arousal axis refers to the quantitative activation
level ranging from calm to excited. The different emotional labels can be plotted
at various positions on a 2D plane spanned by these two axes.

Since emotional state corresponds to a separate subsystem in the brain, EEG
signals can reveal important information on their functioning. The studies of
associations between EEG activity and emotions have been received much at-
tention. Bos used the international affective picture system (IAPS) and interna-
tional affective digitized sound system (IADS) for eliciting emotional states [9].
They achieved an average classification accuracy of 65% for arousal and 68%
for valance by using alpha power and beta power as features and fisher’s dis-
criminant analysis (FDA) as classifiers. Takahashiet et al. used EEG signal to
recognize emotion in response to movie scenes [10]. They achieved a recognition
rate of 41.7% for five emotion states. In our previous work, we proposed an emo-
tion recognition system using the power spectrum of EEG as features [11]. Our
experimental results indicated that the recognition rate using a support vector
machine reached an accuracy of 87.5% for two emotion states .

Despite much efforts have been devoted to emotion recognition based on EEG
in the literature, further research is needed in order to find more effective feature
extraction and classification methods to improve recognition performance. In this
paper, we deal with all of the essential stages of EEG-based emotion recognition
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Fig. 1. Two-dimensional emotion model

systems, from data collection to feature extraction and emotion classification.
Our study has two main purposes. The first goal is to search emotion-specific fea-
tures of EEG signals, and the second goal is to evaluate the efficiency of different
classifiers for EEG-based emotion recognition. To this end, a user-independent
emotion recognition system for classification of four typical emotions is intro-
duced.

2 Experiment Procedure

2.1 Stimulus Material and Presentation

To stimulate subject’s emotions, we used several movie clips that were extracted
from Oscars films as elicitors. Each set of clips includes three clips for each
of the four target emotions: joy (intense-pleasant), relax (calm-pleasant), sad
(calm-unpleasant), and fear (intense-unpleasant). The selection criteria for movie
clips are as follows: a) the length of the scene should be relatively short; b) the
scene is to be understood without explanation; and c) the scene should elicit
single desired target emotion in subjects and not multiple emotion. To evaluate
whether the movie clips excite each emotion or not, we carried out investigation
using questionnaires by human subjects who don’t take part in the experiment
to verify the efficacy of these elicitors before the experiment.

2.2 Participants

Five right-handed health volunteers (two males, three females), 18-25 years of age
(mean = 22.3 and SD = 1.34), participated in the study. All subjects had no per-
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Hint of start Movie clip Self-assessment Rest

5 seconds 4 minutes 45 seconds 15 seconds

Session1 Session2 Session3 ... Session12

Fig. 2. The process of experiment

sonal history of neurological of psychiatric illness and had normal or corrected-
normal vision. All subjects were informed the scope and design of the study.

2.3 Task

In order to get quality data, subjects were instructed to keep their eyes open
and view each movie clip for its entire duration in the experiment. Movie clips
inducing different emotion conditions were presented in a random order. Each
movie clip was presented for 4 to 5 minutes, preceded by 5 s of blank screen as
the hint of start. At the end of each clip, subjects were asked to assign valence
and arousal ratings and to rate the specific emotions they had experienced dur-
ing movie viewing. The rating procedure lasted about 45 seconds. An inter trial
interval (15 s) of blank screen lapsed between movie presentations for emotion
recovery. Valence and arousal ratings were obtained using the Self-Assessment
Manikin (SAM) [12]. Four basic emotional states, joy, relax, sad, and fear, de-
scribing the reaction to the movie clips were also evaluated at the same time.
The given self-reported emotional states were used to verify EEG-based emotion
classification.

2.4 EEG Recording

A 128-channel electrical signal imaging system (ESI-128, NeuroScan Labs),
SCAN 4.2 software, and a modified 64-channel QuickCap with embedded
Ag/AgCl electrodes were used to record EEG signals from 62 active scalp sites
referenced to vertex (Cz) for the cap layout. The ground electrode was attached
to the center of the forehead. The impedance was kept below 5 k Ω. The EEG
data are recorded with 16-bit quantization level at the sampling rate of 1000
Hz. Electrooculogram (EOG) was also recorded, and later used to identify blink
artifacts from the recorded EEG data.
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3 Feature Extraction

The main task of feature extraction is to derive the salient features which can
map the EEG data into consequent emotion states. For a comparison study, we
investigated two different methods, one based on statistical features in the time
domain, and the other based on power spectrum in the frequency domain. First,
the EEG signals were down-sampled to a sampling rate of 200 Hz to reduce the
burden of computation. Then, the time waves of the EEG data were visually
checked. The recordings seriously contaminated by electromyogram (EMG) and
Electrooculogram (EOG) were removed manually. Next, each channel of the
EEG data was divided into 1000-point epochs with 400-point overlap. Finally,
all features discussed below were computed on each epoch of all channels of the
EEG data.

