
Designing for Compliance: Norms and Goals

Guido Governatori2, Francesco Olivieri2,1,3,
Simone Scannapieco2,1,3, and Matteo Cristani1

1 Department of Computer Science, University of Verona, Italy
2 NICTA, Queensland Research Laboratory, Australia

3 Institute for Integrated and Intelligent Systems, Griffith University, Australia

Abstract. We address the problem of define a modal defeasible theory able to
capture intuitions as “being compliant” with a set of norms and a set of goals.
We will treat norms and goals as modalised literals. From the definition of this
new kind of logic, two main issues arises whether a theory is compliant or not:
(a) how to revise a non compliant theory to obtain a new compliant one; (b) in
case the theory is compliant how to create an entirely new process starting from
the theory, i.e., from the fully declarative description of the specifications for a
process and the norms.

1 Introduction

Business process modelling technology (BPM) emerged as a strong paradigm for the
modelling, analysis, improvement, and automation of the day-to-day activities of organ-
isations. The field is now a mature research field with a widespread adoption in industry.
BPM covers a wide variety of methodologies; from graphical modelling languages to
ease the understanding of the stakeholders (e.g., EPC, BPMN) to fully precise mathe-
matical formalisms (e.g., Petri Nets, π-calculus) for formal analysis of the properties
and automated verification of the processes.

Most of the existing approaches in the field are procedural: they point out step by step
what to do in many different scenarios. If from one side this procedural nature is their
strength, it is also their main drawback. In fact, they suffer two main limitations: such
a paradigm is not suitable to capture flexible business processes (BPs), i.e., processes
whose internal structure and relationships among the various tasks is dynamic and with
a large degree of variations. Secondly, it is hard to obtain precise information about the
order of the actions to be performed from the business requirements.

To obviate these problems, the trend of modelling processes by declarative specifi-
cations gained momentum. Instead of specifying a process step by step, the focus in
this approach is on defining relationships among the tasks to be executed to achieve
a goal. Examples are temporal relationships between tasks (e.g., before, after), co-
occurrence/absence, dependency and so on. For a seminal work in this area see [1].
Thus, in this paradigm there is a switch from how (procedural) to what (declarative).

Another crucial aspect in the recent investigation on BPM is on regulatory compli-
ance, again an area where the focus is on what a BP does. Compliance is the study of
the norm regulating the organisational environment. Norms from a regulative source
represent the perfect example of declarative specifications [2], and the related topic of

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 282–297, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Designing for Compliance: Norms and Goals 283

norm compliance has consequently become a crucial issue in BP design and verifica-
tion. Nowadays, the study of compliance focused only on norms, defining formalisms
to express them, and conditions under which a system described with such formalisms
can be considered compliant with the norms. Thus, to the best of our knowledge, there
is a lack of formalisms describing systems to be compliant with a set of goals, even if
this topic appears to be of main interest1.

The issue is to extend the existing formalisms to the new concept of goal compliance:
the motivation is that, given a system, it is easy to give criteria to be compliant with a
set of norms but such that they do not allow to get the final goals of the enterprise.

Let us consider the following example. We have to manage the BP of a library. A
norm could state that each book must be returned to the library before a fixed deadline.
One of the (non-plausible) policy to be compliant with this (plausible) norm is not to
lend books anymore (in clear contrast with the final aim of a library).

The aim of this work is to formally define a framework that integrates norm compli-
ance with goal compliance, in such a way that declarative specifications of a BP could
satisfy at the same time the goals of the organisation, and the norms governing the busi-
ness. The contribution of the paper is twofold: First of all, we explicitly introduce the
notion of goal compliance. Additionally, we work with fully declarative specifications
of the capabilities of an organisation, its goals and the norms regulating the underly-
ing business. Accordingly, we have to depart from the algorithms devised to determine
whether a procedural BP is compliant, and we have to introduce the notion of violation.
Given that we model the various notions in modal defeasible logic, we show how to
extend the proof mechanisms of the logic to identify non-compliant situations.

The layout of the paper is as follows. In Section 2 we formalise the framework
adopted, based on a particular type of Modal Defeasible Logic. Such a formalism is
the tool exploited in Section 3 to integrate the concepts of norm and goal in a business
process. The main core of this work is Section 4 where we present theoretical prop-
erties and definitions of norm and goal compliance. In there, we also outline possible
future research developments.

2 Logics

In this section we are going to introduce the logic we use to model processes, their or-
ganisational goals, and the norms governing them. The logic is an extension of Defeasi-
ble Logic (DL) [3]. In particular, it extends and combines the deontic DL of violations
[4] for modelling contracts and then used for regulatory compliance of processes [5,6],
and the defeasible BIO (Belief-Intention-Obligation) logic for modelling agents [7].

2.1 Language of Modal Defeasible Logic

The main aim of this subsection is to build an inference process to compute factual
knowledge (through belief rules), goals and obligations from existing facts, primitive

1 In here we follow the classical definitions of norm and goal as give in the literature for agents
where a norm is an external constraint while a goal is a internal one.



284 G. Governatori et al.

goals and unconditional obligations. As a first step, we build a defeasible theory whose
basic elements are (1) a set of facts or indisputable statements, (2) three sets of rules:
for beliefs, goals, and obligations, (3) a superiority relation to determine the relative
strength of conflicting rules. Thus, a defeasible theory T is a structure (F,R,>), where
F is the set of facts, R is the set of rules, and > is a binary relation over R.

