

Lecture Notes in Computer Science 7018
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Frank Olken Monica Palmirani
Davide Sottara (Eds.)

Rule-Based Modeling
and Computing
on the Semantic Web
5th International Symposium, RuleML 2011 – America
Ft. Lauderdale, FL, USA, November 3-5, 2011
Proceedings

13

Volume Editors

Frank Olken
Frank Olken Consulting
P.O. Box 527, Berkeley, CA, 94701, USA
E-mail: frankolken@gmail.com

Monica Palmirani
University of Bologna
CIRSFID
Via Galliera 3, 40121 Bologna, Italy
E-mail: monica.palmirani@unibo.it

Davide Sottara
University of Bologna
DEIS
Viale Risorgimento 2, 40136 Bologna, Italy
E-mail: davide.sottara@unibo.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24907-5 e-ISBN 978-3-642-24908-2
DOI 10.1007/978-3-642-24908-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011938949

CR Subject Classification (1998): D.2, I.2, C.2.4, H.4, H.3, C.2, I.2.11

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 5th International Symposium on Rules: Research–Based and Industry–
Focused, RuleML–2011@BRF, collocated with the International Business Rules
Forum in Fort Lauderdale, Florida, was the second installment of the RuleML
Symposium in 2011. The first RuleML-2011 conference was held in conjunction
with the 22th International Joint Conference on Artificial Intelligence (IJCAI), in
Barcelona, Spain, in July (see Lecture Notes in Computer Science 6826, Springer
2011). The second conference was located with the Business Rule Forum, the
premier world-wide industry conference on business rules and decisioning, held
in Florida, in November of 2011.

RuleML-2011@BRF was a conference created, inspired and supported by the
RuleML Initiative. RuleML (http://www.ruleml.org) is a non-profit umbrella
organization. It includes several Technical Groups, organized by representatives
from academia, industry, and government, working on rule technologies and their
applications. Its aim is to promote the study, research, and application of rules
in heterogeneous, distributed environments such as the Web. The RuleML com-
munity has developed the RuleML/XML standard aiming at a complete and
modularized XML language for modeling and serializing declarative as well as
reactive rules. RuleML maintains effective links with other major international
societies. It acts as an intermediary between various “specialized” rule vendors,
industrial and academic research groups, as well as standardization bodies such
as W3C, OMG, and OASIS. For example, a cooperative arrangement with the
NIEM community (National Information Exchange Model, promoted by the US
federal government https://www.niem.gov), was consolidated with the help of
Oracle Corporation.

The International Symposium on Rules, RuleML, has evolved from an annual
series of international workshops held since 2002. In 2005 and 2006 it became an
international conference. It has become an international symposium since 2007,
held jointly with the International Business Rules Forum. For 2011, RuleML
envisioned the opportunity to capture the attention of the most advanced AI
community with the RuleML-2011@IJCAI conference, and this provided new
key actors in the community. For this reason, the Program Committee of RulML-
2011@BRF was composed of over 100 experts coming from heterogeneous fields,
16 special Track Chairs, and dedicate Challenge Award Chairs.

Due to its orientation toward the industrial sector, RuleML-2011@BRF in-
cluded the RuleML Challenge Award which is dedicated to showcasing high-
lighted demos: this year, the Challenge was dedicated to Rules, Objects and
Ontologies. RuleML-2011@BRF intended specifically to create a unique place
where academic researchers and industry experts involved in the field of rules
and semantic technology could meet and cooperate to go beyond the state of
the art and develop applications usable in the market. This cross-fertilization

VI Preface

was a focus of RuleML-2011@BRF and, for this reason, particular attention was
put on invited presentations and demos coming from universities and companies.
RuleML-2011@BRF emphasized the synergy between high-quality research and
industry operating in the rule modeling, markup, and reasoning domain, with
particular regard to the usability of such rule systems in the Web environment.

The papers in this volume concern the RuleML-2011@BRF conference and
include 4 keynote speeches (some in the form of short papers, some as abstracts),
4 invited presentations coming from industry partners and standard organiza-
tions, 12 full papers, 5 short papers, 5 invited track and position papers. Sixty
authors were involved, coming from 11 different countries from around the world.
The contributions covered topics spanning a wide terrain, such as (Web) rules,
semantic technology, cross-industry standards, rules and automated reasoning,
rule-based distributed/multi-agent systems, rules and norms, rule-based event
processing and reaction rules, vocabularies and ontologies, as well as business
rules. More and more the rule modeling research needs to be integrated with
ontology and semantic techniques [de Sainte Marie; Tang; Gravier et. al.], lin-
guistics aspects [Omrane et. al.], emerging knowledge discovery issues, agent
systems and business rule management [Kao; Pitt et. al.; Olivieri et. al.; Feld-
man; Vanthienen]. It is necessary to learn, in a way that is as much as possible
automatic, rules from large volumes of data, from documents available on the
Web and from events/actions occurring at specific moments in time [Paschke,
Vincent and Springer; Vincent; Skarlatidis et. al.]. On the other hand, it nec-
essary to evolve standards, such as RuleML, to customize rule systems for a
multitude of real-world cases [Athan and Boley; Sadnan; Osmun et. al.; Becker
and Mackay; Palmirani et. al.] and to permit the development of computable, ef-
fective and concrete applications using the new generation of rule-engines [Yahya
and Theobald; Zhao et. al.; Grosof]. Finally, databases can be managed using
new approaches [Bak et. al; Urban et. al.; Shiva et. al.]; considering the growth
of “unstructured data,” they need to be normalized and queried using hybrid,
rule-based reasoning engines. So, an interesting scenario is emerging from the
papers presented in this volume: rules not only support knowledge modeling and
reasoning, but also consistency management of large data volumes to get more
precise answers to queries [Aasman].

We enriched the RuleML-2011@BRF technical panel with three more specific
vertical tracks in emerging fields like cloud computing and rules [Spies; Tabet and
Pohlman], NIEM and rules [Webber], as well as clinical semantics and rules [Fry
and Sottara; Bragaglia et. al.]. Due to the above efforts, RuleML-2011@BRF, like
its predecessors, offered a high-quality, application-oriented program, which was
the result of the joint effort of the members of the RuleML-2011@BRF Program
Committee.

A special thanks is due to the excellent Program Committee for their hard
work in reviewing the submitted papers. Their very useful comments and sugges-
tions were instrumental to achieving a high publication quality. We also thank
the symposium authors for submitting good papers, responding to the reviewers’
comments, and abiding by our production schedule. We further wish to thank

Preface VII

the keynote speakers, industrial partners, and the invited track authors who
contributed their interesting talks. We are very grateful to the organizers of the
nth14 International Business Rules Forum for enabling this fruitful collocation
with RuleML-2011@BRF. We would especially like to thank Rising Media for
its support.

The RuleML-2011@BRF Symposium was financially supported by industrial
companies, research institutes, and universities, and was technically supported
by several professional societies. We wish to thank our sponsors for their financial
support, which helped us to offer this event, and for their technical support,
which enabled us to attract many high-quality submissions.

August 2011 Frank Olken
Monica Palmirani

Davide Sottara

Conference Organization

General Chairs

Mike Dean Raytheon BBN Technologies, USA
Said Tabet RuleML Initiative, USA

Program Chairs

Frank Olken Frank Olken Consulting, USA
Monica Palmirani CIRSFID, University of Bologna, Italy
Davide Sottara DEIS, University of Bologna, Italy

Steering Chairs

Christian de Sainte Marie IBM ILOG, France
John Hall Model Systems, UK

Challenge Chairs

Stefano Bragaglia DEIS, University of Bologna, Italy
Marco Montali KRDB, Faculty of Computer Science, Italy
Charles Petrie Stanford University, USA
Mark Proctor Red Hat, UK

Metadata Chairs and Social Media Chairs

Adrian Paschke Free University of Berlin, Germany
Nick Bassiliades Aristotle University of Thessaloniki, Greece
Jie Bao Rensselaer Polytechnic Institute, USA
Richard Cyganiak DERI Galway, Ireland
Lina Wolf HPI Potsdam, Germany

Rule Responder Symposium Planner Chairs

Kalliopi Kravari Aristotle University of Thessaloniki, Greece
Zhili Zhao Free University Berlin, Germany

X Conference Organization

Web Chairs

Luca Cervone CIRSFID,University of Bologna, Italy
Gkhan Coskun Free University of Berlin, Germany
Ho-Pun (Brian) Lam NICTA and University of Queensland,

Australia

Track Chairs

Rules, Semantic Technology, and Cross-Industry Standards

Benjamin Grosof Vulcan Inc., USA

Rules and Automated Reasoning

Eric Jui-Yi Kao Stanford University, USA

Rule-Based Distributed/Multi-Agent Systems

Nick Bassiliades Aristotle University of Thessaloniki, Greece

Vocabularies, Ontologies, and Business Rules

Dragan Gasevic Athabasca University, Canada
Ebrahim Bagheri Athabasca University, Canada

NIEM and Rules

Devid Webber Oracle Corporation, USA

Cloud Computing and Rules

Said Tabet RuleML Initiative, USA

Clinical Semantics and Rules
Emory Fry Naval Health Research Center San Diego,

USA

Fuzzy Rules and Uncertainty

Davide Sottara DEIS, University of Bologna, Italy

Rules and Norms
Antonino Rotolo CIRSFID, University of Bologna, Italy
Leon Van Der Torre University of Luxembourg, Luxembourg
Thomas Gordon Fraunhofer FOKUS, Germany

Conference Organization XI

Rule-Based Policies, Reputation, and Trust

Pierangela Samarati University of Milan, Italy

Rule-Based Event Processing and Reaction Rules

Alex Kozlenkov Betfair Ltd., UK
Adrian Paschke Free University of Berlin, Germany
Paul Vincent TIBCO Software, UK

Program Committee

Hassan Ait-Kaci IBM, Canada
Patrick Albert IBM ILOG, France
Darko Anicic FZI Karlsruhe, Germany
Alexander Artikis NCSR “Demokritos”, Greece
Colin Atkinson University of Mannheim, Germany
Costin Badica University of Craiova, Romania
Sidney Bailin Knowledge Evolution, USA
Matteo Baldoni University of Turin, Italy
Claudio Bartolini HP Labs, USA
Bernhard Bauer University of Augsburg, Germany
Moritz Becker Microsoft Research Cambridge, UK
Mikael Berndtsson University of Skövde, Sweden
Jonathan Bnayahu IBM Haifa Research Lab, Israel
Guido Boella University of Turin, Italy
Peter Bollen University of Maastricht, The Netherlands
Lars Braubach University of Hamburg, Germany
Christoph Bussler Merced Systems, Inc., USA
Jordi Cabot Universitat Oberta de Catalunya, Spain
Carlos Castro Universidad Técnica Federico Santa Maŕıa,

Chile
Donald Chapin Business Semantics Ltd., UK
Federico Chesani University of Bologna, Italy
Horatiu Cirstea Loria, France
Kendall Clark Clark&Parsia, LLC, USA
Matteo Cristani University of Verona, Italy
Claudia D’Amato University of Bari, Italy
Celia Da Costa Pereira Università degli Studi di Milano, Italy
Luiz O. B. Da Silva Santos University of Twente, The Netherlands
Jens Dietrich Massey University, New Zealand
Juergen Dix Technische Universitaet Clausthal, Germany
Weichang Du University of New Brunswick, Canada
Schahram Dustdar Vienna University of Technology, Austria
Andreas Eberhart Fluid Operations, Germany
Jenny Eriksson Lundstrom Uppsala University, Sweden

XII Conference Organization

Vadim Ermolayev Zaporozhye National University, Ukraine
Opher Etzion IBM, Israel
Luis Ferreira Pires University of Twente, The Netherlands
Michael Fink TU Wien Austria
Paul Fodor State University of New York at Stony Brook,

USA
Enrico Francesconi ITTIG-CNR, Italy
Aldo Gangemi Semantic Technology Lab ISTC-CNR, Italy
Adrian Giurca Brandenburg University of Technology at

Cottbus, Germany
Guido Governatori NICTA, Australia
Ioannis Hatzilygeroudis University of Patras, Greece
Stijn Heymans Technische Universität Wien, Austria
Pascal Hitzler Wright State University, USA
Chris Hogger Imperial College, UK
Yuh-Jong Hu National Chengchi University, Taiwan
Joris Hulstijn Thauris BV, The Netherlands
Giovambattista Ianni Università della Calabria, Italy
Minsu Jang E&T Research Institute, Korea
Mustafa Jarrar Birzeit University, Palestine
Yiannis Kompatsiaris Informatics and Telematics Institute, Greece
Manolis Koubarakis National and Kapodistrian University of

Athens, Greece
Wolfgang Laun Thales Rail Signalling Solutions GesmbH,

Austria
Domenico Lembo La Sapienza Università di Roma, Italy
Francesca Alessandra Lisi Università di Bari, Italy
Jorge Lobo IBM Research, USA
Ching Long Yeh Tatung University, Taiwan
Emiliano Lorini IRIT, Université Paul Sabatier, France
Thomas Lukasiewicz University of Oxford, UK
Ian Mackie Ecole Polytechnique, France
Michael Maher NICTA, Australia
Christopher Matheus Vistology, USA
Jing Mei IBM, China
Zoran Milosevic Deontik, Australia
Angelo Montanari University of Udine, Italy
Anamaria Moreira URFN, Brazil
Leora Morgenstern IBM, USA
Joerg Mueller Technische Universität Clausthal, Germany
Chieko Nakabasami Toyo University, Japan
Grzegorz J. Nalepa AGH University of Science and Technology,

Krakow, Poland
Jose Ignacio Panach Universidad Politecnica de Valencia, Spain
Adrian Paschke Free University Berlin, Germany

Conference Organization XIII

Fabio Porto Ecole Polytechnique Fédérale de Lausanne,
Switzerland

Alun Preece Cardiff University, UK
Maher Rahmouni HP Labs, UK
Dave Reynolds HP Labs, UK
Graham Rong MIT Sloan School of Management, USA
Michael Rosemann Queensland University of Technology,

Australia
Giovanni Sartor University of Bologna, Italy
Marco Seirio RuleCore, Sweden
Guy Sharon IBM Haifa, Israel
Silvie Spreeuwenberg LibRT, The Netherlands
Giorgos Stamou National Technical University of Athens,

Greece
Giorgos Stoilos National Technical University of Athens,

Greece
Nenad Stojanovic University of Karlsruhe, Germany
Umberto Straccia ISTI-CNR, Italy
Terrance Swift XSB Inc.
Jan Vanthienen Katholieke Universiteit Leuven, Belgium
Wamberto Vasconcelos University of Aberdeen, UK
George Vouros University of the Aegean, Greece
Hui Wan IBM T.J. Watson Research Center, USA
Kewen Wang Griffith University, Australia
Segev Wasserkrug IBM, Israel
Shen Yi-Dong Chongqing University, China

RuleML2011 Sponsors and Parnters

Silver Sponsors

XIV Conference Organization

Bronze Sponsors

Partner Organizations

Media Partners

Table of Contents

Keynotes Speakers (Abstracts and Short Papers)

Business Executives Sharing Knowledge with Inference Engines: News
from the ONTORULE Project . 1

Christian de Sainte Marie

Rule-Enhanced Domain Models for Cloud Security Governance, Risk
and Compliance Management . 2

Marcus Spies

Rules, Tables and Decisions: A Family History Tale 10
Jan Vanthienen

Event-Driven Rules: Experiences in CEP . 11
Paul Vincent

Invited Presentations (Abstracts)

Efficient Rule and Query Execution with CLIF++ 12
Jans Aasman

Recent Advances in the SILK Knowledge Representation and Its
Usage . 13

Benjamin Grosof

Rules and OMG Standards . 14
John Hall

Understanding NIEM and Rules Needs . 15
David R.R. Webber

Rules, Semantic Technology, and Cross-Industry
Standards

Design and Implementation of Highly Modular Schemas for XML:
Customization of RuleML in Relax NG . 17

Tara Athan and Harold Boley

Towards RIF-OWL Combination: An Effective Reasoning Technique in
Integrating OWL and Negation-Free Rules . 33

Mohammad Sadnan Al Manir

Relaxed Safeness in Datalog-Based Policies . 49
Moritz Y. Becker and Jason Mackay

XVI Table of Contents

Knowledgebase Representation Language Interoperation Tool 58
Taylor Osmun, Patrick Thébeau, and Yevgen Biletskiy

Rules and Automated Reasoning

Consistency and Provenance in Rule Processing . 66
Eric Jui-Yi Kao

D2R2: Disk-Oriented Deductive Reasoning in a RISC-Style RDF
Engine . 81

Mohamed Yahya and Martin Theobald

Principles of the SymposiumPlanner Instantiations of Rule
Responder . 97

Zhili Zhao, Adrian Paschke, Chaudhry Usman Ali, and Harold Boley

Extended Rules in Knowledge-Based Data Access . 112
Jaroslaw Bak, Grażyna Brzykcy, and Czeslaw Jedrzejek

Rule-Based Event Processing and Reaction Rules

Standards for Complex Event Processing and Reaction Rules 128
Adrian Paschke, Paul Vincent, and Florian Springer

Supporting Data Consistency in Concurrent Process Execution with
Assurance Points and Invariants . 140

Susan D. Urban, Andrew Courter, Le Gao, and Mary Shuman

Probabilistic Event Calculus Based on Markov Logic Networks 155
Anastasios Skarlatidis, Georgios Paliouras, George A. Vouros, and
Alexander Artikis

On Applying Temporal Database Concepts to Event Queries 171
Foruhar Ali Shiva and Susan D. Urban

Vocabularies, Ontologies and Business Rules

Lexicalized Ontology for a Business Rules Management Platform:
An Automotive Use Case . 179

Nouha Omrane, Adeline Nazarenko, Peter Rosina,
Sylvie Szulman, and Christoph Westphal

Towards Directly Applied Ontological Constraints in a Semantic
Decision Table . 193

Yan Tang and Robert Meersman

Table of Contents XVII

Representing and Solving Rule-Based Decision Models with Constraint
Solvers . 208

Jacob Feldman

SWRL-Based Context Awareness for Application Servers Hosting
Digital Services . 222

Yves-Gaël Billet, Christophe Gravier, and Jacques Fayolle

Cloud Computing and Rules

Cloud Computing: Combining Governance, Compliance, and Trust
Standards with Declarative Rule-Based Frameworks 230

Said Tabet and Marlin Pohlman

Role Assignment in Institutional Clouds for Rule-Based Enterprise
Management . 237

Jeremy Pitt, Julia Schaumeier, and Alexander Artikis

Clinical Semantics and Rules

Standards, Data Models, Ontologies, Rules: Prerequisites for
Comprehensive Clinical Practice Guidelines . 252

Emory Fry and Davide Sottara

Event Condition Expectation (ECE-) Rules for Monitoring Observable
Systems . 267

Stefano Bragaglia, Federico Chesani, Emory Fry, Paola Mello,
Marco Montali, and Davide Sottara

Rules and Norms

Designing for Compliance: Norms and Goals . 282
Guido Governatori, Francesco Olivieri, Simone Scannapieco, and
Matteo Cristani

LegalRuleML: XML-Based Rules and Norms . 298
Monica Palmirani, Guido Governatori, Antonino Rotolo,
Said Tabet, Harold Boley, and Adrian Paschke

Author Index . 313

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Business Executives Sharing Knowledge with Inference
Engines: News from the ONTORULE Project

Christian de Sainte Marie

IBM, 9 rue de Verdun, 94253 Gentilly, France
csma@fr.ibm.com

Abstract. The EC-funded ONTORULE project1 was started with the stated ob-
jective of realizing the old promise to give back to the business user the owner-
ship and control over the business knowledge that is put to action in business
applications. The project team identified several conditions that must be satis-
fied to achieve that objective, including: i) the separation of conceptual and
operational knowledge at all levels; ii) the separation of the business representa-
tion of the knowledge, from its operationalization and from its implementation
in business applications; iii) the provision of tooling to handle and manage the
mapping between the different representations, the recombination of the differ-
ent kinds of knowledge, and the inter-dependencies between all of them. This
talk will present and discuss the progress made in ONTORULE and the results
of the project to this point. All the public deliverables of the project are down-
loadable from the project web site, as well as technology prototypes, demon-
strators, and a list of publications2.

1 The ONTORULE project is partially funded by the European Commission under Grant

Agreement n° 231875.
2 www.ontorule-project.eu

Rule-Enhanced Domain Models for Cloud

Security Governance, Risk and Compliance
Management

Marcus Spies

Knowledge Management,
LMU University of Munich
marcus.spies@ieee.org

Abstract. As security is essential for the adoption of cloud computing,
several standards defining security domains, related threats and controls
are being established. The common goal is to enable cloud security spe-
cific IT governance for cloud providers and client enterprises alike. The
ensuing mandatory control objectives and control processes must cover
regulatory compliance and risk management in view of the growing public
sector and industry demand for cloud computing services. As of today,
most of these standards are represented in textual or semi-structured
form. However, the growing adoption of cloud computing calls for tool-
supported monitoring and auditing. This paper shows how this can be
accomplished based on a domain modelling approach that includes def-
initions and processing components for rules corresponding to control
objectives and various aspects of control processes.

1 Introduction

In July 2011, Microsoft Inc. published a document proving the compliance of the
company’s Office 365 cloud service with the security requirements from Cloud
Controls Matrix (CCM), a standard defined by the Cloud Security Alliance
(CSA) [19,34]. The CCM contains requirements for a set of governance and
operational domains as defined in the CSA cloud security guidance document [9].
The concept of control as internal regulation and alignment along business goals,
IT goals and process goals is in line with current frameworks for IT Governance,
most prominently COBIT [36] building on COSO [10]. More specifically, the
CSA defined governance domains are

– Governance and Enterprise Risk Management
– Legal and Electronic Discovery
– Compliance and Audit
– Information Lifecycle Management
– Portability and Interoperability.

The operational domains are

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 2–9, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Rule-Enhanced Domain Models 3

– Traditional Security, Business Continuity and Disaster Recovery
– Data Center Operations
– Incident Response, Notification and Remediation
– Application Security
– Encryption and Key Management
– Identity and Access Management
– Virtualization.

It should be noted that these domains have counterparts in IT governance and IT
technical / operational management without reference to cloud computing. How-
ever, there are cloud specific issues, risks and requirements that are consequences
of the cloud computing service and deployment models with their specific com-
binations of client vs provider component and data responsibilities, see [4,17].
An prominent example of such a key issue is multi-tenancy – the fact that the
same cloud service must be available to multiple clients without resources and /
or data sharing or data leakage. In the case of Microsoft Office 365, compliance
with this requirement is, among other control activities, demonstrated by the
use of organizational units assigned to clients in the Active Directory technology
(see [19], p 48).

2 Domain Models and Intelligent Processing in Software
Assurance and GRC for Cloud Services

As shown in the introduction, a key use case of CCM is as a requirements ma-
trix against which cloud service providers can document compliance, referring to
their technical infrastructure, the operational environment, defined and endorsed
business practices etc. In case of [19], additional references to certifications and
audits are provided to support the compliance claims even further. This argu-
mentation by reference can be considered as instance of software assurance with
a particular focus on cloud services.

A further use case of CCM and related requirements frameworks is the provi-
sion of registries for compliance or governance related documents, metadata and
even operational data, as a recent example (as of summer 2011), CSA is provid-
ing a Security, Trust and Assurance Registry (STAR, see the CSA web pages for
details). This initiative is related to a more technical set of specifications for IT
security related metadata descriptions and exchange by NIST [38].

For simplicity of reference, such registries will be referred to as GRC-registries
(governance, risk, compliance management) in the sequel. GRC registries with
appropriate handling of privacy and benchmarking capabilities are highly im-
portant for vendors and clients of software services alike. For a related example
of GRC-registries not confined to the software industry, see [20,21].

The industrial and practical impact of both use cases, software assurance
and GRC-registries, is, however, limited by the degree to which the assurance
or registry data are provided such that at least partly automated consistency
and correctness analyses are possible. To see this, consider a set of assurance

4 M. Spies

documents by the same vendor – evidently, many arguments will be repeated.
Cross references to audit reports or external standards like ISO 27001/2 will
appear in a redundant way, as well. Should there be any updates or changes in the
arguments needed, they will affect many documents and will require additional
checks by service clients, external auditors etc.

In order to enable at least semi-structured representation of assurance and
GRC-registry information, an upcoming metadata standard being defined by
OCEG (the Open Compliance and Ethics Group) – GRC-XML [35,33]. GRC-
XML uses the eXtensible Business Reporting Language XBRL [12]. A key feature
of XBRL is the ability to structure data according to multiple connected tax-
onomies. Taxonomies in XBRL are not limited to generalization / specialization
hierarchies, they can contain many additional relationship metadata.

While GRC-XML will enable providers of GRC-registries and software assur-
ance resource collections to eliminate redundancies and simplify the retrieval
process of assurance arguments, governance and IT operational practice doc-
umentations and the like, there will still be a lot of manual validation work
needed in order to check coherence and consistency of assurance profiles and
GRC-practices. In addition, a key requirement of compliance management is
adaptation to changes in the regulatory environment. Applicable regulations to
a software service may be different by industry, country, and the regulations
may change in response to detected vulnerabilities, cases of service failures etc.
Handling changes and modifications requires adaptation of the data or meta-
data schemes themselves, not just modifications of the registry entries or the
assurance documents. Adaptation of the data or metadata schemes may require
renewed validation.

As a consequence, large-scale adaptable GRC-registries and software assur-
ance profile registries require not only a higher degree of data structuring, but
also a higher degree of intelligent processing of the assurance or GRC-controls
etc reports and argumentations.

3 Domain Ontologies and Rules Processing – The State
of the Art

The key technologies for intelligent argumentation processing are the logic-based
formulation of domain models, often referred to as domain ontologies, together
with definition standards and processing components for rules operating on ele-
ments of these domain ontologies.

A commonly adopted standard language for domain ontologies is the web
ontology language OWL [24] that is subdivided into several sublanguages with
increasing levels of expressive power [22]. Domain ontologies are related to UML
class diagrams, there even exist partial model transformations defined in a speci-
fication by the Object Management Group [25]. However, the logical foundations
of a domain ontology have specific advantages w.r.t. to model checking (com-
pare this to the use of OCL in UML modelling, [26,39]). In particular, a reasoner
component operating on a domain ontology allows to check –

Rule-Enhanced Domain Models 5

subsumption of concepts – this allows to work with succinct declarative def-
initions of object classes, relationships and constraints and to infer a closer
description of the permissible individuals.

satisfiability of concepts – this allows to verify consistency with a given sys-
tem of object classes, relationships and constraints. It can be used in case of
an incoming changed rule or regulation for assessing the impact of changes
in the regulatory environment on needed adaptations to the domain model.

a state description for missing entities – this allows, e.g., to detect incom-
pleteness in a requirements engineering framework.

In an often used concrete syntax, OWL is based on RDF [15], which is itself
a common standard for web content management. Formally, OWL is building
on description logic (DL), a subset of first order logic that is decidable [3,11].
Description logic itself has many variants, and the OWL specification is allow-
ing increasingly more of them in order to adapt to industry and user modelling
needs. The different sublanguages of OWL allow constructs with different levels
of tractability or reasoning complexity. An important OWL 2 profile is the EL
profile (EL standing for existential restrictions based language) that is build-
ing on recent complexity results for DL with special focus on admissible series
of relation compositions (or object property chains, in OWL parlance). While
arbitrary relation composition constraints can lead to so-called role-value-maps
that are known to be undecidable [3,14], a restriction on the range of the final
element of the chain to an existing concept allows for polynomial time satisfi-
ability checks and related reasoning operations [2,1]. A dedicated reasoner for
OWL EL is available, see http://lat.inf.tu-dresden.de/systems/cel/. Another im-
portant OWL 2 profile is RL (for rule language) that lifts some restrictions of
OWLs EL for allowing closer proximity to logic programming. A comprehensive
recent discussion (including an implementation for the OntoBroker tools suite)
can be found in [13]. Some OWL editors allow in addition a dialect OWL full
[23] that allows to reify properties and to build higher order classes, which in
most cases leads to undecidable class descriptions.

While rules in the OWL RL profile correspond to valid logical inferences in
description logic, many practical applications of domain ontologies require ad-
ditional rule processing. This has been discussed in depth in the specification of
RuleML [5] and it has led to a typology of execution contexts and procedural ex-
tensions to knowledge representation systems which motivates
central rule markup constructs in RuleML [37]. Production rules, event-condition-
action (ECA) and reaction rules all are characterized by specific execution con-
texts – production rules modify knowledge bases (assert, retract), ECA rules
consume events and reaction rules produce events. These functionalities are
combined into one layer in [29], it may be extended by an interface descrip-
tion language and process algebras. Finally, a knowlege representation layer
adds higher level reasoning capabilities based on temporal and transaction logic
to the ReactionRuleML language architecture [29]. In terms of implementa-
tion, the constraint handling rules mechanism [14] in combination with a host

6 M. Spies

language and processing system like a sufficiently interoperable Prolog engine
(like [7]), can provide many of the required reasoning capabilities, see [14],
chapter 6.

4 Basic Architecture of Domain Models for Cloud
Security GRC

The goal of the present approach is to set up domain ontologies for cloud security
service security governance, risk and compliance management. These ontologies
are enriched with business rules addressing various execution contexts related to
the assurance and registry use cases. This is important to note since an ontology
in the sense of a requirements catalogue would be rather straightforward to set
up but not adequate for these use cases. The intended intelligent processing
of assurance arguments and data / metadata registries requires to include a
generic layer into the ontology architecture. More specifically, the following basic
domains should be covered –

Time, time intervals and basic temporal logic for this, we build on the
EU FP 6 MUSING project that provided a rich set of ontologies with focus
on company and industry data processing related to Basel II assessments,
see [16].

IT governance conceptual framework – this currently being built on the
basis of [36]. This is a very interesting ontology, since we have very few con-
cept / sub-concept relationships, but a very high amount of object properties
and property chains.

IT operational risk and risk management – for this component, we build
again on the MUSING results, see [30,16].

IT security management and evaluation essentials – this is being built
based on the Common Criteria approach [8], an overview is given in Fig. 1.

Cloud Computing and Cloud Security domain model – this is built
based on [4,17], [9] and related documentation.

Structures of argumentation – here, we build on results from the EU ES-
TRELLA project, specifically the legal knowledge interchange format (LKIF)
together with its supporting ontologies [6]. This will be extended to cover the
recently published software assurance evidence metamodel and the related
argumentation metamodel by the Object Management Group, see [28,27].
For a recent discussion of argumentation structures relevant to cloud ser-
vices security, see [32].

An important design choice for this work is the level of rule processing needed in
various ontology components. In many situations, a model can actually be for-
mulated sufficiently well in description logic such that standard DL reasoners can
do the inferencing work. The logical foundation behind this observation is the
deduction theorem [18] stating that the antecedent of an implication derivable
from an axiomatic theory can be used to extend the theory such that the conse-
quent is now deducible immediately. A short example shall demonstrate where

Rule-Enhanced Domain Models 7

Fig. 1. An overview of the Common Criteria Security scenario model [8], from [31]

the domain model needs enrichment by rules that go beyond logical inferences.
Take the following informally stated production rule –

If control multi-factor authentication for remote users (CCM, domain security
architecture, control SA-07, [34]) is to be implemented, then set up the sys-
tem components smartCard authentication and one-time access code generation
based on a specific generating keys.

Note that several choices for multi-factor authentication are possible, therefore,
the contrapositive to this rule does not make sense – if some entity chooses not
to use smartCards and one-time access code generation devices, it cannot be
concluded that this entity fails to implement CCM control SA-07. Therefore,
we have a case of needed production rule processing here which should not be
artificially integrated into a security domain model.

On the other hand, the following requirement can readily be captured in an
appropriate ontologiy domain model – Policy, process and procedures shall be
established to triage security related events and ensure timely and thorough in-
cident management (CCM, domain information security, incident management,
control IS-22, [34]). This control clearly requires a general IT system setup
which is needed regardless of specific choices of complex event processing imple-
mentations and scoring systems. So, in this case, the recommended approach is
conceptual modelling using appropriate constructs in description logic. Building
on these, specific ECA rules (see section above) should then be used to model
the detailed behaviour of the security event scoring and the entire incident man-
agement system.

Acknowledgement. The author is indebted to Marlin Pohlman and Said
Tabet, both with EMC and contributing to several of the standards mentioned
in this paper, for many insights and fruitful discussions.

8 M. Spies

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope. In: Proceedings IJCAI,
pp. 364–369. Professional Book Center (2005)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope further (2008),
http://lat.inf.tu-dresden.de/~clu/papers/

3. Baader, F., Nutt, W.: Basic description logics. In: Baader, F., Calvanese,
D., McGuinness, D.L., Nardi, D., Patel-Schneider, P. (eds.) The Description
Logic Handbook - Theory, Implementation and Algorithms, ch. 2, pp. 47–100.
Cambridge University Press, Cambridge (2004)

4. Badger, L., Grance, T., Patt-Corner, R., Voas, J.: Cloud computing synopsis and
recommendations. Tech. rep., National Institute of Standards and Technology,
NIST (2011)

5. Boley, H., Tabet, S., Wagner, G.: Design rationale for RuleML: A markup language
for semantic web rules (2001)

6. Breuker, J., Hoekstra, R., Boer, A., Berg, K.v.d., Sartot, G., Rubino, R., Wyner, A.,
Bench-Capon, T., Palmirani, M.: OWL Ontology of Basic Legal Concepts (LKIF-
Core) (January 22, 2007),
http://www.estrellaproject.org/lkif-core/

7. Carlsson, M.: SICStus prolog users manual. Tech. rep., Swedish Institute of Com-
puter Science (2011)

8. CCRA: Common criteria for information technology security evaluation, parts 1
to 3 (2009)

9. Cloud Security Alliance: Security guidance for critical areas of focus in cloud com-
puting (2010)

10. Committee Of Sponsoring Organizations of the Treadway Commission: Coso erm:
Enterprise risk management - integrated framework (2004)

11. Donini, F.: Complexity of reasoning. In: Baader, F., Calvanese, D., McGuinness,
D.L., Nardi, D., Patel-Schneider, P. (eds.) The Description Logic Handbook - The-
ory, Implementation and Algorithms, ch. 3, pp. 101–141. Cambridge University
Press, Cambridge (2004)

12. Engel, P., Stanley, M., Hamscher, W., Shuetrim, G., van Kannon, D., Wallis, H.:
Extensible Business Reporting Language (XBRL). Recommendation, XBRL Inter-
national (2003)

13. Feier, C.: Complexity and optimization of combinations of rules and ontologies.
Tech. rep., EU-IST Integrated Project (IP) 2009-231875 ONTORULE (2009)

14. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press, Cambridge
(2009)

15. Klyne, G., Caroll, J.: Resource description framework (RDF): Concepts and ab-
stract syntax (2009)

16. Leibold, C., Krieger, U., Spies, M.: Ontology based modelling and reasoning in
operational risks. In: Kenett, R., Raanan, Y. (eds.) Operational Risk Management:
A Practical Approach to Intelligent Data Analysis, pp. 41–60. Wiley, New York
(2010)

17. Mell, P., Grance, T.: The NIST definition of cloud computing (2011)

18. Mendelson, E.: Introduction to Mathematical Logic. Chapman Hall, London (1997)

19. Microsoft Inc.: Standard response to request for information security and privay -
office365 (2011),
http://www.microsoft.com/download/en/details.aspx?id=26647

http://lat.inf.tu-dresden.de/~clu/papers/
http://www.estrellaproject.org/lkif-core/
http://www.microsoft.com/download/en/details.aspx?id=26647

Rule-Enhanced Domain Models 9

20. Mitchell, S., Switzer, C.S.: GRC Assessment Tools ”Burgundy Book” – Tools
for Evaluating Principled Performance 2.0. Open Compliance and Ethics Group,
OCEG (2009)

21. Mitchell, S., Switzer, C.S.: GRC Capability Model ”Red Book” 2.0. Open Compli-
ance and Ethics Group, OCEG (2009)

22. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 web
ontology language profiles (2009), http://www.w3.org/TR/owl2-profiles/

23. Motik, B., Patel-Schneider, P., Horrocks, I.: OWL 1.1 web ontology language struc-
tural specification and functional-style syntax (2006)

24. Motik, B., Patel-Schneider, P., Parsia, B.: OWL 2 web ontology language structural
specification and functional-style syntax (2009),
http://www.w3.org/TR/owl2-syntax/

25. Object Management Group: Ontology definition metamodel specification (2009)
26. Object Management Group: Object constraint language version 2.2. Tech. rep.,

Object Management Group (2010)
27. Object Management Group: OMG Argumentation Metamodel (ARM) (2010)
28. Object Management Group: OMG Software Assurance Evidence Metamodel

(SAEM) (2010)
29. Paschke, A., Kozlenkov, A., Boley, H., Tabet, S., Kifer, M., Dean, M.:

Reaction RuleML – reaction rules for the rule markup language (2007),
http://ruleml.org/reaction/

30. Spies, M., Schacher, M., Gubser, R.: Intelligent regulatory compliance. In: Kenett,
R., Raanan, Y. (eds.) Operational Risk Management: A Practical Approach to
Intelligent Data Analysis, pp. 215–238. Wiley, New York (2010)

31. Spies, M.: Continuous auditing and risk management in cloud computing,
http://raw.rutgers.edu/docs/wcars/21wcars/presentations/

32. Spies, M.: A software assurance evidence approach to cloud security. In: Proc.
Database and Expert Systems Conference, Toulouse (2011)

33. Spies, M., Tabet, S.: Emerging standards and protocols for governance, risk and
compliance management. In: Kajan, E. (ed.) Handbook of Research on E-Business
Standards and Protocols: Documents, Data and Advanced Web Technologies. IGI
Global, Hershey (in press, 2011)

34. Swain, B., Agcaoili, P., Pohlman, M., Boyle, K.: Cloud controls matrix (2010)
35. Tabet, S., GRC-XML Initiative: GRC-XML Risk and Control Taxonomy Alpha

Release (2009)
36. The IT Governance Institute: Control objectives for information and related tech-

nology (COBIT R©) 4.1. Tech. rep., Information Systems Audit and Control Asso-
ciation (2010)

37. The RuleML Group: Schema specification of RuleML, version 1.0 (2010)
38. Waltermire, D., Quinn, S., Scarfone, K.: The technical specification for the security

content automation protocol, SCAP (2010),
http://csrc.nist.gov/publications/PubsSPs.html#SP-800-126

39. Warmer, J., Kleppe, A.: The Object Constraint Language – Getting your Models
ready for MDA, 2nd edn. Object Technology Series. Addison Wesley, Boston (2003)

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-syntax/
http://ruleml.org/reaction/
http://raw.rutgers.edu/docs/wcars/21wcars/presentations/
http://csrc.nist.gov/publications/PubsSPs.html#SP-800-126

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, p. 10, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Rules, Tables and Decisions: A Family History Tale

Jan Vanthienen

Katholieke Universiteit Leuven
Faculty of Business and Economics

Leuven Institute for Research in Information Systems
Naamsestraat 69

3000 Leuven (Belgium)
jan.vanthienen@econ.kuleuven.be

Abstract. Modeling, managing and implementing complex (business) logic has
been a common concern in many approaches, from rule-based systems to dec-
larative process modeling, from complex event processing to decision manage-
ment, from ontologies to decision model notations, analytics and semantics.

Rules, tables and decisions have a long history and share some common
family attributes: independence, consistency, agility and expressive power.

This presentation will show how and why approaches modeling rules, tables
and decisions have been successful in the past and what is required for an even
more promising future.

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, p. 11, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Event-Driven Rules: Experiences in CEP

Paul Vincent

TIBCO Software, London, UK
pvincent@tibco.com

Abstract. Event Driven Architectures (EDA) and Complex Event Processing
(CEP) are demonstrating interesting alternatives to the app-server-executing-
business-logic approaches that are used in both business and cloud IT deploy-
ments today. Applying rules (and rule-based inferences) to events is a natural
solution for business event processing, and the benefits of the “event-decision-
action” pattern enabled by rules have proved very useful in a number of appli-
cation cases. Here we introduce how rule-driven CEP is becoming a leading
application area for rule technology together with some recent case studies on
how declarative rules provide a suitable knowledge representation for event-
driven processes in business applications.

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, p. 12, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Efficient Rule and Query Execution with CLIF++

Jans Aasman

Franz Inc.
2201 Broadway, Suite 715

Oakland, CA 94612
ja@franz.com

Abstract. CLIF++ is a variant on Common Logic with some interesting exten-
sions. We added aggregates, a query language, and a combination of forward
and backward chaining rules. The execution engine for CLIF++ uses our new
set based query planner that was developed for efficient SPARQL execution. In
our talk we'll show some of these query transformations and show a demo.
CLIF++ can be used in all the situations where you need the ability do define
first order logic predicates and the ability to active triggers to execute rules
when triples are added or deleted.

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, p. 13, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Recent Advances in the SILK Knowledge Representation
and Its Usage

Benjamin Grosof*

Vulcan Inc.
505 Fifth Ave S

Suite 900
Seattle, WA 98104

BenjaminG@vulcan.com

Abstract. SILK1 is an expressive Semantic Web rule language and system
equipped with scalable reactive higher-order defaults. We present some of its
latest novel language features and examples of its usage, including to answer
questions about causal processes in college-level biology, e.g., for an e-learning
application. A new feature is to permit formulas of more complex form, includ-
ing quantifiers and disjunction, in prioritized defeasible rules. We also briefly
present our progress and lessons to date in interoperating between SILK and
ResearchCyc2. Part of Vulcan Inc.'s Project Halo3, SILK integrates and extends
recent theoretical and implementation advances in semantic rules and ontolo-
gies. It addresses fundamental KR requirements for scaling the Semantic Web
to large knowledge bases in science and business that answer questions, proac-
tively supply info, and reason powerfully. SILK radically extends the KR power
of W3C OWL RL, SPARQL, and RIF, as well as of SQL and production rules.
It includes defaults (cf. Courteous LP), higher-order features (cf. HiLog), frame
syntax (cf. F-Logic), external actions (cf. production rules), and sound inter-
change with the main existing forms of knowledge/data in the Semantic Web
and deep Web. These features cope with knowledge quality and context, pro-
vide flexible meta-reasoning, and activate knowledge.

* http://www.mit.edu/~bgrosof
1 http://silk.semwebcentral.org
2 http://research.cyc.com
3 http://projecthalo.com

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, p. 14, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Rules and OMG Standards

John Hall

Model Systems
17 Melcombe Court

Dorset Square
London MW1 6EP
United Kingdom

john.hall@modelsystems.co.uk

Abstract. The Object Management Group (www.omg.org), founded in 1989, is
the largest and longest-standing not-for-profit, open-membership consortium
that develops and maintains computer industry specifications. Any organization
may join OMG and participate in its standards-setting process. The best-known
OMG specifications include the Unified Modeling Language™ (UML®), Mod-
el Driven Architecture® (MDA®), Common Object Request Broker Architec-
ture (CORBA®) and Business Process Model and Notation™ (BPMN®). OMG
membership includes more than 470 organizations, with half being software
end-users in over two dozen vertical markets, and the other half representing
almost every large organization in the computer industry and many smaller
ones. Most of the organizations that shape enterprise and Internet computing
today are represented on OMG’s Board of Directors. OMG is an ISO Publicly
Available Specification (PAS) submitter, able to submit its specifications
directly into ISO’s fast-track adoption process. OMG’s UML, MetaObject Fa-
cility (MOF™) and Interface Definition Language (IDL™) specifications are
already ISO standards and ITU-T recommendations. This presentation is fo-
cused on OMG specifications that are about rules, including:

• Semantics of Business Vocabulary and Business Rules (SBVR™);
• Production Rule Representation (PRR™);
• Business Motivation Model (BMM™);
• Related work-in-progress and requests for proposals.

It will describe what these specifications contain, and how they are related to
other OMG specifications and to the wider realm of rules-related standards.

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 15–16, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Understanding NIEM and Rules Needs

David R.R. Webber

Oracle Corporation
david.webber@oracle.com

1 Introduction

The National Information Exchange Model (NIEM) approach is being adopted for
government information sharing applications in the United States, Canada and Mex-
ico. While these XML based message exchanges themselves solve the mechanics of
moving data electronically there exists a whole raft of other challenges on both sides
of the exchange equation. Senders need help determining when, if and how to distri-
bute information and similarly receivers need to understand how to utilize the infor-
mation with effective analysis and decision making. Also associated with these
information transfers are legal issues of control, privacy, security and auditing. All
these are areas where rule agents and rule technologies can be effectively applied to
automate aspects of the exchange handling, provide alerts and information checking
and then analysis to guide human decision makers. In the arena of healthcare ex-
changes rule agent participation can alert medical staff to potential life threatening
situations and help guide patient care processes to avoid common mistakes and
omissions.

These rule areas and needs vary widely from simple scenario checking to complex
semantic reasoning about information along with statistical analysis and trend report-
ing. Similarly case management handling provides challenges in pattern matching,
event relating and connecting seemingly disparate information fragments.

Within NIEM the original founding organizations, Department of Homeland Secu-
rity (DHS) and Department of Justice (DOJ) have now been joined by the Health and
Human Services (HHS). As more healthcare related information exchange occurs then
additional rule handling needs surface such as medical best practices, patient record
management, patient treatment evaluation and drug interaction tracking.

The information exchanges today consist of raw data content in XML formats
while associated semantic and ontological information technologies have not been
fully applied for NIEM purposes. Given the broad scope of NIEM and the emerging
involvement of international partners the technical challenges faced by NIEM imple-
mentations are increasing not decreasing. Applying of rules technologies to help solve
and ameliorate these can be divided into three categories, short term, medium term
planning and long range goals.

2 Short Term Needs

Immediate short term needs revolve around specific application areas and provide the
potential for quick wins where rule and agent technology can be applied directly to

16 D.R.R. Webber

information exchange data points and uses. Most obvious is vocabulary alignment and
core component refinement across related domain dictionaries and collections infor-
mation components. Here inspecting and identifying candidate components and simi-
lar and shared components is extremely time consuming and labor intensive when
done by hand utilizing spreadsheets and lists of components. Automating comparisons
can dramatically reduce the level of effort and enhance communities sharing and
reuse through rapid and consistent search and discovery tools. Since effective reuse is
critically dependent on selecting the correct components quickly and easily from the
overall collections. The OASIS SET Technical Committee work and associated open
source tools are instructive in what has already been shown to be possible (OASIS
SET TC – http://www.oasis-open.org/committees/set). Similarly the Open II project
produced by MITRE Corporation in collaboration with Google, University of Califor-
nia at Irvine, and University of California at Berkeley has tools for comparing sets of
domain components (http://www.cs.berkeley.edu/~kuangc/publications/sigmod10-
openii.pdf).

A further need is renaming and aligning components to standard Naming and
Design Rules (NDR) requirements. Here the open source CAM toolkit
(http://www.cameditor.org) has created a set of tools designed to work with ERwin™
data models of components derived from SQL database tables and produce NIEM
NDR consistent component sets. The CAM toolkit also includes tools to check the
consistency of component names and spellchecking support. Effective analysis of
components must be predicated by alignment of names and terms to ensure maximum
consistency of the results.

Once such housekeeping has been performed then the next need is to consolidate
redundant component collections into their atomic parts for reuse dictionary artifacts.
This ensures optimum numbers of components and prevents exponential growth in
components as more and more domains are added. For this agent tools need to inspect
the actual names of components, separating them into terms and deducing potential
similar or equivalent parts. This can use contextual occurrence as well as semantic
and linguistic techniques.

The goal of this short term work is to produce core component collections that are
optimized for a domain and are rapidly and easily reused when designing and building
new information exchanges. NIEM itself has evolved and grown rapidly over the past
five years and while manual harmonization of components has occurred.

Design and Implementation of Highly Modular

Schemas for XML:
Customization of RuleML in Relax NG

Tara Athan1 and Harold Boley2

1 Athan Services, Ukiah, CA, USA
taraathan@gmail.com

2 Institute for Information Technology, National Research Council Canada,
Fredericton, NB, Canada
harold.boley@nrc.gc.ca

Abstract. We present a re-conceptualization and re-engineering of the
non-SWSL portion of the Derivation Rules subfamily of RuleML in the
Relax NG Compact (RNC) schema syntax. The benefits arising from
RNC schemas include decreased positional sensitivity and greater flexi-
bility in modularization (from fine-grained modular to monolithic), as
well as unification of human-readable (“Content Models”) and machine-
readable (XSD/XML) versions. We introduce a Relax NG schema design
pattern, enforced by RNC meta-schemas, that guarantees monotonicity
(grammatical extension implies syntactic containment) when any of a
large number of small expansion modules are merged. The original fif-
teen Derivation RuleML sublanguages are thus embedded in a syntactic
lattice with hundreds of thousands of languages with semantics inherited
from the top language. The original RuleML sublanguages are available
through links, and customized languages are available through a GUI
web-app. The GUI serves as the front end to a PHP-specified parameter-
ized schema that takes a selection of customization options and returns
a schema driver file. These options are encoded to facilitate determi-
nation of syntactic containment between any pair of languages. As in
earlier (Derivation) RuleML language hierarchies, (logical) expressivity
forms the backbone of the language lattice. The (parameterized) RNC
schema serves as a pivot format from which XSD schemas, statistically-
random XML test instances, monolithic simplified RNC content models,
and HTML documentation are automatically generated. The RNC-based
re-engineering of Derivation RuleML has already led to the discovery and
patching of errata in RuleML versions 0.91 and 1.0, as well as to sug-
gested enhancements of version 1.0 and a newly conceived version 1.1.
The specifications of the RNC-based RuleML schemas are maintained at
http://wiki.ruleml.org/index.php/Relax_NG.

1 Introduction

RuleML is a family of languages for Web rule interchange that was originally
specified in Document Type Definitions (DTDs) [W3C98], then switched to XML

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 17–32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://wiki.ruleml.org/index.php/Relax_NG

18 T. Athan and H. Boley

Schema Definition Language (XSD) schemas [TBMM04]. Here we present a
re-engineering of the non-SWSL portion of the Derivation Rules subfamily of
RuleML in the Relax NG Compact (RNC) schema syntax [ISO08] on the ba-
sis of lattice [Nat] and hedge automaton theory (cf. [Mur98]). This novel, RNC
schema formalism has already supported the re-conceptualization and transition
from RuleML version 0.91 to 1.0, and gave insights for its evolution to version
1.1 and beyond.

Goals. A re-engineering of the RuleML schemas was undertaken to achieve the
following:

– Maximize Alignment with Semantics: to the extent possible, semantic
constraints should be incorporated into the schema.

– Maximize Customizability: A fine-grained, highly cohesive, and loosely-
coupled modular schema design will allow a user to custom-build a RuleML
sublanguage by assembling a selection of modules.

– Maximize Automation: The assembly of custom schemas and the pro-
duction cycle of schema releases should be automated as much as possible.

– Maximize Reliability: The new schemas should be exhaustively tested
against the existing hand-written XSD schemas and instances, e.g. via
automatically-generated testing instances as well as hand-written exemplary
instances for ‘near-miss’ (invalid) and ‘corner’ (valid) cases.

– Maximize Extensibility: The schemas should enable extension by users,
as well as RuleML developers.

An Example of Customizable Schema Definition: Equations. In the orig-
inal RuleML 0.91 family of languages, equations are available from Horn logic
languages up, which also include, e.g., negations, disjunction, and quantification.
However, equations are also desirable from Hornlog down, e.g. between individ-
ual constants in Datalog, even when Datalog is further specialized to only binary
relations or to only facts. Hence, in RuleML 1.0, equations should be freely com-
binable with the other RuleML sublanguages. Similarly, languages with only
binary relations in RuleML 0.91 are just allowed for Datalog, but in RuleML 1.0
should be also allowed up the family tree. We thus propose a method to per-
mit free combinations of fine-grained modular features for customizable schema
definition.

Of course, it is always possible to author or validate with a more permis-
sive schema, i.e., a schema defining a language that syntactically contains the
language of interest. However, a minimal schema improves the efficiency of vali-
dation, enhances authoring in a content-completion environment, and improves
reliability when a minimal feature set is mandated by specification.

In the previous modularization approach, a significant redefinition of the XSD
schema would be required to add equations to a smaller sublanguage, such as
bindatagroundfact. With the re-engineered Relax NG schema, we may accom-
plish this task with the following steps:

Highly Modular Schemas for XML: RuleML in Relax NG 19

1. Open the GUI1 and select only the language features desired. For the smallest
language with equations, we select the first options in the radio button sets
(Expressivity - Atomic Formulas, Default Attributes - Required to be Absent,
and Term Sequences - None) and deselect all checkboxes except Equations.

2. Click the Refresh Schema button to see the corresponding schema driver
file and the URL that may be used to perform validation. This long
URL has base http://ruleml.org/1.0/relaxng/schema_rnc.php, which
points to the PHP-specified parameterized schema, and a query string
?backbone=x0&default=x5&... that encodes the selected language options.
Notice the schema driver file contains only nine modules, out of over fifty
available.

3. Associate the schema driver file with an xml file using the xml-model pro-
cessing instruction [GK10], where the value of href is the URL obtained in
step 2 with all ampersands escaped as &.

4. Edit the xml file with an xml-model processor, such as oXygen2, to create
equations such as3:

<?xml-model href=
"http://ruleml.org/1.0/relaxng/schema_rnc.php?backbone=x0&default=x5&termseq=x0&
lng=x1&propo=x0&implies=x0&terms=x10&quant=x0&expr=x0&serial=x0"
type="application/relax-ng-compact-syntax"?>
<RuleML xmlns="..."><Assert><formula>

<Equal>
<left><Ind>Lady Gaga</Ind></left>
<right><Ind>Stefani Joanne Angelina Germanotta</Ind></right>

</Equal>
</formula></Assert></RuleML>

The Original Fifteen Languages as a Lattice. A partially-ordered set
(poset) in which every pair of elements has both a greatest lower bound (glb, infi-
mum) and a least upper bound (lub, supremum) in the set is called a lattice. The
fifteen languages in the non-SWSL4 portion of the Derivation RuleML language
subfamily satisfies the lattice conditions with respect to the partial ordering im-
posed by syntactic containment, as shown in Figure 1 and may be embedded in
the larger lattice described in Section 2.1. The binary numbers below each named
language demonstrate how a code can be used to identify unnamed languages
uniquely as well as facilitate the determination of order by bit-wise comparison.
These codes were generated from the lattice diagram, starting from the bottom
and proceeding through the diagram upward and left-to-right, as shown below.
Given a language whose code has not yet been determined:

1. determine the conjunction (i.e. bit-wise maximum) of all of its sublanguages;

1 GUI: http://ruleml.org/1.0/gui/
2 oXygen: http://www.oxygenxml.com/
3 The RuleML 1.0 namespace is still open; it will appear at http://ruleml.org/1.0/
4 An extension of Hornlog RuleML was developed to serialize SWSL (Semantic Web

Services Language) in XML, whose syntax goes significantly beyond the other lan-
guages (http://www.w3.org/Submission/SWSF-SWSL/#sec-markup), and so cannot
be accommodated in the lattice shown in Figure 1.

http://ruleml.org/1.0/relaxng/schema_rnc.php
?backbone=x0&default=x5&...
http://ruleml.org/1.0/gui/
http://www.oxygenxml.com/
http://ruleml.org/1.0/
http://www.w3.org/Submission/SWSF-SWSL/#sec-markup

20 T. Athan and H. Boley

2. if the conjunction is not equal to any other code assigned so far, it may be
selected as the code, but if the language contains features that are not in
any of its sublanguages, one may choose to proceed to step 3;

3. otherwise add a 1 at the least-significant ‘unused’ (i.e. so far not used any-
where else in the lattice) bit to the conjunction from step 1.

The choices made in step 2 of this non-deterministic procedure when applied to
generating the ‘original fifteen’ are seen in Figure 1 (note caption for caveat).

Overview of the Relax NG Language. The Relax NG language was cho-
sen for this re-engineering effort because of its decreased positional sensitiv-
ity and its greater flexibility in modularization (from fine-grained modular to
monolithic), as well as unification of human-readable (“Content Models”) and
machine-readable (XSD/XML) versions. These benefits are achieved through
unique features of the Relax NG schema language [ISO08], including the
notAllowed reserved word to create abstract patterns, definitions with combine
attributes (|=, &= in the compact syntax) to merge definitions that are de-
composed across modules, and the interleave operator & (a generalization of the
xsd:all group) to create order-insensitive content models. Because Relax NG
is theoretically grounded in hedge automaton theory, modularization is always
possible since regular hedge languages are closed under the operations of inter-
section, union and complement [Mur98].

Fig. 1. Hasse diagram of the ‘original
fifteen’ language lattice with arrows,
and illustrative binary codes, indicat-
ing syntactic containment. The code
assignment was generated by the pro-
cedure described in Section 1, but is
not unique for this poset, as it de-
pends on the way the Hasse diagram
has been drawn (as a 2-D projection
of a unique Directed-Acyclic Graph),
as well as choices made in the im-
plementation of the non-deterministic
procedure. When the partial order of
post-schema validation infoset (PSVI)
containment (see Section A) is consid-
ered, the ‘original fifteen’ violate the
lattice conditions due to the use of de-
fault attributes. Therefore, the imple-
mented schemas use a different cod-
ing that reflects grammatical, syntac-
tic, and PSVI containment, described
in Section 2.1.

Highly Modular Schemas for XML: RuleML in Relax NG 21

2 Design of the RuleML Relax NG Schema

The design consists of several components with different levels of abstraction. For
the beginning user, URL redirects5 provide default access to serializations6 of the
original fifteen RuleML sublanguages. For the advanced user, the GUI web-app
allows selection among many syntactic options and computes the URL of the
dynamically-generated driver file for the customized language. A PHP-specified
parameterized schema7 implements the mapping from the syntactic options to
the corresponding subsets of modules.

2.1 GUI Web-App and Language Options Encoding

The GUI web-app consists of an XHTML form that accepts a user’s input of
language options through radio buttons and check boxes. A URL that points to
a PHP script, described in the next section, with a query string of the language
options encoded compactly, is generated by the form and may be used directly
for validation of instance documents.

The language options are organized into facets of semantically-related dimen-
sions. Each dimension is Boolean, and the dimensions are freely combinable,
although some are ‘dormant’ (produce no syntactic or semantic change) unless
an ‘activating option’ is also selected. For example, the slot cardinality attribute,
card, is dormant unless slotted arguments are included, because this attribute is
only allowed on the slot element. In the GUI, each dormant option is disabled
unless at least one of its activating options is selected. For each group of options
(e.g. backbone, default, ...), the Boolean values are treated as bits of a hexadec-
imal number. The full selection of options is assembled as a hexadecimal-valued
query string8 e.g.

backbone=x3f&termseq=x7&default=x3&serial=xf&propo=x3f}
&implies=x7&terms=xf3f&quant=x7&expr=xf&lng=x1

to form a unique syntactic code for each language. Bit-wise dominance between
two codes is equivalent to syntactic containment of the corresponding languages.
The option facets are described in the following subsections, with the facet pa-
rameter name(s) given parenthetically in the title of each subsection.

Backbone (backbone). The logical connectives of propositional logic and the
variables and quantifiers of predicate logic are implemented in independent mod-
ules so that a great variety of expressivities may be constructed by ‘mixing-in’
various schema modules. However, only certain combinations of these modules
are accessible from the GUI, corresponding to an unbranched hierarchy from
ground atomic formulas to full first-order logic, which we call the “backbone” of
the language lattice (see Figure 2).
5 E.g., the URL for Datalog in relaxed-form RNC:
http://ruleml.org/0.91/relaxng/datalog_relaxed.rnc

6 See the ‘Serialization’ subsection of Section 2.1.
7 PHP: http://ruleml.org/0.91/relaxng/schema_rnc.php
8 When the query string is used in an href attribute, & should be escaped as &.

http://ruleml.org/0.91/relaxng/datalog_relaxed.rnc
http://ruleml.org/0.91/relaxng/schema_rnc.php

22 T. Athan and H. Boley

Positional Arguments (termseq). In Atomic formulas and in Expressions, the
sequence of positional arguments (as opposed to the bag of slotted arguments)
may be necessarily empty (None), limited to empty or length two (Binary), or
allowed to be of arbitrary finite length (Polyadic) (see Figure 3).

Fig. 2. Hasse diagram of the backbone sublattice with binary and hexadecimal codes.
The options within solid ovals are available from the GUI, the others can be accessed
through the parameterized schema, as described in Section 2.2.

Attributes with Default Values (default). In the RuleML XSD schemas,
certain attributes are defined with default values. In some situations it may
be advantageous to eliminate the default values so that the language is more
compact; this is the first option, “Required to be Absent”. The second option,
“Required to be Present”, allows the Relax NG schema to emulate the post-
schema validation infoset (PSVI) of instances validated against XSD schemas,
by requiring attributes having default values to be present. This constraint is
necessary for PSVI emulation because Relax NG validation does not allow mod-
ification of the info-set, in contrast to XSD validation, which inserts attributes
having default values when they are absent in the instance document. The third
alternative, “Optional”, allows such attributes to be absent or present, and thus
is the join (w.r.t. lattices, the least upper bound) of the former two languages.

Highly Modular Schemas for XML: RuleML in Relax NG 23

Fig. 3. Hasse diagram for the term se-
quence facet. Options available from the
GUI include polyadic term sequences, bi-
nary term sequences, and the absence of
term sequences (“None”), the latter cor-
responding to propositional and frame-
like languages. Additional options such as
unary term sequences are not yet avail-
able, but are accommodated in the pa-
rameter encoding for this facet for future
implementation.

Serialization (serial). Only three serialization forms are implemented in the
URL redirects: the “relaxed-”, “normal-” and “mixed- form” serializations. Ad-
vanced users have additional options available through the GUI web-app. The
normal-form serialization, corresponding to all of the serialization options
unchecked, realizes canonical ordering of child elements and required ‘striping’9

as well as the “Required to be Present” treatment of attributes with default val-
ues described above in Section 2.1. The relaxed-form serialization, corresponding
to all of the serialization options checked, is maximally insensitive to the order
of child elements while still retaining unambiguous semantics, and has optional
striping, as well as the “Optional” treatment of attributes with default val-
ues.10 A mixed-form schema is also implemented to reproduce the syntax of the
original XSD schemas for testing purposes, but is not available from the GUI.

Mix-Ins (propo, implies, terms, quant, expr). Additional syntactic options
include equivalence, meta-logic, negations, semantic variants of implications, ex-
pressions and equations, slots, rest variables, object identifiers, resource
identifiers (IRIs), degree of uncertainty, explicit typing, reification, and skolem
constants.

Alternate Names (lng). The default abbreviated English element and at-
tribute names may be replaced by long English names. The modules imple-
menting that replacement serve as a template for other alternate name sets,
enabling internationalization. Expansion modules are used to add the alternate
names, and contraction modules are required to remove the default names. The
language lattice of the alternate name set is isomorphic to that of the default
name set.

9 Striping: the alternation of ‘Node’ (upper-cased ‘Type-tag’) elements with ‘edge’
(lower-cased ‘role-tag’) elements.

10 Additional options for disabling explicit datatyping and the schema location at-
tribute are necessary for the normal form as a workaround to a bug in the translator
from Relax NG to XSD schemas.

24 T. Athan and H. Boley

2.2 Parameterized Schema

The parameterized schema is implemented as a PHP script which accepts lan-
guage options encoded in a query string11 and generates the driver file. This file
assembles the grammar by inclusion of modules, and contains only namespace
declarations, start and include statements, and comments. The PHP script per-
forms a monotonic transformation of the parameters passed in the query string
into Boolean variables, each indicating the inclusion of one or more modules. In
a few cases, a pair of modules is replaced by one syntactically equivalent module
so that simpler grammar patterns may be employed.

The start pattern of the driver file determines the elements allowed as a doc-
ument root. In general, the specification of document root in Relax NG does not
translate to XSD schemas, where any global element may be the document root.
In the RuleML driver files, the start pattern is constructed as a choice among
all globally defined elements, in order to maintain equivalence to XSD schemas,
and to allow RuleML fragments to validate.

2.3 Design Patterns for Modules

The modularization of the parameterized schema is constrained by the require-
ment of realizing the original fifteen languages. However, there is still consider-
able freedom in the design. Certain design decisions influence the nature of the
“enriched” lattice by altering the coverage of the new languages that are cre-
ated. Our design pattern has a number of aspects in common with the XHTML
2.0 Relax NG schema [IG09], but is significantly more constrained in order to
maximize both decoupling and monotonicity of the modular system.

Module Decoupling. Like XHTML2.0 and the existing RuleML XSD schemas,
the Relax NG schema uses a flat schema design pattern, which declares all the
elements globally using named patterns, enhancing extensibility. There are many
ways to decouple such patterns in Relax NG, including using abstract patterns,
unreachable patterns and ‘linking modules’. For example, in RuleML a Negation
formula (strong negation) is allowed to occur within a Naf formula (weak nega-
tion, Negation as failure), provided both kinds of negation are included in the
language. The RNC code that activates this coupling is

NafFormula.choice |= Negation-node.choice

We call definitions of one pattern as a formula of other named patterns linking
definitions, to distinguish them from definitions that explicitly define elements
or attributes. We can place this linking definition in the Negation As Failure
module naf module.rnc or the Negation module neg module.rnc, or poten-
tially another module.

11 The query string may be manually edited to obtain some options not directly avail-
able from the GUI.

Highly Modular Schemas for XML: RuleML in Relax NG 25

Unreachable Patterns: The linking definition may be placed in the Negation
module. If a language includes strong but not weak negation, the
NafFormula.choice pattern is valid but unreachable. This approach is efficient
in lines of code, but can be hard to read in modular form, since the definition of
some patterns, in this case NafFormula.choice, is fragmented across modules.

Abstract Patterns: If the linking definition is not placed in the Negation As
Failure module, the module where it occurs will be invalid on its own unless
we add an additional definition to make the Negation-node.choice pattern
abstract. In Relax NG Compact (RNC) syntax, an abstract pattern is created
with the notAllowed reserved word as follows:

Negation-node.choice |= notAllowed

If we place the linking definition into the Negation module, then the abstract
pattern is overridden whenever this module is included, and the link is activated
if both negation modules are included in the language. Having a large number of
notAllowed definitions causes the code to look cluttered and to be more difficult
to maintain, so these definitions are collected into a single ‘initialization’ module,
which is included in every schema driver file. Similarly, patterns combined with
the interleave attribute are initialized empty.

Linking Modules: If the linking definition is placed in a third ‘linking’ mod-
ule, the greatest flexibility would be attained, allowing the decision to couple the
two kinds of negation to be made independent of their inclusion in the language.
Linking modules contain linking definitions, but no new element or attribute
definitions. The patterns on both sides of the link must be defined in the ini-
tialization module to ensure that the modules may be combined freely to form
a valid grammar.

In RuleML/RNC, we use the Linking Module design whenever feasible, as
this provides maximum modularity. In particular, this design pattern is used to
implement the transition from the Datalog / Horn logic languages to the full
first-order logic languages without resorting to redefinition, by placing linking
definitions for unrestricted formula compounding into a folog expansion module.

Monotonicity from Segregated Names. In Relax NG schemas, pattern
names are the non-terminal symbols used to write production rules. One of
the features of our schema design pattern is segregation of pattern names ac-
cording to the allowed value of the combine attribute of their definitions. The
segregated naming design pattern has been specified in a set of meta-schemas12

in the RNC language, that can be used to validate base grammars, and expan-
sion and contraction modules after translation into the XML-based Relax NG
syntax. To illustrate the constraints on these categories, we draw examples from
several RuleML modules.

An extension point and several abstract patterns for equality are initialized
in init expansion module.rnc as follows:
12 http://www.ruleml.org/1.0/designPattern

http://www.ruleml.org/1.0/designPattern

26 T. Athan and H. Boley

Equal-node.choice |= notAllowed # for alternate names of equality element
Equal-datt.choice |= notAllowed # for required attributes of equality element
reEqual.attlist &= empty # for optional attributes of equality element
Equal.header &= empty # for modifying children of equality element
Equal.main |= notAllowed # for main content of equality element

In equal expansion module.rnc, the above patterns are assembled as follows:

Equal-node.choice |= Equal.Node.def
Equal.Node.def =

element Equal { (Equal-datt.choice & reEqual.attlist), Equal.header, Equal.main }
Equal.header &= SimpleFormula.header?
Equal.main |= leftSide-edge.choice, rightSide-edge.choice

Additional definitions provide the patterns for the left- and right-hand sides. In
long name expansion module.rnc we have

Equation-node.choice |= Equation.Node.def
Equation.Node.def =

element Equation { (Equal-datt.choice & reEqual.attlist), Equal.header, Equal.main }

In short name contraction module.rnc we have

Equal.Node.def &= notAllowed

These schema snippets illustrate the full range of definitions permitted in the
Relax NG schema design pattern. We utilize three categories of pattern names.

Choice Combine: In base grammars and expansion modules, patterns with
names from the choice category must be defined with the choice combine operator
|=. In the example above, Equal.choice and Equal.main are names in the
choice category. In practice, choice patterns are defined as notAllowed in the
initialization expansion module, and then overridden in expansion modules, as
shown above. Choice combine definitions are not allowed in contraction modules.

No Combine: In base grammars and expansion modules, patterns with names
from the no-combine category must be defined, with =. In base grammars and
contraction modules, it is permitted to have definitions having names from this
category with the combine attribute interleave, whose pattern is the notAl-
lowed reserved word. We use this construction in the alternate names modules,
as shown above, to remove abbreviated element names when they are replaced
with long or internationalized names. Because neither of the definitions

Equal.Node.def &= empty
Equal.Node.def |= notAllowed

would be permitted in the intialization expansion module, the names in the no-
combine category are never initialized. This introduces limitations on how ab-
stract components may be defined. To define abstract elements and attributes,
we introduce a more abstract choice pattern, such as Equal-node.choice, as
shown above. Such choice patterns are extension points that hold alternate name
elements or alternate constructions that serve the same role in the grammar, and
unify elements that have similar semantics.

Highly Modular Schemas for XML: RuleML in Relax NG 27

Interleave Combine: In base grammars and expansion modules, patterns with
names from the interleave combine category must be defined with the interleave
combine operator &=. Names from the interleave combine category may not be
defined in contraction modules. The interleave combine is used to initialize in-
terleave patterns, such as lists of optional attributes, as empty. Other uses are
to add attributes to an attribute list, and, in the order-insensitive syntaxes, to
add children to the interleave header patterns, as shown above for the Equal
element. An additional constraint is required to attain monotonicity. In an ex-
pansion module, the right-hand side of a definition with a combine attribute of
interleave must be optional (?), zero-or-more (*), or empty, as shown above for
the reEqual.attlist pattern.

2.4 Transformation

The RNC parameterized schema serves as a pivot format from which XSD
schemas, statistically-random XML test instances, monolithic simplified RNC
content models, and HTML documentation are automatically generated.

Auto-generated Normal Form XSD. The Jing/Trang software is used to
transform the parameterized schema and included modules into monolithic
normal-form or mixed-form XSD schemas as follows:

– Jing13 with switch s is used for simplification of modular RNC schemas into
monolithic Relax NG XML syntax (RNG);

– Trang13 is used for transformation of RNG schemas into XSD.

The XSDs corresponding to the original fifteen RuleML sublanguages are made
available for remote validation14 or download in a zip archive that also includes
the PHP script for the parameterized schema and Windows batch scripts for
transformation and validation.15

Instance Generation. The oXygen software package is used to generate in-
stances from XSD schemas. Instances generated from the original XSD schemas
are used to exhaustively test that the RNC relaxed-form languages syntacti-
cally contain the corresponding original RuleML language, while instances of
the normal- and mixed-form XSD schemas auto-generated from RNC are simi-
larly employed for testing for syntactic containment or equivalence, respectively,
relative to the original languages.

Simplified RNC as Content Model. The jing -s transformation described
in Section 2.4 is also the first step in generating the simplified, monolithic RNC
13 http://code.google.com/p/jing-trang/
14 Horn logic in normal-form XSD:

http://www.ruleml.org/0.91/xsng/hornlog_normal.xsd
15 Normal-form Zip Archive:

http://ruleml.org/0.91/relaxng/ruleml0-91_normal_rnc.zip

http://code.google.com/p/jing-trang/
 http://www.ruleml.org/0.91/xsng/hornlog_normal.xsd
http://ruleml.org/0.91/relaxng/ruleml0-91_normal_rnc.zip

28 T. Athan and H. Boley

schemas that serve as auto-generated content-model documentation, replacing
error-prone hand-generated documentation, the second step being transforma-
tion by trang back into RNC. The jing -s simplification is a by-product of the
validation process, and so does not provide the ideal documentation, as mean-
ingful pattern names, e.g. formula-Query.Node.def, are replaced by simplified
names, e.g. formula 3, that somewhat obfuscate meaning in the translation.
Nevertheless, this is an easy and highly reliable method for condensing the mod-
ular grammar into a monolithic, and more human-readable, form.

HTML Documentation of Syntax and Semantics. Absent an application
to generate documentation directly from Relax NG schemas, chaining Trang
transformation into XSD with oXygen documentation tools for XSD schemas
provides this capability to some extent. Relax NG annotations, which are pre-
served under Trang transformation, provide the semantics of components. The
documentation need only by prepared for the top language16, as sublanguages
inherit their semantics from the top language.

3 Implementation of the RuleML Schema Design

The RNC-based re-engineering of Derivation RuleML has already led to the
discovery and patching of errata in RuleML versions 0.91 and 1.0, as well as to
suggested enhancements of version 1.0 and a newly conceived version 1.1.

3.1 Implementation in RuleML 0.91

The RNC implementation for RuleML 0.91 reproduces the previously released
RuleML 0.91 sublanguages, with the exception of the following patches, which
fix errata17 discovered during the Relax NG re-engineering:

– Accidental omission of type declarations in the content model of Rulebase,
unexpectedly allowing arbitrary content in some elements.

– Relaxation of order sensitivity resulted in an overly general content model for
atomic formulas, expressions, and some types of generalized lists, allowing
semantically-incorrect multiple occurrences of rest variables.

In addition to the fifteen original RuleML 0.91 sublanguages, the language lattice
generated by the parameterized RNC schema permits many other languages.
A few notable features of the thus enriched language lattice are listed here:

– Equations are made available at all levels of expressivity.
– A short URL (http://ruleml.org/0.91/rnc) for the top RuleML lan-

guage redirects to the parameterized schema of the most inclusive language
(except for alternate element names).

– Propositional languages are introduced by allowing an option that requires
positional argument sequences to be empty. To realize this, the pattern for

16 http://www.ruleml.org/0.91/relaxng/naffologeq_relaxed.rnc
17 http://wiki.ruleml.org/index.php/XSD-Errata0.91#RuleML_0.91_XSD_Errata

http://ruleml.org/0.91/rnc
http://www.ruleml.org/0.91/relaxng/naffologeq_relaxed.rnc
http://wiki.ruleml.org/index.php/XSD-Errata0.91#RuleML_0.91_XSD_Errata

Highly Modular Schemas for XML: RuleML in Relax NG 29

the positional arguments in atomic formulas is initialized as empty, and only
extended in optional modules for binary and polyadic term sequences.

– Expansions of the propositional languages with slots and/or object identifiers
provide a pure frame-like and/or object-oriented syntax.

– The option to restrict positional argument sequences to zero or two members
(as in the RuleML bin languages) is made available at all backbone levels.
At present, the restriction is applied simultaneously to atomic formulas,
expressions and plexes (generalized lists); this may be relaxed later.

– More alternatives are available for stripe-skipping and child order in Implies
and Entails, including skipping the stripe of only one child (body or head
in 0.91, if or then in 1.0) and simultaneously relaxing the order constraints
on these children. Canonical ordering (body before head) is only imposed
when both stripes are skipped. The GUI allows stripe-skipping and order-
insensitivity to be selected independently.

3.2 Implementation in RuleML 1.0

The Relax NG schemas for Derivation RuleML 1.0 are a relatively small upgrade
from the 0.91 versions. We adopt several name changes already incorporated into
the RuleML 1.0 XSD schemas [BPS10]. Beyond Derivation RuleML, we consider
Relax NG versions of all of Deliberation RuleML, including higher order logic
and modal logic, as well as of Reaction RuleML, including actions and events.

3.3 Preview of Proposed RuleML 1.1

A primary goal of the proposed RuleML 1.1 revision is alignment with seman-
tics, including removal of semantically-invalid constructs that were previously in-
cluded because of limitations of XSD. Such constructs can be identified through
a more formal specification of the semantics, as in PSOA RuleML [Bol11] and
the planned Common Logic (CL) RuleML, and a mapping of syntactic sugar to
the corresponding traditional first-order logic statements.

– The entire Fuzzy RuleML specification [DPSS06] will be implemented, where
all formulas, not only Atoms, may have a degree (of uncertainty) child.

– Following the recommendations from [Vli03], for all terminal elements ex-
cept Data and also for all attributes with arbitrary values, the xs:string
datatype will be replaced by xs:token, which has the same lexical space as
xs:string, but its value space consists of lists of tokens separated by single
spaces. This is appropriate because RuleML is for the most part a ‘data-
oriented’ application where white space is not significant, other than as a
token separator. This will allow users, e.g., to more easily extend the schema
to a restricted vocabulary without concern for white-space multiplicity.

– Within Entails, elements if and then will be allowed formulas as children,
in addition to formulas wrapped in a Rulebase element, increasing module
independence.

– The performatives module will be decomposed to separate the definition of
the Query element from the definitions of Assert and Retract, allowing the

30 T. Athan and H. Boley

creation of a knowledge-base language (Assert and Retract performatives
only) and a query language. These languages are already being used in OO
jDREW [BBH+05].

– The content model of Reify will be restricted to Node elements, to remove
the meaningless reification of edge elements.

– The Data element will be split into two (namely, Data and Structure), one
having simple content (cf. XML Schema Part 2, Datatypes [BM04]) and the
other complex content (cf. XML Schema Part 1 and Relax NG). This will
give Data back its original ‘leaf-level’, Individual-like meaning and reserve
the new Structure for ‘tree-level’, Expression-like content. This is necessary
to allow the restriction of Reify described above while maintaining auto-
translation from RNC normal-form to XSD, and is also desirable to avoid a
definition for Data that mixes simple and complex types.

– Context-sensitive constraints, such as “Functions within Equals within an
Equivalent must be either interpreted (per value) on both sides or un-
interpreted (per copy) on both sides”, will be realized in RNC schemas,
but are not translatable to XSD (without Schematron), as they require non-
deteriministic patterns.

4 Conclusions

Through the re-conceptualization and re-engineering of the RuleML schemas,
considerable progress has been made towards the goals stated in Section 1:

To increase alignment with the semantics, names were assigned to recur-
ring grammar patterns, e. g. formulas allowed in conclusions, enabling pattern
reuse.

In order to increase customizability, a schema design pattern was developed
which allowed us to build a system with over fifty freely combinable modules,
leading to more than 250 > 1015 grammars generating an estimated 300,000 dif-
ferent (and meaningful) languages. Further, we used the partial-order relations
of containment (of grammars and languages) to organize the resulting gram-
mars and their generated languages into lattices, related by order-preserving
mappings, and labeled by codes that facilitate the determination of containment
between any pair of grammars or languages.

To increase automation and reliability, we developed a GUI, a PHP-specified
parameterized schema, scripts for transformation and validation, and meta-
schemas to enforce the schema design.

To increase extensibility, numerous extensions points have been introduced,
as named patterns. The use of such extension points has been illustrated by
modules that implement an alternate element name set. Further development of
the RuleML languages will take advantage of this extensibility to introduce new
features in versions 1.1 and beyond.