3.1 Time-Domain Features

In this paper, we use the following six different kinds of time-domain features
[12].

a) The mean of the raw signal

μX =
1
N

N∑
n=1

X (n) (1)

where X(n) represents the value of the nth sample of the raw EEG signal,
n = 1, . . . N .

b) The standard deviation of the raw signal

σX =
(

1
N − 1

N∑
n=1

(X (n)− μX)2
)1/2

(2)

c) The mean of the absolute values of the first differences of the raw signal

δX =
1

N − 1

N−1∑
n=1

|X (n + 1)−X (n) | (3)

d) The mean of the absolute values of the second differences of the raw signal

γX =
1

N − 2

N−2∑
n=1

|X (n + 2)−X (n) | (4)

e) the means of the absolute values of the first differences of the normalized
signals

δ̃X =
1
N

N−1∑
n=1

|X̃ (n + 1)− X̃(n)| = δX

σX
(5)
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where X̃(n) = X(n)−μX

σX
, μX and σX are the means and standard deviations of

X .

f) the means of the absolute values of the second difference of the normalized
signals

γ̃X =
N−2∑
n=1

|X̃(n + 2)− X̃(n)| = γX

σX
(6)

3.2 Frequency-Domain Features

The frequency-domain features used in this paper are based on the power spec-
trum of each 1000-point EEG epochs. Analysis of changes in spectral power and
phase can characterize the perturbations in the oscillatory dynamics of ongo-
ing EEG. First, each epoch of the EEG data is processed with Hanning window.
Then, windowed 1000-point epochs are further subdivided into several 200-point
sub-windows using the Hanning window again with 100 point steps, and each is
extended to 256 points by zero padding for a 256-point fast Fourier transform
(FFT). Next, the power spectrum of all the sub-epochs within each epoch is
averaged to minimize the artifacts of the EEG in all sub-windows. Finally, EEG
log power spectrum are extracted in different bands such as delta rhythm, theta
rhythm, alpha rhythm, beta rhythm, and gamma rhythm.

After these operations, we obtaine six kinds of time domain features and five
kinds of frequency features. The dimension of each feature is 62, and the number
of each feature from each subject is about 1100.

4 Emotion Classification

For an extensive evaluation of emotion recognition performance, classification
of four emotional states is achieved by using three kinds of classifiers, kNN
algorithm, MLPs, and SVMs. These classifiers have been separately applied to
all of the aforementioned features. In this study, the Euclidean distance method
is used as the distance metric for kNN algorithm. In MLPs, a three-layer neural
network is adopted, and the activation function is the sigmoidal function. In
SVMs, a radial basis function kernel is used.

In order to perform a more reliable classification process, we constructed a
training set and a test set for each subject. The number of training set, which
formed by the data of the former two sessions of each emotion, is about 700
for each subject. The number of test set, which formed by the data of the last
session of each emotion, is about 400 for each subject.

Given the fact that a rather limited number of independent trials were avail-
able for each class, we apply cross-validation to select common parameters for
each classifier, and pick the parameters that led to the highest average re-
sult in the training sets. For cross-validation, we chose a trial-based leave-one-
out method (LOOM). In kNN training, we searched the number of neighbors
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Table 1. Classification accuracy using time domain features

Subject Classifier μX σX δX γX δ̃X γ̃X All

1 kNN 21.36 30.17 32.20 35.47 28.93 26.30 39.17
MLP 23.15 29.32 34.38 36.23 29.71 29.47 40.21
SVM 26.54 32.15 38.41 37.31 30.45 32.37 42.44

2 kNN 32.41 21.77 23.73 22.21 23.21 24.31 35.63
MLP 33.58 23.51 25.39 24.17 26.42 28.90 37.40
SVM 36.52 26.53 29.32 26.56 31.95 32.64 45.35

3 kNN 25.34 21.04 25.12 23.92 24.55 31.54 32.57
MLP 26.73 22.25 27.35 26.84 26.78 33.35 35.79
SVM 27.98 23.78 30.34 27.74 27.07 36.57 41.42

4 kNN 29.89 26.84 27.96 32.29 22.97 34.90 35.58
MLP 28.25 26.86 29.08 33.32 24.62 35.52 38.07
SVM 29.84 27.67 31.49 36.91 27.79 37.43 42.13