Belief rules are used to relate the factual knowledge of an enterprise, composed by

– the set of actions (or tasks) an organisation can do;
– the pre-conditions under which tasks can be executed;
– the effects derived by the execution of these tasks (also called post-conditions).

Specifically, belief rules describe the logical relationship between pre-conditions and
tasks, tasks and their effects, relationships between tasks, relationships between states.
As such, provability for beliefs does not generate modalised literals. Obligation rules
determine when and which obligations are in force. The conclusions generated by obli-
gation rules are modalised with obligation. Finally, goal rules establish the goals of
an organisation depending on the particular context. Accordingly, similar to obligation
rules, the conclusions of this type of rules take the goal modality.

Following ideas given in [8], rules can gain more expressiveness when a preference
operator � is used, whose meaning will be clearer in the remainder. Intuitively, an
expression like A�B means that if A is possible, then A is the first choice, and B is the
second one; if ¬A holds, then the first choice is not attainable and B is the actual choice.

We now introduce the language adopted in the rest of the paper to make precise the
above mentioned ideas. Let PROP be a set of propositional atoms, MOD = {B,G,O}
the set of modal operators, Lab be a set of arbitrary labels, and Act = {t1, . . . ,tn} ⊆
PROP be a set of basic actions (or tasks). The set Lit = PROP∪{¬p|p∈ PROP} denotes
the set of literals. The complementary of a literal q is denoted by ∼q; if q is a positive
literal p, then ∼q is ¬p, and if q is a negative literal ¬p then ∼q is p. The set of
modal literals is ModLit = {Xl,¬Xl|l ∈Lit,X ∈{G,O}}2. We introduce two preference
operators, ⊗ for obligations and ⊕ for goals, and we will use � when we refer to one
of them generically. These operators are used to build chains of preferences, called
�-expressions. The formation rules for �-expressions are: (a) every literal is an �-
expression, (b) if A is an �-expression and b is a literal then A�b is an �-expression.
In addition we stipulate that ⊗ and ⊕ obey the following properties: (1) a� (b� c) =
(a� b)� c (associativity); (2)

⊙n
i=1 ai = (

⊙k−1
i=1 ai)� (

⊙n
i=k+1 ai) where exists j such

that a j = ak and j < k (duplication and contraction on the right). Such �-expressions
can be given both by the process designer, and can be obtained through construction
rules based on the particular logic adopted REF.

We adopt the classical definitions of strict rules, defeasible rules, and defeaters in
DL [9]. However, for the sake of simplicity, and to better focus on the non-monotonic
aspects that DL offers, in the remainder we use only defeasible rules. In addition we
have to take the modal operators into account. A defeasible rule is an expression r :
a1, . . . ,an ⇒X c, where

2 For the belief modal operator B, we assume that the “X” modal operator is the empty modal
operator, thus essentially a modal literal Bl is equivalent to the unmodalised literal l.



Designing for Compliance: Norms and Goals 285

1. r ∈ Lab is the name of the rule;
2. a1, . . . ,an, the antecedent of the rule, is the set of the premises of the rule (alter-

natively, it can be understood as the conjunction of all the literals in it). Each ai is
either a literal or a modal literal;

3. X ∈ MOD represents the type of modality introduced by the rule itself (from now
on, we omit the subscript B in rules for beliefs, i.e., a1, . . . ,an ⇒ c will be used as
a shortcut for a1, . . . ,an ⇒B c);

4. C is the consequent (or head) of the rule, which is an⊗-expression involving literals
in rules for obligations, an ⊕-expression involving literals in rules for goals, and a
single literal in rules for beliefs3.

Several obvious abbreviations on sets of rules can be used. For example, RX (RX [q]) de-
notes all rules introducing modality X (with consequent q), and R[q] =

⋃
X∈MOD RX [q].

With R[ci = q] we denote the set of rules whose head is ⊗n
j=1c j for obligation rules and

⊕n
j=1c j for goal rules where for some i, 1 ≤ i ≤ n, ci = q.
The meaning of �-expressions as consequent of rules is the following:

For obligations, a rule a1, . . . ,an ⇒O o1 ⊗ o2 ⊗ . . . ⊗ ol means that if conditions
a1, . . . ,an hold, then the obligation in force is o1, but if ¬o1 is the case, then the new
obligation in force is o2, and so on. Then, obeying obligation ol represents the last
chance to obtain a still acceptable situation with respect to the regulative system in
force, but it is not possible to recover from its violation. In deontic logic, this type of
expressions, namely the activation of certain obligations in case of other obligations
being violated, is referred to as contrary-to-duty (abbreviated CTD) obligations, or
reparation obligations [2].

For goals, a rule a1, . . . ,an ⇒G g1 ⊕ g2 ⊕ . . .⊕ gm means that if conditions a1, . . . ,an

hold, then we have to reach the goal g1, but if it is not possible, then the goal to
achieve is g2, and so on. A chain for goals can be seen as a mean to express a pref-
erential list of organisational objectives such that every goal is more restrictive than
all other successive goals in the chain. As such, gm is the last acceptable outcome
we expect to obtain from the business process with respect to this particular chain.