Highly Modular Schemas for XML: RuleML in Relax NG 31

References

[BBH+05] Ball, M., Boley, H., Hirtle, D., Mei, J., Spencer, B.: The OO jDREW
Reference Implementation of RuleML. In: Adi, A., Stoutenburg, S., Tabet,
S. (eds.) RuleML 2005. LNCS, vol. 3791, pp. 218–223. Springer, Heidelberg
(2005)

[BM04] Biron, P.V., Malhotra, A.: XML Schema Part 2: Datatypes, 2nd edn. W3C
Recommendation, W3C (October 2004),
http://www.w3.org/TR/xmlschema-2/

[Bol11] Boley, H.: A RIF-Style Semantics for RuleML-Integrated Positional-
Slotted, Object-Applicative Rules. In: Pasche, A. (ed.) RuleML 2011 -
Europe. LNCS, vol. 6826, pp. 194–211. Springer, Heidelberg (2011)

[BPS10] Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The Overarching Specifi-
cation of Web Rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.)
RuleML 2010. LNCS, vol. 6403, pp. 162–178. Springer, Heidelberg (2010)

[DPSS06] Damasio, C.V., Pan, J.Z., Stoilos, G., Straccia, U.: An approach to rep-
resenting uncertainty rules in ruleml. In: Proc. of the 2nd International
Conference of Rules and Rule Markup Languages for the Semantic Web,
RuleML 2006 (2006)

[GK10] Grosso, P., Kosek, J.: Associating schemas with xml documents 1.0, 1st
edn. (2010), http://www.w3.org/TR/xml-model

[IG09] Ishikawa, M., Gylling, M.: XHTML 2.0 RELAX NG Definition (2009),
http://www.w3.org/TR/xhtml2/xhtml20_relax.html#a_xhtml20_relaxng

[ISO08] ISO. ISO/IEC 19757-2: Document Schema Definition Language (DSDL)
Part 2: Regular-grammar-based validation - RELAX NG (2008),
http://standards.iso.org/ittf/PubliclyAvailableStandards/

c052348 ISO IEC 19757-2 2008E.zip
[Mur98] Murata, M.: Hedge automata: a formal model for xml schemata (1998),

http://www.horobi.com/Projects/RELAX/Archive/hedge_nice.html
[Mur11] Murata, M.: Re: Theory question: sub-grammars and sub-languages (2011),

http://tech.groups.yahoo.com/group/rng-users/message/1345
[Nat] Nation, J.B.: Notes on lattice theory,

http://www.math.hawaii.edu/~jb/lat1-6.pdf
[TBMM04] Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema

Part 1: Structures. World Wide Web Consortium (2004),
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

[Vli03] van der Vlist, E.: Relax Ng. O’Reilly (2003)
[W3C98] W3C. Guide to the W3C XML Specification (”XMLspec”) DTD, Version

2.1. World Wide Web Consortium (1998),
http://www.w3.org/XML/1998/06/xmlspec-report.htm

A Language Lattices

Informal Definitions of Containment. There is a variety of levels at which
we may define a partial ordering on a family of XML markup languages and
their grammars (schemas). We list here informal definitions of three of the
containment-based partial orderings that are relevant to the RuleML language
lattices. Formal definitions of these and other orderings and their mathematical
consequences are provided on the RuleML Language Lattice Wiki Page18

18 http://wiki.ruleml.org/index.php/Language_Lattice.

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xml-model
http://www.w3.org/TR/xhtml2/xhtml20_relax.html#a_xhtml20_relaxng
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008E.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008E.zip
http://www.horobi.com/Projects/RELAX/Archive/hedge_nice.html
http://tech.groups.yahoo.com/group/rng-users/message/1345
http://www.math.hawaii.edu/~jb/lat1-6.pdf
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/XML/1998/06/xmlspec-report.htm
http://wiki.ruleml.org/index.php/Language_Lattice

32 T. Athan and H. Boley

– PSVI Containment: A language L1 is a PSVI sublanguage of another lan-
guage L2 if every valid document in L1 can be mapped to a valid document
in L2 with the same post-schema-validation infoset.

– Syntactic Containment: A language L1 is a syntactic sublanguage of an-
other language L2 if every grammatically-valid document of L1 is also a
grammatically-valid document of L2.

– Grammar Containment: A language L1 is a grammatical sublanguage
of another language L2 if the grammar of L2 is an extension of the gram-
mar of L1 created by adding new production rules and/or new terminal
symbols.

Monotonicity from Schema Design Pattern. In general, these partial-order
relations are not equivalent. We introduced above a schema design pattern that
guarantees syntactic containment given grammar containment.

We consider the operation of merging two grammars as modules that are
both included, without overrides, by a driver file. According to [Mur11], if the
Relax NG syntax did not include the interleave combine attribute, the merger
operation would be monotonic; that is, any valid instance of one of the modules
would also be a valid instance of the merged grammar. Such monotonicity is very
powerful, but at a high price – the fine-grained modularization we seek would
be impossible without the interleave combine.

Our objective can be met with a compromise – we aim for a weaker mono-
tonicity and allow a restricted usage of the interleave combine. Consider the
operation of merging two grammars, one being the base grammar and the other
we call an expansion module. If any valid instance of the base grammar is also
a valid instance of the merged grammar, then we have a one-sided monotonicity
that is sufficient to establish the correspondence between the subset of included
modules and the lattice of languages generated by syntactic containment par-
tial order. This monotonicity also provides modular extensibility with backward
compatibility, i.e., a grammar may be extended by including an expansion mod-
ule without invalidating previously valid instance documents.

The segregated names schema design pattern described in Section 2.3 provides
the desired monotonicity property. The use of an interleave combine with an
optional child in an expansion module can be shown to preserve monotonicity by
transforming the base grammar and expansion module pair to a pair of modules
without interleave combine whose merger is equivalent to the merger of the first
pair. For example, the two interleave combine definitions

x.interleave &= a
x.interleave &= y?

are equivalent to the following choice combine definitions:
x.choice |= a
x.choice |= a & y

Towards RIF-OWL Combination:

An Effective Reasoning Technique in Integrating
OWL and Negation-Free Rules

Mohammad Sadnan Al Manir�

sadnan.almanir@unb.ca

Abstract. In this paper we focus on the combination of Description
Logics (DLs) and negation-free rules, both expressed in the standard
First-Order logic semantics. We propose an algorithm that is sound for
every such combination but not complete. Our algorithm uses existing
standard reasoning tools for retrieving facts from the DL Knowledge
Base with which rules are put together to form a logic program. Rule
reasoner is then used for answering queries in this program. We identify
the reasons behind the incompleteness and chose a subset which com-
bines restricted DL and rules. This subset consists of DL Horn-SHIQ
language and rules such that DL predicates are allowed only in the rule
bodies and all the rules are DL-safe. A prototype implementation of the
reasoning process is also presented. The combination chosen here can
express strictly more information in the DL component compared to the
well known combination DLP extended using rules.

Keywords: Description Logics, rules, integration, reasoning,
combination.

1 Introduction

Description Logics (DLs) [16] - a family of Knowledge Representation (KR)
formalisms, subset of function-free First-Order Logic (FOL) with equality have
gained enough maturity and is the basis for Web Ontology Language OWL 2
[5,6]. DLs can model information using constructors and complex expressions
can be built. Moreover, ontology modeling is close to having a tree structure
and concepts and roles in the language correspond to unary and binary predicate
respectively. Negation-free rules are based on Horn logic fragment of FOL and
on the contrary to DLs, can model information in a non-tree structure and is
able to express queries with arbitrary arity.

Bringing these two KR formalisms in a common framework could enhance the
expressive capability of information because knowledge that cannot be modeled
� This work was done as part of a Master degree program in Vienna University of

Technology, Austria and Free University of Bozen-Bolzano, Italy. Special thanks to
Jos de Bruijn and Thomas Eiter in Knowledge Based Systems Group, Institute of
Information Systems, Vienna University of Technology, Austria for their valuable
suggestions.

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 33–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

34 M.S. Al Manir

in either DLs or rules, can be modeled in their integration. The interoperability
between the rules and ontologies is a necessity as these building blocks are side by
side in the semantic web stack [2]. Thus our RIF-OWL combination [4] reflects
a strong focus in the development of Semantic Web stack formation. RIF [3] is
proposed by the Rule Interchange Format (RIF) Working Group as rules.

A new reasoning algorithm is proposed in this paper for such integration. In
this algorithm, the DL reasoner takes a DL Knowledge Base (KB)O as input and
retrieves the entailed facts F from the ontology. Then a set of rules, more specif-
ically RIF rules in P is put together with these facts forming a logic program
P ′ = F ∪P . Now answering conjunctive queries in this program is possible using
a rule reasoner. Our algorithm is sound and easily implementable with existing
reasoning tools. But the algorithm is not complete for all such integrations. To
regain completeness, we choose a particular subset of such combinations where
the components DL and rules are restricted. In this subset, the DL is chosen as
Horn-SHIQ and rules are DL-safe and DL-atoms are allowed to occur only in
rule bodies, not in heads. The implementation uses standard DL reasoner Pellet
[1] and XSB [20,22] rule reasoner.

Over the years a number of integration approaches and reasoning in such
integrations have been investigated. Among these AL-log [9], CARIN [7], SWRL
[10,11,12], DLP [13] extension using rules, DL-safe SWRL rules [14] are notable
and precede this work. It is interesting to notice how restrictions on DLs and
rule components introduce trade-off between expressiveness of these components
and decidability of reasoning.

In CARIN, It was found that certain combinations of DL constructors were
responsible for undecidability of reasoning and hence these constructors are dis-
allowed in the combination. DLP which is a fragment of DL SHIQ, falls essen-
tially in Horn fragment of FOL. Here the DL is restricted by mainly disallowing
disjunction and existential information in the consequents of the DL axioms. The
transformation of DLP is then straightforward and they can be easily extended
with rules resulting the combination of DLs and rules enabling decidable rea-
soning. DLP is different in nature from the DLs in AL-log, CARIN and SWRL
because of its correspondence to Horn fragment. While DLP falls essentially in
Horn fragment from the very beginning requiring no more restrictions on its
DL, each of the DLs in AL-log, CARIN and SWRL needs further restrictions
for decidable reasoning in their rule integration.

Different reasoning techniques mentioned above use rule restrictions in syn-
tactic forms. Except for DLP, all three of AL-log, CARIN and DL-safe SWRL
use rule restrictions for decidable reasoning. All of the restrictions on rules are
on the variables that belong to DL-atoms and are based on the idea of typi-
cal rule safeness. While AL-log and DL-safe SWRL use DL-safety restriction,
CARIN uses role-safety. The difference is twofold: First, while DL-safety consid-
ers both concept (AL-log rules allow only concepts) and role atoms, role-safety
only considers roles. Second, in role-safety restriction, only one variable in role is
required to appear in non-DL-atom unless it already appears so. The DL-safety
restriction requires all the variables instead.

Towards RIF-OWL Combination 35

All these restrictions put limitations on the expressive power of the combined
language. Our intension is to find RIF-OWL combination where the DL compo-
nent is strictly more expressive than DLP ontologies [13] and sound and complete
reasoning is possible using existing reasoning tools.

We organize this paper starting with the definition of our combination in
the next section. We discuss our algorithmic properties along with soundness
and completeness in detail. Then we move on to identify the reasons behind
incompleteness and propose a specific combination for which the algorithm is
complete. Finally we compare our approach with existing similar approaches
and conclude with the scope for improvement in future.

2 Preliminaries

Due to space constraints FOL and Description Logics syntax and semantics have
been avoided here. The standard semantics of FOL and expressive DL SHOIQ
which is a logical counterpart of OWL DL are described in details in preliminaries
of [23]. The symbols used in the following sections follow these preliminaries.

2.1 Combination of DLs and Rules

Here we define the syntax and semantics of combinations of DLs and rules in
terms of standard FOL.

Syntax. To define the combined KB, we need to fix the alphabets for predicate
symbols.

Definition 1(Alphabets of predicates). Let A = AO ∪AP be a set of alphabets
such that

– AO and AP are disjoint AO ∩AP = ∅
– AO consists of only unary and binary predicate symbols from DLs known as

DL-predicates and
– AP contains n-ary predicate symbols that are not DL-predicates

Definition 2(Combined Knowledge Base). A Combined Knowledge Base C is a
pair written as (O,P) where

– O is a DL KB
– P is a program with rules over the predicate alphabets A and the constants

C, i.e., a set of rules where each rule r in P is of the form

p(X)← q1(Y1), . . . , ql(Yl), s1(Z1), . . . , sm(Zm) (1)

such that l ≥ 0, m ≥ 0, p(X), and p ∈ A, each qi(Yi), sj(Zj) for 0 ≤ i ≤ l,
0 ≤ j ≤ m is an atom where each qi ∈ AP and each sj ∈ AO.

36 M.S. Al Manir

Semantics. Our proposed combination semantics relies on the standard First-
Order interpretation of both the DLs and the rule component of the combined
KB C over predicates in A and constants in C.

The First-Order representation of a rule in (1) is as follows

∀x̄, ȳ1, . . . , ȳl, z̄1, . . . , z̄m.q1(ȳ1) ∧ . . . ∧ ql(ȳl) ∧ s1(z̄1) ∧ . . . ∧ sm(z̄m)→ p(x̄)

Definition 3(Model and Satisfiability). A model of a combined KB C = 〈O,P〉
is an interpretation N such that N satisfies π(O) ∪ P . C is called satisfiable if
it has at least a model. A sentence α is called satisfiable in C iff α |= C i.e.
α |= π(O) ∪ P .

Definition 4(Entailment). A sentence α is entailed by C denoted as C |= α iff
for each model N of C, N satisfies α.

3 Reasoning in Combined Knowledge Base

Query answering is a reasoning problem in the integration of DLs and rules.
As conjunctive queries are known to be useful in various practical applications,
hence it is practical to use them as an expressive formalism for querying our
combined KB.

Definition 5(Conjunctive Query). A Conjunctive Query (CQ) q is an expression
of the form q(x̄) ← ∃ȳϕ(x̄, ȳ) where ϕ is a formula built from the alphabets of
atoms in A using the conjunction (∧) connective with free variables x̄ and ȳ.
We call the variables in x̄ the distinguished variables and those in ȳ the non-
distinguished variables. A CQ q is boolean if the arity of q is 0.

The answer to a CQ q over a KB C = 〈O,P〉 is a tuple of constants c̄ as a result
of the substitution of the distinguished variables x̄ with the set of constants in
C.

The answer ans(q, C) to a CQ q over C is represented as follows:

ans(q, C) = {c̄ | ∃ȳϕ(c̄, ȳ)}

4 Our Approach

We get all kinds of facts F from the DL KB O using a standard DL reasoner
(e.g., Pellet). We then form a new logic program P ′ = P ∪ F where P contains
a set of rules. To answer the query q over the logic program P ′ we use a rule
reasoner (e.g. XSB). The algorithm returns “YES” if the query q is entailed by
the logic program P ′, otherwise it says “Unknown”.

The pseudocode of the algorithm is given in the following page.

Towards RIF-OWL Combination 37

Algorithm 1. CombinedKBEntails (q, C, c̄)
Require: Combined KB C = 〈O,P〉

Conjunctive Query q as q(x̄) ← ∃yϕ(x̄, ȳ)
Answer tuple c̄ as a tuple of constants

Ensure: CombinedKBEntails (q, C, c̄) says YES if modified logic program entails q(c̄),
otherwise says Unknown

Begin

1: Derive the set F of all facts from Ontology O such that

2: F =
⋃

C∈AO{C(a) | π(O) |= C(a)} ∪ ⋃
R∈AO{R(b, c) | π(O) |= R(b, c)}

3: Form a logic program P ′ such that

4: P ′ = P ∪ F
5: if P ′ |= q(c̄) then

6: return Y ES

7: else

8: return Unknown

9: end if
End

4.1 Properties of the Algorithm

Our algorithm is modular: DL reasoner is used in first step and then rule reasoner
in the logic program.

The algorithm is sound. This intuition is, we replace the ontology with all the
facts. A set of these facts are entailed by the ontology which means they are
true in the ontology model(s). From the property of monotonicity it is imme-
diate that if more rules or axioms are added to these facts, there will be more
entailments. So whenever we take an entailment of the part of the KB, this is
also an entailment of the whole KB.

The soundness can be formally expressed as a theorem as follows:

Theorem 1: Given a Knowledge Base C = 〈O,P〉 with ontology O and logic
program P , a conjunctive query q and a tuple of constants c̄, if CombinedKBEn-
tails(q, C, c̄) returns “YES” then C |= q(c̄).

Proof : To prove that the algorithm is sound we have to prove that if P ′ |= q(c̄)
then C |= q(c̄). It will be enough to show that for functionM that returns a set
of models, M(C) ⊆M(P ′).

The model M for the KB C = 〈O,P〉 is the model of its components

M(C) =M(O) ∩M(P) (2)

38 M.S. Al Manir

We have the set of facts F that are retrieved from the ontology. Naturally
this F is entailed by the ontology O. So we can write

M(O) ⊆M(F) (3)

Again the modelM for the modified logic program P ′ is the intersection of the
models of logic program P and F . Using (2) and (3) we get

M(P ′) =M(F) ∩M(P)

As the algorithm answers “YES”, we can write

M(P ′) ⊆ q(c̄) (4)

Clearly the model in C lies also in the model in P ′

M(C) ⊆M(P ′) (5)

As the two inclusions in (4) and (5) hold, the following inclusion also holds

M(C) ⊆M(q(c̄))

and from the definition of entailment

C |= q(c̄)

Thus, soundness states that we can use any kind of Ontologies and rules in our
combination and any decision we get from the procedure is supported by the
semantics of the combinations.

The algorithm is not complete and to show that we look at the example below:

Example 1. Let an ontology in DL KB O contains B � C and a program P
contains a fact B(a).

Here B subsumes C in O and a is a member of B in P . If we combine this O and
P , because of the axiom in O, a should as well be a member of C. So, according
to the semantics it is the case that C |= C(a).

Now for the KB C = 〈O,P〉 using the procedure we retrieve the facts as
follows:

F = fact(O) = {α is a fact | O |= α} = ∅
The new logic program P ′ is formed as follows: P ′ = F ∪ P = {B(a)}

Clearly P ′ �|= C(a)
hence the decision procedure CombinedKBEntails(q, C, (a)) returns “Un-

known” even though C |= C(a).
Hence we can conclude that even though the combination semantics says

C |= q, the algorithm says “Unknown”. Therefore the algorithm is not complete.
From this it is clear that to achieve completeness of our algorithm, we cannot
use any kind of ontologies and rules in our combination. There should be some
kind of restrictions on these components.

Towards RIF-OWL Combination 39

4.2 Computational Complexity of the Algorithm

The first step of our algorithm states that we retrieve all the entailed facts from
the ontology. Although the size of the set of facts is polynomial in the size of
the whole ontology, retrieving does not depend only on this data. Because we
also retrieve the inferred facts, it also depends on the TBox as TBox is no more
static during this process. Hence it makes sense to talk about the whole ontology.
Thus, the set of inferred facts F is polynomial in the ontology (both ABox and
TBox). In DL Horn-SHIQ these entailments of instances is exponential because
of non-static TBox even if we have polynomial number of facts. Hence deriving
polynomial number of facts is still exponential.

Then rule reasoning is performed. In general, if the rules contain function
symbols then reasoning is undecidable. In the absence of functions in rules, the
complexity of rule reasoning is exponential.

Therefore, the complexity of our algorithm is exponential in the size of the
combined KB.

5 Restrictions on Knowledge Base Components

From example above it is found that for every ontologies and rules in the com-
binations, the algorithm is sound but not complete. We analyze every case for
which the algorithm results incompleteness. Based on the analysis we propose
a combination subset by putting restrictions on DLs and rules component to
regain completeness. We also discuss the immediate effects of these restrictions.

5.1 Disjunction

Incompleteness due to Disjunct Construct. Disjunction inO shows a proof
of incompleteness of our algorithm. An example is as follows:

Example 2. Let an ontology in DL KB O contains

A � B �C

A(a)

and a logic program P contains a set of rules
{

r(x)← B(x)
r(x)← C(x)

Here A subsumes B or C and a is a member of A in O, on the other hand in
P , all the elements under B and C are also elements under r.

For the combination of O and P and for axiom in O, a should as well be
a member of either B or C and hence a must be a member of r as well. So,
according to the semantics it is the case that C |= r(a).

Now for the KB C = 〈O,P〉 , F = {A(a)}

The new logic program P ′: P ′ = F ∪ P =

⎧
⎨
⎩

A(a)
r(x)← B(x)
r(x)← C(x)

40 M.S. Al Manir

Clearly P ′ �|= r(a)
Hence the algorithm CombinedKBEntails(q, C, (a)) returns “Unknown” even

though C |= r(a).
So, we disallow all situations that are equivalent to disjunction. We consider

the class of ontologies in O which is essentially disjunction free. Such an expres-
sive ontology language is Horn-SHIQ.

Disallowing Disjunction. The DL Horn-SHIQ was introduced in [15] as
a fragment of SHIQ. The basic idea is not to allow disjunction (�) in their
expressions by putting syntactic restrictions on SHIQ. This way, there is a
correspondence of Horn-SHIQ expressions and Horn fragment of FOL with
equality. Following [17] without loss of generality, the normal form of Horn-
SHIQ is rewritten in [18] and described here.

Definition 6(Horn-SHIQ). A (normal) Horn-SHIQ KB contains General
Inclusion axioms (GCI) of the forms

A �B � C A � ∀R.B A �≥ nS.B

∃R.A � B A � ∃R.B A �≤ 1S.B

where A, B, C are concept names including special concepts � and ⊥ and R is
a role, S is a simple role and n ≥ 1.

5.2 Modular Reasoning

Incompleteness due to Modular Reasoning. The modular property of our
algorithm states that reasoning is done in two stages. For retrieving facts we use
DL reasoner and query answering uses rule reasoner. As these two reasonings
are separate, there is no interaction. Therefore, in rule reasoning if we use DL
atoms in the head of the rules of the logic program, there are certain inferences
we don’t get from this algorithm that agree with the combination semantics.
The fact is we don’t have any feedback from the program back to the ontology
as DL reasoner is no longer part of rule reasoning process any more.

DL Predicates only in Rule Body. To avoid this problem the restriction
on rules is defined such that DL (ontology) predicates can only be used in the
rule bodies. This means our combination does not allow concepts and roles to
appear in the heads of the rules.

As a result, the flow of inferred information in only in one direction, i.e. from
DLs to rules.

5.3 Named/Unnamed Objects

Incompleteness due to Unnamed Objects. From the concept of open-
domain we know that unnamed objects are expressed using existential quantifi-
cation in DL KB O. On the other hand, logic program P only deals with objects

Towards RIF-OWL Combination 41

that are explicitly mentioned in their KB. So in their combination, while rea-
soning, the logic program cannot handle those unnamed objects introduced in
O thus resulting the incompleteness of our algorithm.

Example 3. Let O contains C � ∃R.�
C(a)

and P contains a rule r(x)← R(x, y)
Here C � ∃R.� and a is a member of C in O. And in P , x is a member of

predicate r if x is also a member of a relation R. If we combine this O and P ,
according to the semantics it is the case that C |= r(a).

Now for the KB C = 〈O,P〉 , F = {C(a)}

The new logic program P ′ stands: P ′ = F ∪ P =
{

C(a)
r(x)← R(x, y)

Clearly P ′ �|= r(a)
Hence the algorithm CombinedKBEntails(q, C, (a)) returns “Unknown” even

though C |= r(a).
To remedy this problem, we make sure that only named objects are considered

during the evaluation in logic program. This is done by restricting the rules such
that they only consider named objects. A syntactic restriction on the variables
called DL-safeness is introduced for this purpose.

Only named objects are considered

Definition 7(DL-safe rule). A rule r is DL-safe if each variable occurring in r
also occurs in a non-DL atom in the body of r. A logic program is DL-safe if all
of its rules are DL-safe.

Hence, DL-safety ensures that each variable is bound only to individuals ex-
plicitly mentioned in the DL KB. For example, Student, livesAt and eatsAt are
concepts and roles from O, the following rule is not DL-safe, because both x, y
and z occur in DL-atom, but not in an atom with a predicate outside O.

Lazystudent(x)← Student(x), livesAt(x, y), eatsAt(x, z)

The previous rule can be made DL-safe by adding special non-DL atoms Õ(x),
Õ(y) and Õ(z) to the body of the rule and by adding a fact Õ(a) for each
individual a occurring in O or P . Thus the above rule can be made DL-safe as
follows:

Lazystudent(x)← Student(x), livesAt(x, y), eatsAt(x, z), Õ(x), Õ(y), Õ(z)

Limited Expressiveness of DL-safe Conjunctive Query

Definition 8(DL-safe Conjunctive Query). A Conjunctive Query is called DL-
safe Conjunctive Query if after the (syntactic) transformation it acts as if it were
a DL-safe rule.

42 M.S. Al Manir

DL-safe rules are less expressive than conjunctive queries. Let us consider
an example O = {(∃hasChild.Person)(Peter)}. Here the ontology states that
Peter has a child but does not disclose who it is i.e. the child is not explicitly
present in the ABox.

Now for the conjunctive query retrieving all objects having a child is written as
q(x, y) = ∃hasChild(x, y). Clearly O |= ∃hasChild(Peter, y) giving an answer
Peter to the CQ q(x, y) for the KB O.

When we transform CQ to a rule that is DL-safe, this results in a DL-safe
rule q(x)← hasChild(x, y), Õ(x), Õ(y) where Õ(x), Õ(y) are introduced for DL-
safeness making sure the explicit existence of object y in the KB.

The logic program P ′ �|= Q(Peter) because the child object is unknown and
Õ(y) cannot find anything to substitute with y. So, it is clear that the pres-
ence of non-distinguished variables poses problems for the CQ when DL-safety
restriction is applied.

To avoid this problem, rolling-up technique introduced in [19] can be used. The
intuition is that the queries which have a tree structure with non-distinguished
variables can be transformed into queries without non-distinguished variables.
For example, we can add an axiom ∃R.C � D to the ontology O. As a result,
the CQ stands q(x)← D(x), Õ(x).

5.4 Equality (Inequality)

Incompleteness due to Equality (Inequality). The DL KB O contains
equality/inequality. Due to the presence of this property the algorithm shows
incompleteness as it does not agree with the combination semantics. The follow-
ing example shows how this happens:

Example 4. Let O contains a = b and P contains a fact p(a)

If we combine this O and P , according to the semantics it is the case that
C |= p(b).

Now for the KB C = 〈O,P〉 , F = ∅
The new logic program P ′ stands: P ′ = F ∪ P = {p(a)}
Clearly P ′ �|= p(b)
Hence the algorithm CombinedKBEntails(q, C, (b)) returns “Unknown” even

though C |= p(b).
Thus (in)equality acts also as a reason for incompleteness of our algorithm.

Constants are not allowed in logic program. To avoid incompleteness it
is required that the program in general to be partially constant-free. The logic
program is not entirely constant-free as facts of the form Õ(a) can be present
for a a named individual. But if we would have only equality-free DL KB which
also does not have functionality and cardinality restriction in that case we could
use constants in the program.

Towards RIF-OWL Combination 43

In short, the restrictions state that DL KB O contains only the classes of
ontologies called Horn-SHIQ and for the rules, DL (ontology) predicates can
only be used in the rule bodies and all the rules be DL-safe. In addition, the
logic program should be partially constant-free.

Theorem 2. Given a Knowledge Base C = 〈O,P〉 with DL KB O and partially
constant-free logic program P containing facts of the form Õ(a) where a is a
named individual, a conjunctive query q and a tuple of constants c̄. If O is
Horn-SHIQ and P, q are DL-safe and P has no DL-predicates in the head, then
it is the case that if C |= q(c̄) then CombinedKBEntails(q, C, c̄) returns “YES”.

Proof: We start by recalling the required definitions to formulate the proof.

Definition 9(Homomorphism). A homomorphism h : I → J between two
interpretations I and J is a mapping h from the domain ΔI to the domain ΔJ

such that for every constant c, h(cI) = cJ and for every predicate symbol p and
every ā ∈ ΔI , if ā ∈ pI , then h(ā) ∈ pJ .

Definition 10(Canonical Model). An interpretation I is a canonical model of
a theory ϕ if I |= ϕ and for every interpretation I′ ∈ Mod(ϕ), there exists a
homomorphism h : I → I′.

Definition 11(Canonical Model Property). A theory ϕ has the canonical model
property if it holds that whenever ϕ is satisfiable, it has a canonical model.

Definition 12(Minimal Model). Let P be a positive logic program. A Herbrand
interpretation M of P is a model of P if for every rule r ∈ gr(P), B+(r) ⊆ M
implies H(r) ∩M �= ∅. A Herbrand model M of a logic program P is minimal
iff for every model M ′ such that M ′ ⊂M , M ′ = M .

Every positive normal logic program has a single minimal Herbrand model, which
is the intersection of all Herbrand models.

(Proposition 1). The DL Horn-SHIQ has a canonical model property. It fol-
lows from the above proposition that Horn-SHIQ ontology O has a canonical
model I.

An interpretation I ′ = (ΔI′
, ·I′

) extends an interpretation I = (ΔI , ·I) of
signature C = 〈O,P〉 if ΔI ⊆ ΔI′

, for every constant symbol c ∈ C, cI ⊆ cI
′
,

and for every predicate symbol p ∈ A, pI ⊆ pI
′

We take canonical model and extend it using the rules using a fixpoint compu-
tation. As ontology predicates don’t occur in rule heads, fixpoint computations
does not add anything to the extension of the ontology predicates. This is obvious
from the construction of fixpoint computation.

During fixpoint computation, in first step we add named elements to Õ. After
that, in each next step, for every tuple of elements in rules we assign only named
elements such that rule body is going to be satisfied. Thus we add these tuple

44 M.S. Al Manir

to the head predicate extension. Obviously the fixpoint operator is monotonic
and this fixpoint is going to result in in interpretation I ′ which is necessarily a
canonical model of C.

Thus we derive an extended interpretation I′ that is a model of the combina-
tion such that I ′ |= C. We observe that this I ′ is a canonical model of C. It follows
that whenever the ontology is satisfiable the combination is also satisfiable.

Because I ′ is a canonical model we can take the named part of this interpre-
tation over the alphabet AO, let’s call this I |named which is defined as follows:

(Definition 13). The interpretation of the named part of the extended canonical
model is defined as I ′ |named= (ΔI′

, ·I′|named) where

aI′|named = aI′
for each term a and

pI
′|named = {ū | ū ∈ pI

′
and ∃a1, . . . , an such that aI′

1 = u1, . . . , a
I′
n = un}

The set of entailed ontology facts are denoted as FO which contains the named
part of the ontology the predicate p of which are such that p ∈ AO

Clearly for a named entailed fact p(ā) ∈ FO it is the case that

I |named|= p(ā) iff C |= p(ā) iff O |= p(ā)

On the other hand, the rule parts of the extended interpretation I′ over the
alphabets AP , lets call this I |Rule satisfy the rules

I |Rule|= FP

where FP is the set of entailed rule facts for which the predicate are over the set
of alphabets AP .

Hence after the extension using fixpoint computation the extended interpre-
tation I ′ consisting of named part and rule part over the predicate alphabets A
is a model of the modified logic program P ′

I ′ |= F ∪ P

I ′ |= P ′

The Herbrand Universe UH is the set of all ground terms over function and
predicates. The Herbrand Base BH is the set of all atomic formulas which can
be formed using the predicate symbols of A and the terms in UH . A Herbrand
Interpretation M is a subset of BH .

We define Herbrand Interpretation M as a set of ground atomic formulas
satisfied by I ′ |named and by I ′ |Rule.

The Herbrand Interpretation M is a model for P ′. I ′ |Rule contains only
named objects because the rules are DL-safe and F is simply represented by
named part from ontology as I ′ |named.

Finally, to prove our theorem we have to show that this Herbrand model is
the minimal Herbrand model.

Towards RIF-OWL Combination 45

The grounding of logic program P , denoted as gr(P) is the union of all possible
ground instantiations of P , obtained by replacing each variable in r with a term
in UH , for each rule r ∈ P .

Let us suppose that M is not minimal model of P ′. Then M satisfies some
ground atomic formula that is not entailed.

So, M is not MM of P ′ iff ∃α ∈M.P ′ �|= α.
As α was satisfied in the canonical model then either it is represented in the

named DL part in which case it is obviously entailed by P ′ or it is in rule part
which is just an extension of the DL part by fixpoint procedure.

Therefore, no such α exists and we can conclude that M is indeed the minimal
model P ′.

6 Implementation and Experiments

We use Java API to access the functionalities of Pellet DL reasoner. We use this
API to retrieve all facts from the ontology. RIF rules are rewritten into XSB
compatible format using a syntactic translator. The facts and rules are then put
together to form the logic program. Rule reasoning is then performed using XSB.

The input of DL ontology is written in human readable syntax and rules
are written in RIF format. A short description of RIF syntax is added with
examples for this purpose. The architecture of the reasoning process is described
in details. We have added two examples of the whole reasoning process based
on our algorithm one of which shows the success and one shows the failure to
answer query.

Due to space constraints the details of our implementation is avoided in this
paper. However a full chapter is dedicated for this purpose and interested reader
is requested to take a look at the EMCL Masters Thesis [23].

7 Relationship with Other Combination Approaches

Our research is a step followed from the previous contributions e.g., AL-log,
CARIN, DL-safe SWRL and DLP extended with rules.

At first, we start with restrictions on DLs. The combinations of DL con-
structors are among the well known sources for undecidable reasoning. Just like
our approach, in CARIN and DLP extension with rules the DL component is
restricted to disallow certain constructors in their axioms. For example, DLP
does not allow existential restriction and disjunctive constructors in their axiom
consequents while Horn-SHIQ in our case does allow existential restriction.

Unlike DLP extended with rules approach all the previous approaches includ-
ing our combination use rule restrictions. These restrictions are syntactically
imposed on the variables occurring in rules and can vary. For example, CARIN
uses role-safety which apply to only one variable in roles while (strong) DL-
safety restriction used in AL-log and DL-safe SWRL apply to all the variables
in concepts and roles. We also use DL-safety restriction here. This restrictions
on rules, in turn, poses problems for using arbitrary conjunctive query.

46 M.S. Al Manir

Both AL-log and CARIN uses modular reasoning approach where DL reason-
ing and rule reasoning is performed in isolation and there is no feedback from
one reasoner to the other. As our reasoning adopts the same technique of mod-
ular reasoning, as a result just like AL-log and CARIN approach DL-atoms are
allowed to occur only in rule bodies, not in heads. This is not the case for DLP
extension with rules and SWRL approach as they use only one reasoner, namely
rule reasoner. Therefore, while SWRL and DLP extension with rules support the
interoperability of DLs and rules in semantic web stack, our method including
AL-log and CARIN approach don’t.

From the discussion above based on restriction on rules, it is clear that our
combination is not as expressive as DLP extension with rules in terms of in-
teroperability. But in terms of restriction on DL component, we are able to
express more knowledge from syntactic point of view. As DLP is based on Horn
framework, it cannot express existential restriction on the right hand side of the
inclusion axioms. Horn-SHIQ on the other hand, is able to express such ax-
ioms. Hence, we can still have a reasonably expressive ontology language which
can capture some practical needs. Although modular reasoning approach used
in CARIN and AL-log limits us to express DL-atoms in rules bodies only, we
have significant advantage over these two approaches. The algorithm used in
this research enables us to use any existing standard reasoning tools which by
the way is not possible in AL-log and CARIN. Because of the algorithms used
in AL-log and CARIN, new reasoning tools are required to implement in those
cases.

8 Conclusion

We have discussed a combination of DLs and rules corresponding towards the
integration of RIF-OWL and development of next generation Semantic Web
architecture. We have proposed a simple algorithm for reasoning in this com-
bination which is sound but not complete for all such combinations. To regain
completeness we investigate one subset of such combination by imposing required
restrictions on DLs and rules. We implemented one prototype of the reasoning
approach and showed that our algorithm is capable of using existing reasoning
tools. Compared to the well known combination DLP extended using rules, our
combination is strictly more expressive with respect to the ontology information.

We also have seen the tradeoff in expressiveness due to putting restrictions.
We would like to work on some of those in future as there are scopes for both
DLs and rules component. For example, in DLs, Horn-SROIQ could be an
interesting choice as part of expressive DL language SROIQ [21].

On the other hand, use of (strong) DL-safe rules hinders the full expressiveness
of arbitrary conjunctive query. There might be a possibility of using weak DL-
safety [8] instead. The modular approach also known as hybrid approach lets us
use DL predicates only in rule bodies which directs information flow only from
DLs to rules not the other way around. An improved algorithmic solution would
be worth investigating for interoperability between DLs and rules.

Towards RIF-OWL Combination 47

References

1. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

2. W3c semantic web activity, November 2 (2001)
3. Kifer, M., Boley, H. (eds.): Rif basic logic dialect, w3c editor’s draft, December 18

(2008)
4. de Bruijn, J. (ed.): Rif rdf and owl compatibility, w3c editor’s draft, September 22

(2008)
5. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.:

OWL 2: The next step for OWL. Journal of Web Semantics: Science, Services and
Agents on the World Wide Web 6(4), 309–322 (2008)

6. W3C OWL Working Group (eds.): Owl 2 web ontology language, document
overview, September 22 (2008)

7. Levy, A.Y., Rousset, M.-C.: Combining horn rules and description logics in carin.
Artif. Intell. 104(1-2), 165–209 (1998)

8. Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog,
pp. 68–78 (2006)

9. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Al-log: Integrating datalog and
description logics. J. Intell. Inf. Syst. 10(3), 227–252 (1998)

10. Sattler, U., Baader, F.: Number restrictions on complex roles in description logics,
a preliminary report. In: Proceedings of the 5th International Conference on the
Principles of Knowledge Representation and Reasoning (KR 1996), pp. 328–338
(1996)

11. Tobies, S., Horrocks, I., Sattler, U.: Practical reasoning for expressive description
logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS,
vol. 1705, pp. 161–180. Springer, Heidelberg (1999)

12. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: Swrl:
A semantic web rule language combining owl and ruleml. W3c member submission,
World Wide Web Consortium (2004)

13. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: WWW, pp. 48–57 (2003)

14. Motik, B., Sattler, U., Studer, R.: Query answering for owl-dl with rules. J. Web
Sem. 3(1), 41–60 (2005)

15. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expres-
sive description logics. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 466–471.
Professional Book Center (2005)

16. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

17. Krtözsch, M., Rudolph, S., Hitzler, P.: Complexity boundaries for horn description
logics. In: AAAI, pp. 452–457. AAAI Press (2007)

18. Eiter, T., Gottlob, G., Ortiz, M., Šimkus, M.: Query answering in the description
logic horn-. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 166–179. Springer, Heidelberg (2008)

19. Tessaris, S.: Questions and answers: reasoning and querying in Description Logic.
PhD thesis, University of Manchester (2001)

48 M.S. Al Manir

20. Sagonas, K., Swift, T., Warren, D.S.: Xsb as an efficient deductive database engine.
SIGMOD Rec. 23(2), 442–453 (1994)

21. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible sroiq. In: Doherty,
P., Mylopoulos, J., Welty, C.A. (eds.) KR, pp. 57–67. AAAI Press (2006)

22. The XSB System, http://xsb.sourceforge.net/xsbsystem.html
23. EMCL Master Thesis 2008-09,

http://www.emcl-study.eu/fileadmin/master_theses/thesis_al.pdf

http://xsb.sourceforge.net/xsbsystem.html
http://www.emcl-study.eu/fileadmin/master_theses/thesis_al.pdf

Relaxed Safeness in Datalog-Based Policies

Moritz Y. Becker and Jason Mackay

Microsoft Research, Redmond, USA
{moritzb,jmackay}@microsoft.com

Abstract. This paper presents a safeness condition that is more liberal than
the one commonly imposed on Datalog, based on classifying predicate argu-
ments into input and output arguments, thereby extending the expressiveness of
Datalog-based policy languages. It is also shown that the relaxed safeness condi-
tion is a powerful tool for adding important features to such languages.

1 Introduction

Datalog is the basis of many rule languages for the Semantic Web (e.g. [5,17,8,11])
as well as of many policy languages related to trust and access control
(e.g. [14,13,10,15,3,2]). However, Datalog on its own is not expressive enough for many
real-world policy scenarios, which commonly require features such as negation, func-
tions, constraints, or updates. Extending Datalog with such features is not trivial, how-
ever, as it may require complex changes to the evaluation engine, which is expensive
and in many cases infeasible. Furthermore, ad hoc extensions can easily break Data-
log’s complexity and termination properties; for example, just adding a single function
symbol leads to undecidability. In this paper, we propose to replace a commonly used
syntactic restriction on Datalog clauses called safeness (essentially, variables in the head
must occur also in the body; see Section 2) by a slightly more complex, but more liberal,
condition that we call I/O-safeness (Section 3). Informally, predicate argument positions
first need to be classified as input or as output arguments, and the syntactic restrictions
ensure that the arguments are always used in accordance with their input/output speci-
fication. I/O-safeness guarantees finiteness of query results.

Input/output modes have been considered before for logic programming [9,18,19],
where the focus has been on extending the class of Prolog programs which can be evalu-
ated correctly using SLDNF resolution. In contrast, the current paper focusses on using
input/output modes to safely add features to Datalog that are required in common pol-
icy scenarios. We show in Section 4 that our definition of I/O-safeness not only itself
increases a policy language’s expressiveness, but also facilitates powerful extensions of
the language that are particularly useful in a policy setting; moreover, they preserve Dat-
alog’s nice properties and do not require changes to the evaluation engine. In particular,
we present,

1. a heuristic method for preventing intractable policies (Section 4.1);
2. a safe method for extending a language with arbitrary constraints and external func-

tions (Section 4.2);
3. and a method for extending a policy language to support implicitly hierarchical

predicates (Section 4.3).

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 49–57, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

50 M.Y. Becker and J. Mackay

2 Datalog and Safeness: Background

This section briefly recalls Datalog and its standard syntactic safeness condition. For a
more thorough introduction, see e.g. [6].

An expression e is either a variable or a constant. Predicate symbols p are associated
with an arity ar(p) ≥ 0. An atom P is of the form p(e1, ...,en), where n = ar(p). A
rule ρ is of the form P :–P1, ...,Pk, where k≥ 0 and the Pi are atoms. P is the head, and
P = P1, ...,Pk is the body of ρ. If k = 0, the rule is called a fact, and we omit the “:–”. A
policy P is a finite set of rules.

We write vars(ϕ) to denote the set of variables occurring in a phrase of syntax ϕ.
We say that ϕ is ground if vars(ϕ) = /0. A phrase of syntax ϕ′ is an instance of ϕ iff
ϕ′ = ϕσ for some variable substitution σ.

A ground atom P is derivable from a policy P (we write P � P) if P is a ground
instance of a fact in P , or P :–P1, ...,Pn is a ground instance of a rule in P such that
P � Pi for all i ∈ {1, ...,n}. A query Q is an atom, and the answers to the query (with
respect to a policy P) is the set of all ground instances P of Q such that P � P.

Definition 1 (Safeness). A rule P :–P is safe if vars(P) ⊆ vars(P). A policy is safe if
all its rules are safe. ��

Proposition 2. Let P be a policy, and Q be a query. If P is safe, then there are only
finitely many answers to Q with respect to P . ��

3 I/O-Safeness

In this section, we present an alternative safeness condition on Datalog rules, called I/O-
safeness, that is more lenient than the standard one from Def. 1 and yet preserves the
finiteness property from Prop. 2. In Section 4, we present several applications facilitated
by this safeness condition.

Consider again the standard safeness condition. The intuition behind it is that all
variables in a body atom of a rule will be ground after the atom has been evaluated,
because they will eventually be grounded by some ground fact. Variables thus have the
function of output arguments. The main idea in I/O-safeness is that we also allow for
input arguments: here we guarantee that the input arguments of an atom are ground
before the atom is evaluated. These guarantees are enforced via syntactic restrictions.

Output variables in the head of a rule must be ground after the rule body has been
evaluated, so they are required to be equal to some input variable in the same head, or
to also occur as an output variable in the body. This implies that all output arguments ei

in a fact p(e1, ...,en) must either occur also as an input variable e j or be ground.
Input variables in the body, on the other hand, must be ground before the atom they

occur in is evaluated, so they are required to occur also as an input variable in the head
of the same rule, or as an output variable in a preceding body atom (throughout, we are
assuming a left-to-right evaluation strategy for body atoms). Finally, we also need to
ensure that all input arguments in queries are ground – in other words, a query must not
have any input variables.

Relaxed Safeness in Datalog-Based Policies 51

Formally, we associate each predicate symbol p with a non-empty set mode(p) of
modes from the set {IN,OUT}ar(p). We extend the mode function to atoms in a natural
way, i.e., mode(p(e)) = mode(p). This definition allows more than one mode for a
given predicate symbol. We can thus have multiple calling patterns in which the predi-
cate can be used.

Definition 3 (Input/Output variables). Let P = p(e1, ...,en) be an atom, µ =
(m1, ...,mn) ∈mode(p), and i ∈ {1, ...,n}. We say that ei is an input variable (output
variable, respectively) in P with respect to µ, if

1. ei is a variable, and
2. mi = IN (µi = OUT, respectively).

We write INµ(P) and OUTµ(P) to denote the sets of all input variables and output vari-
ables in P with respect to µ. ��

Definition 4 (I/O-Safeness). A rule P :–P1, ..,Pn is I/O-safe if for all µ ∈ mode(P)
there exist µ1, ...,µn such that µi ∈mode(Pi) (for all i ∈ {1, ...,n}) and

1. OUTµ(P)⊆ INµ(P)∪⋃n
j=1 OUTµ j (Pj), and

2. ∀k ∈ {1, ...,n}. INµ(Pk)⊆ INµ(P)∪⋃k−1
j=1 OUTµ j (Pj).

A policy is I/O-safe if all of its rules are I/O-safe. A query Q is I/O-safe if there exists
µ ∈mode(Q) such that INµ(Q) = /0. ��

Proposition 5. Let P be a policy, and Q be a query. If P and Q are I/O-safe, then there
are only finitely many answers to Q with respect to P . ��

Example 1. Policies often deal with access to resources, and typically define predi-
cates such as canAccess(User,Operation,File). Under the standard safeness conditions,
we can then write rules such as canAccess(u,Read, f) :–canAccess(u,Write, f) and
canAccess(A,Write,//foo/bar.txt). But the arguably legitimate rule

canAccess(u,Write, f) :–admin(u) (1)

is deemed unsafe. However, this rule can be made I/O-safe with the mode as-
signment mode(canAccess) = {(OUT,OUT, IN)}. The previous two rules are also
I/O-safe. But allowing a rule such as (1) comes with a tradeoff: queries such as
canAccess(A,Write, f) (‘which files can A write to?’) are now I/O-unsafe; since the
file argument is an input argument, it cannot be enumerated, and must be ground in
queries. But this is reasonable, as rules such as (1) may give users permissions to
access a large set of files. In the presence of Rule (1), a legitimate query would be
e.g. canAccess(A,Write,/foo.txt). ��

4 Advanced Applications of I/O-Safeness

4.1 Preventing Intractable Policies

The time complexity of Datalog evaluation is polynomial in the number of facts in the
policy (i.e., assuming that the rules with non-empty bodies are fixed) [7]. The degree

52 M.Y. Becker and J. Mackay

of the polynomial is bounded by the maximum number of distinct variables in a single
rule. Even though this number is usually small, policy evaluation can be intractable
in practice. In policy applications, the number of rules is typically small, whereas the
number of facts in the policy may go into the billions. Therefore, even a linear search
over a single predicate may already be prohibitively expensive.

In Example 1 in the previous section, we saw that the mode of canAccess could be
set to (OUT,OUT,OUT) in the absence of rules like (1), allowing I/O-safe queries or
body conditions such as canAccess(x,Write,y). But in any realistic file system with
a large number of files, such a query would be very expensive. Clearly, requiring the
third parameter to be instantiated at runtime is highly advisable, corresponding to the
mode (OUT,OUT, IN). If the number of users that can access a single file may be large,
it may be even better to use the more restrictive (IN,OUT, IN), as the first and the third
parameters jointly almost determine the second parameter (the access mode).

We can generalize this observation: predicates often have subsets of arguments that
determine, or nearly determine, the other arguments in the predicate. If the predicate is
expected to be large, it is advisable to make sure that one of those subsets of arguments
is ground at runtime, i.e., when the corresponding atom is evaluated. The general rule
is thus to set the mode of all such groups of arguments to IN.

This provides a heuristics for controlling the complexity of a policy. It is still possi-
ble to write intractable policies, but much harder, and it is much less likely to happen
inadvertently. If a policy or a query fails the I/O-safeness check, the system could either
reject the policy or just issue a warning. The latter case is useful because there are situ-
ations where I/O-safeness can be legitimately ignored, e.g. if an administrator needs to
enumerate all files that a user can access and the time that this takes is not crucial.

4.2 Constraints and Functions

Datalog on its own is not expressive enough for many real-world policies. For example,
it cannot express constraints such as inequality or regular expressions as a predicate,
nor functions that perform arithmetic operations or that access the environmental state.
It is tempting to add constraints and functions to Datalog, in order to be able to write
policies such as

adult(x) :– dob(x,d),CurTime()−d ≥ 18 yrs. (2)

It is impossible to express the example above in Datalog without constraints and func-
tions. But there is a good reason why Datalog does not support arbitrary functions and
constraints by default. Even just adding one function symbol to the language turns it into
a Turing-complete language, which is undesirable for most policy applications. Simi-
larly, as the name suggests, Constraint Logic Programming (CLP) [12] adds constraints
to logic programming, which also renders the resulting language Turing-complete for
many constraint classes. Moreover, it requires an execution strategy that is by far more
complex than Datalog’s.

We show that I/O-safeness allows Datalog-based policy languages to be extended
with constraints and functions, without sacrificing Datalog’s simplicity and efficiency,
and more liberally than in existing languages. More concretely, our solution supports

Relaxed Safeness in Datalog-Based Policies 53

arbitrary types of constraints, and allows constraints to be placed at arbitrary positions
within the rule body as long as the I/O-safeness condition is satisfied. Moreover, it also
supports pure functions.

As a first step, we observe that constraints and functions can be viewed as syntactic
sugar for predicates that are evaluated outside the Datalog engine. In particular, func-
tions can be represented as relations with an extra argument for the output (or several
extra arguments, if the output is a tuple). For example, Rule (2) could be rewritten in-
ternally without syntactic sugar as

adult(x) :– dob(x,d),curTime(t),subtr(t,d,r),gte(r,18 yrs),

where curTime, subtr and gte are defined externally: when these predicates are to be
evaluated as subgoals at runtime, the answers to them are provided by external modules
that need not be written in a rule-based language. Therefore, the only required change to
the evaluation engine is that it needs to be able to call out to external answer providers
for certain predicates.

Most constraints are infinite relations. For example, there are infinitely many pairs of
numbers that satisfy the relation ≥. Therefore, constraint arguments should not be used
as outputs. We set the mode of all constraint arguments to IN, in order to guarantee that
the constraint is ground at runtime. The external module that deals with the constraint
can therefore be very simple: it only needs to be able to check if a ground constraint is
true or false. Complex constraint operations that are required in CLP such as unground
satisfaction checking and existential quantifier elimination are thus not needed.

For the same reasons, function arguments are set to IN, apart from the extra output
arguments, which are set to OUT. For instance, the nullary function curTime has mode
(OUT). Functions may have multiple modes, if there are multiple subsets of arguments
that fully determine the other arguments; for instance, subtr has the mode (IN, IN,OUT),
and possibly also (OUT, IN, IN), and (IN,OUT, IN), depending on the implementation of
the external module that deals with subtr.

Many functions, such as subtr or other arithmetic operations, have an infinite range.
Since the output of the function can be fed back into its own input via the rules, this
can lead to undecidability and non-termination. For example, with a simple successor
function ‘ + 1’ we could test if q(x) holds for all integers x: p(x) :–q(x),p(x + 1).

This problem only occurs if recursion (p calls itself) is combined with an infinite-
range function. But this can be checked statically: infinite-range functions must not
occur within a recursive rule. (For example, in the policy {r., p :–q., q :–p.}, only the
first of the three rules is non-recursive.)

We then have the following result.

Proposition 6. Let P be a policy with externally evaluated constraints and functions,
and Q be a query. If no infinite-range function occurs in a recursive rule and P and Q are
I/O-safe, then there are only finitely many answers to Q with respect to P . Furthermore,
if functions and ground constraints can be evaluated in finite time, then the tabled left-
to-right resolution strategy is also complete and terminating for evaluating Q.

4.3 Hierarchical Policies

Hierarchies are ubiquitous in policies. Here are a few examples:

54 M.Y. Becker and J. Mackay

1. In Role-Based Access Control (RBAC) [16], a role hierarchy is a partial order that
defines a seniority relation between roles. Members of a role automatically inherit
permissions from lower-ranked roles.

2. In Mandatory Access Control (MAC) [4], access is based on security labels such as
top secret, secret, confidential, etc., attached to users and objects. The labels form
a lattice, and users with a given security label can only read objects with an equal
or lower label. Furthermore, users can only write objects with an equal or higher
label.

3. Policies on file permissions often reflect the hierarchical structure of the file system.
Having permission to access a folder may imply permission to access all subfolders.

How could hierarchical structures be combined with a Datalog-based policy lan-
guage? For each predicate symbol p, we associate each of its argument positions
i ∈ {1, ...,ar(p)} with a finite binary relation �i

p on constants. Intuitively, �i
p is the

hierarchy relation that is applied to the ith argument of p.

Definition 7 (Hierarchical semantics). A ground atom p(c1, ...,cn) is hierarchically
derivable from a policy P (we write P �∗ p(c1, ...,cn)) iff P � p(c1, ...,cn), or for all
i∈ {1, ...,n}, there exists a constant c′i such that c′i = ci or c′i �

i
p ci, and P �∗ p(c′1, ...,c

′
n).

Since the rule can be applied transitively, we get the property that if p(c′) holds, then p
also holds for all c further down the hierarchy. Every argument position of a predicate
is associated with a hierarchy. This also covers the (usual) case where the argument
position is non-hierarchical: in this case, we set �i

p to be the empty relation.
To illustrate the method, we show how the examples above can be expressed in a

Datalog-based policy language under the hierarchical semantics.

1. We express the role-permission relation using the predicate hasPerm. For example,
hasPerm(Engineer,Read) states that users in the engineer role have read permis-
sion. The first argument position of hasPerm has a non-empty hierarchy relation:
let r1 �1

hasPerm r2 whenever role r2 is strictly more senior than role r1 (and there
exists no role r3 in between). If we have

Engineer�1
hasPerm SeniorEngineer�1

hasPerm PrincipalEngineer, and

SeniorEngineer�1
hasPerm DistinguishedEngineer,

then hasPerm(Engineer,Read) implies hasPerm(PrincipalEngineer,Read)
and hasPerm(DistinguishedEngineer,Read).

The derivations require two applications of the second rule in Def. 7.
2. We define the hierarchies TopSecret �2

readClearance Secret �2
readClearance

Confidential, and Confidential�2
writeClearanceSecret�2

writeClearanceTopSecret
(i.e., �2

writeClearance = (�2
readClearance)

−1). Then the following rules implement MAC:

canRead(x, f) :– label(f , l), readClearance(x, l).
canWrite(x, f) :– label(f , l),writeClearance(x, l).
readClearance(x, l) :– label(x, l).
writeClearance(x, l) :– label(x, l).

Relaxed Safeness in Datalog-Based Policies 55

If Alice has the security label Secret, she is able to read files labelled Secret and
Confidential, and write files labelled Secret and TopSecret.

3. Let f1 �2
read f2 whenever f1 is the immediate parent path of the path f2. Then the

fact read(A,/foo/) implies read(A,/foo/bar/baz/test.txt).

How can we evaluate queries under this modified hierarchical semantics, without hav-
ing to change the existing Datalog evaluation engine? It turns out that we can encode
the hierarchical semantics directly in Datalog, while preserving the correctness and ter-
mination guarantees, provided that I/O-safeness is enforced.

We do this by treating �i
p as a binary predicate symbol, with an associated mode set

mode(�i
p). As in the case of constraints and functions, this requires that the evaluation

engine is able to call an external module at runtime that provides answers to �i
p-queries.

For example, if (OUT, IN) ∈ mode(�i
p), the module implementing �i

p must be able to
enumerate all instantiations of x that satisfy x �i

p c, given any constant c.
In the following, for all normal predicate symbols p occurring in the policy P , let

n = ar(p), and let x1, ...,xn and x′1, ...,x
′
n be distinct variables. For i ∈ {1, ...,n}, let σi

be the substitution [xi �→ x′i], and let Mi = {πn
i (µ) | µ ∈mode(p)} (where πn

i is the ith
projection function on n-tuples).

The algorithm below constructs a policy P ∗ that encapsulates the hierarchical se-
mantics from Def. 7. First initialize P ∗ := P . Then for each i ∈ {1, ...,n} such that �i

p
is non-empty:

1. If OUT /∈Mi and (OUT,) ∈mode(�i
p), add the following rule to P ∗:

p(x1, ...,xn) :–x′i �
i
p xi, p(x1σi, ...,xnσi).

2. Otherwise, if OUT ∈Mi and (,OUT) ∈mode(�i
p), add the following rule to P ∗:

p(x1, ...,xn) :– p(x1σi, ...,xnσi),x′i �
i
p xi .

3. Otherwise, the algorithm fails.

The following proposition states that P ∗ can be used to evaluate queries against P
according to the hierarchical semantics, provided that the original policy is I/O-safe.

Proposition 8. If P is I/O-safe and P ∗ exists, then P ∗ is I/O-safe. Furthermore, for all
I/O-safe queries Q,

P ∗ � Q⇐⇒ P �∗ Q.

Let us now consider the “natural” modes of the hierarchies from the four examples
above:

1. We would set mode(�1
hasPerm) = {(OUT,OUT)} if the number of roles is very small.

Otherwise, we set it to {(IN,OUT),(OUT, IN)}, i.e., given a role, we should be able
to efficiently enumerate both the more senior and the more junior roles. Neither
case imposes a restriction on the mode of the first argument of hasPerm.

2. The hierarchy �2
readClearance is small, so its only mode is (OUT,OUT). This imposes

no restriction on the mode of the second argument of readClearance.

56 M.Y. Becker and J. Mackay

3. Assuming that the file system is large, the mode of �2
read should be restricted to

(OUT, IN), i.e., computing the parent path of a given path. (IN,OUT) is probably
not advisable as a directory may contain a large number of files, and (OUT,OUT) is
clearly not feasible. If mode(�2

read) = {(OUT, IN)}, then all modes of read must be
of the form (, IN). This is a natural choice for read, because there may be a huge
number of files that a single user can read.

5 Conclusion

We have shown that replacing Datalog’s standard safeness condition by our more liberal
I/O-safeness condition facilitates powerful language extensions that retain Datalog’s
nice complexity and termination properties. The increased expressiveness comes at the
price of a slightly more complicated syntactic restriction (which can be automatically
checked), and the requirement to specify the input/output mode for each predicate. But
since the features discussed in this paper are extremely useful in practice, we believe
that this is a good tradeoff. Moreover, in our experience, it is intuitive and natural to
write I/O-safe policies: the largest example of a trust management policy to date [1],
a hand-written electronic health record policy consisting of 375 constrained Datalog
rules, passes the I/O-safeness check — even though it was originally developed for the
Cassandra system, which runs under the even more liberal, but generally undecidable,
Constraint Logic Programming paradigm, and therefore actually would not require I/O-
safeness. Conversely, failure of I/O-safeness is usually an indication of a bug.

References

1. Becker, M.: Information governance in nhs’s npfit: A case for policy specification. Interna-
tional Journal of Medical Informatics 76(5-6), 432–437 (2007)

2. Becker, M.Y., Fournet, C., Gordon, A.D.: SecPAL: Design and semantics of a decentralized
authorization language. Journal of Computer Security 18(4), 619–665 (2010)

3. Becker, M.Y., Sewell, P.: Cassandra: Flexible trust management, applied to electronic health
records. In: IEEE Computer Security Foundations, pp. 139–154 (2004)

4. Bell, D.E., Lapadula, L.J.: Secure computer systems: Unified exposition and Multics inter-
pretation. Technical report, The MITRE Corporation (July 1975)

5. Boley, H., Tabet, S., Wagner, G.: Design rationale of RuleML: A markup language for seman-
tic web rules. In: International Semantic Web Working Symposium (SWWS), pp. 381–402
(2001)

6. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (and never
dared to ask). IEEE Transactions on Knowledge and Data Engineering 1(1), 146–166 (1989)

7. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. In: CCC 1997: Proceedings of the 12th Annual IEEE Conference on Compu-
tational Complexity, p. 82. IEEE Computer Society, Washington, DC (1997)

8. De Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling language
WSML: An overview. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,
pp. 590–604. Springer, Heidelberg (2006)

9. Debray, S.K., Warren, D.S.: Automatic mode inference for logic programs. Journal of Logic
Programming 5(3), 207–229 (1988)

Relaxed Safeness in Datalog-Based Policies 57

10. Detreville, J.: Binder, a logic-based security language. In: IEEE Symposium on Security and
Privacy, pp. 105–113 (2002)

11. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A se-
mantic web rule language combining OWL and RuleML. W3C Member Submission (2010)

12. Jaffar, J., Maher, M.J.: Constraint logic programming: a survey. Journal of Logic Program-
ming 19/20, 503–581 (1994)

13. Jim, T.: SD3: A trust management system with certified evaluation. In: Proceedings of the
2001 IEEE Symposium on Security and Privacy, pp. 106–115 (2001)

14. Li, N., Grosof, B., Feigenbaum, J.: A practically implementable and tractable delegation
logic. In: IEEE Symposium on Security and Privacy, pp. 27–42 (2000)

15. Li, N., Mitchell, J.C.: Datalog with constraints: A foundation for trust management lan-
guages. In: Dahl, V. (ed.) PADL 2003. LNCS, vol. 2562, pp. 58–73. Springer, Heidelberg
(2002)

16. Sandhu, R.: Rationale for the RBAC96 family of access control models. In: Proceedings of
the 1st ACM Workshop on Role-Based Access Control (1997)

17. Sintek, M., Decker, S.: TRIPLE – a query, inference, and transformation language for the
semantic web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 364–
378. Springer, Heidelberg (2002)

18. Smolka, G.: Making control and data flow in logic programs explicit. In: ACM Symposium
on LISP and Functional Programming, pp. 311–322 (1984)

19. Stärk, R.F.: Input/output dependencies of normal logic programs. Journal of Logic and Com-
putation 4(3), 249 (1994)

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 58–65, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Knowledgebase Representation Language
Interoperation Tool

Taylor Osmun, Patrick Thébeau, and Yevgen Biletskiy

University of New Brunswick,
Fredericton, New Brunswick, Canada

{w91pq,i202q,biletski}@unb.ca

Abstract. This paper describes the software solution to the Semantic Web’s
interoperation issue: the Knowledge Representation Language Interoperation
Tool. Its fully implemented parsing and engine execution frameworks are
presented, touching on how they can be easily used by developers for future
expansion. The interoperation method (with the use of the Java Interoperation
Object) is explained generally, as well as in the context of Positional-Slotted
Knowledge (POSL) and Notation 3 (N3) representations. Additionally, details
on the connections found between the relational and graph-oriented paradigms
are shown via interoperation of POSL and N3. Finally, an example usage of the
system is provided in order to convey the usefulness of the software in the
Semantic Web.

Keywords: Euler, Interoperation, Knowledge Representation, Notation 3,
OOjDREW, Positional-Slotted Knowledge, Query, Rule Markup Language,
Semantic Web.

1 Introduction

The concept of the Semantic Web [1] has been around for the greater part of ten years
and during that time, countless projects around the globe have been seeking to be at
the forefront of this movement, with some knowledge representations already having
industry recognition (e.g. Drools). Despite this, there are little to no implemented
products which offer a full suite of interoperability between vast numbers of
knowledge representation paradigms, and so a software tool supporting this
interoperation would prove to be an innovative addition to this field of computer
science. The goal of the present software project is the creation of a software
application that both efficiently and easily acts as a general interoperation portal
between Semantic Web knowledge representation (KR) languages. Our
Knowledgebase Representation Interoperation Tool (KRLIT) succeeds in realizing
this goal through the creation of both a knowledge representation interoperation and
reasoning engine framework. Both of these frameworks are designed with flexibility
in mind, and so have the ability to be extended with any number of knowledge
representation languages and reasoning engines, as defined by the developer. Each

 Knowledgebase Representation Language Interoperation Tool 59

KR is connected to others in the framework via the implementation of a translator to
go to and from the central interoperation tool, the Java Interoperation Object (JIO).
Currently, KRLIT has implemented support for two different KR viewpoints, each
with an individual language: relational knowledge through Positional-Slotted
Knowledge (POSL) [2], and low-level triple representation through Notation 3 (N3)
[3]. In addition to strict translation of knowledge representations, we also support the
querying of supported knowledge bases through a single execution engine for every
supported knowledgebase representation language (OOjDREW [4] for POSL, and
Euler [5] for N3).

2 System Architecture

As previously stated, the goal of KRLIT is to create an easy to use and efficient
framework for knowledge representation language interoperation. It succeeds in this
by using a lightweight model-view-controller architecture that makes packages easy
to plug into the system via both strictly defined interface requirements for both
parsers and execution engines, and useful library utilities. The use of these interfaces
ensures that all additionally developed add-ons will conform to the original
specifications and can thus be utilized interchangeably with all other packages.

The parsing and reverse parsing framework (Fig. 1) gives developers the ability to
translate their language to the Java Interoperation Object (section 3) as an
AtomCollection, as well as transform existing AtomCollection’s to their destination
representation. It supports the former (translation to JIO) via the use of the Parser
interface located in the interfacing package. This interface (which all Parser’s must
implement) requires that there be at least one method which allows the user to parse a
given InputObjectCollection to a single AtomCollection. It should now be mentioned
that the InputObjectCollection is one of the utilities offered by the KRLIT system.
This InputObjectCollection contains a list of InputObjects; each InputObject’s origin
can be a String1, File2, or URL3; consequently, the output of the InputObject can be a
String. In addition to the Parsing interface, translation of an AtomCollection to a
String is also supported via the use of the ReverseParser interface. This interface
(which all ReverseParser’s must implement) requires that there be at least one method
which allows the user to reverse parse a given AtomCollection to a single String. It
should also be noted that there is an additional argument required, asQuery. This
argument will inform the ReverseParser as to whether or not the user wishes the
output to be a query (which can look different from a standard request in some
knowledge representation languages). Finally, the Builtins class of the JIO package is
also extended in order to provide the user with a list of the required built-ins which
need to be extended in order to provide complete interoperation.

1 http://download.oracle.com/javase/1.5.0/docs/api/java/lang/
String.html

2 http://download.oracle.com/javase/1.4.2/docs/api/java/io/
File.html

3 http://download.oracle.com/javase/1.4.2/docs/api/java/
net/URL.html

60 T. Osmun, P. Thébeau, and Y. Biletskiy

Fig. 1. Parsing and Reverse Parsing Framework Class Diagram. This is the framework which
all translation packages use.

The engine execution framework (Fig. 2) gives developers the ability to utilize
reasoning engines which support their knowledge representation language. It supports
this via the use of the EngineExecutor interface located in the interfacing package.
This interface (which all EngineExecutor’s must implement) requires that there be at
least one method which allows the user to reason a given list of knowledgebases,
taxonomies, and queries (all represented via individual InputObjectCollection’s)
resulting in a single String answer.

Fig. 2. Engine Execution Framework Class Diagram. This is the framework which all
reasoning engine packages use.

 Knowledgebase Representation Language Interoperation Tool 61

3 Java Interoperation Object (JIO)

The Java Interoperation Object is the basis of all interoperation methods found
within the framework of KRLIT. The objective of this package is to capture as
many aspects of the various knowledge representation paradigms available today
(e.g. relational, graph-oriented, etc.) through a universal Java architecture which
can support all of them in some fashion. Using RuleML [6] as a building block,
KRLIT has successfully created and implemented such a concept, and is now used
to translate supported POSL and N3 knowledge bases (sections 4 and 5). It does so
by providing developers with a variety of element types which their knowledge base
concepts may be stored in.

Typically, atoms are used to represent the smallest element in a knowledgebase,
and so this idea was also used in the implementation of the JIO. KRLIT uses Atoms in
the JIO to represent the smallest “thing” in a knowledge base (e.g. for POSL this is a
relation, for N3 this is a subject). Atoms can be further decomposed into subparts, but
those parts can never be referenced without being encapsulated within the atom itself.
Fig. 3 depicts how the JIO atom can represent the various data types in a typical
knowledge representation language.

Fig. 3. Atom and Atom Collection Class Diagram. This displays the range of possible Atom
contents in the JIO.

62 T. Osmun, P. Thébeau, and Y. Biletskiy

As mentioned previously, knowledge representations come in many “shapes and
sizes”, and so to capture the majority of them, clever use of RuleML’s Relation (Rel)
and Complex Term (Plex) had to be introduced. A relation in terms of common sense
is an abstraction which characterizes two objects together; however, KR paradigms
implement this many in different ways. The end result of a translation stores the
Relation with a Vector4 of elements and a relation name as relationName. This way,
the Relation object can be easily associated with its bindings. Complex Terms
however, are slightly different than that of a relation. Typically, a complex term is
found when you nest a blank node Atom within an existing Atom. This can be
captured by a similar structure to that of a Relation object by using a Vector of
elements, but instead excludes the relation name.

3.1 Slots

A slot is a fairly simple concept to encode. Like an object-oriented programming
language, a slot ties a property element (either Variable or Constant) to its value (any
element). This is implemented via the use of the property and value pairs. Like the
majority of knowledge representations, variables and constants are the building blocks
of reasoning, and are easily implemented with our JIO. Constants always refer to
something that is static and true in a knowledge base. Therefore, it can be said that
these constants always have one and only one final value. This value is captured via
the value property in the Constant class.Variables always refer to something that of
course, can change. Therefore, it can be said that these variables can take on any
value at any time, but the reference to that value (the name) is always the same. This
name is captured via the name property in the Variable class. The other concept, type
class is one which both Variable’s and Constant’s share. Some paradigms (e.g. POSL)
support the attribution of types to constants and variables. This is easily captured via
the typeClass property in the Constant and Variable classes.

4 Positional-Slotted Knowledge (POSL) JIO Mapping

Positional-Slotted Knowledge is a knowledge representation language that allows for
object-centered instance descriptions via binary properties, taxonomies over classes
and properties, class-forming operations and class/property axioms, and derivation,
integrity, transformation, and reaction rules (RuleML) [2]. POSL has two
representation paradigms which it can use, depending on what the user requires. The
first of which is positional; this means that slots are not used to represent relation
contents. The second option is slotted; this means that property names are associated
with every element in a relation. The latter best suits our JIO framework, and so its
paradigm was chosen. The slotted paradigm consist of relations (distinguished via
relation names) paired with elements of those relations.

The single existing parser for POSL is also written in Java for OOjDREW [4], and
so many concepts were taken from this implementation. The architecture of this

4 http://download.oracle.com/javase/1.4.2/docs/api/java/util/
Vector.html

 Knowledgebase Representation Language Interoperation Tool 63

parser is simple; there is a general parseElement method, which given a String, will
determine its type (e.g. Atom, Constant, etc) and then invoke the appropriate method
(e.g. parseAtom). The main approach to providing the parseElement method its input
was clever usage of Java’s built-in StringTokenizer library to cut the knowledge bases
into manageable bits. For example, the ‘.’ character was used to grab single Atoms,
and the ‘(’ character was used to isolate a single relation within the Atom. Using the
methods described, we cut the knowledgebase into manageable pieces. However,
these pieces need to be given to the JIO in a standard manner, which is briefly
described in the list below:

• Atom: Each Atom is delimitated by ‘.’
• Relation: Each Atom has only one relation, which has a single relation name and

list of elements
• Plex: A complex term can only exist as an element within a relation (which could

also be the value of the slot). Like a relation it has a relation name and a list of
elements. It is deliminated by ‘[‘

• Slot: Each slot is deliminated by ‘->’ which has its property on the left, and value
on the right

• Variable: Each variable is an element deliminated by ‘?’. Its type class is
deliminated by ‘:’

• Constant: Each constant is any element within a relation or Plex which is not a
Plex, slot, or variable. Its type class is deliminated by ‘:’

5 Notation 3 (N3)

Notation 3 is a compact, rule-extended version of RDF's XML syntax [3]; in this way,
RDF’s complex machine understandable language becomes much more readable to
humans. RDF facts and rules are still written with triples (subject, property, and
object) and so this language is very expressive in nature, but also great for human
comprehension. The N3 parser design is the same to that of the POSL parser (section
4). There is a general parseElement method, which given a String, will determine its
type (e.g. Atom, Constant, etc) and then invoke the appropriate method (e.g.
parseAtom). However, what makes the N3 parser vastly different to that of the POSL
parser, is in the implementation method behind providing the parseElement method
with its input. The Prolog interpreter, SWI-Prolog5, contains a library of RDF utilities.
Amongst these utilities is an N3 parser created by Yves Raimond6 which converts an
N3 knowledge base into a Prolog knowledge base. With this tool at hand, an interface
to Prolog from Java, JPL7, is used to allow Prolog to create Java objects
corresponding to N3 triples. Upon finishing the Prolog parsing, the N3 parser class
now has a list of all triples in the knowledge base. These String representations of
these triples are then passed to the parseElements method.

5 http://www.swi-prolog.org/
6 http://moustaki.org/
7 http://www.swi-prolog.org/packages/jpl/java_api/index.html

64 T. Osmun, P. Thébeau, and Y. Biletskiy

Like in its POSL counterpart, we cut the knowledgebase into manageable pieces.
However, there are a significant number of constraints used when creating
AtomCollections based on these pieces:

• Atom: Each Atom is a single triple subject
• Relation: Each Atom has only one relation, which has a single relation name

(defined by the property :type’s object), and list of elements
• Plex: A Plex is a BNode (subject without a defined name) is also an object of a

current subject are defined to be Plex terms
• Slot: Each slot is a property object pair where the property is the triple’s property,

and value is the triple’s object
• Variable: A variable can only be a triple’s object, and starts with ‘?’
• Constant: Each constant is any triple’s object which which is not a Plex, slot, or

variable.

6 Example Usage and Conclusion

KRLIT is capable of supporting any kind of knowledge base which is using its
supported representation under the individual representation constraints. However, it is
useful to see an example usage of the system under a specific context. In this case, we
assess two different automobile insurance companies (Mainland Insurance, and Healthy
Life) who while using different knowledge representation languages, use the same
schema for their facts and rules.Let us assume that Mainland Insurance focuses
primarily on Economic classed customers using an N3 knowledge base. Healthy Life on
the other hand, caters to Gold and Platinum classed customers using a POSL knowledge
base. Suppose we wish to find the discount policies of both companies, but we are only
familiar with the POSL knowledge representation language. Normally, this would
prevent the use of Mainland Insurance’s knowledgebase, but with KRLIT we are able to
query it, and have answers returned in POSL. For example, our POSL query is for
finding all discounts. During query processing time, KRLIT’s POSLParser class is used
to transform this query into a JIO based AtomCollection, which the N3ReverseParser
class accepts as input. This provides us with the N3 representation of this POSL query.
This is easily fed to OOjDREW, whose answers are returned in POSL. Now that we
have an equivalent N3 query, it can be given to Euler as input, whose answers are used
by N3Parser to create the JIO based AtomCollection. It is then fed to the
POSLReverseParser to provide us with the POSL representation of the N3 answers;
these are combined with the OOjDREW results (Fig. 4).

Although the initial work in interoperation among the Semantic Web based rule
languages had been previously done [7], there was a gap in a more general technical
solution. The present paper has described the Knowledge Representation Language
Interoperation Tool as a solution to the Semantic Web’s interoperation gap issue. Its
framework has been analyzed in detail, providing the reader with an understanding of
how developers may expand upon it by programming support for their preferred
knowledge base representation language and/or reasoning engine using the parsing
and engine execution frameworks in conjunction with the Java Interoperation Object.

 Knowledgebase Representation Language Interoperation Tool 65

Fig. 4. POSL representation of OOjDREW and Euler answers (the final result of querying
KRLIT with the POSL query)

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5),
34–43 (2001)

2. Boley, H.: POSL: An Integrated Positional-Slotted Language for Semantic Web Knowledge
(2004), http://www.ruleml.org/submission/rulemlshortation.html

3. Berners-Lee, T., et al.: Notation (N3), A readable RDF Syntax,
http://www.w3.org/TeamSubmission/n3/

4. Ball, M., Boley, H., Hirtle, D., Mei, J., Spencer, B.: The OO jDREW Reference
Implementation of RuleML. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005.
LNCS, vol. 3791, pp. 218–223. Springer, Heidelberg (2005)

5. Euler, http://eulersharp.sourceforge.net/
6. Boley, H.: The RuleML Family of Web Rule Languages. In: Alferes, J.J., Bailey, J., May,

W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 1–17. Springer, Heidelberg
(2006)

7. Boley, H., Osmun, T.M., Craig, B.L.: WellnessRules: A Web 3.0 Case Study in RuleML-
Based Prolog-N3 Profile Interoperation. In: Governatori, G., Hall, J., Paschke, A. (eds.)
RuleML 2009. LNCS, vol. 5858, pp. 43–52. Springer, Heidelberg (2009)

Discount(company->MainlandInsurance;
 clientID->1:Real;age->19:Real;class->Economic;discount->0.0:Real).
Discount(company->MainlandInsurance;
 clientID->6:Real;age->17:Real;class->Economic;discount->0.0:Real).
Discount(company->MainlandInsurance;
 clientID->2:Real;age->22:Real;class->Economic;discount->0.1:Real).
Discount(company->HealthyLife;
 clientID->3:Real;age->19:Real;class->Gold;discount->0.2:Real).
Discount(company->HealthyLife;
 clientID->5:Real;age->30:Real;class->Gold;discount->0.4:Real).
Discount(company->HealthyLife;
 clientID->4:Real;age->29:Real;class->Platinum;discount->0.7:Real).

Consistency and Provenance in Rule Processing

Eric Jui-Yi Kao

Computer Science Department,
Stanford University,
Stanford, CA 94305,

United States of America
erickao@cs.stanford.edu

Abstract. Open collections of data and rules on the web are typically
characterized by heterogeneous quality and imperfect consistency. In rea-
soning with data and rules on the web, it is important to know where an
answer comes from (provenance) and whether the it is reasonable consid-
ering the inconsistencies (inconsistency-tolerance). In this paper, I draw
attention to the idea that provenance and inconsistency-tolerance play
mutually supporting roles under the theme of reasoning with imperfect
information on the web. As a specific example, I make use of basic prove-
nance information to avoid unreasonable answers in reasoning with rules
and inconsistent data.

1 Introduction

Data and rules on the web are typically characterized by imperfect data, hetero-
geneity in quality, distributed authorship, semantic misalignments, and inconsis-
tencies. Furthermore, the highly distributed nature of web data storage calls for
the replication of data and the caching of computed (or intermediate) results.
In reasoning in such a setting, two important requirements emerge:

1. Computed answers must be associated with information on the sources they
rely on.

2. Inconsistencies must be tolerated: logical explosion and unreasonable an-
swers must be avoided.

The first requirement calls for the computation and maintenance of provenance
information on computed answers. The second requirement can be fulfilled by
following an inconsistency-tolerant semantics in reasoning.

Much work has been done on provenance information in web data (for exam-
ple [26,16,10,11,25]). The processing of inconsistent knowledge on the web has
also gained attention [18,23,28,29,3]. In this paper, I draw attention to the idea
that provenance and inconsistency-tolerance play mutually supporting roles in
the overarching theme of reasoning with imperfect information on the web. As
a specific example, I make use of basic provenance information to avoid unrea-
sonable answers in reasoning with rules and inconsistent data.

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 66–80, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Consistency and Provenance in Rule Processing 67

In section 2, I give a motivating example. In section 3, I formally develop the
existential answers semantics. In section 4, I show that the problem of computing
existential answers is NP-Complete, ruling out a popular rewriting technique
which does not rely on provenance computation. Then, in sections 5 and 6, I
give a provenance-based method for computing existential answers. In section 7, I
give another characterization of existential answers via answer set programming.
Finally, I conclude by discussing related work and future directions.

2 Motivating Example

The data in table 1 will serve as example data. The BirthYear table associates
each person with a birth year. Each person has at most one birth year, but in
the example data two conflicting birth years are specified for Cody (and David)
because they come from two sources, at least one of which is incorrect. The
RecessionYear table gives the recessionary years in the United States.

Table 1. Example data

BirthYear
Person Year

Adam 1980
Brian 1991
Cody 1984
Cody 1991
David 1980
David 1984

RecessionYear
Year

1980
1981
1982
1990
1991

Table 2. Cached/Materialized Results

RecessionBorn
Person

Adam
Brian
Cody
David

Rule:
RecessionBorn(X) :- BirthYear(X,Y), RecessionYear (Y)

OfAge
Person

Adam
Cody
David

Rule:
OfAge(X) :- BirthYear(X,Z),Z<1989

68 E. Jui-Yi Kao

Consider the following scenario:
For a study, a researcher would like to send out surveys to those who were born
during a recessionary year in the United States and are also legally of age. So
adding to the rules in table 2, the researcher writes the rule:

candidate(X) :- RecessionBorn (X) ∧ OfAge(X)

Standard datalog semantics, which do not consider the constraints, would pro-
duce the answers {Adam, Cody, David}, the natural join between the two inten-
sional relations. By digging down, we see that RecessionBorn(Cody) is derived
from BirthYear(Cody, 1991) and OfAge(Cody) is derived from
BirthYear(Cody, 1984). But at least one of these two pieces of data is incor-
rect. We see that Cody is not a reasonable answer because whether we choose
BirthYear(Cody, 1984) or BirthYear(Cody, 1991), Cody does not satisfy the
criteria intended by the query.

Consider the two conflicting tuples BirthYear(David, 1980) and
BirthYear(David, 1984). If we chose to believe
BirthYear(David, 1980), then David is an answer. But if we chose to believe
BirthYear(David, 1984), then David is not an answer. Since we have no infor-
mation that leads us to believe one of the two conflicting tuples over the other,
David is not an unreasonable answer.