5 kNN 23.02 29.93 33.76 27.18 34.98 37.92 40.10
MLP 26.91 28.47 35.82 30.85 36.26 39.76 41.98
SVM 30.97 34.46 39.49 33.24 40.19 43.91 45.62

Average kNN 26.40 25.95 28.57 28.21 26.93 30.99 36.61
MLP 27.72 26.08 30.40 30.28 28.75 33.40 38.69
SVM 30.37 28.92 32.95 32.35 31.49 36.58 43.39

Table 2. Classification accuracy using frequency domain features

Subject Classifier Delta Theta Alpha Beta Gamma All frequcncy

1 kNN 25.09 35.62 42.62 45.35 42.09 48.89
MLP 26.91 36.36 45.13 47.64 44.45 51.18
SVM 27.74 43.18 52.07 50.61 49.96 55.09

2 kNN 31.43 47.10 60.84 64.03 67.94 72.13
MLP 40.51 54.62 61.83 63.90 70.74 80.67
SVM 41.21 55.47 65.78 70.82 80.91 82.45

3 kNN 29.22 32.28 43.38 46.52 42.49 59.92
MLP 35.35 45.84 46.42 49.69 47.28 61.34
SVM 34.27 42.16 47.26 57.49 55.35 65.43

4 kNN 23.08 34.31 43.51 42.72 40.45 55.79
MLP 27.38 36.52 45.02 45.82 42.37 57.91
SVM 33.71 43.94 47.75 49.74 47.17 58.83

5 kNN 26.46 28.45 52.39 45.78 46.93 62.45
MLP 28.17 30.48 53.20 46.57 45.09 64.26
SVM 32.59 34.97 63.63 52.75 48.80 70.74

Average kNN 27.05 35.55 48.54 48.88 47.98 59.84
MLP 31.66 40.76 50.32 50.72 49.60 63.07
SVM 33.90 43.94 55.29 56.28 56.43 66.51
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k. In MLP training, we searched the number of hidden neurons assigned to
the MLPs. In SVM training, we searched the cost C and γ of the Gaussian
kernel.

The experimental results of classification with different classifiers for statis-
tical features in the time domain are given in Table 1. From this table, we
can see that the classification performance of using all statistical features is
evidently better than those based on individual features under the same condi-
tions.

Table 2 shows the averaged classification performance of different classifiers
using six frequency-domain features at different EEG frequency bands. From this
table, we can see that the classification performance of using all frequency bands
is evidently better than those based on individual frequency bands under the
same condition. In addition, an interesting finding is implied that the frequency
bands of alpha, beta, and gamma are more important than the frequency bands
of delta and theta to the emotion classification.

From the results shown in Tables 1 and 2, we can see that the classification
performance based on the frequency domain features were better than those
based on time domain features. We can also found that the performance of SVM
classifiers is better than those of kNN and MLPs, which proved true for all of
the different features.

We tried to identify the significant features for each classification problem
and thereby to investigate the class relevant feature domain and interrelation
between the features for emotions. Feature extraction methods select or omit
dimensions of the data that correspond to one EEG channel depending on a
performance measure. Thus they seem particularly important not only to find
the emotion-specific features but also expand the applicability of using fewer
electrodes for practical applications. This study adopted minimum redundancy-
maximum relevance (MRMR), a method based on information theory for sorting
each feature in descending order accounting for discrimination between different
EEG patterns. Since the best performance was obtained using power spectrum
across all frequencies, MRMR was further applied to this feature type to sort
the feature across frequency bands.

Table 3 lists top-30 feature rankings of individual subject, which are obtained
by applying MRMR to the training data set of each subject. The common fea-
tures across different subjects are marked with a grey background. As we can see,
the top-30 ranking features are variable for different subjects. Person-dependent
differences of the EEG signals may account for the differences among different
subjects [14]. Moreover, every subject experiences emotions in a different way,
which is probably another reason for this inter-subject variability. Nevertheless,
there are still many similarities across different people. We can find that the fea-
tures derived from the frontal and parietal lobes are used more frequently than
other regions. This indicates that these electrodes provided more discriminative
information than other sites, which is consistent with the neurophysiologic basis
of the emotion [15].
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Table 3. Top-30 feature selection results using MRMR