The terminology defined so far is mostly taken from [7], where an extension of DL
with modal operators is introduced to differentiate modal and factual rules. However,
labelling the rules of DL produces nothing more but a simple treatment of the modali-
ties, thus two interaction strategies between modal operators are analysed:

1. rule conversions: using rules for a modality X as they were for another modal-
ity Y , i.e., the possibility to convert one type of conclusions into a different one.
For example, if ‘a car industry has the purpose of assembling perfectly working
cars’ and ‘it is known that in every working car there is a working engine’, then ‘a

3 It is worth noting that modalised literals can occur only in the antecedent of rules: the reason
is that the rules are used to derive modalised conclusions and we do not conceptually need
to iterate modalities. The motivation of a single literal as a consequent for belief rules is dic-
tated by the intended reading of the belief rules, where these rules are used to describe the
environment.



286 G. Governatori et al.

car industry has also the purpose of assembling working engines in every car pro-
duced’. Formally, we define a binary relation Convert ⊆ MOD×MOD such that
Convert(X ,Y ) means ‘a rule of type X can be used also to produce conclusions of
type Y ’. This intuitively corresponds to the following logical schema:

Ya1, . . . ,Yan a1, . . . ,an ⇒X b
Y b

Convert(X ,Y )

2. conflict-detection and conflict-resolution: it is crucial to identify criteria for de-
tecting and solving conflicts between different modalities. For example, if ‘a tyre
industry wants to produce cheaper tyres with a pollutant emission greater than pe’,
and ‘by law the pollutant emission must be lower than threshold pe’, then the
tyre industry can not economise the production if she wants to obey the law. For-
mally, we define an asymmetric binary relation Conflict ⊆ MOD×MOD such that
Conflict(X ,Y ) means ‘rule types X and Y are in conflict and modality X prevails
over Y ’. Consider the following theory:

a ⇒X c
b ⇒Y ¬c

If both a and b are derivable and Conflict(X ,Y ) holds, then we derive Xc.

As beliefs represent the factual knowledge of the organisation, belief rules can be used
to derive both obligations and goals. Thus, the following formulation of Convert arises:

Convert = {(B,G),(B,O)}
Furthermore, as our main purpose is to build a new process which is compliant with
a set of given norms, it seems reasonable that rules for obligations take precedence
over rules for goals (i.e., an organisation tries to achieve its purposes not violating the
norms). Hence, the following definition of Conflict (reflecting the behaviour of a social
agent as described in [7]) will be used in our analysis:

Conflict = {(B,O),(O,G),(B,G)}
The construction of the superiority relation combines two components: the first >sm

considers pairs of rules of the same modality. This component is usually given by the
designer of the theory and capture the meaning of the single rules, and thus encodes
the domain knowledge of the designer of the theory. The second component, >Conflict,
is obtained from the rules in a theory and depends on the meaning of the modalities.
Formally, the superiority relation > is such that >=>sm ∪ >Conflict, where

– >sm⊆RX ×RX such that if r > s, then if r ∈RX [p] then s∈RX [∼p] and > is acyclic;
– >Conflict is such that ∀r ∈ RX [p],∀s ∈ RY [∼p], if Conflict(X ,Y ), then r >Conflict s.

2.2 Inference in Modal Defeasible Logic

Proofs in a modal defeasible theory T are linear derivations, i.e., sequences of tagged
literals of the form +∂X q and −∂X q. Given X ∈ MOD, +∂X q means that q is defeasi-
bly provable in T with modality X , and −∂X q means that q is defeasibly refuted with



Designing for Compliance: Norms and Goals 287

modality X . Similarly, ±∂q will be used as a shortcut of ±∂Bq. The initial part of length
i of a proof P is denoted by P(1..i).

We now define when a rule is applicable or discarded. A rule for a belief is applicable
if all the literals in the antecedent of the rule are provable with the appropriate modalities,
while the rule is discarded if at least one of the literals in the antecedent is not provable.
For the other types of rules we have to take the relation Convert into account.

Definition 1. Let Convert be the conversion relation between elements in MOD.

– A rule r in RB is applicable iff ∀a ∈ A(r), +∂a ∈ P(1..n) and ∀Xa ∈ A(r), where
X ∈ MOD, +∂X a ∈ P(1..n).

– A rule r ∈ R[ci = q] is applicable in the condition for ±∂X iff
1. r ∈ RX , ∀a ∈ A(r), +∂a ∈ P(1..n) and ∀Ya ∈ A(r) +∂Y a ∈ P(1..n), or
2. r ∈ RY , Convert(Y,X), A(r) �= /0, and ∀a ∈ A(r), +∂X a ∈ P(1..n).

– A rule r is discarded if we prove either −∂a or −∂X a for some a ∈ A(r).

The proof conditions for ±∂X are thus as follows:

+∂X : If P(n + 1) = +∂X q then
(1) ∃r ∈ R[ci = q] such that r is applicable, and ∀i′ < i, −∂ci′ ∈ P(1..n); and
(2) ∀s ∈ R[c j = ∼q], either s is discarded, or ∃ j′ < j such that +∂X c j′ ∈ P(1..n), or

(2.1) ∃t ∈ R[ck = q] such that t is applicable and
∀k′ < k, −∂ck′ ∈ P(1..n) and t > s

−∂X : If P(n + 1) = −∂X q then
(1) ∀r ∈ R[ci = q], either r is discarded or ∃i′ < i such that +∂ci′ ∈ P(1..n), or
(2) ∃s ∈ R[c j = ∼q], such that s is applicable and ∀ j′ < j, −∂X c j′ ∈ P(1..n) and

(2.1) ∀t ∈ R[ck = q] either t is discarded, or
∃k′ < k such that +∂ck′ ∈ P(1..n) or t �> s