The notion of existential answers (definition 4 in the next section) formalizes
this intuition, admitting answers which are reasonable and rejecting answers
which are unreasonable. The idea is to reason from consistent subsets of data so
that conflicting pieces of information cannot be combined to give an unreasonable
answer.

3 Formal Development

In this section, I develop the formal definitions necessary to define existential
answers. The development follows the definition of datalog in [1].

Let dom be a fixed, countably infinite set which serves as the underlying
domain. For example, dom may be the universe of all possible URI’s. A constant
is an element of dom. A schema S is a nonempty, finite set of relation names,
each with a fixed arity. An instance of a schema S is a finite set of facts (ground
atoms) over S and dom.

Let var be a fixed, countably infinite set of variables that is disjoint from dom.
A tuple is a vector of elements from dom. A free tuple is a vector of elements
from dom∪var. I use X, Y, Z, U, V, x, y, z, u, v and all their subscripted variants
to denote variables. All other symbols appearing in a tuple are constants.

Definition 1 (Datalog syntax). A rule is an expression of the form
R1(u1) : − R2(u2), . . . , Rn(un), φ(uφ), where n ≥ 1, R1, . . . , Rn are relation
names, u1, . . . , un, uφ are free tuples of appropriate arities, and φ is a boolean
combination of built-in predicates (=, �=, >,etc.). Each variable occurring in u1

or uφ must also occur in at least one of u2, . . . , un. A datalog program is a finite
set of datalog rules.

Consistency and Provenance in Rule Processing 69

To give semantics to datalog programs, one interprets the rules as first-order
sentences. Each rule R1(u1) : − R2(u2), . . . , Rn(un), φ(uφ), is associated with the
sentence ∀x1 · · ·xq(∃xq+1 · · ·xm(R2(u2)∧· · ·∧Rn(un)∧φ(uφ)→ R1(u1))), where
x1, . . . , xq are the variables occurring in the head (R1(u1)) and xq+1, . . . , xm are
the remaining variables occurring in the rule. For a datalog program P , the set
of first-order sentences associated with P is denoted as ΣP .

Definition 2 (Datalog Semantics). Let P be a datalog program and D finite
set of facts. A model of P in a finite set of facts satisfying ΣP . The semantics
of P on input D, denoted P (D) is the minimum model of P containing D.1 For
a fact d, We write 〈P, D〉 �dl d to denote that d ∈ P (D).

Definition 3 (Denial Constraints). A denial constraint is a sentence of the
form ∀x1 · · ·xm(¬R1(u1) ∨ · · · ¬Rn(un) ∨ φ(uφ)), where n ≥ 1, R1, . . . , Rn are
relation names, u1, . . . , un, uφ are free tuples of appropriate arities, φ is a boolean
combination of built-in predicates (=, �=, >,etc.), and x1 · · ·xm are the variables
occurring in u1, . . . , un, uφ. Each variable occurring in uφ must also occur in at
least one of u1, . . . , un. A denial constraint can also be considered a “rule” with
an empty head, i.e., : − R1(u1), . . . , Rn(un),¬φ(uφ)).

Definition 4 (Existential Answers). Given a set of facts D, a set of rules
P , and a set of constraints C, a fact d is an existential answers with respect to
(D, P, C) if and only if there exists D′ ⊆ D such that P (D′) is a model of C and
〈P, D′〉 �dl d. We denote this fact as 〈P, C, D〉 �∃dl d.

Example 1. Here I apply the definition of existential answers to the example
in section 2. For brevity, I use the following short-from relation names: by for
BirthYear, ry for RecessionYear, oa for OfAge, rb for RecessionBorn, and ca
for candidate. Let D be the base data (from table 1).
D = {

by(Adam, 1980), by(Brian, 1991), by(Cody, 1984), by(Cody, 1991),
by(David, 1980), by(David, 1984), ry(1980), ry(1981), ry(1982),
ry(1990), ry(1991)

}
Let P be the datalog program.

P = {
oa(X) : − by(X, Z), Z < 1989,
rb(X) : − by(X, Y), ry(Y),
ca(X) : − rb(X), oa(X)

}
Let C be the set of constraints.

C = {∀XY (¬by(X, Y) ∨ ¬by(X, Z) ∨ Y = Z)}
The collection of subsets D′ of D such that P (D′) is a models of C are the

following: (letting F = {by(Adam, 1980), by(Brian, 1991), ry(1980), ry(1981),
ry(1982), ry(1990), ry(1991)})
1 The minimum model always exists [1, pp 281, Theorem 12.2.3].

70 E. Jui-Yi Kao

1. {by(Cody, 1984), by(David, 1980)} ∪ F and all its subsets
2. {by(Cody, 1984), by(David, 1984)} ∪ F and all its subsets
3. {by(Cody, 1991), by(David, 1980)} ∪ F and all its subsets
4. {by(Cody, 1991), by(David, 1984)} ∪ F and all its subsets

The corresponding sets of datalog answers (in the ca relation) are :

1. {ca(Adam), ca(David)} and all its subsets
2. {ca(Adam)} and all its subsets
3. {ca(Adam), ca(David)} and all its subsets
4. {ca(Adam)} and all its subsets

Hence, 〈P, C, D〉 �∃dl ca(Adam) and 〈P, C, D〉 �∃dl ca(David), but
〈P, C, D〉 ��∃dl ca(Brian) and 〈P, C, D〉 ��∃dl ca(Cody). The results agree with
the intuition in section 2.

I present another example. This example contains recursive rules.

Example 2. A fact link(i, j, t) represents that there is a direct link of type t
from i to j. Let the base facts D = {
link(a, b, 1), link(a, c, 2), link(b, d, 2), link(c, d, 3), link(d, e, 1), link(d, f, 2)}

Let the program P = {
aReaches(Y) : − link(a, Y, U),
aReaches(Y) : − aReaches(a, Z, U), link(Z, Y, V)

}.
It defines which nodes are reachable from a.
Furthermore, assume it is known that no two links of the same type can

coexist. It can be formalized as the following constraint set C = {
∀X1Y1X2Y2U(¬link(X1, Y1, U) ∨ ¬link(X2, Y2, U) ∨X1 = X2),
∀X1Y1X2Y2U(¬link(X1, Y1, U) ∨ ¬link(X2, Y2, U) ∨ Y1 = Y2)

}
The collection of subsets D′ of D that are models of C∪ΣP are the following:

1. {link(a, b, 1), link(a, c, 2), link(c, d, 3)} and all its subsets.
2. {link(a, b, 1), link(b, d, 2), link(c, d, 3)} and all its subsets.
3. {link(a, b, 1), link(d, f, 2), link(c, d, 3)} and all its subsets.
4. {link(d, e, 1), link(a, c, 2), link(c, d, 3)} and all its subsets.
5. {link(d, e, 1), link(b, d, 2), link(c, d, 3)} and all its subsets.
6. {link(d, e, 1), link(d, f, 2), link(c, d, 3)} and all its subsets.

The corresponding sets of datalog answers (in the aReaches relation) are :

1. {aReaches(n) : n ∈ {b, c, d}} and all its subsets
2. {aReaches(n) : n ∈ {b, d}} and all its subsets
3. {aReaches(n) : n ∈ {b}} and all its subsets
4. {aReaches(n) : n ∈ {c, d, e}} and all its subsets
5. {}
6. {}

Consistency and Provenance in Rule Processing 71

Hence, 〈P, C, D〉 �∃dl aReaches(b), aReaches(c), aReaches(d), aReaches(e),
but 〈P, C, D〉 ��∃dl aReaches(f), aReaches(a). Notice that even though
〈P, D〉 �dl aReaches(f), it is rejected as an existential answer because it is
unreasonable given the constraints.

Based on the definition, a brute-force method for computing existential answers
consists of enumerating each set D′ ⊆ D, checking whether D′ is admissible,
and finally checking whether D′ �dl d. Because the number of subsets of D is
2|D|, this brute-force method is completely impractical. In section 6, I present a
provenance-based method that constructs several special subsets of D and ignore
all the other subsets.

4 Complexity and Rewriting

In typical data-oriented applications the set of facts is much larger than the set
of rules. It is natural to consider the data complexity of rule evaluation. That
is, we first fix the program P then consider the complexity of computing the
answers given a set of facts as input.

For example, in datalog evaluation, the data complexity for a fixed program P
is the complexity of the problem ΔP = {(D, d) : 〈P, D〉 �dl d}, where D ranges
over the sets of facts and d ranges over the facts.

For a finite set of denial constraints C and a nonrecursive datalog program
P , the existential answers problem is ΞP,C = {(D, d) : 〈P, C, D〉 �∃dl d}.

If P is restricted to nonrecursive datalog programs, then, given the set of
constraints C, it is possible to transform P into another program P ′ in the same
language such that for all finite sets of facts D and all facts d, 〈P, C, D〉 �∃dl d
if and only if 〈P ′, D〉 �dl d [17,19]2. Because datalog evaluation is polynomial
time in data complexity, the rewriting result shows that the existential answers
problem is also polynomial time in data complexity. That is, given a finite set
of denial constraints C and a nonrecursive datalog program P , ΞP,C is in P .

One may want to apply a similar rewriting approach in the recursive case,
rewriting a recursive datalog program P into another datalog program P ′ such
that the standard answers to P ′ are precisely the existential answers to P . How-
ever, we show here that unless P=NP , such a rewriting scheme does not exist
for all datalog programs. First, I show that for some datalog program P and fi-
nite set of constraints C, ΞP,C is NP-Hard. If we could rewrite P into a datalog
program P ′ such that for all finite sets of facts D and all facts d, 〈P, C, D〉 �∃dl d
if and only if 〈P ′, D〉 �dl d, we have reduced the problem ΞP,C to the problem
ΔP ′ , which is in P . So unless P=NP , such a rewriting does not exist.

2 The termination of the rewriting algorithm in [17] depends on the finiteness of the
resolution closure of P ∪ C. In the case of nonrecursive datalog P and denial con-
straints C, the union is essentially a finite set of nonrecursive Horn clauses, which
has finite closure under resolution.

72 E. Jui-Yi Kao

4.1 NP-Completeness

First, I show that the existential answer problem is NP-Hard by reduction
from MONOTONE-3SAT, a well-known NP-complete problem. I first outline the
approach:

1. Fix a datalog program P and a finite constraint set C.
2. Define a polynomial-time transformation from any monotone 3CNF formula

Φ to a finite set of facts DΦ and a query fact dΦ.
3. Show that for any monotone 3CNF formula Φ, Φ is satisfiable if and only if
〈P, C, DΦ〉 �∃dl dΦ.

MONOTONE-3SAT is like 3SAT except that the input 3CNF formula is further re-
stricted to be monotone, that is, each clause consists of either all positive literals
or all negative literals, but never a mix of positive and negative literals. More pre-
cisely, a monotone 3CNF formula is a formula (p1,1∨p1,2∨p1,3)∧(p2,1∨p2,2∨p2,3)∧
· · ·∧(pn,1∨pn,2∨pn,3)∧(q1,1∨q1,2∨q1,3)∧(q2,1∨q2,2∨q2,3)∧· · ·∧(qm,1∨qm,2∨qm,3),
where each pi,j is a propositional variable and each qi,j is the negation of a propo-
sitional variable. Without loss of generality, we can assume m ≥ 1 and n ≥ 1.

Consider the datalog program P = {
qp(x, y) : − ep(x, y, u, v),
qp(x, y) : − qp(x, z), ep(z, y, u, v),
qn(x, y) : − en(x, y, u, v),
qn(x, y) : − qn(x, z), en(z, y, u, v),
Q(x, y, z) : − qp(x, y), qn(x, z)

}
Each ep(x, y, u, v) or en(x, y, u, v) is thought of as an edge from x to y, an-

notated with u and v. Q(x, y, z) means there is an ep-path from x to y and also
an en-path from x to z.

Now consider the constraint
c = ∀x1y1u1vx2y2u2(¬ep(x1, y1, u1, v) ∨ ¬en(x2, y2, u2, v)). The constraint says
that no pair of ep-edge and en-edge can coexist with the same v value.

For each monotone 3CNF formula Φ = (p1,1∨p1,2∨p1,3)∧ (p2,1∨p2,2∨p2,3)∧
· · ·∧(pn,1∨pn,2∨pn,3)∧(q1,1∨q1,2∨q1,3)∧(q2,1∨q2,2∨q2,3)∧· · ·∧(qm,1∨qm,2∨qm,3),
we do the following transformation:

Let a1, . . . , ap be the propositional variables. Define DΦ = {ep(i, i + 1, j, k) : i =
1, . . . , n; j = 1, 2, 3; ak = pi,j}∪{en(i, i+1, j, k) : i = 1, . . . , m; j = 1, 2, 3;¬(ak) =
pi,j}

The transformation is clearly polynomial.
Now 〈P, {c}, D〉 �∃dl Q(1, n + 1, m + 1), if and only if there is an ep-path

from 1 to n + 1 and an en-path from 1 to m + 1 such that no pair of ep-
edge and en-edge conflict by sharing the same v-value. Consider choosing each
ep(x, y, u, v)-edge to be choosing to make px,u true in the corresponding SAT
instance. Also consider choosing each en(x, y, u, v)-edge to be choosing to make
qx,u true in the corresponding SAT instance. Having an ep-path from 1 to n + 1
and an en-path from 1 to m + 1 is equivalent to picking one of pi,1, pi,2, pi,3 to
be true for all i from 1 to n and one of qi,1, qi,2, qi,3 to be true for all i from 1

Consistency and Provenance in Rule Processing 73

to m. Furthermore, the fact that the two paths do not conflict by sharing the
same v-value is equivalent to that the set of literals picked to be true to not
contain a complementary pair. This is exactly the condition required to choose
an assignment of truth values that satisfy the formula Φ. We have a polynomial
reduction from MONOTONE-3SAT to existential answers.

Hence, the existential answers problem with this fixed query and constraint
is NP-Hard.

It is easy to see that ΞP,C is in NP . For a finite set of facts D and a fact d,
〈P, C, D〉 �∃dl d if and only if there exists an admissible set D′ ⊆ D such that
d ∈ P (D′). One can nondeterministically guess the appropriate D′ and then
verify in polynomial time that d ∈ P (D′) and P (D′) is a model of C.

Theorem 1 (NP-Completeness). The existential answer problem ΞP,C is
NP-Complete for some datalog program P and finite set of denial constraints
C.

We conclude that unless P=NP, some existential answer problems over data-
log programs and denial constraint cannot be solved by rewriting into datalog
(or any other language with polynomial data-complexity, for example, stratified
datalog¬).

Theorem 2 (Non-rewritability into dalalog). Assuming P�=NP, for some
datalog program P and finite set of denial constraints C, there does not exist
a datalog program P ′ such that for all finite sets of facts D and all facts d,
〈P, C, D〉 �∃dl d if and only if 〈P ′, D〉 �dl d.

5 Provenance

Provenance of data has received considerable attention. Here, we use the method
of Agrawal, Benjelloun, Das Sarma, Halevy, Theobald, and Widom [8,2] to com-
pute and represent data provenance. We briefly review their method here.

Each tuple is associated with a tuple ID. Each computed tuple is associated
with a provenance set that gives the set of tuple IDs from which this tuple is
derived.

Consider the following example.

Example 3. The base facts D is given by the following table. A fact link(i, j, t)
represents that there is a direct link from i to j of type t.

link
ID origin destination type
21 a b 1
22 a c 2
23 b d 2
24 c d 3
25 d e 1
26 d f 2

λ(21) = {}
λ(22) = {}
λ(23) = {}
λ(24) = {}
λ(25) = {}
λ(26) = {}

74 E. Jui-Yi Kao

P =
{aReaches(Y) : − link(a, Y, U),
aReaches(Y) : − aReaches(a, Z, U), link(Z, Y, V)}
The following are the computed facts and their associated provenance
information.

aReaches
ID destination
31 b
32 c
33 d
34 d
35 e
36 e
37 f
38 f

λ(31) = {21}
λ(32) = {22}

λ(33) = {31, 23}
λ(34) = {32, 24}
λ(35) = {33, 25}
λ(36) = {34, 25}
λ(37) = {33, 26}
λ(38) = {34, 26}

If a fact is produced multiple times from different sets of tuples, the fact is pre-
sented as multiple tuples, each with its own tuple ID and associated provenance.
The computation of provenance canbe embedded in a standardbottom-up datalog
evaluation procedure. It is important to note that where regular datalog evalua-
tion (set semantics, no duplicate tuples) has polynomial data complexity, datalog
evaluation with provenance computation as shown above can be exponential in the
number of facts in the input fact set. The increased complexity is due to the fact
that even though the number of unique facts that can be generated is polynomially
bounded, the number of unique (fact, provenance) pairs is not.

6 Computing Existential Answers via Provenance

The brute-force method of enumerating each set D′ ⊆ D is impractical. In this
section, I present a method that uses provenance information to construct several
special subsets of D called support sets and then consider only those sets. The
IsExistentialAnswer procedure calls on the SupportSet procedure defined
immediately after.

IsExistentialAnswer(P, C, D, id, λ)

D′ := SupportSet(D, id, λ)
C∗ := {nogood : − R1(u1), . . . , Rn(un), φ(uφ) :

(∀x1 · · ·xm(¬R1(u1) ∨ · · · ¬Rn(un) ∨ φ(uφ))) ∈ C}
(Where nogood is a new relation name that is not in the current schema)
if nogood ∈ C∗(P (D′)) then

return FALSE
else

return TRUE
end if

Consistency and Provenance in Rule Processing 75

SupportSet(D, id, λ)

Queue Q := empty queue
D′ := {}
Q.enqueue(id)
while Q is not empty do

id′ := Q.dequeue()
if λ(id′) == ∅ then

D′ := D′ ∪ {fact(id′)} (fact(id′) gives the fact associated with the ID id′)
else

for l ∈ λ(id′) do
Q.enqueue(l)

end for
end if

end while
return D’

Theorem 3 (Correctness). For a datalog program P , a set of facts D, a set
of denial constraints C, a fact d ∈ P (D), and a provenance function λ obtained
in evaluating P (D), 〈P, C, D〉 �∃dl d if and only if IsExistentialAnswer
(P, C, D, id, λ) returns TRUE for a tuple ID id of d.

Example 4. Using the provenance information in example 3 and the datalog
program P and constraints C from example 2, I demonstrate the IsExisten-
tialAnswer algorithm.

The tuple ID’s associated with the fact aReaches(f) ∈ P (D) are 37 and
38. Running IsExistentialAnswer(P, D, C, 37, λ) constructs the set D′ =
{link(d, f, 2), link(b, d, 2), link(a, b, 1)} from the set of base tuple ID’s
{26, 23, 21}. It also constructs C∗ := {

nogood : − link′(X1, Y1, U), link′(X2, Y2, U), X1 �= X2,
nogood : − link′(X1, Y1, U), link′(X2, Y2, U), Y1 �= Y2

}. Finally, nogood ∈ C∗(P (D′)), so the algorithm rejects the tuple of ID 37 as
an existential answer tuple.

Running IsExistentialAnswer(P, D, C, 38, λ) constructs the set
D′ = {link(d, f, 2), link(c, d, 3), link(a, c, 2)} from the set of base tuple ID’s
{26, 24, 22}. It also constructs the same C∗ as above.
Finally, nogood ∈ C∗(P (D′)), so the algorithm also rejects the tuple of ID 38 as
an existential answer tuple.

One can conclude that 〈P, C, D〉 ��∃dl aReaches(f), in agreement with exam-
ple 2.

Now I examine whether 〈P, C, D〉 �∃dl aReaches(e).The tuple ID’s associated
with the fact aReaches(e) ∈ P (D) are 35 and 36.

Running IsExistentialAnswer(P, D, C, 35, λ) constructs the set
D′ = {link(d, e, 1), link(b, d, 2), link(a, b, 1)} from the set of base tuple ID’s
{25, 23, 21}. nogood ∈ C∗(P (D′)), so the algorithm rejects the tuple of ID 35 as
an existential answer tuple.

76 E. Jui-Yi Kao

Running IsExistentialAnswer(P, D, C, 36, λ) constructs the set
D′ = {link(d, e, 1), link(c, d, 3), link(a, c, 2)} from the set of base tuple ID’s
{25, 24, 22}. nogood �∈ C∗(P (D′)), so the algorithm accepts the tuple of ID 36
as an existential answer tuple.

One can conclude that 〈P, C, D〉 �∃dl aReaches(e), in agreement with
example 2.

7 Answer Set Programming

Answer set programming (ASP) has received much attention in the logic pro-
gramming community, the database community, and the rules and ontology com-
munity because of its ability to declaratively and succinctly express interesting
problems from a wide-range of domains. ASP also offers another way to charac-
terize the existential answers. In this section, I characterize existential answers
as the solutions to some answer set programs. The use of disjunctive logic pro-
grams to specify changes to data was introduced by Arenas and Bertossi and
Chomicki [4]. I assume that the reader is familiar with the basics of answer set
programming. For an introduction to answer set programming, I recommend
Lifschitz’s overview [24].

Let the transformation primed(φ) take a formula (or rule) φ and replace
within φ each relation name R by R′. For a datalog program P , and a finite set
of denial constraints C, we define the transformation into an ASP
ExistentialASP(P) := {(R′(x) : − R(x), not R′(x)) : R a relation name}
∪ {primed(r) : r ∈ C ∪ P}

Example 5.
Let P = {
aReaches(Y) : − link(a, Y, U),
aReaches(Y) : − aReaches(a, Z, U), link(Z, Y, V)}

Let C = {
(false) : − link(X1, Y1, U), link(X2, Y2, U), X1 �= X2,
(false) : − link(X1, Y1, U), link(X2, Y2, U), Y1 �= Y2

}

ExistentialASP(P, C) = {
link′(X, Y, U) : − link(X, Y, U), not link′(X, Y, U),
aReaches′(X, Y, U) : − aReaches(X, Y, U), not aReaches′(X, Y, U),
aReaches′(Y) : − link′(a, Y, U),
aReaches′(Y) : − aReaches′(a, Z, U), link′(Z, Y, V),
(false) : − link′(X1, Y1, U), link′(X2, Y2, U), X1 �= X2,
(false) : − link′(X1, Y1, U), link′(X2, Y2, U), Y1 �= Y2

}

Theorem 4. Given a datalog program P , a finite set of constraints C (writ-
ten as headless rules), then for any a finite set of facts D and any fact d,

Consistency and Provenance in Rule Processing 77

〈P, C, D〉 �∃dl d if and only if primed(d) is in an answer set to the answer
set program ExistentialASP(P, C).

The characterization of existential answers as credulous answers to an answer set
program gives another method to compute existential answers – reformulate an
existential answer problem as an ASP problem, then use an ASP solver to find
the credulous answers. However, the cost of this method may be prohibitively
high because most general-purpose ASP solvers work by first grounding out the
input program3.

8 Related Work

The importance of adequately processing inconsistencies in reasoning on the web
has received wide recognition, but there have been relatively few pieces of work
that develop techniques for reasoning with inconsistent knowledge on the web.
Notable works in this area include the following [18,23,28,29,3]. None of them
take a provenance-based approach to reason in the presence of inconsistencies.

The idea of finding answers from consistent subsets of a theory is due to
Elvang-Gøransson and Hunter[14]. The idea is later refined by Kassoff, Zen,
Garg, and Genesereth for application to logical spreadsheets [22,20].

Kassoff and Genesereth [21] also proposed a method for computing existential
answers based on provenance. However, their method is intended for reasoning
with first-order theories and use a general resolution-refutation method rather
than one based on standard datalog evaluation. As a result, the method is not
guaranteed to terminate (even if restricted to horn clauses, which correspond to
datalog).

ULDB [8,2] uses provenance information to compute answers from uncertain
databases. The approach is similar to the method presented in this paper. How-
ever, the setting they consider is one where all constraints are ground.

As mentioned in section 7, the specification of database repairs using dis-
junctive logic programs with exceptions first appeared in [4]. Many other works
have followed that are based on the same basic idea (some examples include
[9,7,5,6,12,13,15]).

9 Future Work

The connection between provenance and trust creates a fertile ground for future
work in reasoning on the web in the presence of inconsistencies and uncertainties.

As an example, I define the prioritized existential answers to account for the
fact that some sources are more trusted than others. Existential answers, as
defined in section 3, give all facts equal priority. However, in real applications,
some sources are known to be much more reliable than others. In the birth year
example in section 2, the tuple BirthYear(David, 1984) may be more trusted

3 [27] is a notable exception.

78 E. Jui-Yi Kao

and hence prioritized over the conflicting tuple BirthYear(David, 1980). Then
one would reject David as a candidate.

With this intuition in mind, I define the prioritized existential answers.

Definition 5 (Prioritized Existential Answers). Assume a (possibly empty)
partial order � on the set of all facts over the schema. (Intuitively, d � d′ means
that d is prioritized over d′.) Given a set of facts D, a set of rules P , and a
set of constraints C a fact d is a prioritized existential answers with respect to
(D, P, C,�) if and only if there exists D′ ⊆ D such that

1. P (D′) is a model of C,
2. (∀g ∈ (D −D′))(∀g′ ∈ D′)(g �� g′),
3. and 〈D′, P 〉 �dl d.

We denote this fact as 〈P, C, D �〉 �∃dl d.

One can check in example 1 that if
BirthYear(David, 1984)� BirthYear(David, 1980), then candidate(David) is
not a prioritized existential answer.

A direction for future work is to design a provenance-based method to compute
prioritized existential answer.

Acknowledgments. I would like to thank Monica Palmirani, Davide Sottara,
Frank Olken and the rest of the RuleML 2011 (America) Program Committee
for the invitation to submit this paper. I am grateful to Michael Genesereth, Jeff
Ullman, Jennifer Widom, Michael Kassoff, Rada Chirkova, Mary-Anne Williams,
Carl Hewitt, Lukasz Golab, and attendees of Stanford Logic Group and Stanford
Infolab seminars, for their valuable feedback. I would also like to acknowledge
the NSERC4 and Konica-Minolta (via the MediaX project) for their financial
support.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases (1995)
2. Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T.,

Widom, J.: Trio: A system for data, uncertainty, and lineage. In: 32nd International
Conference on Very Large Data Bases, VLDB 2006 (demonstration description)
(September 2006), http://ilpubs.stanford.edu:8090/776/

3. Alejandro Gmez, S., Ivn Chesevar, C., Simari, G.R.: Reasoning with inconsistent
ontologies through argumentation. Applied Artificial Intelligence 24(1-2), 102–148
(2010), http://www.tandfonline.com/doi/abs/10.1080/08839510903448692

4. Arenas, M., Bertossi, L., Chomicki, J.: Specifying and querying database repairs
using logic programs with exceptions. In: Flexible Query Answering Systems. Re-
cent Developments, pp. 27–41. Springer, Heidelberg (2000)

4 Natural Sciences and Engineering Research Council of Canada.

http://ilpubs.stanford.edu:8090/776/
http://www.tandfonline.com/doi/abs/10.1080/08839510903448692

Consistency and Provenance in Rule Processing 79

5. Arenas, M., Bertossi, L., Chomicki, J.: Answer sets for consistent query answer-
ing in inconsistent databases. Theory and Practice of Logic Programming 3(4),
393–424 (2003)

6. Barcel, P., Bertossi, L.: Repairing databases with annotated predicate logic. In:
Ninth International Workshop on Non-Monotonic Reasoning (NMR 2002), Spe-
cial Session: Changing and Integrating Information: From Theory to Practice,
pp. 160–170. Morgan Kaufmann Publishers (2002)

7. Barcel, P., Bertossi, L.: Logic Programs for Querying Inconsistent Databases. In:
Dahl, V. (ed.) PADL 2003. LNCS, vol. 2562, pp. 208–222. Springer, Heidelberg
(2002)

8. Benjelloun, O., Das Sarma, A., Halevy, A., Theobald, M., Widom, J.: Databases
with uncertainty and lineage. The VLDB Journal 17, 243–264 (2008),
http://dx.doi.org/10.1007/s00778-007-0080-z

9. Bravo, L., Bertossi, L.: Logic programs for consistently querying data integra-
tion systems. In: International Joint Conference on Artificial Intelligence (IJCAI),
pp. 10–15 (2003)

10. Chebotko, A., Lu, S., Fei, X., Fotouhi, F.: Rdfprov: A relational rdf store for
querying and managing scientific workflow provenance. Data Knowl. Eng. 69,
836–865 (2010), http://dx.doi.org/10.1016/j.datak.2010.03.005

11. Ding, L., Michaelis, J., McCusker, J., McGuinness, D.L.: Linked provenance data:
A semantic web-based approach to interoperable workflow traces. Future Gener.
Comput. Syst. 27, 797–805 (2011),
http://dx.doi.org/10.1016/j.future.2010.10.011

12. Eiter, T.: Data Integration and Answer Set Programming. In: Baral, C., Greco,
G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp.
13–25. Springer, Heidelberg (2005)

13. Eiter, T., Fink, M., Greco, G., Lembo, D.: Optimization methods for logic-based
query answering from inconsistent data integration systems (2005)

14. Elvang-Gøransson, M., Hunter, A.: Argumentative logics: Reasoning with classi-
cally inconsistent information. Data Knowl. Eng. 16(2), 125–145 (1995)

15. Espil, M.M., Vaisman, A.A., Terribile, L.: Revising data cubes with exceptions: A
rule-based perspective (2002)

16. Fan, H., Poulovassilis, A.: Tracing data lineage using schema transformation path-
ways. In: Knowledge Transformation For The Semantic Web, pp. 64–79. IOS Press
(2002)

17. Hinrichs, T.L., Kao, J.Y., Genesereth, M.: Inconsistency-tolerant reasoning with
classical logic and large databases. In: Proc. of the Eighth Symposium on Abstrac-
tion, Reformulation, and Approximation (2009)

18. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontolo-
gies. In: Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI 2005), Edinburgh, Scotland, pp. 454–459 (August 2005)

19. Kao, E.J.Y., Genesereth, M.: Query rewriting with filtering constraints. Tech. Rep.
LG-2009-02, Stanford University, Stanford, CA (2009),
http://logic.stanford.edu/reports/LG-2009-02.pdf (updated July 2011)

20. Kassoff, M., Genesereth, M.: Predicalc: A logical spreadsheet management system.
Knowl. Eng. Rev. 22(3), 281–295 (2007)

21. Kassoff, M., Genesereth, M.R.: Paraconsistent inference from data using ω-
existential entailment. DALI: Workshop on Data, Logic and Inconsistency (2011)

22. Kassoff, M., Zen, L.M., Garg, A., Genesereth, M.: Predicalc: a logical spreadsheet
management system. In: VLDB 2005: Proceedings of the 31st International Con-
ference on Very Large Data Bases, pp. 1247–1250. VLDB Endowment (2005)

http://dx.doi.org/10.1007/s00778-007-0080-z
http://dx.doi.org/10.1016/j.datak.2010.03.005
http://dx.doi.org/10.1016/j.future.2010.10.011
http://logic.stanford.edu/reports/LG-2009-02.pdf

80 E. Jui-Yi Kao

23. Li, D., Lin, Y., Huang, H., Tian, X.: Linear reduction reasoning with inconsis-
tent ontology. In: 2011 Fourth International Joint Conference on Computational
Sciences and Optimization (CSO), pp. 795–798 (April 2011)

24. Lifschitz, V.: What is answer set programming? In: Proceedings of the 23rd Na-
tional Conference on Artificial Intelligence, vol. 3, pp. 1594–1597. AAAI Press
(2008), http://portal.acm.org/citation.cfm?id=1620270.1620340

25. Moreau, L.: Provenance-based reproducibility in the semantic web. Journal of Web
Semantics (February 2011), http://eprints.ecs.soton.ac.uk/21992/

26. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den Buss-
che, J.V.: The open provenance model core specification (v1.1). Future Generation
Computer Systems 27(6), 743–756 (2011),
http://www.sciencedirect.com/science/article/pii/S0167739X10001275

27. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: Answer Set Program-
ming with Constraints Using Lazy Grounding. In: Hill, P.M., Warren, D.S.
(eds.) ICLP 2009. LNCS, vol. 5649, pp. 115–129. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-02846-5_14

28. Schobach, S., Corner, R.: Non-standard reasoning services for the debugging of
description logic terminology. In: IJCAI (2003)

29. Zlatareva, N.P.: Supporting uncertainty and inconsistency in semantic web appli-
cations. In: FLAIRS Conference (2009)

http://portal.acm.org/citation.cfm?id=1620270.1620340
http://eprints.ecs.soton.ac.uk/21992/
http://www.sciencedirect.com/science/article/pii/S0167739X10001275
http://dx.doi.org/10.1007/978-3-642-02846-5_14

D2R2: Disk-Oriented Deductive Reasoning in a
RISC-Style RDF Engine

Mohamed Yahya and Martin Theobald

Max-Planck Institute for Informatics,
Saarbrücken, Germany

{myahya,mtb}@mpi-inf.mpg.de

Abstract. Deductive reasoning lies in the expressive intersection of
Datalog and Description Logics. In this paper, we present the D2R2
engine, which implements deductive reasoning capabilities based on the
Query-Sub-Query (QSQR) algorithm on top of the disk-oriented RDF-
3X engine. D2R2 aims to bridge the gap between rule-oriented (inten-
sional) reasoning with deduction rules and data-oriented (extensional)
processing of large joins, over a set of highly tuned, disk-based index
structures for large RDF collections. We present a generalization of
QSQR, which allows for dynamic sub-query scheduling and chaining of
extensional predicates into atomic join patterns—two key extensions for
coupling QSQR with a disk-oriented storage backend. Experiments over
a set of recursive queries and a very large knowledge base, consisting of
20 million RDF facts, as well as comparisons to disk-oriented reasoning
engines, confirm the practical viability and significant runtime improve-
ments of D2R2 compared to these engines.

Keywords: Deductive reasoning, QSQR, disk-oriented RDF processing.

1 Introduction

A deductive database is a database, in which new facts can be derived from
facts explicitly stated in the database using rules [20]. Datalog is the language
traditionally used for expressing facts, rules and queries in a deductive database.
Datalog has its roots in logic programming, aiming at a balance between expres-
siveness and efficiency by using rules that are restricted to definite Horn clauses,
which each consist of exactly one positive head literal and a set of negated body
literals.

Datalog queries can be evaluated in two ways: bottom-up or top-down. An-
swering a query in a bottom-up fashion involves (i) starting from extensional
facts and using the rules to generate all facts that can be inferred by a Datalog
program; and (ii) performing a selection on the facts to return answers to the
query. In top-down query evaluation, on the other hand, the starting point is
a query, and (ideally) only facts relevant to answering the query are generated.
Selective-Linear-Definite (SLD) clause resolution [21] is the default method for
top-down grounding of recursive queries in Datalog and Prolog. SLD resolution

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 81–96, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

82 M. Yahya and M. Theobald

processes queries in a manner similar to how a human thinks about answering
queries. However, it suffers from one major issue: it is not guaranteed to termi-
nate on an arbitrary Datalog program because it may run into cycles. This issue
is solved by approaches based on various forms of tabling (or memoization) in
order to both avoid cycles and to cache redundant subgoals. The most promi-
nent example of the use of tabling is the SLG algorithm used in XSB [22]. In
our work, we focus on the Query-Sub-Query Recursive (QSQR) algorithm for
Datalog query evaluation. QSQR is part of the Query-Sub-Query (QSQ) family
of top-down Datalog query evaluation techniques. This family includes both iter-
ative and recursive algorithms, each of which can be applied in a tuple-at-a-time
or a set-at-a-time fashion. QSQ is based on SLD resolution, making it relatively
intuitive.

An important consideration when evaluating a conjunctive query is the order
in which the components of the query are evaluated. In a traditional database
setting, this issue is known as join ordering, which aims to compile a query
pattern into an efficiently evaluable query plan. For our Datalog setting, there
is no such notion of a static query plan. Rather, join ordering is done by a
dynamic selection function, which, when given a conjunctive query and (partial)
binding pattern for the query variables, decides which part of the query (i.e.,
an individual literal or an entire group of literals) to evaluate next. Having an
engine that allows for specifying selection functions, the choice of an appropriate
selection function is fundamental for efficient query processing, and can make
orders of magnitude difference in reasoning performance.

Current state-of-the art reasoners for the Semantic Web can be roughly di-
vided into two categories: main-memory-based and disk-based approaches. While
the top-performing engines in the rule-oriented benchmark tasks of LUBM [7]
and OpenRuleBench [23] are main-memory based, these engines usually lack a
persistent storage layer and—more importantly—database-style index structures
for scalable join processing over large relational input data. In D2R2 (Disk-based
Deductive Reasoner for RDF), we aim to bride the gap between rule-oriented
and data-oriented reasoning tasks by coupling the disk-oriented RDF-3X engine
with deductive reasoning capabilities based on QSQR.

RDF-3X relies on exhaustive indexing and detailed statistics for optimizing
queries over billions of RDF triples. RDF-3X follows a RISC-style architecture (in
analogy to the “reduced instruction set computer” principle coined in hardware
design) by providing only the most principal query operators—based on either
merging or hashing index lists—in a highly efficient manner. This architecture
allows RDF-3X to remain workload-independent without the need for manual
tuning [12], thus focusing on join ordering for query optimization, and processing
queries using generic join operators that operate entirely on integer id’s.

1.1 Contributions

In this paper, we make the following contributions:

– We extend QSQR, a state-of-the art algorithm for top-down grounding of
Datalog-style recursive queries, to handle a dynamic selection function and

Disk-Oriented Deductive Reasoning in a RISC-Style RDF Engine 83

the chaining of extensional predicates into efficiently evaluable extensional
join patterns, which are two key issues for integrating QSQR with a disk-
oriented storage backend for large RDF collections.

– We integrate the extended QSQR framework with RDF-3X, one of the
fastest, currently available, open-source query engines for RDF data and
non-recursive SPARQL queries. We extend RDF-3X by various query-time
optimizations, including a caching layer which drastically helps to spare re-
dundant page accesses.

– We present an extensive experimental evaluation of D2R2, using a set of
handcrafted, recursive queries over the YAGO [15] knowledge base, consist-
ing of 20 million RDF facts, as well as comparative runs with disk-oriented
reasoning engines over the LUBM benchmark setting.

2 Related Work

With the increasing demand for scalable reasoning techniques in the context
of the Semantic Web, also Datalog-style (deductive) query evaluation strategies
have been undergoing a renaissance recently. Specifically, the RuleML [13] stan-
dard, which allows for the expression of rules in XML, is the Semantic Web
standard for representing rules. It is based on Datalog programs that are re-
stricted to unary and binary predicates.

In [6], the authors introduce Description Logic Programs (DLP), which are
contained in the expressive intersection of Datalog and Description Logics. On
the other hand, the proposed Semantic Web Rule Language (SWRL) is an effort
to create a language combining both OWL-DL and RuleML [8]. DLP is inter-
esting as it shows that Datalog can also be exploited to represent and query
ontologies, albeit in a more restricted manner compared to OWL.

In our work, we focus on top-down grounding strategies of Datalog queries.
In a large deductive database with millions of facts, we would expect that most
of the extensional facts are irrelevant to answering a specific query, and we
aim to avoid materializing all deducible facts in an eager bottom-up fashion.
Magic Sets [2] is a well-known rule-rewriting technique to optimize top-down
query evaluations. Magic Sets performs a rewriting of the rules based on the
query, called Magic Sets rewriting. Then, a bottom-up query evaluation strategy,
usually semi-naive, is applied to answer the query using the rewritten rules.
Moreover, in order to avoid cycles in top-down SLD resolution, various forms of
tabling have been introduced [19]. OLDT is the first such algorithm based on
SLD resolution [24].

QSQ [17,18,11] was developed shortly thereafter and added set-at-a-time query
evaluation. Although QSQ is also based on SLD resolution, it is database-
complete, which it achieves through tabling. In general, we call a procedure
for answering a query database-complete (DB-complete) if, whenever there are
finitely many answers to a query, it terminates after returning all the answers [18].
We present a generalized version of QSQR in detail in Section 3.1.

The Semantic Web has led to the development of several reasoning
engines which support either classical Datalog-style (rule-based) reasoning, or

84 M. Yahya and M. Theobald

RDF/S- and OWL-based reasoning capabilities. These include OntoBroker1,
Jena2 and IRIS3, among others. This is in addition to classical logic programming
and deductive database implementations such as XSB4, Yap5 and DLV6. Onto-
Broker, XSB, Yap and DLV are considered among the top-performing engines in
the rule-oriented benchmark tasks of LUBM [7] and OpenRuleBench [23]. They
were designed mainly as main-memory based reasoning engines. Tools such as
Jena and IRIS were designed with more flexible storage backends, allowing them
to work on data that is both main-memory and disk resident. XSB and Yap use
top-down processing techniques with tabling, while OntoBroker and DLV are
use optimized bottom-up techniques. Jena and IRIS both allow a user to select
from a host of evaluation strategies and optimizations to use.

Datalog has recently seen applications outside its immediate domain, such
as program analysis and parallel programming. bddbddb [28] is a tool for pro-
gram analysis, in which all program information are stored as relations, and uses
Datalog to analyze the programs. Datalog-inspired languages, such as Overlog
and Bloom [27], are being used to simplify parallel programming by making it a
data-centric task. Moreover, LogicBlox7 is a recent implementation of Datalog
that is geared towards decision support.

3 Datalog Query Evaluation

D2R2 uses the QSQR algorithm to evaluate Datalog queries. In this section
we discuss our generalized QSQR algorithm, which incorporates (i) a selection
function for dynamic join ordering and (ii) the chaining of extensional predicates
into atomic join patterns.

One of the most cited sources of the QSQR algorithm is [1], which presents the
algorithm using the same setting as the one used to present Magic Sets in [2],
including adornments and sideways information passing, which are helpful in
both understanding and implementing the algorithm. In the context of our work
on extending QSQR, we claim that this description of QSQR is incomplete and
propose a fix to this problem. To the best of our knowledge, we are the first
to detect this incompleteness, which we communicated to the authors of [10],
resulting in a modification of their work8.

In the following, we first introduce basic concepts needed for presenting
QSQR [1,5] and then present a generalized, DB-complete version of the
algorithm.

1 http://www.ontoprise.de/en/products/ontobroker/
2 http://jena.sourceforge.net/
3 http://www.iris-reasoner.org/
4 http://xsb.sourceforge.net/
5 http://www.dcc.fc.up.pt/~vsc/Yap/
6 http://www.dlvsystem.com/dlvsystem/index.php/Home
7 http://www.logicblox.com/
8 See http://www.mimuw.edu.pl/~nguyen/GQSQR-revised-long.pdf, which is a re-

vised and extended version of [10] with proofs for completeness.

http://www.ontoprise.de/en/products/ontobroker/
http://jena.sourceforge.net/
http://www.iris-reasoner.org/
http://xsb.sourceforge.net/
http://www.dcc.fc.up.pt/~vsc/Yap/
http://www.dlvsystem.com/dlvsystem/index.php/Home
http://www.logicblox.com/
http://www.mimuw.edu.pl/~nguyen/GQSQR-revised-long.pdf

Disk-Oriented Deductive Reasoning in a RISC-Style RDF Engine 85

3.1 QSQR with Dynamic Join Ordering and Chaining

If we have the sub-query atom R0(a, ?y), where a is a constant and ?y is a
variable, we say that the first argument of R0 in the query is bound (b) and
the second argument is free (f), denoted as Rbf

0 . The superscript is called an
adornment. Generally, if R is an n-ary predicate then an adornment γ is an
n-tuple of b’s and f ’s, denoted as Rγ , where a b (or f , respectively) indicates
that the corresponding argument of the predicate is bound to a constant (or free,
respectively) [5].

Given a rule and an adornment for the atom forming the rule’s head, an
adorned rule is formed by adding adornments to the rule body as follows:

1. All occurrences of each bound variable in the rule head are bound.
2. All occurrences of constants are bound.
3. If a variable ?x occurs in the rule body, then all subsequent occurrences of

?x in subsequent literals are bound9.

For example, consider the rule R0(?x, ?y) ← R1(?x, ?z), R2(?z, ?w), R3(?w, ?y)
and the query R0(a, ?y). If the rule’s head has the adornment Rbf

0 , then the cor-
responding adorned rule is Rbf

0 (?x, ?y)← Rbf
1 (?x, ?z), Rfb

2 (?z, ?w), Rbf
3 (?w, ?y).

Two important observations can be made here. First, item 3 in the definition
of adorned rules implies that different orderings of the atoms in the rule body
imply different adornments. A second observation, also regarding item 3, is that
of the idea of sideways information passing (SIP). Once a variable has a binding
from an atom, it becomes an input (bound) to subsequent atoms, in which it
occurs rather than an output (free). A SIP strategy is simply a decision on the
order in which atoms in a query will be evaluated [4].

A set of single-atom sub-queries with the same adornment can be denoted as
(Rγ , J), where γ is an adornment of the query predicate R, and J is a set of
tuples with the values of the entries bound by γ. (Rγ , J) is called a generalized
sub-query. If R is a predicate and γ is an adornment for R, then bound(R, γ)
denotes the coordinates of R bound in γ.

Supplementary relations keep track of variable bindings during left-to-right
rule evaluation. An adorned rule with n atoms in its body has n + 1 supplemen-
tary relations: sup0 through supn as shown below:

Rbf
0 (?x, ?y) ← Rbf

1 (?x, ?z), Rfb
2 (?z, ?w), Rbf

3 (?w, ?y)
↑ ↑ ↑ ↑
sup0[?x] sup1[?x, ?z] sup2[?x, ?w] sup3[?x, ?y]

The attributes of the 0th supplementary relation, sup0, are those variables bound
in the head of the adorned rule. The attributes of the nth supplementary relation,
supn, are all the variables in the head of the adorned rule. For i ∈ [1, n− 1], the
attribute set of the ith supplementary relation, supi, is the set of variables which
occur in both (i) sup0 or one of B1, ...Bi, and (ii) Bi+1, ...Bn or supn. The role of
supplementary relations is to pass variable bindings for bound arguments from
9 Whether the first occurrence is bound or free depends on item 1.

86 M. Yahya and M. Theobald

one atom to the next. supi contains only variables whose bindings are needed
for evaluating atom j, for j > i, or for the final result.

We are now ready to present our generalized QSQR in Algorithm 1, which
takes as input a Datalog program and a query over an intensional predicate. This
algorithm uses the global variables ans_pδ and input_pδ for each adorned pred-
icate pδ. Algorithm 1 calls Algorithm 2, which processes a generalized sub-query
in a set-at-a-time fashion by calling Algorithm 3 on all rules. ans_ relations
keep track of answers found for an adorned predicate, while input_ relations
keep track of sub-queries that have already been evaluated to avoid running into
cycles, as SLD does. Contrary to ans_ and input_ relations, the supplementary
relation is used as a local variable in Algorithm 3.

Algorithm 1. QSQR(D, q)
Input: A Datalog program D and an intensional query q
Input: The global ans_ and input_ relations
Output: All answers for q
begin1

Set all ans_ relations to be empty2
Set (Rγ , J) to be the generalized query corresponding to q3
repeat4

Set all input_ relations to be empty5
Call QSQR_EVAL_GENERALIZED(D, (Rγ , J))6

until Until no ans_ relation has changed in the last iteration ;7
return All answers for q by performing a selection on ans_Rγ using J8

end9

Algorithm 2. QSQR_EVAL_GENERALIZED(D, gq)

Input: A Datalog program D and a generalized query gq = (Rγ , J)
Input: The global ans_ and input_ relations
begin1

Remove from J all tuples in input_Rγ2
if J is empty then3

exit4

input_Rγ := input_Rγ ∪ J5
foreach rule ϕ defining R do6

Call QSQR_EVAL_RULE(D, ϕ, (Rγ , J))7

end8

3.2 Join Ordering

The version of QSQR presented in [1,10] assumes a specific selection function,
namely, the left-to-right selection function, which always selects the atoms based
on the order in which they appear in the body of a rule. As we discuss later
in Section 3.3, this is not desirable in a declarative language such as Datalog,
where the manner in which the rules are written should not dictate how they are

Disk-Oriented Deductive Reasoning in a RISC-Style RDF Engine 87

Algorithm 3. QSQR_EVAL_RULE(D, ϕ, gq)

Input: A Datalog program D, a rule ϕ and a generalized query gq = (Rγ , T)
Input: The global ans_ and input_ relations
begin1

Remove from T all tuples that do not unify with the head of the rule2
Initialize sup from T3
SQremaining = ϕ.body4
SQcurrent = φ5
while SQremaining = φ do6

(SQcurrent, SQremaining) = SELECTION_FUNCTION(SQremaining , . . .)7
sup = sup �� EVALUATE(SQcurrent, sup)8
PROJECT(sup)9

Add tuples produced for sup into the global variable ans_Rγ10

end11

Algorithm 4. EVALUATE(C, rel)
Input: A clause C for a sub-query to be evaluated, and relation rel
Output: A relation
begin1

if C is extensional then2
return Result of evaluating C against the extensional database with3
(partial) bindings from rel

else if C is intensional composed of a single atom with predicate p then4
gq = (pγ , T), where T is initialized from bindings in rel5
QSQR_EVAL_GENERALIZED(D, gq)6
return ans_p with selection using gq7

8

end9

evaluated. It is not difficult to perform static reordering of atoms in the body
of the rule using the same algorithms in [1,10]. In this case, the decision on the
ordering of the body atoms is made before starting to evaluate the body of the
rule. However, we aim to make the algorithm as general as possible by adding
two features:

1. Dynamic join ordering: The decision about which atom(s) to evaluate next
is made only after the current atom(s) is evaluated, and not at the start of
the evaluation of a rule.

2. Chaining: Atoms with extensional predicates can be grouped together for
efficient utilization of the underlying storage engine’s ability to optimize
joins (of extensional predicates).

In Algorithm 3, the (single) supplementary relation is initialized from T after
removing from it all tuples that do not unify with the head of the rule ϕ (lines
2, 3). The remaining query is set to be the entire body of the rule ϕ (line 4).
Next, we iterate until no atoms are left to evaluate (line 6). In every iteration,

88 M. Yahya and M. Theobald

the selection function returns a clause composed of one or more atoms for eval-
uation (line 7). This clause is evaluated, with bindings coming from sup, and
the result is a relation whose schema contains all variables in SQcurrent (along
with other possible variables already in sup). The result is then joined with the
current value of sup to get the new value for sup. In line 9, the optional call to
PROJECT projects out from sup all columns that correspond to variables which
will not be needed to evaluate SQremaining. Arguments passed to the selection
function depend on the information needed for the function to make its decision
on ordering. They can include the supplementary relation, statistics about it, or
permissible binding patterns for predicates that require them. Algorithm 3 calls
Algorithm 4, which evaluates the clause passed to clause C with bindings in rel.
EVALUATE returns a relation that contains complete variable bindings for the
variables occurring in the clause.

We remark that Algorithms 1–4 are a generalized version of the one presented
in [10] (including changes made in the online revision). We claim that our gener-
alized version yields the same results as the original algorithm, as it reconstructs
exactly the same intermediate supplementary relations sup0–supm in the orig-
inal algorithm [1]. That is, for any possible ordering (and chaining) of atoms,
Algorithm 3 will change the schema and bindings of sup to correspond to sup0–
supm, where m ≤ n, and n is the number of atoms in the body of ϕ. In the case
of chaining, m < n, otherwise m = n.

3.3 Sub-query Scheduling

The sub-query scheduler is responsible for selecting a sub-query from the current
query for evaluation. Our approach to sub-query scheduling is a dynamic one:
decisions are made iteratively at each recursion step, i.e., whenever a rule is
processed for the next grounding step. This allows for the consideration of the
query’s current bindings, which changes as more sub-queries of the query are
evaluated.

The sub-query scheduler calls a selection function on a conjunctive query.
The selection function called on a sub-query SQ returns a pair of sets of atoms
〈SQcurrent, SQremaining〉 such that SQcurrent ∪ SQremaining = SQ:

– SQcurrent is the chosen sub-query, which is a conjunctive sub-query that will
be evaluated next.

– SQremaining is the remaining sub-query, which is a conjunctive sub-query
and which will be evaluated after the chosen sub-query is evaluated success-
fully.

The chosen sub-query can be composed of a single intensional or of one or more
extensional atoms. If the evaluation of the chosen sub-query succeeds, it will
result in bindings for variables in the chosen sub-query. These variables will
usually occur in the remaining sub-query, which means that the binding pat-
tern of the remaining sub-query changes. Because of this, once the remaining
sub-query has to be evaluated, it is sent to the sub-query scheduler with the
latest bindings, and a sub-query thereof is chosen.

Disk-Oriented Deductive Reasoning in a RISC-Style RDF Engine 89

The bound-is-easier selection function is commonly used in recursive query
evaluation, where the atom with the largest number of constants is evaluated
first, in the hope of returning the smallest intermediate relation [14,16]. One can
find extensions of this selection function in the literature, such as in [9] for a
Semantic Web setting with binary predicates. There, the position of the bound
argument is considered, where atoms with a bound first argument (subject) are
preferred over those with a bound second argument (object) for two arguments
with the same number of bindings.

4 D2R2 System Architecture

Figure 1 shows a high-level view of the architecture of D2R2. It is composed of
the following components:

1. A rule store, where rules are kept.
2. A fact store, which stores extensionally defined facts. We use RDF-3X [12]

as our storage backend for facts.
3. The sub-query scheduler, which is responsible for determining the order of

evaluation of atoms in a conjunctive query.
4. The recursive query processor, which is composed of implementations of two

top-down recursive query processing algorithms: SLD resolution and QSQR.

Fig. 1. D2R2 architecture

We assume that the number of rules in our system is much smaller than that of
the number of base facts. Based on this, our rules are assumed to be memory
resident during query processing.

4.1 RDF-3X

RDF-3X is one of the currently best-performing RDF engines on managing large-
scale RDF data with a RISC-style architecture [12,25]. We use RDF-3X as the
storage backend for D2R2. Conceptually, RDF-3X uses a single large triplet
table composed of the attributes: subject (S), predicate (P) and object (O).

90 M. Yahya and M. Theobald

RDF-3X uses index-only relations by maintaining six B+-trees corresponding
to all possible permutations of S, P and O, allowing it to answer any triplet
pattern using an index scan, where the constants in the triplet pattern form the
prefix of the index. Moreover, RDF-3X maintains partially aggregated and fully
aggregated indexes over partial triplet patterns: pairs and single SPO fields to
efficiently answer queries, where parts of the full triple are irrelevant to answering
the query, and to capture fine-grained statistics to optimize join ordering.

For efficiency, RDF-3X does not index strings directly. Instead, strings are
mapped to integer id’s and a mapping dictionary is maintained to convert strings
to id’s, and vice versa. Query plans are generated by RDF-3X using bottom-up
dynamic programming, which generates plans for every index that can answer a
triplet pattern and later keeps those that are appropriate for subsequent merge-
joins between triplet patterns. In order to scale RDF-3X to work with billions
of triples, it uses an approach called “ubiquitous sideways information passing”
(U-SIP) to allow physical index scan operators to skip reading pages from disk,
if they will not contribute to the final query result.

4.2 RDF-3X Integration

A user is assumed to have an RDF-3X database file, which can be compiled
from a plain text RDF file in Turtle syntax. The user starts D2R2 by submitting
the location of this file along with the rules that will be used for reasoning.
Internally, D2R2 represents constants and variables in rules and queries using
integers for efficient comparison. The rules use RDF-3X’s integer representation
for extensional and intensional predicates and constants occurring as arguments.
This serves to speed up interaction with RDF-3X and to avoid any translation
step in the middle.

Query-Time Optimizations. During query time, RDF-3X is accessed for an-
swering extensional atoms in a query. RDF-3X was designed with queries com-
posed of large joins in mind. However, the query patterns we expect from our
setting are much different. We expect that small queries, often composed of a
single atom, will be issued to RDF-3X. As we expect single-atom queries to occur
frequently, we made sure that they can be performed as fast as possible. When
a single-atom query is issued to RDF-3X during recursive query processing, it is
handled by a special method, which directly issues an index scan on the appro-
priate full-triples index. The choice of index is based on the binding pattern of
the atom: bound entries of the atom should form a prefix of the chosen index.
Issuing an index scan directly avoids logical query plan generation and query
optimization in RDF-3X, which are pure overhead for a single-atom query, but
are needed for the general case.

For chained queries containing more than a single atom, it is required that
RDF-3X’s query processing infrastructure is exploited to produce both a good
join ordering and a good choice of physical join operators. RDF-3X’s query
optimizer generates query plans in a bottom-up manner considering every index
that can answer a triplet pattern. For us, this means that six indexes have to

Disk-Oriented Deductive Reasoning in a RISC-Style RDF Engine 91

be considered for all permutations of SPO patterns. The plan generator has to
compute the cost of each index scan that can answer such a triplet pattern,
which requires disc access because of the manner in which RDF-3X maintains
its statistics. Observing that the predicate is always given in our context, we
reduced the number of indexes considered from six to two, namely: the PSO
and POS indexes. While this can result in some interesting orders not being
considered, we have observed that for small join patterns, this restriction helped
in reducing the time required for query optimization, as can be seen in Section 5.

Page Caching. In processing SPARQL queries, RDF-3X is unlikely to access
the same disk page multiple times. This is very different for recursive queries,
where a same disk page can be accessed multiple times. This is due to the manner
in which variable bindings propagate and new sub-queries are generated, often
sharing the same constants with previous queries. RDF-3X does not maintain any
internal caches. It operates on top of a memory-mapped file, which means that
the operating system can perform some caching. Index pages are kept compressed
on disk and are uncompressed when read into memory. We added caching to
RDF-3X’s indexes. When caching is enabled, a hash table of cached pages is
maintained. The key into this hash table is a page number, and the values are
uncompressed pages. Caching can be configured on a per-index basis. If caching
is enabled for an index, then, when the page is requested, the hash table is
queried for that page. If it exists, then the page is served from cache, otherwise,
the page is read into memory, decompressed and then added to the cache.

Moreover, we added caching to RDF-3X’s full triples, aggregated, fully ag-
gregated, and statistics indexes. Although the latter three index types are not
accessed for answering queries in our setting, they are accessed for statistics
when performing join ordering.

4.3 Recursive Query Evaluation

The recursive query processor uses two top-down algorithms: SLD resolution and
QSQR. The choice between the two is done by the user, as there is no syntactic
characterization of queries that result in cycles to automate this selection [3]. We
opted to implement QSQR in a tuple-at-a-time manner mainly because RDF-
3X does not support set-at-a-time querying, and we wanted to keep the changes
to RDF-3X to a minimum. In choosing a DB-complete strategy to implement,
the choice was between QSQR and Magic Sets. We chose to implement QSQR
because the of the lack of need for an explicit rule rewriting step. The ans_ and
input_ relations needed for tabling in QSQR are created during runtime, when
they are needed. Hash indexes are kept on each relation’s attributes to speed up
point queries, which are issued frequently on those relations.

5 Experimental Evaluation

To evaluate our system, we performed experiments over two datasets. The first
one is based on the YAGO knowledge base, which knows 20 million facts about 2

92 M. Yahya and M. Theobald

million distinct entities and 100 relations [15]. The size of the RDF-3X database
for this dataset is 2.0 GB, including indexes and the string dictionary. The
second one is based on the LUBM benchmark for evaluating OWL knowledge
base systems [7].

D2R2 is implemented entirely in C++ and compiled using GNU GCC version
4.3.2. All experiments were conducted on a Dell Optiplex 760 PC with an Intel
Pentium Processor E5200 and 3.2GB main memory, running a 64-bit Linux
2.6.30 kernel. For cold-cache experiments, we used the /proc/sys/vm/
drop_caches kernel interface before starting each run of an experiment to clear
the operating system’s buffer cache.

5.1 Handling of Extensional Queries

Figure 2(a) shows the result of issuing eight extensional queries using both RDF-
3X’s query infrastructure and that of D2R2 with cold cache. Above, we describe
how we handle single-atom extensional queries (such as QE1-2), where we skip
the query optimizer completely. For queries with multiple atoms (such as QE3-
8), we consider only two possible indexes rather than the six which RDF-3X
considers, thus reducing the overhead of selectivity estimation, which is per-
formed through disk. This data shows the high cost of query optimization which
RDF-3X performs for our setting. We expect join queries issued through D2R2
to be small. For this class of join queries, the data shows that we benefit from
considering less index scans and, therefore, less query plans. The eight queries
used in this experiment are over the YAGO dataset. They were chosen to be
similar to what we expect the storage backend needs to handle.

5.2 Effect of Chaining

To look at the effect of chaining, we measure the Number of Intermediate Sub-
queries (NIS) issued during query processing, which is equivalent to the number
of times sub-query scheduling is performed. As expected, NIS falls when chaining
is enabled, as can be seen in Figure 2(b). Queries Q1–Q11 are based on YAGO
predicates with highly recursive rules.

5.3 YAGO Comparative Runs

We compared D2R2 to two other recursive query processors: Jena using SLG
resolution and IRIS using Magic Sets. We used both the queries for YAGO,
which were used in the experiments above, and a new set of queries based on
the LUBM benchmark.

Figure 2(c) shows the results for four queries based on YAGO using cold (C)
and warm (W) cache. Note that we added Q12 and Q13 especially for this test.
These two queries are over the well-known ancestor relation. Both systems, Jena
and IRIS, could not handle most of our YAGO queries (Q1, Q3–Q9, and Q11)
which are highly recursive and are unmanageable without join ordering. For the

Disk-Oriented Deductive Reasoning in a RISC-Style RDF Engine 93

(a) (b)

(c)

(d)

Fig. 2. Experimental results. (a) Results for eight extensional queries over YAGO to
show the effects of the changes in dealing with RDF-3X. (b) Effect of chaining for
recursive queries based on YAGO. (c) Comparison of D2R2, Jena and IRIS using
recurive queries based on YAGO. (d) Comparison of D2R2 and Jena using recurive
queries based on LUBM.

94 M. Yahya and M. Theobald

four queries in the table, the focus is on the efficiency of the implementation,
rather than the ability to perform join ordering, which both cannot do. For Q12,
we changed the order of atoms in the recursive definition of the ancestor relation
when supplied to both Jena and IRIS to reduce the number of intermediate
queries they generate for finding the answer. D2R2 does not require this, as it
automatically performs sub-query scheduling. For IRIS, the database interface
was a bottleneck, which explains why Q12 and Q13 perform very similarly.

5.4 LUBM Comparative Runs

The results for running the queries based on the LUBM benchmark are given in
Figure 2(d) on both cold and warm cache. The rules for LUBM queries are not as
recursive as those we saw for the queries for YAGO. In fact, the only rule which
can run into cycles (given the information we know about the data), is that
of expressing the transitivity of the subOrganizationOf relation. All other rules
derive new classes or express class hierarchies. In this experiment, we compare
D2R2 with and without chaining enabled (not shown) to Jena. In both cases,
D2R2 wins over Jena. The comparison of D2R2 with and without chaining gave
mixed results, with no clear winner. We observed that chaining performed well
when the number of intermediate results from individual atoms was large, but
it performed worse when intermediate results were small, in which case the time
for (extensional) query optimization dominated that of answering a chained sub-
query. This is not an issue with chaining, but an issue with the choice of storage
engine and the space of query plans it considers. Chaining would be beneficial
for our setting if we are able to detect small intermediate results and fall back
on nested loop joins, which are the cheapest in our system, given that they incur
no optimization overhead.

6 Conclusions

In this paper, we presented the implementation of D2R2, a rule-based deductive
reasoner for RDF data built on top of the RDF-3X engine. We believe D2R2 is
a major building block to integrate rule-based reasoning with a disk-based RDF
storage backend. We presented a version of QSQR that can easily be mapped
to an implementation. Moreover, it allows for both the integration with a selec-
tion function and the chaining of extensional predicates for better utilization of
RDF-3X’s ability to perform joins on extensional predicates. Our future work
will focus on more lessons learned from logic programming systems, thus follow-
ing a WAM-based [26] architecture that also allows for set-at-a-time processing
and better integration with the pipeline of RDF-3X. Further topics in our in-
terest include the investigation of distributed deductive reasoning techniques, as
well as looking into probabilistic methods to handle uncertain input data and
rules.

Disk-Oriented Deductive Reasoning in a RISC-Style RDF Engine 95

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange
Ways to Implement Logic Programs. In: PODS (1986)

3. Bancilhon, F., Ramakrishnan, R.: An Amateur’s Introduction to Recursive Query
Processing Strategies. In: SIGMOD (1986)

4. Beeri, C., Ramakrishnan, R.: On the Power of Magic. In: PODS (1987)
5. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,

Heidelberg (1990)
6. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-

bining logic programs with description logic. In: WWW (2003)
7. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-

tems. J. Web Sem. 3(2-3) (2005)
8. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:

SWRL: A Semantic Web rule language combining OWL and RuleML. Technical
report, World Wide Web Consortium (May 2004)

9. Kaoudi, Z., Kyzirakos, K., Koubarakis, M.: SPARQL Query Optimization on Top
of DHTs. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan,
J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 418–
435. Springer, Heidelberg (2010)

10. Madalinska-Bugaj, E., Nguyen, L.A.: Generalizing the QSQR Evaluation Method
for Horn Knowledge Bases. In: New Challenges in Applied Intelligence Technologies
(2008)

11. Nejdl, W.: Recursive strategies for answering recursive queries - the RQA/FQI
strategy. In: VLDB (1987)

12. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. In: PVLDB
(2008)

13. RuleML. The rule markup initiative (July 2010), http://ruleml.org/
14. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic

graph pattern optimization using selectivity estimation. In: WWW (2008)
15. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a Core of Semantic Knowledge.

In: WWW (2007)
16. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. The New Tech-

nologies, vol. II. W. H. Freeman & Co., New York (1990)
17. Vieille, L.: Recursive Axioms in Deductive Databases: The Query/Sub-Query Ap-

proach. In: Expert Database Conf. (1986)
18. Vieille, L.: A Database-Complete Proof Procedure Based on SLD Resolution. In:

ICLP (1987)
19. Warren, D.S.: Memoing for Logic Programs. Commun. ACM 35(3) (1992)
20. Gallaire, H., Minker, J., Nicolas, J.-M.: Logic and Databases: A deductive ap-

proach. ACM Comput. Surv. 16(2) (1984)
21. Kowalski, R.A., Kuehner, D.: Linear Resolution with Selection Function. Artif.

Intell. 2(3/4) (1971)
22. Sagonas, K.F., Swift, T., Warren, D.S.: XSB as an Efficient Deductive Database

Engine. In: SIGMOD (1994)

http://ruleml.org/

96 M. Yahya and M. Theobald

23. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: an analysis of the per-
formance of rule engines. In: WWW (2009)

24. Tamaki, H., Sato, T.: Old Resolution with Tabulation. In: Shapiro, E. (ed.) ICLP
1986. LNCS, vol. 225, pp. 84–98. Springer, Heidelberg (1986)

25. Neumann, T., Weikum, G.: Scalable Join Processing on Very Large RDF Graphs.
In: SIGMOD (2009)

26. Warren, D.H.D.: An Abstract Prolog Instruction Set. Technical Report 309, AI
Center, SRI International (1983)

27. Hellerstein, J.M.: Datalog redux: experience and conjecture. In: PODS (2010)
28. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Unkel,

C.: Context-sensitive program analysis as database queries. In: PODS (2005)

Principles of the

SymposiumPlanner Instantiations of
Rule Responder

Zhili Zhao1, Adrian Paschke1, Chaudhry Usman Ali2, and Harold Boley2,3

1 Computer Science Department, Freie Universität Berlin, Germany
{zhili.zhao,paschke}@inf.fu-berlin.de

2 Faculty of Computer Science, University of New Brunswick, Canada
maniali@gmail.com

3 Institute for Information Technology, National Research Council of Canada
harold.boley@nrc-cnrc.gc.ca

Abstract. The Rule Responder SymposiumPlanner system supports
topic-oriented collaboration between the distributed members of a vir-
tual organization. Each member (or small team of members) is assisted
by a semi-autonomous rule-based personal agent, which uses Semantic
Web rules to capture aspects of the member’s (or team’s) derivation and
reaction logic. SymposiumPlanner is a series of Rule Responder use cases
for supporting the RuleML Symposia (2007-2011) by coordinating per-
sonal agents that assist the symposium chairs, intelligently answering
questions from people interested in the symposium. In this paper, we
introduce principles of SymposiumPlanner and make suggestions about
its future development, mainly for RuleML-2012, and about further Rule
Responder use cases.

1 Introduction

Rule Responder1 is a tool for creating virtual organizations as multi-agent sys-
tems that support collaborative teams on the Semantic Web. It thus extends the
Semantic Web towards a Pragmatic Web infrastructure with collaborative rule-
based agent networks realizing distributed inference services, where independent
agents engage in conversations by exchanging messages and cooperate to achieve
shared goals [3]. Rule Responder’s architecture realizes a system of personal
agents (PAs), computational agents (CAs), and organizational agents (OAs),
accessed via external agents (EAs), on top of an Enterprise Service Bus (ESB)
communication middleware. These agents together process events, queries, and
requests according to their rule-based decision and behavioral reaction logic. An
agent can also delegate subtasks to other agents, collect partial answers, and
send the completed answer(s) back to the requester. Since the Rule Responder
framework has been conceived, many instantiations of it have been developed

1 http://responder.ruleml.org

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 97–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

98 Z. Zhao et al.

such as the Health Care and Life Sciences eScience infrastructure [13], Rule-
based IT Service Level Management, Semantic Business Process Management
(BPM) [14,15], WellnessRules(2) [2], PatientSupporter, and SymposiumPlanner
systems.

SymposiumPlanner is a series of Rule Responder instantiations for the
Questions&Answers (Q&A) sections of the official websites of the RuleML Sym-
posia. Since 2007 [5], SymposiumPlanner has continued to support the orga-
nizing committee of the RuleML Symposium and was continuously developed
to support this annual meeting (in 2011, it supports two RuleML Symposia).
Symposium organization typically involves organization partner coordination,
sponsoring correspondence, panel participants management, etc. Through a col-
laboration between the organizational agent, personal agents, and the external
agent, SymposiumPlanner has assisted the symposium committee with structur-
ing the meeting, and answered various kinds of questions by people interested
in the symposium.

In this paper, we introduce the general architecture of the SymposiumPlanner
system and present how it is used for symposium organization. In our latest ver-
sion of SymposiumPlanner-2011, we introduce a user friendlier Rule Responder
interface and information integration from external Web data repositories. The
new Rule Responder web interface allows users to issue formal queries via web
forms and in controlled natural language. Meanwhile, there are large semantic
knowledge repositories on the Internet, such as: DBpedia (Deutschland)2, Free-
base3, YAGO4, Semantic Web Dog Food5. By reusing and integrating existing
fact information on the Internet, we avoid redundancy in the knowledge bases
of the SymposiumPlanner’s agents.

The paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 describes issues in symposium organization where Rule Responder can
help the chairs, and considers what needs to be taken into account when using
Rule Responder in symposium organization. Section 4 introduces the conceptual
architecture to address these issues. Section 5 presents the Rule Responder im-
plementation architecture. Section 6 concludes the work on Rule Responder Sym-
posiumPlanner and discusses the proof-of concept instantiations.

2 Related Work

To the best of our knowledge, there are no rule-based agent systems focusing
on supporting conference planning, but there are a lot of other applications for
rule-based multi agent systems. Rule-based agent systems make intelligent de-
cisions quickly and in repeatable form based on their rule based and ontology
based knowledge bases. They run specialized rule engines for executing the agent
logic. The agent behaviour specification is mainly represented by programming
2 http://de.dbpedia.org/
3 http://www.freebase.com/
4 http://www.mpi-inf.mpg.de/yago-naga/yago/
5 http://data.semanticweb.org/

Principles of SymposiumPlanner 99

it in logical rules. Two typical representatives for this category are RC++ [19]
and SOAR [11]. Another kind of rule-based agent architectures encompasses
approaches that aim at introducing abstract mentalistic notions as agent pro-
gramming language constructs. These approaches propose specific concerted sets
of mental state components and introduce agent programming languages with
specific types of rules to operate on the agents components. Prominent represen-
tatives of this category are the agent-oriented programming (AOP) [17] and the
3APL/2APL language families. 3APL (”An Abstract Agent Programming Lan-
guage”) and its successor 2APL (”A Practical Agent Programming Language”)
are developed at the University of Utrecht [9]. Closely related to Rule Respon-
der are agent architectures which directly use expressive rule languages and rule
engines as basis for the agent behavior control. Using this kind of architecture ba-
sically requires that the rule base is properly connected with the agent’s sensors
and effectors in order to allow an agent to receive percepts and execute actions.
Examples of this domain are e.g. JADE/Jess agent [4], Vivid Agents [16], OPAL
Agents [18] and Emerald [10]. While these approaches use their own propri-
etary agent runtime environments and rule engines, Rule Responder aims at a
more general approach using established and highly efficient enterprise service
and messaging technologies based on standard Internet transport technologies.
For representing the agents knowledge and behaviour it applies standards such
as RuleML rules and W3C RDF/OWL ontologies so that the agents logic is
declaratively described in a platform-independent manner and can be translated
and executed in different platform-specific rule engines deployed as distributed
(Web) inference services.

3 Rule Responder for Symposium Organization

Rule Responder has been successfully employed as a distributed query answering
framework instantiated for many areas. Two main benefits are gained by allevi-
ating the burden of repetitive tasks and by enabling the automation of rule based
organizational processes. SymposiumPlanner assists organizers in managing the
meeting and answering queries about it. As Rule Responder uses Semantic Web
rules to describe aspects of their owners derivation and reaction logic, it is neces-
sary to extend the SymposiumPlanner system for users who may not have deep
knowledge about semantic technologies.

3.1 Issues in Symposium Organization

We are not concerned here with paper submission and reviewing, which are well
supported by existing conference management systems such as EasyChair6 and
WitanWeb7. Even without those processes, symposium organization involves lots
of procedures, and it consumes much energy and time of organizers. Although
none of these procedures seems inherently complex, taken together they are non-
trivial to manage for meeting chairs. These procedures include:
6 http://www.easychair.org/
7 http://witanweb.ca/cascon2010/WitanWebFAQ.jsp

100 Z. Zhao et al.

- coordinating chair responsibilities (responsibility assignment),
- finding contact information about selected chairs of the symposium,
- helping the program and track chairs with mapping planned paper topics to

program and track themes,
- helping the program chair to monitor and possibly move important dates,
- helping the liaison chair with special events by symposium partners,
- helping the panel chair with managing panel participants,
- helping the publicity chair with sponsoring correspondence,
- and answering questions of participants about the conference such as impor-

tant dates, topics addresses, program schedule etc.

3.2 Interaction with Users

For deploying agents on the Web and enabling communication in agent networks,
Rule Responder uses an ESB middleware, and utilizes messaging from Reaction
RuleML8 for communication between the distributed agent inference services.
While Reaction RuleML/XML has adequate expressiveness for the communi-
cation between heterogeneous rule agents in the virtual organization, there are
two human-oriented methods to support the interaction between users and Rule
Responder.

One method is creating dynamic HTML forms as Web user interface of an
organizational agent. A Rule Responder interface description file – itself speci-
fied in XML – contains information about the interface name, parameters, and
types, which is used to describe the interfaces of the organizational agent. Users
are guided to select the appropriate interface and fill in the query parameters.
Queries are translated based on the Rule Responder interface description file and
the values that users give in the HTML form, as shown in Figure 1. However,
it may be difficult for users to identify the desired interface when there are a
plenty of interfaces available.

The other method is based on controlled natural language, which allows users
to describe queries in controlled English, where a translator maps the controlled
English to Reaction RuleML. The benefit is that users do not need to know
the available interfaces for various queries. However, the controlled English (e.g.
Attempto Controlled English) usually has more types of declarative sentences
and some of which are difficult to translate into Reaction RuleML, such as:
commands and sentence subordination. In the SymposiumPlanner-2011 system,
we thus use both solutions to improve user experience.

3.3 Communication between Distributed Agents

Both centralized rule system and distributed rule system can be used to sup-
port the collaboration of distributed members of an organization. A centralized

8 http://reaction.ruleml.org

Principles of SymposiumPlanner 101

Fig. 1. Rule Responder Interface Description

rule system would contain all of the facts and rules in one knowledge base or
in one centralized location. In contrast, the advantages of a distributed rule
system over a centralized system include e.g., achieving a fault-tolerant system by
using distribution for redundancy, and improved efficiency through distributed
processing.

Distributed maintenance allows agents to update their rules and facts without
affecting the rule bases of other agents (their consistency, completeness, etc.). If
all of the knowledge was stored in one central rule base, problems introduced by
one agent would affect the entire system.

Also, if an agent is offline, i.e. a PA is not responding when an OA delegates
a query to it, a timeout would be received and either the OA would try another
PA that may be able to answer the query or would respond back that the PA is
currently offline.

Rule Responder and SymposiumPlanner are implemented as a distributed
rule system. It connects OAs and PAs so that they can share knowledge and
external agents can query this knowledge. Each PA and OA has its own set of
rules and facts. The rules of the PAs correspond to their expert owners while
the OA’s knowledge describes the virtual organization as a whole. All of the PAs
with their rule bases are stored at distributed locations.

In a distributed rule system the knowledge is spread over many different
physical locations and communication overhead can become a problem, but the
overhead may not be noticeable to external agents. Rules execute faster when
there are less clauses for the engine to process, so our distributed approach
improves efficiency because we have multiple rule engines working on smaller
knowledge modules instead of one rule engine working on a large knowledge
base as in a centralized approach.

102 Z. Zhao et al.

3.4 Integration with External Information

Rule Responder acts as a virtual organization which consists of many autonomous
rule-based agents. Each uses Semantic Web rules to describe aspects of their own-
ers’ derivation and reaction logic. With the development of semantic technologies
in last decade, many huge semantic knowledge bases have been published, e.g.
in the linked open data cloud, which can be utilized. We reduce redundancy of
SymposiumPlanner system by integrating selected external semantic knowledge
on the Internet, as shown in Figure 2. In SymposiumPlanner 2011 each agent
manages personal information, such as a Friend of a Friend (FOAF)-like profile
containing a layer of facts about the committee members as well as FOAF-
extending rules.

Fig. 2. Integration with External Information

3.5 Role Assignment

Personal agents in Rule Responder are usually loosely coupled and implemented
based on their different functionalities. As one possible way for coordination
in a virtual organization the Rule Responder framework uses a ’pluggable’ Re-
sponsibility Assignment Matrix (RAM) to support the OA in its selection of a
PA and its optional participating profiles underneath. A RAM describes the re-
sponsibility of agent roles in completing certain tasks or deliverables in a virtual
organization. A standard RAM is a matrix which describes four key responsibil-
ities most typically used: Responsible, Accountable, Consulted, and Informed.

In the Rule Responder agent topology, a single RAM matrix can be used in the
OA to map an incoming query to the PA whose local knowledge base is deemed
to be best suited for answering it. The RAM matrix is represented as an OWL
ontology (OWL Lite) and can be used by a Rule Responder agent via querying it
with the Semantic Web built-ins of Prova, binding the respective roles and their
responsibilities to typed variables in the agent’s rule logic. Many variants of the
RAM with different role distinctions are possible such as RACI (with Consulted
agents), RASCI (with Supporting agents) etc. - see, e.g., Table 1.

Principles of SymposiumPlanner 103

Table 1. Responsibility Assignment Matrix

General Chair Program Chair Publicity Chair

Symposium responsible consulted supportive
Website accountable responsible
Sponsoring informed, signs verifies responsible
Submission informed responsible

4 Conceptual Architecture

So far, we have presented the major issues addressed in Symposium organization
and several critical theoretical considerations in our SymposiumPlanner system.
This section introduces the conceptual architecture as a novel design artefact
(following the design science research methodology) (see Figure 3). Each com-
mittee chair acts as a personal agent. As users usually initialize the queries via a
web browser and the SymposiumPlanner client assists users to construct queries
and get the answers with web pages. OAs, CAs, PAs and EAs are composed of
distributed agent topologies and coordinate with each other to complete users’
objectives.

Fig. 3. Conceptual Architecture of SymposiumPlanner

4.1 Organizational Agent

An organizational agent is used to describe the goals shared by its sympo-
sium as a whole and contains a knowledge base that describes the symposium’s
policies, regulations, and opportunities. This knowledge base contains condi-
tion/action/event rules as well as derivation rules. An OA manages its local
Personal Agents (PAs), providing control of their life cycles and ensuring overall

104 Z. Zhao et al.

goals and policies of the organization and its semiotic structures. OAs can act as
a single point of entry to the managed sets of local PAs to which requests by EAs
are disseminated. This allows for efficient implementation of various mechanisms
of making sure the PAs functionalities are not abused (security mechanisms) and
making sure privacy of entities, personal data, and computation resources are
respected (privacy & information hiding mechanisms) [3]. The selection logic
for the dissemination of queries to PAs is described by RAM and OA selects
responsible agents with a SPARQL query.

4.2 Personal Agents

In the SymposiumPlanner system, each organization committee chair is designed
as a personal agent, which contains a knowledge base that represents its chair’s
responsibilities to answer corresponding queries. Personal agents are chairs’ roles
in the symposium organization. But, they might also be services or applications
in, e.g. a service oriented architecture. A PA runs a rule engine which accesses
different sources of local data and computes answers according to the local rule-
based decision logic of the PA. Depending on the required expressiveness to
represent the personal agents rule logic, arbitrary rule engines can be used as
long as they provide an interface to ask queries and receive answers which are
translated into the common interchange format in order to communicate with
other agents.