Subject

Rank 1 2 3 4 5

1 AF4, Alpha T7, Gamma C6, Beta F6, Beta F8, Alpha

2 C5, Beta PZ, Delta CP3, Theta F8, Theta O1, Gamma

3 P3, Gamma OZ, Alpha F3, Gamma TP8, Beta FC3, Alpha

4 FC3, Delta T8, Gamma F7, Alpha FT7, Beta C5, Theta

5 T8, Alpha C6, Delta CP4, Delta AF4, Alpha F4, Alpha

6 F1, Theta TP8, Gamma FT7, Beta FC4, Delta TP8, Theta

7 C3, Theta T8, Theta P3, Alpha C1, Gamma T7, Gamma

8 C4, Gamma AF4, Alpha CP5, Beta FC3, Alpha CP6, Beta

9 F1, Gamma F1, Gamma POZ, Gamma AF3, Delta FC6, Gamma

10 F3, Gamma CP2, Theta PO5, Gamma CB1, Alpha F8, Gamma

12 T8, Beta CP3, Theta C4, Beta F3, Gamma CP2, Alpha

13 AF3, Delta CP6, Beta FCZ, Theta P6, Theta C6, Delta

14 F2, Beta F3, Gamma T7, Gamma TP7, Theta TP8, Beta

15 FC5, Theta FP2, Alpha FO7, Alpha C3, Theta CP4, Gamma

16 FC3, Theta AF3, Delta FCZ, beta FT7, Theta FP2, Alpha

17 CP4, Beta P2, Alpha AF4, Alpha F7, Gamma F1, Delta

18 CP6, Beta C4, Theta FC5, Alpha F3, Delta FCZ, Alpha

19 T7, Gamma FCZ, Alpha C6, Delta P3, Theta OZ, Gamma

20 FCZ, Alpha C5, Gamma F1, Delta CP4, Gamma AF3, Delta

21 C4, Beta OZ, Gamma TP8, Beta FP2, Alpha CP5, Beta

22 P1, Beta PO8, Alpha FC3, Theta FZ, beta AF4, Alpha

23 TP8, Gamma F8, Gamma AF3, Delta T7, Beta P2, Alpha

24 FP2, Alpha PZ, Beta FC1, Theta FC3, Beta C3, Theta

25 CP5, Gamma FP2, Gamma C3, Theta P6, Beta C4, Beta

26 CP4, Delta CB2, Theta FC2, Beta O1, Alpha FC3, Theta

27 FT7, Beta CPZ, Theta FP2, Alpha T7, Gamma P3, Alpha

28 PZ, Beta C3, Theta P2, Gamma CP6, Beta FC2, Beta

29 TP8, Theta CP3, Gamma F4, Alpha FC6, Alpha F3, Gamma

30 F7, Delta CP4, Gamma FC6, Gamma FT8, Alpha FC5, Theta

5 Conclusion

In this paper, we presented a study on EEG-based emotion recognition. Our
experimental results indicate that it is feasible to identify four emotional states,
joy , relax, fear and sad, during watching movie , and an average test accuracy of
66.51% is obtained by combining EEG frequency domain features and support
vector machine classifiers. In addition, the experimental results show that the
frontal and parietal EEG signals were more informative about the emotional
states.
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Kivimäki, Ilkka III-167
Ko, Li-Wei I-717
Kobayashi, Kunikazu III-76
Kobayashi, Masaki I-509
Koike, Yuji III-47
Kortkamp, Marco III-639
Koya, Hideaki III-621
Kugler, Mauricio II-545
Kühnel, Sina III-639
Kurashige, Hiroki III-485
Kuremoto, Takashi III-76
Kuriya, Yasutaka III-611
Kuroe, Yasuaki I-560
Kurogi, Shuichi I-70, III-9, III-621
Kurokawa, Makoto III-684
Kwak, Ho-Wan I-138

Laaksonen, Jorma III-737
Labiod, Lazhar II-700, II-709
Lai, Jianhuang II-109
Lam, Ping-Man III-373
Lam, Yau-King I-654, I-662
Lang, Bo III-601
Le, Trung I-692, II-529, II-537
Lee, Giyoung III-557
Lee, Jong-Hwan I-306
Lee, Minho I-138, I-501, II-342, III-340,

III-416, III-557
Lee, Sangil I-138
Lee, Seung-Hyun III-57
Lee, Soo-Young I-217, III-774
Lee, Wee Lih I-352
Lee, Wono III-557
Lee, Young-Seol I-38
Lee, Yun-Jung II-342
Lester, David III-259
Leung, Chi-Sing I-654, I-662, III-268
Leung, Chi-sing III-276, III-373
Leung, Yee Hong I-352
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Steinhöfel, K. I-625
Stockwell, David III-530
Su, Xiaohong III-18
Sum, John Pui-Fai III-268, III-276,

III-373
Sun, Chengjie I-121, II-671
Sun, Jing II-445
Sun, Jun III-747
Sun, Rui-Hua I-725
Sun, Xiaoyan II-445
Suzuki, Yozo I-509
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