Notice that the condition of provability of a literal q in a chain for obligations (or goals)
implies that all antecedents of the rule are provable in the theory, and that we have
proved that every element p prior to q in the chain is not defeasibly proved (i.e., we have
−∂ p). This means that the theory (process) fails to fulfil an obligation or achieving the
goal corresponding to p. Given an obligation or goal rule

a1, . . . ,am ⇒X c1 �·· ·� cn

if the rule is applicable, then the obligation (and possible ways to recover from its
violation) is in force (for an obligation rule) and that an organisation commits to a series
of progressively less stringent alternative goals (for a goal rule). In both interpretations
cn is the last chance to be compliant with the rule. In case of obligation, cn is the last
thing we can obey to to result in a situation that is still deemed as legal (though not an
ideal situation); in case of a goal, cm is the least of the acceptable outcomes of a process.

We are going to formally capture this intuition. To this end we introduce the literal
⊥ whose interpretation is a non-compliant situation, and at the same time we provide
proof conditions to (defeasibly) derive it. Thus, to derive a non-compliant situation
(+∂⊥) there is an applicable rule such that all the elements of the head are violated (for
obligations) or not achieved (for goals). Conversely, to be compliant (−∂⊥) for every
applicable rule, at least one obligation has been complied with, or goal achieved.



288 G. Governatori et al.

More formally, for X ∈ {O,G}:

+∂X⊥: If P(n + 1) = +∂X⊥ then
(1) ∃r ∈ R such that r is applicable, and
(2) ∀ci ∈C(r) − ∂ci ∈ P(1..n).

−∂X⊥: If P(n + 1) = −∂X⊥ then
(1) ∀r ∈ R either r is discarded or
(2) ∃ci ∈C(r) such that if −∂c j ∈ P(1..n) for ∀ j ≤ i, then +∂ci ∈ P(1..n).

3 Norm and Goal Compliance

Informally, a business process is a collection of related activities (or tasks) to be per-
formed to achieve one or more organisational goals. Many years of thorough analysis
in the field of BPM led to the definition of several techniques apt to model and rea-
son about BPs, from the early stages like graphical modelling (e.g., BPMN) up to the
definition of running process instances starting from graphical models (e.g., BPEL).

In fact, the classical definition of BP as reported above does not take into account
many factors that deeply affect the phase of process definition and maintenance. For ex-
ample, when an organisation is seen as an entity embedded in an environment regulated
by norms, the concept of compliance comes into play. In this scenario, an organisation
has to take care both of the achievement of the goals it aims at (goal compliance), and
the norms in force in the environment (norm compliance).

The research field resulting from the interaction of BPM approach with legal reason-
ing, i.e. business process compliance, addresses all problems regarding the alignment
of the formal specifications of a (set of) BP(s), and the formal specifications of a set
of norms governing the surrounding environment. Most of the research in this field re-
gards the analysis of conditions and methodologies to check if a given (set of) BP(s) is
compliant with a set of given norms. An extensive survey about the topic is given in [2],
where the authors define a framework to suitably represent (1) BPs (through process
graphs, e.g., in BPMN), (2) norms (using Formal Contract Logic, shortly FCL, a com-
bination of classical DL [9] and a deontic logic of violations), and (3) the concept of
norm compliance. Without entering too much into details, BP models are extended with
annotated tasks, where annotations specifies: (1) the artefacts or effects of executing a
task, and (2) the rules describing the norms relevant for the process.

The main result given in this work is the definition of an algorithm that:

1. traverses the graph describing the BP and identifies the sets of effects (sets of liter-
als) for all the tasks (nodes) and propagates the effects in the process according to
the execution semantics specified (token-passing mechanism as in Petri Nets [10]).

2. for each task, uses the set of effects for that particular task to determine the nor-
mative positions triggered by the execution of the task. Thus, effects of the task are
used as a set of facts, and the conclusions of the defeasible theory resulting from
the effects and the FCL rules annotating the task are computed. In the same way ef-
fects are accumulated, the algorithm accumulates (undischarged) obligations from
one task in the process to the task following it in the process.



Designing for Compliance: Norms and Goals 289

3. for each task, compares the effects of the tasks and the obligations accumulated
up to the task. If an obligation is fulfilled by a task, the algorithm discharges the
obligation, otherwise if the obligation is violated, a violation is signalled. Finally,
if an obligation is not fulfilled nor violated, the obligation is kept in the stack of
obligations and propagated to the successive tasks.

In this framework, the concept of goal compliance is not mentioned, but it can be triv-
ially treated: BPs are given as an input of the compliance checking phase; as such, it
seems reasonable to assume that they already achieve the goals they were built for.

Based on the same ideas about conditions a system must satisfy to be compliant with
a set of norms, we are now ready to give an informal definition about what we intend for
a process to be goal compliant. Roughly speaking, given conditions describing states of
the environment we act in, we are able to perform some actions which lead us in a state
of the world where all the goals we aim for are achieved. For example, if we want to
go to the airport and not to be hungry, the actions of catching the train from our place
to the airport, and stopping in a fast food to buy an hamburger, result in a state of the
world where all our desires are fulfilled.

According to the motivations proposed in Subsection 2.1, we take in consideration
norms compensating other norms, we use the same intuition also for goals: we will con-
sider goals ‘compensating’ other goals, i.e., a system which fails to achieve a primary
goal A, but succeeds in reaching goal B such that B is less preferred than A but still
acceptable, is a system that reaches a desirable state of the world.