Query Delegation to Personal Agents. Query delegation is done by the or-
ganizational agent, but the personal agents can help the OA in this responsibility.
Currently, the task responsibility in SymposiumPlanner is managed through a
RAM, which defines the tasks that committee members are responsible for. The
matrix, defined by an OWL Lite Ontology, assigns roles to topics within the
virtual organization. Should there be still no unique PA to delegate a query to,
the OA needs to make a heuristic delegation decision and send the query to the
PA that most likely would be able to answer the query.

Performatives. Rule Responder is multiple distributed rule system, where each
rule agent can run a different rule engine having its own proprietary syntax to
access different sources of local data. Usually these distributed agents connect
and communicate with each other based on a common rule interchange language,
which carries pragmatic performatives. These performatives can be used by the
receiver agents to understand the pragmatic context of the message.

Query Answering for Personal Agents. In some cases, the OA can try to
solve a query from an external agent by itself, but in the following we consider
only cases where it delegates queries to PAs. When a PA receives a query, it
is responsible for its answering. If there are multiple solutions to a query, the
PA attempts to send an enumeration of as many of the solutions to the OA as
possible (it is of course impossible when there are infinitely many solutions).

Principles of SymposiumPlanner 105

There are different methods for processing multiple solutions to a query. A naive
method of the PAs would be to first compute all of the solutions and then send
all of the answers back to the OA, one at a time. After the last answer message is
sent, an end-of-transmissionmessage is sent to let the OA know that there will
be no more messages. The main problem with computing all of the answers before
sending any of them is obvious: in case of an infinite enumeration of solutions
the OA will not receive any answer. The way our implementation addresses the
infinite solutions problem is to interleave backtracking with transmission. When
a solution is found, the PA immediately sends the answer, and then begins to
compute the next solution while the earlier answer is being transferred. When
the OA has received enough answers from such a (possibly infinite) enumeration,
it can send a no-more message to the PA, stopping its computation of further
solutions. Once all solutions have been found in a finite interleaved enumeration,
the PA can send an end-of-transmission message.

If a PA receives a query and the agent does not have any solutions for it, a
failure message is sent right away back to the OA. If this situation or a timeout
occurs (i.e., the PA is offline and did not respond back to the OA within the
preset time period), then the OA can try to delegate the query to another PA
to see if it is able to solve the query. If no solution can be found in any of these
ways, a failure message is sent back to the external agent that states that the
OA (representing the entire organization) cannot solve the query.

Communication between Personal Agent and Expert Owner. One prob-
lem that can arise when a personal agent works on a query is that the PA may
require help or confirmation from its human ’owner’. The PA may not be able to
(fully) answer the query until it has communicated with its human owner. The
way we approach this problem is to allow PAs to send messages to their owners
and vice versa, e.g. in the form of emails. When the owner receives a PA email,
he or she can respond to help finding the answer to the external agent. When
the personal agent has received the answer from its owner, the PA can use it to
complete the answer to the original query.

Agent Communication Protocols. Rule Responder implements different
communication protocols which our agents can utilize. The protocols vary by
the number of steps involved in the communication. We try to follow message
patterns similar to Web Service communication [8]. For example, there can be
in-only, request-response, and request-response-acknowledge protocols,
as well as entire workflow protocols [6]. Most of the instantiations of Sympo-
siumPlanner primarily focus on the request-response protocol.

Translation between the Interchange Language and Proprietary Lan-
guages. Having an interchange language is a key aspect in a distributed rule
system. Each agent must be able to understand one common language that
every other agent can interpret. The interchange language carries performatives

106 Z. Zhao et al.

that each agent is able to understand and react to. Agents can understand the
content of the interchange language by interpreting its semantics and pragmatic
performative. Each rule engine can have its own platform specific syntax and,
in order to run different rule engines in the Rule Responder agents, there must
exist a translator between the platform-independent interchange language and
the execution syntax of that rule engine.

5 SymposiumPlanner System

Since 2007, we have implemented five instantiations which support the organiz-
ing committee of the RuleML Symposium. We implemented the presented Rule
Responder agent architecture using the ESB Mule9. We mainly use two repre-
sentative rule engines, namely Prova10 and OOjDrew [1] (but furhter extended
SymposiumPlanner in 2010 to other engine such as Emerald). The developed
prototype proves the applicability of the concept in practice. Figure 4 illustrates
the general architecture of SymposiumPlanner instantiations that coordinate
symposium chairs and the people who are interested in the meeting.

Fig. 4. Main Components of SymposiumPlanner System

9 http://www.mulesoft.org
10 http://prova.ws

Principles of SymposiumPlanner 107

5.1 Mule Enterprise Service Bus

To seamlessly handle message-based interactions between the Rule Responder
agents/services and other agents/services using disparate complex event process-
ing (CEP) technologies, transports, and protocols, the Mule open-source ESB
is used in Rule Responder as the communication middleware. This ESB allows
deploying the rule-based agents as highly distributed rule inference services in-
stalled as Web-based endpoints on the Mule object broker and supports the
communication in this rule-based agent processing network via a multitude of
transport protocols. That is, the ESB provides a highly scalable and flexible ap-
plication messaging framework to communicate synchronously or asynchronously
amongst the ESB-local agents and with agents/services on the Web.

Distributed agent services, which at their core run a rule engine, are deployed
as Mule components which listen at configured endpoints, e.g., JMS message
endpoints, HTTP ports, SOAP server/client addresses or JDBC database inter-
faces, etc. Reaction RuleML is used as a common platform-independent rule in-
terchange format between the agents (and possible other rule execution/inference
services). Translator services are used to translate inbound and outbound mes-
sages from platform-independent Reaction RuleML into the platform-specific
execution syntaxes of rule engines, and vice versa. Extensible Stylesheet Trans-
formations(XSLT) and ANTLR based translator services are provided as Web
forms, HTTP services and SOAP Web services on the Reaction RuleML Web
page.

The large variety of transport protocols provided by Mule can be used to
transport the messages to the registered endpoints or external applications/tools.
Usually, JMS is used for the internal communication between distributed agent
instances, while HTTP and SOAP are used to access external Web services.
The usual processing style is asynchronous using Staged Event Driven Architec-
ture (SEDA) event queues. However, sometimes synchronous communication is
needed. For instance, to handle the communication with external synchronous
HTTP clients such as Web browsers where requests, e.g. by a Web from, are sent
through a synchronous channel. In this case, a synchronous bridge component
dispatches the requests into the asynchronous messaging framework and col-
lects all answers from the internal service nodes, while keeping the synchronous
channel with the external service open. After all asynchronous answers have
been collected, they are sent back to the still connected external service via the
HTTP-synchronous channel.

5.2 Platform-Specific Rule Responder Agents

Each agent service might run one or more arbitrary rule engines to execute the
interchanged queries, rules and events and derive answers on requests. Prova is
a highly expressive Semantic Web rule engine which we used in our reference
implementation for agents with complex reaction workflows, decision logic and
dynamic access to external Semantic Web data sources. Another rule engine
which we applied was the OOjDrew rule engine [1] in order to demonstrate

108 Z. Zhao et al.

rule interchange between various rule engines. Further rule engines and event
correlation engines (CEP engines) are used in the Rule Responder project in
other applications.

Prova follows the spirit and design of the recent W3C Semantic Web initiative
and combines declarative rules, ontologies and inference with dynamic object-
oriented Java API calls and access to external data sources via query languages
such as SQL, SPARQL and XQuery.

One of the key advantages of Prova is its separation of logic, data access,
and computation and its tight integration of Java and Semantic Web technolo-
gies. Due to the natural integration of Prova with Java, it offers a syntactically
economic and compact way of specifying agents’ behaviour while allowing for
efficient Java-based extensions to improve performance of critical operations.

The main language constructs of messaging reaction rules in Prova are:
sendMsg predicates to send messages, reaction rcvMsg rules which react to in-
bound messages, and rcvMsg or rcvMult inline reactions in the body of messaging
reaction rules to receive one or more context-dependent multiple inbound event
messages.

5.3 Reaction RuleML

For SymposiumPlanner System we use Reaction RuleML as our interchange lan-
guage between agents. Reaction RuleML [12] is a general, practical, compact and
user-friendly XML-serialized sublanguage of RuleML for the family of reaction
rules. It incorporates various kinds of production, action, reaction, and KR tem-
poral/event/action logic rules as well as (complex) event/action messages into
the native RuleML syntax using a system of step-wise extensions.

Rule Responder permits agents to use local languages and engines, only re-
quiring that all rule bases, queries, and answers be translated to RuleML for
transmitting them to other agents over the Mule ESB. The RuleML Interface
Description Language (RuleML IDL) as sublanguage of Reaction RuleML de-
scribes the signatures of public rule functions together with their mode and type
declarations and narrative human-oriented meta descriptions.

Reaction RuleML provides a translator service framework with Web form in-
terfaces accepting controlled natural language input or predefined selection-based
rule templates for the communication with external (human) agents on the com-
putational independent level, as well as Servlet HTTP interfaces, and Web service
SOAP interfaces, which can be used for translation into and from platform-specific
rule languages such as Prova. On the platform-independent and platform-specific
level, the translator services are using different translation technologies such as
XSLT stylesheet, Java Architecture for XML Binding (JAXB), etc. to translate
from and to Reaction RuleML as a general rule interchange format.

5.4 SymposiumPlanner User Client

One of the main advantages of SymposiumPalnner is that it answers users queries
promptly and reduces users’ burden of finding the interested information by

Principles of SymposiumPlanner 109

themselves. The queries include the information about the symposia and the
procures mentioned in section 3.1. For its usability, the SymposiumPlanner user
client provides an interface to distributed personal agents, allowing users to
query the available interfaces, describe and submit the queries, and retrieve the
answers from a standard web browser.

SymposiumPlanner user client allows users to query the SymposiumPlanner
agents via the SymposiumPlanner interface either by HTML forms or by a con-
trolled natural language.

The first solution uses the XML based Rule Responder interfaces description
file to create HTML forms which present users with the information of interface
in detail, such as interface name, parameter and its descriptions, and etc. The
translator service will combine the structure of Reaction RuleML message from
the Rule Responder interfaces description file with values which users initialize
to construct the Reaction RuleML message.

The translation between the used controlled English language and Reaction
RuleML is based ondomain-specific language translation rules in combinationwith
a controlled English translator service. In SymposiumPlanner, we use Attempto
Controlled English [7] which is a rich subset of standard English designed to serve
as knowledge representation language. Queries to Rule Responder are formulated
in Attempto Controlled English and the ACE2RML translator forwards the text
to the Attempto Parsing Engine (APE), which translates the text into a discourse
representation structure (DRS) and/or advices to correct malformed input. The
DRS gives a logical/structural representation of the text. It is fed into an XML
parser which translates it into a domain-specific Reaction RuleML representation
of the query. Besides parsing and processing the elements of the DRS, the parser
additionally employs domain-specific transformation rules to correctly translate
the query into a public interface call of a Rule Responder OA.

6 Conclusion

Following a design science research methodology, we introduced the design prin-
ciples, conceptual model and component architecture of the Rule Responder
SymposiumPlanner agent system. SymposiumPlanner allows users to issue queries
to the RuleML conference organisation committee members which are repre-
sented by their SymposiumPlanner agents.

SymposiumPlanner is a Semantic Web infrastructure for distributed rule-
based event processing multi-agent eco-systems. Based on modern enterprise
service technologies and Semantic Web technologies for implementing intelligent
rule-based agent services that access data and ontologies, receive and detect
events (e.g., for complex event processing in event processing agent networks),
and make rule-based inferences and (semi-) autonomous pro-active decisions for
reactions based on these representations. The core rule agents of Symposium-
Planner implement the decision and behavioural reaction logic of the agents roles
and manage the symposium organization effectively.

110 Z. Zhao et al.

SymposiumPlanner instantiations span various implementations from initial
state in 07,08,09 to Emerald based instantiation in 2010 to the 2011 double-
instantiation using the latest Mule and Prova with a more user friendly interface
involving 3 OA’s instead of just one for the sake of clarity (although future
implementation could see reunification of business logics into one OA as in the
initial instantiations).

In SymposiumPlanner, distributed agent instances follow SEDA style, which
decomposes a complex, event-driven application into a set of stages connected by
event queues. This design decouples event and thread scheduling from applica-
tion logic and avoids the high overhead associated with thread-based concurrency
models. However, although event queues decouples the execution of distributed
components, it increases response time correspondingly.

Future implementation will focus on increased automation of processes as
well as better support from human operators to add flexibility (e.g. the system
already contacts human operator in case the query is not solvable by the agent
itself). Further improvements will be also in the form of better support through
systems in order to achieve automation in terms of responses from agents as they
replace actual human users and try to respond to increasingly complex queries.
This might also lead to the need of communication between personal agents in
order to help each other in answering queries posed by external agents. However,
a single PA might not be able to answer a query as a whole. Another extension
to query delegation would thus be query decomposition, followed by delegation
of its decomposed parts to multiple PAs, and finally re-integration of the PAs’
answers before being sent back to the OA.

References

1. Ball, M., Craig, B.: Object Oriented java Deductive Reasoning Engine for the Web,
http://www.jdrew.org/oojdrew/

2. Boley, H., Osmun, T., Craig, B.: Social semantic rule sharing and querying in
wellness communities. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009.
LNCS, vol. 5926, pp. 347–361. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-10871-6_24

3. Boley, H., Paschke, A.: Rule responder agents framework and instantiations. In:
Eli, A., Kon, M., Orgun, M. (eds.) Semantic Agent Systems. SCI, vol. 344, pp.
3–23. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-18308-9_1

4. Cardoso, H.L.: Integrating jade and jess (2007),
http://jade.tilab.com/doc/tutorials/jade-jess/jade_jess.html

5. Craig, B.L.: The OO jDREW Engine of Rule Responder: Naf Hornlog RuleML
Query Answering. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007. LNCS,
vol. 4824, pp. 149–154. Springer, Heidelberg (2007)

6. Craig, B.L., Boley, H.: Personal agents in the rule responder architecture. In: Bassil-
iades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS, vol. 5321, pp.
150–165. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-88808-6_17

http://www.jdrew.org/oojdrew/
http://dx.doi.org/10.1007/978-3-642-10871-6_24
http://dx.doi.org/10.1007/978-3-642-18308-9_1
http://jade.tilab.com/doc/tutorials/jade-jess/jade_jess.html
http://dx.doi.org/10.1007/978-3-540-88808-6_17

Principles of SymposiumPlanner 111

7. Fuchs, N.E., Kaljurand, K., Schneider, G.: Attempto controlled english meets the
challenges of knowledge representation, reasoning, interoperability and user inter-
faces. In: Sutcliffe, G., Goebel, R. (eds.) FLAIRS Conference, pp. 664–669. AAAI
Press (2006),
http://dblp.uni-trier.de/db/conf/flairs/flairs2006.html#FuchsKS06

8. Gudgin, M., Lewis, A., Schlimmer, J.: Web Services Description Language (WSDL)
Version 1.2 Part 2: Message Patterns,
http://www.w3.org/TR/2003/WD-wsdl12-patterns-20030611/

9. Hindriks, K.V., De Boer, F.S., Van Der Hoek, W., Meyer, J.-J.C.: Agent program-
ming in 3apl. Autonomous Agents and Multi-Agent Systems 2, 357–401 (1999)

10. Kravari, K., Kontopoulos, E., Bassiliades, N.: Emerald: A multi-agent system for
knowledge-based reasoning interoperability in the semantic web. In: Konstantopou-
los, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN
2010. LNCS, vol. 6040, pp. 173–182. Springer, Heidelberg (2010)

11. Lehman, J.F., Laird, J., Rosenbloom, P.: A gentle introduction to soar, an archi-
tecture for human cognition. In: Sternberg, S., Scarborough, D. (eds.) Invitation
to Cognitive Science. MIT Press (1996)

12. Paschke, A., Kozlenkov, A., Boley, H.: A homogenous reaction rules language for
complex event processing. In: International Workshop on Event Drive Architecture
for Complex Event Process (2007), http://ibis.in.tum.de/staff/paschke/

13. Paschke, A.: Rule responder hcls escience infrastructure. In: Proceedings
of the 3rd International Conference on the Pragmatic Web: Innovating
the Interactive Society, ICPW 2008, pp. 59–67. ACM, New York (2008),
http://doi.acm.org/10.1145/1479190.1479199

14. Paschke, A., Bichler, M.: Knowledge representation concepts for automated sla
management. CoRR abs/cs/0611122 (2006)

15. Paschke, A., Kozlenkov, A.: A rule-based middleware for business process execu-
tion. In: Multikonferenz Wirtschaftsinformatik (2008)

16. Schroeder, M., Wagner, G.: Vivid agents: Theory, architecture, and applications.
Applied Artificial Intelligence 14(7), 645–675 (2000)

17. Shoham, Y.: Agent-oriented programming. Artif. Intell. 60(1), 51–92 (1993)
18. Wang, M., Purvis, M., Nowostawski, M.: An internal agent architecture incorpo-

rating standard reasoning components and standards-based agent communication.
In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, IAT 2005, pp. 58–64. IEEE Computer Society, Washington, DC
(2005), http://dx.doi.org/10.1109/IAT.2005.43

19. Wright, I., Marshall, J.: The execution kernel of rc++: Rete*, a faster rete with
treat as a special case. International Journal of Intelligent Games and Simulation 2
(2003)

http://dblp.uni-trier.de/db/conf/flairs/flairs2006.html#FuchsKS06
http://www.w3.org/TR/2003/WD-wsdl12-patterns-20030611/
http://ibis.in.tum.de/staff/paschke/
http://doi.acm.org/10.1145/1479190.1479199
http://dx.doi.org/10.1109/IAT.2005.43

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 112–127, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Extended Rules in Knowledge-Based Data Access

Jaroslaw Bak, Grażyna Brzykcy, and Czeslaw Jedrzejek

Institute of Control and Information Engineering,
Poznan University of Technology,

M. Sklodowskiej-Curie Sqr. 5, 60-965 Poznan, Poland
firstname.lastname@put.poznan.pl

Abstract. We present a method for an efficient knowledge-based access to
relational data. Knowledge is represented as a set of rules (basic rules) and
describes a source data at concept (ontological) level. Forward chaining in the
integrated system is performed with extended rules, which are obtained by a
goal- and dependency-directed transformation of the basic rules. The novel
feature of our method is generality - every rule is generated so that includes all
possible binding of the head predicates, and variable dependencies, while in
many implementations of the magic method the succession of bindings depends
on a query. We demonstrate a query answering algorithm and our prototypical
implementation of the system coupled with the Jess engine. The results of
performance evaluation are presented and compared to the results described in
our previous works.

Keywords: Rule-based system, magic transformation, Rete algorithm,
ontology, relational database access.

1 Introduction

Nowadays, the most of data processed in modern applications come from relational
databases. Data stored in such sources are described only by their schema (a structure
of data). Without strictly defined semantics there is often a mismatching problem with
table and column names in databases. Moreover, it is rather difficult to query data at a
more abstract level than only in a language of database relations and attributes. A lack
of conceptual knowledge can be overcome by introducing ontologies. For the
evaluation purposes, an ontology (and other knowledge) can be transformed into a set
of rules. The additional rule-based knowledge allows reasoning and query answering
at an appropriate abstract layer. Moreover, it simplifies to pose a question than using
structural constructions from SQL. In our approach a knowledge base is derived from
the Horn-SHIQ ontology [1] transformed into a set of rules.

In rule-based systems a query answering process, based on the forward chaining, is
generally inefficient. The report of OpenRuleBench initiative [2] shows that the
performance results of pure rule-based engines are surpassed by tabling Prolog and
deductive database technologies. Therefore, we propose a modified magic
transformation algorithm which together with the Rete Pattern Matching algorithm
increases speed and scalability of rule-based systems with the forward chaining. Our

 Extended Rules in Knowledge-Based Data Access 113

method is based on dependencies between variables appearing in predicates inside
each rule. Our approach generates rules to be processed by the Rete-based engine.

An important step in our procedure consists of linking data stored in a relational
database to the knowledge base. We accomplish this by creating a special rules which
contain simple SQL queries in their bodies. We also propose a grouping algorithm to
improve the database query answering process. This paper makes the following
contributions:

• We define an algorithm for semantically equivalent rules transformation
where rules from a knowledge base are transformed into goal- and
dependency-oriented rules,

• We propose a mapping construction method that is used to relate knowledge
predicates and the corresponding database,

• We evaluate our approach with the prototypical implementation performed
on the model presented in [3] with the comparison to the results achieved in
the RuleML-2010 Challenge [4].

Section 2 presents overview of our rule-based system and reasoning schemes. Our
query answering process with a rule-based system and relational database is presented
in Section 3. The next part contains a performance evaluation and comparison to the
results achieved in the RuleML-2010 Challenge. Related work is presented in the
Section 5 before concluding remarks and future work.

2 Rule-Based System and Reasoning Scheme

2.1 Rules and Facts

We apply the following form of a rule: (), (), … , (), => () (1)

where each (and h) is a predicate symbol, and represents a vector of variables
and constants, which appear in the atom () as arguments. We assume that only
unary or binary predicates are used in our system. For example, in atom p(x, ?y) there
appears a constant x and a variable ?y. denotes a set of additional predicates,
which are used for comparisons and tests, for example: x < 2, y ≥ x, etc.

Every rule consists of the two parts: the left-hand-side, which is called the body,
and the right-hand-side, which is called the head. In general, both parts are
represented by sets of atoms interpreted conjunctively. In the body of the rule we use
premises (patterns, conditions), which have to be satisfied by appropriate atoms
(facts) to allow a rule to be fired and to produce conclusions from the rule’s head. We
assume that the body of a rule may be empty. In this case, the rule is called a fact.

Rules of the form (1) belong to the class of Horn clauses [5] (if there are several
predicates in the head, a rule can be easily transformed into Horn clauses with the
Lloyd-Topor transformation [5]). Moreover, we assume that only DL-safe rules are
taken into account.

Arguments in atoms, particularly pertaining to the same variables, play a
significant role, as they form information channels between atoms. In order to

114 J. Bak, G. Brzykcy, and C. Jedrzejek

efficiently verify satisfaction of conditions from the rule body and infer a conclusion
specified in the head, we are interested in finding dependencies between the atoms
(predicates). Let us define a subset Dep(B,P) of atoms from a set B which share a
variable or a constant with some atom in the set of atoms P, e.g.,

Dep({p(x, y), q(z)}, {r(y), s(w)}) = {p(x, y)}.

2.2 Rule-Based System

A rule-based system is used as a way to derive new facts from the given ones
according to the defined set of rules. Such a system consists of few elements:

• A list of rules (rule base), which forms a kind of a knowledge base.
• A working memory, which contains facts. The working memory changes

during the reasoning process.
• An inference engine, which generates a new fact (or takes an action) based

on an interaction between facts and the rule base.
• A user’s interface (e. g., a console).

Usually, a rule-based system processes data only in its working memory. According
to a forward chaining mechanism, commonly used in reasoning tasks, a user gets
information as a set of inferred facts. In this set it is hard to find a fact or facts which
the user is interested in. Thus, the user has to pose a query to the rule-based system to
obtain the necessary facts. This is a better way than looking through the working
memory manually.

The forward chaining approach needs reasoning about all facts in the working
memory. Therefore, some of the inferred facts are useless and many rules are fired
unnecessarily. It has a negative impact on efficiency of the answering process.
Moreover, as all facts should exist in the working memory, the scalability of
reasoning tasks is poor due to the limited RAM memory.

The Rete algorithm, used to match atoms (facts) and rules (patterns) in the rule-
based systems, is fast and efficient. The algorithm was invented by Dr Charles Forgy
[6]. The performance of the Rete algorithm is weakly dependent of the number of
rules in the system. In the Jess engine [7, 8], which is a Rete-based system, the
computational complexity is between O(RFP) and O(RFP) [7], where R is the number
of rules, F is the number of facts in the working memory, and P is the average number
of patterns per rule body. Therefore, it is better to create more rules but with smaller
number of patterns per rule.

One way of increasing efficiency and scalability of a deduction process is to use a
backward chaining method. This scheme of reasoning is implemented, for instance, in
the Prolog engine, as the Selective Linear Definite clause resolution (SLD). By the
backward reasoning technique facts are obtained only when they are needed in
derivations.

2.3 Magic Transformation

In systems with facts and rules deduction processes are often performed with the
bottom-up scheme of evaluation. But effective query answering process should be
combined with a goal-directedness (top-down reasoning). To fulfill the requirement a

 Extended Rules in Knowledge-Based Data Access 115

transformation of a program P and a query Q into a new program, magic(P ∪ Q), is
defined (as is presented in [9]).

Bottom-up evaluated magic program avoids a blind generation of conclusions by
inserting special conditions into each rule of the program P. The new predicates –
call_p for each original predicate p – are used in [9] to define the conditions. In magic
transformation for each rule: (), (), … , () => ()

a set of new rules is defined in the following way: _ (), (), (), … , () => () _ (), (), (), … , () => _ ()

where 1, .
Definition 1. Atoms call_p are called magic templates and can be interpreted as
needed or called atoms. In our approach magic templates (or called atoms) are
differentiated from proper ones by annotation with C symbol.

One can see the new rules as plans for the rule’s head evaluation, but plans
augmented with goal of the evaluation.

The magic transformation of slightly modified rule (1) (the AP atoms are refused)
yields the following set of rules: (? , ?) , (? , ?), (? , ?), (? , ?) => (? , ?) (? , ?) => (? , ?) (? , ?) , (? , ?) => (? , ?) (? , ?) , (? , ?), (? , ?) => (? , ?)

The magic approach has been shown to be sound and complete [9, 10].
The original magic transformation is strongly connected with order of premises in

the body of the rule. It is worth to notice, that any permutation of atoms in the body
gives a semantically equivalent rule. Therefore, we can built different sets of magic
rules for diverse sequences of the atoms. This flexibility may be very important in
building efficient plans of a goal evaluation. Properly chosen subsets of magic rules
form the basis of the extended rules in our system.

2.4 Sideways Information Passing and Adorned Rules

A magic transformation is done with respect to the particular sideways information
passing strategy (sip strategy) which indicates how bindings in the head of a rule
should be passed to the body of that rule, and in which order body atoms should be
evaluated [10]. For a set of rules P and a query Q, there usually exist many different
sip strategies. Without evaluating all of them, it is not easy do decide whether a
chosen sip strategy is better or worse than another one [11].

Definition 2. An adornment of a predicate is a sequence of b’s (bound) and f’s (free)
indicating the status of the arguments of the predicate. The adorned rule is obtained
by replacing each atom in the rule by its adorned version.

116 J. Bak, G. Brzykcy, and C. Jedrzejek

For example, to indicate that in predicate p(?x, ?y) only the variable ?x is bound, we
write pbf(?x, ?y). In the magic transformation, for each adorned predicate pa and for
each rule, where p occurs in the head, we should choose the sip and use it to generate
an adorned version of the rule. Since predicates may appear with several adornments,
we may attach several distinct sips to several versions of the same rule, one to each
version. Such process of creating adorned rules starts from the given query. For the
query predicate q we replace it by the adorned version of q where adornment is
determined by bindings of variables in the query. Next, the adorned rules are
generated according to the chosen sip and adornment of q. For example, for the
following rule: (? , ?) => (? , ?) and the query: (10, ?)

the following adorned rule is generated (magic predicates are omitted): (? , ?) => (? , ?) (2)

Definition 3. In our approach an adornment of a rule is expressed by the use of nil
value which represents free variable. A variable that is bound is represented only by
its name and a condition that checks if the variable’s value is different from nil.
Variables that are indicated only by ? can be bound or free.

For example, rule (2) is transformed into the following rule: (? ,), ? => (? ,)

We use ? sign when there is no matter if a value is bound or not. The following rule: (? , ?) => (?) can be replaced by another one: (? , ?) => (?). In this
case, these two rules are equal.

3 Query Answering with a Rule-Based System

3.1 Overview of the Method

In this Section we present the overview of our approach for a database query
answering with a rule-based system, which is built over the forward chaining and
enhanced magic transformation.

In our approach we apply rules that are obtained from a given Horn-SHIQ
ontology. The TBox reasoning is performed by the Pellet engine [12]. Next, a
classified form of the ontology (inferred class/property hierarchy, domain/range
restrictions) is transformed into rule definitions in the Jess language. SWRL [13] DL-
safe [14] rules are also transformed to the Jess language with SWRL Built-ins [15]
used as comparison predicates.

From now on, we do not differentiate which rules were created based on a given
ontology and which were not.

In the current state of our work we use only unary and binary predicates.
Nevertheless, our approach can be extended for predicates with an arbitrary number
of arguments.

The presented method consists of the following elements:

 Extended Rules in Knowledge-Based Data Access 117

• Two sets of facts: one including called facts (goals in a goal-directed
reasoning, annotated with C) and the proper ones.

• Set of the basic rules.
• Set of the extended rules.
• Set of the mapping rules.
• Query algorithm.

The division of the facts is very important in our approach. Proper facts are directly
derived from a relational database, or are inferred by rules from other proper facts.
Called facts reflect goals. They are used to prevent firing more rules than is required
in the query evaluation process.

With the usage of the combination of proper and called facts, we can infer with the
forward chaining scheme like with the backward one, where the reasoning is a goal-
driven process.

The set of basic rules consists of rules which constitute the knowledge base. The
set forms input data in our algorithm for the automatic generation of the extended
rules. The set of extended rules is semantically equivalent to the set of basic rules.
Together with the mapping rules, the extended ones are used in the query answering
algorithm.

3.2 Generation of the Extended Rules

The extended rules are generated on the basis of the basic rules. In principle, we
transform rules according to the magic transformation, the enhancement is proposed
by the use of the dependent predicates (see Section 2.1).

During the generation process the special symbol C (for called atoms) can be
added to predicates in rules. If a predicate does not contain any symbol it means that it
matches only proper facts. If a predicate is annotated with C symbol, it matches only
called facts. For example, the annotated predicate (? , ?) with variables ?x and
?y, can match the following called facts: (,) , (,) , (,) or (,) where x and y are constants, and nil is a special value denoting an
unbound variable.

Now we describe the generation process (an Algorithm 1) of the extended rules. It
is worth noticing, that each variable from the rule head should occur in the rule’s
body (the Datalog [16] safety restriction is used to guarantee algorithm decidability).

Every basic rule consists of the body B, additional predicates AP and the head
predicate H. In order to denote that B matches only proper or called facts, we mark it
as B and BC respectively. In the same way we indicate the head of the rule: H (adds
proper facts) or HC (adds called facts). Therefore, each basic rule is represented as
follows:

B, AP => H (3)

In accordance with magic transformation, the body of the rule (3) is first augmented
with the called predicate HC to indicate an expected goal of the rule. To describe the
needed (called) fact, one has to identify its arguments. Moreover, to define other
extended rules for the basic rule (3) (due to magic transformation), one can compose
the appropriate subsets of different proper, called and dependent facts.

118 J. Bak, G. Brzykcy, and C. Jedrzejek

The algorithm defining a specialized magic transformation is based on the sip goal-
and dependency-directed strategy. As our strategy is query-independent (the extended
rules are generated only once), we call it the general sip (gsip) strategy. This
algorithm is the main result of the work.

Algorithm 1. The gsip strategy for the generation of the extended rules.

Step 1. For each basic rule (3) a rule of the following form is created:

B, AP, HC => H

where HC contains patterns of attributes (the attributes may be bound or stay
unbound).
Step 2. For each basic rule (3) a new set of rules is generated, where none of the
variables in the head predicate annotated with C symbol is bound. In this case, all
variables are replaced by the nil value and rules are generated of the following form:

HC => Pi
C

where Pi is a predicate from the body of a basic rule.
Step 3. For each basic rule (3) a new set of rules is generated according to the
bindings of variables in the head. Get a set D = Dep(B,H) of predicates from the set
B, which depend on the bound variables in the head H, and create one rule for each
dependent predicate Di from the set D :

HC => Di
C

Step 4. For each basic rule (3) a new set of rules is generated according to the
bindings of variables in the head and dependent predicates that are connected to the
head by a chain of variables. This set contains rules in which called predicates are
mixed with the proper ones with respect to the dependencies between variables.

We stress out that all AP predicates are added to the body of each created rule if all
variables appearing in predicates from AP also appear in the body.

Example 1. Applying Algorithm 1 to the following rule: (? , ?), (? , ?), (?), ? ? => (? , ?)

we obtain the following sets of rules which correspond to the steps of the algorithm:

1. One rule which is generated by adding the goal connected with the head
predicate: (? , ?), (? , ?), (?), ? ? , (? , ?) => (? , ?) (4)

2. The set of rules with dependent predicates from the set ((? , ?), (? , ?), (?) , (? , ?)) =
{ (? , ?), (? , ?), (?) , where all the variables from the head are
unbound. In such case, the variables are replaced by the nil value: (,) => (,) (,) => (,) (,) => ()

3. The set of rules with dependent predicates and different binding patterns of the
head predicate: (? , ?) , ? => (? ,)

 Extended Rules in Knowledge-Based Data Access 119

(? , ?) , ? => (, ?) (? , ?) , ? => (?)

4. The set of rules with dependencies between proper and called predicates: (? , ?) , (? , ?) => (? ,) (5) (? , ?) , (? , ?) => (, ?) (? , ?) , (? , ?) => (?) (? , ?) , (?) => (, ?) (? , ?) , (? , ?), (? , ?) => (?) (? , ?) , (? , ?), (? , ?) => (?)

Each extended rule is generated to pass only one binding of a variable from a
proper fact to a called one. In such case, called predicates are mixed with the
proper ones with bindings that are passed through a chain of variables from the
head and dependent predicates. In result we will obtain all possible bindings of
variables that are strictly connected with a goal (in this case (…)). For
example, in the rule (5) we pass the variable ?x through the predicate (which
reflects a proper fact) to obtain a binding of the variable ?y in the predicate
(such fact is asserted to the engine’s working memory as a called fact).

3.3 Mapping between Predicates and Relational Data

This section presents a method for mapping creation between terms of rule-based
system and relational data. The terms come from the “essential” predicates with the C
symbol which express that appropriate facts are needed in the reasoning process. We
assume that every “essential” predicate has a corresponding SQL query. “Essential”
means that the instance of the predicate cannot be derived from the rules. Instead, it
can be obtained only in the direct way as a result of the SQL query evaluation in the
database. For example, in the OWL [17] hierarchy of classes ChairmanOfTheBoard
is-a CompanysPrincipal is-a PersonConectedToCompany is-a Person, where the
class ChairmanOfTheBoard is a subclass of the class CompanysPrincipal etc. The
class ChairmanOfTheBoard is represented as an “essential” predicate.

A predicate-database mapping is defined as a set of rules, where each rule is of the
following form: SQL query => essential predicate
A body of each mapping rule contains SQL query which is defined manually by a
user. The body contains also other parameters that are used in our algorithm of
grouping SQL queries, but details are omitted here.

We assume that every SQL query has the following form: SELECT [R] FROM [T] <WHERE> <C, AND, OR>
where:

• R are the attributes (columns) – one or two according to the unary or binary
terms (OWL Class, OWL DataProperty or OWL ObjectProperty),

• T are the tables which are queried,
• WHERE is an optional clause to specify the constraints,

120 J. Bak, G. Brzykcy, and C. Jedrzejek

• C are the constraints in the following form: <attribute, comparator, value>, for
example: Age > 21,

• AND, OR – are the optional SQL commands.

Only such queries are currently available in our system. As an example, assume that
we have a table Employee with the following attributes: ID, Name, CompanyID and
Position. The example of SQL query for the concept ChairmanOfTheBoard can be
defined as follows: SELECT ID FROM Employee WHERE Position=’ Chairman’.
When we want to apply more constraints, we may use OR /AND clauses.

The mapping process requires defining SQL queries for all “essential” classes and
properties. Take the example of the mapping of the property isSignedBy: SELECT IDDoc, IDEmp FROM Signature. (6)

The execution of the query (6) results in obtaining all instances of the relation
between IDDoc of the document and IDEmps of the employees that signed this
document. If the query is executed, the results are added to the working memory as
proper facts.

In the reasoning process many SQL queries are generated. We developed an
algorithm which groups queries that correspond to the same essential predicate. These
queries are aggregated and only one SQL query is executed. For example, if we have
the following called facts: isSignedBy (5, nil)C and isSignedBy (10, nil)C , and the
mapping query (6), our grouping algorithm will create a query: SELECT IDDoc IDEmp FROM Signature AND (IDDoc=’5’ Or IDDoc=’10’).
We assume also that the ontology, which is used, is properly constructed and defined
(the taxonomy is computed and classified; without inconsistencies). Next, a user
defines SQL queries for essential predicates and then the mapping rules are
automatically generated and saved as a Jess script file.

3.4 Reasoning and the Query Algorithm

In our query answering method a user poses a query to a rule-based system. The
query is constructed from the predicates available in the knowledge base and from the
additional predicates used for comparisons (<, ≠, etc.). An answer is obtained as a
result of the reasoning process using the forward chaining method.

We assume that the engine contains a knowledge base constructed from extended
and mapping rules. Facts are stored in a relational database.

Algorithm 2. The reasoning and query algorithm is performed in the following way:

1. Create a special (technical) rule from a given query and name it QUERYRULE.
The query constitutes the body of the rule. The head contains invocation of the
Java method, which remembers bindings of the variables in the query when the
rule is fired. The number of firings of the rule is the number of different
results. Add QUERYRULE to the Jess engine.

2. For every predicate pi appearing in the query do the following:

 Extended Rules in Knowledge-Based Data Access 121

a) Add predicate pi with the C symbol and bound variables (if exist) to the
engine’s working memory. Replace all variables that are not bound with
the nil value.

b) Run the engine – it reasons about facts in the working memory and
generates partial SQL queries, which are grouped by the defined mapping.

c) When reasoning stops, for every group of SQL queries, one aggregated
SQL query is created and executed. The results are added as the instances
of the according predicates (facts) to the working memory.

d) If there are activations of the rules in the engine, go to the point b), or else
go to the point e).

e) Remember the bindings of the variables appearing in the predicate pi.
3. Return the results and remove QUERYRULE from the engine.

4 Query Implementation and Performance Evaluation

4.1 Implementation

We implemented presented approach in the SDL (Semantic Data Library) tool [18].
Previously implemented method was based on the hybrid reasoning algorithm (using
both forward and backward chaining) [18]. In this section we introduce the
implementation details of the current approach and present a brief overview of our
tool. The implementation language is Java.

Our SDL tool is split into two modules:

• SDL-API (Application Programming Interface), which provides all
functions,

• SDL-GUI (Graphical User Interface), which exploits SDL-API functions for
defining the mapping between ontology terms and relational data; and
provides automatic transformation of ontology into rules and the generation
of Jess scripts (with basic, extended and mapping rules).

SDL supports interaction with the Pellet engine (for TBox reasoning with ontology),
exploits OWL API [19] (for handling OWL files) and uses JDBC library for MS SQL
2008 Server access. SDL contains also many functions for the Jess management and
scripts generation in the Jess language. The taxonomies of ontology classes and
properties are classified by SDL-GUI with Pellet 2.2.1 and prepared for a user, who
can define SQL mapping queries on these calculated taxonomies.

We implemented our approach according to the described algorithms. All sets of
rules are generated automatically. Basic set of rules is generated from a given
ontology. Extended set of rules is generated from the basic one. Mapping rules are
generated from the defined mappings. In Jess scripts we use a triple template to
represent facts. The triple consists of tree slots: subject, predicate, object. This
template is augmented with a slot called kind used to represent proper or called facts
in the extended set of rules. For better understanding of the representation we show an
example of one of the generated rules for obtaining instances of the class
ContractDocument (we omit URIs in the example):

122 J. Bak, G. Brzykcy, and C. Jedrzejek

(defrule MAIN::Rule14 (triple (kind P) (predicate "rdf:type") (subject ?d) (object "Document")) (triple (kind P) (predicate " isSignedBy") (subject ?d) (object ?p1)) (triple (kind P) (predicate "rdf:type") (subject ?p1) (object "CompanysPrincipal")) (triple (kind P) (predicate " isSignedBy") (subject ?d) (object ?p2)) (test (neq ?p1 ?p2)) (triple (kind P) (predicate "rdf:type") (subject ?p2) (object "CompanysPrincipal")) (triple (predicate "rdf:type") (subject ?d) (object "ContractDocument") (kind C)) => (assert (triple (predicate "rdf:type")(subject ?d)(object "ContractDocument")(kind P))))
We implemented our approach in the Jess engine, but it is directly applicable (not
counting an interface modifications) to every engine, which exploits the Rete
algorithm.

4.2 Performance Evaluation

This section presents the example use of the SDL library. We compared our current
approach with the results presented in [4] where we used hybrid reasoning method
[18]. The description of the knowledge base and relational data can be found in [4].
Figure 1 depicts five test queries.

These queries test different aspects of the query answering mechanism. The first
query contains only variables (without any values) and exploits hierarchy rules. The
second query contains variables and values; it exploits ontological rules (for
inComplicityWith symmetric property). The third query contains only variables and

Fig. 1. The test queries

 Extended Rules in Knowledge-Based Data Access 123

exploits hierarchy rules. The fourth and fifth queries contain variables and values, and
exploit various characteristics of the knowledge base as coded by rules. The last two
queries are computationally demanding - the property fallsUnder needs almost all
rules to be fired, because it requires evidence why a person falls under a given article.
It is obvious that a rule can be fired more than once (if appropriate facts exist in the
Jess working memory).

Results are presented in Table 1., where number 2010 means that results come
from our RuleML-2010 Challenge Demo [4], whereas number 2011 indicates our
current approach.

All tests were executed on PC machine with the following configuration:

• Intel Core2 Duo 2,0 GHz processor, 4MB cache memory,
• 2 GB of RAM memory, 667MHz,
• Microsoft SQL Server 2008,
• Java Heap Space was set at 1024 MB.

Results presented in the Table 1 show that our current approach beats the hybrid one.
Since we did not apply all possible optimizations (including suplementary magic sets,
more efficient implementation, counting, rule-dependent sips), we are convinced that
the efficiency of our method can be improved. Moreover, we notice that the
Algorithm 1 generates a number of excess rules. If we are able to remove such rules
we will increase the performance of Algorithm 2.

Table 1. Results of queries execution and comparison to the RuleML Challenge 2010 results

Query and info

Database 20 Database 100 Database 200

2010 2011 2010 2011 2010 2011

Query 1
Results

Rules Fired

[ms]
[number]
[number]

781
54
74

219
54

251

1 328
474
441

891
474

1 630

1 922
1036
796

969
1036
3 001

Query 2
Results

Rules Fired

[ms]
[number]
[number]

2 734
1

1076

437
1

1 506

37 141
1

36 260

4 125
1

13 179

163 968
1

225 381

19 391
1

29 593
Query 3
Results

Rules Fired

[ms]
[number]
[number]

2 875
18

1 367

359
18

2 005

36 344
322

38 457

14 938
322

41 755

183 047
1004

232 583

116 593
1004

359 681
Query 4
Results

Rules Fired

[ms]
[number]
[number]

5 437
1

2 040

1 859
1

5 467

128 719
1

57 091

35 656
1

58 520

Time
exceeded

10 minutes

347 110
1

597 711
Query 5
Results

Rules Fired

[ms]
[number]
[number]

9 312
1

2 540

1 234
1

5 828

Time
exceeded

10 minutes

34 500
1

61 199

Time
exceeded

10 minutes

343 469
1

608 925

A comparison of our results with pure forward and backward reasoning in Jess system

is presented in the Table 2. The times of executing queries are measured for the same
database (loaded from the files) and juxtaposed in the table under, respectively, F letter
(for forward) and B letter (for backward). Numbers below F and B indicate times of data
loading into working memory in miliseconds. While loading data from the third database,
the size of the Java heap space was reached (in both engines), so the queries could not be

124 J. Bak, G. Brzykcy, and C. Jedrzejek

executed. It seems obvious that for small databases, it is better to store data (facts) in the
engines’ working memory. But for the bigger databases, the problem with scalability
occurs. In such cases our approach seems promising.

Table 2. Results of queries execution and comparison to the pure forward and backward Jess
engines

Query and info

Database 20 Database 100 Database 200

F
375

B
534

2011 F
14 665

B
183 704

2011 F
–

B
–

2011

Query 1
Results

Rules Fired

[ms]
[number]
[number]

281
54

1873

328
54

1873

219
54
251

15938
474

15567

19906
474

15567

891
474

1 630

–
–
–

–
–
–

969
1036
3 001

Query 2
Results

Rules Fired

[ms]
[number]
[number]

234
1

1820

266
1

1820

437
1

1 506

14875
1

15094

19344
1

15094

4 125
1

13 179

–
–
–

–
–
–

19 391
1

29 593

Query 3
Results

Rules Fired

[ms]
[number]
[number]

250
18

1837

281
18

1837

359
18

2 005

14516
322

15415

19688
322

15415

14 938
322

41 755

–
–
–

–
–
–

116 593
1004

359 681

Query 4
Results

Rules Fired

[ms]
[number]
[number]

250
1

1820

250
1

1820

1 859
1

5 467

14319
1

15094

19718
1

15094

35 656
1

58 520

–
–
–

–
–
–

347 110
1

597 711

Query 5
Results

Rules Fired

[ms]
[number]
[number]

250
1

1820

266
1

1820

1 234
1

5 828

14559
1

15094

20065
1

15094

34 500
1

61 199

–
–
–

–
–
–

343 469
1

608 925

Presented results confirm that our approach significantly improves a scalability of

a rule-based system. It is a very important issue, because in the forward chaining rule-
based systems, facts have to be stored in the working memory which is, in general,
limited by the RAM memory (we call it the traditional approach). If we store facts
outside of the memory and load them only when they are needed, we achieve better
scalability. Unfortunately, in a case when we pose a query without any bound
variable, we have to load all data from a database. In such a case our method will
achieve worse results than the traditional one, because we lose some time for data
loading.

5 Related Work

In this paper attention is focused on efficient integration of systems built of a rule-
based component and a relational database. Particularly, we confront a problem how
to improve knowledge-based access in the rule-based Jess system. Our first solution
was presented in [18], where the hybrid system is described which consists of two
reasoning engines, and relatively complex and costly data flow.

More generally, we can find different strategies for processing logic queries in
relational databases. Most of the work, including that of Bancilhon, Ramakrishnan
[20] and others [21, 10] was done in eighties, when knowledge based systems were
created for the first time. Various strategies of bottom-up, top-down and combined

 Extended Rules in Knowledge-Based Data Access 125

evaluation of queries are analysed by the authors together with different optimization
techniques, such as magic set transformation of rules, or efficient counting and
filtering.

A very close work is presented in [22] where data-driven backward chaining is
described. With automatically generated goals, a capability to represent unbound
variables in goals and support for unification a system presented in the paper satisfies
a lot of requirements of rule-based query answering systems. The main difference of
our approach is that we modify a set of rules, whereas in [22] they modified also a
reasoning engine (architecture of a rule system).

Along the same lines contemporary efforts are also undertaken in view of the
important task of data and systems integration. Two computation paradigms, namely
relational databases and rule systems, need to be tightly and smoothly linked to better
satisfy requirements of database and web programmers. This amounts for deriving
queries from ontologies and thus deal with the semantic aspects of data. With
standard languages of description logics the semantic web initiative contributes to a
grow up of various rule systems. A thorough analysis of different technologies,
performance and scalability results of the systems can be found in OpenRuleBench
report [23].

Rule systems and reasoning engines form an interesting multiparadigm research
area, where different methods and ideas are successfully applicable. Such significant
examples are, for instance, ontology-based data access system, QuOnto [24] and Dlog
[21] systems, specialized for Prolog.

6 Conclusions and Future Work

In this work the practical method of building a query answering system with the rule-
based ontological knowledge is presented. This technique is defined over source data
from a relational database, and with the Rete-based forward chaining reasoning over
extended, goal- and dependency-directed rules. Our approach is more efficient than a
query answering with standard forward or backward evaluation, outperforming the
state of the art hybrid approach that was presented in [18]. Finally our approach is
more flexible and more scalable.

The novel approach is its generality. Extended rules of the system are constructed
independently of a query, for all the binding patterns. Rule generation is performed
only once, but with possibility to define diverse, specialised strategies. Such approach
increases also a scalability of a pure reasoning engine.

The user of our system gets an easier way to pose queries (due to ontology origin
of rules) than using structural constructions from SQL. The creation of queries,
presented in the performance evaluation, is extremely difficult when we want to use
pure SQL constructions.

Our method largely removes a deficiency of the pure Jess engine mentioned on
page 11 of [23]. We aim at making detailed comparisons with systems using variants
of magic transformation [25]. Ultimately we would like also to apply the system to
the OpenRuleBench [23] suite of benchmarks. It is worth noticing that engines are
tested with all data in RAM memory, whereas our system is a complete platform that
fetches only needed data to the working memory. This fact would be advantageous if
combined rules execution and loading times were tested.

126 J. Bak, G. Brzykcy, and C. Jedrzejek

In future, we plan to improve execution of the aggregated SQL queries and to
implement the explanation service, which can present individual reasoning steps to a
user and can explain the results of the given query. We will extend our approach to
handle predicates with an arbitrary number of arguments. We will also develop
algorithms that would be rule-dependent in the generation of the extended rules (rule-
dependent sip strategy).

Acknowledgements. This work was supported by PUT DS 45-083/11 grant.

References

1. Hustadt, U., Motik, B., Sattler, U.: Data Complexity of Reasoning in Very Expressive
Description Logics. In: Proceedings of the 19th International Joint Conference on
Artificial Intelligence, pp. 471–477. Morgan Kaufmann Publishers (2005)

2. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: An Analysis of the Performance
of Rule Engines. In: Proceedings of the 18th International Conference on World Wide
Web, pp. 601–610. ACM (2009)

3. Bak, J., Jedrzejek, C.: Application of an Ontology-based Model to a Selected Fraudulent
Disbursement Economic Crime. In: Casanovas, P., Pagallo, U., Sartor, G., Ajani, G. (eds.)
AICOL-II/JURIX 2009. LNCS (LNAI), vol. 6237, pp. 113–132. Springer, Heidelberg
(2010)

4. Bak, J., Jedrzejek, C., Falkowski, M.: Application of the SDL Library to Reveal Legal
Sanctions for Crime Perpetrators in Selected Economic Crimes: Fraudulent Disbursement
and Money Laundering. In: Palmirani, M., Omair Shafiq, M., Francesconi, E., Vitali, F.
(eds.) Proceedings of the 4th International RuleML 2010 Challenge, Washington, DC,
USA, October 21-23, vol. 649 (2010)

5. Lloyd, J.W.: Foundations of logic programming, 2nd extended edn. Springer series in
symbolic computation. Springer, New York (1987)

6. Forgy, C.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem. Artificial Intelligence 19, 17–37 (1982)

7. Jess (Java Expert System Shell), http://jessrules.com/
8. Friedman-Hill, E.: Jess in Action. Manning Publications Co. (2003)
9. Nilsson, U., Maluszynski, J.: Logic, programming and Prolog, 2nd edn. John Wiley &

Sons Ltd., Chichester (1995)
10. Beeri, C., Ramakrishnan, R.: On the Power of Magic. J. Log. Program., 255–299 (1991)
11. Sippu, S., Soisalon-Soininen, E.: Multiple SIP strategies and bottom-up adorning in logic

query optimization. In: Abiteboul, S., Kanellakis, P.C. (eds.) ICDT 1990. LNCS, vol. 470,
pp. 485–498. Springer, Heidelberg (1990)

12. Pellet Reasoner, http://clarkparsia.com/pellet/
13. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: Swrl: A

semanticweb rule language combining owl and ruleml. W3C Member Submission (May
21, 2004), http://www.w3.org/Submission/SWRL/

14. Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with Rules and
Ontologies. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning
Web 2006. LNCS, vol. 4126, pp. 93–127. Springer, Heidelberg (2006)

15. SWRL Built-ins,
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

 Extended Rules in Knowledge-Based Data Access 127

16. Gallaire, H., Minker, J. (eds.): Logic and Data Bases, Symposium on Logic and Data
Bases, Centre d’études et de recherches de Toulouse, 1977. Advances in Data Base
Theory. Plenum Press, New York (1978)

17. McGuinness, D., van Harmelen, F.: Owl web ontology language overview. W3C
Recommendation (February 10, 2004), http://www.w3.org/TR/owl-features/

18. Bak, J., Jedrzejek, C., Falkowski, M.: Usage of the Jess engine, rules and ontology to
query a relational database. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009.
LNCS, vol. 5858, pp. 216–230. Springer, Heidelberg (2009)

19. Horridge, M., Bechhofer, S.: The OWL API: A Java API for Working with OWL 2
Ontologies. In: 6th OWL Experienced and Directions Workshop, OWLED 2009,
Chantilly, Virginia (2009)

20. Bancilhon, F., Ramakrishnan, R.: An Amateur’s Introduction to Recursive Query
Processing Strategies. In: Proceedings of ACJW SIGMOD Conference, pp. 16–52 (1986)

21. Lukacsy, G., Szeredi, P.: Efficient Description Logic Reasoning in Prolog: The DLog
system. Theory and Practice of Logic Programming 09(03), 343–414 (2009)

22. Haley, P.: Data-driven backward chaining. In: International Joint Conferences on Artificial
Intelligence, Milan, Italy (1987)

23. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: Detailed Report (May 29,
2009), http://projects.semwebcentral.org/docman/
view.php/158/69/report.pdf

24. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
Data to Ontologies. Journal on Data Semantics 10, 133–173 (2008)

25. Brass, S.: Implementation Alternatives for Bottom-Up Evaluation. In: 26th International
Conference on Logic Programming, ICLP (Technical Communications), Edinburgh,
pp. 44–53 (2010)

Standards for Complex Event Processing and

Reaction Rules

Adrian Paschke1, Paul Vincent2, and Florian Springer3

1 Computer Science Department,
Freie Universitaet Berlin,

Germany
paschke@inf.fu-berlin.de

2 Tibco, London, UK
pvincent@tibco.com

3 Senacor Technologies,
Germany

Florian.Springer@senacor.com

Abstract. In Rule-based Event Processing and Complex Event Process-
ing (CEP), many areas of software development re-use existing technolo-
gies and methodologies, allowing their related standards to be re-used.
Other standards may be required to be developed to replace or aug-
ment existing standards. This paper introduces a general reference model
for CEP standards with which existing and required standards will be
discussed.

1 Introduction

Standards are used throughout business and IT for many reasons, including
achieving a common understanding, enabling good communication, and pro-
moting an easier interchange across organizations and tools.

Such achievements in turn lead to reduced training, a higher-quality and safer
productivity, reduced costs, and increased customer confidence.

In Rule-based Event Processing and Complex Event Processing (CEP), many
areas of software development re-use existing technologies and methodologies,
allowing their related standards to be re-used. Other standards may be required
to be developed to replace or augment existing standards. This paper introduces
a general reference model for CEP standards with which existing and required
standards from the business as well as the technical perspective will be discussed.

The paper is organized as follows. Section 2 introduces our CEP Standards
Reference Model which we use for discussion of the event processing and reac-
tion rule standards. Section 3 gives an overview on the existing standards and
identifies benefits, standardization gaps and required actions in standardization
research. Section 4 gives a summary and concludes with an outlook on the future
of CEP standards.

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 128–139, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Standards for Complex Event Processing and Reaction Rules 129

2 The CEP Standards Reference Model

To understand the positioning of existing and required standards in Event Pro-
cessing and Complex Event Processing it is necessary to understand the multiple
viewpoints and business and technology areas to which standards may be ap-
plied. A CEP Standards Reference Model (abbreviated forthwith to CSRM) can
be used to assist with this understanding. The CSRM model in Figure 1 uses the
OMG Model Driven Architecture viewpoint to describe standardisation areas.

Fig. 1. a CEP Standards Reference Model version 1 - CSRMv1

2.1 Business and Technical Perspective

The CSRM describes a set of components influencing the development, imple-
mentation and deployment of CEP applications, where CEP is considered as a
superset of general event processing. The model extends the Model Driven Ar-
chitecture (MDA) where a sequence of models are defined from a Business or
Computer Independent Model (CIM) and then progressively detailed / trans-
formed with IT perspectives to the Platform Independent (PIM) and then to the
Platform Specific Model (PSM). These models explicitly distinguish between the
business and the technical perspectives.

I) On the one hand, in the business perspective, the aim is to define the domain ter-
minology independent of any specific technology in a specification sheet. This pro-
vides business users and managers / decision makers, and for IT systems the de-
velopers, with a common understanding about the general definitions of a system
from which requirements can be abstracted. These models are often augmented
by business use cases. The abstraction from business model to IT system requires

130 A. Paschke, P. Vincent, and F. Springer

answers to questions such as: What functionality has to be realized? What limi-
tations have to be considered? What best practices should be considered?

II) On the other hand, in the technical perspective, the aim is to describe in
increasing detail the implementation techniques and technologies for developing
some automated aspect of the business perspective. The target groups here are
the software architects, designers and developers. The main questions here are:
What technologies have to be used? What technical guidelines and patterns
should be considered? What technical conditions have to be considered?

2.2 Domain Specific and General Standards

The CSRM also shows that there are domain standards and general standards
supporting CEP.

A) Domain standards are specific to a business domain, e.g. for banking, retail
or logistics. Many domains have their own specifications and regulations that
are adopted for IT implementations and also are relevant in CEP applications.

For example: A domain standard for certain classes of insurance called ACORD
provides an XML model of the concepts used in insurance underwriting activities.
These can be adopted in CEP as a data model, or extended to provide an event
model in CEP systems.

B) General standards consist of domain independent standards, e.g. common
adapted design guidelines and patterns in the field of software development.

For example: The UML standard provides a framework of modelling compo-
nents such as class diagrams and state models that are relevant to CEP systems.

2.3 Standards per the CSRM Classification

This subsection provides a short introduction of all CSRM component standards
that influence CEP applications.

Common Standards, Laws. Common standards and laws provide conditions
and regulations which have to be considered in the business, e.g. laws for stock
trading. Development of a software application has to follow these laws.

Domain Reference Model. Domain Reference Models provide a subset of
best practices, reference business processes, etc. for a specific business domain.
These models help adaptors in defining a proper application based on well proven
best practices, e.g. a well proven reference business process for the manufacturing
domain.

Domain Use Case. The use case describes how a problem can be solved, e.g.
how to detect fraud in stock trading. It is often derived out of the business
strategy and the reference model.

Standards for Complex Event Processing and Reaction Rules 131

Strategy. The strategy defines the individual business strategy of a company
which has to be considered in developing new applications. The strategy con-
sists of business (business motivations, goals, policies, rules) as well of technical
(applications infrastructure, allowed frameworks) conditions.

Functional Model. The functional model provides domain independent best
practices and guidelines helping to design and develop a proper application, e.g.
”Design Patterns - Elements of Reusable Object-Oriented Software”

Computer Independent Model. The Computer Independent Model (CIM)
describes the business functionality or system without reference to IT specifics.
CIM should provide a common understanding between business users and soft-
ware developers. In the CEP model it consists of following components:

Standard Vocabulary, Ontology. The ontology provides a set of definitions and
terms enabling a common understanding for all stakeholders. The concept is like
a glossary. The aim is, that every participant has to use the same word for a
defined term.

Process description. Description of activities and its flow to produce a specific
product or service enhanced with events occurring in it or influencing it.

Reaction. Definition of the activities which have to be initiated based on the
previous taken decision.

Decision. Definition of rules, what has to be done if a relevant situation was
detected by a pattern matching.

Complex Events. Definition of event correlations for detection of relevant situ-
ations defined by patterns representing knowledge from source events, e.g. for
detection of fraud.

Simple Events. Definition of attributes and types consisting of a simple event,
e.g. the event ”Stock Price” consists of the fields WKN, amount, etc.

Platform Independent Model Standards (PIM). The Platform Indepen-
dent Model layer represents behaviour, data, design, and messaging, independent
from a particular EP platform. This PIM abstractions supports

– increased portability and platform independence
– cross-platform interoperability and interchange between domain boundaries.

Event-Driven Behaviour. Effects of events lead to some (state) changes in the
properties of the world which can be abstracted into situations. Decisions rep-
resent the choices a system can take in certain situations. Actions might be
triggered / performed as reactions based on the decisions and changes in states
/ situations as an effect of events.

132 A. Paschke, P. Vincent, and F. Springer

Event Data. Platform-independent representation of events and their data is
crucial for the interoperation between EP tools and between domain boundaries.

– Interoperation between different EP products to exploit benefits, e.g. stream
+ rule processing component

– Interchange of events in a distributed heterogeneous EPN
– Interchange of events over domain boundaries, e.g. cross-organizational

processes.

Event Processing Design. Platform-independent (reference) architecture and de-
sign models addressing different views for different stakeholders are means for,
e.g.

– furnishing abstractions and reference generalizations to manage technical
complexity

– providing structure for solving design problems
– experimenting to explore multiple solutions, including best practice solutions

such as design patterns, reference architecture descriptions that model the
abstract architectural design elements, and architectural reference models
which describes the important concepts and relationships in the design space.

Messaging. PIM Messaging is addressing transport protocols and routing, coor-
dination / negotiation mechanisms.

3 Standards in CSRM Areas

Tables 1, 2, 3 provide an overview about the main standards existing for the
components described in the CSRM standards model. They describe the ben-
efits of the available standards, identify gaps which need to be closed by new
standards or by extensions of existing ones, and propose actions to be taken in
CEP standardization research.

Table 1. Overview Common and Domain Independent Standards

Area Available Standards Benefits Gap Research Action
Common
Standards

Several laws (often coun-
try specific), e.g. BrsG
for stock trading in Ger-
many

No direkt benefit for
CEP

None None, because not
CEP specific

Domain
Reference
Model

Various per domain for
data.

Efficient design and de-
velopment of CEP appli-
cations for specific do-
mains

Rarely handles
events, just
data.

Extend to common
events as required.

Domain
Use Case

Covered by UML Use
Case [18], EPTS Use-
Case Template [3]

Create common under-
standing between busi-
ness user and software
developer

Misses event as-
pect.

Improve Use Case
templates.

Strategy Usually a textual de-
scription. Partial cover-
age in OMG BMM [11]

Clarify business strategy May need more
emphasis on
events

None, because CEP
unspecific

Functional
Model

- EPTS Fn Ref Archi-
tecture [23,24,28] - lot of
different ones in the field
of software development

Helps implementing a
proper application

Specific func-
tional patterns
for CEP not
available

Create and improve
functional models
for CEP

Standards for Complex Event Processing and Reaction Rules 133

Table 2. Overview Business and Domain Standards

Standard
Vocabu-
lary

- text based glossary
- KR Ontologies (e.g.
in OWL) [27] - OMG
SBVR [16]

Common understanding
for all stakeholders in-
volved

ontologies for
events, time,
situations etc.

Integrated top level
ontologies for gen-
eral CEP concepts

Process
Descrip-
tion

- BPMN [12] - EPC [6] Create a common under-
standing between busi-
ness user and software
developer on a ”big pic-
ture”

Insufficient de-
tail on events
for CEP appli-
cations

Extend BPMN with
sufficient support
for modelling simple
and complex events

Reaction Can be an event update
through to a service def-
inition

Common understanding
for all stakeholders in-
volved

None None, text based de-
scription is sufficient

Decision None but - Decision
Table, Tree etc (OMG
DMN [13] proposed)

Common understanding
for all stakeholders in-
volved

None None, because CEP
unspecific

Table 3. Overview CEP Models and Technology Standards

Complex
Events

None but - OMG EMP
[14] proposed

Better understanding
of relation between
involved events and
roles

No structured
way to describe
complex events

New standard re-
quired

Simple
Events

- UML - Design language
used in NEAR [FS1]

Create a common under-
standing across business
users / event sources,
and developers

Not sufficient
for needs of
event processing

Improve modelling
languages eg NEAR
[29]

Event-
Driven
Behaviour

- Reaction RuleML [25]
and W3C RIF [32] -
OMG PRR [15] - OMG
UML Behavioural View
Diagrams [18] - OMG
BPEL [8], W3C WS
Choreography [31], and
further EDA standards
[9]

Declarative, explicit
representation of be-
havioural/reactive logic
Publication and inter-
change of decisions and
reactive behaviour

Standards
for specific
domains: rule-
based event
processing
languages
(RuleML) [25],
Web Service Ex-
ecution (BPEL,
WS-C,) [9]

- Rules: further
standardization in
RuleML / W3C RIF
[25,30] - Standards
for other domains
needed, e.g. stream
processing - In-
teroperation, e.g.
rule standards with
BPEL

Event
Data

- Software Engineering:
UML Structural View
diagrams - Knowledge
Representation: many
event ontologies exist
(e.g. in OWL) - Rules:
W3C RIF/RRuleML
[25,30] - OASIS WS
Notification, W3C WS
Eventing, OASIS WS
Topics [9] - OMG Event
Meta Model [14] -
OASIS Common Base
Event

- Declarative represen-
tation, translation and
interchange of events -
Interoperation between
different platform spe-
cific tools and domain
boundaries (requires se-
mantics)

Standards
for specific
domains: rule-
based event
processing
languages
(RuleML),
Web Service
Events (WS
X), Enterprise
applications
(OASIS CBE)

- Rules: further
standardization in
W3CRIF/RuleML -
Standards for other
domains needed, e.g.
stream processing -
Interoperation, e.g.
rule standards with
other event stan-
dards/ontologies

Event
Processing
Design

- UML 2 Implementa-
tion View Diagrams -
ISO/IEC 42010:2007
Recommended Prac-
tice for Architectural
Description of Software-
intensive Systems [7]
- Agents: OMG Agent
Metamodel [10]; [5]; ... -
Workflow Management
Coalition Reference
Model [33]

- Abstraction from the
PSM design increases
understandability and
reusability - Agent
model is an abstrac-
tion from technical IT
components to role-
based agents on a more
abstract level

Current stan-
dards are not
specialized for
event processing
design

Reuse and extend
existing standards
for event processing
design descriptions

Messaging - Many transport proto-
cols: JMS, JDBC, TCP,
UDP, multicast, http,
servlet, SMTP, POP3,
file, XMPP - Message
Routing Patterns

Platform-independent
messaging

None - existing
standards can
be reused for
transporting
and messaging
events

None

134 A. Paschke, P. Vincent, and F. Springer

Gaps and research actions arise in particular in the direct standardization of
CEP-related models and technologies. In the following we will drill down into
them.

3.1 CEP Reference Architecture and CEP Design Patterns

The Event Processing Technical Society (EPTS) Reference Architecture Work-
ing Group has developed a functional reference architecture that describes the
functions of typical event processing (EP) / complex event processing (CEP) op-
erations. [23,24,28] This includes design and administration as well as runtime
considerations - see Figure 2. The EPTS Reference Architectures predefines a
common frame of standard reference with a set of architectural best practices,
which can be customized to obtain architectures for specific applications in a
domain. Future research might describe best practice solutions as standard func-
tional models and design patterns for recurring functions in EP/CEP. [28]

Fig. 2. The Event Processing Technical Society Reference Architecture

3.2 Standard CEP Vocabularies and Semantic Ontologies

Standard vocabularies for typical concepts in event processing such as events,
time, space, situations, etc. help to establish a common understanding for all
stakeholders involved. This standardization among many others facilitates
integration and interchange. Moreover, the formalization in terms of machine-
readable knowledge representations (KR) such as ontologies, gives a formal se-
mantics to concepts relevant in event processing, e.g. tense, spatio, state, etc.

Standards for Complex Event Processing and Reaction Rules 135

This allows semantic complex event processing (SCEP) engines to semantically
understand what is happening in terms of events and rule-based reactions. The
event engine can know what reactions and processes it can invoke and what
events it can signal.

For representation of events and their relationships several Semantic Web
event ontologies have been proposed. Shaw R. et al. provide in [26] a compar-
ison of existing event ontologies like CIDOC CRM1, ABC Ontology2, Event
Ontology3,EventsML-G4, DOLCE + DnS Ultralite5, and OpenCYC Ontology6,
based on their main constituent properties like, type, time, space, participation,
causality and composition. Other ontologies have been specifically developed for
representing time 7 or spatio-temporal relations [2].

On the computational independent level with the OMG Semantics and Busi-
ness Vocabulary Representation (SBVR) [16] there exists a standard to define
domain-specific business vocabularies for business rules. Current extension of
SBVR address a Standard Business Vocabulary for Date and Time Concepts,
[17].

However, none of these ontologies are developed specially for complex event
processing or are used in combination with CEP technologies. An general mod-
ular ontology model for semantic CEP (see Figure 3 is proposed in [27].

Fig. 3. Top Ontologies for Complex Event Processing

Future work in standardization of vocabularies and ontologies for (Semantic)
CEP needs to address the transformation from one format into another, e.g.
SBVR ontologies into OWL ontologies (and vice versa) and the integration of
separated domain, task, and application ontologies into a general semantic model
of CEP.
1 http://cidoc.ics.forth.gr/OWL/cidoc_v4.2.owl
2 http://metadata.net/harmony/ABC/ABC.owl
3 http://motools.sourceforge.net/event/event.html
4 http://www.iptc.org/EventsML
5 http://www.loa-cnr.it/ontologies/DUL.owl
6 http://www.opencyc.org/
7 e.g. http://www.w3.org/TR/owl-time/

http://cidoc.ics.forth.gr/OWL/cidoc_v4.2.owl
http://metadata.net/harmony/ABC/ABC.owl
http://motools.sourceforge.net/event/event.html
http://www.iptc.org/EventsML
http://www.loa-cnr.it/ontologies/DUL.owl
http://www.opencyc.org/
http://www.w3.org/TR/owl-time/

136 A. Paschke, P. Vincent, and F. Springer

3.3 Computational Independent Standard for Simple and Complex
Event Modeling

Although there exist general standards for computational independent modeling
(CIM) such as the Unified Modeling Language (UML) and the Business Process
Modeling Notation (BPMN), there exist no specialized standard for modeling
simple and complex events. The request for proposal (RFP) for an Event Meta-
model and Profile (OMG EMP) [14] is a first activity into this direction. Addi-
tionally, with OMG SBVR [16] there exists an established standard for business
rules which can be extend with business event descriptions (based on a business
event vocabulary) on the CIM level.

3.4 CEP Technology Standards

Event Processing technologies have many different roots and standards for dis-
tributed event based systems (DEBS), reaction rule systems (see [21,19,20] for
an overview) and event driven architectures (EDA) (see [9] for an overview on
EDA/CEP related standards).

With OMG Production Rules Representation (PRR) there exists a general
standard for modeling production rules. However, PRR currently does not ad-
dress extensions of productions rules for complex event processing.

A platform-independent XML expression rule language family [19] is stan-
dardized by the Rule Markup Language (RuleML) 8 (current version 1.0 [4])
and specifically Reaction RuleML [4,25] is a quasi-standard within the RuleML
language family for reaction rules and rule-based CEP [20].

The recent W3C Rule Interchange Format (RIF) recommendation, standard-
izes a subset of the derivation and production RuleML family in the W3C Se-
mantic Web stack, in order to define a Rule Interchange Format for facilitating
the exchange of rule sets among different systems and to facilitate the devel-
opment of intelligent rule-based application for the Semantic Web. The current
recommendation does not address events in reaction rules, but later standardiza-
tion of a Reaction Rules Dialect [30], following the proposal of Reaction RuleML,
might further extend the W3C RIF standard.

Besides CEP reactions rule standardization further standards for other do-
mains are needed, e.g. for stream processing. Research is also need on the inter-
action of these standards with existing standards for event-driven / event-based
systems and applications, e.g. for event-driven BPM (edBPM) extending, e.g. the
OASIS Business Process Execution Language (BPEL) and BPMN with events
and CEP / rule semantics (see e.g. [22,1]).

4 Conclusion

The CEP Standards Reference Model shows much overlap with existing stan-
dards for business and software at multiple levels. It is likely that as event based
8 http://ruleml.org/

http://ruleml.org/

Standards for Complex Event Processing and Reaction Rules 137

(/real-time) considerations become more important in information technology,
the existing models will be adapted and extended to better accommodate event
processing principles.

As examples of the latter, we could expect to see domain-specific models
start to develop ”event information”; this is already apparent in new standards
proposals such as for Dobb-Frank Wall Street Reform and Consumer Protec-
tion Act compliance monitoring that involves trade-manipulation events inside
banks. Such Domain Information Models could well be extended to include useful
complex events that are understood and common at the business level.

Standards specific for event processing constructs particularly at the
computation-independent level - are likely to be developed as appropriate ontolo-
gies, as ontological research expands to cover basic modelling needs. Platform
specific constructs for specifics such as continuous queries are certainly needed,
but there are signs of ”standards fatigue” from the major vendors that is delay-
ing the onset of such work. It is expected that the Event Processing Technical
Society as a user, vendor and researcher collaboration organisation , as well as
RuleML - as vendor-neutral body for (Web) rule standardization research - may
help instigate developments here.

References

1. Barnickel, N., Böttcher, J., Paschke, A.: Incorporating semantic bridges into in-
formation flow of cross-organizational business process models. In: I-SEMANTICS
(2010)

2. Batsakis, S., Petrakis, E.: Sowl: A framework for handling spatio-temporal infor-
mation in owl 2.0. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML
2011 - Europe. LNCS, vol. 6826, pp. 242–249. Springer, Heidelberg (2011)

3. Bizarro, P.: Epts use case wg report, at epts virtual symposium, arlington, va usa
(March 24, 2011)

4. Boley, H., Paschke, A., Shafiq, O.: Ruleml 1.0: The overarching specification of
web rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS,
vol. 6403, pp. 162–178. Springer, Heidelberg (2010)

5. FIPA. Foundation for intelligent physical agents (fipa) specifications (2005),
http://www.fipa.org/specifications/ (accessed April 2011)

6. Scheer, A.W., Keller, G., Nttgens, M.: Semantische processmodellierung auf der
grundlage ereignisgesteuerter processketten (epk). Verffentlichungen des instituts
fur wirtschaftsinformatik, heft 89, University of Saarland (1992) (in german)

7. ISO. Recommended practice for architectural description of software-intensive sys-
tems, iso/iec 42010: Ieee std 1471 (2007),
http://www.iso-architecture.org/ieee-1471/ (accessed April 2009)

8. OASIS. Oasis web services business process execution language, wsbpel (2011),
http://www.oasis-open.org/committees/wsbpel/ (accessed March 2011)

9. OMG. Existing eda/cep standards v2.1 (March 1, 2007),
http://soa.omg.org/soa-docs/eda-standards.htm (accessed April 2007)

10. OMG. Agent metamodel and profile (amp) rfp (2011),
http://www.omgwiki.org/amp-team/ (accessed April 2011)

http://www.fipa.org/specifications/
http://www.iso-architecture.org/ieee-1471/
http://www.oasis-open.org/committees/wsbpel/
http://soa.omg.org/soa-docs/eda-standards.htm
http://www.omgwiki.org/amp-team/

138 A. Paschke, P. Vincent, and F. Springer

11. OMG. Business motivation model (bmm) version 1.1 (2011),
http://www.omg.org/spec/bmm/1.1/ (accessed March 2011)

12. OMG. Business process model and notation (bpmn) version 2.0 (2011),
http://www.omg.org/spec/bpmn/ (accessed March 2011)

13. OMG. Decision model and notation rfp (2011),
http://www.omgwiki.org/dmn-rfp/ (accessed April 2011)

14. OMG. Event metamodel and profile (emp) rfp (2011),
http://www.omgwiki.org/soaeda/ (accessed April 2011)

15. OMG. Production rule representation (prr), version 1.0 (2011),
http://www.omg.org/spec/prr/ (accessed March 2011)

16. OMG. Semantics of business vocabulary and rules (sbvr), version 1.0 (2011),
http://www.omg.org/spec/sbvr/ (accessed March 2011)

17. OMG. Standard business vocabulary for date and time concept, rfp (2011),
http://www.omg.org/techprocess/meetings/schedule/

date-time foundation vocabulary rfp.html (accessed March 2011)
18. OMG. Uml 2 use cases (2011), http://www.omg.org/spec/uml/2.4/

(accessed March 2011)
19. Paschke, A., Boley, H.: Rule Markup Languages and Semantic Web Rule Lan-

guages. In: Giurca, A., Gasevic, D., Taveter, K. (eds.) Handbook of Research
on Emerging Rule-Based Languages and Technologies: Open Solutions and Ap-
proaches, pp. 1–24. IGI Publishing (May 2009)

20. Paschke, A., Boley, H.: Rules Capturing Events and Reactivity. In: Giurca, A.,
Gasevic, D., Taveter, K. (eds.) Handbook of Research on Emerging Rule-Based
Languages and Technologies: Open Solutions and Approaches, pp. 215–252. IGI
Publishing (May 2009)

21. Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In:
Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858,
pp. 53–66. Springer, Heidelberg (2009)

22. Paschke, A., Teymourian, K.: Rule based business process execution with bpel+.
In: I-SEMANTICS (2009)

23. Paschke, A., Vincent, P.: A reference architecture for event processing. In: DEBS
(2009)

24. Paschke, A., Vincent, P., Moxey, C., Alves, A., Palpanas, T.: The epts event pro-
cessing architecture, debs 2011 tutorial (2010),
http://www.slideshare.net/isvana/

debs2010-tutorial-on-epts-reference-architecture-v11c

(accessed December 2011)
25. RuleML. Reaction ruleml (2009), http://reaction.ruleml.org/

(accessed October 2009)
26. Shaw, R., Troncy, R., Hardman, L.: Lode: Linking open descriptions of events.

In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926,
pp. 153–167. Springer, Heidelberg (2009)

27. Teymourian, K., Streibel, O., Paschke, A., Alnemr, R., Meinel, C.: Towards se-
mantic event-driven systems. In: NTMS, pp. 1–6 (2009)

28. Vincent, P., Alves, A., Moxey, C., Paschke, A.: Architectural and functional design
patterns for event processing. In: DEBS, pp. 363–364 (2011)

29. von Ammon, R., Emmersberger, C., Ertlmaier, T., Etzion, O., Paulus, T., Springer,
F.: Existing and future standards for event-driven business process management.
In: Proceedings of the Third ACM International Conference on Distributed Event-
Based Systems, DEBS 2009, pp. 24:1–24:5. ACM, New York (2009)

http://www.omg.org/spec/bmm/1.1/
http://www.omg.org/spec/bpmn/
http://www.omgwiki.org/dmn-rfp/
http://www.omgwiki.org/soaeda/
http://www.omg.org/spec/prr/
http://www.omg.org/spec/sbvr/
http://www.omg.org/techprocess/meetings/schedule/date-time_foundation_vocabulary_rfp.html
http://www.omg.org/techprocess/meetings/schedule/date-time_foundation_vocabulary_rfp.html
http://www.omg.org/spec/uml/2.4/
http://www.slideshare.net/isvana/debs2010-tutorial-on-epts-reference-architecture-v11c
http://www.slideshare.net/isvana/debs2010-tutorial-on-epts-reference-architecture-v11c
http://reaction.ruleml.org/

Standards for Complex Event Processing and Reaction Rules 139

30. W3C. W3c reaction rules dialect, proposal (2009),
http://www.w3.org/2005/rules/wiki/rrd (accessed July 2009)

31. W3C. W3c web services choreography, working draft (2009),
http://www.w3.org/2002/ws/chor/ (accessed October 2009)

32. W3C. W3c rule interchange format, recommendation (2010),
http://www.w3.org/2005/rules/wiki/rif_working_group

(accessed October 2010)
33. WfMC. Workflow management coalition reference model (1999),

http://www.wfmc.org/reference-model.html (accessed April 2011)

http://www.w3.org/2005/rules/wiki/rrd
http://www.w3.org/2002/ws/chor/
http://www.w3.org/2005/rules/wiki/rif_working_group
http://www.wfmc.org/reference-model.html

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 140–154, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Supporting Data Consistency in Concurrent Process
Execution with Assurance Points and Invariants

Susan D. Urban1, Andrew Courter2, Le Gao2, and Mary Shuman3

1 Department of Industrial Engineering
2 Department of Computer Science,

Texas Tech University, Lubbock, TX
{susan.urban,s.courter,le.gao}@ttu.edu

3 Department of Computer Science,
University of North Carolina, Charlotte, Charlotte, NC

mary.shuman@gmail.com

Abstract. This research has developed the concept of invariant rules for
monitoring data in a service-oriented environment that allows concurrent data
accessibility with relaxed isolation. The invariant rule approach is an extension
of the assurance point concept, where an assurance point is a logical and
physical checkpoint that is used to store critical data values and to check pre
and post conditions related to service execution. Invariant rules provide a
stronger way of monitoring constraints and guaranteeing that a condition holds
for a specific duration of execution as defined by starting and ending assurance
points, using the change notification capabilities of Delta-Enabled Grid
Services. This paper outlines the specification of invariant rules as well as the
invariant monitoring system for activating invariants, evaluating invariant rule
conditions, and deactivating invariants. The system is supported by an invariant
evaluation web service that uses materialized views for more efficient re-
evaluation of invariant rule conditions. The research includes a performance
analysis of the invariant evaluation Web Service. The strength of the invariant
rule technique is that it provides a way to monitor data consistency in an
environment where the coordinated locking of data items across multiple
service executions is not possible.