In other terms, where contrary-to-duty chains were meant to be norms repairing the
failure of the system to be adherent to previous norms, ‘contrary-to-duty chains’ for
goals can be seen as preference chains [11,12]. Let us assume to have the CTD of goals
⇒G A⊕B. Its meaning is that we would prefer A but, if A is not the case, then our second
preference is for B and, if also B is not the case, then we have no further preferences
(‘we give up’). De facto, such chains form a preference partial order among elements of
our theory4. In a situation like the previous one, while A represents the most preferable
goal, B is not just the less preferable goal but it embodies the last chance for the system
to be compliant with such a chain. B can be seen as an element of the set containing all
the minimal goals (the last elements in every chain for goals) to be achieved.

More formally, given a theory T describing our world, with Goals representing the
set of objectives, and Norms representing the set of obligations in force, a system is
norm and goal compliant if

1. norm compliant: each norm is not violated, or if so, it is compensated (i.e., there
no exists derivation in T leading to an opposite of an element in Norms that has no
further compensation);

2. goal compliant: the process ends having reached at least all the minimal objectives.
In other words, a business process is goal compliant if there exists at least one
possible way to execute it, and the execution satisfies at least one of the goal in
each active goal chains.

4 For example, we can express the fact that we have no preference between two elements, A and
B, by both A⊕B and B⊕A.



290 G. Governatori et al.

We now propose an example to better explain the new concepts introduced in this sec-
tion; in Section 4 where we will formalise it in our logic (Example 3).

Example 1. PeoplEyes is an eyeglasses manufacturer. Naturally, its final goal is to pro-
duce cool and perfectly assembled eyeglasses. The final steps of the production process
are to shape the lenses to glasses, and mount them on the frames. To shape the lenses,
PeoplEyes uses a very innovative and expensive laser machinery, while for the final
mounting phase two different machineries can be used. Although both machineries
work well, the first and newer one is more precise and faster than the other, so Peo-
plEyes prefers the usage of the first machinery as much as possible. Unfortunately, a
new norm comes in force stating that no laser technology can be used, unless human
staff wears laser-protective goggles.

If PeoplEyes has both human resources and raw material, and the three machineries
are fully working, but it has not yet bought any laser-protective goggles, all its goals
would be achieved but it would fail to comply with the regulatory, since the norm for
the no-usage of laser technology is violated and not compensated.

If PeoplEyes buys the laser-protective goggles, its entire production process also be-
comes norm compliant. If, at some time, the more precise mounting machinery breaks,
but the second one is still working, PeoplEyes still remains goal compliant since also the
usage of the second machinery leads to a state of the world where the goal of mount-
ing the glasses on the frames is reached. In this last scenario, PeoplEyes reaches the
‘minimal set’ of goals. Again, if PeoplEyes has no protective laser goggles and both the
mounting machineries are out of order, PeoplEyes production process is neither norm
nor goal compliant.

4 Designing for Compliance

We formalised in Section 2 the logic to use, while in Section 3 we informally described
what we intend for a process to be norm compliant and goal compliant.

Briefly recalling those ideas, a process adheres to the sets of goals and norms when,
during its execution, there is no violation of the ruling norms (or when a violation
occurs, the process compensates that), and once the process ends up, all the goals are
achieved (or at least a minimal set of them). Thus, to describe our processes we need

– A library of tasks: t1, . . . ,tn. Tasks correspond to actions that can be performed by
the system.

– Belief rules for the activation of a task t, and to obtain a specific condition c:
• c1, . . . ,cm,t1, . . . ,tn ⇒ t;
• c1, . . . ,cm,t1, . . . ,tn ⇒ c.5

5 Here we assume that a pre-condition for a task to begin its execution can include both logical
expressions and the previous execution of other tasks (task dependency), for example “We
buy an ice cream if the sun is shining and we go to downtown”. Notice that the study of
dependencies among tasks is out of the scope of this work; anyway, we refer to [13] for an
initial study of how to capture control flow patterns in Modal DL.



Designing for Compliance: Norms and Goals 291

– Rules for relationships between tasks: ti ⇒O t1, . . . ,ti ⇒O tn, meaning that if task ti
is performed, then tasks from t1 to tn must be executed as well.

– Rules describing obligations: c1, . . . ,cm ⇒O
⊗n

i=1 ai, where the consequent is a
reparative chain of obligations.

– Rules describing goals: c1, . . . ,cm ⇒G
⊕n

i=1 ai, where the consequent is a preferen-
tial chain of goals.

In the following, when possible, we will use the subscripted literal t to denote a task,
and the subscripted literal c to denote a condition. Given a modal defeasible theory
T = (F,R,>), the set of facts F contains:

– literals for conditions that are to be considered true at the beginning of an instance
of a BP;

– literals for tasks that can be performed with no other conditions but the ones in F
(or without any condition at all);

We impose that no modalised literals for norms or goals are facts, since we do not
want in this preliminary analysis to consider primitive intentions and unconditional
obligations. Thus, primary norms and goals are translated in our framework as the cor-
responding modalised rules without antecedents.

Let us consider the following example to show how a theory can fail to be compliant
with respect to a modalised operator.