Keywords: web services, invariants, data consistency, data monitoring,
concurrent data access.

1 Introduction

In service-oriented computing, business processes are composed by executing Web
Services [12]. Although each Web Service is autonomous and self-contained,
composing business processes and achieving a correct global solution is a difficult
and sometimes error-prone task, especially in the context of concurrently executing
processes that access shared data.

In traditional distributed transaction systems, the two-phase commit (2PC) protocol
[5] has been used to support the properties of atomicity, consistency, isolation, and

 Supporting Data Consistency in Concurrent Process Execution 141

durability. Moreover, the concept of serializability is supported by using the two-
phase locking protocol [5]. In service-oriented computing, however, it is generally not
feasible to support ACID properties and serializability at the process level. An
individual service invoked by a process can lock data for the duration of the service
execution. But due to the autonomy of each service, the commit of the service and
thus release of the locks on relevant data accessed by the service cannot be
coordinated with the globally executing process through a procedure such as 2PC.
This is especially true for long-running processes, causing processes to execute using
a relaxed form of isolation in between service executions. As a result, the correctness
of one process might be affected by the recovery of another concurrently running
process if both processes are invoking services that access shared data. Insuring data
consistency at the process level in a service-oriented environment with relaxed
isolation is a challenging task.

This paper presents the concept of invariants for monitoring data in a service-
oriented environment that allows concurrent data accessibility with relaxed isolation.
The invariant technique is an extension to the concept of an assurance point (AP) as
defined in [14, 19]. An AP is a logical checkpoint created in between the service calls
of a process, defining a named point that can be used to store critical data values, to
express a post-condition for completed services, and to express a precondition for the
next service to execute. APs are also used as intermediate rollback points to assist
with backward and forward recovery actions when process failure occurs.

An invariant is expressed as a rule that must remain true during process execution
in between two different APs. An invariant rule is specifically designed for use in
processes where 1) critical data items cannot be locked across multiple service
executions, and 2) it is critical to monitor constraints for the data items that cannot be
locked. The data monitoring functionality provided by the work with Delta-Enabled
Grid Services (DEGS) [2, 18] makes it possible to declare and monitor invariant
conditions. As described in [2], a DEGS is a Grid Service that has been enhanced with
an interface that stores the incremental data changes, or deltas, that are associated
with service execution in the context of globally executing processes. Using the
DEGS approach, when a change to the source database is made by a Grid service, the
delta is captured and inserted into a delta repository.

This research has defined the specification of invariant rules as well as the design
and development of a prototype invariant monitoring system. After a process declares
an invariant rule, if a concurrent process modifies a data item of interest in an
invariant rule condition, the process that activated the invariant is notified by the
monitoring system built on top of Delta-Enabled Grid Services. If the invariant
condition is violated during the specified execution period, the process can invoke
recovery procedures as defined in [19]. The monitoring system includes the design of
a Web Service for evaluating invariants. Since an invariant may need to be evaluated
several times between the starting and ending APs of an invariant, the invariant
evaluation Web Service was designed to make use of materialized views for more
efficient re-evaluation of invariant conditions [15]. The research includes a
performance analysis of the invariant evaluation Web Service, illustrating the benefits

142 S.D. Urban et al.

of using materialized views. Whereas the original work with APs allows data
consistency conditions to be checked at specific points in the execution, invariant
rules provide a stronger way of monitoring constraints to determine if a condition
holds for a specific duration of execution. This is especially useful for long-running
processes with consistency constraints involving data that cannot be locked across
multiple service invocations.

The remainder of this paper is organized as follow. After outlining related work in
Section 2, Section 3 provides an overview of the Delta-Enabled Grid Services and
Assurance Point concepts that provide the basis for supporting the invariant rule.
Section 4 presents an overview of the design and functionality of the Invariant
Monitoring System. A prototype of the Invariant Monitoring System is described in
Section 5, followed by a discussion of the testing and evaluation results in Section 6.
The paper concludes in Section 7 with a summary and discussion of future research.

2 Related Work

Past research with transactional workflows has investigated the need to relax ACID
properties for long running workflow activities [21]. The Saga transaction model was
proposed as a base model for long-running activities and defines a chain of
transactions as a unit of control [6]. The Saga model relaxes the requirement of the
entire transaction as an atomic action by releasing a resource before it completes
without sacrificing the consistency of the database. Models similar to the Saga model
are called Advanced Transaction Models (ATMs). A model that has been used to
define and study transactional workflow is the ConTracts model [20].

Several new approaches for addressing transactional issues have been defined in
the context of web services. A goal of the Promises project [7] is to make sure that
certain values are not overwritten or changed by concurrently executing Web
Services. A promise is an agreement between a client application and a service or
promise maker. The promise maker guarantees that some set of conditions will be
maintained over a set of resources for a specified period of time. Another similar
method is the reservation-based approach [22]. The reservation-based approach
reserves resources that meet the criteria of what the Web Service has requested. Only
the required amount of a resource is reserved, rather than locking the database record
or the entire resource for an extended period of time.

Transactional Attitudes are used as a framework to handle the transactional
reliability issue in Web Services. Transactional Attitudes establish a separation of
transactional properties from other aspects of a service description. In [13], the WSTx
framework uses transactional attitudes that make Web Service providers declare their
individual transactional capabilities and semantics, and Web Service clients declare
their transactional requirements.

The work in [1] uses monitoring rules woven inside of a WS-BPEL process to
dynamically control the execution during runtime. The monitoring rules are annotated
in the source code using assertion languages, such as Anna (Annotated Ada) [11] and

 Supporting Data Consistency in Concurrent Process Execution 143

JML (Java Modeling Language) [10] . User-defined constraints are blended with the
WS-BPEL process at deployment time and are defined externally to allow separation
of the different functionalities.

The work presented in [3] uses aspect-oriented concepts to address the modularity
issues in workflow languages. A prototype extension to BPEL using aspect-oriented
workflow concepts (AO4BPEL) [4] was developed to validate their work. A well
known aspect-oriented programming language, AspectJ [9], uses three key concepts:
join points, pointcuts, and advice, to support the aspect portion of the aspect-oriented
workflows and AO4BPEL described in [3].

Using the techniques describes in this section, constraint conditions cannot be
monitored during a specific execution duration. The focus of the research presented
in this paper is to present a system to extend the Assurance Point architecture to allow
monitoring of critical data conditions during specific execution periods in a process.
Providing this capability allows a more optimistic approach to concurrent process
execution but also allows data inconsistencies to be more quickly recognized.

3 Background for the Use of Invariants

Before presenting the Invariant Monitoring System, it is first necessary to provide
background on the supporting framework provided by Delta-Enabled Grid Services
(DEGS) and Assurance Points.

3.1 Delta-Enabled Grid Services

A DEGS is a Grid Service that has been enhanced with an interface that stores the
incremental data changes, or deltas, that are associated with service execution in the
context of globally executing processes. A DEGS uses the OGSA-DAI Grid Data
Service for database interaction. The DEGS functionality was originally defined in [2]
and has been used to determine data dependencies among concurrently executing
processes to support process recovery actions [18].

Using the DEGS approach, a database captures deltas using capabilities provided
by most commercial database systems. The work in [2, 18] experimented with
triggers and with the use of Oracle Streams as a way to capture data changes. Oracle
Streams is a feature that monitors database redo logs for changes and publishes these
changes to a queue to be used for data sharing [16].

Using the DEGS approach, when a change to the source database is made by a
Grid service, the delta is captured and inserted into a delta repository. The delta
repository has a separate table for inserts, deletes, and updates to each source database
table, allowing information about each type of change to be kept separate.
Additionally, a table mapping each delta to information about the Grid service that
made the change is kept.

A Java stored procedure deployed in the source database is automatically called to
notify a listening Grid service that there are new deltas in the table that was just
modified. The listening Grid service then looks for new deltas in delta repository

144 S.D. Urban et al.

tables. These deltas are compiled into an XML format and then relayed to any other
system that has registered to receive the delta information, such as the Invariant
Monitoring System described in this paper.

3.2 Service Composition and Recovery with APs

As described in [19], an Assurance Point (AP) is a logical and physical checkpoint for
storing data and using rules, known as integration rules (IRs), to check pre and post
conditions at critical points in the execution of a process. Inserting APs at critical
points in a process is important for checking consistency constraints and potentially
reducing the risk of failure or inconsistent data.

An AP can also be used as a rollback point for backward recovery. Three different
forms of backward recovery are described in [19], with the different forms supporting
either full backward recovery or a combination of backward and forward recovery.
APRetry is a recovery action that is used when a running process needs to be
backward recovered to a previously-executed AP. APRollback is a recovery action
that is used when the overall process has more severe errors and must be recovered
back to the beginning of the process. APCascadedContingency is a hierarchical
backward recovery technique that continues to compensate nested processes,
checking each AP that is encountered for a possible contingent procedure that can be
used to correct an execution error.

The most basic use of an AP together with integration rules is shown in Figure 1,
which illustrates three composite groups (i.e., code segments that invoke services) and
an AP between each composite group. The shaded box on the right shows the
functionality of an AP using AP2 as an example. When AP2 is reached, the post-
condition rule, the pre-condition rule, and any conditional rules are checked
sequentially. If the post-condition or the pre-condition is violated, then a recovery
action is invoked. If the pre and post conditions are not violated, then the AP will
invoke any conditional rules to check additional, application-oriented conditions.

One of the limitations of the original AP functionality is that constraints are
checked at a single point in the execution of a process. When the execution continues,
data accessed by the constraint checking procedure can be modified to no longer
satisfy the constraint. As a result, the checking of pre and post-conditions is
insufficient in situations where the constraint must hold but data cannot be locked
over the invocation of several services. The Invariant Monitoring System extends the
functionality of Assurance Points by adding an additional invariant rule type, where
an invariant rule allows the specification of a critical data condition that can be
monitored in between two AP occurrences. The Invariant Monitoring System
therefore supports concurrent activity but allows a process to be notified if a critical
data condition is violated.

4 Invariant Monitoring System

This section presents an overview of the functionality of the Invariant Monitoring
System. The format for invariant rule specification is then presented using two
examples that will be used throughout the remainder of the paper.

 Supporting Data Consistency in Concurrent Process Execution 145

Fig. 1. Assurance Points and Integration Rules [14]

4.1 Overview

Using the invariant technique, a process declares an invariant condition when it reaches
a specific AP in the process execution, also declaring an ending AP for monitoring of
the invariant condition. When a concurrent process modifies a data item of interest in an
invariant condition, the process that activated the invariant is notified by a monitoring
system built on top of Delta-Enabled Grid Services. If the invariant condition is violated
during the specified execution period, the process can invoke the recovery procedures of
Rollback, Retry, and APCascadedContingency as defined in the previous section.

An invariant definition has an identifier, two AP specifications (APs as a starting
AP and APe as an ending AP), and optional parameters that are necessary in the
condition specification. Once APs is reached, the invariant rule condition becomes
active. The condition is specified as an SQL query. The condition is initially
checked and the action is executed if the invariant condition is violated. If the
invariant condition holds, the rule condition goes into monitoring mode using the
DEGS capability. The condition monitoring continues until APe is reached or until the
invariant condition is violated.

As shown in Figure 2, when an invariant condition goes into monitoring mode, the
data items of interest in the invariant condition are registered with a monitoring
service. The monitoring service subscribes to the DEGSs that contain the relevant
data items referenced in an invariant. For example, if the condition to be monitored in
process A at AP1 is a + b > 10, then process A registers the condition when it reaches
AP1 and the relevant DEGS that provide interfaces for access to a and b will notify
process A of any changes to a or to b by a concurrent process, such as process B. Any
deltas that are forwarded to the monitoring service will cause the invariant condition
(a + b > 10) to be rechecked. As long as the condition still holds, then there is no
interference among the concurrent process executions. If the condition is violated,
then the recovery action of the invariant rule for process A will be executed.

146 S.D. Urban et al.

Process
Specification

Process A.
.
.

AP1
.
.
.

AP2
.
.
.

Invariant
data

changed

condition
checked

violated
?

invoke
recoveryAction

data
monitoring

YN

DEGS
interface

Process B.
.
.

Update
operations

.

.

.

Process
Specification

Fig. 2. Invariant System

4.2 Invariant Specification

Assurance Points use the Event-Condition-Action (ECA) format to define different
types of integration rules. These ECA rules are based on previous work with using
integration rules to interconnect software components [8, 17].

Each invariant begins with a create rule statement that defines an invariant
identifier. The event component of the rule identifies the starting AP as well as the
ending AP and any parameters needed for the rule condition specification. When a
process reaches an AP in the execution process, it generates an event indicating the
AP that has been reached. This status event is used to trigger invariant rules that
specify the AP as a starting AP. In the condition section of the invariant rule structure,
the condition is expressed as not exists (select * from …), where the select statement
returns the tuples that satisfy the invariant condition. If the select statement returns
tuples that satisfy the condition, then not exists evaluates to false and no recovery
action is triggered. However, if the SQL condition returns no tuples, then not exists
will return true, indicating that the invariant condition is not satisfied. In this case, the
process is notified and the recovery procedure in the action is invoked.

Hotel Room Reservation Monitoring Example

Figure 3 provides an example of an invariant for a travel planning process, where the
process is scoping out available hotel and airline options before finalizing the plans.
The full details of the process are not presented here, but the invariant is triggered
when the process reaches the BeginTravelPlanning AP as specified in the EVENT
component of the invariant rule. The first parameter of the event specifies that the
invariant is deactivated when the process reaches the ReadyToBook AP. The invariant
condition checks a specific hotel for the availability of a seaside room that is less than
a specified price, where the hotelID and price are passed as additional parameters from
the BeginTravelPlanning AP. Expression of the invariant allows the process to continue
checking the availability of other travel options, such as airline reservations, but to be

 Supporting Data Consistency in Concurrent Process Execution 147

notified if the room availability changes. If the process reaches the ReadyToBook AP
and the desired room type and price are still available, then the process continues past
the ReadyToBook AP, making the appropriate reservations after deactivating the
HotelRoomMonitoring invariant. If at anytime between the BeginTravelPlanning AP and
the ReadyToBook AP the room is no longer available, the invariant monitoring system
will notify the process instance that owns the invariant condition. If the condition is
violated for the first time, the first action APRetry will be invoked. Otherwise, if the
violation happens again, the second action APRollback takes place.

Fig. 3. Invariant for a Hotel Room Reservation Request

Bank Loan Application Monitoring Example

As another example, consider the invariant in Figure 4, where the
LoanAmountMonitoring invariant is to be monitored between the LoanAppCreation AP
(i.e., the starting AP for the monitoring process) and the LoanCompletion AP (i.e., the
ending AP for the monitoring process). The process represents a loan approval
process, where the process is creating a loan application for a customer at a bank that
already has an account at that bank. Figure 4 shows an invariant that is activated when
the LoanAppCreation AP is reached and checks to make sure the loan applicant has a
tenth of the requested loan amount in the account, where the customerId is passed as a
parameter from the LoanAppCreation AP. The monitoring process is started if the
condition is satisfied. If the process reaches the LoanCompletion AP and the applicant’s
account balance still meets the necessary criteria, then the process continues past
the LoanCompletion AP, completing the loan application after deactivating the
LoanAmountMonitoring invariant. If at anytime between the LoanAppCreation AP and the
LoanCompletion AP, the applicant’s account balance falls below the necessary criteria,
the invariant monitoring system will notify the process, which will execute the
recovery action.

5 Prototype of the Invariant Monitoring System

This section outlines the relevant components of the invariant monitoring system that
we have prototyped as part of this research.

148 S.D. Urban et al.

Fig. 4. Invariant for a Bank Loan Approval Process

5.1 Registration of Invariants and Monitored Objects

Invariant rules are parsed and processed to extract the SQL condition and the
monitored objects from the invariant rule definition. Monitored objects are acquired
from the SQL condition of an invariant by extracting the table names together with
the attributes and relevant conditions. Changes to these extracted objects can affect
the result of the query. The Invariant Monitoring System may need to re-evaluate the
SQL condition when it detects a change in monitored objects.

As an example, consider the SQL query from Figure 4. The two tables in this query
are the Loan table and the Account table. There are three conditions in the where clause
of the outer SQL query associated with the Loan table. As a result, there are three
monitored objects from this table: “applicantId = +customerId+”, “status = ‘pre-qualified’”,
and “amount < (select …)”. To simplify the monitored object related to the amount
attribute, the object is converted into “amount < calc” since multiple tables cannot be
analyzed during the delta filtering. The calc keyword is used to signify that this is a
calculated value that must be re-evaluated. In the first condition, customerId is a
parameterized value that is acquired from the parameters of the AP.

The Account table of the inner query has one condition in the where clause,
“customerId = +customerId+”, where customerId is a parameterized value. This query
also illustrates a relevant monitored object in the select clause for the balance attribute
of the Account table. Balance is identified as a calculated value since, if this attribute
changes, it will change the output of the inner query and could potentially violate the
invariant condition.

After parsing an invariant rule, an object structure is used to forward information
about the invariant to an Invariant Agent, which validates the condition and registers
the invariant and its list of monitored objects with the system if the condition is
satisfied. There is a many-to-many relationship between monitored objects and
invariants. If an invariant no longer needs to be monitored, then it is deactivated and
deleted. If the objects related to that invariant are not related to another invariant, they
will also be removed.

5.2 The Invariant Evaluation Web Service

An important component of the Invariant Monitoring System is the Invariant
Evaluation Web Service [15]. The Web Service is used to initially evaluate the SQL
query of an invariant to determine if the condition is satisfied. Since the invariant may

 Supporting Data Consistency in Concurrent Process Execution 149

need to be re-evaluated several times between the starting and ending APs, the Web
Service was designed to make use of materialized views to provide an efficient way
of checking the invariant.

A materialized view is a database object that contains the results of a query. After
populating a materialized view when an invariant is initially evaluated, the view is
automatically updated after any table that is associated with the query is changed. In
Oracle, this is referred to as the FAST refresh option. As a result, simply counting the
number of tuples from the materialized view is faster and more efficient than re-
executing the SQL query when an invariant must be re-evaluated. As long as the
count is greater than zero, the constraint is still satisfied. An empty view indicates that
the constraint is not satisfied.

Figure 5 illustrates the functionality of the Invariant Evaluation Web Service.
After creating any necessary log files needed for the FAST refresh option, the
Invariant Evaluation Web Service determines if the materialized view exists. If the
view does not exist, the materialized view is populated by executing the query of the
invariant for the first time. If the materialized view already exists, then the number of
tuples is queried from the view instead of re-executing the query.

Fig. 5. Evaluation Web Service Functionality

5.3 The Delta Analysis and Filtering Process

The Delta Analysis Agent of the Invariant Monitoring System invokes the filtering of
delta information received from DEGS against the monitored objects. To support the
delta filtering process, a storage container for the monitored objects is required.
Figure 6 shows the Delta Analysis Agent (DAA) Invariant Storage Container, which
consists of two hashtables. The first hash table is the table/attribute hashtable
containing a vector of invariant identifiers that have monitored objects containing the
same table/attribute combination as the key. For example, if an invariant is

150 S.D. Urban et al.

monitoring the price attribute in the orders table, then the key would be orders/price
and the invariant identifier of that invariant would be inserted into the container of
that key in the table/attribute hashtable. The second hashtable, or invariant hashtable,
uses the invariant identifier as the key and relates that key to a container of monitored
objects of that invariant. The first entry in the container contains information about
the number of tuples that the last evaluation of the invariant found, the current number
of violations found against that invariant identifier, and the invariant identifier. The
rest of the container holds the monitored objects that are related to that invariant so
that all conditions related to that invariant can be checked at the same time.

Fig. 6. Delta Analysis Agent Storage Structure

To process delta notifications, a delta filtering process was developed using two
different algorithms, where one algorithm handles insert and delete operations and the
other algorithm handles updates. In addition, each algorithm distinguishes between
invariants that involve a single table and invariants that involve multiple tables.

To allow a more efficient method of determining when to re-evaluate an invariant
that applies to a single table, a variable containing the number of tuples returned from
the SQL query was introduced. Since all of the monitored objects are evaluated over a
single table, the filtering process can use tuple counts to determine when an invariant
is violated. Tuple counts are initialized with the first execution of the query. In the
case of an invariant condition associated with a single table, a violation of the
condition occurs when a tuple that previously satisfied the invariant condition is
deleted. The delta information for the deleted tuple is sent to the delta filtering agent,
where the conditions of the invariant are applied. As a result, a deleted tuple that
previously satisfied the invariant condition can be discovered in the delta filtering
process. Similar violations can be discovered when a tuple is updated. If the number
of tuples equals the number of violations found, then the Delta Analysis Agent can
deduce that there are no more tuples that satisfy the invariant.

 Supporting Data Consistency in Concurrent Process Execution 151

Example 1: Single table insert and delete
Invariant: “select r.price from room r where r.price < ‘30’ and r.roomType =
‘seaview’ and r.hotelid = ‘234’“
Monitored Objects: [(room, price, <, ‘30’), (room, roomType, =, ‘seaview’), (room,
hotelid, =, ‘234’)]
Number of Satisfying Tuples: 1
Discussion: If a tuple satisfying all of the monitored object conditions is inserted into
the room table, then the number of tuples is incremented by one. If one of the
monitored object conditions is not satisfied by the inserted tuple, then the number of
tuples is not incremented (i.e., the inserted data has not affected the contents of the
view). If a tuple that satisfies the invariant is deleted by an external process, then the
number of violations will be incremented. Since the number of tuples will equal the
number of violations, notification will be sent to the process monitoring the invariant
condition. The invariant will be removed from the monitoring process, and the
process will be informed of the violation.

When monitoring multiple tables, a threshold value is used instead of comparing
the number of tuples and the number of violations found. Invariants that involve join
conditions and, therefore multiple tables, require rechecking the invariant condition.
A tuple from one table can join with multiple tuples from another table. As a result,
an insert, delete, or update can cause multiple tuples to enter or leave the result of the
invariant. Furthermore, depending on the number of tuples in the invariant result,
these changes do not necessarily violate the invariant condition. It is not desirable to
check the invariant after each change to a relevant table. A threshold value is used as
a way to periodically initiate a re-evaluation, where the value is a percentage of the
number of tuples that determines when to re-evaluate the invariant condition. This
research has initially used a threshold value of 25% of the invariant tuples. Further
research is needed to dynamically discover a relevant threshold value.

Example 2: Multiple table insert and delete
Invariant: “select r.price from room r, hotel h where r.price < ‘30’ and r.roomType =
‘seaview’ and r.hotelid = h.hotelid and h.state = ‘Texas’“
Monitored Objects: [(room, price, <, ‘30’), (room, roomType, =, ‘seaview’), (hotel,
state, =, ‘Texas’)]
Number of Satisfying Tuples: 25
Threshold: 25%
Discussion: All inserts into multiple table invariants are ignored. Inserting tuples
can potentially increase the size of the number of tuples that satisfy the invariant
condition, but will not cause a violation. If seven tuples from the room table satisfying
the invariant condition are deleted, then the number of violations will be incremented
after each deletion. After the seventh deletion, the number of violations will be greater
than the threshold (7 > .25*25). The invariant condition will then be re-evaluated. If
tuples are found that satisfy the invariant condition, the invariant will update the
number of tuples found in the view, reset the number of violations to zero, and
continue monitoring. If the process continues and after another re-evaluation no
more tuples are found, a notification will be sent to the process monitoring the
invariant condition and the invariant will be removed.

152 S.D. Urban et al.

6 Testing and Evaluation

The focus of the evaluation was on the performance of the Invariant Evaluation Web
Service to determine if the use of materialized views improves the performance of the
re-evaluation process. The testing example used was the Hotel monitoring example,
which involves the Hotel and Room tables, with DEGS created to monitor changes to
all columns of each table. A process with Assurance Points was created for
activating and deactivating different test invariants. Another concurrent process was
also created to modify the monitored data in the source database.

Since re-evaluation occurs primarily in the context of multiple table invariants, the
focus of the evaluation was on invariants that involve join conditions. The first test
case updated 25 tuples, with changes ranging from satisfying the invariant condition
to not satisfying the invariant condition. These updates triggered the invariant
condition to be re-evaluated, but the test was designed so that the invariant condition
was still satisfied and, as a result, the invariant was not removed. The second test
case updated all of the tuples with the changes ranging from satisfying the invariant
condition to not satisfying the invariant condition. This test group was designed so
that the invariant was violated and, as a result, monitoring of the invariant was
removed to evaluate the time associated with removal of the monitored invariant.

Table 1 describes different measurements that were taken and the times associated
with each measurement. The measurements taken include:

- The time for creating the materialized view, where the time includes creating the
view and extracting the number of tuples from the newly created view.

- The total time of the Invariant Evaluation Web Service, which includes checking
and creating any logs, and either creating and querying from the materialized
view or just querying tuple counts from the materialized view if it already exists.

- The time to evaluate the invariant from the Invariant Agent, which includes the
time to call and receive feedback from the re-evaluation function in the Invariant
Agent for evaluating the invariant condition the first time,

- The time to evaluate the invariant from the Delta Analysis Agent, which is the
time is takes to call and receive feedback from the re-evaluation function in the
Invariant Agent. The time taken can also include the time it takes to remove the
invariant condition if there are no more tuples in the view.

- The time to select tuple counts from the materialized view.
- The time to execute an invariant query of instead of materializing a view.

Both multiple table test cases were executed 25 times and an average time in
microseconds was recorded for all measurements. During testing, the Oracle database
used had at least 100 tuples that satisfied the invariant condition on the initial
evaluation. The machine used for testing was a Dell Precision T3400 with 2.99GHz
Intel Core 2 Extreme processor and 4GB of RAM, running Microsoft Windows XP
Professional x64 Edition.

Materialized view creation and total evaluation time was about the same in both
multiple table test cases. The values that are significantly different are the times for
evaluating from the Delta Analysis Agent. The invariant condition is removed in the
case with invariant removal before returning back from the Delta Analysis Agent
evaluation, indicating the time required for deactivation of the invariant.

 Supporting Data Consistency in Concurrent Process Execution 153

An observation from Table 1 is that the time difference between creating the
materialized view and selecting tuple counts from an existing materialized view is
significantly different. The time it takes to query tuple counts from a materialized view
is also much less than the time required to repeatedly re-execute the invariant query. If
a process is long running between the starting and ending APs of an invariant and might
potentially re-execute the invariant query often, then creating the materialized view is
beneficial. Otherwise, directly re-evaluating the query is a better choice for a shorter
process to avoid the overhead of establishing the materialized view.

Table 1. Performance of Multiple Test Cases

7 Summary and Future Work

This paper has introduced invariant rules that are capable of monitoring data constraint
conditions in a process, using the AP concept from [19] as a way to define the
monitoring period. A web service was developed that makes use of materialized views
and is invoked by delta filtering algorithms to improve the efficiency of the invariant
re-evaluation process. Invariant rules provide a way to monitor data consistency in an
environment where the coordinated locking of data items across multiple service
executions is not possible, thus providing support for user-defined correctness
conditions among concurrent processes. Future research is needed to more accurately
define the threshold that is used to determine when to invoke the invariant evaluation
web service. The web service could also be enhanced to make dynamic decisions
regarding the use of materialized views vs. direct re-execution of the invariant query.
Using DEGS to directly monitor the materialized views instead of the delta repository
tables could provide a more efficient solution to monitoring multiple tables.

Acknowledgments. This research has been supported by NSF Grants CCF-0820152
and CNS-1005212. Opinions, findings, conclusions or recommendations expressed in
this paper are those of the author(s) and do not necessarily reflect the views of NSF.

154 S.D. Urban et al.

References

1. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 269–282.
Springer, Heidelberg (2005)

2. Blake, L.: The Design and Implementation of Delta-enabled Grid Services. Arizona State
University (2006)

3. Charfi, A., Mezini, M.: Aspect-Oriented Workflow Languages. In: Meersman, R., Tari, Z.
(eds.) OTM 2006. LNCS, vol. 4275, pp. 183–200. Springer, Heidelberg (2006)

4. Charfi, A., Mezini, M.: Ao4bpel: An Aspect-Oriented Extension to BPEL. World Wide
Web 10(3), 309–344 (2007)

5. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 6th edn. Addison-Wesley
Longman Publishing Co., Inc., Amsterdam (2010)

6. Garcia-Molina, H., Salem, K.: Sagas. ACM SIGMOD Record 16, 249–259 (1987)
7. Jang, J., Fekete, A., Greenfield, P.: Delivering Promises for Web Services Applications.

In: IEEE International Conference on Web Services, Salt Lake City, Utah, USA (2007)
8. Jin, Y.: An Architecture and Execution Environment for Component Integration Rules.

PhD Dissertation, Arizona State University (2004)
9. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An Overview

of AspectJ. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–354. Springer,
Heidelberg (2001)

10. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary Design of JML: A Behavioral Interface
Specification Language for Java. ACM SIGSOFT Software Engineering Notes 31, 1–38 (2006)

11. Luckham, D.: Programming with Specifications: An Introduction to ANNA. In: A
Language for Specifying Ada Programs. Springer, New York (1990)

12. Martens, A.: Analyzing Web Service Based Business Processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

13. Mikalsen, T., Tai, S., Rouvellou, I.: Transactional Attitudes: Reliable Composition of
Autonomous Web Services. In: Conference Transactional Attitudes: Reliable Composition
of Autonomous Web Services (2002)

14. Shrestha, R.: Using Assurance Points and Integration Rules for Recovery in Service
Composition. MS Thesis, Texas Tech University (2010)

15. Shuman, M.: A Database Service for Checking Invariants. Technical Report, Department
of Computer Science, Texas Tech University (2010)

16. Tumma, M.: Oracle Streams: High Speed Replication and Data Sharing. Rampant
TechPress (2004)

17. Urban, S.D., Dietrich, S.W., Na, Y., Jin, Y., Sundermier, A., Saxena, A.: The IRules
Project: Using Active Rules for the Integration of Distributed Software Components. In:
Proceedings of the 9th IFIP Working Conference on Database Semantics: Semantic Issues
in E-Commerce Systems, Hong Kong, pp. 265–286 (April 2001)

18. Urban, S.D., Xiao, Y., Blake, L., Dietrich, S.W.: Monitoring Data Dependencies in
Concurrent Process Execution through Delta-Enabled Grid Services. International Journal
of Web and Grid Services 5, 85–106 (2009)

19. Urban, S., Gao, L., Shrestha, R., Courter, A.: Achieving Recovery in Service Composition
with Assurance Points and Integration Rules. In: Meersman, R., Dillon, T.S., Herrero, P.
(eds.) OTM 2010. LNCS, vol. 6426, pp. 428–437. Springer, Heidelberg (2010)

20. Wächter, H., Reuter, A.: The Contract Model. Universität, Fakultät Informatik (1991)
21. Worah, D., Sheth, A.: Transactions in Transactional Workflows. In: Kershberg, S.J.a.L.

(ed.) Advanced Transaction Models and Architectures, pp. 3–34 (1997)
22. Zhao, W., Moser, L.E., Melliar-Smith, P.M.: A Reservation-Based Coordination Protocol

for Web Services. In: IEEE International Conference on Web Services. IEEE Computer
Society, Orlando (2005)

Probabilistic Event Calculus Based on Markov

Logic Networks

Anastasios Skarlatidis1,2, Georgios Paliouras1,
George A. Vouros2, and Alexander Artikis1

1 Institute of Informatics and Telecommunications
NCSR “Demokritos”, Athens 15310, Greece

{anskarl,paliourg,a.artikis}@iit.demokritos.gr
2 Department of Information and Communication Systems Engineering,

University of the Aegean, Samos, Greece
georgev@aegean.gr

Abstract. In this paper, we address the issue of uncertainty in event
recognition by extending the Event Calculus with probabilistic reason-
ing. Markov Logic Networks are a natural candidate for our logic-based
formalism. However, the temporal semantics of Event Calculus introduce
a number of challenges for the proposed model. We show how and un-
der what assumptions we can overcome these problems. Additionally, we
demonstrate the advantages of the probabilistic Event Calculus through
examples and experiments in the domain of activity recognition, using a
publicly available dataset of video surveillance.

1 Introduction

Symbolic event recognition has received attention in a variety of application
domains, such as health care monitoring, public transport management, activity
recognition etc [2]. The aim of a symbolic event recognition system is to recognise
high-level events (HLE) of interest, based on an input stream of time-stamped
symbols, that is low-level events (LLE).

HLE are defined as relational structures over other subevents, either HLE or
LLE. Logic-based methods, such as the Event Calculus [12], can naturally and
compactly represent relational HLE definitions [4]. These methods, however,
cannot handle uncertainty, which naturally exists in real-world applications.

In this paper, we present a probabilistic extension to Event Calculus [12],
using Markov Logic Networks [8]. Event Calculus (EC) is a formalism for repre-
senting events and their effects, with formal and declarative semantics. Markov
Logic Networks (MLN) is a statistical relational framework, which combines the
expressivity of first-order logic with the formal probabilistic semantics of graph-
ical models. Thus, MLN are a natural candidate for a probabilistic EC – see
[18] for a survey on first-order logic probabilistic models. However, the tempo-
ral semantics of EC introduce a number of challenges. We show how and under
what assumptions, the Event Calculus axioms can be efficiently represented in
MLN. Moreover, we show the effect of probabilistic modelling on some of the
most interesting properties of EC, such as the persistence of HLE.

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 155–170, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

156 A. Skarlatidis et al.

To demonstrate the proposed approach, we apply it to activity recognition,
a subfield of event recognition. The definitions of HLE are domain-dependent
rules that are naturally defined by humans. Each rule is expressed in first-order
logic using the EC language and is associated with a degree of confidence. The
knowledge base of the activity recognition system, consists of these domain-
dependent rules, as well as the domain-independent axioms of the EC. The
input of the system is a sequence of LLE. Probabilistic inference is performed,
to recognise HLE.

The remainder of the paper is organised as follows. First, we present a suc-
cinct description of the EC in first-order logic. Then in section 3, we show how
we can efficiently represent the EC axioms in MLN. In section 4, we explain
how the probabilistic nature of MLN affects the EC semantics. In section 5, we
demonstrate the benefits of probabilistic modelling, through examples and ex-
periments in the domain of activity recognition. In section 6, we present related
work. Finally, we outline directions for further research.

2 Event Calculus: A Succinct Presentation

The Event Calculus (EC), originally introduced by Kowalski and Sergot [12], is
a many-sorted first-order predicate calculus for reasoning about events and their
effects. A number of different dialects have been proposed and implemented using
either logic programming or classical logic — see [20,14] for a survey. Most EC
dialects, however, share the same ontology and core domain-independent axioms.
The ontology consists of timepoints, events and fluents. A timepoint represents
an instant of time. The underlying time model is often linear and it may represent
timepoints as real or integer numbers. A fluent is a property, whose value may
change over time. When an event occurs, it may change the value of a fluent.
The core domain-independent axioms define whether a fluent holds or not at a
specific timepoint. Moreover, the axioms incorporate the common sense law of
inertia, according to which fluents persist over time, unless they are affected by
the occurrence of some event.

In this work we model uncertainty in EC with the use of Markov Logic Net-
works (MLN), which employ first-order logic as a representation language. As
a result, we base our model on an axiomisation of EC in classical first-order
logic. As a starting point, we use a subset of the Full Event Calculus, pro-
posed by Shanahan [20]. For simplicity and without loss of generality the predi-
cate releases is excluded. This predicate, is domain-dependent and defines under
which conditions the law of inertia for a fluent is disabled. All fluents, therefore,
are subject to inertia at all times. Table 1 summarizes the elements of the EC
that we use. Variables (starting with an upper-case letter) are assumed to be
universally quantified unless otherwise indicated. Predicates, function symbols
and constants start with a lower-case letter. Fluents and events are represented
by functions and involve domain objects as variables. In the context of activity
recognition, for instance, the event that a person id1 is walking, is represented
by the function walking(id1). The domain of all variables and functions, that is
the domain of fluents F , events E and timepoints T , is finite.

Probabilistic Event Calculus Based on Markov Logic Networks 157

Table 1. Event Calculus predicates in classical logic

Predicate Meaning

happens(E ,T) Event E occurs at time T
initiallyP(F) Fluent F holds from time 0
initiallyN (F) Fluent F does not hold from time 0
holdsAt(F ,T) Fluent F holds at time T
initiates(E ,F ,T) Event E initiates fluent F at time T
terminates(E ,F ,T) Event E terminates fluent F at time T
clipped(F ,T0 ,T1) Fluent F is terminated some time in the interval [T0, T1]
declipped(F ,T0 ,T1) Fluent F is initiated some time in the interval [T0, T1]

The axioms that determine when a fluent holds, are defined below:

holdsAt(F, T)←
initiallyP (F) ∧
¬clipped(F, 0, T)

(1)

holdsAt(F, T)←
happens(E, T0) ∧
initiates(E, F, T0) ∧
T0 < T ∧
¬clipped(F, T0, T)

(2)

According to axiom (1), a fluent holds at time T if it held initially and has not
been terminated in the interval 0 to T . Alternatively, in axiom (2), a fluent holds
at time T if it was initiated at some earlier time T0 and has not been terminated
between T0 and T .

The axioms that determine when a fluent does not hold, are defined below:

¬holdsAt(F, T)←
initiallyN(F) ∧
¬declipped(F, 0, T)

(3)

¬holdsAt(F, T)←
happens(E, T0) ∧
terminates(E, F, T0) ∧
T0 < T ∧
¬declipped(F, T0, T)

(4)

Axiom (3) defines that a fluent does not hold at time T if it did not held initially
and has not been initiated in the interval 0 to T . Axiom (4) defines that a fluent
does not hold at time T if it was terminated earlier at T0 and has not been
initiated between T0 and T .

The auxiliary domain-independent predicates clipped and declipped , are de-
fined as follows:

clipped(F, T0, T1)↔
∃ E, T happens(E, T) ∧

T0 ≤ T ∧ T < T1 ∧
terminates(E, F, T)

(5)

158 A. Skarlatidis et al.

declipped(F, T0, T1)↔
∃ E, T happens(E, T) ∧

T0 ≤ T ∧ T < T1 ∧
initiates(E, F, T)

(6)

According to axiom (5), a fluent is clipped when the occurrence of an event
terminates the fluent in the interval T0 to T1. In the same manner, axiom (6)
defines that a fluent is declipped when the occurrence of an event initiates the
fluent in the interval T0 to T1.

3 Event Calculus in Markov Logic Networks

Event Calculus (EC) can compactly represent complex event relations, but as a
logic-based formalism cannot handle uncertainty. A knowledge base of EC axioms
and high-level event (HLE) definitions is defined by a set of first-order logic for-
mulas. Each formula imposes a (hard) constraint over the set of possible worlds,
that is, Herbrand interpretations. A missed or an erroneous low-level event (LLE)
detection can have a significant effect on the event recognition results.

Markov Logic Networks (MLN) [8] soften these constraints by associating a
weight value wi to each formula Fi in the knowledge base. The higher the value of
wi, the stronger the constraint represented by Fi. In contrast to classical logic, all
worlds in MLN are possible with a certain probability. The main concept behind
MLN, is that the probability of a world increases as the number of formulas it
violates decreases. A knowledge base in MLN, however, may contain both hard
and soft-constrained formulas. Hard-constrained formulas are associated with an
infinite weight value and capture the knowledge which is assumed to be certain.
Therefore, an acceptable world must at least satisfy these hard constraints. Soft
constraints capture imperfect knowledge in the domain, allowing for the existence
of worlds where this knowledge is violated. The domain-independent axioms of
EC need to be specified as hard constraints, in order to ensure that all acceptable
worlds in the set of possible worlds satisfy them.

A knowledge base L of weighted formulas together with a finite domain of
constants C can be transformed into a ground Markov network ML,C , which
defines a probability distribution over possible worlds. All formulas are converted
into clausal form and each clause is grounded according to the domain of its
distinct variables. The nodes in ML,C are Boolean random variables, each one
corresponding to a possible grounding of a predicate that appears in L. The
predicates of a ground clause, form a clique in the ML,C . Each clique is associated
with the corresponding weight wi and a Boolean feature, taking the value 1
when the ground clause is true and 0 otherwise. More formally, the probability
distribution over possible worlds is represented as follows:

P (X = x) = 1
Z exp

(∑|Fc|
i wini(x)

)
(7)

where x ∈ X represents a possible world, Fc is the set of clauses, wi is the
weight of the i-th clause and ni(x) is the number of true groundings of the

Probabilistic Event Calculus Based on Markov Logic Networks 159

i-th clause in x. Z is the partition function used for normalisation, that is,
Z =

∑
x∈X exp(

∑|Fc|
i wini(x)), where X is the set of all possible worlds.

For example, the EC axiom (1) produces one clause and has two distinct
variables F and T . Therefore, the number of its groundings is defined by the
Cartesian product of the corresponding variable-binding constants, that is F×T .
Assuming that the domain of variable F is relatively small compared to the
domain of T , the number of groundings of axiom (1) grows linearly to the number
of timepoints. Axioms (5) and (6), however, are triply quantified over timepoint
variables (T0, T1 and T) and therefore, the number of their groundings has a
cubic relation to the number of timepoints. In addition, the variables E and
T are existentially quantified. During MLN grounding, existentially quantified
formulas are replaced by the disjunction of their groundings [8]. This leads to
clauses with a large number of disjunctions and a combinatorial explosion of
the number of clauses that are generated from axioms (5) and (6). Therefore,
representing the presented EC directly in MLN is not practical for real-world
event recognition, as its axioms lead to an unmanageably large Markov network.

To eliminate the triply quantified axioms that lead to an explosion of the num-
ber of groundings, a discrete version of EC [16] can be used instead. The Discrete
Event Calculus (DEC) has been proven to be logically equivalent with EC, when
the domain of timepoints is limited to integers [16]. In a similar manner to the
EC presented in section 2, we focus on the corresponding domain-independent
axioms of DEC. The axioms of DEC utilize a subset of the EC elements (Table
1), that is happens , holdsAt , initiates and terminates.

The axioms that determine when a fluent holds, are defined as follows:

holdsAt(F, T + 1)←
happens(E, T) ∧
initiates(E, F, T)

(8)

holdsAt(F, T + 1)←
holdsAt(F, T) ∧
¬∃ E happens(E, T) ∧
teminates(E, F, T)

(9)

According to axiom (8), when an event E that initiates a fluent F occurs at time
T , the fluent holds at the next timepoint. Axiom (9) implements the inertia of
fluents, dictating that a fluent continues to hold unless an event terminates it.

The axioms that determine when a fluent does not hold, are defined similarly:

¬holdsAt(F, T + 1)←
happens(E, T) ∧
terminates(E, F, T)

(10)

¬holdsAt(F, T + 1)←
¬holdsAt(F, T) ∧
¬∃ E happens(E, T) ∧
initiates(E, F, T)

(11)

160 A. Skarlatidis et al.

Axiom (10) defines that when an event E that terminates a fluent F occurs at
time T , then the fluent does not hold at the next timepoint. Axiom (11) specifies
that a fluent continues not to hold unless an event initiates it.

Compared to EC, DEC axioms are defined over successive timepoints. Addi-
tionally, the DEC axioms are quantified over a single timepoint variable. There-
fore the number of ground clauses is substantially smaller than EC. Axioms
(9) and (11), however, contain the existentially quantified variable E. Each
of these axioms will be transformed into 2|E| clauses, each producing F × T
groundings. Moreover, each ground clause will contain a large number of dis-
junctions, causing large cliques in the ground Markov network. To overcome
the creation of 2|E| clauses, we can employ the technique of subformula re-
naming [17], as it is used in [16]. According to this technique, the subformula
happens(E, T) ∧ initiates(E, F, T) in (11), is replaced by a utility predicate
that applies over the same variables, e.g. startAt(E, F, T). A corresponding util-
ity formula, i.e startAt(E, F, T) ↔ happens(E, T) ∧ initiates(E, F, T), is then
added to the knowledge base. With this replacement, the axiom produces a single
clause and the utility formula produces three clauses. However, the existential
quantification remains in the axiom, causing large cliques in the ground network.

In order to eliminate the existential quantification and reduce further the num-
ber of variables, we adopt a similar representation as in [3], where the arguments
of initiation and termination predicates are only defined in terms of fluents and
timepoints — represented by the predicates initiatedAt and terminatedAt re-
spectively. As a result, the domain-independent axioms of DEC presented above
are universally quantified over fluents and timepoints.

The axioms that determine when a fluent holds are thus defined as follows:

holdsAt(F, T + 1)←
initiatedAt(F, T) (12)

holdsAt(F, T + 1)←
holdsAt(F, T) ∧
¬teminatedAt(F, T)

(13)

Axiom (12) defines that when a fluent F is initiated at time T , then it holds at
the next timepoint. Axiom (13) specifies that a fluent continues to hold unless
it is terminated.

The axioms that determine when a fluent does not hold, are defined similarly:

¬holdsAt(F, T + 1)←
terminatedAt(F, T) (14)

¬holdsAt(F, T + 1)←
¬holdsAt(F, T) ∧
¬initiatedAt(F, T)

(15)

Axiom (14) defines that when a fluent F is terminated at time T then it does
not hold at the next timepoint. According to axiom (15), a fluent continues not
to hold unless it is initiated.

Probabilistic Event Calculus Based on Markov Logic Networks 161

The predicates happens , initiatedAt and terminatedAt are defined only in
a domain-dependent manner. Specifically, the predicate happens provides the
input evidence, determining the occurrence of an event at a specific timepoint.
The predicates initiatedAt and terminatedAt , specify under which circumstances
a fluent is to be initiated or terminated at a specific timepoint. According to the
representation proposed by [3], a domain-dependent rule, e.g. the initiation of a
fluent fluent1 over objects X and Y , has the following general form:

initiatedAt(fluent1(X, Y), T)←
happens(event1(X), T) ∧ ... ∧
Conditions[X, Y, T]

(16)

where Conditions[X, Y, T] is a set of predicates that introduce further con-
straints in the definition, referring to time T and the domain-dependent objects
X and Y . The initiation and termination of a fluent can be defined by more
than one rule, each capturing a different initiation and termination case.

As an example, consider the following definition of the meeting activity be-
tween two persons. The rules represent the conditions under which the HLE meet
is initiated or terminated.

initiatedAt(meet(ID1, ID2), T)←
happens(active(ID1), T) ∧
¬happens(running(ID2), T) ∧
close(ID1, ID2, 25, T)

(17)

initiatedAt(meet(ID1, ID2), T)←
happens(inactive(ID1), T) ∧
¬happens(running(ID2), T) ∧
¬happens(active(ID2), T) ∧
close(ID1, ID2, 25, T)

(18)

terminatedAt(meet(ID1, ID2), T)←
happens(walking(ID1), T) ∧
¬close(ID1, ID2, 34, T)

(19)

terminatedAt(meet(ID1, ID2), T)←
happens(running(ID1), T) (20)

terminatedAt(meet(ID1, ID2), T)←
happens(exit(ID1), T) (21)

Predicate close is a preprocessed spatial constraint, stating that the distance
between the persons ID1 and ID2 at time T must be below a specified threshold
in pixels, e.g. in (17) the threshold is 25 pixels.

4 The Law of Inertia in Probabilistic Event Calculus

A knowledge base with domain-dependent rules in the form of (16), describes
explicitly the conditions under which fluents are initiated or terminated. It is usu-
ally impractical to define also when a fluent is not initiated and not terminated.

162 A. Skarlatidis et al.

However, the open-world semantics of first-order logic result to an inherent un-
certainty about the value of the fluent for many timepoints. In other words, if
at a specific timepoint no event that terminates or initiates a fluent happens, we
cannot rule out the possibility that the fluent has been initiated or terminated.
As a result, it cannot be determined whether a fluent holds or not, causing the
loss of the inertia.

This is also known as the frame problem and one solution for EC and DEC in
classical logic is the use of circumscription [13,19,7]. The aim of circumscription,
is to automatically rule out all those conditions which are not explicitly entailed
by the given formulas. Hence, circumscription introduces a closed world assump-
tion to first-order logic. We perform circumscription by predicate completion, as
in [19,16]. Technically, predicate completion is a syntactic transformation, in
which formulas are translated into logically stronger ones.

As an example, consider a knowledge base of domain-dependent rules in
the form of (16), containing, among others, the definition of HLE meet (17)
- (21). The application of circumscription over the predicates initiatedAt and
terminatedAt will transform all domain-dependent rules into the following form:

initiatedAt(F, T)↔
∃ ID1, ID2 (F = meet(ID1, ID2) ∧
happens(active(ID1), T) ∧
¬happens(running(ID2), T) ∧
close(ID1, ID2, 25, T)) ∨
∃ ID1, ID2 (F = meet(ID1, ID2) ∧
happens(inactive(ID1), T) ∧
¬happens(running(ID2), T) ∧
¬happens(active(ID2), T) ∧
close(ID1, ID2, 25, T)) ∨
...

terminatedAt(F, T)↔
∃ ID1, ID2 (F = meet(ID1, ID2) ∧
happens(walking(ID1), T) ∧
¬close(ID1, ID2, 25, T)) ∨
∃ ID1, ID2 (F = meet(ID1, ID2) ∧
happens(running(ID1), T)) ∨
∃ ID1, ID2 (F = meet(ID1, ID2) ∧
happens(exit(ID1), T)) ∨
...

(22)

The resulting rules (22), define explicitly the unique condition, under which each
fluent is initiated or terminated. Any other event occurrence cannot affect any
fluent, as it is impossible to cause any initiation or termination. However, the
presence of existentially quantified variables causes combinatorial explosion to
the number of grounded clauses, as explained above.

To address this problem we make the assumption that every fluent of interest is
defined in terms of at least one initiation and one termination rule. Additionally,

Probabilistic Event Calculus Based on Markov Logic Networks 163

we assume that the variables that appear in the head of the initiatedAt and
terminatedAt rules are the only variables in these rules. Therefore, each domain-
dependent rule is implicitly universally quantified over these variables. These
assumptions are reasonable in event recognition applications. The assumptions
allow to compute the circumscription for each fluent separately, rather than
computing the circumscription of the entire knowledge base over the predicates
initiatedAt and terminatedAt . Furthermore, the knowledge base is enriched with
additional formulas.

For example, the domain-dependent rules about the initiation of meet (rules
(17) and (18)) are translated into the following form:

Σ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

initiatedAt(meet(ID1, ID2), T)←
happens(active(ID1), T) ∧
¬happens(running(ID2), T) ∧
close(ID1, ID2, 25, T)

initiatedAt(meet(ID1, ID2), T)←
happens(inactive(ID1), T) ∧
¬happens(running(ID2), T) ∧
¬happens(active(ID2), T) ∧
close(ID1, ID2, 25, T)

Σ′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

initiatedAt(meet(ID1, ID2), T)→
(happens(active(ID1), T) ∧
¬happens(running(ID2), T) ∧
close(ID1, ID2, 25, T)) ∨
(happens(inactive(ID1), T) ∧
¬happens(running(ID2), T) ∧
¬happens(active(ID2), T) ∧
close(ID1, ID2, 25, T))

(23)

Compared to the rules in (22), the rules in (23) are simpler, as they do not involve
any existentially quantified variable. Compared to (17) - (21), the axioms in (23)
introduce additional formulas, indicated by Σ′, which eliminate the possibility
that worlds not described by the original knowledge base can satisfy the theory.

By assigning a weight to a formula in MLN it automatically becomes a soft
constraint, allowing some worlds that do not satisfy this formula to become
likely. This is desirable in event recognition, in order to allow for imperfect
HLE definitions. In the presence of soft constraints, however, the behaviour of
circumscribed formulas changes. To illustrate this, consider that a knowledge
base of domain-dependent rules, in the form of (23), is separated into a set
Σ of the original rules and a set of additional formulas Σ′ that result from
circumscription. By treating the formulas in these sets as either hard or soft
constraints, we may distinguish the following four general cases:

1. The formulas in both sets are hard-constrained. This will produce the same
results as crisp logic and there are no differences or benefits to be gained.

164 A. Skarlatidis et al.

0 3 10 20
0.0

0.5

1.0

time

Initiated Initiated Terminated

Fig. 1. The probability of meet

2. Only the formulas in Σ are soft-constrained and thus worlds that violate
these constraints become probable. This situation reduces the certainty of
a fluent being initiated or terminated, when all the required conditions are
met. As a result, fluents hold with some probability, instead of absolute
certainty. Moreover, given a fluent that holds with some probability, when
the initiating conditions are met the probability increases. Similarly, when
the terminating conditions are satisfied, the probability that a fluent holds
decreases. At the same time, the worlds that violate the formulas in Σ′ are
rejected and therefore the inertia is retained. Consider, for example, that
the fluent meet holds at time 0 with some probability. At time 3, the fluent
is initiated by (18). Thereafter at time 10 it is initiated again by (17) and
finally at time 20 it is terminated by (19). The probability of meet will
increase at time 4. Since the inertia is retained, the probability of meet will
persist in the interval 4 to 10. Similarly, at time 11, the probability of meet
will increase again and persist until time 20. Thereafter, the probability that
meet holds will decrease (see figure 1).

3. Only formulas in Σ′ are soft-constrained. A fluent is initiated or terminated
with certainty when the corresponding conditions of the rules in Σ are satis-
fied by the evidence. The formulas imposed by circumscription, however, can
be violated. Therefore, the closed-world assumption is softened and the ini-
tiation or the termination of a fluent when irrelevant events happen becomes
likely. The lower the value of the weight on the constraint, the more proba-
ble worlds that violate the constraint become. As a result, the value of the
weight affects the persistence of inertia. In other words, strong weight values
in Σ′ cause the inertia to persist for longer time periods than weak ones.
Despite that the fluent in this case is initiated or terminated with certainty,
the softened formulas in Σ′ causes the fluent to hold with some probability.

4. All formulas are soft-constrained in both Σ and Σ′ sets. Fluents will be
initiated or terminated with some probability, as in the second case. Also
the persistence of inertia is controlled by the weight of the formulas in Σ′,
as in the third case.

In (23) we could have chosen a more compact representation, using equivalence,
as commonly done in circumscription. However, the expanded form of the rules
allows us to control separately our confidence level for each domain-dependent
rule and the inertia of each fluent.

Probabilistic Event Calculus Based on Markov Logic Networks 165

5 Application to Activity Recognition

To demonstrate our method (DEC-MLN)1, we present examples and experi-
ments2 from the domain of video activity recognition, using the publicly avail-
able dataset of the CAVIAR project3. The dataset comprises 28 surveillance
videos, where each frame is annotated by human experts, providing two levels
of activity information. The first level contains the low-level event (LLE) anno-
tation for individual objects or persons, using the tags active, inactive, walking
and running. The second level contains the high-level events (HLE) between peo-
ple and objects, using the tags meeting, moving, fighting and leaving an object.
The former level provides the input LLE for our approach, while the latter the
ground truth HLE. The aim of the experiments is to recognise HLE that occur
among people and objects, by providing a sequence of LLE as evidence. In EC
terminology, events and fluents correspond to LLE and HLE, respectively.

For comparison purposes, we use as a baseline method the activity recognition
method proposed in [4] (EC-LP). EC-LP implements EC using logic program-
ming and contains a knowledge base of HLE definitions for the CAVIAR dataset.
The experiments are performed using the same HLE definitions as EC-LP, trans-
lated into first-order logic syntax using the formulation proposed in section 3 (e.g.
formulas (17) - (21)) and computing the circumscription as presented in section
4. Details about the activity recognition application and a description of the
HLE definitions, can be found in [4].

The input to both DEC-MLN and EC-LP consists of a sequence of LLE, along
with their timestamps. Additionally, the first and the last time that a person
or an object is tracked is provided as the LLE enter and exit. The input to
EC-LP contains also the coordinates of the people tracked at each time-point.
In DEC-MLN, the value of the close predicates is precomputed.

The output of both methods consists of a sequence of ground holdsAt pred-
icates, indicating which HLE are recognised. EC-LP performs crisp reasoning,
and thus all HLE are recognised with absolute certainty. On the other hand,
DEC-MLN performs conditional probabilistic inference. Consequently, all recog-
nised HLE are associated with a probability. In the following experiments, we
consider any result with probability above 0.5 as a recognised HLE.

In the first experiment, we wanted to confirm that our method behaves like
a crisp EC method, if required. For this purpose, we assigned the same strong
weight value (high confidence) to each HLE definition in Σ and hard-constrained
the resulting formulas of circumscription in Σ′. As expected, DEC-MLN pro-
duced exactly the same results as EC-LP in this experiment.

1 The HLE definitions of the method can be found in:
http://www.iit.demokritos.gr/~anskarl

2 For our experiments we used the open-source MLN framework Alchemy, which can
be found in: http://alchemy.cs.washington.edu

3 The CAVIAR dataset can be found in:
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

http://www.iit.demokritos.gr/~anskarl
http://alchemy.cs.washington.edu
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

166 A. Skarlatidis et al.

Table 2. Results for HLE “meet” using soft constraints. Number of True Positives
(TP), False Positives (FP), False Negatives (FN), Precision and Recall rates are mea-
sured per frame.

Method TP FP FN Precision Recall

EC-LP 3099 2258 525 0.578 0.855
DEC-MLNa 3048 1762 576 0.633 0.841
DEC-MLNb 3048 1154 576 0.725 0.841

In the second experiment, we demonstrate the effect of soft constraints on
event recognition. For this purpose, we adjusted the weight values for the HLE
meet and studied two cases. The first case (DEC-MLNa) demonstrates the ben-
efits of having soft-constrained domain-dependent definitions only in Σ. The
second case (DEC-MLNb) demonstrates a potential use of soft-constrained cir-
cumscription rules in Σ′, in addition to the soft-constrained rules of DEC-MLNa.
The evaluation results are presented in Table 2.

In the DEC-MLNa case, each initiation and termination rule in (17) - (21) is
associated with a weight value that indicates its confidence. More specifically,
the HLE meet is rarely initiated rule (18) and therefore this rule is assigned a
weak weight value, indicating low confidence. On the other hand, the initiation
rule (17), as well as the termination rules (19) - (21), are assigned weight values
that indicate high confidence, as they are tightly associated with the HLE. The
additional formulas that result from circumscription are hard-constrained, in
order to fully retain the inertia. Compared to EC-LP, the low confidence value
in rule (18) reduces significantly the number of false positives. The cost is a
small loss of true positives, as can be seen in Table 2. As a result, precision is
improved by 5.5 percentage points, while recall falls by 1.4 points, without any
effect on the recognition of other HLE.

As noted in [4], the definitions of HLE meet and move, share the same termi-
nation constraints in the knowledge base. As a result, the HLE meet and move
that are detected by EC-LP may overlap. According to the HLE annotation,
however, meet and move do not happen concurrently. Consider, for example, a
situation where two people meet for a while and thereafter they move together.
During the interval where move is detected, meet will also remain detected, as it
is not terminated and the law of inertia holds. However, there are no LLE that
initiate meet in this interval and its probability is not reinforced. By softening
the circumscription formulas for terminating meet in Σ′, worlds not satisfying
these rules will become likely. As a result, when there is no further evidence from
LLE that initiates meet, e.g. when move starts in the above example, the detec-
tion of meet will gradually become less likely as desired. As a side effect, this
change reduces the detection probability of meet in cases where meet is initiated.
To overcome this issue, we increased the weight values of the initiation rules in
Σ. In summary, in the DEC-MLNb case the circumscription of termination rules

Probabilistic Event Calculus Based on Markov Logic Networks 167

in Σ′ for HLE meet are soft-constrained, while the circumscription of initiation
rules remain hard-constrained and the weights of the initiation rules in Σ are
soft-constrained. Compared to EC-LP, the number of false positives is further
reduced, increasing the precision rate by 9.2 percentage points, without any loss
of recall or any effect on the recognition of other HLE.

The two cases presented here, DEC-MLNa and DEC-MLNb, illustrate the
benefits to be gained by softening the constraints and performing probabilistic
logical reasoning in event recognition.

6 Related Work

Symbolic methods can naturally and compactly represent high-level event (HLE)
definitions for event recognition and model complex event relations, such as con-
currency and persistency — see [2] for a list of applications. The chronicle recog-
nition system [9], for example, is a symbolic event recognition method that can
efficiently recognise HLE. Event Calculus (EC) is another logic-based formalism
that has been recently applied to event recognition [4,3]. The formal declarative
semantics of symbolic methods, allow the compact representation of structured
HLE, as well as the integration of background domain knowledge that helps to
improve the event recognition performance. However, symbolic methods cannot
handle uncertainty, which naturally exists in many real-world applications and
may seriously compromise the event recognition results. In our work, we combine
EC and Markov Logic Networks (MLN) in a method that supports the definition
of HLE in EC and performs probabilistic event recognition with MLN. Unlike
crisp-logic EC [4,3], our method allows to control the level of the persistency of
fluents. As noted in section 5, we have used the same HLE definitions as in [4],
preprocessed appropriately to fit the MLN representation and computation.

Probabilistic graphical models, such as Hidden Markov Models and Dynamic
Bayesian Networks have been successfully applied to event recognition in a vari-
ety of applications where uncertainty exists (e.g. [6,22]). Compared to symbolic
methods, such models can naturally handle uncertainty but their propositional
structure provides limited representation capabilities. To model HLE that in-
volve a large number of domain objects (e.g. interactions between multiple per-
sons), the structure of the model may become prohibitively large and complex.
The lack of a formal representation language makes the definition of such HLE
complicated and the integration of domain background knowledge is very hard.

A logic-based method that handles uncertainty is presented in [21]. The
method incorporates rules that express HLE in terms of input low-level events
(LLE). Each HLE or LLE is associated with two uncertainty values, indicating
a degree of information and confidence respectively. The underlying idea of the
method is that the more confident information is provided, the stronger the be-
lief about the corresponding HLE becomes. Accordingly, in our work, the more
initiations (or terminations) we have, the higher (or lower) the probability that
the corresponding HLE holds. In contrast to that method, our work employs
MLN that provide formal probabilistic semantics, as well as EC to represent
complex HLE.

168 A. Skarlatidis et al.

Recently, MLN have also been used for event recognition. The method in
[5], uses MLN to combine the information from low-level classifiers, in order
to recognise HLE. A more expressive method that can represent persistent and
concurrent HLE, as well as their starting and ending points, is proposed in [10].
However, that method has a quadratic complexity to the number of timepoints.
Also, the methods in [5] and [10] focus on HLE that do not involve relations
among multiple domain objects. Additionally, they cannot handle situations
where nothing is happening, as their axioms require that at each timepoint at
least one HLE must occur. Due to those limitations, these methods are difficult
to scale up in real-world event recognition applications.

In [23,11] a knowledge base of common sense rules, expressing HLE, is defined
in first-order logic. Each rule is associated with a weight value that indicates its
confidence. Additionally, the method takes into account the confidence value
of the input LLE, which may be due to noisy sensors. Probabilistic inference
is performed by MLN, in order to recognise the HLE. Although, the method
represents HLE that involve relations among multiple domain objects, the HLE
definitions have a limited temporal representation. A more expressive method
that uses interval-based temporal relations, is proposed in [15]. The aim of the
method is to determine the most consistent sequence of HLE, based on the
observations of low-level classifiers. Similar to [23,11], the method expresses HLE
using common sense rules. However, it employs temporal relations that are based
on Allen’s Interval Algebra (IA) [1]. In order to avoid the combinatorial explosion
of possible intervals that IA may produce, as well as to eliminate the existential
quantifiers in HLE definitions, a bottom-up process eliminates the unlikely HLE
hypotheses. That process can only be applied to domain-dependent axioms, as
it is guided from the observations and the IA relations. In our work, we address
the combinatorial explosion problem in a more generic manner, by representing
the EC domain-independent axioms efficiently.

7 Conclusions

In this work, we address the issue of uncertainty that naturally exists in many
levels of event recognition, such as the input LLE and the imprecise HLE defi-
nitions. We propose a probabilistic extension of Event Calculus (EC) based on
Markov Logic Networks (MLN). The method has formal, declarative semantics
and inherits the properties of the EC. The domain-independent axioms of EC
are hard-constrained, while the domain-dependent HLE definitions can be asso-
ciated with a confidence level. Moreover, by exploiting the probabilistic nature
of MLN, we show how the persistency of fluents can be controlled. We place
emphasis on the efficiency and effectiveness of our approach to meet the re-
quirements of real-world applications, by simplifying the axioms of the EC and
therefore reducing the size of the underlying ground network built by MLN.

Due to the use of MLN, our method lends itself naturally to learning the
weights of event definitions from data. We believe this is an important next step,

Probabilistic Event Calculus Based on Markov Logic Networks 169

as the manual setting of weights is suboptimal and cumbersome. Furthermore,
we plan to perform additional experiments with other real-world datasets, in
order to demonstrate further the potential of our method.

Acknowledgements. This work has been partially funded by EU, in the con-
text of the PRONTO project (FP7-ICT 231738).

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun.
ACM 26(11), 832–843 (1983)

2. Artikis, A., Paliouras, G., Portet, F., Skarlatidis, A.: Logic-based representation,
reasoning and machine learning for event recognition. In: DEBS, pp. 282–293
(2010c)

3. Artikis, A., Sergot, M., Paliouras, G.: A logic programming approach to activity
recognition. In: ACM Workshop on Events in Multimedia (2010b)

4. Artikis, A., Skarlatidis, A., Paliouras, G.: Behaviour recognition from video con-
tent: a logic programming approach. IJAIT 19(2), 193–209 (2010a)

5. Biswas, R., Thrun, S., Fujimura, K.: Recognizing activities with multiple cues. In:
Elgammal, A.M., Rosenhahn, B., Klette, R. (eds.) Human Motion 2007. LNCS,
vol. 4814, pp. 255–270. Springer, Heidelberg (2007)

6. Brand, M., Oliver, N., Pentland, A.: Coupled hidden markov models for complex
action recognition. In: CVPR, pp. 994–999. IEEE Computer Society (1997)

7. Doherty, P., Lukaszewicz, W., Szalas, A.: Computing circumscription revisited: A
reduction algorithm. J. Autom. Reasoning 18(3), 297–336 (1997)

8. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelli-
gence. Morgan & Claypool Publishers (2009)

9. Dousson, C., Maigat, P.L.: Chronicle recognition improvement using temporal fo-
cusing and hierarchization. In: Veloso, M.M. (ed.) IJCAI, pp. 324–329 (2007)

10. Helaoui, R., Niepert, M., Stuckenschmidt, H.: Recognizing interleaved and con-
current activities: A statistical-relational approach. In: PerCom, pp. 1–9. IEEE
(2011)

11. Kembhavi, A., Yeh, T., Davis, L.S.: Why did the person cross the road (there)?
scene understanding using probabilistic logic models and common sense reasoning.
In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312,
pp. 693–706. Springer, Heidelberg (2010)

12. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4, 67–95 (1986)

13. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artificial In-
telligence 13, 27–39 (1980)

14. Miller, R., Shanahan, M.: Some alternative formulations of the event calculus.
In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and
Beyond. LNCS (LNAI), vol. 2408, pp. 452–490. Springer, Heidelberg (2002)

15. Morariu, V.I., Davis, L.S.: Multi-agent event recognition in structured scenarios.
In: Computer Vision and Pattern Recognition (CVPR)

16. Mueller, E.T.: Event calculus. In: Handbook of Knowledge Representation, FAI,
vol. 3, pp. 671–708 (2008)

17. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Hand-
book of Automated Reasoning, vol. 1, pp. 335–367 (2001)

170 A. Skarlatidis et al.

18. de Salvo Braz, R., Amir, E., Roth, D.: A survey of first-order probabilistic models.
In: Innovations in Bayesian Networks. SCI, pp. 289–317 (2008)

19. Shanahan, M.: Solving the frame problem: a mathematical investigation of the
common sense law of inertia. MIT Press, Cambridge (1997)

20. Shanahan, M.: The event calculus explained. In: Artificial Intelligence Today: Re-
cent Trends and Developments, pp. 409–430 (1999)

21. Shet, V.D., Neumann, J., Ramesh, V., Davis, L.S.: Bilattice-based logical reasoning
for human detection. In: CVPR (2007)

22. Shi, Y., Bobick, A.F., Essa, I.A.: Learning temporal sequence model from partially
labeled data. In: CVPR (2), pp. 1631–1638. IEEE Computer Society (2006)

23. Tran, S.D., Davis, L.S.: Event modeling and recognition using markov logic net-
works. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS,
vol. 5303, pp. 610–623. Springer, Heidelberg (2008)

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 171–178, 2011.
© Springer-Verlag Berlin Heidelberg 2011

On Applying Temporal Database Concepts
to Event Queries

Foruhar Ali Shiva1 and Susan D. Urban2

1 School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University,

Foruhar.Shiva@ASU.EDU
2 Department of Industrial Engineering,

Texas Tech University,
Susan.Urban@TTU.EDU

Abstract. Temporal databases and query languages have been a subject of
research for more than 30 years and are a natural fit for expressing queries that
involve a temporal dimension. This paper makes an argument for an event
query language that incorporates temporal relational operators to provide a
higher degree of expressivity for event queries. The proposed event query
language is based on relational algebra with extensions from the XChangeEQ
event query language. After an overview of temporal database operators,
example use cases are presented to illustrate the benefits of integrating event
and temporal query language concepts. Challenges to the approach and
potential solutions are also presented.

Keywords: Temporal Queries, Event Processing, Temporal Databases.

1 Introduction

The increasing availability of network infrastructure and bandwidth has increased the
prevalence of system designs in which system components share data through the use
of events. Application areas include Homeland Security, Supply Chain Management
and any other environment where sensor readings are continually forwarded for
processing. Subsequently, processing of event streams has garnered considerable
attention in the research community.

Originally, events in active databases consisted of simple or primitive events. Later
work supported specification of patterns of different events over time, called
composite or complex events [1]. Complex events are formed through the use of
event composition operators. Most of the recent work in the area of event stream
processing also uses composition operators as a basis for their languages [2-4],
although exceptions such as [5] exist, with a language that is based on temporal logic.

While the meaning of sequence and other composition operators seems
straightforward at first glance, in reality different approaches have been used for
defining their semantics. A thorough investigation of issues with the sequence
operator and composition operators in general can be found in [6], [7]. These issues

172 F.A. Shiva and S.D. U

have led to an increase in
towards interval semantics
longer sufficient to capture
composite events. Operator
have been proposed in som
temporal aspects of interval

Temporal databases and
subject of research for the
enable correct modeling and

This paper proposes ado
databases for querying int
expressing event queries.
example use cases where te

To utilize temporal oper
use a relational framework
language that uses relatio
semantics [7], [9]. We ex
and propose an extension to

2 Temporal Databas

Temporal databases are da
with an temporal axis. Two
and UNPACK [3]. Both op
and produce a relation wit
information. Informally, th
tuples, such that each of
attributes as the original tu
one unit from the original t
example for a relation calle

Fig. 1. Demonstra

Urban

n adoption of an interval-based model. With the m
s in event processing, simple sequence operators are
e temporal relationships that are possible between differ
rs based on temporal relationships as defined in Allen
me languages [9], [10]. However, direct querying of
l-based events has not been supported in previous work.

d, by consequence, temporal query languages have bee
e last 30 years. The objective of temporal databases is
d expressive querying of data that changes over time.
option of operators developed in the context of tempo
terval-based event data to enable a new dimension
We utilize these operators presented in [11] to pres

emporal operators can be used for event processing.
rators developed in the database context, it is necessary
k for event processing. XChangeEQ is an event process
onal algebra as a basis for formalizing its operatio
amine the relational framework introduced in XChang

o support the application of temporal operators.

se Operators

atabases that maintain historical data [11], which is d
o operators are used in temporal database queries: PA

perators take a relation that has an interval attribute as in
th the same heading and representing the same seman
he UNPACK operator expands each tuple into multi
the new tuples has the same value for the non-inter

uple, and the interval attribute for each new tuple refle
tuple's interval value. Figure 1 panels (A) and (B) show
d department and the result of applying UNPACK.

ation of Temporal Project using PACK and UNPACK

move
 no
rent
[8]
the

.
en a
s to

oral
for

sent

y to
sing
onal
geEQ

data
ACK
nput
ntic
iple
rval
ects

w an

 On Applying Temporal Database Concepts to Event Queries 173

The relation of panel (A) reflects the periods of time during which an employee
was present in a department. In Figure 1, id is the employee identifier, dept is the
name of the department, and the during attribute displays the validity duration for
each tuple.

As can be seen in panel (B), UNPACK expands the interval attribute for each
department so that in the resulting relation, each tuple is associated with a "unit
interval". The PACK operator takes tuples that are temporally adjacent or
overlapping, and have the same values for non-interval attributes, and merges them
into a single tuple.

Panels (C) and (D) of Figure 1 illustrate the result of projecting the department
name and validity interval on the unpacked relation and the result of applying PACK,
respectively. Panel (C) illustrates a projection of the dept and during attributes. In
panel (D) the PACK operation has been applied to the result of the projection. The
sequence of UNPACK, PROJECT, and PACK together is called a temporal projection
which, answers the query: “Return continuous periods of time during which any
employee was present in each department”. JOIN, SELECT, PROJECT, UNION,
INTERSECT, MINUS all have temporal counterparts and are defined in a similar
fashion. The following section presents use cases to demonstrate the use of temporal
operators for querying event streams.

3 Example Use Cases

The following examples use a simplified version of the linear road example from [12]
to demonstrate the use of temporal operators for querying event data. A single input
event stream called PosSpeedStr2, exists which contains notifications sent by a
vehicle while it is being driven through different highway segments:

PosSpeedStr2(vehicleId,speed,segment,dir,hwy,[b:e])

In PosSpeedStr2, vehicleId is the identifier for the vehicle, speed reflects its speed, dir
is the direction of the vehicle’s movement, and hwy is the highway number. Each
highway is divided into one mile segments. Events are generated when a vehicle
enters a segment, and reports the segment number. An interval attribute is used for the
timestamp. The attribute named ‘During,’ of type interval, holds the primary
timestamp value for any event. An interval type attribute has two components, ‘b’ and
‘e’, which reflect the begin and end time of that interval. Where there is no risk of
confusion, the b and e values are accessed directly for the sake of brevity. Because
PosSpeedStr2 reflects an instantaneous reading, the length assigned to the interval is
zero. i.e. b=e. To focus on concepts rather than syntax, queries are presented in a style
inspired by RelEQ, which is an intuitive syntax used in XChangeEQ to formalize its
relational semantics.

Interval query: The following event query forms the basis for the temporal queries in
the rest of this section and reflects the periods of time that each vehicle spent in each
segment. This interval is defined as a vehicle entering a segment followed by the
same vehicle entering the next segment.

174 F.A. Shiva and S.D. Urban

Query 1: Return interval-based events reflecting the amount of time that a vehicle
spent in each segment:

segStr (P1.vehicleId,P1.segment,P1.dir,P1.hwy,[P1.b:P2.b]) <-
 P1: PosSpeedStr2(vehicleId,segment,dir,hwy,[b:e]),
 P2: PosSpeedStr2(vehicleId, segment,dir,hwy,[b:e])
 P1 before P2, P1.vehicleId = P2.vehichleId, P1.segment+1 = P2.segment

The above query performs a self-join of PosSpeedStr2 over the vehicleId number,
with P1 and P2 serving as the two different aliases of PosSpeedStr2. P1 needs to
occur before P2 and P2 needs to belong to the segment immediately after P1. The
output interval-based event is called segStr, which retains the values of vehicleId,
direction and highway number from P1. The output event stream uses the entry
segment number to tag the entire segment. The output timestamp duration takes its
begin timestamp from P1 and its end timestamp from P2 to reflect the period during
which the vehicle was present in the segment.

Windows and Temporal Projection: Temporal operators need to be specified over a
time window, as will be explained in section 4. The window is specified using an
operator called WINDOWED_SOURCE. WINDOWED_SOURCE acts as an event
source to the rest of the query. It has four operands:

WINDOWED_SOURCE((interval_source_alias, [b_offset, o_offset]), {window attributes},
[temporal_ query| [[COLLECT|NOT] event_source]])

The first operand is an input event stream, which forms the basis for the window
interval. The interval of the window can be modified using the second operand which
can be used to specify offsets to the begin and end timestamps of the input event
stream. The third operand specifies the attributes that need to be projected from the
window statement, and form the attributes for the window output. Besides these
attributes each window has a mandatory During attribute which takes its value from
the offsets applied to the input event stream. The fourth and final operand is the
statement that is temporally bound by the window. This can be a temporal query or a
negation or aggregation operation. Now we look at temporal projection:

Query 2: Every 5 minutes, return continuous periods during which any vehicle was
present in a segment.

 seg_Busy(segment, carSegDuring, [W.b:W.e]) <-
 W:windowed_source (5_minute_timer, [0:0], {*}
 t_project {segment, segStr.During as carSegDuring}
 segStr(vehicleId, segment,dir,hwy,[b:e]))

This example uses two input event streams: the segStr stream which is the output of
Query 1, and a timer event called 5_minute_timer. The 5_minute_timer event is a
system generated event that occurs every 5 minutes. Every hour, the begin time of the
interval is aligned to the first second of the hour and the beginning second of every
fifth minute after that. Subsequently, the end time points to the last second of every
five minute interval.

 On Applying Temporal Database Concepts to Event Queries 175

To answer the query, we perform a temporal projection of the segment attribute
over segStr. The interval attribute is also projected and renamed to avoid naming
conflict with the window interval. The temporal projection is then enclosed within a 5
minute window. Finally the segment number and the interval resulting from the
temporal projection are included in the output. The window interval is assigned as the
output interval of the event.

The behavior of the temporal projection operator is to aggregate overlapping events
together when they have the same values for projected attributes. This is useful in
situations where we are interested in distinct values of a subset of event attributes. In
contrast to a standard projection, we avoid generation of redundant notifications of
events corresponding to intervals that overlap or subsume each other.

Temporal Intersect and Difference: Define two sub streams of segStr which
correspond to two specific vehicles with identifiers x and y. For the vehicle with
vehicleId=x, we define:

x_SegStr (P1.segment,P1.dir,P1.hwy,[P1.b:P2.e]) <-
 P1: PosSpeedStr2(vehicleId,segment,dir,hwy,[b:e]),
 P2: PosSpeedStr2(vehicleId, segment,dir,hwy,[b:e])
 P1 before P2, P1.vehicleId = x, P2.vehichleId=x, P1.segment+1 = P2.segment

y_SegStr is defined similarly. Now consider the intersection query below.

Query 3 (intersect): Every 5 minutes, return periods during which car x and y were
simultaneously in the same segment.

 x_intersect_y_segStr (segment, intersectDuring, [W.b:W.e]) <-
 W:windowed_source (5_minute_timer, [0:0], {during as intersectDuring, segment}
 x_SegStr t_intersect y_SegStr)

We again make use of the windowed source and the 5_minute_timer event discussed
above. The t_intersect operator returns periods of time during which x_SegStr and
y_SegStr share all values and their intervals overlap with each other. The window
specification projects the segment number and renames the interval attribute to avoid
conflict with the window interval attribute. The query output consists of the segment
number and the intersecting durations and has the same output timestamp as the
window. Intersection is useful when we want to know when two interval-based event
streams were ongoing during the same period of time. Difference works in a similar
manner to specify when one event was active but not the other.

Temporal Restrict: Restrict is used for specifying interesting points of time.

Query 4: Every five minutes, return the cars that were in section z at the instant [5:5].

 z_at_5_segStr (vehichleId, [W.b:W.e]) <-
 W:windowed_source (5_minute_timer, 0, {vehicleId}
 segStr t_restrict during = Interval_Constructor ([5:5]))

Since the restrict operation occurs over the unpacked version of segStr, any event
interval that includes the time point [5:5] will be included in the result.

176 F.A. Shiva and S.D. Urban

4 A Relational Framework for Temporal Event Queries

XChangeEQ is an event processing language that uses a special version of relational
algebra called Composite Event Relational Algebra, or CERA [7], to formalize its
operational semantics. In CERA, event histories are treated as relations, with
timestamps being included in relation headings as attributes. Directly applying the
database query model to event processing by continuously re-running the query at
every instant is not possible, since results generated at a specific step of a query might
be incompatible with previously generated results. This is due to the fact that not all
relational operations are monotonic. For example, a difference operation might need
to retract previously generated results due to arrival of new data in its second operand.

One approach to address this issue is to restrict the semantics of the query
language in such a way that at any given instant of time, results can be calculated
using available data only. In other words, events that arrive in the future should not
affect query results generated at the current or previous instants of time. In the
following subsections, we look at how CERA implements these requirements and
note extensions that are required for enabling temporal queries.

4.1 Relational Algebra for Temporal Queries

CERA introduces a number of limitations to relational algebra that together ensure
that a) non-monotonic or blocking operators are not allowed in an unrestricted way, b)
timestamp values are not modified or omitted, and c) the timestamp of the output of
an event query spans the duration of all events participating in that result.
Collectively, these properties are called Temporal Preservation in [7].

Temporal preservation ensures that current results can always be calculated using
available data. However, disallowing any kind of modification of the output
timestamp is too restrictive. To deal with this issue we extend the merge operator of
CERA into a merge function. The merge function calculates the output interval
similar to the merging operator of CERA. Additionally, the user can specify offsets on
the values of the output duration, which are applied to the default output of the merge
operation: merge(b_offset, e_offset). The b_offset can be any integer value, but to
uphold temporal preservation, the e_offset can only take non-negative values. If the
end time of an event is allowed to be reduced, that would mean that an event is being
generated in the past, which could have an effect on the output of other events that
reference this event. As such shifting the occurrence time of an event at the current
instant of time to a value less than the current instant of time should not be allowed.

To support temporal operators, it should be noted that PACK is not a monotonic
operation. Consider the example in Figure 1, assuming that the table containing the
result of the projection is made available to the PACK operator over time, applying
the operator would produce a result that is only correct at that instant in time. As more
tuples arrive, the previous output of PACK is no longer correct. This makes PACK,
and by extension, all temporal relational operators, non-monotonic. As such temporal
relational operators need to be defined within a window. RelEQ includes a number of
window operators to support negation and aggregation. We unify the CERA window
operators into a single operator and extend it to support temporal operators. The
unified window mechanism is the WINDOWED_SOURCE presented in Section 4.

 On A

4.2 Incremental Evaluati

The relational expressions
continuous, step-wise mann
a technique called finite di
categorized into two distin
histories prior to the current

Fig. 2. Modified UNPA

Using finite differencing
and delta relations. Any n
preservation so that they ca
in panel (B) of Figure 1, UN
it loses the original timest
which returns tuples belong
tuples that should belong in
operating on the unpacked v

Figure 2, panels (A) and
the behavior of the UNPAC
each tuple it outputs with
During, and the result of un
modified temporal projecti
result is equivalent to the re
interval attribute for each
produce that tuple. The add
as a result, deltas can be cor

5 Summary and Futu

This paper has presented us
event query language. Exte
support temporal operators
an SQL-like syntax to ex
temporal database query
specification of the langua
engine, with support for inc

Applying Temporal Database Concepts to Event Queries

ion of Temporal Queries

used to formulate event queries need to be evaluated i
ner. To avoid re-computing a query result, XChangeEQ u
ifferencing. In the evaluation step, the underlying dat
nct sets: the historical data that existed in the relev
t instant of time, and the delta, or the newly arrived data

ACK and Temporal PROJECT with Temporal Preservation

g, CERA expressions, are rewritten based on the hist
new operators added to CERA need to support tempo
an be correctly split into history and delta relations. As s
NPACK does not adhere to the temporal preservation si
tamp values. At any instant, applying the delta opera
ging to the current instant of time, would discard other n
n the same delta. Turning to panel (C), since the projec
version, deltas cannot be correctly applied to it.
d (B) show a solution to the above problem by modify
CK and temporal PROJECT. The modified UNPACK t
h the original timestamp. The original interval is cal
npack is called temp_During. Panels (C) and (D) show
ion and subsequent UNPACK. The temporal projectio
esult of Figure 1, including the added interval attribute. T
tuple is a merge of the time intervals that were used
ded attribute preserves the original timestamp values a
rrectly applied.

ure Work

se cases to motivate application of temporal operators in
ensions needed to the XChangeEQ relational framework
were also presented. Our future work includes develop

xpress event queries that have been enhanced with
language features described in [3]. The comp

age and the development of a prototype of the evaluat
cremental evaluation are part of the future research plan.

177

in a
uses
a is
vant
a.

tory
oral
seen
ince
ator,
new
ct is

ying
tags
lled
the

on’s
The
d to
and,

n an
k to
ping

the
plete
tion
.

178 F.A. Shiva and S.D. Urban

References

1. Chakravarthy, S., Mishra, D.: Snoop: An expressive event specification language for active
databases. Data & Knowledge Engineering 14(1), 1–26 (1994)

2. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In:
Proc. of the 2006 ACM SIGMOD Int. Conf. on Management of Data, Chicago, IL, USA,
pp. 407–418 (2006)

3. Mei, Y., Madden, S.: Zstream: a cost-based query processor for adaptively detecting
composite events. In: Proc. of the 35th SIGMOD Int. Conf. on Management of Data, pp.
193–206 (2009)

4. Barga, R.S., Caituiro-Monge, H.: Event Correlation and Pattern Detection in CEDR. In:
Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Fischer, F., Müller, S., Patranjan,
P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp.
919–930. Springer, Heidelberg (2006)

5. Cugola, G., Margara, A.: TESLA: a formally defined event specification language. In:
Proc. of the 4th ACM Int. Conf. on Distributed Event-Based Systems, Cambridge, United
Kingdom, pp. 50–61 (2010)

6. White, W., Riedewald, M., Gehrke, J., Demers, A.: What is next in event processing? In:
Proc. of the 26th ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database
Systems, pp. 263–272 (2007)

7. Eckert, M.: Complex Event Processing with XChangeEQ: Language Design, Formal
Semantics, and Incremental Evaluation for Querying Events. PhD Dissertation, Ludwig-
Maximilians-Universitat Munchen (2008)

8. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

9. Bry, F., Eckert, M.: Rule-based composite event queries: the language XChangeEQ and its
semantics. In: Proc. of the 1st Int. Conf. on Web Reasoning and Rule Systems, Innsbruck,
Austria, pp. 16–30 (2007)

10. Roncancio, C.L.: Toward Duration-Based, Constrained and Dynamic Event Types. In:
Andler, S.F., Hansson, J. (eds.) ARTDB 1997. LNCS, vol. 1553, pp. 176–193. Springer,
Heidelberg (1999)

11. Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model.
Morgan Kauffman Publishers (2002)

12. Arasu, A., et al.: Linear road: a stream data management benchmark. In: Proc. of the 30th
Int. Conf. on Very Large Data Bases, Toronto, Canada, vol. 30, pp. 480–491 (2004)

Lexicalized Ontology for a Business Rules

Management Platform:
An Automotive Use Case�

Nouha Omrane1, Adeline Nazarenko1, Peter Rosina2,
Sylvie Szulman1, and Christoph Westphal2

1 LIPN, Université Paris 13 & CNRS (UMR 7030), France
2 AUDI AG, Germany

Abstract. This paper describes a platform that helps industrial domain
experts to preserve the connection between textual sources and formal-
ized business rules by using lexicalized ontologies both for links and for
storage of the conceptual knowledge.

Business Rules Management Systems (BRMSs) are used to update
and query business rules of an automotive use case. They rely strongly
on domain ontologies, which model the business knowledge and provide
a conceptual vocabulary for the formalization of the rules that are ex-
pressed in written policies. We show that lexicalized ontologies are a key
component of such BRMSs and how such knowledge can be encoded.

Our proposed solution supports domain experts in the automotive
industry in understanding and maintaining their business rules by pre-
senting the relevant source documents that were used to create the onto-
logical concepts. The use case is based on a car development scenario that
models the connection between car testing scenarios, e.g., safety tests,
and the methods and tools used to analyze and prepare these tests. The
intended solution has been developed in the ONTORULE project and is
still work in progress.

Keywords: Business rules, domain ontology, semantic annotation.

1 Introduction

Business Rules Management Systems (BRMSs) are software applications that
help organizations to separate their application code from their business knowl-
edge. BRMSs help the users to author and maintain business rules and apply
decision logic that reflects this business knowledge. The business rules can have
different origins, such as regulations, policy documents or business logic directly
entered by domain experts. This business logic expresses both development pro-
cesses and coherence between different events, including conditions and the re-
sulting conclusions.
� This work was realised as part of the FP7 231875 ONTORULE project

(http://ontorule-project.eu). We thank our partners for the fruitful discussions,
especially to Audi for the collaboration on their use case.

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 179–192, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://ontorule-project.eu

180 N. Omrane et al.

One of the main advantages of expressing the logic in business rules is that the
domain knowledge is independent of the application code that uses this logic.
In such way, there is no need to alter the application code itself, when business
logic evolves, new policies are applied, already introduced policies change or
retire. Thus, the use of BRMSs leads to increased flexibility and agility of the
organization.

In the ONTORULE project, Audi uses OntoBroker as the execution envi-
ronment for its business rules which are formalized in Objectlogic1. The OWL
representation of the domain ontology has been developed in parallel for the
research purposes described in this paper.

Domain experts who are not also business rules experts may have difficulties
expressing their knowledge in formalized logic languages. Supporting them in
their management of the knowledge needed to write these rules is one of the
goals of the ONTORULE project.

We propose building an ontology as a formal model for representing conceptual
vocabulary that is used to express business rules in written policies. Using a
normalized vocabulary helps domain experts in writing rules more efficiently and
is less costly than managing controlled vocabulary. Such ontologies are shared
conceptual models, so experts can share the same vocabulary. We use the OWL-
DL language to represent concepts and properties of the domain ontology. In
addition,, the ontology is linked to the lexicon used to express rules in the text, so
experts can query source documents. This calls for a formalism to link linguistic
elements to conceptual ones. We opt to use the SKOS2 language which provides
basic elements to link domain concepts to terms from the text. The combination
of OWL entities, SKOS concepts and their related information form a lexicalized
ontology which supports the semantic annotation of documents.

The paper is organized as follows. Section 2 describes the Audi use case and
Audi’s expectations of using a lexicalized ontology. Section 3 explains the choice
of OWL and SKOS as languages to support the lexicalized ontology. Section 4
reports the experimentations. Section 5 describes the related work in linking
ontology to lexicon and semantic information retrieval. Section 6 presents the
conclusion and future work.

2 The Audi BRMS or Platform

Nowadays, the development of new cars has become very challenging and many
different process steps are involved. Computer Aided technologies (CAx), like
virtual modeling, simulations or the analysis and planning of physical testing,
need to be integrated even tighter to satisfy the higher requirements and reduced
time-to-market which also shortens the development cycles.

1 Ontology, rule and query language introduced by ontoprise as successor of F-Logic.
Main language supported by the semantic web ontology repository and inference
engine OntoBroker.

2 Simple Knowledge Organization System.

Lexicalized Ontology for a Business Rules Management Platform 181

In the ONTORULE project Audi is developing a prototype application that
makes use of ontologies and business rules that includes and visualizes the con-
text of the following use case.

The development of a car typically follows a process starting with product
planning, runs over concept development to testing (virtual & physical) until
a car can be launched for production. This long process is strongly supported
by different Computer Aided technologies, e.g., Computer Aided Design (CAD),
Computer Aided Engineering (CAE), and Computer Aided Testing (CAT):

– CAD: This branch provides methodologies for the virtual design of the parts
of a car - e.g., digital mock-up (DMU) methods, parametric design methods,
- and verification of the design concerning the geometry when integrated into
a car.

– CAE: The main task of CAE is to provide methodologies for simulating the
behaviour of a car and its functions - e.g., finite element analysis (FEA) for
crash simulation, computational fluid dynamics for thermal management,
and multi body simulation (MBS) for driving dynamics.

– CAT: Methodologies for performing physical tests of cars are provided by
CAT - e.g., vehicle management, job control, testing control, and test result
analysis.

Ontologies together with business rules help Audi to keep abreast of technology
advances and use them in its R&D IT applications. Especially the interweaving
of the various CAx technologies will help Audi to reduce development time and
cost.

One of the first steps in the development cycle of a new car model is the
definition of properties, i.e., features that can be experienced by customers, like
driving comfort, safety or sportiness that the desired car has to fulfill. These
target properties are listed in catalogs, that describe the car’s required and
mandatory behavior in various granularities.

At a later stage in the development cycle, engineers begin to design new or
modify already existing Computer Aided Design models, that have to comply
with Audi’s high quality expectations. These models are then used in simulations
(Computer Aided Engineering) or serve as a model for the physical parts which
are tested in Computer Aided Testing. For example, new electronic components,
like an Electronic Stability Control (ESC), are tested in Hardware in the Loop
(HiL) simulations that make use of virtual models that behave like the related
dynamic systems.

The entirety of all these attempts and approaches, physical and virtual, is
called CAx Methods. The different CAx Methods ensure either that the desired
properties are achieved, or that legal requirements are fulfilled. Components,
such as ESC, are referred to as ”Solution Concepts” (cf. Fig. 1). They affect the
customer experience or vehicle property directly.

The knowledge about the initial relation between a property that was de-
fined in the beginning of the development cycle and a CAD part with its related

182 N. Omrane et al.

Fig. 1. Simplified extract of the intended Audi R&D ontology

CAx Methods often perishes during the progression of the vehicle’s design and
construction. In addition, requirements and targeted properties may change over
time.

By modeling the described scenario in an ontology, and formulating and pro-
cessing the relevant rules in a BRMS, Audi expects to reduce the knowledge gap
between the various process steps for the involved employees and departments
and thus to benefit from a tighter CAx integration. Sharing the knowledge by
using a common tool and shared data will reduce time-consuming data acqui-
sition and ensures that the personnel involved will access identical data which
will help speed up the development and innovation cycles [7].

For example, with the help of business rules, we are calculating the duration of
processes (processDuration) that involve different CAx methods (cf. rule example
below). Every CAx Method has an assigned attribute for either an estimated or
an actual value for its lead time, cost and maturity. Testing if the requirements
for one vehicle property are fulfilled normally takes several process steps. As
an example, the execution of a CAE simulation may take only minutes - the
preparation, the modeling, and so on might take several weeks.

Every process, e.g., an analysis or the validation of such an analysis, makes
use of a CAx Method (cf. Fig. 1). The function processDuration calculates the
whole process duration: the relevant attribute time is queried with the function
methodDuration (which is defined in another rule) from all the methods involved
in the relevant subprocesses.

With this rule, the application is able to visualize different durations involving
different methods that all test one specific vehicle property. These indications
will support managers when planning their projects, so that they can choose
whichever process is best suited for their work.

processDuration(?X,?Y,?totalTime) :-
methodDuration(?X,?Y,?totalTime).

processDuration(?X,?Z,?totalTime) :-
methodDuration(?Y,?Z,?time) AND

Lexicalized Ontology for a Business Rules Management Platform 183

processDuration(?X,?Y,?previousTime) AND
?totalTime = ?time + ?previousTime.

(Rule example, that calculates the total process duration.)

One of the difficulties with business knowledge rules is that various departments
or roles sometimes use different vocabularies for the same things so they cannot
understand each other immediately. Addionally, formalized rules per se are often
not easy to understand.

Using an ontology as a unified model for a heterogeneous vocabulary and an-
notating the rules and the underlying ontology has another advantage: it will
reduce misunderstandings and ensure that people are discussing the same thing.
Also, the users can easily confirm and verify the appropriateness of the modeled
semantic relations. The prototype that is to be developed will handle links be-
tween source documents, such as policies and internal documents, i.e. policies
or internal documents, and the concepts and instances of the ontology. Also, if
a business rule originates directly from a legal document, the relevant passage
will be linked to the rule in the same way.

3 The Role of the Lexicalized Ontology in BRMS

A BRMS of the kind described here relies strongly on domain knowledge that is
encoded in a lexicalized ontology. This section shows how OWL-DL and SKOS
standards support the needs for formalization, document annotation, normal-
ization and documentation that business experts face when designing a business
rule application.

3.1 Formalization of Domain Knowledge

The idea of the ontology as a conceptual model was explicitely introduced by
[6] affirming that an ontology is: ”the specification of a conceptualization”. The
ontology is a set of concepts that are formally defined. We opted for the for
OWL-DL3 language to express domain concepts or classes and their properties.

Such an ontology not only gives the vocabulary to be used in expressing the
rules, it also provides a structured vocabulary that encodes relationships be-
tween concepts and supports cheking for inconsistencies. The following example
describes the concept BuckleTest, its related SKOS concept

<rdf:Description rdf:about="http://lipn.univ-paris13.fr/RCLN/
terminae/Audi#BuckleTest">

having as label ”buckle test” in the text:

<owl:Class rdf:about="&onto;#BuckleTest">
<rdfs:subClassOf rdf:resource="&onto;#PhysicalMethod"/>

3 http://www.w3.org/TR/owl-guide/

184 N. Omrane et al.

</owl:Class>
<rdf:Description rdf:about="http://lipn.univ-paris13.fr/RCLN/

terminae/Audi#BuckleTest">
<skos:prefLabel>buckle test</skos:prefLabel>
<rdf:type rdf:resource="http://www.w3.org/2004/02/skos/
core#Concept"/>

</rdf:Description>

Formalizing the business rule vocabulary in an ontology gives a structure to,
and enables querying of, the rule base. For example, we can display all the roles
involving physical methods by querying only the parent concept of all physical
method concepts.

Experts can also query the ontology itself to search, e.g., for a test that verifies
a property and is related to some constraints, as soon as these properties are
encoded as concept roles. The following example shows a query written in Ob-
jectLogic to query the ontology. The concept ProductInformation is used in the
verification process (ProcessInformation) and every ProcessInformation uses a
designated method (i.e., physical or virtual method). The concept MethodInfor-
mation has as subconcepts all the physical and virtual methods (cf. Fig. 1). The
result of this query displays all ProductInformation (i.e., car parts, functions,
etc) and the tools that use them.

@{Systemanalysis_ManagedProductInformation, options[outorder(
?Tool,?ProductInformation),fillNull]}

?- ?MethodInformation:MethodInformation[utilizes_Tool->?Tool]
AND ?ProcessInformation:ProcessInformation[
uses_ProductInformation->?ProductInformation,uses_Method->
?MethodInformation]
AND ?ProductInformation:ProductInformation.

Finally, using the OWL-DL language supports reasoning on the ontology. This
is useful for searching for hidden information that is implicit in the rules, for
inferring new knowledge, updating the rule base and ultimately improving the
business of the organization. For example, experts may recognize that a safety
test is less costly with some specific parameters.

For example, the concept SeatBelt which describes the seat belt, is related
through the role assuredBy to the tests CorrosionTest and SeatBeltFlipTest,
which are used to test its safety:

<owl:Class rdf:about="&onto;#SeatBelt">
<assuredBy rdf:resource="&onto;#CorrosionTest"/>
<assuredBy rdf:resource="&onto;#SeatBeltFlipTest"/>

</owl:Class>

3.2 Semantic Annotation of Documents

A key issue for experts in managing a rule base is to recognize that the mean-
ing of formal rules and natural language sources, such as written policies and

Lexicalized Ontology for a Business Rules Management Platform 185

documentation is a precious source of information. It is also important to up-
date the business rules as organizations often modify their policies according to
internal or external constraints.

It is therefore important to be able to mine textual sources to understand
how a given concept is used in business documents, what rules are related to it
and how those concepts and rules evolve when the policies are updated. This is
achieved through the semantic annotation of the documents in which the men-
tions of the ontological entities (concepts, instances and roles) are highlighted
and can be searched for.

Semantic annotation means that ontological entities are related to the terms
that can be used to mention them in the texts and calls for designing lexicalized
ontologies. When the ontology has been created from textual source, as for the
Audi ontology, it is easy to keep track of the terms that denote the various
conceptual entities. The resulting lexicalized ontology is used to annotate source
documents and to query them.

Our aim is to save the terms related to the conceptual vocabulary that is used
to express the business rules. We don’t need to encode sophisticated information
such as the morphological structure of terms since we do not perform a deep
analysis of the documents. We simply need to save the various linguistic units
that denote a concept, instance or role. We use SKOS for that.

SKOS supports encoding of SKOS concepts that represent the links between
the OWL concepts and their related terms, which are encoded as skos labels4.
This relation is described by <rdf:Description rdf:about>.

3.3 Normalization of Vocabularies

When designing and updating business rules, experts face the problem of the
heterogeneity of information sources and multilingualism. SKOS also supports
that normalization of vocabularies.

SKOS enables association of a given SKOS concept with the various terms or
labels that denote it in the texts or any other information source. For a given
concept, SKOS supports distinguishing one preferred label and as many alterna-
tive labels as necessary, using the <skos:prefLabel> and <skos:altLabel>
properties. In the Audi ontology, for example, the SKOS concept LowTemper-
atureChamber is linked to two terms: low temperature chamber is encoded as
the preferred label and refrigerated cabinet as its alternative form:

<rdf:Description rdf:about="http://lipn.univ-paris13.fr/RCLN/
terminae/Audi#LowTemperatureChamber">

<skos:prefLabel>low temperature chamber</skos:prefLabel>
<skos:altLabel>low-temperature chamber</skos:altLabel>
<skos:altLabel>refrigerated cabinet</skos:altLabel>
<rdf:type rdf:resource="http://www.w3.org/2004/02/skos/core#
Concept"/>

</rdf:Description>

4 http://www.w3.org/2004/02/skos/

186 N. Omrane et al.

Alternative labels are used to encode linguistic variants (e.g., seat belt which is a
belt) or unify different vocabularies (e.g., low temperature chamber actually has
the same meaning as refrigerated cabinet). The following example shows that
the SKOS concept SeatBelt is related to two terms seat belt and belt in the text:

<rdf:Description rdf:about="http://lipn.univ-paris13.fr/RCLN/
terminae/Audi#SeatBelt">

<skos:prefLabel>seat belt</skos:prefLabel>
<skos:altLabel>belt</skos:altLabel>
<rdf:type rdf:resource="http://www.w3.org/2004/02/skos/core#
Concept"/>

</rdf:Description>

SKOS also supports the encoding of multilingual information. The information
about the language used is described by <rdf:lang=‘‘en‘‘>. For example, the
SKOS concept TrolleyTest has a preferred label ”trolley test“ which is mentioned
in English in the text.

<rdf:Description rdf:about="http://lipn.univ-paris13.fr/RCLN/
terminae/Audi#TrolleyTest">

<skos:prefLabel df:lang="en">trolley test</skos:prefLabel>
<rdf:type rdf:resource="http://www.w3.org/2004/02/skos/core#
Concept"/>

</rdf:Description>

Thanks to the alternative labels and language tags, SKOS therefore helps
experts managing the heterogeneity of the vocabulary of their sources and con-
trolling the vocabulary used for designing rules.

3.4 Documentation of the Shared Knowledge

Since experts often have to manage a large volume of information but do not
always formally describe all the concepts, it is important to add informal doc-
umentation when it is available. Defining concepts in natural language is very
important to understand what concepts mean, especially if they have ambiguous
or implicit labels.

Since legal documents such as policies often define their terminology precisiely,
we propose to extract those definitions from the source documents when design-
ing the ontology and to associate them with the related SKOS concepts using
the label <skos:definition>.

Source documents are exploited to find definition for existing concepts in the
Audi ontology. For example, the concept ReferenceZone is described as follows:

<rdf:Description rdf:about="http://lipn.univ-paris13.fr/RCLN/
terminae/Audi#ReferenceZone">

<rdf:type rdf:resource="http://www.w3.org/2004/02/skos/core#

Lexicalized Ontology for a Business Rules Management Platform 187

Concept"/>
<skos:definition>"Reference zone" means the space between two
vertical longitudinal planes , 400 mm apart and symmetrical
with respect planes , 400 mm apart and symmetrical with
respect to the H point , and defined by rotation from
vertical to horizontal of the head form apparatus.

</skos:definition>
<skos:prefLabel>reference zone</skos:prefLabel>

</rdf:Description>

3.5 Formalism for the Audi Lexicalized Ontology

The Audi ontology is a formal representation of the conceptual vocabulary used
to express business rules in written policies. In the Audi use case, we use OWL-
DL to describe concepts and their roles. Structuring the vocabulary and nor-
malizing it supports querying of the ontology in order to manage the knowledge
base, infer new knowledge and detect inconsistency. As the Audi ontology is lex-
icalized, the domain concepts and their occurrences in the text can be matched
onto one another thanks to the linkage of OWL entities, SKOS concepts and
labels.

This is a simple efficient way to represent lexicalized ontologies and we show
in the following section its benefit for the Audi BRMS. Figure 2 describes how
the Audi ontology is linked to the lexicon and annotated text.

Fig. 2. A lexicalized ontology for annotating source documents. Each concept from
the ontology is linked to a SKOS concept SC and each SKOS concept is related to its
labels l. The annotations link some text entities to these labels.

4 Experiments in the Audi Use Case

This section presents the Audi ontology and illustrates the benefit in the Audi
use case of having such a lexicalized ontology.

4.1 The Audi BRMS Ontology

The Audi ontology has been built in two steps. At first, the goal was to integrate
the various existing knowledge sources in a single one. This resulted into a small

188 N. Omrane et al.

conceptual model (around 30 concepts) associated with a large knowledge base
(thousands of instances).

In a second step, in order to better fits the experts’ needs for semantic querying
and document mining, the initial ontology has been restructured and lexicalized.
It also appeared useful to increase the granularity of the domain model so as to
represent not only the various types of tests but also their actual occurrences in
the car manufacturing process (instances that are related to the different tests
applied to specific vehicle models).

This led to encoding of various elements as concepts rather than instances (90
concepts were added). Modeling tests as concepts supports, for instance, query-
ing of the Audi ontology in such a way as to detect implicit relationships between
tests, tools and parameters, which are important for the safety of vehicles. The
conceptual structure has been reorganized (4 subsumption levels instead of 1).
A SKOS resource has been associated with this resulting ontology: each concept
is related to at least 1 preferred label and up to 5 alternative labels. In addi-
tion, using a subset of the initial ontology for the exploration of written policies
showed that 10 of the mentioned tests were missing in the initial ontology and
led us to enrich it [9].

4.2 Semantic Querying

The knowledge base of our ontology currently consists of several thousands of
instances separated into more than 30 concepts. It currently reflects only a small
part of the whole use case and will be enhanced over time. We have annotated
a subset of these instances in English and German to allow the users to use the
aimed-at application in their preferred language. Additionally, alternative labels
can be added when different users prefer different terms in their daily work.

We have also planned an interface to query the ontology and search for specific
instances and concepts. For that reason, an annotated ontology is much more
appropriate.

4.3 Document Mining

We enrich the Audi ontology with new concepts and link conceptual elements
to linguistic ones from the Audi documents. We obtain a lexicalized ontology
that contains 90 SKOS concept, 90 preferred terms and 16 alternatives labels.
For example, we create the SKOS concept BreakingStrengthOfStrapTest that
describes a specific test of the seat belt and link the preferred and alternative
labels which are mentioned in source documents.

<rdf:Description rdf:about="http://lipn.univ-paris13.fr/RCLN/
terminae/Audi#BreakingStrengthOfStrapTest">

<skos:prefLabel>breaking strength test</skos:prefLabel>
<skos:altLabel>test of breaking strength</skos:altLabel>
<skos:altLabel>breaking strength of strap test
</skos:altLabel>

Lexicalized Ontology for a Business Rules Management Platform 189

<skos:altLabel>test of breaking strength of strap
</skos:altLabel>
<rdf:type rdf:resource="http://www.w3.org/2004/02/skos/core#
Concept"/>

</rdf:Description>

Once the ontology is lexicalized, domain experts can query source documents to
search for fragments of texts that describe specific concepts mentioned in rules.
For example, they can find all references of the concept BreakingStrengthOfS-
trapTest in the text, wherever it is mentioned in the documents:

prefix schema:<http://lipn.univ-paris13.fr/RCLN/terminae/schema#>
prefix onto:<http://lipn.univ-paris13.fr/RCLN/terminae/Audi#>
prefix skos:<http://www.w3.org/2004/02/skos/core#Concept>
select ?sentence
where
{ ?sentence rdf:type schema:sentence

?sentence schema:annotatedBy ?concept
?concept schema:realized concept <onto:
BreakingStrengthOfStrapTest>

?skos skos:skosConcept ?concept
?skos skos:preflabel "test of breaking strength"

}

We can also search for all sentences where the physical methods are mentioned
in the text. As the concepts expressing tests are sub-concepts of the concept
”MethodInformation”, we query the text by searching about all subconcepts of
”MethodInformation”. The following example shows the query:

prefix schema:<http://lipn.univ-paris13.fr/RCLN/terminae/schema#>
prefix onto:<http://lipn.univ-paris13.fr/RCLN/terminae/Audi#>
prefix skos:<http://www.w3.org/2004/02/skos/core#Concept>
select ?sentence
where
{ ?sentence rdf:type schema:sentence

?sentence schema:annotatedBy ?concept
?concept schema:realized concept <onto:MethodInformation>
?conceptfils rdfs:subClassOf ?concept
?skos skos:skosConcept ?conceptfils

}

Thanks to the labels of concepts, the ontology can be used to annotate the
documents. Figure 3 shows an example of texts where all the mentions of known
concepts are emphasized.

This supports experts in browsing of documents.

190 N. Omrane et al.

Fig. 3. A fragment of text annotated by the lexicalized ontology

5 Related Work

Many research activities have tackled the problem of linking an ontology to a
lexicon. Two major areas are of interest.

The first is the NLP domain which aims at adding some semantic structure to
a lexicon by linking its elements to ontology’s elements. There are several ways
to combine a lexicon with an ontology. We describe the most popular ones.

LMF5 standard [5] aims at detecting the relation between the words used to
express objects and their formalization in the ontology. The mapping is assured
by axioms declared in the ontology. LMF has the merit of assessing large scale
lexical resources. TMF6 is a standard ISO that allows describing the terms of
a lexicon within a formal language. The supported language is based on the
definition of a meta-model and a set of features used to represent elements of
the lexicon (e.g., related class, language, lexical information). OLIF7 is an open
standard for exchange format that allows to represent morphological, syntactic
and semantic data categories. LMM8 is a formal language described in OWL-
DL. It integrates linguistic knowledge resources (e.g., FrameNet) and founda-
tional ontology (e.g., DOLCE). It has the advantage of dealing with multi-lingual
resources.

The other family trys to link an ontology to a lexicon by introducing models
for representing linguistic information for ontologies. [11] defines a meta model to
distinguish terms and concepts. Terms are linked to concepts through a semantic
relation “denote“. LexOnto proposed by [2] supports definition of the lexicon by
using all the expresseiveness of OWL. LexOnto considers a term as an ”OWL:
class“ and presents a meta model that supports linking of terms to concepts. The
relation between the elements can be simple or complex (e.g., sub-category-of).

LingInfo [1] define a meta class to link the linguistic properties to the concept
or to its Data/Object properties. The meta class contains the associated term,
its language and the morpho-syntactic structure of the term. [8] introduces a set
of annotation rules to link an existing ontology to its lexicon that is described in
the text. The authors consider a standard OWL-DL ontology that they extend
and, for each domain ontology, propose to define a set of annotation rules that
link each concept to its linguistic representations in the text.

5 Lexical Markup Framework.
6 Terminological Markup Framework.
7 Open Lexicon Interchange Format.
8 Linguistic Meta Model.

Lexicalized Ontology for a Business Rules Management Platform 191

LIR [10] supports storage of linguistic information in a lexical ontology and
linkage to domain concepts via ontology relations.

From a practical point of view, the choice of one model or another depends
on the aimed application and the task. Our aim is to build a lexicalized ontology
to allow annotating the technical documents and thus to help the expert in
exploring documents by querying its set of annotations explained above. We use
for that a W3C standard SKOS that links linguistic to semantic knowledge.
SKOS introduces especially the properties: skos:prefLabel and skos:altLabel to
link preferred and alternative terms to each concept in the ontology.

Usually users query documents by entering keywords that occur in the tar-
get documents in Information Retrieval (IR). But searching relevant information
through a keyword-based approach very often provides limited results. Therefore,
IR adopts a conceptual search-approach to capture the user needs on a semantic
level [4]. Information retrieval uses ontologies as formal models to query knowl-
edge data base [3]. It takes into account these keywords and tries to match them
with their corresponding concepts in the ontology. To do so, ontologies need to
be linked to a rich lexicon as in lexicalized formalism described above so that
the result obtained matches the query of users.

The ability to link an ontology to a lexicon is very important for annotation
of documents. Annotating documents supports linking of textual units to their
corresponding concepts in an ontology, and showing the relationship between
these concepts and the terms that are related to them. Such a lexicalized ontology
helps the exploration of texts through semantic queries once they are annotated
with the ontology.

6 Conclusion

The proposed integration of CAx systems will increase the flexibility of the
development process, allowing Audi to meet the increasing market demand for
product diversification.

This integration relies on the design of an application that is currently under
development and is based on a BRMS.

Our approach for the acquisition and management of the knowledge embodied
in such BRMS relies on a lexicalized ontology which unifies and normalizes the
various vocabularies and links the conceptual knowledge to the source policies
and regulation written in natural language.

Using a lexicalized ontology enables experts to determine the most suitable
CAx Methods from given functional requirements and to query sources docu-
ments.

These new approaches, standards and technologies are already partially in-
tegrated in some processes. During the next years Audi will continue to incor-
porate the ONTORULE platform in their landscape which will lead to even
less time-consuming, cheaper and higher quality processes in the innovation and
development cycles.

192 N. Omrane et al.

References

1. Buitelaar, P., Sintek, M., Kiesel, M.: A Multilingual/Multimedia Lexicon Model
for Ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp.
502–513. Springer, Heidelberg (2006)

2. Cimiano, P., Haase, P., Herold, M., Mantel, M., Buitelaar, P.: LexOnto: A Model for
Ontology Lexicons for Ontology-based NLP. In: Proceedings of OntoLex - From
Text to Knowledge: The Lexicon/Ontology Interface (Workshop at the Interna-
tional Semantic Web Conference) (2007)

3. Davies, J., Duke, A., Kiryakov, A.: Semantic Search. In: Information Retrieval,
Searching in the 21st Century. Wiley

4. Fernández, M., Cantador, I., López, V., Vallet, D., Castells, P., Motta, E.: Se-
mantically enhanced Information Retrieval: An ontology-based approach (2010),
http://dx.doi.org/10.1016/j.websem.2010.11.003

5. Francopoulo, G., Be, N., George, M., Calzolari, N., Monachini, M., Pet, M., Soria,
C.: Lexical markup framework: ISO standard for semantic information in NLP lex-
icons. In: Workshop of the GLDV Working Group on Lexicography at the Biennial
Spring Conference of the GLDV (2007)

6. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing. In: Formal Ontology in Conceptual Analysis and Knowledge Representa-
tion. Available as Stanford Knowledge Systems Laboratory Report. Kluwer Aca-
demic (March 1993)

7. Kiss, E., Albert, P., Korf, R., Rosina, P., Hoppenbrouwers, J., Njissen, S.: Market
Intelligence Report, D8.4 ONTORULE Project Deliverable. Tech. rep. (2011)

8. Ma, Y., Audibert, L., Nazarenko, A.: Ontologies étendues pour l’annotation
sémantique. In: 20mes Journées Francophones d’Ingénierie des Connaissances, IC
2009 (2009)

9. Omrane, N., Nazarenko, A., Szulman, S.: Les entités nommées: éléments pour
la conceptualisation. In: 22mes Journées Francophones d’Ingénierie des Connais-
sances, IC 2011 (2011)

10. Peters, W., Espinoza, M., Montiel-Ponsoda, E., Sini, M.: Multilingual and local-
ization support for ontologies. Technical report, D2.4.3 Neon Project Deliverable.
Tech. rep. (2009)

11. Reymonet, A., Thomas, J., Aussenac-Gilles, N.: Modélisation de ressources
termino-ontologiques en OWL. In: Trichet, F. (ed.) Journées Francophones
d’Ingénierie des Connaissances (IC), Grenoble, pp. 169–180 (July 2007)

http://dx.doi.org/10.1016/j.websem.2010.11.003

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 193–207, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards Directly Applied Ontological Constraints in a
Semantic Decision Table

Yan Tang and Robert Meersman

Semantic Technology and Application Research Laboratory (STARLab),
Department of Computer Science, Vrije Universiteit Brussel,

Building G-10, Pleinlaan 2, 1050 Elsene, Belgium
{yan.tang,robert.meersman}@vub.ac.be

Abstract. Decision tables have been a powerful tool for business people since a
long time ago. A semantic decision table (SDT) is a decision table properly
annotated with domain ontologies. It contains a set of formal agreements called
commitments, which is a result from group decision making processes involving
a community of business stakeholders. In this paper, we focus on validation and
verification issues (V&V) for SDT. In particular, we deal with directly applied
ontological constraints that are stored as SDT commitments. With them, we can
detect inconsistency in an SDT. We also show how an SDT commitment can be
stored in Semantic Decision Rule Markup Language (SDRule-ML). In the
meanwhile, we illustrate the mapping between SDRule-ML and RDFs/OWL.

Keywords: semantic decision table, validation and verification, semantic
decision rule markup language (SDRule-ML), RDFs, OWL.

1 Introduction

In the business domain, one of the favorite decision tools used by non-technical
business people is decision tables. A decision table provides a clear way to visualize
conditions and actions and the relations between them.

A semantic decision table (SDT, [12]) is a decision table properly annotated with
domain ontologies. Thanks to the modern ontology engineering technology, a
semantic decision table allows rule modelers, knowledge engineers or evaluators to
analyze a decision table using domain semantics.

An important analysis issue is validation and verification (V&V, [3]), the goal of
which is to ensure the quality of the modeled decision rules. Validation is a process of
checking whether or not the decision rules are correctly modeled according to certain
meta-rules (or models). During the process of verification, rule auditors need to
confirm that the decision rules are correctly built. V&V is a mandatory step towards
ensuring the correctness of a decision table.

In this paper, we illustrate how we can use ontologies to validate and verify the
decision rules in a decision table. We first transform a decision table into an SDT.
During this process, the domain experts (e.g., rule editors and business people)
specify hidden rules and meta-rules of this decision table into a set of ontological
commitments (e.g., axioms and constraints). Those commitments, in this paper, are

194 Y. Tang and R. Meersman

stored in Semantic Decision Rule Markup Language (SDRule-ML, [13]). We will as
well show how RDFs/OWL constraints are mapped to SDRule-ML.

This paper is organized as follows. Sec. 2 is the paper background. The main
contribution of this paper is illustrated in Sec. 3, which covers six types of directly
applied ontological constraints. We illustrate the related work in Sect. 4. In Sec. 5, we
present the discussion and our future work and conclude the paper.

2 Background: Semantic Decision Tables

A decision table has three constituents: conditions, actions and decision rules [1].
Each condition has a condition stub and a condition entry. Each action has an action
stub and action entry. A decision rule, which is represented as a table column, is a
combination of a set of conditions and actions.

Table 1. A decision table example used in a ubiquitous system (example taken from [14])

Condition 1 2 3 4
People move Ear Yes No Yes No
Pressure on Crib Yes Yes No No
Action
Screen shows Message Message1
iPhone rings RingTone1

Table 1 is a decision table example for a smart home. It is to decide which

messages a screen will show and which ring tones an iPhone will ring, depending on
whether the ear of a smart rabbit is moved or not, and whether there is pressure on a
crib or not. “People move Ear” and “Pressure on Crib” are the two condition stubs.
“Yes” and “No” are the two condition entries. A condition can be, for
instance, , (see columns 1 and 3). “Screen shows Message”
and “iPhone rings” are the two action stubs. “Message1”, “RingTone1” and “” are the
action entries. An action can be, for instance, , 1 (see
column 3) or , (see columns 2, 3 and 4). Columns 1~4
are the decision rules. A decision rule (e.g., column 1) can be written as follows. , , , , 1 , ,

A semantic decision table (SDT, [12]) contains three parts – a decision table, a set of
lexons and commitments. A lexon is a binary fact type, which has the format
of , , , , . and are the two terms that represent two concepts in a
natural language; and are the two roles that the two concepts presented by
and can possibly play with. is the context identifier that points to the document
where and are originally defined, and where and are meaningful. A
context identifier can be, e.g. a URI.

We show an example of lexon as follows. , , , ,

 Towards Directly Applied Ontological Constraints in a Semantic Decision Table 195

A commitment specifies how to use a lexon or a set of lexons based on the
agreements made by a user community. A commitment can be

1) Instantiation of a concept (e.g., “Bunny” is the Nabaztag Rabbit with tag
123XYZ) or a lexon (e.g., Nabaztag Rabbit with tag 123XYZ has a right ear
with tag EAR123);

2) A constraint, e.g., EACH Bunny has EXACTLY TWO Ears;
3) Selecting/grouping lexons from one or several contexts;
4) Instantiation of a value for a concept if its value range is defined in a

constraint;
5) Articulation, which is a mapping between , and the glosses defined in a

glossary, dictionary and thesaurus in a particular language or languages;
6) Interpretation and implementation of a role pair , , for instance, the role

pairs , and , can be both interpreted as a
“is-a” taxonomical relationship;

7) Alignment of and , e.g., the terms “rabbit” and “cony” are aligned with
“Bunny”. The roles “subtype of” and “subclass of” are aligned with “is-a”.

As an example, the SDT from Table 1 contains the lexons and commitments as shown
in Table 2. Note that here we omit the context identifiers in the lexons.

Table 2. The lexons and commitments in the SDT for Table 1 (example taken from [14])

SDT Lexons
Lexon 1 , , ,
Lexon 2 , , ,
Lexon 3 , , ,
Lexon 4 , , ,
Lexon 5 , , ,
Lexon 6 , , ,

SDT Commitments
Commitment 1 EACH Bunny has EXACT ONE name.
Commitment 2 EACH Crib has EXACT ONE name.
Commitment 3 EACH Screen shows AT LEAST ONE Message
Commitment 4 Each iPhone rings with AT LEAST ONE Ring Tone.

The basic characteristics of decision tables are completeness and correctness [3].

The completeness of a decision table is ensured by exhaustively list all the possible
combinations of the conditions. Hence the completeness is a problem that can be
easily solved. Yet the issue of correctness has always been the challenge.

Validation and Verification (V&V) is a classical process, with which we can
ensure the correctness of a decision table, e.g. as shown in [8], [10] and [15]. We will
discuss the related work in detail in Sec. 4. In this paper, we take an approach that is
different from the existing ones. We transform a decision table into an SDT. During
this transformation process, rule modelers (such as business decision makers) are
asked to specify the hidden semantics of this decision table. A knowledge engineer
takes these specifications and transforms them into lexons and commitments. Note

196 Y. Tang and R. Meersman

that our ontologies are also modeled in lexons and commitments. We can check the
correctness of this decision table by checking the consistency of the commitments.

In the following section, we will illustrate how different kinds of ontological
constraints can be used for SDT V&V.

3 Directly Applied Ontological Constraints

The constraints of value, uniqueness, mandatory, cardinality and frequency,
exclusive-or and subtyping are the ones that can be used for SDT V&V.

3.1 Value Constraint

A value constraint, sometimes called domain constraint, indicates which values are
allowed in a concept (in the case that this concept represents a value type) or role ([2],
pp. 216-221).

There are three kinds of value constraints: enumeration, range and multiple. With
enumeration, we list all the possible values, e.g. the commitment “VALUE of Gender
is {M, F}”. If we can list the values in a continuous order, then we can specify it with
a range, e.g. commitment 1 in Table 3. The range can as well be unbounded, e.g.
“VALUE of Age is [0. .)”. Multiple value constraint combines enumeration and
range, e.g. commitment 2 in Table 3.

Table 3. An SDT on deciding whether to accept to process or not based on the value received
from a temperature sensor, the age and the login state of a user

Condition 1 2 3 4 … n …
Age >=18 >=18 >=18 >=18 … >=100, <=350
Temperature Sensor >=0,<30 >=0,<30 >=0,<30 >=-10,<0 … >=0,<30
Login State Yes No Maybe Yes … Yes …
Action
Accept * * * *

SDT Lexons
Lexon 1 , , ,
Lexon 2 , , ,
Lexon 3 , , ,
Lexon 4 , , ,

SDT Commitments
Commitment 1 VALUE of Age is [0..200]
Commitment 2 VALUE of Temperature Sensor is {[-100,-20),[0..100]}

Commitment 1 in Table 3 can be stored in RDFs/OWL and SDRule-ML, which is

illustrated in Fig. 1.
Note that we can also specify value constraints indirectly by annotating a condition

stub with existing value types, such as Float, Boolean and Integer. The annotation is
stored as lexons (e.g. lexon 4 in Table 3). The value ranges of a Float and Integer are [. , .] and [. , .]. We use any of the
following value enumerations as the default value constraint for a Boolean: {Yes,
No}, {Y, N}, {True, False}, {T, F}, and {1, 0}.

 Towards Directly Applied Ontological Constraints in a Semantic Decision Table 197

Fig. 2 shows how an annotation like lexon 4 from Table 3 can be stored in
SDRule-ML.

 RDFs/OWL SDRule-ML
…
<DataPropertyRange>
<DataProperty URI="has_age"/>
<DatatypeRestriction>
<Datatype URI="&xsd;integer"/>
<DatatypeFacetRestriction facet="&xsd;maxInclusive">
<Constant datatypeURI="&xsd;integer">200</Constant>
</DatatypeFacetRestriction>
<DatatypeFacetRestriction facet="&xsd;minInclusive">
<Constant datatypeURI="&xsd;integer">0</Constant>
</DatatypeFacetRestriction>
</DatatypeRestriction>
</DataPropertyRange>
…

…
<Predicate id="Lexon1">
<Object_Role ID="Lexon1_forward" Object="Person"
Role="has"/>
<Object_Role ID="Lexon1_backward" Object="Age"
Role="is of"/>
</Predicate>
<Constraint Object="Age">
<ValueConstraint ValueConstraintType="Range"
LowerBound="0" UpperBound="200"
lowerBoundOpen="false" upperBoundOpen="false"/>
</Constraint>
…

Fig. 1. Commitment 1 from Table 3 stored in RDF/OWL and SDRule-ML

…
<annotated corole="is value type of" relation="has value type of">
<DecisionItem xsi:type="xs:string">Login State </DecisionItem>
<Target conceptName="Integer" context="VALUE_TYPE"/>
</annotated>
…

Fig. 2. Lexon 4 from Table 3 in SDRule-ML

When we verify Table 3, column 3 is considered invalid because “Login State” has
Boolean values (see lexon 4 in Table 3) and “Maybe” is not a default Boolean value.
Column 4 is inconsistent with commitment 2 in Table 3 and hence is invalid. Column
n does not satisfy commitment 1 in Table 3; therefore, it is also not valid.

3.2 Cardinality and Occurrence Frequency

A cardinality constraint can be either an object cardinality or a role cardinality ([2],
p. 289). Object cardinality is applied to a lexon term when we want to restrict the
number of members or instances of the population of the type that this lexon term
points to. For example, if we want to allow at most three X-Box humidity sensors,
then we design a commitment as “AT MOST 3 X-Box Humidity Sensors ARE
ALLOWED IN ANY CASES”.

Role cardinality is comparable to a constraint of occurrence frequency, which is
applied to a lexon (co-)role when we want to restrict the number of members of the
instance of a role. Researchers sometimes distinguish cardinality from frequency
when cardinality is only used to specify the number of objects in some type.
Frequency is to specify how many times, within the same state, a given object can
play some role. To make it clearer (and follow the OWL definition of cardinality), we
use cardinality for specifying the numbers of objects. We use frequency instead of
role cardinality.

198 Y. Tang and R. Meersman

For instance, if we have a lexon , , , ,
and we want to allow at most two X-Box humidity sensors in one room, then we
design a commitment as “EACH Room has AT MOST 2 X-Box Humidity Sensors”,
which contains a frequency constraint.

Note that the two commitments “AT MOST 3 X-Box Humidity Sensors ARE
ALLOWED IN ANY CASES” (cardinality) and “EACH Room has AT MOST 2 X-
Box Humidity Sensors” (frequency) are different. The former emphasizes that in any
cases, at most three X-Box humidity sensors are allowed; while the latter specifies
that only in the case of in a room, at most two X-Box humidity sensors are allowed.

Note also that if we want to apply cardinality on one object and frequency on a
lexon that plays a near role 1 with this object, then the cardinality range of the
constraint for the object cardinality must be overlapped with the one for frequency.
For example, the commitment “EACH Room has AT LEAST 5 X-Box Humidity
Sensor” is invalid because it is inconsistent with the commitment “AT MOST 2 X-
Box Humidity Sensors ARE ALLOWED IN ANY CASES”.

Table 4. An SDT on deciding whether or not to turn on Actuator x based on the availability of
X-Box557, X-Box120 and MS Xbox 360

Condition 1 2 3 4 5 6 7 8
X-Box 557 Yes Yes Yes Yes No No No No
X-Box 120 Yes Yes No No Yes Yes No No
MS Xbox 360 Yes No Yes No Yes No Yes No
Action
Actuator x * * * * *

SDT Lexons
Lexon 1 , , ,
Lexon 2 , , ,

SDT Commitments
Commitment 1 VALUE of X-Box Humidity Sensor is {X-Box557, X-Box120, MS Xbox360}.
Commitment 2 EACH Room has AT MOST 2 X-Box Humidity Sensors

Given a concept , a list of condition stub , , … , and the below conditions

• , , … , are the members of (which we write as , , … ,)
• , , … , have the value type of Boolean
• is represented by the lexon term

We say the SDT contains invalid decision rules if the below conditions are met

Situation 1 ():

• The near role of is played at most times and/or at most instances
from are allowed in any cases.

• There are more than combinations of , , , , … , in
one column and this column contains an action.

1 In a lexon , , , , , we call is the near role of and is the far role of ; is

the near role of and is the far role of .

 Towards Directly Applied Ontological Constraints in a Semantic Decision Table 199

Or, situation 2 ():

• The near role of is played at least times and/or at least instances
from are allowed in any cases.

• There are less than combinations of , , , , … , in
one column and this column contains an action.

The situations for <, >, = can be designed in a similar way.
Table 4 shows an example for situation 1. According to commitment 2 from

Table 4, column 1 in this table does not satisfy the specified constraint of frequency.
Fig. 3 shows how commitment 2 from Table 4 can be stored in RDFs/OWL and

SDRule-ML. Note that currently OWL only deals with constraints of frequency, not
constraints of object cardinality. SDRule-ML supports both.

RDFs/OWL SDRule-ML
…<ObjectPropertyDomain>
<ObjectProperty URI="has_X-
Box_Humidity_Sensors"/>
<ObjectAllValuesFrom>
<ObjectProperty URI="has_X-
Box_Humidity_Sensors"/>
<Class URI="Room"/>
</ObjectAllValuesFrom>
</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty URI="has_X-
Box_Humidity_Sensors"/>
<ObjectMaxCardinality cardinality="2">
<ObjectProperty URI="has_X-
Box_Humidity_Sensors"/>
<Class URI="XBox_Humidity_Sensor"/>
</ObjectMaxCardinality>
</ObjectPropertyRange>…

… <Object Name="Room"/>
<Object Name="X-Box Humidity
Sensors"/>
<Predicate id="lexon1">
 <Object_Role ID="lexon1_forward"
Object="Room" Role="has"/>
 <Object_Role ID="lexon1_backward"
Object="X-Box Humidity Sensors" Role="is
of"/>
</Predicate>
<Constraint>
 <CardinalityConstraint
cardinalityConstraintType="RoleCardinality
" Object_Role="lexon1_forward"
cardinalityValue="<=2"></CardinalityCo
nstraint>
</Constraint>…

Fig. 3. Commitment 2 from Table 4 in RDFs/OWL and SDRule-ML

…
<Object CI="SmartHome" Name="X-Box Humidity Sensors" type="NOLOT"/>
…
<Constraint>
 <CardinalityConstraint cardinalityConstraintType="ObjectCardinality" Object="X-Box Humidity
Sensors" cardinalityValue="<=3"></CardinalityConstraint>
</Constraint>
…

Fig. 4. An example of object cardinality constraint in SDRule-ML

We store the commitment “AT MOST 3 X-Box Humidity Sensors ARE
ALLOWED IN ANY CASES” in SDRule-ML as illustrated in Fig. 4.

In the following two subsections, we will discuss two specific cases of frequency.
They are the constraints of mandatory and uniqueness.

200 Y. Tang and R. Meersman

3.3 Mandatory

A lexon role can be mandatory or optional. A mandatory is mandatory iff it is played
by every member of the population of its connected object type, otherwise, it is
optional ([2], p. 162). A mandatory constraint is equivalent to an “AT LEAST ONE”
frequency constraint.

Suppose we have a commitment that contains a uniqueness constraint, which is
“EACH Room has AT MOST ONE X-Box Humidity Sensor”. If we apply this
commitment to Table 4, then column 8 is invalid.

The discussed example illustrates how a mandatory constraint can be used when
the condition stubs represent value members of an object type and their entries are
Boolean values.

Table 5 is another SDT example, which uses a mandatory constraint when an
object type is a condition stub and its value members are used as its condition entries.

Table 5. An SDT on deciding whether or not to turn on Actuator x based on the availability of
X-Box Humidity Sensors (diverted from Table 4)

Condition 1 2 3
X-Box Humidity Sensor {X-Box557, X-Box120} {X-Box557, MS Xbox360} N/A
Action
Actuator x * *

SDT Lexons
Lexon 1 , , ,
Lexon 2 , , ,
Lexon 3 / , , ,

SDT Commitments
Commitment 1 VALUE of X-Box Humidity Sensor is {X-Box557, X-Box120, MS

Xbox360}.
Commitment 2 EACH Room has AT LEAST ONE X-Box Humidity Sensor

Given a concept , which is a set and is represented by a lexon term .We say the

SDT contains invalid decision rules if the below conditions are met:

• The near role of is a mandatory role
• is a condition stub
• A decision column contains a condition , where denotes an empty

set, and this column contains an action

In the example illustrated in Table 5, is mapped to N/A using lexon 3 (see Table
5). Accordingly, column 3 in Table 5 is invalid.

Note that we can use the following combinations for a mandatory constraint:

• Combination one: condition stubs represent value members of an object
type and their entries are Boolean values

• Combination two: an object type is a condition stub and its value
members are used as its condition entries

But we should try to avoid combination two (see above) for a normal role cardinality
constraint. It is because the members in a set, by default, have a relationship of “or”

 Towards Directly Applied Ontological Constraints in a Semantic Decision Table 201

instead of “and”. Let us look at one example, if we want to apply the commitment
“EACH Room has AT LEAST 2 X-Box Humidity Sensors” on Table 5, the validity
of column 1 can not be checked because this condition implies the following three
situations:

• Room has X-Box557 but not X-Box120
• Room has X-Box120 but not X-Box557
• Room has X-Box557 and X-Box120

Among these situations, only the last one is valid.
RDFs/OWL uses cardinality to deal with the mandatory constraint. SDRule-ML

provides two possibilities to deal with the mandatory constraint: one way is to use a
frequency constraint and the other is to use a mandatory constraint specified in its
XML schema. Fig. 5 shows how commitment 2 from Table 5 is stored in RDFs/OWL
and SDRule-ML using its specific mandatory constraint specification.

RDFs/OWL SDRule-ML
…<owl:ObjectProperty rdf:about="#has_X-
Box_Humidity_Sensors">
<rdfs:subPropertyOf rdf:resource="#has"/>
<rdfs:range>
<owl:Restriction>
<owl:onProperty rdf:resource="#has_X-
Box_Humidity_Sensors"/>
<owl:onClass rdf:resource="#XBox_Humidity_Sensor"/>
<owl:minQualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1
</owl:minQualifiedCardinality>
</owl:Restriction>
</rdfs:range>
<rdfs:domain>
<owl:Restriction>
<owl:onProperty rdf:resource="#has_X-
Box_Humidity_Sensors"/>
<owl:allValuesFrom rdf:resource="#Room"/>
…

…
<Object>Room</Object>
<Object>X-Box Humidity
Sensor</Object>
<Predicate id="Lexon1">
<Object_Role ID="Lexon1_forward"
Object="Room" Role="has"/>
<Object_Role
ID="Lexon1_backward" Object="X-
Box Humidity Sensor" Role="is of"/>
</Predicate>
<Constraint><MandatoryConstraint
Object_Role="Lexon1_forward"></M
andatoryConstraint>
</Constraint>
…

Fig. 5. Commitment 2 from Table 5 in RDFs/OWL and SDRule-ML

In this subsection, we have discussed the constraint of mandatory, which is a
specific case of frequency. In the next subsection, we will illustrate another specific
case, which is the constraint of uniqueness.

3.4 Uniqueness

A uniqueness constraint is used when we need to ensure a (co-)role from one lexon or
a combination of (co-)roles from several lexons is played at most once.

Situation 1: Given a concept , a list of condition stub , , … , and if the
following conditions are met, then we say the table contains invalid columns.

• , , … , are the members of (which we write as , , … ,)
• , , … , have the value type of Boolean

202 Y. Tang and R. Meersman

• is represented by the lexon term
• The near role of has a uniqueness constraint
• There are more than one combinations of , , , , … , in

one column and this column contains an action

For example, if we have a uniqueness constraint as “EACH Room has AT MOST
ONE X-Box Humidity Sensor” for Table 4. Columns 1, 3 and 5 are then considered
invalid.

The above example shows how we can use a uniqueness constraint with Boolean
condition entries. In what follows, we will discuss how to verify decision columns
when condition entries are sets.

Situation 2: Given two condition stubs and , which are two sets. A table
column is invalid if the following conditions are met.

• (is overlapped with)
• is represented by a lexon term , the near role of which is a unique

role
• The condition entry of is not empty in this column
• The condition entry of is not empty in this column
• There exists a member where and is in the condition entry

of in this column

Table 6. An SDT on deciding whether or not to turn on Actuator x and Actuator y based on the
availability of Sensors

Condition 1 2 3 … n
Humidity
Sensor

{X-Box557,
X-Box120}

{ MS Xbox360} {X-Box557,
Xbox360}

…

{ MS Xbox360}

Sensor {EZEYE
1011A}

{EZEYE 1011A} {X-
Box120}

… {E1, X-Box557}

Action
Actuator x * *
Actuator y * * *

SDT Lexons
Lexon 1 , , ,
Lexon 2 , , ,
Lexon 3 , , ,

SDT Commitments
Commitment 1 VALUE of Humidity Sensor is {X-Box557, X-Box120, MS Xbox360}.
Commitment 2 EACH Room has AT MOST ONE Humidity Sensor
Commitment 3 VALUE of Sensor is { E1, X-Box557, X-Box120, MS Xbox360, EZEYE 1011A}

Table 6 shows an example of situation 2. Columns 3 and n are considered invalid

because X-Box120 is a humidity sensor and only one humidity sensor is allowed in
one room.

Note that we also need to add exclusiveness for the set members of Humidity
Sensor and Sensors in Table 6. Otherwise, column 1 from Table 6 is also invalid
because the room can have X-Box557 and X-Box120 (two humidity sensors) at the
same time, which is not allowed by commitment 2.

 Towards Directly Applied Ontological Constraints in a Semantic Decision Table 203

RDFs/OWL SDRule-ML
…<owl:ObjectProperty rdf:about="#has_Humidity_Sensor">
<rdfs:subPropertyOf rdf:resource="#has"/>
<rdfs:range><owl:Restriction>
<owl:onProperty rdf:resource="#has_Humidity_Sensor"/>
<owl:onClass rdf:resource="#Humidity_Sensor"/>
<owl:maxQualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxQualifiedC
ardinality>
</owl:Restriction></rdfs:range><rdfs:domain> <owl:Restriction>
<owl:onProperty rdf:resource="#has_Humidity_Sensor"/>
<owl:allValuesFrom rdf:resource="#Room"/>
</owl:Restriction></rdfs:domain> </owl:ObjectProperty>…

…<Predicate id="Lexon1">
<Object_Role ID="Lexon1_forward"
Object="Room" Role="has"/>
<Object_Role
ID="Lexon1_backward"
Object="Humidity Sensor" Role="is
of"/>
</Predicate>
<Constraint><UniquenessConstraint
Object_Role="Lexon1_forward">
</Constraint>
…

Fig. 6. Commitment 2 from Table 6 in RDFs/OWL and SDRule-ML

Similar to the constraint of mandatory, the uniqueness constraint is stored in
RDFs/OWL using the cardinality constraint. In SDRule-ML, it can be stored as a
frequency constraint or a uniqueness constraint (see Fig. 6).

3.5 Exclusive-Or

In an information system, an exclusive-or constraint is used to ensure that two sets do
not overlap each other. We use it for two situations.

Situation one: we use exclusive-or to check the combination of conditions.
Given two concepts and , which are represented by the lexon terms and

 respectively. Both and are condition stubs. If the following conditions are
satisfied, then an invalid decision rule will be detected.

• The lexons , , , , and , , , , are in the SDT lexon set
• = and the role pair , has external exclusive-or relationship
• and have the value type of Boolean
• The conditions , and , appear in the same column
• There is an activated action in the mentioned column

Situation two: we use exclusive-or to check the combination of actions.
Given two concepts and , which are represented by the lexon terms and

 respectively. () is a set that contains one member, which is an action stub.
Allow us to indicate these two sets as - = and = where and
are two action stubs. If the following conditions are satisfied, then an invalid decision
rule will be detected.

• There are two lexons - , , , , and , , , ,
 - in the SDT lexon set

• An action can be either or , but not both
• The actions , and , appear in the same column

Table 7 shows an example of the above two situations. Column 1 is invalid because it
does not satisfy commitment 1. Column 3 is invalid because it does not satisfy
commitment 2.

Fig. 7 shows how to store commitment 1 from Table 7 in RDFs/OWL and SDRule-
ML.

204 Y. Tang and R. Meersman

Table 7. An SDT on deciding whether or not to turn on Actuator x and Actuator y based on the
availability of Humidity Sensor and Light Sensor

Condition 1 2 3 4
Humidity Sensor Yes Yes No No
Light Sensor Yes No Yes No
Action
Actuator x * *
Actuator y *

SDT Lexons
Lexon 1 , , ,
Lexon 2 , , ,
Lexon 3 , , ,
Lexon 4 , , ,
Lexon 5 , , ,
Lexon 6 , , ,

SDT Commitments
Commitment 1 EACH Room has EITHER Humidity Sensor OR Light Sensor, BUT NOT BOTH
Commitment 2 EACH ACTION can EITHER BE X OR Y, BUT NOT BOTH
Commitment 3 VALUE of X is {Actuator X}
Commitment4 VALUE of Y is {Actuator Y}

RDFs/OWL SDRule-ML
…
<owl:ObjectProperty
rdf:about="#has_Humidity_Sens
or">
 <rdfs:subPropertyOf
rdf:resource="#has"/>
 <owl:propertyDisjointWith
rdf:resource="#has_Light_Senso
r"/>
…
</owl:ObjectProperty>
…

…<Predicate id="Lexon1">
<Object_Role ID="Lexon1_forward" Object="Room" Role="has"/>
<Object_Role ID="Lexon1_backward" Object="Humidity Sensor"
Role="is of"/></Predicate>
<Predicate id="Lexon2"><Object_Role ID="Lexon2_forward"
Object="Room" Role="has"></Object_Role>
<Object_Role ID="Lexon2_backward" Object="Light Sensor"
Role="is of"></Object_Role></Predicate>
<Constraint><ExclusiveOrConstraint>
<Object_Role ID="Lexon1_forward"></Object_Role>
<Object_Role ID="Lexon2_forward"></Object_Role>
</ExclusiveOrConstraint></Constraint>…

Fig. 7. Commitment 1 from Table 7 in RDFs/OWL and SDRule-ML

3.6 Subtyping

The “is-a” subtype/taxonomical relationship is probably one of the mostly used
ontological relations. A subtype is an object type, each of whose instances belong to
an encompassing type.

We use subtyping to check the validity of a combination of conditions. Given two
concepts and , which are represented by the lexon terms and , a decision
rule is considered to be invalid when the following conditions are met.

• and are two condition stubs
• The condition entries for and have the value type of Boolean
• is a subtype of
• The conditions , and , appear in one column and there

is an activated action in this column

 Towards Directly Applied Ontological Constraints in a Semantic Decision Table 205

Table 8 shows an example of subtyping. As Humidity Sensor is a subtype of Sensor,
the condition , implies that there is a sensor in the room.
Therefore, it is impossible to execute a decision rule, which contains the
condition , . Accordingly, column 2 is invalid.

Fig. 8 shows how this “is-a” relationship is stored in RDFs/OWL and SDRule-ML.

Table 8. An SDT on deciding whether or not to turn on Actuator x based on the availability of
Humidity Sensor and Sensor

Condition 1 2 3 4
Humidity
Sensor

Yes Yes No No

Sensor Yes No Yes No
Action
Actuator x * * *

SDT Lexons
Lexon 1 , , ,
Lexon 2 , , ,
Lexon 3 , , ,
Lexon 4 , , ,
Lexon 5 , , ,

SDT Commitments
Commitment 1 Humidity Sensor IS SUBTYPE OF Sensor

RDFs/OWL SDRule-ML
<owl:Class rdf:about="#Humidity_Sensor">
 <rdfs:subClassOf rdf:resource="#Sensor"/>
</owl:Class>

<Object>Sensor</Object>
<Object SuperType="Sensor">Humidity
Sensor</Object>

Fig. 8. Commitment 1 from Table 8 in RDFs/OWL and SDRule-ML

In this section, we have discussed directly applied ontological constraint for SDT
V&V. In the next section, we will illustrate our related work.

4 Related Work

There are a few existing V&V approaches for decision tables. Shwayder [10]
proposes to use the Quine-McCluskey method to combine decision columns in a
decision table in order to reduce redundancies. Pooch [8] illustrates a survey on
decomposition and conversion algorithms of translating decision tables in order to
check for redundancy, contradiction and completeness.

Recently, Vanthienen et al. [15] illustrate how to use PROLOGA (a decision table
tool) to discover two kinds of tabular anomalies: intra-tabular and inter-tabular
anomalies. The intra-tabular anomaly is caused by a cyclic dependence between a
condition and an action. The inter-tabular anomaly is caused by redundancy,
ambivalence and deficiency. Qian et al. [9] use an approach called approximation
reduction to managing incomplete and inconsistent decision tables. Using their

206 Y. Tang and R. Meersman

approach, incomplete and inconsistent decision tables are reduced into complete and
consistent sub tables.

Other related work can be found in [4] [5] [6].
Compared to their work, our approach is focused on using ontological constraints

as the meta-rules for V&V. As an ontology is shareable and community-based, the
SDT V&V process thus supports group activities in a nature way. Decision modellers
and rule auditors share their common view through this process. By doing so,
misunderstanding is minimized and the cost of V&V is consequently reduced.

5 Discussion, Conclusion and Future Work

As an extension to decision tables, SDT provide extra advantages while using it for
V&V:

• It supports multiple decision modellers (also called “decision group”) to
create, validate and verify a decision table.

• It contains semantically rich meta-rules for its self-organization.
• Its analysis functions take advantages of modern ontology engineering

technologies, such as the formality, shareability, interoperability and
community-based.

It is important to ensure the correctness of SDTs; especially a community of decision
modellers is involved. This problem belongs to V&V for decision making systems.

In this paper, we have discussed SDT V&V issues concerning ontology-based
consistency checking. We identify the constraints of value, uniqueness, mandatory,
cardinality and frequency, exclusive-or and subtyping as the ones that can be directly
applied. The graphical notations of the discussed constraints for the examples that are
illustrated in this paper can be found in [11].

The SDT creation method used in this paper is to create an ontology that stores the
meta-rules for V&V. This creation phase can be replaced by importing existing
ontologies, which requires an extra effort during the annotation process.

We have designed an SDT rule engine for checking the validity of decision
columns in an SDT. We are still working on the implementation. We are currently
busy with the implementation of the mapping between SDT commitments,
RDFs/OWL and SDRule-ML. In the future, we will study how to use combined
ontological constraints for SDT V&V.

Acknowledgments. The work has been supported by the EU ITEA-2 Project
2008005 "Do-it-Yourself Smart Experiences", founded by IWT 459.

References

[1] CSA: Z243.1-1970 for Decision Tables, Canadian Standards Association (1970)
[2] Halpin, T., Morgan, T.: Information Modeling and Relational Databases, 2nd edn. The

Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann (March 17,
2008) ISBN-10: 0123735688, ISBN-13: 978-0123735683

 Towards Directly Applied Ontological Constraints in a Semantic Decision Table 207

[3] Henry Beitz, E., Buck, N.H., Jorgensen, P.C., Larson, L., Maes, R., Marselos, N.L.,
Muntz, C., Rabin, J., Reinwald, L.T., Verhelst, M.: A modern appraisal of decision
tables, a Codasyl report. ACM, New York (1982)

[4] Hewett, R., Leuchner, J.: Restructuring decision tables for elucidation of knowledge.
Data & Knowledge Engineering 46(3), 271–290 (2003)

[5] Ibramsha, M., Rajaraman, V.: Detection of logical errors in decision table programs.
Communications of the ACM 21(12) (December 1978)

[6] Lew, A.: Optimal conversion of extended-entry decision tables with general cost criteria.
Communications of the ACM 21(4) (April 1978)

[7] Murrell, S.T., Plant, R.: A survey of tools for the validation and verification of
knowledge-based systems: 1985-1995. Journal of DS Sys. 21(4), 307–323 (1997)

[8] Pooch, U.W.: Translation of Decision Tables. Journal of ACM Computing Surveys
(CSUR) Surveys 6(2) (June 1974)

[9] Qian, Y., Liang, J., Li, D., Wang, F., Ma, N.: Approximation reduction in inconsistent
incomplete decision tables. Knowledge-Based Systems 23(5) (2010)

[10] Shwayder, K.: Combining decision rules in a decision table. Communications of the
ACM 18(8) (August 1975)

[11] Tang, Y.: Directly Applied ORM Constraints for Validating and Verifying Semantic
Decision Tables. In: Proc. of OTM 2011 (upcoming, 2011)

[12] Tang, Y., Meersman, R.: Towards Building Semantic Decision Tables with Domain
Ontologies. In: Chan, M.C., et al. (eds.) Challenges in Information Technology
Management. World Scientific (2008) ISBN 978-981-281-906-2, 981-281-906-1

[13] Tang, Y., Meersman, R.: SDRule Markup Language: Towards Modeling and
Interchanging Ontological Commitments for Semantic Decision Making. In: Handbook
of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and
Approaches. IGI Publishing, USA (2009) ISBN: 1-60566-402-2

[14] Tang, Y., Debruyne, C., Criel, J.: Onto-DIY: A Flexible and Idea Inspiring Ontology-
based Do-It-Yourself Architecture for Managing Data Semantics and Semantic Data. In:
Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6427, pp. 1036–
1043. Springer, Heidelberg (2010)

[15] Vanthienen, J., Mues, C., Aerts, A.: An Illustration of Verification and Validation in the
Modeling Phase of KBS development. Journal of Data & Knowledge Engineering 27(3),
337–352 (1998)

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 208–221, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Representing and Solving Rule-Based Decision Models
with Constraint Solvers

Jacob Feldman

OpenRules, Inc., 75 Chatsworth Ct.,
Edison, NJ 08820, USA

jacobfeldman@openrules.com

Abstract. This paper describes how constraint solvers could serve as rule
engines in the context of modern business decision management systems.
Decision models are based on rule families oriented to business users and
frequently represented as Excel decision tables. The proposed approach uses
exactly the same representation of decision models as a rule engine. The
developed Rule Solver loads a decision model from multiple Excel files,
generates a constraint satisfaction problem, and then validates it for
consistency, diagnosing possible conflicts. Finally, it solves the problem,
delivering results using the same terms as business rules. In fact, a user may
switch between a rule engine and a constraint solver without changing the rules
themselves. Additionally, Rule Solver can find solutions or find an optimal
decision when business rules only partially define a problem. Rule Solver is
implemented as an advanced component of the popular open source business
decision management system “OpenRules”.

Keywords: Decision Model, Rule Family, Constraint Satisfaction, Rule
Engine, Constraint Solver.

1 Introduction

In recent years, decision management services have become key components of real-
world business applications in banking, insurance, healthcare, telecommunication,
advertising, and many other industries. They are frequently based on predictive
analytics, business rules management, complex event processing, optimization, and
other business intelligence technologies. According to IDC [1] the decision
management software market is expected to exceed $10B by 2014 – doubling in the
five years from 2009. Business rules management systems (BRMS) and rule engines
are already “must-have” components for decision management. At the same time,
constraint programming (CP) has been successfully used for years to find optimal
solutions for complex industrial problems. However, it is only now CP is starting to
penetrate the world of business decision support applications. In this paper, we show
how existing CP solvers can be effectively used as an execution mechanism for
complex decision models.

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 209

There are two major implementations of rule engines available on the market
today:

1) Inferential rule engines that support a pure declarative representation of
business rules;

2) Sequential rule engines that rely on user-defined sequencing of rules and rule
families.

The famous Rete algorithm was invented by Charles Forgy almost 40 years ago [2]
and it still remains the major foundation for most implementations of inferential rule
engines [4], [5], [6], [7]. Sequential rule engines are used by many commercial and
open source engines ([20], [21], [8], [9]), which recognized that in many practical
applications manual rules sequencing is a preferred mode. Even vendors of the major
Rete-based rule engines added special sequential modes to more effectively compete
with their sequential counter-parts. However, the newest decision management
methodologies ([3], [22]) without insisting on any particular rule engine
implementation, require that there should be no rules ordering within rule sets, and
between rule sets. These declarative principles simply cannot be supported by
sequential rule engines which makes Rete again the dominating implementation
approach.

Over the years, Rete went through many enhancements, but until now there were
no practical alternatives to Rete for implementation of non-sequential rule engines in
the business rules world. At the same time, Prolog-based tools and different
constraint solvers (see the list of products in [23]) have been successfully used for
years to resolve complex optimization problems defined in terms of rules and
constraints. However, these tools usually require a deep understanding of the
underlying technologies, and are mainly oriented to software developers, not to
subject matter experts. This fact limits the real-world acceptance of these
technologies. Making these tools available to business users through their favorite
interfaces such as Excel-based decision tables and/or different BRMS rule editors, can
bring constraint-based technologies to the practical decision management world.

In this paper we propose a new, constraint-based approach to the implementation
of inferential rule engines that can execute rule-based decision models [3]. The
proposed approach is functionally similar to Rete-based rule engines in its support of
declarative principles for business rules organization. On the one hand, it allows a
user to execute decision models using exactly the same business rules without any
additional coding. On the other hand, it does not require explicit sequencing of rules
inside a rule family or a strict execution order of related rules families. For every
input dataset, a constraint-based rule engine executes all related business rules and
either infers a decision or diagnoses conflicts among rules and input data.
Additionally, it can find solutions when business rules only partially define a
problem. When an optimization objective is defined by the rules, it also can find an
optimal decision instead of forcing a user to specify enormous amount of rules to
compare different decisions. The proposed approach is implemented as a component
of the open source business decision management system “OpenRules” [8], in which
it is called “Rule Solver”. We will use this name throughout this paper when referring
to the proposed approach and its implementation.

210 J. Feldman

2 The Decision Model

Rule Solver does not deal with any particular rule language, but rather executes rule-
based decision models created by business users in accordance with the
methodological approach known as “The Decision Model” [3]. The Decision Model
was introduced two years ago by Barbara von Halle and Larry Goldberg and quickly
gained popularity as a practical methodology for developing Business Decision
Management Systems (BDMS) for large financial services, insurance, health care, and
other industries. According to the authors, “The decision model is a representation of
fact-based business logic within a scope of a single business decision”. Examples of
such decisions are “Determine Loan Eligibility”, “Define Insurance Premium” or
“Determine Medical Treatment”. The Decision Model is oriented to subject matter
experts (business analysts who are not software developers) providing them with a
strictly defined notation, as well as concepts and principles that they should follow to
build maintainable decision support systems. The Decision Model is defined as
technology agnostic, meaning that different BRMS products may provide different
implementations of the same decision models.

The Decision Model is defined in [3] as “an intelligent template for perceiving,
organizing, and managing business logic behind a business decision (specifically, a
representation of business logic statements that together lead to a single business
decision, and which complies with the 15 Decision Model principles)”. The rigor of
the Decision Model is embodied in these 15 principles that are divided into structural,
declarative, and integrity principles. In particular, they specify how to organize and to
connect Rule Families.

2.1 Rule Families

Rule Families are the heart of the Decision Model and they are defined as traditional
decision tables but with certain limitations. A Rule Family is a decision table that
consists of 0 or more conditions and only one conclusion. If there is more than one
condition, then all of them are connected by the logical operator “AND”. Examples of
Rule Families are shown in Figures 1 and 2.

Fig. 1. Rule Family “PersonLikelihoodOfDefaultingOnLoan”

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 211

This Rule Family consists of four AND’ed condition columns and a single
conclusion column. Each column is associated with one fact type (e.g. “Person
Employment History”). Multiple rows (rules) specify the fact using an operator
(e.g.”<=” or “Is”) and a value (e.g. “Poor”).

Fig. 2. Rule Family “PersonEmploymentHistory”

Conditions and conclusions may use different business fact types shared by
different Rule Families. The fact types used in conditions of one Rule Family may be
defined by conclusions of other Rule Families. For example, Figure 2 shows a Rule
Family that specifies the value for the fact “Person Employment History” used by the
dependent Rule Family in Figure 1. This is an example of so called “inferential
relationships”. According to the “Declarative Inferential Relationship” principle [3],
there should be no implied sequence in the path among Rule Families related through
such inferential relationships.

The Decision Model includes other important principles that support the integrity
of Rule Families, among which are some that are especially important for automatic
execution of the Decision Model.

The “Declarative Body” principle states that “the entries in the body of a Rule
Family are unordered” [3]. In particular, it means that a user may insert new rules into
a Rule Family without worrying about any particular order. This principle imposes
very strong requirements not only upon the rule engine that will execute the Decision
Model, but also on the designer of Rule Families. It excludes the (sometimes very
convenient) ability override rules and forces a Rule Family author to consider almost
all possible combinations among condition values.

The “Rule Family Consistency” principle states that “a Rule Family should be free
of inconsistencies such as overlapping conditions or more than one conclusion” [3].
The conditions need to cover only a subset of the fact type’s domains that are within
scope of a Rule Family. At the same time, a Rule Family must result in at least one
conclusion value for any set of valid input values for condition fact types.

212 J. Feldman

2.2 Business Glossary

Fact types used by all Rule Families are collected in one special table called the
“Business Glossary”. Usually a glossary defines the following information about fact
types:

- Business names of the fact types defined exactly in the same way they are
used in Rule Families;

- Business Concepts to which these fact types belong;
- Domains with all possible values of the fact types;
- Technical names of fact types for integration of the Decision Models with

actual business object models used by programmers.

Figure 3 shows an example of the business glossary for rule families presented in
Figures 1 and 2.

Fig. 3. Example of a Business Glossary

2.3 Top-Down Design

The Decision Model promotes a top-down design approach that starts with a top-level
decision which can be described through sub-decisions and their associated Rule
Families. For the above examples of Rule Families, the proper Decision table is
presented in Figure 4.

Fig. 4. The Decision Model “DetermineLikelihoodOfDefaultingOnLoan”

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 213

The Decision Model can be considered as a hierarchy of decisions presented in a
graphical form [3] or a tabular form [8]. For example, using the table of the type
“Decision” we may present a top-level decision and its sub-decisions in Excel tables
similar to the ones on Figure 5.

Fig. 5. Decisions and Sub-Decisions

The first table specifies a top-level decision using 5 sub-decisions and Rule
Families that implement their business logic. For instance, the decision “Define Fact
2” is defined by two Rule Families “RuleFamilyFact21” and “RuleFamilyFact22”. At
the same time, the decision “Define Fact 3” is defined using a separate decision table
“DecisionFact3”.

According to the Decision Model [3], there should be no inferential dependencies
among inferentially related Rule Families. Correspondingly, the order of fact
definitions inside the above decision tables should not matter during the execution of
these models.

The decision can be also defined through other decisions using different
conditions. For example, Figure 6 demonstrates a situation when the first sub-decision
validates your data and the second sub-decision executes complex calculations but
only if the data validation was successful.

Fig. 6. Conditional Sub-Decisions

214 J. Feldman

2.4 Test Cases and Real Data

The test cases like Rule Families and all other components of the Decision Model can
be defined by business people directly in Excel. Figure 7 shows an Excel table that
defines a data type for the business concept “Person” (defined in the glossary in
Figure 3 above.)

Fig. 7. An example of a Datatype table used for Decision Model testing

Instead of an Excel-based data type, we may use a regular Java class Person that is
defined as a Java bean by the Java application in which this Decision Model is going
to be incorporated. Figure 8 shows an Excel table that contains concrete test instances
of type Person called “borrowers”.

Fig. 8. An example of a Data table with test instances

When the Decision Model is integrated with a Java or .NET application, actual
data instances can be used by the same Decision Model without any changes in the
business logic.

The described components of the Decision Model “DefinePersonLikelihoodOf
DefaultingOnLoan” are sufficient for Rule Solver to either execute this model
inferring a correct decision or to inform a user about possible inconsistencies.

3 Constraint-Based Implementation

Formally, the Decision Model can be described as follows:

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 215

- There is a set of business objects X = { X1, …, Xn }
- Each business object Xi has fact types Fi = { f1, …, fm } with possible values

Dj = { vj1, …, vjk } for each property fj
- There is a set of rules R = { R1, …, Rr }, where a rule Rk defines relationships

between different fact types by specifying the allowed combinations for all
fact types in that rule.

The rules from set R are grouped into Rule Families that are organized in accordance
with the Decision Model principles. Execution of the Decision Model should cause
the assignment of values to all fact types that satisfy the rules.