Example 2. Let T be the theory with only the following rule:

r1 : ⇒X a�b

This modal rule is obviously applicable, as its antecedent is empty. Furthermore, no rule
whose consequent is ¬a is in the theory. By definition, we obtain +∂X a. Since there are
no belief rules for a (nor for b), the theory derives, in cascade: −∂a, +∂X b, −∂b and
+∂X⊥. Hence, T is not compliant with respect to modality X . If we add b as a fact, or
we introduce a rule like ⇒ b, then T becomes compliant since we can derive +∂b (as a
compensation of a) which leads us to derive −∂X⊥.

The ideas enlightened by the previous example underpin the conceptual bases of this
work: the obligation to do a thing does not imply at all that such a thing should eventu-
ally be executed by the system. The same reasoning is valid also for goals: aiming at a
goal does not result in possessing the means to reach it. Moreover, if such an obligation
(goal) has no further compensation, then we definitely obtain a derivation for ⊥ with
respect to this particular chain.

The above reasoning allows us to give a formal definition of a theory to be norm
compliant and goal compliant based only on the modalised derivations of ⊥.

Definition 2 (Norm and Goal Compliance). Let T be a modal defeasible theory. T is
norm compliant if T � −∂O⊥ and it is goal compliant if T � −∂G⊥.



292 G. Governatori et al.

Example 3. We now extend Example 1 formalising it in our logic.

F = {Lenses, Frames}
R = {r0 :⇒G EyeGlasses r5 : MountingMach1⇒¬MountingMach2

r1 :⇒ Laser r6 : Glasses,MountingMach1⇒ EyeGlasses

r2 : Lenses,Laser ⇒ Glasses r7 : Glasses,MountingMach2⇒ Eyeglasses

r3 :⇒ MountingMach1 r8 :⇒O ¬Laser⊗WearGoggles

r4 :⇒ MountingMach2 r9 :⇒G MountingMach1⊕MountingMach2}
>sm= {r4 > r3}

Since there no exists rule for goggles, the theory is goal compliant, but not norm com-
pliant. If we add

r10 :⇒ WearGoggles

to R we are both norm and goal compliant, and also if we add

r11 : OutOfOrderMountingMach1⇒¬MountingMach1

and OutOfOrderMountingMach1 as a fact.

4.1 Revision in Case of Non Compliance

Norm and goal compliance give rise to non-trivial questions: what should we do when
a BP is not norm compliant or goal compliant, or even both? Are there (efficient) ways
to make a BP norm compliant once a violation of a norm occurs without affecting
goal compliance? And from the other point of view, how to make a BP goal compliant
once some of its goals are not achieved without affecting norm compliance? Answering
these questions attains the area of business process revision, which has received great
attention in recent years given its crucial influence on organisation practices.

Roughly speaking, all the efforts spent in this research area subscribe to two general
approaches. The first approach relies on modelling notations defining the structural as-
pects of BPs, which are extended with other formalisms apt to represent the behavioural
aspects. As an example, BPMN enriched with semantic annotations is able to describe
the effects implied by the execution of a particular task [2]. On the same grounds, sev-
eral translations from modelling notations into other formalisms have been proposed,
e.g., semantic nets [14] and BP graphs [15]. The second approach instead is completely
based on pure logical formalisms, where revising a BP means revising the logical the-
ory describing the BP itself. The underlying theory formally represents at the same time
the structure and the behaviour of the BP [13].

Describing pros and cons of both approaches is out of the scope of this paper and
will be matter of future work. However, it is worth taking both into account, as they
capture different (and interesting) aspects of revision. The first aims at revising a BP
at an higher level, in terms of removal, addition, swapping and substitutions of tasks
in the BP. On the other hand, the second one abstracts from the concepts of task and
conditions that trigger (or are caused by) a task: they are all denoted by literals in the



Designing for Compliance: Norms and Goals 293

same theory, and the main focus is on how they work together to derive other literals.
We suggest below one representative example of each approach, and we briefly report
some hints on how the proposed ideas could be exploited for our purposes.

Reusable modules. The first idea, given in [16] and developed in [17], relies on the ever
more emerging trend of designing BPs as related collections of reusable modules, i.e.,
set of standardised actions to be performed to achieve the goals modules have been built
for (thus giving goal compliance), and that can be used with slight or no modifications
also in other BPs. Modules are further augmented with built-in statements assuring that
the usage of a particular module in a BP implies the norm compliance with respect to
the statements specified in the module. This approach can be theoretically applicable
both when a norm uncompliant process is given, or must be built from scratch and we
have to assure its norm and goal compliance at design time. For the first case, we recall
that the algorithm given in [2] allows to know the exact point in a BP where a violation
of an obligation occurs. Thus, we can substitute the uncompliant part of the BP with a
module that reaches the same goals and compensates the previous violation(s). In the
second case, we try to build the process starting from a given repository of modules,
based on goals we want to achieve and norms we have to comply with.