This representation demonstrates that the Decision Model is quite similar to a
typical constraint satisfaction problem (CSP) where fact types Fi correspond to
constrained variables with known domains Dj and where rules Rk correspond to
conditional constraints.

Thus, to use a constraint solver as a rule engine that is capable of executing a
decision model compliant with The Decision Model principles, we need a tool that
can do the following:

- read the decision model created by business analysts directly from the rule
repository (i.e. from a set of Excel files) without requiring the manual
transfer of the model into any CP language

- generate a CSP that corresponds to this decision model
- validate the consistency of the model by checking the consistency of the

generated CSP and point to possible conflicts using the business terms of the
initial decision model

- execute the decision model against concrete data using the following steps:
o instantiating all constrained variables for which input data is

defined
o posting all constraints that correspond to rules from all Rule

Families
o if constraint propagation by itself does not find single values for all

fact types (does not instantiate all constrained variables), then run a
constraint solver’s search strategy that finds one or more solutions.

OpenRules Rule Solver provides the described functionality by downloading all
decision model tables directly from Excel files and then automatically generating
and solving a corresponding constraint satisfaction problem. Rule Solver is based
on the standard Java Constraint Programming API defined by the Java Specification
Request (JSR) 331 [19]. The use of the JSR 331 allows a user to not commit to a
particular CP vendor and to try different underlying solvers before choosing the
most suitable one based on its technical and business applicability. A user may
switch between different underlying CP solvers compliant with the JSR 331 without
any changes in the code. Below we will use a simple example to describe how Rule
Solver works.

216 J. Feldman

3.1 Fact Types as Constrained Variables

First, Rule Solver creates a CSP instance using the class RuleSolver inherited from
the JSR 331 class Problem:

RuleSolver rs = new RuleSolver();

Then it iterates through the glossary and for each fact type it creates a constrained
variable of one of the following types:

- Var for integer constrained variables
- VarBool for Boolean constrained variables
- VarReal for real constrained variables
- VarString for string constrained variables.

Rule Solver automatically converts fact type domains from the glossary, to the
domains of the constrained variables as they are specified by JSR 331. While the
glossary does not specify a particular type of the fact types, the concrete types of
variables are defined based on the provided data instances. For example, a constrained
variable that corresponds to the fact type “Person Outside Credit Score” will be
created using the following JSR 331 method:

 rs.variable(“Person Outside Credit Score”, 0, 999);

The Decision Model may use aggregated fact types, for example arrays of strings.
Consider the Rule Family in Figure 9 that specifies up-selling rules.

Fig. 9. An example of a Rule Family with aggregated fact types

Here the fact type “Customer Products” is an array of strings that represents
banking products that a customer already has. The fact type “Offered Products”
represents additional products a bank is ready to offer to a customer based on the

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 217

customer’s profile and the set of existing products. Rule Solver represents such fact
types using constrained set variables (the JSR 331 standard type VarSet) and posts the
proper constraints defined on these set variables.

3.2 Rules as Conditional Constraints

While processing the Decision Model tables and related Rule Families, Rule Solver
creates conditional constraints in the form:

 conditionConstraints.implies(conclusionConstraint)

where “conditionConstraints” are accumulated by using the method “and” defined for
the JSR-331 class Constraint. For example, the rule

IF Person Years at Current Employer < 1
AND Person Number of Jobs in Past Five Years > 5
THEN Person Employment History = Poor

may be implemented in Java using the JSR-331 interface:

Var var1 = rs.getVar(“Person Years at Current Employer”);
Constraint c1 = rs.linear(var1, ”<”, 1);

Var var2 = rs.getVar(“Person Number of Jobs in Past Five Years”);
Constraint c2 = rs.linear(var2, ”>”, 5);

Constraint conditionConstraints = c1.and(c2);

VarString var3 = rs.getVarString(“Person Employment History”);
Constraint conclusionConstraint = rs.linear(var3, ”=”, “Poor”);

rs.add(conditionConstraints.implies(conclusionConstraint));

However, Rule Solver never generates Java or any other code. Instead, at run-time, it
simply creates an instance of different JSR 331 classes and adds them to the already
created constraint satisfaction problem (an instance of the class “RuleSolver”). All
instances of constrained variables and constraints are added to the problem “on the
fly”. How does Rule Solver actually generate this CSP? It does not use any special
code parser and/or generator. Instead, it effectively relies on the existing OpenRules’s
templatization mechanism.

OpenRules uses different rule templates to implement all tables included into the
default (not constraint-based) implementation of the Decision Model. Such tables as
“Decision”, “RuleFamily”, and “Glossary” are actually implemented based on rule
templates defined in several configuration Excel files. For example, the file
“RuleFamilyExecuteTemplates.xls” contains a template with the fixed name
“RuleFamilyTemplate” and all Rule Families are created based on it. This template is
a regular OpenRules “single-hit” rules table. It means that it is trying to execute rules
in top-down order by evaluating their conditions. When all conditions inside a rule are
evaluated as TRUE, the rule’s conclusion (and possibly other related actions) will be
executed and all remaining rules will be ignored.

218 J. Feldman

Rule Solver provides another configuration file “RuleFamilySolveTemplates.xls”
that substitutes the template “RuleFamilyTemplate” with a different implementation that
is actually a special “multi-hit” rules table. This rule table executes all rules inside every
Rule Family. However, instead of evaluating rule conditions it simply creates new
constraints similar to c1 and c2 above, and then “AND”s all previously defined
conditions similarly to c1.and(c2). Thus, all conditions from one rule will form a
constraint conditionConstraints described in the previous example. Then the
conclusion will be converted to the conclusionConstraint that is based on the
constrained variable associated with the conclusion’s fact type, operator, and value.
Finally, Rule Solver creates a new constraint conditionConstraints.implies
(conclusionConstraint) and adds it to the problem. According to the JSR 331, this
constraint states that if the constraint conditionConstraints is satisfied then the
constraint conclusionConstraint also should be satisfied.

While the “RuleFamilyTemplate” may contain more complicated constructions,
the very fact that the generated CSP can be reconfigured by simply changing the
template directly in Excel, makes this approach extremely flexible, extensible, and
customizable for different needs.

3.3 Consistency Validation

Rule Solver provides a user (a business analyst who creates and maintains the rules
within the Decision Model) with several consistency validation modes.

Mode 1. Validate rules consistency. In this mode, Rule Solver simply posts all already
added constraints one-by-one with constraint propagation turned on. If a constraint
fails to be posted, a user will be notified that the associated rule is in conflict with the
rules, for which the corresponding constraints were previously posted.

Mode 2. Validate rules consistency using test data. In this mode, before posting any
constraints, Rule Solver is trying to instantiate constrained variables, for which the
proper test data is defined. If an error occurs, the user will be informed about invalid
data. If there are no errors in the data, then Rule Solver will try to post all
automatically defined constraints for all involved Rule Families. The constraints again
will be posted one-by-one with constraint propagation on. If a constraint fails to be
posted, the user will be notified that the associated rule is in conflict with previously
posted constraints (rules). To help a user find the reason for the conflict, Rule Solver
will display the current state of all instantiated (or only partially instantiated)
variables corresponding to the fact types.

Mode 3. Validate rules completeness. If the previous modes do not produce errors,
Rule Solver validates whether the Rule Family consistency principle has been
satisfied. This principle states that “a Rule Family must result in at least one
conclusion value for any set of valid input values.” So, Rule Solver determines
whether all constrained variables have been instantiated for all conclusion fact types.
If all Rule Families have been fully defined in accordance with the Decision Model
principles, constraint propagation will be sufficient to determine a decision.

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 219

In real-world decision management environments, not all Rule Families are created at
the same time, and as a result, the Decision Models frequently can be found to be
incomplete, but still producing satisfactory results on the data that have been used.
However, a user may not even know about potential problems with such decision
models. In this case Rule Solver provides a user with a list of fact types that remain
undefined. These fact types are displayed with all remaining possible values from
their domains that may have been reduced. This information prompts a user to
identify which rules should be extended to cover the remaining situations.

It is important to emphasize that Rule Solver validates consistency of not only one
Rule Family but of all Rule Families included in the Decision Model and related
through inferential relationships! Otherwise, it may be extremely difficult for the
author of the rules to predict how adding or modifying a single rule in one Rule
Family may affect the execution logic of dependent Rule Families. There could be
hundreds and even thousands of Rule Families in real-world decision support
applications, and it would be humanly impossible to maintain their consistency
relying only on test cases. Rule Solver helps business users to keep their entire
Decision Models in a consistent state.

3.4 Finding Solutions for Partially Defined Decision Models

In some practical situations a creator of a decision model cannot strictly specify all
possible combinations of values for all conditions. Instead, users frequently cover
only a subset that according to the Decision Model is “within scope” [3].
Unfortunately, this means that such incomplete Decision Models will not produce any
decision for certain data sets. Rule Solver helps a user to deal with this problem by
simply executing the default search strategy after all data and rule constraints have
been posted. Rule Solver offers a user the following options:

- find a single solution that satisfies all currently specified rules (constraints);
- find several solutions by specifying a limit for the maximal number of

solutions or by limiting the amount of time during which solutions may be
calculated;

- find a solution that minimizes (or maximizes) an optimization criteria
defined by a user as an expression of the existing fact types.

In this manner, Rule Solver goes well beyond traditional inference rule engines by
empowering business users with a new functionality without forcing them to specify
rules for all possible situations.

4 Related Work and Future Development

The integrated use of business rules and constraint programming has been described
in several works [12], [13], [15], [16]. In most cases, business rules are used to define
a specific business problem and then CP is used to solve the problem. The early
versions of Rule Solver [8] offered generic rule templates that allowed a user to
directly use CP concepts represented through business rules. The closest approach to
the one described in this paper was proposed in [14] where an automatically generated

220 J. Feldman

CSP was used to validate the consistency of a stand-alone classification rules table.
However, that previous approach did not validate the consistency of multiple decision
tables and, more importantly, was not able to execute the rules. To the best of our
knowledge there were no known software products that use a constraint solver as a
truly declarative (not sequential) rule engine.

With the Decision Model gaining in popularity as a decision management
methodology, several vendors extended their product offerings to enable the creation
and management of decision models in accordance with [3]. Such products as
SAPIENS [9], interGREAT [10], and RuleGuide [11] provide powerful graphical
interfaces for the creation and validation of decision models and OpenRules 6.0.1 [8]
released in March 2011 became the first business rules product that allows business
users to define and execute their decision models.

The approach described in this paper has been implemented as an advanced Rule
Solver component of the OpenRules BDMS [8]. It allows a user to check if custom
decision models are compliant with the Decision Model principles [3]. In cases when
these principles have been violated, Rule Solver shows a user how to improve their
models. In addition to traditional rule engine functionality, Rule Solver can deal with
practical situations where a custom decision model does not cover all possible
combinations of fact types. Instead of simply failing to find a decision, Rule Solver
can offer a user either a feasible or an optimal solution.

The proposed approach has not yet been tested on large industrial problems. It was
also not possible to do a performance comparison with Rete-based rule engines since
there are still no available Rete engines that implement The Decision Model.
However, the automatically generated CSPs are simple from the CP perspective, they
are highly constrained and do not require an optimal search for many practical
situations. When we conducted performance tests using relatively small rule sets and
the default search strategies of several open source CP solvers, the high performance
results came as no surprise. CP solvers have proven records of solving much more
complex constraint satisfaction problems to compare with ones that automatically
generated from the decision models. However, we plan to conduct further tests using
more complex rules with multiple inferential dependencies and data coming from
real-world projects.

From a practical perspective, the performance should not be an issue as it is not an
issue for most existing rule engines. What is especially important is the fact that the
Decision Models can be executed “as is” without any conversion of the original
Excel-based rule families (created by business users) and without additional coding.
The creators of business rules, who usually have no idea about Rete or any other rule
engine algorithm, do not have to know anything about CP either. They may continue
to use only business terms to define their business logic and the system will
communicate with them in the same terms. As a result, business users can test and
maintain their decision models themselves without help from software developers.
The same decision model can be used with Rule Solver to validate its consistency, but
then a user may switch back to a conventional rule engine to execute the model.

OpenRules plans to extend Rule Solver by covering more types of business facts
with more operators (and related constraints) defined on these facts. We also plan to
add the ability to minimize rule violations in accordance with the approaches
described in [17] and [18].

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 221

Since Rule Solver’s implementation is based on the JSR-331 standard [19], it
remains independent of the underlying CP solvers. It also allows any JSR-331
compliant CP solver to use Rule Solver as a front-end for integration with business
rules products. At the same time, different BRMS vendors may use the proposed
approach to extend their product offerings by adding constraint-based rule engines.

References

1. Worldwide Decision Management Software 2010-2014 Forecast: A Fast-Growing
Opportunity to Drive the Intelligent Economy. IDC Report for December 2010 (2010),
http://www.idc.com/getdoc.jsp?containerId=226244

2. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19, 17–37 (1982)

3. von Halle, B., Goldberg, L.: The Decision Model: A Business Logic Framework Linking
Business and Technology. Auerbach Publications/Taylor & Francis Group, LLC (2009)

4. IBM WebSphere ILOG JRules,
http://www-01.ibm.com/software/integration/business-
rulemanagement/jrules/

5. FICO Blaze Advisor business rules management, http://www.fico.com
6. JESS, the Rule Engine for the Java platform, http://jessrules.com
7. Drools, The Business Logic Integration Platform, http://www.jboss.org/drools
8. OpenRules, Open Source Business Decision Management System,

http://openrules.com
9. Sapiens International Corporation N.V, http://www.sapiens.com

10. inteGREAT Enterprise 2010, http://www.edevtech.com/index.html
11. RuleGuide, New Wisdom Software, http://www.newwisdomsoftware.com
12. Bousonville, T., Focacci, F., Le Pape, C., Nuijten, W., Paulin, F., Puget, J.F., Robert, A.,

Sadeghin, A.: Integration of rules and optimization in plant powerops. In: van Beek, P.
(ed.) CP 2005. LNCS, vol. 3709, pp. 1–15. Springer, Heidelberg (2005)

13. Feldman, J., Korolov, A., Meshcheryakov, S., Shor, S.: Hybrid use of rule and constraint
engines, Patent no: WO/2003/001322, World Intellectual Property Organization

14. Feldman, J., Korolov, A., Meshcheryakov, S., Shor, S.: Consistency validation for complex
classification rules. Patent no: WO/2003/017060, World Intellectual Property Organization

15. Feldman, J., Freuder, E.: Integrating business rules and constraint programming
technologies for EDM. In: The 11th International Business Rules Forum (2008)

16. van der Krogt, R., Feldman, J., Little, J., Stynes, D.: An Integrated Business Rules and
Constraints Approach to Data Centre Capacity Management. In: Cohen, D. (ed.) CP 2010.
LNCS, vol. 6308, pp. 568–582. Springer, Heidelberg (2010)

17. O’Sullivan, B., Feldman, J.: Using hard and soft rules to define and solve optimization
problems. In: The 12th International Business Rules Forum (2009)

18. Feldman, J.: Rules Violations and Over-Constrained problems. October Rules Fest (2009)
19. Java Request Specification (JSR) 331: Constraint Programming API. Java Community

Process, http://www.jcp.org/en/jsr/detail?id=331
20. Corticon, Business Rules Management System, http://corticon.com
21. Visual Rules, Business Rules Management System, http://visual-rules.com
22. Ross, R.G.: Decision Analysis Using Decision Tables and Business Rules,

http://www.brsolutions.com/b_decision.php
23. ACP, Association for Constraint Programming System,

http://www.4c.ucc.ie/a4cp

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 222–229, 2011.
© Springer-Verlag Berlin Heidelberg 2011

SWRL-Based Context Awareness for Application Servers
Hosting Digital Services

Yves-Gaël Billet, Christophe Gravier, and Jacques Fayolle

Université de Lyon, F-42023, Saint-Etienne, France
Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France

Télécom Saint-Etienne, école associée de l’Institut Télécom, F-42000, Saint-Etienne, France
LAvoratoire Télécom Claude Chappe (LT2C), F-42000, Saint-Etienne, France

{yves-gael.billet,christophe.gravier,
jacques.fayolle}@telecom-st-etienne.fr

Abstract. As the number of context-aware applications increases in the real
world, it can be quite difficult to deploy such applications in traditional
application servers, which are context-agnostics systems. To address this
challenge, we propose a novel approach for easing the deployment of context-
aware applications into application serversContext is encoded within an OWL-
driven knowledge base. We couple this knowledge base with SWRL rules to
encode context-awareness thresholds. SWRL rules are not predefined in the
application server. They are instead embedded inside the application bundle
built by the developer, next to the business logic of the application. At the
application deployment time, SWRL rules are extracted to the knowledge base
in order to monitor the relevant context for the application to be deployed. At
runtime, the context of each session of the application is monitored in the
knowledge base. When a rule is triggered (a context-awareness threshold is
reached), a broker inside the application server notifies the application so that it
adapts its behavior by switching to a more relevant modality. We show how our
approach eases the work of developers for building context-aware application
by using our context-aware framework.

Keywords: Rules, SWRL, Semantic, context-awareness computing, middleware,
digital services, application server.

1 Needs for a Semantic CAS

We want to provide context awareness for digital service. The idea is to provide a
context-aware framework for software architects in order to implement context
awareness in their digital services. These services usually run on Applications Servers
(henceforth AS) and are consumed through a network using the client-server
paradigm. In this situation, context is composed of information about the network and
features of the terminal. Context is session specific since applications are hosted on an
AS, context-awareness could be externalized as a framework on them.

The objective is to provide a system that supports sensing, perception and
reasoning over context. In this way, software developers could only focus on the

 SWRL-Based Context Awareness for Application Servers Hosting Digital Services 223

business logic and adaptation behavior of their application. Behaviors are specific for
each application. Software developers must describe and model adaptation behavior
for their digital services and communicate it to the context-aware framework.

Semantic Web technologies allow describing context and are comprehensible by
both humans and computers and offer a loosely-coupling with the programming
language.

Ontologies are used to model domain by describing concepts of the domain and
relationships between those concepts [12]. The Web Ontology Language (OWL) was
developed to provide a way to represent knowledge understandable by machines
using a semantic formalization, in order to facilite computers to interpret human
knowledge.

The Semantic Web Rule Language (SWRL) allows us to encode context rules on
Horn clauses and designed for OWL. As presented in [13] rules are of the form of an
implication between an antecedent (body) and consequent (head). SWRL are logical
expression encoded in Conjunctive Normal Forms. It used to classify individuals
according conditions. As stated in [14], SPARQL can be used to interrogate an
ontology but it is RDF centric so not efficient when using OWL. O'Connor et al.
proposes a Semantic Query-enhanced Web Rule Language (SQWRL) based on
SWRL.

We propose a semantic context-aware system using OWL, SWRL and SQWRL to
describe context and model the adaptation behavior for applications.

2 Related Works

2.1 Context-Awareness

Among the existing context-aware definitions [1-3], we base our definition from [2].
It defines context as "any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications
themselves."

We apply this definition in the case of digital services: a context-aware multimedia
application is an application (entity), which can use the elements of context (any
information that can be used to characterize the situation) to adapt his behavior in
order to provide the corresponding interaction to the terminal.

2.2 Architectures of Context-Aware Applications

J. Coutaz et al. present in [4] a global architecture for context-aware applications
based on levels of abstraction for a general-purpose context-aware system. They
define four levels:

• Sensing layer provides numeric observables.
• Perception layer provides symbolic observables, which are interpretations from

the numeric observable (i.e. transform GPS information in location name).
• Situation and context identification layer identifies context and propose

adaptation. It is the reasoning core.

224 Y.-G. Billet, C. Gravier, and J. Fayolle

• Exploitation layer. It is an adapter between the application and the context
infrastructure.

Baldauf et al. in [5] also use a similar layered architecture to compare middleware
and frameworks for context-aware systems.

2.3 Existing Works on Context-Aware Systems

Current approaches in context-aware frameworks make a clear separation between
context acquisition, context processing and use. Thus, to create a separation of
concerns as proposed by Dey [2]. He proposes a conceptual framework for supporting
context-aware applications. The implementation of this framework is known as the
Context-Toolkit [2]. It aims to ease development and evolution of context-aware
applications using an object-based approach. It must be seen as an API for context-
aware application. Each object from the API, which can be use to construct an
application, has a role (i.e.: collect, transform, aggregate and serve context). The API
approach creates a tight coupling between context processing and application.

More recent works, such as CoBrA or SOCAM are infrastructure-based approach
rather than API. Hong et al. point out advantages of infrastructure for providing
context abstraction [6].

CoBrA project from Chen et al. [7] is agent-oriented. A central unit, so called, a
context broker, maintains and manages context on behalf of agents. An agent could be
an application running on mobile devices, a service provided by a room, a web
service, etc). The broker collects information about context and shares it with agents.
This design addresses the issue for providing context-awareness to resource-limited
computing devices.

The Service-Oriented Context-Aware Middleware (SOCAM) project introduces by
Gu et al. [8] exists as middleware. In SOCAM, different services working together
acquire, process, reason and deliver context to agents. The main contribution of this
work is the context model, which uses ontology through OWL. The use of ontology
allows them to describe context in a semantic way that is independent of
programming language.

In context-awareness, the usage is a key element. Works presented in this section
are related to the physical world. The main use is to provide services fitted to users
activity (e.g.: forward calls to voice mails when users is currently sleeping in the
bedroom, switch off light if the room is empty, etc).

3 Rule Driven Context-Awareness

Our motivations to use a middleware are driven by the will to be unobtrusive (1) and
to create an abstraction for context-awareness (2). It aims at deploying regular
applications and context-aware applications (related to (1)) and evolving the
middleware without impacting the already deployed applications (related to (2)).

We use rules for providing context-awareness thresholds in application through
what we call a context signature. It contains rules that define behaviors according to
context, for each application. In order to create these rules, the software engineer must
define a set of situations. A situation propose a running state for a corresponding

 SWRL-Based Context Awareness for Application Servers Hosting Digital Services 225

environment, as for example, to stream a video through a 4 Mbit/s connection to a
terminal we must code the video in 480p.

Each situation is made of observations of the computing environment and a
corresponding reaction. Observations describe the computing environment for an
application; upon relevant characteristic chosen by the software engineer. Indeed, in
our reference scenario, bandwidth is a relevant characteristic. An observation is
formatted as a triple (key, comparison operator and value). Values are strings or
numeric; in case of a numeric value, a default unit is used. Key is the name of the
characteristic, basically, the name of the data gathered by the sensors (e.g.: screen
height for an observation about the height of a screen). The operator fills the gap
between key and value.

Observations can be as simple as the reference scenario or more complex with
additional elements. For example, a situation can be based on observations on
bandwidth and screen size. But there can be only one reaction. So, a situation is
composed by at least one observable and exactly one consequence.

Each reaction must be a running mode implemented. Rules allow choosing the
most appropriate running mode for an application. For each relevant using case of a
multimedia application, there must be a situation expressed as a rule. These rules are
used against the knowledge base. Once the developer provides the context-aware
application as a package which contains the binary and the context signature, the
middleware unpacks these elements as shown in Fig. 1.

Fig. 1. Deployment of app in CAAS

The binary is deployed like a standard application and the signature is parsed in
order to find rules. As stated before, a rule (situation) is composed with an antecedent
(observation) and a consequence (reaction). Each one is then injected as knowledge in
the KB. Rules are consider as knowledge because they present running modes and
associated necessary conditions for using them, of the newly deployed application.

226 Y.-G. Billet, C. Gravier, and J. Fayolle

Context-logic signature defines requirements, in term of context information, for
changing application’s behavior. We define behavior as a business logic modulation.
The main functionality does not change, but can be realized under different forms.

3.1 Storing Context in a Domain Ontology

A context aware application server (CAAS) hosts multiple digital services and
provides context-awareness for them. Each application provides features under
multiple running modes. A user is typified as a session, which consumes features
offered by an application. Each session delivers its features through its environment
called context. Sensors through context providers can grab it. Each one is able to
gather only some kind of information (battery, screen size, localization, etc.) but not
all data from the computing environment. In other words, a context-aware application
relies on context providers to sense the environment, in order to choose the right
business logic modality (or running mode) for a session.

These observations are the foundation for our resulting ontology. It uses two main
classes (Context and Session) as shown in Fig. 2.

Context stores all necessary context information about the user computing
environment. It is divided into subsets that represent a context provider.

Session represents all active connections to the CAAS. Each user, which consumes
an application, is a member of the class session. Like the Session set, this class is
divided into subclasses for representing applications.

Relation between a session class and a context class is hasContextInformation.
This property is antisymetric, its domain is Session and its range is Context.

Fig. 2. General representation of our ontology

3.2 Reference Scenario

We will use as reference scenario, a video on demand (VOD) application. The digital
service has 3 behaviors (i.e.: 480p, 720p or 1080p) for streaming a video to a user.
The context information is the available bandwidth. The application changes the
resolution of the video (behavior) according to the user’s available bandwidth
(context) as shown in Table 1. The context-signature provides semantic formalization
of these context configurations that is a set of observations. A context signature maps

 SWRL-Based Context Awareness for Application Servers Hosting Digital Services 227

each context configuration to a specific business logic behavior. This is a loose-
coupling solution between business logic and context logic.

We run the above-mentioned ontology against our reference scenario. An
application server with our middleware has a context provider called “User Terminal
Context” that provide information’s about the terminal like bandwidth, screen size
and CPU load. The AS hosts a context aware digital service called “Adaptable Video-
on-Demand”, which provide adaptable video according user’s bandwidth.

Table 1. Classes of the ontology under our reference scenario

Name Parent Description

Context Provider Thing

All context providers

Session Thing

All sessions using middleware

UserTerminalCtx Context Provider

Context provider that gather information
about bandwidth, screen size and CPU

load
AdaptableVoD Session All sessions for the Adaptable Video-

on-Demand digital service
C480p AdaptableVoD

Sessions for AdaptableVoD using 480p

resolution
C720p AdaptableVoD

Sessions for AdaptableVoD using 720p

resolution
C1080p AdaptableVoD

Sessions for AdaptableVoD using 1080p

resolution

The data gathered by the context provider are represented as datatype relations. In

this scenario the context provider gather information about bandwidth, screen size and
CPU.

Table 2. Relations in the ontology under our reference scenario

Name Domain Range Description

hasContext Session Context Link a session with a
context provider

hasBandwidth UserTerminalCtx int Available bandwidth
gathered by context

provider
hasScreenSize UserTerminalCtx string Screen size gathered by

context provider
hasCPULoad UserTerminalCtx float CPU Load gathered by

context provider

228 Y.-G. Billet, C. Gravier, and J. Fayolle

As stated before, individuals from the Session context are sorted according to rules,
which are injected in the KB. We use SWRL to model the context logic dynamic
using this feature. In our reference scenario, the Video-On-Demand service must
adapt the video coding according to bandwith. From the OWL point of view,
individuals from the set AdaptableVoD must be move either in the c480p, c720p or
c1080p subset, each one represents a video coding (480p, 720p and 1080p). This
behavior uses the following SWRL:

For more readability, the common part of equations is represents as (0)

AdaptableVoD(?s) ^hasContext(?s,?c) ^hasBandwidth(?c,?b) (0)

 (0) ^ swrlb:greaterThanOrEqual(?b,3000) ^ swrlb:lessThan(?b,6000) → c480p(?s) (1)

(0) ^ swrlb:greaterThanOrEqual(?b,6000) ^ swrlb:lessThan(?b,9000) → c720p(?s) (2)

 (0) ^ swrlb:greaterThanOrEqual(?b,9000) → c1080p(?s) (3)

In our model, the reasoner and KB, use OWL and SWRL to choose business logic
modality according to context. Each time a new connection is setup, the middleware
injects information about the session and the context in the KB. In order to switch
modality, the application must be aware of the KB's classification. We use SQWRL to
interrogate the ontology in order to notify applications about modality to use for each
connection. A typical SQWRL query for this is: Modality(?s) -> sqwrl:select(?s). In our
reference scenario:

c480p(?s) → sqwrl:select(?s) (4)

c720p(?s) → sqwrl:select(?s) (5)

c1080p(?s) → sqwrl:select(?s) (6)

The first one provides all sessions that must use a 480p resolution, the second one for
sessions use a 720p and the last one for session uses a 1080p.

4 Conclusion

We have proposed and implemented a novel architecture that makes AS taking into
account the context-awareness of the digital service they host. The architecture
employs domain ontology in order to monitor the applications’ context. Moreover,
when a new context-aware application is deployed on the application server, its
context-logic (a set of SWRL rules which rely the domain ontology) is extracted from
the application bundle. Each SWRL rule encodes a context-aware threshold for the
application. When a rule is triggered at runtime, the application server notifies the
application, so that the application change its service delivery modality, as the current
context favors another service delivery modality different than the current one.

The primary goal is to help developer of context-aware applications to quickly
encode context-aware thresholds. It helps them to develop the context logic of the
application for it to adapt its behavior when a significant context change is detected.
Developers can seamlessly encode those thresholds by writing the SWRL rules
corresponding to the conditions under which the application follows each service
delivery modality and then ship the SWRL file into their application bundle.

 SWRL-Based Context Awareness for Application Servers Hosting Digital Services 229

Previously, this task was not a service offered by the application server, unlike
logging, database mapping, authentication, etc., but actually embedded in each
application business logics as an ad hoc encoded algorithm. Therefore, this approach
is also a framework, as developers of context-aware applications no longer have to
write source code for handling context changes.

We are currently developing additional algorithms that will enhance the context
assertions in the knowledge base. Especially, we will add to the context logic
parameters for gathering context (e.g. context sampling frequency) as each
application may have different temporal needs regarding context updates.

References

1. Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context. In:
Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007.
LNCS (LNAI), vol. 4635, pp. 558–571. Springer, Heidelberg (2007)

2. Dey, A.: Understanding and using context, personal and ubiquitous computing, pp. 4–5
(2001)

3. Strassner, J., Liu, Y., Jiang, M., Zhang, J., van der Meer, S., Foghlú, M.Ó., Fahy, C.,
Donnelly, W.: Modelling Context for Autonomic Networking. In: 5th IEEE International
Workshop on Management of Ubiquitous Communications and Services (MUCS), Brazil,
April 11 (2008)

4. Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context is key. Communication of the
ACM 48, 49–53 (2005)

5. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International
Journal of Ad Hoc and Ubiquitous Computing, 263–277 (2007)

6. Hong, J.I., Landay, J.A.: An infrastructure approach to context-aware computing. In:
Human Computer-Interaction, vol. 16 (2001)

7. Chen, H.: An Intelligent Broker Architecture for Pervasive Context-Aware Systems. PhD
thesis, University of Maryland, Baltimore County (2004)

8. Gu, T., Pung, H.K., Zhang, D.Q.: A middleware for building context-aware mobile services.
In: Proceedings of IEEE Vehicular Technology Conference (VTC), Milan, Italy (2004)

9. Outtagarts, A., Martinot, O.: iSSEE: IMS Sensors Search Engine Enabler for Sensors
Mashups Convergent Application. International Journal of Computer Science Issues,
IJCSI 6, 1–7 (2009)

10. O’Connor, M.J., Das, A.K.: A Method for Representing and Querying Temporal
Information in OWL. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2010. CCIS,
vol. 127, pp. 97–110. Springer, Heidelberg (2011)

11. ITU-T Recommendation, Y.2000-Y.2999, Next Generation Networks, Y-Series: Global
Information Infrastructure, Internet Protocol aspects and Next-Generation Networks

12. Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C.: A Practical Guide To
Building OWL Ontologies Using Protege 4 and CO-ODE Tools Edition 1.2. Technical
report, The University Of Manchester (March 2009)

13. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
semantic web rule language combiningOWL and RuleML (May 2004),
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

14. O’Connor, M.J., Das, A.K.: SQWRL: A query language for OWL. In: Hoekstra, R., Patel-
Schneider, P.F. (eds.) OWLED. CEUR Workshop Proceedings, vol. 529, CEUR-WS.org
(2008)

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 230–236, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Cloud Computing: Combining Governance,
Compliance, and Trust Standards with
Declarative Rule-Based Frameworks

Said Tabet and Marlin Pohlman

EMC Corporation, Office of the CTO, Hopkinton, MA, USA
{said.tabet,marlin.pohlman}@emc.com

Abstract. Cloud computing has emerged as a major paradigm shift in informa-
tion technology pushing corporations to redefine the way they conduct their
business. While it promises many benefits, Cloud computing is also facing se-
rious challenges. Those include legal and regulatory requirements, privacy and
security needs, as well as other information and data related issues. To help ad-
dress these concerns, a number of standards initiatives have been started. We
believe that declarative rules can play an important role in standardizing legal
and service level agreements and contracts by providing formalized languages
that can enable intelligent compliance automation and trust. In the Cloud, auto-
mation is key and new architectures for service provider and service consumer
dynamic interactions will need to be developed before organizations deploy
their mission critical applications to the Cloud. In this paper, we will address
these issues and provide a survey of existing standards and address the limita-
tions of current efforts.

Keywords: Cloud Computing, Declarative rules, RuleML, SLA, Service level
agreement, Cloud Compliance, GRC-XML, LegalRuleML, Ontologies, Tax-
onomies, Trust on the Cloud.

1 Introduction

Cloud computing has emerged as a new computing model that arrays multiple com-
puters in both centralized and distributed data centers to deliver applications, applica-
tion platforms, solutions and services via a utility model. Cloud computing relies on
separating user applications from the underlying infrastructure using virtualization
and information sharing through federation. While the idea of utility computing is not
new, it has been given a new life and crucial developments with the major vendors
playing an active role and providing virtual servers and storage on demand.

Although Cloud is an evolving paradigm, it is important to have a common defini-
tion. NIST provides a definition that is widely accepted in the industry. Cloud
computing is defined as a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction.

 Cloud Computing: Combining Governance, Compliance, and Trust Standards 231

This cloud model promotes availability and is composed of five essential charac-
teristics, three service models, and four deployment models [1].

One of the main challenges facing Cloud Computing is security. It is important
that service providers deliver on key security components in order to provide
necessary assurances for service consumers and develop a trusted relationship.

In order to establish a stable secure foundation, it is essential to make the virtual
environment confidential and secure. To secure federation, cloud-based systems must
implement mechanisms to ensure Quality of Service (QoS) and Service-Level
Agreements (SLAs). There are two historical approaches: (1) remote API on the plat-
form and (2) direct analysis of network packets flowing between components. They
both fail when dealing with complex federated virtualized environments. An alterna-
tive approach is to use agents and semantic rule languages constructs to resolve the
challenges of nested multi tier security. In this context, semantic agents are software
components, which may be leveraged for resource management due to their autonom-
ous, reactive, social, and self-learning properties. Semantic agents are a special kind
of Cloud services that are used to implement and manage available Cloud services
and resources.

Declarative rule languages will enable the dynamic interpretation of the contract
between customers and service providers. Various performance metrics (e.g., uptime,
throughput, and response time) may need to be guaranteed to Cloud users while pri-
vacy classification mechanisms are maintained, even through multi level security.
This enables the resolution of multiple SLA's, QoS requirements and regulatory-
imposed security levels, which can be implemented, based on data types or jurisdic-
tions. Standards groups such as ISO/IEC and the UN-based ITU have acknowledged
the need to resolve SLA's QoS requirements and trans-border jurisdictional mandates.
We expect standards efforts in this area to start soon.

1.1 Background

In 1992, the MITRE Corporation implemented the Multilevel Secure Transactions
(MUSET) database system. This project centered on heterogeneous database transac-
tion management. Challenges MITRE addressed include concurrency control, recov-
ery, and commit protocols for multi security level transactions. Multi security level
transaction allows for concurrent operations at multiple security levels. In a multi
security level system a sub-transaction at one site could operate at the unclassified
level, whereas another sub-transaction at a different site could operate at the Secret
level. MUSET assigned sensitivity and security levels to data, which utilized con-
straints and classification rules. Security constraints provided an effective classifica-
tion approach. This ensured consistency of policy enforcement while at the same time
minimized covert channels.

The Open Group Cloud Computing Work Group in its response to the European
Commission’s Cloud Computing Strategy DIGIT-IPM request for public consultation,
highlighted the barriers to the use and provision of cloud computing. In his January
2011 address, Vice-President Kroes stated that there are a number of questions that
need to be answered to make cloud computing happen in practice. These include le-
gal, technical and commercial issues. In his address he highlighted three areas where
advancement is required. Quoting Vice-President Kroes in his address:

232 S. Tabet and M. Pohlman

First, the legal framework: This concerns data protection and privacy, including the
international dimension. It also concerns laws and other rules that have a bearing on
the deployment of cloud computing in public and private originations. And it con-
cerns users' rights insofar as they are provided for by law.

Second, technical and commercial fundamentals: We want to extend our research
support and focus on critical issues such as security and availability of cloud services.
As a mediator, the Commission can also play a stronger role in the technical standar-
dization of APIs and data formats, as well as in the development of template contracts
and service level agreements.

Third, the market: We will support pilot projects aiming at cloud deployment. To
really harness the power of public procurement we want to engage with our public
sector partners on Member State and regional levels to work on common approaches
to cloud computing.

1.2 Key Focus Areas

In their response, the Open Group suggested several key focus areas. The open group
recommended the creation of a Consumer Bill of Rights. The response highlighted
that users do not understand their rights from a Provider of Cloud Services. In answer
to this need this paper presents RuleML as a framework to resolve this deficiency.
RuleML may be used to provide enforcement standards for a consumer Bill of Rights.
In the area of automated breach notification and service management RuleML can be
used to automate process flows and assure supply chain members that service level
agreements are being respected. RuleML may also be leveraged to create a more
structured statement of regulatory expectations of providers. This could include auto-
mated delivery standards that Providers need to support. Using RuleML-driven policy
engines, agents and semantic rule language constructs systems can execute explicit
statements that Providers should provide to Buyers of Cloud Services. This may in-
clude details regarding the service location and provision, where tracking of usage
and separation of services is done; how is security of data handled. RuleML enables
the creation of semantic contracts in software and service licenses that involve mul-
tiple countries; Predicates defined by RuleML statements can adapt workflows to
specific country requirements and may be executed in the context of local law where
jurisdiction is concerned.

2 Multi-security and Cloud

In order to implement a multi security level ontology, the systems to be federated
must share a common information model. Federated security systems must be trans-
formed into the constructs of a common data model. This approach ensures that the
policies enforced by the individual systems are maintained. Multiple schemas must be
integrated to form a federated schema. Each component exports certain schema ele-
ments to the federation. These schemas are then integrated to form a federated policy.
The challenge is to ensure that there is no security violation at the federation level. To
address this challenge we must introduce the concept of semantic heterogeneity.

 Cloud Computing: Combining Governance, Compliance, and Trust Standards 233

Semantic heterogeneity occurs when an entity is interpreted differently at different
sites or different entities are interpreted to be the same object. Semantic heterogeneity
is one of the major challenges for data integration as well as information interopera-
bility. This challenge occurs not only in relational databases, but also in object data-
bases and multimedia databases. Semantic heterogeneity permits context mediation,
an approach for achieving semantic interoperability among sources and consumers of
large-scale heterogeneous Cloud environments. The process of reconciling semantic
heterogeneity involves two steps:

• In schema matching, Cloud implementers must find correspondences between sets
of elements of the schemas that refer to the same concepts or legal mandates in the
real world

• In the second phase, Cloud implementers must build on these correspondences to
create the actual schema mapping expressions that reflect legal constrains.

RuleML presents itself as one such mechanism to express semantic heterogeneity and
codify legal constraints imposed by jurisdiction and data type as declarative rules that
are honored by the policy management infrastructure within the infrastructure of
Cloud service providers.

3 Cloud Computing and RuleML

The RuleML Federation is an international non-profit organization formed in 2000 to
provide a neutral platform for semantics-preserving interoperation of rules and rule-
based web services across the Web between commercially important rule systems and
to enable rule-based semantic web services. RuleML pioneered the XML representa-
tion of a modular family of webized rule sublanguages, catering to a variety of needs.

The RuleML language is an open semantic standard for rule modeling, modulariza-
tion, serialization, webizing, interoperation, execution, and tooling. RuleML is a
unifying family of XML-serialized rule languages spanning across all industrially
relevant kinds of Web rules. It accommodates and extends other recent rule languag-
es, building interoperation bridges between them. The specification of RuleML con-
stitutes a modular family of Web sublanguages where each sublanguage has an XML
Schema definition and a URI, which permits inheritance between sublanguage sche-
mas and precise reference to the required expressiveness. The family structure pro-
vides an expressive inclusion hierarchy for the sublanguages, and their URIs are the
subjects of (model-theoretic) semantic characterization.

The RuleML family’s top-level distinction is deliberation rules (including deriva-
tion rules) vs. reaction rules (including production), which has been further refined in
[8]. Complex event processing and legal rules are also being developed as part of the
upcoming RuleML releases.

Having the choice between various types of rules using the RuleML modular
framework, data centers automation can leverage various declarative formats for
access control and security, compliance, policy and regulatory requirements, service
level agreements and contracts, continuous control monitoring, business intelligence
and semantic integration.

234 S. Tabet and M. Pohlman

On the Cloud, there is a serious debate around legal issues such as regulatory re-
quirements, agreements and contracts, jurisdictional challenges particularly for multi-
national corporations. Companies struggle to determine which regulations they need
to comply with and where their data will reside and if the providers will be in com-
pliance with the rules and policies of each relevant jurisdiction (country, territory,
state, local, etc.)

Legal and policy documents can be represented as formalized statements in a dec-
larative rule language, abstracted from the legal text and its multiple interpretations in
any given country. LegalRuleML [9] has been started as a new effort from the Ru-
leML community, which will lead to the development of a language that closes the
gap between a legal text and the rule-based modeling of the norms it expresses in
order to deliver an integrated and linked representation of legal documents on the
Web. This will enable the creation of authoring and runtime tools for SLAs and con-
tracts, enabling semantically rich data centers and supporting the realization of trust
on the Cloud.

Using LegalRuleML, legal requirements can be implemented in a machine-
readable syntax that can be fed into a business rule engine in order to continuously
monitor the contract performance at runtime and automatically execute the corres-
ponding business rules. Transparent assessment and reports can be made available to
auditors and Cloud service consumers.

Within RuleML legal constraints can be expressed as predicates. Based on the con-
text of the data in question, derivation rules may then be leveraged and generated
from existing requirements. In complex multi-tenant environments, the RuleML
framework offers the ability of rule chaining and reasoning over existing information
and gathered facts, providing data center intelligence through agile services. In addi-
tion, it provides a declarative implementation of Trust on the Cloud using formal
methods and the expressive power of the family of RuleML rule modules. To conti-
nuously apply and monitor information confidentiality and security and deploy effec-
tive and efficient controls, a rule-based approach is more appropriate than imperative
and procedural solutions. This is the first step towards self-sustaining intelligent data
centers on the Cloud where service providers can demonstrate on-demand to their end
user organizations and consumers trust and offer interactive transparent audits. The
Cloud Security Alliance, ISO and other standards bodies are all working on best prac-
tice and specification to help achieve these goals.

4 Policy-Based Multi-tenancy

Multi-tenancy is an architectural model used by cloud service providers to host mul-
tiple organizations (tenants) within a single server. There are many variations of this
concept but overall they all have the same goal, which is to implement an efficient
and cost-effective utilization of their resources. While it is a good solution for the
providers, it forces tenants to share those resources, creating many operational and
business risks. Large enterprise, before they can trust the providers with their sensi-
tive data and services, they will need guarantees and assurances that internal controls

 Cloud Computing: Combining Governance, Compliance, and Trust Standards 235

are in place to provide security, confidentiality and privacy while at the same time
deliver on performance and scalability on demand. Tenants need to have full audit
and control, as they are ultimately responsible for compliance with relevant regula-
tions within their jurisdictions. This is why automated and semantically rich data cen-
ters are needed. Declarative rule-based approaches can play a key role and now is the
time to bring such solutions to the marketplace and to encourage research labs and
universities to develop this field.

To implement resource and network segregation, an ontology can provide a classi-
fication that can be used for dynamic configuration and to enforce various levels of
security policies. Reasoning over resources and automatically adjusting configura-
tions will require the expressive power of rules beyond description logic to include
complex events and modal logics (deontic and alethic operators).

Policy-based multi-tenancy requires rich semantics and real-time execution of rule
sets (security, preferences, service configuration, etc.) based on network and re-
sources as well as service consumer requirements. Standards developed by the Cloud
Security Alliance are starting to gather momentum around industry best practice.
Over the next few years, as these standards receive wide adoption, we will see new
products that will support the required capability for larger enterprises to join the
Cloud and trust the providers with their mission critical applications and sensitive
information.

5 Conclusions

Cloud Computing is proving to be the next evolution of information technology and
an enabler for advanced distributed web architectures. Investment in Cloud is growing
worldwide with organizations adopting private clouds and exploring hybrid and pub-
lic Cloud models. Semantic technology and languages such as RDF and OWL provide
a taxonomic and description-logic modeling of resources on the Web. Semantic rules
add another important layer for deductive reasoning. Applying these technologies to
Cloud Computing is a key condition for the deployment of agile and intelligent data
centers. The integration of ontologies and rules will enable the development of dy-
namic configuration of complex and heterogeneous physical and virtual resources and
facilitate secure multi-tenant environments.

The use of declarative rules and ontologies will help Cloud service providers deal
with rapidly changing requirements and newly discovered constraints such as new
regulatory regimes and customer policies. It will also support the need for Cloud ser-
vice consumers to audit the provider’s internal controls and to implement an interac-
tive information access and query in order to satisfy their own policy and regulatory
compliance needs.

To realize the vision of the Cloud, linked data and semantic technologies need to
be considered together with the current standards initiatives underway at ISO, CSA,
W3C, OASIS, and OMG. Standards need to take the complex and dynamic nature of
the Cloud into account and look beyond static descriptions of security vulnerabilities
and procedural configurations of resources by exploring semantic knowledge repre-
sentation as discussed in this paper.

236 S. Tabet and M. Pohlman

References

1. Definition of Cloud Computing by NIST,
http://csrc.nist.gov/publications/drafts/800-145/
Draft-SP-800-145_cloud-definition.pdf

2. Cloud Security Alliance (CSA), https://cloudsecurityalliance.org
3. The RuleML Initiative, http://www.ruleml.org
4. Boley, H.: The RuleML Family of Web Rule Languages. RuleML.org
5. Palmirani, M., Contissa, G., Rubino, R.: Fill the Gap in the Legal Knowledge Modelling.

In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 305–
314. Springer, Heidelberg (2009)

6. Boley, H., Tabet, S., Wagner, G.: Design rationale for RuleML: A markup language for
Semantic Web rules. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L. (eds.) Proc.
SWWS 2001, The First Semantic Web Working Symposium, pp. 381–401 (2001)

7. Governatori, G., Rotolo, A.: Changing legal systems: Legal abrogations and annulments in
defeasible logic. The Logic Journal of IGPL (2010)

8. Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The overarching specification of web
rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403,
pp. 162–178. Springer, Heidelberg (2010),
http://www.cs.unb.ca/~boley/papers/RuleML-Overarching.pdf

9. The Object Management Group. Regulatory Compliance Domain Special Interest Group,
http://www.omg.org

10. The Open Group Cloud Computing Work Group,
http://www3.opengroup.org/getinvolved/workgroups/
cloudcomputing

Role Assignment in Institutional Clouds

for Rule-Based Enterprise Management

Jeremy Pitt1, Julia Schaumeier1, and Alexander Artikis1,2

1 Department of Electrical & Electronic Engineering,
Imperial College London, SW7 2BT, UK

2 Institute of Informatics & Telecommunications,
National Centre for Scientific Research “Demokritos”,

Athens 15310, Greece

Abstract. In the context of engineering cloud computing applications
for enterprise management, we want to represent a theory of institu-
tions and role assignment in terms of a formal specification of rule-based
action and agency. We consider how a tripartite distinction of institu-
tional rules, as either constitutional-, collective- and operational-choice
rules, can be mapped to a protocol stack for dynamic specifications. The
mapping is illustrated with a specification and animation of changeable
role assignment protocols, in which both institutional rules and insti-
tutional change are given a uniform and integrated specification in a
formal action language. This shows how institutionalised principles of
collective action can be transformed into runtime rule-based reasoning
for self-organisation of ‘institutional clouds’ for enterprise management.

Keywords: Multi-Agent Systems, Institutions, Self-Organisation, Cloud
Computing.

1 Introduction

We are interested in applications of multi-tenant cloud computing for enter-
prise management and business delivery, in particular the real-time on-demand
provisioning of *-as-a-service (*aaS), where * = software, platform, data, infras-
tructure, etc. [4]. We consider the aggregation of a set of resources from the cloud
to provision *aaS to a collection of clients or ‘agents’ [1]. To reduce the total cost
of ownership, we want as many agents to use the resource aggregation without
overloading it. From one perspective, this is a generalisation of well-studied op-
timisation problems such as channel allocation, service request brokering or job
shop scheduling [7], except in our case the jobs are autonomous decision-makers
and the number of jobs and machine availability changes over time.

Since each aggregation of resources can be considered as an open system,
i.e. resource allocation requires decision-making between competing components
with partial information and without centralised control, we propose to model
these aggregations from the perspective of institutions for common pool resource
management [10]. Specifically, we address the issue of role assignment, i.e. where
one agent is appointed by the others to perform access control [13]. However, if

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 237–251, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

238 J. Pitt, J. Schaumeier, and A. Artikis

the access control regime is too strict, the number of agents using the resource
is too few and the overall cost is prohibitive; if it is too lenient, the number of
agents using the resource is too great and quality of service declines.

We propose to use rule-based role assignment to self-organise the cloud’s
client-base (the agents) into clusters, where each cluster uses an aggregation of
resources to provide *aaS to a subset of the agents, and ‘the cloud’ is the totality
of all the clusters. The agents in each cluster define and change a set of (institu-
tional) rules to manage the *aaS themselves. Section 2 reviews the background
to this work, including institutions for common pool resource management [10]
and dynamic specifications for norm-governed systems [2]. Section 3 gives a for-
mal model of institutional rules for role assignment, and Section 4 provides a
dynamic specification of these rules in an action language. Section 5 reports on
an experimental testbed which shows how a set of agents can self-organise the
membership, role assignment and resource allocation in a way which increases
overall ‘satisfaction’ (i.e. the trade-off between total cost of ownership and qual-
ity of service). Section 6 describes related and future work, and we conclude in
Section 7 with some comments on the prospects for runtime rule-based reasoning
for self-organisation of ‘institutional clouds’ and distributed energy resources.

2 Background

In this section, we relate the pre-formal socio-economic definition of ‘institution’
to a computational specification. We define an institution as a set of nested,
changeable rules. To give a formal characterisation of these rules, we use norm-
governed systems and the concept of institutionalised power [8]. The idea of
dynamic specifications [2] is then used to formally represent the nesting and
changing of the rules of an institution as a dynamic norm-governed system.

2.1 Institutional Rules

Ostrom [10] observed that common pool resource (CPR) management problems
have often been resolved in human societies through the ‘evolution’ of institu-
tions. Ostrom defined an institution as a “set of working rules that are used to
determine who is eligible to make decisions in some arena, what actions are al-
lowed or constrained, . . . [and] contain prescriptions that forbid, permit or require
some action or outcome” [10, p. 51]. She also maintained that the rule-sets were
conventionally agreed (ideally by those affected by them); mutually understood,
monitored and enforced; that they were nested; and that they were mutable.

Ostrom [10, p. 52] distinguished three levels of nested rules. These were, at
the lowest level, operational-choice rules, which were concerned with processes of
resource appropriation, provision, monitoring and enforcement. The middle level
specified collective-choice rules, which were concerned with choosing the oper-
ational rules for managing the resource, as well as processes of policy-making,
management and adjudication in disputes. At the highest level, the constitutional
rules indirectly affected the operational rules by determining who is eligible to,
and what rules are used to, define the set of collective-choice rules.

Role Assignment in Institutional Clouds for Rule-Based Management 239

The nesting of rules was important for the process of institutional change for
two reasons. Firstly, the changes which constrain action at a lower level occur in
the context of a ‘fixed’ set of rules at a higher level. Secondly, lower level rules
were easier and less ‘costly’ to change than the higher level rules, thus increasing
the stability of strategies and expectations of those individuals having to interact
according to a set of rules to achieve individual goals in a common setting.

2.2 Institutionalised Power

If the working sets of rules contain “prescriptions that forbid, permit or re-
quire some action or outcome”, a formal representation can be given in terms
of norm-governed systems [3]. A specification of a norm-governed system can be
(partially) given by defining the permissions, prohibitions and obligations of the
agents in the system, and the sanctions and enforcement policies that deal with
the performance of prohibited actions and non-compliance with obligations.

To specify formally “who is eligible to make decisions”, we also require the
concepts of role, role assignment and institutionalised power [8]. The term insti-
tutionalised power refers to that characteristic feature of institutions, whereby
designated agents, often acting in specific roles, are empowered to create or mod-
ify facts of special significance in that institution (institutional facts), through
the performance of a designated action, e.g. by making a signal, or in certain
cases, a speech act.

Therefore, it is generally not the specific agent that is eligible to make de-
cisions, but the agent that occupies the role, that is empowered to make those
decisions. It is necessary to define a role assignment protocol which appoints a
specific agent to a specific role. It must also be possible to change which agent oc-
cupies that role, for example if the appointed agent leaves the system, performs
badly or incorrectly, or lacks the resources to discharge the duties associated
with the role. For this, we need dynamic norm-governed specifications.

2.3 Dynamic Specifications

Artikis [2] defined a framework that allowed agents to modify the rules or proto-
cols of a norm-governed system at runtime. This framework assumed there were
some object level protocols, and at any point during the execution of the object
protocol the participants could start a meta-protocol in order to (try to) modify
the object-level protocol.

The participants of the meta-protocol could initiate a meta-meta protocol
to modify the rules of the meta-protocol, and so on. In general, in a k-level
infrastructure, level 0 corresponds to the object-level protocol while a protocol
at level n, 0 < n � k − 1 is used by the protocol participants to modify the
protocol rules of level m, 0 � m � n− 1.

Apart from object and meta protocols, this framework for dynamic spec-
ifications includes ‘transition’ protocols. These protocols express, among other

240 J. Pitt, J. Schaumeier, and A. Artikis

things, the conditions in which an agent may initiate a meta-protocol, who occu-
pies what roles in the meta-protocol, and what elements (the degrees of freedom)
of an object protocol can be modified as a result of the meta-protocol execution.

2.4 Institutional Rules as Dynamic Specifications

To summarise, we propose to characterise the institutional rules of Ostrom as
norm-governed specifications using the concept of institutionalised power, repre-
sent the nesting of operational-choice rules within collective-choice rules within
constitutional-choice rules as object, meta- and meta-meta-protocols, and han-
dle institutional change within the framework of dynamic specifications. This
proposal is illustrated in figure 1.

Constitutional
Choice

Collective
Choice

Operational
Choice

Meta-Meta-Level
Protocol

Meta-Level
Protocol

Object-Level
Protocol

Appropriation
Provision
Monitoring
Enforcement

Policy Making
Adjudication
Management

Governance
Formulation

Ostrom Institutional Rules Artikis Dynamic Specification

Access Control
Resource Allocation
Contract Net

Role Assignment
Rule Configuration
Dispute Resolution

Voting

�

�

�

�

Fig. 1. Institutional rules and Dynamic specification

3 Institutional Rules for Role Assignment

In this section, we assume that a number of *aaS providers use the cloud com-
puting paradigm to offer their services to an indeterminate number of possible
clients. We define a cluster as an aggregation of resources providing the *aaS
together with a collection of agents (clients or tenants) licensed to access the
*aaS. An institution is a set of rules for runtime management of the *aaS capac-
ity in a cluster. The ‘cloud’, from this abstract perspective, is the union of all
the clusters. An institutional cloud IC is given by the distributed union of the
institutions established for each of the clusters in the cloud.

We stipulate that one agent per cluster is appointed to the role head and
one agent to the role gatekeeper. The head is responsible for managing the
constitutional- and collective-choice rules, and in particular for evaluating the
‘performance’ of the agent in the gatekeeper role and the effectiveness of the
cluster’s access control method in balancing reduced cost vs. overcrowding. The
gatekeeper is responsible for managing the operational-choice rule for admitting
or denying access to the institution. Any other agent admitted to the institution
is assigned to the role member.

Role Assignment in Institutional Clouds for Rule-Based Management 241

Note that decision-making is endogenous: the gatekeeper decides which agent
may join (occupy the role of member) or not; and collectively the members
decide who gets to be the gatekeeper. We will define this reflexive relationship
using a hierarchical specification of role assignment protocols as collective- and
operational-choice rules.

Therefore let It be the institution for a given cluster defined at time t by:

It = 〈M, ε,L〉t

and let ICt be the institutional cloud at time t, consisting of n clusters:

ICt = 〈A, I1, . . . , In〉t

where (omitting the subscript t when obvious from context):

– M is the set of member agents and a subset of A, the set of all agents in all
clusters;

– ε is the environment, a pair 〈Bf , If 〉 with Bf the set of ‘brute’ facts whose
values are determined by the physical state, including the resource(s) to be
allocated; and If the set of ‘institutional’ facts, whose values are determined
by the conventional state, including the roles assigned to members ofM;

– L, is the ‘legislature’, the set of rules by which the institution is managed.

Following Ostrom [10, pp. 52–53], the rules in L are divided into three levels,
OC, SC and CC, where OC = operational-choice rules, SC = (social) collective-
choice rules, and CC = constitutional-choice rules, as in Section 2.1.

We define two types of method, wdMethod and acMethod . The type of winner
determination is wdMethod , e.g. plurality, runoff, instant runoff, borda or ap-
proval. The type of access control is acMethod , which can be attribute-based (if
the applicant satisfies certain qualification criteria, it is automatically admitted),
or discretionary (an applicant must satisfy the gatekeeper ’s criteria, who is act-
ing on behalf of the cluster in its appointed role). Note that the attribute-based
access control is more ‘lenient’ and the discretionary method more ‘stringent’.

The set L contains four nested rules for role assignment, see figure 2, with
(in parentheses) the role responsible for its enactment and enforcement. va(·)
denotes a set of expressed preferences on an issue by an agent a ∈ M, and k ∈
wdMethod is some ‘fixed’ winner determination method for the constitutional-
choice. Note that k need not be fixed, but this treatment is in line with Ostrom’s
specification that a change of institutional rules (at a lower level) is conducted
against a backdrop of ‘fixed’ rules (at a higher level). We will therefore assume
that the role of head is ‘fixed’ although it too is mutable and the occupant
selectable by a similar voting procedure.

In figure 2, the constitutional-choice rule ccr ∈ CC maps a set of expressed
preferences on a social collective-choice rule scr i ∈ SC to a winner determina-
tion method according to k. scr1 ∈ SC is the gatekeeper role assignment rule,
and maps a set of expressed preferences to a designated member of M, i.e. the
gatekeeper, according to its winner determination method. scr2 ∈ SC maps a

242 J. Pitt, J. Schaumeier, and A. Artikis

(head) ccr : va(·)a∈M × SC × k → wdMethod

(head) scr1 :{
v1

a(·)}
a∈M×wdMethod1 → M

(head) scr2 :{
v2

a(·)}
a∈M×wdMethod2 → acMethod

(gatekeeper) ocr : Mc × acMethod → Bool

������

�
�

���

����������

���������	

Fig. 2. Nesting of OC, SC and CC rules for Role Assignment in I

set of expressed preferences to an access control method according to its winner
determination method; and an operational-choice rule ocr ∈ OC maps an appli-
cation from an agent not inM to a boolean outcome depending on the selected
access control method. Thus, ocr is the member role assignment rule.

In the next section, we map these institutional rules onto a formal protocol
specification in an action language. We specify the operational-choice rule as an
object level protocol, and the social collective-choice rules as meta-level protocol
for changing the degrees of freedom (i.e. the gatekeeper or the access control
method) of the operational-choice rule.

4 Dynamic Specification of Role Assignment

In this section, we formalise the institutional rules of the previous section as a dy-
namic specification. For this, we will use the Event Calculus (EC) [9], the version
used here is fully described in [2]. The EC is a logic formalism for representing
and reasoning about actions or events and their effects. An action description in
EC includes axioms that define: the action occurrences, using happensAt pred-
icates; the effects of actions, using initiates and terminates predicates; and the
values of the fluents, using initially and holdsAt predicates. A fluent is a prop-
erty that is allowed to have different values at different points in time, the term
F =V denotes that fluent F has value V . Events initiate and terminate a period
of time during which a fluent holds a value continuously.

4.1 Fluents (Institutional Facts)

Some of the institutional facts in If , represented as fluents F =V in the EC, in
whose values we are interested are shown in Table 1. These fluents record the
roles that agents occupy; note that an agent can have only one role in a single
institution. The multi-valued fluent acMethod determines which access control
method the gatekeeper must use in determining member role assignment. There
is one fluent for the winner determination method for each of the two (social)
collective-choice rules. The final three fluents record the (institutionalised) pow-
ers, permissions and obligations of each agent.

Role Assignment in Institutional Clouds for Rule-Based Management 243

Table 1. Fluents for EC role assignment protocols

Fluent (F) Range (V)

role of (A,member , I) {head , gatekeeper ,member}
acMethod(I) {attribute , discretionary}
wdMethod(scr1, I) {plurality , runoff , borda , . . .}
wdMethod(scr2, I) {plurality , runoff , borda , . . .}
headcount(I) integer
pow(Agent , Action) boolean
per(Agent ,Action) boolean
obl(Agent ,Action) boolean

4.2 Expressed Preferences – Voting

A feature of all the operational-, collective- constitutional-choice rules is that
they map a set of expressed preferences onto a specific outcome. Therefore
we require a ‘standard’ protocol which enables an empowered agent to call for
votes (cfv) on a particular issue in the context of institution I. The issues include:

gatekeeper role: cfv (H, gatekeeper , I)
access control method: cfv (H, acMethod , I)

winner determination, gatekeeper role: cfv (H,wdMethod (scr1), I)
winner determination, access control method: cfv (H,wdMethod (scr2), I)

Such an action, by an empowered agent, initiates and initialises a ballot on the
relevant issue. For example, to enact scr 2 the head agent H can call for a vote
on which acMethod is to be used by the gatekeeper agent in its enforcement of
the operational-choice rule:

cfv (H, acMethod , I) initiates ballot(acMethod , I) = [] at T ←
pow(H, cfv (H, acMethod , I)) = true holdsAt T

pow(H, cfv (H, acMethod , I)) = true holdsAt T ←
role of (H, I) = head holdsAt T

Agents who are members of the institution can vote (once) on the issue:

vote(A, X, acMethod , I) initiates ballot(acMethod , I) = [(X, A) | L] at T ←
pow(A, vote(A, X, acMethod , I)) = true holdsAt T ∧
ballot(acMethod , I) = L holdsAt T

pow(A, vote(A, , acMethod , I)) = true holdsAt T ←
role of (A, I) = member holdsAt T ∧
ballot(acMethod , I) = L holdsAt T ∧
not on list((, A), L)

244 J. Pitt, J. Schaumeier, and A. Artikis

The appropriately empowered agent uses the votes cast (i.e.
{
v2

a(·)
}

a∈M) and
the operative winner determination rule to create or change institutional facts,
as shown in the next two sub-sections.

4.3 Operational-Choice Rule – Member Role Assignment

The dynamic specification of the operational-choice rule ocr is given by a role
assignment protocol for membership. An agent can apply for membership to an
institution I if it is not a member (or other role) in any other institution I ′, e.g.:

apply(A, I) initiates applied (A, I) = true at T ←
not role of (A, I ′) = member holdsAt T

The gatekeeper agent is empowered to admit the agent depending on the access
control method. If the acMethod is attribute(-based), the gatekeeper is empow-
ered to assign the role member provided the applicant satisfies certain (external)
role conditions. We also place the gatekeeper under an obligation to make the
member role assignment under these conditions. Otherwise if the acMethod is dis-
cretionary, the gatekeeper is simply empowered to assign the role (and whether it
does so or not is the outcome of its own (internal) decision-making with respect
to its knowledge of the environment):

assign(G, A,member , I) initiates role of (A, I) = member at T ←
pow(G, assign(G, A,member , I)) = true holdsAt T

assign(G, A,member , I) initiates headcount(I) = M1 at T ←
pow(G, assign(G, A,member , I)) = true holdsAt T ∧
headcount(I) = M holdsAt T ∧
M1 = M + 1

pow(G, assign(G, A,member , I)) = true holdsAt T ←
applied (A, I) = true holdsAt T ∧
acMethod(I) = attribute holdsAt T ∧
role of (G, I) = gatekeeper holdsAt T ∧
role conditions(member , A, I) = true holdsAt T

pow(G, assign(G, A,member , I)) = true holdsAt T ←
applied (A, I) = true holdsAt T ∧
acMethod(I) = discretionary holdsAt T ∧
role of (G, I) = gatekeeper holdsAt T

obl(G, assign(G, A,member , I)) = true holdsAt T ←
applied (A, I) = true holdsAt T ∧
acMethod(I) = attribute holdsAt T ∧
role of (G, I) = gatekeeper holdsAt T ∧
role conditions(member , A, I) = true holdsAt T

Role Assignment in Institutional Clouds for Rule-Based Management 245

4.4 Collective-Choice Rule – Gatekeeper Role Assignment

Similarly, using the social collective-choice rule scr1 to assign the role of gate-
keeper to an agent is initiated by:

cfv (H, gatekeeper , I) initiates ballot(gatekeeper , I) = [] at T ←
pow(H, cfv (H, gatekeeper , I)) = true holdsAt T

pow(H, cfv (H, gatekeeper , I)) = true holdsAt T ←
role of (H, I) = head holdsAt T

The agent empowered to call the vote is also the agent empowered to declare the
result, and assign the gatekeeper role, although it may be that H is empowered
to perform this action, it may not be permitted to do so, unless certain other
conditions are satisfied (for example, unless ‘enough’ members, say two-thirds,
have voted):

assign(H, G, gatekeeper , I) initiates role of (G, I) = gatekeeper at T ←
pow(H, assign(H, G, gatekeeper , I)) = true holdsAt T ∧
ballot(gatekeeper , I) = L holdsAt T ∧
wdMethod(scr 1, I) = WDM holdsAt T ∧
winner determination(WDM , L, G)

pow(H, assign(H, G, gatekeeper , I)) = true holdsAt T ←
role of (H, I) = head holdsAt T

per(H, assign(H, G, gatekeeper , I)) = true holdsAt T ←
role of (H, I) = head holdsAt T ∧
ballot(gatekeeper , I) = L holdsAt T ∧
headcount(I) = M holdsAt T ∧
length(L) = Len ∧ Len/M > 0.66

Note that the winner determination is a polymorphic relation. Given votes on
a binary choice it returns true or false; given votes on a list of candidates, it
returns one of them; and so on.

5 Testbed and Evaluation

In this section, we present an experimental testbed for modelling the institutional
cloud as defined in Section 3. We give the design and algorithm of the testbed,
and present and discuss some experimental results.

The scenario is the delivery of a *aaS, with particular service instances pro-
vided by a set of clusters. A number of agents want to use each service instance,
all of which are resource-constrained. The institutional rules associated with each
cluster are then intended to trade off the number of agents using the service (i.e.
the total cost of ownership) against the quality of service (which diminishes if
there are too many agents using too few resources).

246 J. Pitt, J. Schaumeier, and A. Artikis

5.1 Testbed Specification and Algorithm Design

The UML diagram in figure 3 specifies the relationship between the classes of
the testbed. The focus of this implementation is on the impact of role assign-
ment by the gatekeeper to the role of member (scr1), and by the head to the
role of gatekeeper as decided by a vote of the members. The head is assumed
to be present permanently and is empowered to perform the EC actions call for
votes (cfv) and assign roles. It is also responsible for resource allocation, moni-
toring the performance of the selected access control method, and for evaluating
the performance of the assigned gatekeeper in delivering the cluster’s objectives.

Agent
ag_name {I}
cl_number
priceaccept
apply();
request();
voteGatekeeper();
voteAcMethod();
satisfactionEval();
leaveCluster();

Cluster
cl_number {I}
jobs
headcount
running_cost
price
acMethod
adjustPrice();

Gatekeeper
ag_name
cl_number
stringency
assignMember();

* 0..1
member

of

Head
ag_name
cl_number
allocate();
cfv();
assign();
monitor();

1 1

1 0..1 0..1 1
controls

access
to

rules

Fig. 3. Testbed class diagram

As per the definition in Section 3, a cluster, or institution, is composed of its
members, encapsulates an environment (including its physical and institutional
facts), and implements its operational- and collective-choice rules.

One of the members is assigned to the role of gatekeeper, see figure 4. Here,
stringency is a measure of how ‘strict’ an individual agent is in applying the
environmental factors to the member role assignment: some agents are much
‘stricter’ than others (and may be ‘better’ in the role under certain conditions).

The implementation of the UML specification defines a cloud IC as an ag-
gregate of n institutional clusters {I1, . . . , In} that each perform a number of
requested services per time step. Furthermore, each cluster Ii (i = 1, . . . , n) has
Mi (headcount) members who regulate the allocation of resources (services/jobs)
between themselves by appointment to the roles of member and gatekeeper .

The gatekeeper uses one of the access control methods attribute or
discretionary to admit more or fewer new members into the cluster. This role
assignment protocol implements the collective-choice rule (ocr) described in Sec-
tion 4.3. Which of the methods, attribute or discretionary , is used, is determined
by the members within the cluster by a vote (cf. Section 4.2). The head checks
whether the acMethod is still applicable given the change of environment ε,
or whether the gatekeeper performs as expected. The head ’s main tasks are
calling for a new vote (cfv) for either a new gatekeeper (scr1) or a different
acMethod (scr2), as defined in Section 4.2. Furthermore, the head allocates the
available services to requesting members. All members update their satisfaction
depending on ε and decide to stay in or leave the cluster.

Role Assignment in Institutional Clouds for Rule-Based Management 247

Class::Agent

〈 ag name A
member role ∈ {∅, I1, . . . , In} (cl number)
gatekeeper role ∈ {∅, I1, . . . , In}
stringency ∈ [0, 0.2]
job requested ∈ {0, 1}
job allocated ∈ {0, 1}
satisfaction ∈ [0, 1]
satisfaction change rate ∈ [0, 1]
price acceptance ∈ [0, 200]
vote ∈ acMethod ∪M
apply(); for membership
request(); for job (=resource)
voteGatekeeper (); = scr1

voteAcMethod (); = scr2

satisfactionEvaluation();
leaveCluster();
assignMember(); = ocr , if {role = gatekeeper} 〉

Non-Member

Gatekeeper

Member

apply

c
[reject]

[admit]

[assign]

[leave]

[oust]

Fig. 4. Agent class description and Statechart

The testbed’s control loop, see Table 2, has a global control variable, access
control, allowing comparison between the effect of access control and monitoring,
against having neither. After initialisation, each cluster is visited in turn. There
are three main stages in processing each cluster: membership application and role
assignment; resource allocation and satisfaction update; and monitoring, which
may involve gatekeeper role assignment or change of access control method.

5.2 Experimental Results and Discussion

Figure 5 shows the average over 100 trials of two runs of an institutional cloud IC
over 200 time steps. In total there are 150 agents, and 10 clusters with a run-
ning cost of 200 each. The solid lines are the results with access control and
monitoring, the dotted or dashed lines are the results with no access control.

The first graph shows the sum of all the cluster members’ satisfaction (= 150
at theoretical maximum). The second graph shows the number of agents that
were members of a cluster in that timestep (top two lines) and the number of
agents that left their cluster due to dissatisfaction (bottom two lines). In the
third graph, the average price per populated cluster is shown (with 10 and 200
being the theoretical minimum and maximum, respectively).

We deduce from the graphs that, after an initial stabilisation phase, the run
with assigned roles and access control leads to a considerably higher satisfaction
than without access control. It leads to about the same amount of members but
a much lower leaving rate and furthermore the price is considerably smaller.

For figure 5, this means in numbers over the total lifespan: a 34% increase in
satisfaction by using access control and role assignment, a merely 3% decrease

248 J. Pitt, J. Schaumeier, and A. Artikis

Table 2. Testbed algorithm

t ← 0 # initialisation
for each cluster {I = 1, . . . , n}

acMethod(I) ← attribute; wdMethod(scr1, I) ← plurality;
wdMethod(scr2, I) ← plurality; clusterPrice ← running cost;

repeat
for each cluster {I = 1, . . . , n}

if {access control} then # stage 1: member role assignment
member role assignment (acMethod) # non-member ⇒ (non-)member

else
member role assignment (none)

for each member of I {A = 1, . . . , M} # stage 2: resource allocation
resource allocation (A)
satisfaction evaluation (A) # member/gatekeeper ⇒ non-member

if {access control} then # stage 3: monitoring
if monitorAcMethod (I) then

change acMethod (I)
else

if monitorGatekeeper (I) then
gatekeeper role assignment (I) # gatekeeper ⇔ member

for each member of I {A = 1, . . . , M} # members update preferences
preferenceUpdate (A, I)

sortPricelist (I)
t ← t + 1 # next state

until forever

in membership, a 71% decrease for leaving agents and a 20% decrease of the
average cluster price when using the proposed scheme. The access control leads
to a higher satisfaction, because the agents self-organise their distribution over
the clusters, and as a result the total cost of ownership is averaged out and more
agents are allocated resources.

One of the interesting features of these experiments is that using a rule-based
system mitigates the vicious circle leading to a price war, i.e. the chain of actions
“price increases (i.e. when there are too many members)→ satisfaction decreases
→ members leave→ members get into another cluster→ price increases→ . . . ”.
Ostrom’s analysis of CPR systems without institutions often led to ‘pumping
races’ of this sort, which ruined the common resource.

6 Related and Further Work

Since the job shop scheduling problem is known to be NP-complete and our
formulation is a generalisation of that problem, it too is NP-complete. Given
that this formulation is an accurate abstraction of *aaS provision, this explains
why heuristic solutions have been adopted by SaaS and IaaS providers for run-
time cloud management. In related work [1], a game theoretic approach is pro-
posed, based on competing SaaS providers managing IaaS provider capacity.

Role Assignment in Institutional Clouds for Rule-Based Management 249

Fig. 5. Lifespan of IC with (solid) and without access control (dotted/dashed)

Ostrom [10] theorised that self-governing institutions offered a resolution to the
‘tragedy of the commons’ predicted by game theory, and we have suggested here
an institutional approach to runtime cloud management by considering *aaS
from the perspective of common pool resource management.

A second area of related research is role-based access control (RBAC) [14].
Currently, we have kept separate the issues of role assignment and access control,
and implemented the role assignment via a norm-governed protocol and two
(relatively) simple access control methods, i.e. attribute-based and discretionary.
For full deployment of the proposed mechanisms for cloud management, it would
be necessary to investigate how, for example, the NIST model of role-based access
control, with its four levels of increasing functional capability (flat, hierarchical,
constrained and symmetric), could be specified in the framework of Section 2.3.
We can then use EC role assignment protocols to implement role-based access
control, and use the testbed to investigate the effect of this richer model on
self-organisation.

Much of the work on policies for cloud computing focuses on the issue of se-
curity and defining security policies [4,5]. Since role assignment is important for
some aspects of security (i.e. access control), we believe this work complements
that research. Furthermore, in real-world cloud computing environments there
may be multiple access control policies and even multiple gatekeepers. The non-
monotonic reasoning about institutional facts supported by the EC supports
straightforward modelling of such situations. Moreover, alternative dispute res-
olution methods can be formalised in the same language and used to implement
conflict resolution protocols.

We have also considered institutional rules and institutional change from
the viewpoint of role assignment. In related work we analysed resource allo-
cation within the institution [11], and how this can be formalised as dynamic

250 J. Pitt, J. Schaumeier, and A. Artikis

specifications for resource provision and appropriation. In further work, we need
to converge the two issues of role assignment and resource allocation within
a single testbed, and try to compare *aaS provision by institutional clouds
with provision in real cloud computing environments. This will entail a more
fine-grained representation of service level agreements, electronic contracts, and
quality of service; and a more refined model of resource allocation based on flat
rates, on-demand and spot market service provision.

There are a number of further experiments on the notion of ‘nesting’ that
need to be performed. We want to investigate nesting in three dimensions.
Firstly, there is the full nesting of operational-choice within collective-choice
within constitutional-choice rules, including the role assignment of the head,
and the selection of the wdMethod, for example, and the formalisation of what
Ostrom calls decision arenas for each nested level. The second dimension is the
embedding of institutional clouds within larger clouds, rather than the single
layer model implemented here, to form the system of systems identified by Os-
trom. Finally, the third dimension involves third parties: for example, when the
cloud provider is the third party, a brokerage for cloud services which acts as
third party between the agents and the cloud service providers, or other more
complex supply chains [6].

There are also aspects of Artikis’ framework [2] which are currently under-
utilised. This includes the use of a topological space to express the ‘distance’
between two specification instances and its relationship to the ‘cost model’ of
institutional change defined by Ostrom, and their joint impact on the role as-
signment protocol (i.e. some agents may be ‘trusted’ more than others to occupy
a role). Furthermore, the testbed generates EC narratives from each of its stages.
These can be checked by an EC engine to validate the sequence of actions. In
the current testbed, agents do not violate their permissions and obligations, but
in future work it will be interesting to investigate the effect of such violations
on the performance of the system.

7 Summary and Conclusions

In summary, we have represented elements of a theory of institutions, institu-
tional change, and institutional management of common pool resources in a
framework for dynamic norm-governed systems. We showed how the nesting of
constitutive-, collective- and operational-choice rules could be represented as dy-
namic protocols. The approach was illustrated with a role assignment protocol,
and applied to a resource allocation rule for cloud computing service delivery.
Our initial experiments showed how runtime rule-based reasoning could be used
for self-organisation of ‘institutional clouds’. This is demonstrating decentralised
access control, in contrast to other rule-based access control schemes which tend
to be centralised (e.g. [5]).

In conclusion, we have proposed an institution-based approach to the problem
of dynamic load balancing in an open distributed system. Our experiments have
shown that a collaborative process of institutional change can achieve improved

Role Assignment in Institutional Clouds for Rule-Based Management 251

performance through self-organisation, in what might otherwise be considered
as an N -player non-cooperative game. However, there remain many open issues
concerning deployment of this model in a real-world cloud computing environ-
ment, but also opportunities to apply this model to microgrids, virtual power
plants, and the allocation of distributed energy resources [12]. These represent
the real challenges ahead.

Acknowledgements. We would particularly like to thank the anonymous re-
viewers for their useful suggestions and feedback.

References

1. Ardagna, D., Panicucci, B., Passacantando, M.: A game theoretic formulation of
the service provisioning problem in cloud systems. In: WWW 2011, pp. 177–186
(2011)

2. Artikis, A.: Dynamic protocols for open agent systems. In: Proc. AAMAS 2009,
pp. 97–104. IFAAMAS (2009)

3. Artikis, A., Sergot, M., Pitt, J.: Specifying norm-governed computational societies.
ACM Transactions on Computational Logic 10(1), 1–42 (2009)

4. Birman, K., Chockler, G., van Renesse, R.: Toward a cloud computing research
agenda. SIGACT News 40(2), 68–80 (2009)

5. Carminati, B., Ferrari, E., Perego, A.: Enforcing access control in web-based social
networks. ACM Trans. Inf. Syst. Secur. 13(1), 1–38 (2009)

6. Easwaran, A., Pitt, J.: Supply chain formation in open, market-based multi-
agent systems. International Journal of Computational Intelligence and Applica-
tions 2(3), 349–363 (2002)

7. Garey, M., Johnson, D., Sethi, R.: The complexity of flowshop and jobshop schedul-
ing. Mathematics of Operations Research 1(2), 117–129 (1976)

8. Jones, A., Sergot, M.: A formal characterisation of institutionalised power. Journal
of the IGPL 4(3), 427–443 (1996)

9. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4, 67–95 (1986)

10. Ostrom, E.: Governing the Commons. CUP (1990)
11. Pitt, J., Schaumeier, J., Artikis, A.: The axiomatisation of socio-economic princi-

ples for self-organising systems. In: Proceedings SASO 2011 (2011)
12. Pudjianto, D., Ramsay, C., Strbac, G.: Microgrids and virtual power plants: con-

cepts to support the integration of distributed energy resources. Proc. IMechE, A:
J. of Power and Energy 222, 731–741 (2008)

13. Sadighi Firozabadi, B., Sergot, M.: Contractual access control. In: Christianson, B.,
Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2002. LNCS, vol. 2845,
pp. 96–103. Springer, Heidelberg (2004)

14. Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST model for role-based access control:
Toward a unified standard. In: 5th ACM Workshop Role-Based Access Control,
RBAC 2000, pp. 47–63 (2000)

Standards, Data Models, Ontologies, Rules:

Prerequisites for Comprehensive Clinical
Practice Guidelines

Emory Fry1 and Davide Sottara2

1 Department of Modeling and Simulation, Naval Health Research Center,
140 Sylvester Road San Diego, CA 92106, USA

eafry@gmx.com
2 DEIS, University of Bologna, Viale Risorgimento, 2

40136 - Bologna, Italy
davide.sottara2@unibo.it

Abstract. General technical challenges in providing a standardized se-
mantic, structural, and conceptual foundation for comprehensive Clinical
Decision Support (CDS) are introduced. The prerequisite requirements
for a) standard representations of domain data, b) standard vocabular-
ies to unambiguously define and declare domain concepts, and c) an
expressive description logic syntax with which to articulate and encode
domain knowledge are examined with reference to the use of CDS in
automating Clinical Practice Guidelines. Semantic web, uncertainty and
other cognitive technologies are discussed in the context of improving
the reliability and adaptability of clinical guidelines in real-world sce-
narios. Select opportunities for incorporating standards and technology
capabilities available in non-medical communities are highlighted when
appropriate.