Theory change via proof tags analysis. We have already afforded the problem of re-
vising defeasible theories by only changing the superiority relation between rules [18].
The major result is the identification of three relevant cases, named canonical, where a
revision operator could apply only changing the relative strength between pairs of rules.
More specifically, the revision operator could act on a defeasibly proved literal p and
makes it not provable anymore, i.e., from +∂ p to −∂ p (first case); or could act on a
defeasibly proved literal p and makes its opposite defeasibly proved, i.e., from +∂ p
to +∂∼p (second case); or more, could act on a not defeasibly proved literal p and
makes it defeasibly proved, i.e., from −∂ p to +∂ p (third case). Additional proof tags
other than strict (±Δ ) and defeasible proof (±∂ ) for a literal are used to better study the
cases. Some preliminary work suggests that proof tags analysis could represent a valid
mean to categorise all possible situation an hypothetical revision operator has to cope
with. Indeed, by definition of +∂X⊥, there exists at least one rule r for goals or obliga-
tions such that (1) r is applicable, and (2) each element p in the chain is not defeasibly
provable as a belief, i.e., −∂ p holds. Thus, it seems reasonable that there are two ways
to regain compliance with respect to the corresponding modality: we can focus on the
consequent of r, making at least one element p on the chain defeasibly provable (and
falling in the third canonical case, that is from −∂ p to +∂ p); or we can focus on the
antecedent of r, making the rule discarded in the sense of Definition 1 (that is, making
at least an antecedent p not defeasibly provable with respect to its modality X). This is
represented by a modalised variant of the first canonical case, i.e., from +∂X p to −∂X p.

4.2 Compliance by Design

The idea of Compliance by Design is to create an entirely new process starting from
a fully declarative description of the specifications for a process and the norms. These
specifications are encoded in a modal defeasible theory. This theory describes the ca-
pabilities, resources of a company, and the environment the enterprise acts in; it also



294 G. Governatori et al.

contains the norms governing the business and the goals the enterprise wants to achieve.
We also assume such a theory to be norm and goal compliant. Thus, after the building
process ends up, there is no need of checking compliance again, since the process will
be compliant with norms and goals by design. Thus, from the fact that the theory we
work with has been proved to be compliant, it follows that a compliant process exists.
The issue is now to study methodologies to extract the graph of the process from the
initial theory. Our intuition is that a derivation of a task literal corresponds to a plan
leading to the achievement of the task. In this perspective the problem reduces to how
to assemble together from the many derivations of the goals the corresponding plans to
obtain a single business process graph.

In the current literature, two approaches appear promising for realising compliance
by design. The first approach, based on the process mining [19,20], consists in applying
the same techniques devised to induce a process graph starting from workflow logs, to
the many derivations from the theory leading to goals and norms. In the second method,
we start from the set of goals we want to achieve, and we iteratively construct the graph,
rule by rule, following the structure of the theory and using its extension.

Process Mining Approach. [19,20] define techniques and algorithms for discovering
workflow models starting from “workflow logs”. A workflow log contains informations
about the workflow as it is actually being executed: all the traces in a workflow log
are representative and a sufficiently large subset of the possible behaviours of systems
modeled in the workflows themselves. Through process mining, authors start from lin-
ear sequences of tasks to obtain complex structures capturing parallelism and choices.

We can apply the same methodologies in our case. The statement is motivated by the
following reasoning. Given a reachable goal, a derivation for it is a linear sequence of
(proved) literals in the theory. Thus, such a derivation can be understood as a log trace.
Even if, to obtain a literal, the derivation rule has a set of premises that contains more
than a single element, there exist procedures to automatically obtain derivations. For
example, given the theory with the only rule r : p,q ⇒ t, where p and q are facts, we
obtain as derivations p → q → t and q → p → t. Being the theory compliant, the issue
is to extract all the traces from such derivations, and combine them together to get a
single business process graph.

Backward Graph Approach. BPs consist of separate activities. An activity is an action
that is a semantical unit at some level. In addition, an activity can be thought of as a
function that modifies the state of the process, making true some conditions, false some
others, and letting some tasks to start their execution. BPs are modelled as graphs with
individual activities as nodes. The edges on the graph represent the potential flow of
control from one activity to another.

The modal defeasible theory we start with is rich of informations: there are liter-
als describing tasks and conditions, rules describing the activations of tasks and their
effects, reparation chains both for norms and goals. Moreover, the superiority relation
states conditions under which a rule is activated (preferred) instead of another and, fi-
nally, patterns on the rules allow to identify parallel and (exclusive) choice structures.

We want to exploit all these informations to build the BP. The idea is to start from
the extension of the theory (i.e., the literals that have been defeasible proved) and from
the set of reachable goals, and to create a node for each goal that is a task. For each of



Designing for Compliance: Norms and Goals 295

them, we find out every rule proving it whose antecedents are all in the extension of the
theory, and we store them. For every such antecedent that is also a task literal, we create
a new node (if it does not exist yet) and we link it with a directed edge from it to the
corresponding goal node. For every new node, we iterate the process. The procedure
terminates when we reach literals for facts.

Notice that in the process described above, we never add nodes for conditions. This
follows from the fact that all the conditions needed for being norm and goal compliant
are already satisfied (since the initial theory is compliant). Thus, there is no need to
consider literals for conditions: we must only establish which antecedents generate such
literals and propagate these informations.

Since, nowadays, there is yet no algorithm computing this procedure, an empirical
proof of the termination does not exist. Anyway, the compliance of the theory implies
that every goal and norm is derived or compensated, and so the derivation process ends
in a finite number of steps. Since the above procedure represents a “backward mirror-
ing” of the derivation process, it also must come to an end.

5 Conclusions

The first contribution of this paper is the introduction of the notion of “goal compliance”
and we have argued that to check whether a BP achieves the goals of an organisation
can be dealt with the same methodology as “norm compliance”. This provides a further
motivation to subscribe to the declarative way to specify processes.

While the idea behind this work looks very natural and at the core of BPs and
glimpses of it can be found in closely related areas (e.g., process verification [10] and
automated planning [21]), to the best of our knowledge, this is the first work that ex-
plicitly addresses the two types of compliance from a fully declarative point of view,
and proposes a formal framework for modelling and reasoning with them. The paper
identifies further areas of research –in the compliance by design space– stemming from
the work presented here, namely: process compliance resolution (how to revise a non-
compliant theory) and process derivation (how to extract a business process from com-
pliant declarative specifications for it). We have outlined some possible developments
inspired by automated planning [21] and process mining [20].

The closest work to our approach is [22] proposing LTL (Linear Temporal Logic)
to describe compliance rules, to use automated reasoning techniques to generate LTL
models of processes and then using process mining techniques to extract business pro-
cesses. The main limitations of this work is that, while LTL is suitable to represents the
temporal relationships involving the tasks, alone is not suitable to faithfully represent
the normative (nor business) requirements.

Defeasible Logics are a very powerful tool to describe an environment, and in the
years scholars extended the primitive formalism to deal with many different kinds of
situations. [23] introduces a temporalised DL, while [13] describes many types of obli-
gations, and shows how control flows (and other relationships among process tasks) are
modelled using the various types of obligations. It seems very likely that the formalism
introduced in this work can be further extended to handle both temporal constraints,
and different types of obligations either when determining if a Modal DL theory is



296 G. Governatori et al.

compliant with sets of norms and goals, revising it, or creating a business process start-
ing from its compliance. It seems also of great interest to incorporate idea from [24] to
model resources and complex events in our logical framework.

Acknowledgements. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy, the Aus-
tralian Research Council through the ICT Centre of Excellence program and the
Queensland Government.

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. Computer Science - R&D 23, 99–113 (2009)

2. Governatori, G., Sadiq, S.: The journey to business process compliance. In: Handbook of
Research on BPM, pp. 426–454 (2008)

3. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Transactions on Computational Logic 2, 255–287 (2001)

4. Governatori, G.: Representing business contracts in RuleML. International Journal of Coop-
erative Information Systems 14, 181–216 (2005)

5. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business processes
and business contracts. In: Hung, P.C.K. (ed.) 10th International Enterprise Distributed Ob-
ject Computing Conference (EDOC 2006), pp. 221–232. IEEE Computing Society (2006)

6. Sadiq, S., Governatori, G., Naimiri, K.: Modelling of control objectives for business process
compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 149–164. Springer, Heidelberg (2007)

7. Governatori, G., Rotolo, A.: Bio logical agents: Norms, beliefs, intentions in defeasible logic.
Journal of Autonomous Agents and Multi Agent Systems 17, 36–69 (2008)

8. Governatori, G., Rotolo, A.: Logic of violations: A gentzen system for reasoning with
contrary-to-duty obligations. Australasian Journal of Logic 4, 193–215 (2006)

9. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Trans. Comput. Logic 2, 255–287 (2001)

10. van der Aalst, W.M.P.: The application of petri nets to workflow management. Journal of
Circuits, Systems, and Computers 8, 21–66 (1998)

11. Dastani, M., Governatori, G., Rotolo, A., van der Torre, L.: Programming cognitive agents in
defeasible logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 621–636. Springer, Heidelberg (2005)

12. Dastani, M., Governatori, G., Rotolo, A., van der Torre, L.: Preferences of agents in defeasi-
ble logic. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 695–704.
Springer, Heidelberg (2005)

13. Governatori, G., Rotolo, A.: Norm compliance in business process modeling. In: [25], pp.
194–209

14. Ghose, A., Koliadis, G.: Auditing Business Process Compliance. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180. Springer, Heidelberg
(2007)

15. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of busi-
ness process models: Metrics and evaluation. Inf. Syst. 36, 498–516 (2011)

16. Schumm, D., Leymann, F., Ma, Z., Scheibler, T., Strauch, S.: Integrating Compliance into
Business Processes Process Fragments as Reusable Compliance Controls. Universitätsverlag
Göttingen, 2125–2137 (2010)



Designing for Compliance: Norms and Goals 297

17. Schumm, D., Türetken, O., Kokash, N., Elgammal, A., Leymann, F., van den Heuvel, W.J.:
Business Process Compliance Through Reusable Units of Compliant Processes. In: Daniel,
F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp. 325–337. Springer, Heidelberg
(2010)

18. Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Superiority based revision of
defeasible theories. In: [25], pp. 104–118

19. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In:
Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–
483. Springer, Heidelberg (1998)

20. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16, 1128–1142 (2004)

21. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice. Morgan
Kaufmann (2004)

22. Awad, A., Goré, R., Thomson, J., Weidlich, M.: An Iterative Approach for Business Process
Template Synthesis from Compliance Rules. In: Mouratidis, H., Rolland, C. (eds.) CAiSE
2011. LNCS, vol. 6741, pp. 406–421. Springer, Heidelberg (2011)

23. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic.
In: ICAIL 2005, pp. 25–34. ACM Press (2005)

24. Governatori, G., Rotolo, A., Sadiq, S.: A model of dynamic resource allocation in workflow
systems. In: ADC 2004, pp. 197–206. ACS (2004)

25. Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.): RuleML 2010. LNCS, vol. 6403. Springer,
Heidelberg (2010)


	Designing for Compliance: Norms and Goals

	Introduction
	Logics
	Language of Modal Defeasible Logic
	Inference in Modal Defeasible Logic

	Norm and Goal Compliance
	Designing for Compliance
	Revision in Case of Non Compliance
	Compliance by Design

	Conclusions
	References