1 Introduction

Clinical Decision Support (CDS) refers broadly to the application of information
technology in support of medical cognitive processes. Since the advent of elec-
tronic medical systems, investigators have explored how rule and workflow man-
agement technologies might be leveraged to support healthcare requirements.
Capabilities ranging from diagnostic guides, to provider order entry systems, to
ambitious attempts at guideline management are maturing rapidly. Recent ef-
forts at expanding the general availability of information technology and curb the
exponential increases in healthcare costs are accelerating the time when medical
infrastructure might realize the opportunities that CDS promises to deliver [32].
The attendant funding is fueling a CDS renaissance of sorts within the industry.

The following provides a cursory review of technical challenges in providing
the semantic, structural, and conceptual foundation needed for comprehensive
CDS. It is not meant to be an exhaustive or definitive analysis, but rather an
introduction illustrating that the medical informatics community shares many
of the same concerns as the larger business community.

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 252–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Standards, Data Models, Ontologies, Rules 253

2 Foundational Pillars

Effective knowledge representation and management mandate foundational sup-
port for a) standardized representations of domain data, b) standardized vocab-
ularies to unambiguously define and declare domain concepts, and c) description
logic syntax with which to encode domain knowledge. Clinical Decision Support
is similarly constrained by these requirements [33]. While the structural integrity
of each of these pillars is still uneven and not fully mature, considerable academic
and organizational investment is being made to ensure they are appropriately
addressed.

2.1 Decision Logic

Early efforts at clinical decision support used conventional programming ap-
proaches that by their nature mixed inference and control logic into discrete
procedural steps [37]. Using this strategy, decision flow control is made explicit.
Such declarative representations were readily developed using the technologies
and programmer skill sets available at the time, and indeed, clinical decision
support use cases that relied on decision trees, for example, were efficiently im-
plemented.

Coupling control and inference logic, however, makes reusing and managing
large collections of knowledge modules or procedures more difficult. A more
comfortable paradigm in which to express medical declarative logic was found
in the use of production rules that separate the if-then statements used to artic-
ulate domain knowledge from the control logic required by the application [34].
Cleanly separating inference and control concerns with production rules, using
either forward chaining or backward chaining approaches, is arguably a more
extensible approach to clinical decision support. Decision Tables, reflecting the
natural expression of production rules, proved a popular and effective paradigm
for expressing medical declarative logic. Encapsulation of inference logic in-
side a production rule managed by a dedicated engine also provided for the
evolution of domain specific languages largely abstracted from implementation
concerns [15].

An early clinical informatics standard, Arden Syntax, bridges procedural ap-
proaches to building CDS systems with production rule engines. Arden orga-
nizes domain knowledge into Medical Logic Modules (MLMs) having more than
a cursory resemblance to procedural paradigms. They also incorporate the no-
tion of an activation event used to direct module execution similar to concept
of a trigger commonly found in production rules [18]. Unfortunately, Arden has
a somewhat simplistic object model where the implementation specifics for the
data used by a rule evaluation are under-specified. Commonly referred to within
the community as the curly braces problem, the specific object model used by
an Arden MLM are deferred to the implementer [20]. The lack of constraint on
run-time bindings reduces Arden’s potential for build sharable logic modules. It
has also been suggested that its more technical procedural syntax for express-
ing declarative logic is hard to read and thus validate by domain experts [15].

254 E. Fry and D. Sottara

As a result, Arden Syntax has engendered limited adoption within the healthcare
vendor community.

Reflecting the ongoing debate within the business community, medical infor-
matics has reached little consensus regarding a lingua franca for expressing clini-
cal declarative logic. As a consequence, logic developed at one organization using
the expressive syntax best matched to the local run-time infrastructure, cannot
readily be shared or exchanged even with willing recipients. Content develop-
ment is arguably the most expensive, labor-intensive, and knowledge dependent
aspect of clinical decision support [13]. Our inability to cross-compile domain
knowledge once encapsulated requires that a recipient commit significant effort
and labor to re-validating and re-implementing shared rule or CDS artifact. This
duplication of effort is an important economic obstacle to the widespread adop-
tion of clinical decision support. The complexity and rapidly evolving nature of
medical domain knowledge, the lack of a lingua franca, and the critical shortage
of the medical informaticians [16] required to facilitate knowledge encapsulation
is a priority that must be addressed.

2.2 Guideline Formalisms

Clinical Practice Guidelines (CPG) are a mainstay for consolidating expert
opinion and communicating evidence-based best practice. A comprehensive and
workflow driven CPG articulates not only discreet decision points, but also tem-
poral constraints that should be respected when implementing the evidence-
based care they recommend. While it is indeed possible to express time
dependent guidelines using Arden, the standard is better suited for expressing
discrete, stateless rule evaluations with only limited chaining[37].

Other approaches attempting to better reflect clinical guideline and medical
workflow formalisms soon emerged. GELLO [39] is an ongoing effort to increase
the workflow expressiveness of CDS artifacts. Based on OMG’s Object Con-
straint Language, GELLO facilitates the retrieving of data models from HL71

Reference Information Model (RIM) compliant databases and then logically rea-
soning over the data. It is object-oriented, can leverage OCL compliant tooling,
and was designed to provide a rich expression language for decision logic in
guideline formalisms.

Nevertheless, guidelines imply stateful, long-livedprocesses for which GELLO’s
object constraint syntax is not ideal. Consequently, process oriented guideline
projects merged to better support effective clinical decision support in the clinical
work environment. ASBRU [36], PRODIGY [21], EON [40] and GLIF [5] are all
notable examples of initial task oriented clinical guideline systems. These projects
represent early definitional and semantic efforts to identify tasks, roles and respon-
sibilities common to the medical domain. Later, systems such as GUIDE [10] and
SAGE [41] led an evolution towards not only defining the conceptual and seman-
tic landscape, but also prototyping the technical implementations to enact clinical
decision support recommendations in their real-world environments .

1 www.hl7.org

www.hl7.org

Standards, Data Models, Ontologies, Rules 255

The work with Arden Syntax, GELLO, and automated guideline management
have yet to capture the imagination of the vendor community. Medical workflow
formalisms have been slow to incoporate business process management innova-
tions such as Business Process Modeling Notation (BPMN22) or OASIS Busi-
ness Process Execution Language (WS-BPEL3). Such standards have reached
significant conceptual maturity and run time engines capable of encoding com-
plex business relationships and behaviors are readily available. As an example,
work represented by the OASIS Web Services Human Task standard reflects
sophisticated conceptual refinement regarding transfer versus delegation of re-
sponsibility. The standard’s task state engine has significant implications for
optimizing human and system behaviors that are critically important for in-
numerable medical workflows; the transfer of patient care between attendings,
housestaff, nursing, or consultants can only be represented adequately if the dis-
tinction between transfer and delegation are formally recognized. Commercially
available infrastructure supporting such concepts is available, but there has been
comparatively little refinement in the medical community regarding how such
products can be leveraged for clinical decision support.

The standardization efforts that are ongoing and accelerating at other layers
of our infrastructure must be extended to the realm of declarative logic and work-
flow management if the commercial availability, affordability and sustainability
of clinical decision support are to be realized.

2.3 Clinical Data Models

The second pillar of our hypothetical foundation for CDS is the data model
used to instantiate clinical concepts, observations, and real-world facts. Data
models play a crucial role in reliably and accurately communicating information
within a run-time system, during an exchange with an external partner, and for
ensuring conceptual relationships are preserved on storage to or retrieval from
a persistence store. Medicine has at its disposal several languages for defining
such data structures, including, but not limited to, Clinical Element Model [11],
GALEN Representation and Integration Language [35], Archetype Definition
Language [3], and more recently Web Ontology Language4. These languages
are all capable of defining reproducible and conceptually consistent structures
that rule and workflow implementations require for reliable execution. In the
United States, Health Level 7 Reference Information Model (RIM) Version 3 is
the predominant defacto standard.

As a conceptual model, RIM allows for numerous representations tailored
to specific use cases through iterative constraints during implementation. The
RIM can be instantiated in structured documents using HL7s Clinical Docu-
ment Architecture (CDA), or as messages optimized for the real-time communi-
cation requirements of laboratory, order-entry, and other transactional business

2 www.omg.org/spec/BPMN/2.0/
3 docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
4 www.w3.org/2007/OWL

www.omg.org/spec/BPMN/2.0/
docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
www.w3.org/2007/OWL

256 E. Fry and D. Sottara

processes. HL7 Standards like CDA or V3 Messaging ensure consistency with
the RIM, but they do not guarantee interoperability between systems that typ-
ically have concrete interface and class requirements. They do not ensure that
the data bindings expected by a CDS are unambiguous and machine consum-
able. These standards are under-specified and must be further constrained by
implementation specifications from organization such as Integrating the Health-
care Enterprise (IHE5) or Healthcare Information Technology Standards Panel
(HITSP6) before true interoperability can be achieved.

The HL7 RIM Version 3 also provides the conceptual framework for building
the run-time object models that middle tier components and services require.
Unfortunately, HL7 does not yet provide object model specifications sufficient to
avoid the curly braces problem and to support seamless sharing of rules between
clinical decision support systems. Even if the rule could be loaded into a partners
inference engine, object model discrepancies would preclude reliable execution.
Consensus regarding object classes, attributes and required semantics has not
been achieved, and implementation specificity is still left to interpretation by the
engineer. As a consequence, clinical decision support systems, especially those
that rely on concrete class structures to represent data relationships, cannot be
expected to consume and process decision-support rules from non-self systems
without significant analysis, mapping, and reimplementation.

There are many groups actively working to define to fully constrained de-
tailed clinical models that satisfy particular domain conceptual requirements.
The HL7 Clinical Decision Support Working Group7 sponsors two initiatives,
Detailed Clinical Models (DCM) and the Virtual Medical Record (vMR), that
are of illustrative of these efforts. HL7 DCMs intend to provide unambiguous se-
mantics and structural constraints on the RIM so that clinical information can
be more readily instantiated as interoperable, standalone clinical “components
reusable in a variety of EMR, warehousing, messaging or health information
technology deployments [14]. vMR is a complimentary effort to identify further
restrictions to HL7 models for defining a simplified subset of data representa-
tions specifically relevant for CDS. A principle goal of the vMR is the creation
of a unified CDS data model that reduces structural and semantic discrepancies,
simplifies CDS development, and ensures a consistent set of standardized data
inputs and outputs for inference services [24].

While considerable progress has been made in facilitating the implementation
of detailed clinical models, these efforts, as are the initiatives of many similar
international efforts, remain incomplete. Our ability to build run-time artifacts
with the structural and semantic consistency required for authoring rules suffi-
ciently decoupled from local infrastructure to be sharable is limited. There is a
vital need to establish a publically accessible canonical object model standard.
Until this is accomplished, our ability to share artifacts, reduce content devel-
opment costs, and encourage widespread CDS adoption will remain impeded.

5 www.ihe.net
6 www.hitsp.org
7 www.hl7.org/Special/committees/dss/index.cfm

www.ihe.net
www.hitsp.org
www.hl7.org/Special/committees/dss/index.cfm

Standards, Data Models, Ontologies, Rules 257

2.4 Semantics and Terminology Services

The final foundational pillar consists of the vocabularies and terminologies used
to unambiguously define domain concepts. Here again healthcare enjoys a wealth
of candidate vocabularies, developed initially within particular clinical communi-
ties with domain specific requirements. Available vocabularies include SNOMED,
LOINC, CPT, ICD-9, and ICD-10. These terminologies are highly variable in
both conceptual granularity and in their comprehensiveness. This discordance
creates several challenges for Clinical Decision Support for is not uncommon
to store data in one system using a vocabulary (e.g. diagnoses using ICD-9)
for which there is no precise, corresponding concept in the vocabulary (e.g.
SNOMED) used by another system encoding similar data. Such one-to-many
mapping concerns can not easily be adjudicated without potentially affecting
the conceptual analysis of the data [12]. When aggregated for the purpose of
CDS analysis, data terminology differences must optimally be resolved (trans-
lated) before a single rule can reason over the collective. Similarly, when rules are
used to analyze data of varying conceptual granularity, the system must deter-
mine the conceptual equivalence (subsumption) of the data to ensure all relevant
evaluations are performed. A particularly difficult situation occurs when a rule
employs one vocabulary, but is presented facts utilizing another. In such cases
both translation and subsumption may be required.

CDS Terminology Services, therefore, play a crucial role in any comprehensive,
real-world scenario where semantic discordance between local and/or distributed
source systems is commonly encountered. Systems such as the National Library
of Medicine Unified Medical Language System (UMLS) [28], or the proprietary
3M Health Data Dictionary [9], define concrete conceptual maps for translating
between terminologies. While in the short term, such static mappings are feasi-
ble and even expedient for select CDS uses, the long-term maintainability and
brittleness of such mappings is probably unsustainable. Medical terminologies
are constantly evolving to accommodate exponential increases in domain knowl-
edge; the level of effort required to sustain static translational mappings in such
run-time environments are enormous and expensive.

An alternative approach, as of yet immature, relies on evolving current med-
ical terminologies into ontologies. An ontology describes, using an appropriate
Description Logic, the relevant concepts in a domain, the known individuals
of that domain, and all the relationships between them including hierarchical
membership and subsumption relations. A semantic reasoners (specialized type
of inference engine) can leverage this expressiveness to match and even translate
between concepts defined in one or more ontologies [29].

While an ontology approach holds greatest promise for supporting rich and
flexible semantic infrastructures, in the near-term static-mapping approaches
are more realistic. HL7 relies on over 100 distinct vocabularies and taxonomies
to provide the conceptual definition required when constraining its reference
information model. Harmonizing these vocabularies and their conceptual rela-
tionships into ontologies usable by Semantic Web technologies is undoubtedly a
long term objective.

258 E. Fry and D. Sottara

3 Towards Semantic Guidelines

There is tremendous interest within the medical informatics community regard-
ing other ways semantic technologies can be utilized in the development of
software applications, including (Clinical) Decision Support Systems. Semantic
reasoners can deliver other capabilities including (i) inferring additional hierar-
chy relations implicitly present in the descriptions, but not explicitly asserted;
(ii) deciding whether an individual is an instance of a class by virtue of its prop-
erties and the class definition; and (iii) creating concrete models which can be
used for rule-based inference.

For example, while many medical terminologies lack the constraints used by
full-fledged ontologies to help prevent semantic inconsistencies [8], combinations
of higher-level ontologies and more simplistic vocabularies can enable complex
“sentences” suitable for expressing clinical practice guidelines that can be shared
between different organizations ([17]). The additional ontologic structure ensures
that both parties can unambiguously understand the semantic content of what
would otherwise be a simple syntactic construct. Such definition is a manda-
tory prerequisite for sharing guideline content between different organizations
or performing translations into different languages (e.g. a non-standard, private
representation internal to a company) while still preserving the original intended
meaning.

While a semantic reasoner might process such “semantic” guidelines to poten-
tially evaluate other components of a CPG (guideline inclusion criteria, decision
logic, or recommended interventions), more dynamic evaluations, including the
execution of actions, are instead better defined and executed using rules. This
duality can pose integration problems, since semantic and rule-based reasoners,
in general, do not share the same internal structures and inference capabilities. In
particular, semantic reasoners are proactive and make Open World assumptions
treating missing information as unknown and delaying any decision depending
on that information. Rule-based reasoners are typically reactive, make Closed
World assumptions, and consider missing information to be false. Furthermore,
semantic reasoners are usually based on triples, while rule-based reasoner exploit
frames or even proper objects [22].

Such architectural details make the interaction non-trivial, to the point that
several more recent systems tend to prefer the exclusive use of a semantic rea-
soner over a rule based one. In KON [7], for example, all the inference is done
using a semantic reasoner, while the actions are delegated to native code without
even using a rule engine. Other systems (e.g. [22]) utilize rules written with the
Semantic Web Rule Language (SWRL), which has the advantage of being for
optimized for execution by a semantic reasoner. The language, however, is not
as expressive as a full rule syntax might be; SWRL rules are also executed under
Open World assumptions.

If required, hybrid systems capable of leveraging both types of reasoners
can be implemented. As described in [23]: rules executed by a rule engine can
be defined using concepts derived from an ontology, allowing part of the rule
evaluation to be delegated to a semantic reasoner. In this approach both

Standards, Data Models, Ontologies, Rules 259

reasoners share the same fact and data model (some conversion might be needed
depending on the internal representations used by each engine) facilitating the
choice of the most appropriate reasoning style. The maximum level of integra-
tion would be achieved if a single hybrid engine was capable of performing both
types of reasoning, thus eliminating the need to make calls between two separate
components.

4 Uncertainty Enriched Systems

A semantically constrained guideline, processed by either rule-based or semantic
reasoners, would help ensure that a it is applied and executed uniformly. Nev-
ertheless, enriching the expressiveness of the languages, augmenting the com-
plexity of the data models, and improving the computational capabilities of the
inference engines might not be sufficient to capture all the nuances explicitly
and implicitly present in a clinical guideline. CPG authors usually express their
domain knowldge in natural language - these reference documents are prone to
misinterpretation and erroneous implementation by non-clinical engineers.

A medical guideline is likely to be affected by various forms of imperfection
[42] that cannot be encapsulated directly using the techniques discussed so far.
We use the term imperfection in the sense of Smets [38], i.e. a condition of
imprecision, uncertainty or vagueness which inherently pervades an accurate
model of the real world. Ignoring this imperfection does not make a guideline
more robust, and may even make it more difficult to apply in practice.

4.1 Vagueness

For example, clinical problems and their solutions are often imperfectly defined,
even in clinical guidelines developed by consensus. Domain knowledge provided
by subject matter experts might be inherently vague, for example, a Family
Practice guideline for the diagnosis and treatment of jaundice in “young babies”
that does not precisely define what “young babies” means or implies. For the
intended audience, such terms are naturally constrained by the demographics
of the patient populations they treat. For the CDS engineer attempting to en-
code the guidelines intent, these assumptions may not be recognized - they must
be made explicit. In cases where disambiguation is not possible, fuzzy logic is
an appropriate and effective modelling tool for decision making in ambiguous
medical contexts [27], [42]. Fuzzy logic allows a guideline modeller to give quan-
titative definitions to vague, qualitative concepts (e.g. age - young, weight - fat,
pressure - high) using membership functions. The use of fuzzy properties also
avoids critical discontinuities that can result in different treatments for patients
which have, in reality, the same condition. Consider for example the declarative
statements “give Tylenol if fever is high” as opposed to “if greater than 38C”.
Using the first expression, a provider may or may not treat depending on their
interpretation of “high”. In the latter, the final decision is definitively directed
even when a patient’s body temperature is close to the threshold value.

260 E. Fry and D. Sottara

4.2 Uncertainty

In contrast to vagueness which stems from inadequate definition, uncertainty
results from missing or incomplete information and is another unavoidable char-
acteristic of most clinical decision processes. Even under the best of conditions,
diagnoses are often not 100% certain; a medication or a procedure is not guar-
anteed to have always the same (desired) effect; or the pathophysiology of a
disease may be incompletely understood. Decisions made at various branching
points within a guideline should take this uncertainty into account.

Several attempts at incorporating uncertainty into CDS have been made. An
early approach relied on “certainty factors” [6] used to approximate a form of
Bayesian inference. After the formal discovery of Bayesian Networks and related
probabilistic reasoning and inference techniques, the management of uncertainty
in CDS in general, and clinical guidelines in particular, has shifted to the use of
two main approaches.

One strategy extends the native capabilities of logic and rule-based systems
with uncertainty. The first category includes all systems based on certainty
factors and evolutions thereof, including but not limited to belief functions
(e.g.[25]). A second strategy focuses on probabilistic models that are given a
logical interpretation - this approach includes systems based on neural networks
and statistical methods (e.g. [1]). From a user perspective these differences in
strategy are not always clear; the former class of systems uses a top down ap-
proach, building on top of expert knowledge; the latter use bottom-up approaches
in which models are trained using raw data and thus are more suitable when
explicit knowledge is not available [31].

Despite the apparent conveniences, only a few CDS using fuzzy logic have been
developed [1], and most mainstream guideline modelling tools do not currently
support uncertainty [26]. One possible reason is that such reasoning techniques
typically require dedicated inference engines that common workflow / production
rule engines do not usually support. Again, the complexity of managing multiple
run-time engines is a major deterrent to applying the best inference strategy for
the problem at hand. Cognitive support to the healthcare provider could be
optimized if a single hybrid engine was capable of performing multiple types of
reasoning. At the present time, if a guideline needs production rule, vagueness
and/or uncertain support, this integration must be provided explicitly.

5 Runtime Adaptation

Even if guideline implementations are precise semantically, capable of manag-
ing vagueness and uncertainty, they are not guaranteed to be appropriate for
a given run-time context. Clinical Practice Guidelines are consensus driven and
thus make idealized assumptions regarding physician capabilities, patient charac-
teristics, and clinical context. In practice there are countless exceptions to these
assumptions. It would be impractical to accommodate all possible scenarios ex-
plicitly and a physician might still deliberately want to override the guideline

Standards, Data Models, Ontologies, Rules 261

workflow. When such situations are encountered, guideline execution needs be
able to gracefully deviate from the original specification.

Several attempts at adapting clinical guideline execution have been reported.
Some of these projects interpret process flow as plans in the AI sense where a
sequence of actions aims to achieve a defined goal. In [30], case-based reasoning
techniques are used to define a default plan suitable for a class of problems.
This plan may then be refined using proper planning techniques [2] to match
the identified context.

In the approach proposed in [4] the guideline plan is not modified dynam-
ically to accommodate for exceptional situations. Instead, the CDS performs
compliance checks to determine if the actions that were directed by the user
are compatible with its original specifications. The criteria for determining such
compatibility are explicitly defined as adjunct rule sets that evaluate whether al-
ternative actions might be justified. Notice that the criteria to detect the anoma-
lies and the logic to deal with them are not part of the guideline, but are defined
in modules which can be composed as needed. Whenever the execution flow
deviates from planned or expected behaviour, a violation is logged and then
evaluated. If a violation can be justified, the user’s actions are permitted and
the system compensates for the perceived plan violation. If the action can not be
justified, the conformance violation is reported and the system may optionally
cancel the guidelines execution.

6 Distributed Decsion Support Services and Knowledge
Management Respository

Naval Health Research Center, San Diego’s Distributed Decsion Support Services
and Knowledge Management Respository (DDSS-KMR) project is a standards-
based engineering effort addressing many of the challenges described above. The
project implements key concepts from a variety of initiatives, particularly SAGE,
to implement a robust knowledge management infrastructure using available
open source technologies.

DDSS-KMR provides standards-based object models that are based on the
HL7 RIM, use V3 Messaging and CDA standards to define datatypes and at-
tributes, and follow HITSP/IHE implementation specifications to constrain ter-
minologies and structure. Clinical data, aggregated from local and distributed
repositories, are mapped into this canonical fact model and stored in rule en-
gine’s working memory as a patient specific virtual medical record. This stateful
in-memory vMR enables workflow, inference and predictive analytic technologies
to provide high performance cognitive and process support.

A hybrid architecture provides commercially available engines to deliver these
capabilities. Event Driven Architecture (EDA) components provide the temporal
responsive required for effective Clinical Decision Support, triggering appropri-
ate analytic processing in response to real-time events. Triggers can be messages,
for example the HL7 transaction sets used to communicate laboratory results,
healthcare summaries delivered dynamically from outside organizations, or pa-
tient monitor waveforms that require Complex Event Processing to be handled

262 E. Fry and D. Sottara

effectively. Upon receiving the data, the system transforms the information into
the same canonical object structure as data retrieved from a persisted store.

A Production Rule engine, exposed as a Decision Support Agent using the
Foundation for Intelligent and Physical Agents’ Agent Communication Language
(FIPA-ACL8). This architecture is utilized to a) capture and encode clinical
domain expertise, b) ensure process validity with respect to declarative con-
straints, and c)provide flexible control over application/middle tier behavior.
The system uses Drools (aka JBoss Rules9). While engines from other vendors
can be substituted, the ability to manage both inference and workflow within
the same instance of the engine simplifies service orchestration tremendously. A
design principle unique to the DDSS-KMR approach is that rule and workflow
processing can be executed within a patient-specific session, each being dynam-
ically instantiated and provisioned with the patient’s vMR and context-specific
knowledge bases. This design, while resource intensive, ensures personalized,
high-performance rule evaluations; scalability is ensured by a series of enhance-
ments collectively called ”Drools Grid” that is now available as an add-on that
can be integrated with the core engine. While still experimental, Grid enables
dynamic provisioning of rule sessions on any available machine.

Initiated workflows are enacted using Service Oriented Architecture (SOA)
components, each service ensuring that core business logic is well-abstracted,
reusable, and encapsulated behind standards-based interfaces. A WS-Human
Task service manages the lifecycle of tasks assigned to human performers by the
rule engine. The actual performance of those tasks is accomplished by a series
of connectors packaged as a Task Library providing interfaces for sending email,
booking appointments, placing orders, escalating messages, making phone calls,
and sending SMS text messages.

Not all clinical decisions are best approached with declarative logic - some
require alternative inference techniques. To expand the analytic capabilities
available, we implemented a Predictive Model Markup Language (PMML10)
infrastructure, the de facto standard used to represent predictive models, so
that resource-capacity planning, risk-assessment, and diagnostic models could
be plugged into the Clinical Decision Support architecture.

DDSS-KMR provides integrated knowledge management, analytic, and pre-
dictive modeling capabilities. As a standards-based Clinical Decision Support
environment, it is well suited to deliver knowledge services that can be layered
on a variety of health information networks. An additional goal is to contribute
a reference architecture that can be leveraged by CDS researchers, either within
their own labs for their own purposes, or as part of a more collaborative commu-
nity effort. DDSS-KMR will be open sourced release as a community contribution
to the Federal Health Architecture Group CONNECT 11 project in early 2012.

8 www.fipa.org
9 www.jboss.org/drools

10 www.dmg.org/pmml-v4-0-1.html
11 www.connectopensource.org

www.fipa.org
www.jboss.org/drools
www.dmg.org/pmml-v4-0-1.html
www.connectopensource.org

Standards, Data Models, Ontologies, Rules 263

7 Conclusion

Despite the resurgent interest in Clinical Decision Support and the enormous
capital investments currently underway, CDS as a fundamental infrastructure
capability continues to struggle with typical implementation concerns. As with
any early stage deployment of knowledge management infrastructure, numerous
inter-dependent business processes remain poorly understood and incompletely
implemented. Clinical processes, architectures, domain standards, and behaviors
remain hotly contested as participants initially focus on requirements felt to be
singularly important to preserve. Such turmoil hampers the implementation of
CDS which benefits significantly from standardized, predictable processes and
business requirements.

The future contribution of CDS to quality of care and patient outcomes re-
mains uncertain and its near-term impact should be viewed with healthy skepti-
cism. The practical effectiveness of existing CDS has been evaluated several times
in recent years. While many researchers agree that CDS can result in significant
changes in practitioner performance, the final effectiveness varies according to
the specific application, with some (e.g. drug prescription) being more suitable
candidates for decision support than others. The impact on patient outcomes is
considerably less clear with fewer studies identifying positive benefits. [19] Such
cautionary data underscores the need for a considered, iterative approach to CDS
implementation. Medicine is a community poised for making large captial invest-
ments in health information technology; it should consider carefully whether it
truly has the conceptual refinement, the organizational maturity, and the neces-
sary standards to implement large scale CDS deployments without considerable
risk. Given the social-polical-economic environment, healthcare has an unprece-
dent opportunity to redefine its technological foundation; it should remain cog-
nizant that considerable organizational introspection and process reengineering
is needed to implement any technology successfully.

Nevertheless, given the successful application of inference and workflow tech-
nology in other communities, there should be considerable optimism that this
most complex of human endeavors can indeed be decomposed into more man-
ageable and predictable system component and interfaces. It’s also true that
early and seemingly irreconcilable differences often prove less important once
the reengineering effort matures. If the experiences, standards and technology
capabilities that found success in business markets at large can be harmonized
with healthcare concerns, the full integration of clinical decision support into
the very fabric of our health care delivery system may be closer than one might
otherwise expect.

References

1. Abbasi, M., Kashiyarndi, S.: Clinical Decision Support Systems: A Discussion on
Different Methodologies Used in Health Care (2010)

2. Anselma, L., Montani, S.: Supporting and Optimizing Clinical Guidelines Execu-
tion. Citeseer (2008)

264 E. Fry and D. Sottara

3. Beale, T.: The OpenEHR Archetype System. 1, 1–19 (2003)

4. Bottrighi, A., Chesani, F., Mello, P., Montali, M., Montani, S.: Conformance Check-
ing of Executed Clinical Guidelines in Presence of Basic Medical Knowledge. Event
(London), 1–12

5. Boxwala, A., Peleg, M., Tu, S., Ogunyemi, O., Zeng, Q., Wang, D., Patel,
V., Greenes, R., Shortliffe, E.: GLIF3: a Representation Format for Sharable
Computer-Interpretable Clinical Practice Guidelines. Journal of Biomedical In-
formatics 37(3), 147–161 (2004)

6. Buchanan, B.G., Shortliffe, E.H.: Rule-based Expert Systems: The MYCIN Exper-
iments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading
(1984)

7. Ceccarelli, M., Stasio, A.D., Donatiello, A., Vitale, D.: A Guideline Engine For
Knowledge Management in Clinical Decision Support Systems (CDSSs)

8. Ceusters, W., Smith, B., Flanagan, J.: Ontology and Medical Terminology: Why
Description Logics Are Not Enough. Computing (2003)

9. Che, C., Monson, K., Poon, K.B., Shakib, S.C., Lau, L.M.: Managing Vocabulary
Mapping Services. In: AMIA Annual Symposium Proceedings, vol. 2005, p. 916.
American Medical Informatics Association (2005)

10. Ciccarese, P., Caffi, E., Quaglini, S., Stefanelli, M.: Architectures and Tools for
Innovative Health Information Systems: The Guide Project. International Journal
of Medical Informatics 74(7-8), 553–562 (2005)

11. Coyle, J., Mori, A., Huff, S.: Standards for Detailed Clinical Models as the Basis for
Medical Data Exchange and Decision Support. International Journal Of Medical
Informatics 69(2-3), 157–174 (2003)

12. Doerr, M.: Semantic Problems of Thesaurus Mapping. Journal of Digital Informa-
tion 1(8), 1–27 (2001)

13. Eccles, M., Mason, J.: How to Develop Cost-Conscious Guidelines. Health Tech-
nology Assessment (Winchester, England) 5(16), 1–69 (2001)

14. Goossen, W., Goossen-Baremans, A., van der Zel, M.: Detailed Clinical Models: A
Review. Healthcare Informatics Research 16(4), 201–214 (2010)

15. Greenes, R.A.: Clinical Decision Support: The Road Ahead. Academic Press (2006)

16. Hersh, W.: Health and Biomedical Informatics: Opportunities and Challenges for a
Twenty-First Century Profession and Its Education. Yearb. Med. Inform., 157–164
(2008)

17. Hrabak, K.M., Campbell, J.R., Tu, S.W., McClure, R., Weida, R.T.: Creating
Interoperable Guidelines: Requirements of Vocabulary Standards in Immunization
Decision Support.. Studies In Health Technology And Informatics 129(Pt 2), 930–
934 (January 2007)

18. Hripcsak, G., Clayton, P., Pryor, T.: The Arden Syntax for Medical Logic Modules.
In: 14. Annual Symposium on Computer Applications in Medical Care, pp. 200–204
(1990)

19. Jaspers, M.W.M., Smeulers, M., Vermeulen, H., Peute, L.W.: Effects of Clinical
Decision-Support Systems on Practitioner Performance and Patient Outcomes: A
Synthesis of High-Quality Systematic Review Findings. Journal of the American
Medical Informatics Association 18(3), 327–334 (2011)

20. Jenders, R.A., Sujansky, W., Broverman, C.A., Chadwick, M.: Towards Improved
Knowledge Sharing: Assessment of the HL7 Reference Information Model to Sup-
port Medical Logic Module Queries. In: Proceedings of the AMIA Annual Fall
Symposium, pp. 308–312 (January 1997)

Standards, Data Models, Ontologies, Rules 265

21. Johnson, P.D., Tu, S., Booth, N., Sugden, B., Purves, I.N.: Using Scenarios in
Chronic Disease Management Guidelines for Primary Care. In: Proceedings of the
AMIA Annual Fall Symposium, pp. 389–393 (January 2000)

22. Jovic, A., Prcela, M., Gamberger, D.: Ontologies in Medical Knowledge Represen-
tation. In: 29th International Conference on Information Technology Interfaces,
pp. 535–540 (June 2007)

23. Kashyap, V., Morales, A.: On Implementing Clinical Decision Support: Achieving
Scalability and Maintainability by Combining Business Rules and Ontologies. In:
AMIA Annual Symposium, vol. 40(C) (2006)

24. Kawamoto, K., Del Fiol, G., Strasberg, H., Hulse, N., Curtis, C., Cimino, J., Rocha,
B., Maviglia, S., Fry, E., Scherpbier, H., et al.: Multi-National, Multi-Institutional
Analysis of Clinical Decision Support Data Needs to Inform Development of the
HL7 Virtual Medical Record Standard. In: AMIA Annual Symposium Proceedings,
vol. 2010, p. 377. American Medical Informatics Association (2010)

25. Kong, G., Xu, D., Yang, J., Body, R., Mackway-Jones, K., Carley, S.: A Belief
Rule-Based Decision Support System for Clinical Risk Assessment of Cardiac Chest
Pain. pp. 1–31

26. Kong, G., Xu, D.L., Yang, J.B.: Clinical Decision Support Systems: a Review of
Knowledge Representation and Inference Under Uncertainties. International Jour-
nal of Computational Intelligence Systems 1(2), 159 (2008)

27. Liu, J.C.S., Shiffinan, R.N.: Operationalization of Clinical Practice Guidelines Us-
ing Fuzzy Logic. Medical Informatics, 283–287

28. McCray, a.T., Nelson, S.J.: The Representation of Meaning in the UMLS. Methods
of Information in Medicine 34(1-2), 193–201 (1995)

29. Mirhaji, P., Zhu, M., Vagnoni, M., Bernstam, E.V., Zhang, J., Smith, J.W.: On-
tology Driven Integration Platform for Clinical and Translational Research. BMC
Bioinformatics 10(suppl. 2), S2 (2009)

30. Montani, S.: Case-Based Reasoning for Managing Noncompliance with Clinical
Guidelines. Computational Intelligence 25(3), 196–213 (2009)

31. Onisko, A., Lucas, P., Druzdzel, M.J.: Comparison of Rule-Based and Bayesian
Network Approaches in Medical Diagnostic Systems

32. Osheroff, J.A., Teich, J.M., Middleton, B., Steen, E.B., Wright, A., Detmer, D.E.:
A Roadmap for National Action on Clinical Decision Support. Journal of the Amer-
ican Medical Informatics Association 14(2), 141 (2007)

33. Parker, C.G., Rocha, R.A., Campbell, J.R., Tu, S.W., Huff, S.M.: Detailed Clinical
Models for Sharable, Executable Guidelines. Studies in Health Technology and
Informatics 107(Pt 1), 145–148 (2004)

34. Quinlan, J.R.: Generating Production Rules From Decision Trees.. In: Proceedings
of the Tenth International Joint Conference on Artificial Intelligence, vol. 30107,
pp. 304–307. Citeseer (1987)

35. Rector, A., Bechhofer, S., Goble, C., Horrocks, I., Nowlan, W., Solomon, W.: The
GRAIL Concept Modelling Language for Medical Terminology. Artificial Intelli-
gence in Medicine 9(2), 139–171 (1997)

36. Shahar, Y., Miksch, S., Johnson, P.: The Asgaard Project: A Task-Specific Frame-
work for the Application and Critiquing of Time-Oriented Clinical Guidelines.
Artificial Intelligence in Medicine 14(1-2), 29–51 (1998)

37. Sherman, E.H., Hripcsak, G., Starren, J., Jenders, R.A., Clayton, P.: Using Inter-
mediate States to Improve the Ability of the Arden Syntax to Implement Care
Plans and Reuse Knowledge.. In: Proceedings of the Annual Symposium on Com-
puter Application in Medical Care, p. 238. American Medical Informatics Associ-
ation (1995)

266 E. Fry and D. Sottara

38. Smets, P.: Imperfect Information: Imprecision and Uncertainty, pp. 225–254 (1996)
39. Sordo, M., Boxwala, A.A., Ogunyemi, O., Greenes, R.A.: Description and Status

Update on GELLO: A Proposed Standardized Object-Oriented Expression Lan-
guage for Clinical Decision Support. Studies in Health Technology and Informat-
ics 107(Pt 1), 164–168 (2004)

40. Tu, S.W., Musen, M.A.: The EON Model of Intervention Protocols and Guidelines.
In: Proceedings of the AMIA Annual Fall Symposium, pp. 587–591 (January 1996)

41. Tu, S., Campbell, J., Glasgow, J., Nyman, M., McClure, R., McClay, J., Parker, C.,
Hrabak, K., Berg, D., Weida, T., et al.: The SAGE Guideline Model: Achievements
and Overview. Journal of the American Medical Informatics Association 14(5), 589
(2007)

42. Warren, J., Beliakov, G., Zwaag, B.V.D.: Fuzzy Logic in Clinical Practice Decision
Support Systems. Computing 00(c), 1–10 (2000)

Event Condition Expectation (ECE-) Rules for
Monitoring Observable Systems

Stefano Bragaglia1, Federico Chesani1, Emory Fry2, Paola Mello1,
Marco Montali1, and Davide Sottara1

1 DEIS, University of Bologna, Viale Risorgimento, 2
40136 - Bologna, Italy

{name.surname}@unibo.it
2 Department of Modeling and Simulation, Naval Health Research Center

140 Sylvester Road, San Diego, CA 92126, USA
eafry@gmx.com

Abstract. The standardization and broad adoption of Service Oriented
Architectures, Web Services, and Cloud Computing is raising the com-
plexity of ICT systems. Hence, assuring correct system behavior with
regard to established design and business constraints is of the utmost
importance. Run-time monitoring, where the outcomes of an observed
system are continuously checked against what is expected of it, is one
possible approach to providing the required oversight.

In this paper, we discuss this notion of rule expectations, their viola-
tion and/or fulfillment, and use these concepts to define the concept of
an Event-Condition-Expectation (ECE-) rule, a variation of the tradi-
tional Event-Condition-Action rule pattern. To demonstrate these con-
cepts, we present extensions to the syntax used by the production rule
engine, Drools, and describe their use in a medical case study. The clinical
decision support system being developed monitors rule evaluations and
expectations, detects constraint violations and is able to take recovery/
compensation actions as appropriate.

1 Introduction

In the last ten years there has been a flourishing of models and technologies
for developing, deploying, and maintaining ICT systems based on heterogeneous
and distributed components. Paradigms such as Service Oriented Architectures
(SOA), Web Services (WS), Cloud Computing, Business Process Management
Systems and Workflows (BPMS) have been already largely adopted by the ICT
industry. When focusing on the medical and healthcare context, automated clin-
ical guidelines [4], care plans, and clinical decision support in general aim to
ensure that care standards can be implemented reliably and effectively. These
solutions allow for increasingly complex systems, while the adoption of standards
pushes for the use of heterogeneous, third-party (software/hardware) compo-
nents. Consequently, assuring the correct behaviour of such systems is becoming
a harder task. Traditional debug techniques alone might not be enough, either

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 267–281, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

268 S. Bragaglia et al.

because of the complexity of the overall system, or because third-party compo-
nents are often treated as black boxes and so it is not possible to use debugging
tools. Run-time monitoring techniques could be of some help by checking if the
system behaves correctly while it is executing. Typically, a system developer spec-
ifies in advance the correct outcomes for any/some possible input. By observing
the inputs and the outputs of the system, a monitor automatically verifies that
the outputs match with the expected outcomes. In case of a positive answer, the
system is deemed to be conformant. Such approach is exploited also to verify
the correctness of complex systems against some high-level constraints. For ex-
ample, Quality of Service (QoS) criteria must be continuously monitored, and
proper actions must be taken if such criteria are not met. Likewise, legal aspects
and business constraints could be subjected to monitoring. A possible way for
expressing the desired behaviour of a system is by means of rules (ECA Rules,
logic-based rules, etc.), that define the expectations. Intuitively, we consider
an expectation a “justified state of anticipation” about the state of a system,
given that some conditions on the current system’s state and its environment
already hold. However, to the best of our knowledge, the notion of expectation is
rarely used as a “first-class entity” and it is only partially supported. Instead, we
strongly believe that it can greatly help in the task of specifying the desired be-
haviour of a system, since it is a natural, direct way for characterizing the desired
behaviour of a system. In addition, we also propose to exploit the concepts of
fulfillment and violation to model the actual outcome of an expectation. Taking
inspiration from the ECA rule family, we propose the “Event Condition Expec-
tation (ECE-) Rules”. In such rules, the premise defines the facts and events
required to trigger an expectation, while the conclusion contains the description
of what is expected to be observed. In this paper, we present our idea of ex-
pectation and ECE-Rules, and discuss the features that should be supported by
this new class of rules (Section 2). We present also a first, prototypical imple-
mentation of these concepts based on the Drools [12] Framework (Section 3). In
particular, we provide a new language for ECE-Rules (Section 4), and show its
application in a real scenario (Section 5).

2 Expectations, Their Fulfillment and Violation

2.1 Related Works

The notion of expectation has been a research subject in many different IT-
related fields, where the need for monitoring systems at run-time found a possible
solution in the idea of checking the conformance of the observed system against
some expected behaviour.

The deontic concepts and operators useful to represent norms, obligations and
similar concepts have been individuated and mapped to an abductive logic pro-
gramming context in [2]. Although motivated by a different scope, it provides a
background and starting point that is also valid for the semantics of our proposal.
In the Multi-Agent Systems (MAS) field, social approaches specify the agents’
allowed interactions as expected behaviours (externally observed), and define

Event Condition Expectation (ECE-) Rules 269

fulfillment/violation in terms of deviance from what is expected. The framework
SCIFF [1], for example, is mainly focused on a logic-based notion of expectations
and their fulfillment/violation. Commitments, as deeply investigated by authors
such as Singh [17,5,20] or Colombetti and Fornara [7], are defined as promises
arising from agents interaction: a debtor agent becomes committed towards a
creditor (i.e., it is expected) to bring about a certain property, i.e. make it true. In
the Business Process research field, van der Aalst and colleagues propose declar-
ative languages that focus on the properties that the system should exhibit: in
the DecSerFlow language [14] the users can specify which are the business activ-
ities that are (not) expected to be executed, as a consequence of previously (not)
executed activities. Within the field of legal reasoning and normative systems,
authors like Governatori and Rotolo [11,16,9,10,8] have proposed temporal logic
frameworks and languages to represent legal contracts between parties: primarily
focused on compliance issues, such tools simulate the possible course of actions
of a system and evaluate if contract agreements are indeed respected.

In the following we introduce our vision about expectations, and discuss a
(preliminary, not exhaustive) set of features that, from our viewpoint, should be
strictly linked to the notion of expectation, and to the idea of ECE-Rules.

2.2 Desiderata for the Notion of Expectation

Expectations should be about events and/or properties. In the literature
it is possible to find expectations about different possible outcome types. An
expectation could be about the happening of an event, described in terms of
the happening time instant and the event duration, or it could be about the
reaching a certain state of affairs, or a property becoming true, such as in the
case of commitments. In particular, it could be desirable that such property is
true in a certain instant, or for a whole time interval, continuously [19]. Notice
that, in any case, we need to deal with (at least) a description, an initial time
instant (a start), and a time duration (or, equivalently, an end).

Expectations should support closed, as well as open interactions. In
closed-interaction complex systems, the set of possible events is tipically known
a-priori, and at any given time, only few events are supposed/allowed to hap-
pen: unexpected events are an evident violation, since anything not explicitly
expected is implicitly forbidden. However, the ongoing challenges posed by the
new Internet era require very “flexible” systems able to cope with unpredictable,
changing and dynamic environments, where the autonomy of interacting entities
and the possibility of exploiting new opportunities must be preserved as much
as possible [21], or the expertise of workers must be exploited at best [15]. In this
context, “closed approaches” show some drawbacks in this regard. Open interac-
tions overcome such limits, since they focus on the (minimal) set of constraints
that must be guaranteed to successfully interact. To this aim, a further step is
required: expectations about what should not happen should be supported, thus
involving some notion of prohibition.

270 S. Bragaglia et al.

Expectations should be about future, as well as past events. Expectations
should allow the user to specify when a certain event is expected. It is very
intuitive to define expectations about future events, but it is also mandatory
to be able to treat past expectations. Within a monitoring setting, it is often
assumed that at any time instant T the set of already happened events is fixed,
i.e., that any newly observed event will happen at a time greater than T (with a
possible approximation Δ). Determining if an expectation about a past event is
satisfied or not amounts to look for a matching event in such fixed set. Differently,
any reasoning on expectations about future events should be “suspended”, as far
as future events are unknown. W.r.t. the time axis, monitoring is usually closed
towards the past, and open towards the future.

Expectations should support temporal deadlines. In general, without any
temporal deadline, it would not be possible to determine if an expectation has
been fulfilled or violated. The problem is somehow mitigated for expectations
about past events due to the the semi-open nature of the monitoring task, while
any conclusion would be indefinitely suspended by an ideal monitor for expec-
tations about future events. To avoid such situations, some systems (e.g., [1])
envisage a special closure event, whose semantic is that no more events will ever
happen, allowing the monitor to draw final conclusions.

2.3 Desiderata for a Framework Supporting Expectations

Support for one/many matching functions. When an event happens, it
is necessary to decide if it has any relation with what is currently expected.
This task is performed by a matching function, that decide if there is a compati-
bility between the two. A simple matching function could evaluate the syntactical
equality of the events’ descriptions. However, only more powerful
matching functions based on, for example, regular expressions, fuzzy pattern
matching, or Prolog-like unification, would be of practical interest. Ideally, a
framework should allow for many different matching functions, and, possibly,
also for custom-defined functions.

Support for fulfillment and violation. It should be always possible to know
if an expectation has been satisfied (fulfilled) or not (violated). Note that, in case
of open-interaction systems, such notions would apply differently to expectations
and to prohibitions. Roughly speaking, in the former case an expectation could
be considered fulfilled if at least a matching event happens, while in the latter
the expectation about the non-happening is fulfilled if no matching event ever
happened. A doubt might arise about the happening of multiple events matching
the same expectation. A framework should support the user to define these
characteristics of the fulfillment/violation process.

Support for the life-cycle of an expectation. The life cycle of an expecta-
tion should capture all its possible states within the system’s life. In particular,
we envisage at least three fundamental states: a pending one, indicating that
an expectation is active but lacking information for deciding its fulfillment or

Event Condition Expectation (ECE-) Rules 271

violation, a fulfilled state and a violated one. Such states should be accessible
as explicit meta-information, both about individual expectations and groups
thereof, possibly using them to trigger new events and/or derived expectations.

Support for some notion of “global conformance”. If the notions of ful-
fillment and violation are referred to a single expectation, a framework should
support also some global notion of fulfillment (conformance of the whole mon-
itored system). Such notion could be simply defined as a logical “and” of all
expectations’ fulfillments, or could be user-defined by means of some metrics,
such as statistics, or by means of some other criteria like a fuzzy evaluation.

2.4 Desiderata for the ECE-Rules

Direct support for compensation and awarding mechanisms. In our
view, ECE-Rules define the events the conditions that trigger an expectation,
i.e. make it pending, and resolve it either by fulfillment or violation. Quite often,
in the case of violations (res. fulfillments), compensation (resp. award) mecha-
nisms are required: their preconditions can be easily expressed if the framework
supports some reification (in terms of events) of the state transitions during
an expectation’s life cycle. However, such situation is so frequent that also we
foresee the possibility of defining compensation/awarding mechanisms directly
in the ECE-Rules. So, the rules would be single yet complete “knowledge items”,
containing the events and the conditions for expectations to become pending, as
well as what to do in case the expectation is fulfilled or violated.

3 The Drools Rule Engine

Drools1 is an open source “knowledge modelling and business logic integration
suite” composed of several modules. Its core component is a reactive production
rule engine, based on an object-oriented version of the RETE algorithm [6].

From a user perspective, the system offers a blackboard-like container, called
Working Memory (WM), where the facts describing the “state of the world” can
be inserted, updated or retracted. The rules, then, are activated accordingly
whenever the WM is modified. A rule is an IF-THEN like construct, composed
of a premise (Left Hand Side, LHS for short) and a consequence (Right Hand
Side, RHS). The LHS part is composed by one or more patterns, which must
be matched by one or more facts in the WM for the rule to become active. An
active rule is then eligible to be fired, executing the actions defined in the RHS,
which may either be logical actions on the WM or side effects. A pattern is a
sequence of constraints that a fact must satisfy in order to match it. Since facts
are objects in Drools, the first constraint is a class constraint and the following
are boolean expressions involving one or more object’s fields. The constraints of
a pattern are evaluated in chain, acting as a series of increasingly fine-grained
filters that progressively retain less and less objects until only the ones matching

1 http://www.jboss.org/drools

http://www.jboss.org/drools

272 S. Bragaglia et al.

declare Message @role(event) end
rule "CEP Rule Example "
when

$m: Message($s: sender , $r: receiver , content == "HELO")
not Message (sender == $r, receiver == $s,

content == "+ACK", this after[0,5s] $m)
then

log("Acknowledgement expected , not received in 5 seconds ");
end

Fig. 1. A simple Drools Fusion theory catching the violations of a simple protocol

the pattern are left. Such operation is optimized by the RETE algorithm, which
allows to share common sequences of constraints between rules.

The additional modules that Drools provides tackle specific needs such as
workflow management, rule authoring and planning: in particular, the module
dedicated to complex event processing (CEP) [13] is called Drools Fusion. In this
context, an event is “a significant state change in an observed system, taking place
at a specific point in time”. Drools Fusion allows to annotate fact classes with
metadata: the engine will then consider their instances as event payloads, man-
aging any related temporal information autonomously. Such information may be
drawn directly from the objects’ fields, or automatically added by the engine,
wrapping the instances using appropriate decorators. Drools Fusion adheres to
the well-established semantics of temporal intervals proposed by Allen [3]. The
engine is not only able to evaluate temporal constraints, but also to delay and
schedule activations, and to perform temporal truth maintenance by retracting
events irrelevant to the computation. To this aim, the engine has an explicit
notion of time maintained by a pluggable clock, which allows to determine the
events that fall in a given time interval. The provided default implementations,
pseudo-clock and real-time clock, can be used to control the flow of time during
simulations or to build online reactive systems.

As an example, consider the code snippet presented in Fig. 1, which shows how
Drools Fusion handles Message events to notify the violation of a simple protocol.
This protocol requires a server to send back an acknowledge notification within
5 seconds from the moment it receives an hand-shake request from a client. In
practice, each time a client sends a "HELO" message to a server and no "+ACK"
message is returned in time, a notification of the violation is logged.

4 The “expect” Extension to the Drools Language

In our vision, we would like to exploit a CEP engine to model and solve on-
line monitoring and conformance verification problems. This task would be dra-
matically simplified if the target system supports the concept of expected be-
haviour natively. To the best of our knowledge, however, no existing CEP engine
provides high-level primitives to handle expectations as discussed in Section 2.

Event Condition Expectation (ECE-) Rules 273

〈rhs content〉 ::= ‘then’, { 〈expectation block〉 }, { 〈java statement〉 };

〈expectation block〉 ::= 〈expectation list〉, { ‘or’, 〈expectation list〉 };
〈expectation list〉 ::= 〈expectation〉, { ‘and’, 〈expectation〉 };
〈expectation〉 ::= [〈id〉, ‘:’], ‘expect’, [‘not’ | [‘one’], 〈id〉, ‘:’], 〈pattern〉, 〈follow-up〉;
〈follow-up〉 ::= [‘on’, ‘fulfillment’, 〈fulfillment block〉], [‘on’, ‘violation’, 〈violation block〉];
〈fulfillment block〉 ::= ‘{’, { 〈repair〉 }, 〈rhs content〉, ‘}’;
〈violation block〉 ::= ‘{’, { 〈repair〉 }, 〈rhs content〉, ‘}’;

〈repair〉 ::= ‘repair’, 〈id〉, ‘;’;

Fig. 2. The ECE sub-grammar, in EBNF form

To this end, we have created an extension to Drools Fusion that enriches the
expressiveness of its language with ECE concepts. Such extension is in charge of
managing expectations and autonomously executing the proper actions in case
of fulfillment, violation or compensation, according to the policies encoded in
the rules. Thus the system is no more limited to the traditional Drools’ logical
operations (insert, retract, update) or free-form side effects, but includes the
explicit declaration of expectations.

In our proposed extension, expectations can be nested, so that complex norms
may be atomically expressed within a single rule. A nested (conditional) expec-
tation is an expectation generated as a consequence of a previous expectation’s
fulfillment or violation, and possibly it may depend on the facts or events which
triggered the parent expectation.

The ECE rules also automatically generate standard events which reify an
expectation and its life cycle, allowing the user to predicate on them using other
rules. Although not required in general – and indeed not even recommended
is some cases (such as for hard-time constrained CEP), the reification allows
the rules to target those concepts directly, possibly even combining them with
domain events. An organization that certifies the compliance of some domain’s
objects to a given regulation, for example, may want to keep track of the amount
of violations over the number of activations of a specific expectation, to determine
whether some norms need a clearer explanation. Although enabled by default,
this feature is actually optional and can be disabled, providing a more slender
but slightly less expressive tool.

4.1 The ECE Language

To support ECE-Rules, we have extended the standard Drools parser, allow-
ing the engine to recognize and process the new concepts. Normal rules are
handled as usual, while ECE statements are intercepted and redirected to a sep-
arate sub-parser and compiler for further interpretation and rewriting. Fig. 2,
in particular, contains the extension proposal for ECE-Rules to the Drools lan-
guage, expressed in EBNF syntax. This grammar shows how to change the con-
sequent of a Drools’ rule to include (possibly nested) complex formulas involving

274 S. Bragaglia et al.

rule "ECE-Rule Example "
when

$m: Message($s: sender , $r: receiver , content == "HELO")
then

$e1: expect one Message (sender == $r, receiver == $s,
content == "+ACK", this after[0, 10s] $m)

on fulfillment {
insert(new Message ($s, $r, "MAIL")); }

on violation {
$e2: expect Message (sender == $r, receiver == $s,

content == "+RDY", this after[0, 2m] $m)
on fulfillment {

repair $e1;
insert (new Message ($s, $r, "MAIL")); }

on violation {
insert (new Message ($s, $r, "STOP")); } }

end

Fig. 3. An example of an ECE-Rule

expectations. Any individual expectation has two optional blocks, namely a ful-
fillment and a violation block, where it is possible to generate new expectations
as well as applying consequences. Notice that the 〈rhs content〉 grammar rule
overrides the original one, adding the expectation block; 〈java statement〉, 〈id〉
and 〈pattern〉 are imported directly from the Drools grammar.

Moreover, it is possible to explicitly compensate any previously violated ex-
pectation. We have deliberately introduced this feature to allow the recovery of
a violation by means of a repair statement. This action can be executed as
a consequence either of a fulfillment or a violation of an expectation. The only
constraint is that the repaired expectation must be defined within the same rule.

To fully understand the scope of our proposal, let us consider the example
presented in Fig. 3, which shows the compensation of the violation of a simple
protocol, involving a single ECE-Rule. This theory uses the same Message class
introduced before (not present here for lack of space), but defines a sightly more
complex mail protocol2. The interaction is again started by a "HELO" message
$m, and a "+ACK" messege is expected in 10 seconds: such expectation is labeled
as $e1 . In case of success, the interaction continues with a "MAIL" from the client,
requesting the list of new mails to the mail server. In case of violation, we proceed
instead to the evaluation of the nested expectation: if busy for some reason, the
server may still issue a "+RDY" message within 2 minutes from $m. The rule
states that $e1 may be considered repaired on fulfillment of $e2 , meaning that
it is no more treated as a violation when validating the protocol. In case of a
second violation, the client simply closes the interaction with a "STOP" message.
Notice that the declaration of $e1 includes the keyword one, meaning that, for
each message matching $m, the fulfillment (violation) branch is only evaluated
once after the first "+ACK" message is (not) received in time.

2 In our toy example, any exchange of messages between the client and the mail server
(and vice-versa) is accomplished by the insertion of a proper instance of Message
into the WM.

Event Condition Expectation (ECE-) Rules 275

4.2 The Expectation Meta-Model

To allow the engine to process the grammar defined in section 4.1 and manage
the expectations and their life-cycle, we have defined a theory composed by a
set of general rules and a set of declared fact classes, whose instances can be
manipulated within the WM as appropriate.

Those rules translate any ECE statements into common rules and, optionally,
instances of the classes mentioned below, both decorating the starting theory.
These rules (not provided for lack of space) permit complex expectations to
be spanned over several rules, retaining conceptual dependencies and other re-
lations between expectations, and allow the natural triggering of expectations
within other expectations. The straightforward conversion of ECE statements
into instances of a few coded class types is often referred as “reification”: it is
not mandatory for the approach, but it allows Drools (that natively works on
objects) to declaratively predicate on them. Thus, despite being not the only
possible strategy to encode the knowledge, it is very simple and sound, and
grants additional expressiveness to the framework. This process is also transpar-
ent (the conversion is done autonomously) and optional (it can be disabled to
trade some expressiveness for a speedup).

Specifically, the Expectation is an abstraction where the (temporal) con-
straints to be satisfyed are held. The temporal constraints may refer either to
the past and the future and have a duration, autonomously handled using Drools
Fusion, that starts from the moment they are generated and lasts until the mo-
ment they are first fulfilled or violated. Expectations are also identified by a
Label whose purpose is to group together expectations that refer to the same
object tuple, since an Expectation can be generated several times, as differ-
ent object tuples Activate the rule at different times, in different Contexts. A
Context is usually the initial activation of an ECE-Rule or, in case of nested ex-
pectations, the activation of another parent expectation. When an Expectation
is generated, it is considered Pending until it is either Fulfilled by an ob-
ject matching the pattern defined by the expectation, Violated, or Closed. By
aggregating all the Expectations generated within the same Context, it is pos-
sible to define if the activation of an ECE-Rule has been a Success or a Failure
given the monitoring constraints. For more details on pending expectations and
possible outcomes of an expectation see the proper paragraphs in Section 4.3.
Eventually, violated Expectations may be Compensated by other events. Notice
that all the class types introduced here are considered by our system as instant
events with the only exception of Expectations whose duration equals their
life-time.

4.3 Rule Generation

In addition to the initial, user-provided theory, we preprocess the ECE-Rules
and rewrite each one into one or more traditional rules, thus allowing the use of
the standard Drools Fusion engine to execute them. Consider an ECE-Rule R
such as the one in Fig. 3, having a standard Drools’ LHS and an extended RHS

276 S. Bragaglia et al.

with nested expectations. After parsing the rule, we obtain an Abstract Syntax
Tree (AST) with a regular and recursive structure, derived from the grammar in
Fig. 2. Any node i of the AST obtained from an expectation block’s expression is
the child of a pattern P i and the ancestor of an and/or subtree whose leafes are
n(i) ≥ 0 expectations Ei

j:1..n(i). Each leaf expectation Ei
j defines an expectation

pattern P i
j and up to two expectation blocks, corresponding to the optional

fulfillment and violation branches. Moreover, an expectation block also has a
sequence of actions Ai. According to the natural semantics of the language,
actions Ai should be executed only when the pattern P i has been matched.
Notice that, in case of nested expectations, any pattern associated to a more
external block must have been likewise already matched. In addition, when and
only when P i has been matched, any expectation Ei

j should be generated so
that, according to the presence or absence of a fact/event matching its pattern
P i

j , that expectation Ei
j can be considered pending until fulfilled or violated.

For every ECE-Rule, the AST thus obtained is visited several times, to create
various derived rules which manage the expectations’ life cycle.

(Re)action rules. The goal of these derived rules is the execution of the actions
Ai when the appropriate conditions apply. One rule is created when visiting the
AST for each action block Ai, starting from its root node and using a recursively
built LHS Li, after being initialized with the LHS of the original ECE-Rule R.
The first rule is simply when L0 then A0 and corresponds to the rule R with-
out the extended expectation block. The action rules are derived only from the
simple expectations, so the visitor ignores any and/or node to process only the
expectations Ei

j . When an expectation node with children on fulfill or on
violation branches is encountered, the local positive and negative LHS, Li+

j

and Li−
j , are respectively built from the current LHS Li and the local expectation

pattern P i
j . In particular, the pattern is added in positive form when visiting on

fulfill children branches, and in negative form, using the negated existential
quantifier not, when visiting on violation branches, i.e. Li+

j = Li ∪ Pj and
Li−

j = Li ∪ ¬Pj . The resulting rules, up to two for every expectation, are tra-
ditional Drools/Fusion rules with no notion of expectation or any other related
fact. While generated using a more declarative language, they correspond to the
rules which would have been written using a naive, hard-coded approach. The
main advantage is that they do not incur in any overhead from the meta-level
framework, but still capture the behaviour defined by the business author.

Fulfillment/Violation rules. In addition to executing the business logic, we
also want to provide an explicit and automatic management of the expectations’
lifecycle, as motivated in paragraph 2.3. To this end, we again visit the AST
and generate up to three different rules. The first rule, created visiting a pattern
node Pi is used to generate the actual Expectation in the working memory.
The premise of this rule coincides with the local LHS Li created recursively
during the visit to generate the business rules, while the consequence generates
an Expectation instance for each expectation node Ei

j defined in the expectation
block of Pi. At runtime, when the premise Li is matched by a tuple T , one or more

Event Condition Expectation (ECE-) Rules 277

expectations will be inserted within the working memory: their context will be
associated to the initial activation of the ECE-Rule which triggered the sequence
of expectations, but T will be the actual trigger tuple for all the expectations.
As soon as an Expectation is inserted in the working memory, a Pending fact
is also generated to trace the fact that the expectation has not been resolved.

In order to close an expectation Ei
j , two additional rules are written. Since the

expectations are defined in terms of a pattern P i
j , which needs to be captured

to determine the expectation outcome, the LHS of these rules is simply derived
from L+

j and L−
j , adding a pattern matching the appropriate unresolved expec-

tation (i.e. with an existing joint Pending fact). The join is performed on the
expectation label (known at compile time), the context, and using the bindings
on the patterns in Li to recreate the parent tuple which generated the expecta-
tion and use it as a constraint. Notice that, since the LHS of these conformance
rules extends the LHS of a corresponding business rule, the RETE will even-
tually merge them again, eliminating any redundancy introduced at this level.
These latter rules are then simply used to instantiate the Fulfillment and, re-
spectively, Violation events, collecting the required information from the rule
activation records, and inserting them in the working memory.

With this pattern-based approach, it is possible that more than one object’s
pattern P i

j matches an expectation Ei
j and fulfills it. In fact, expectations remain

pending until explicitly retracted or closured (if no temporal constraint is im-
posed). On the other hand, the same fact/event can match different expectations
at the same time. If the user wants an expectation to be fulfilled only once (using
the expect one syntax), the fulfillment rule will be slightly modified to retract
the Pending fact associated to the expectation, preventing further fulfillments.

Repair rules. ECE-Rules support the “repairing” of violated expectations: for
every repair statement, a rule is created with the same LHS as its enclosing
expectation block. This rule inserts a Compensation fact which is joined to
its matching Violation by a general rule: the Violation, then, is marked as
compensated.

Success/Failure rules. While fulfillments and violations are handled at the
level of each single expectation, we also provide an overall evaluation of the
system behaviour in the context of each activation of an ECE-Rule r, as dis-
cussed in paragraph 2.3. We provide support for “global” conformance at the
level of activations, by expressing and evaluating possibly complex and/or for-
mulas involving expectations. In particular, we define the notion of Success and
Failure from the Fulfillment and Violation of individual expectations. For
complex expectations, the definition is as follows:

Succ(E1 ∧ E2) = Succ(E1) ∧ Succ(E2) Succ(E1 ∨ E2) = Succ(E1) ∨ Succ(E2)

Fail(E1 ∧ E2) = Fail(E1) ∨ Fail(E2) Fail(E1 ∨ E2) = Fail(E1) ∧ Fail(E2)

When defining success and failure for individual expectations, instead, one must
consider any nested sub-expectation, if present, so Succ(E) (resp. Fail(E)) is not
trivially Fulf(E) (resp. V iol(E)). Expectations defined in on fulfill (resp. on

278 S. Bragaglia et al.

violation) blocks will be generated only when the parent expectation is fulfilled
(resp. violated), but they must be taken in consideration when present. Notice
that, since violations can be repaired, even expectations generated by violations
are still relevant for the final evaluation.

The Success of an Expectation E is then determined by its fulfillment and
either (i) the success of any on fulfill expectation block (if E was fulfilled)
or (ii) the success of any on violation expectation block (if E was violated
and then repaired). Likewise, the failure of a parent expectation may be due
to its violation, the failure of its fulfillment block or the failure of its violation
block (assuming it was violated and then repaired). Notice also that a repaired
violation is equivalent to a fulfillment during the evaluation of the overall suc-
cess/failure, while a non-repaired violation corresponds to the negated form of
a fulfillment. Those definitions, then, can be further simplified and expressed as
follows by adopting an compact EBNF-like notation:

Succ(E) = Fulf(E)
[
∧

(
(Fulf(E) ∧ Succ(EF))

∣∣∣(V iol�(E) ∧ Fulf(EV))
)]

= Fulf(E)
[
∧

(
Succ(EF)

∣∣∣Fulf(EV)
)]

Fail(E) = V iol(E)
[
∨

(
(Fulf(E) ∧ Fail(EF))

∣∣∣(V iol�(E) ∧ Fail(EV))
)]

= V iol(E)
[
∨

(
V iol(EF)

∣∣∣Fail(EV)
)]

Such definitions can be applied directly to the AST tree, generating two confor-
mance rules for each ECE-Rule R that lead to either a Success or a Failure
events for each activation (or nothing if some expectations are still pending).
While not global per se, such events ease the creation of conformance rules by
providing more complex events than fulfillments and violations.

Closure. As outlined in Section 2.2, we regard the expectations as closed toward
the past and open toward the future. This choice may lead to some issues when
dealing with the expectations that are still pending. The open expectations, in
fact, are not caught –and hence not reported– by the monitoring framework (i.e.
when halting the system). The procedure of identification and notification of the
pending expectations with respect to the open time horizon is called “closure”
and it is directly managed by our implementation within the general theory. To
this aim, a dedicated special fact is inserted into the WM, making a rule to react
by joining that fact with any open expectation. As a result, the expectation
is closed (its Closed field is changed) by flagging a Violation (for positive
expectations) or a Fulfillment (for negative ones). Notice that the clipping of
the pending expectations forces the generation of a Success/Failure event. Our
implementation also supports a finer “targeted closure”: only open expectations
whose label matches a specific value are closed.

5 A Use Case in the Medical Field

The Knowledge Management Research (KMR) team at Naval Health Research
Center, San Diego has been particularly interested in developing the functional

Event Condition Expectation (ECE-) Rules 279

rule "Risk factor evaluation"
when

$pat : Patient (...) $prov : Provider (...)
// model result : risk factor and confidence degree
$risk : HasRisk ($pat , $disease , $factor , $conf)

then
expect HasRisk (this == $risk , confidence > C_THOLD)
on fulfillment { // prediction is reliable

expect HasRisk (this == $risk , factor < R_THOLD)
on fulfillment { log($pat + " safe"); }
on violation { /* manage high risk patient */ } }

on violation { //request info from patient
insert(new Message ($prov , $pat , "quest")); }

end
rule "Fill Questionnaire Request Protocol "
when

$m : Message ($prov , $pat , "quest")
then

$e : expect Message ($pat , $prov , $answers ; this after[0,T] $m)
on fulfillment { insert($answers); }
on violation {

// T2 > T, giving additional time to $pat
expect Message ($pat , $prov , $answers ; this after[0,T2] $m)

on fulfillment { repair $e; insert($answers); }
on violation { alert(...); }

insert (new SMS($prov , $pat , "quest")); }
end

Fig. 4. PTSD Risk Factor (abstract) Use Case

ontology and semantics required to define “operational constraints” to the execu-
tion of a rule. Operational constraints are supervisory (meta) rules that establish
expectations for the clinical context a given rule was designed for – they help
ensure that the resultant events or behaviors are appropriate for the setting. For
example, they might modulate the recommendation for a blood transfusion in a
trauma case when the patient “context” is that of a Jehovah’s Witness.

Separating the logic of a discreet medical decision from that used by opera-
tional rules used to manage clinical context has important implications. Decision
support rules should be authored with a focused clinical perspective and that the
final result is dependent on other clearly defined orthogonal perspectives that
the knowledge management system must orchestrate. It implies that rule exe-
cution is not necessarily an all-or-none event, but rather a cascade of constraint
evaluations that in aggregate ensure the system’s end behavior is individualized
and nuanced. This separation of concerns helps clarify what is evidence-based
best clinical practice and what are non-medical restrictions imposed on the de-
livery of that care by the realities of the real-world and the individual patient.
As an example use case, consider the following scenario. After returning from
a yearlong deployment, a United States Marine is seen by his physician. The
doctor’s Clinical Decision Support System (CDSS) collects all relevant infor-
mation about him and feeds it into a Post Traumatic Stress Disorder (PTSD)
predictive model that estimates he has a 35% risk of developing PTSD within
the next three years. Recognizing, however, that several important historical
facts about his past medical history are missing, the patient is asked to take
an online survey at home. When he forgets to complete the survey, the system

280 S. Bragaglia et al.

automatically sends a reminder SMS text prompting the Marine to complete the
requested task. When he does so, the system then automatically recalculates the
risk score. This time the risk is 80% and the confidence acceptably narrow, so
an alert is instantly generated.

Fig. 4 represents an abstract (due to space limitations) version of the rules
which could be written to model the desired outcome for the use case. The
first rule manages the results of the PTSD predictive model evaluation (see
[18]), first checking that confidence in the output result is sufficient and then
validating that the risk assessment itself is low enough for the patient not to
require further evaluation. If either expectation is violated, appropriate actions
are taken; either a new workflow to solicit additional information from the patient
is started, and/or the patient is scheduled for additional testing. Notice that the
same policies could have been written using standard rules, but the proposed
syntax makes the definition more compact (1 rule instead of 4) and, most of all,
ensures that the results of the constraint checks are recorded formally. Likewise,
the second rule monitors the interaction between the patient and the provider,
using the same pattern shown in section 4.1.

6 Conclusions

We have extended a production rule language to support the concept of expec-
tations, the fulfillment or violation of which result in different consequences or
behaviors. These syntactical additions enable a rule author to easily define and
apply conformance criteria to the execution of the default rule logic. Rule ex-
pectations, if need be, can be cleanly deactivated and meta-reasoning disabled,
thereby restoring more traditional rule behavior. The language extensions have
been integrated into our reference run-time implementation, Drools, where it
can exploits the engine’s native complex event processing capabilities to better
support temporal reasoning. Our next objective will be to research “fuzzy ex-
pectations” introducing uncertainty to the absolute fulfillment or violation of a
constraint. Expectations that cope with the ambiguities of the real-world promise
to provide important support for graded degrees of conformance testing.

Acknowledgements. We wish to thank the U.S. Navy KMR-II Project, the
Health Sciences and Technologies - Interdepartmental Center for Industrial Re-
search (HST-ICIR) - University of Bologna and the DEIS DEPICT Project which
co-sponsored this research. The opinions of the authors do not necessarily state
or reflect those of their respective employers, the United States Navy, the De-
partment of Defense, or the United States Government, and shall not be used
for advertising or product endorsement purposes.

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable
agent interaction in abductive logic programming: The SCIFF framework. ACM
Trans. Comput. Logic 9(4), 1–43 (2008)

Event Condition Expectation (ECE-) Rules 281

2. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P., Sartor, G.: Mapping
deontic operators to abductive expectations. CMOT 12(2-3), 205–225 (2006)

3. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun.
ACM 26(11), 832–843 (1983)

4. Damiani, G., Pinnarelli, L., Colosimo, S., Almiento, R., Sicuro, L., Galasso, R.,
Sommella, L., Ricciardi, W.: The effectiveness of computerized clinical guidelines
in the process of care: a systematic review. BMC-HSR 10(1), 2 (2010),
http://www.biomedcentral.com/1472-6963/10/2

5. Desai, N., Chopra, A.K., Singh, M.P.: Representing and reasoning about commit-
ments in business processes. In: AAAI, pp. 1328–1333. AAAI Press (2007)

6. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match prob-
lem. Artif. Intell. 19(1), 17–37 (1982)

7. Fornara, N., Colombetti, M.: A commitment-based approach to agent communica-
tion. Applied Artificial Intelligence 18(9-10), 853–866 (2004)

8. Governatori, G.: Representing business contracts in ruleml. Int. J. Cooperative Inf.
Syst. 14(2-3), 181–216 (2005)

9. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising Deadlines in
Temporal Modal Defeasible Logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007.
LNCS (LNAI), vol. 4830, pp. 486–496. Springer, Heidelberg (2007)

10. Governatori, G., Rotolo, A.: Norm Compliance in Business Process Modeling. In:
Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp.
194–209. Springer, Heidelberg (2010)

11. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in de-
feasible logic. In: ICAIL, pp. 25–34. ACM (2005)

12. JBoss: JBoss Drools 5.2 - Business Logic Integration Platform (2011),
www.jboss.org/drools

13. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman, Amsterdam (2002)

14. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographiess. TWEB 4(1)
(2010)

15. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

16. Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

17. Singh, M.P., Chopra, A.K., Desai, N.: Commitment-based service-oriented archi-
tecture. IEEE Computer 42(11), 72–79 (2009)

18. Sottara, D., Mello, P., Sartori, C., Fry, E.: Enhancing a production rule engine
with predictive models using pmml. In: KDD 2011 (to appear, 2011)

19. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social commitments in time: Sat-
isfied or compensated. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd,
J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 228–243. Springer, Heidelberg (2010)

20. Torroni, P., Chesani, F., Yolum, P., Gavanelli, M., Singh, M.P., Lamma, E., Alberti,
M., Mello, P.: Modelling Interactions via Commitments and Expectations. IGI
Global (2009)

21. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying
event calculus planning using commitments. In: AAMAS, pp. 527–534. ACM (2002)

http://www.biomedcentral.com/1472-6963/10/2
www.jboss.org/drools

Designing for Compliance: Norms and Goals

Guido Governatori2, Francesco Olivieri2,1,3,
Simone Scannapieco2,1,3, and Matteo Cristani1

1 Department of Computer Science, University of Verona, Italy
2 NICTA, Queensland Research Laboratory, Australia

3 Institute for Integrated and Intelligent Systems, Griffith University, Australia

Abstract. We address the problem of define a modal defeasible theory able to
capture intuitions as “being compliant” with a set of norms and a set of goals.
We will treat norms and goals as modalised literals. From the definition of this
new kind of logic, two main issues arises whether a theory is compliant or not:
(a) how to revise a non compliant theory to obtain a new compliant one; (b) in
case the theory is compliant how to create an entirely new process starting from
the theory, i.e., from the fully declarative description of the specifications for a
process and the norms.

1 Introduction

Business process modelling technology (BPM) emerged as a strong paradigm for the
modelling, analysis, improvement, and automation of the day-to-day activities of organ-
isations. The field is now a mature research field with a widespread adoption in industry.
BPM covers a wide variety of methodologies; from graphical modelling languages to
ease the understanding of the stakeholders (e.g., EPC, BPMN) to fully precise mathe-
matical formalisms (e.g., Petri Nets, π-calculus) for formal analysis of the properties
and automated verification of the processes.

Most of the existing approaches in the field are procedural: they point out step by step
what to do in many different scenarios. If from one side this procedural nature is their
strength, it is also their main drawback. In fact, they suffer two main limitations: such
a paradigm is not suitable to capture flexible business processes (BPs), i.e., processes
whose internal structure and relationships among the various tasks is dynamic and with
a large degree of variations. Secondly, it is hard to obtain precise information about the
order of the actions to be performed from the business requirements.

To obviate these problems, the trend of modelling processes by declarative specifi-
cations gained momentum. Instead of specifying a process step by step, the focus in
this approach is on defining relationships among the tasks to be executed to achieve
a goal. Examples are temporal relationships between tasks (e.g., before, after), co-
occurrence/absence, dependency and so on. For a seminal work in this area see [1].
Thus, in this paradigm there is a switch from how (procedural) to what (declarative).

Another crucial aspect in the recent investigation on BPM is on regulatory compli-
ance, again an area where the focus is on what a BP does. Compliance is the study of
the norm regulating the organisational environment. Norms from a regulative source
represent the perfect example of declarative specifications [2], and the related topic of

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 282–297, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Designing for Compliance: Norms and Goals 283

norm compliance has consequently become a crucial issue in BP design and verifica-
tion. Nowadays, the study of compliance focused only on norms, defining formalisms
to express them, and conditions under which a system described with such formalisms
can be considered compliant with the norms. Thus, to the best of our knowledge, there
is a lack of formalisms describing systems to be compliant with a set of goals, even if
this topic appears to be of main interest1.

The issue is to extend the existing formalisms to the new concept of goal compliance:
the motivation is that, given a system, it is easy to give criteria to be compliant with a
set of norms but such that they do not allow to get the final goals of the enterprise.

Let us consider the following example. We have to manage the BP of a library. A
norm could state that each book must be returned to the library before a fixed deadline.
One of the (non-plausible) policy to be compliant with this (plausible) norm is not to
lend books anymore (in clear contrast with the final aim of a library).

The aim of this work is to formally define a framework that integrates norm compli-
ance with goal compliance, in such a way that declarative specifications of a BP could
satisfy at the same time the goals of the organisation, and the norms governing the busi-
ness. The contribution of the paper is twofold: First of all, we explicitly introduce the
notion of goal compliance. Additionally, we work with fully declarative specifications
of the capabilities of an organisation, its goals and the norms regulating the underly-
ing business. Accordingly, we have to depart from the algorithms devised to determine
whether a procedural BP is compliant, and we have to introduce the notion of violation.
Given that we model the various notions in modal defeasible logic, we show how to
extend the proof mechanisms of the logic to identify non-compliant situations.

The layout of the paper is as follows. In Section 2 we formalise the framework
adopted, based on a particular type of Modal Defeasible Logic. Such a formalism is
the tool exploited in Section 3 to integrate the concepts of norm and goal in a business
process. The main core of this work is Section 4 where we present theoretical prop-
erties and definitions of norm and goal compliance. In there, we also outline possible
future research developments.

2 Logics

In this section we are going to introduce the logic we use to model processes, their or-
ganisational goals, and the norms governing them. The logic is an extension of Defeasi-
ble Logic (DL) [3]. In particular, it extends and combines the deontic DL of violations
[4] for modelling contracts and then used for regulatory compliance of processes [5,6],
and the defeasible BIO (Belief-Intention-Obligation) logic for modelling agents [7].

2.1 Language of Modal Defeasible Logic

The main aim of this subsection is to build an inference process to compute factual
knowledge (through belief rules), goals and obligations from existing facts, primitive

1 In here we follow the classical definitions of norm and goal as give in the literature for agents
where a norm is an external constraint while a goal is a internal one.

284 G. Governatori et al.

goals and unconditional obligations. As a first step, we build a defeasible theory whose
basic elements are (1) a set of facts or indisputable statements, (2) three sets of rules:
for beliefs, goals, and obligations, (3) a superiority relation to determine the relative
strength of conflicting rules. Thus, a defeasible theory T is a structure (F,R,>), where
F is the set of facts, R is the set of rules, and > is a binary relation over R.

Belief rules are used to relate the factual knowledge of an enterprise, composed by

– the set of actions (or tasks) an organisation can do;
– the pre-conditions under which tasks can be executed;
– the effects derived by the execution of these tasks (also called post-conditions).

Specifically, belief rules describe the logical relationship between pre-conditions and
tasks, tasks and their effects, relationships between tasks, relationships between states.
As such, provability for beliefs does not generate modalised literals. Obligation rules
determine when and which obligations are in force. The conclusions generated by obli-
gation rules are modalised with obligation. Finally, goal rules establish the goals of
an organisation depending on the particular context. Accordingly, similar to obligation
rules, the conclusions of this type of rules take the goal modality.

Following ideas given in [8], rules can gain more expressiveness when a preference
operator ! is used, whose meaning will be clearer in the remainder. Intuitively, an
expression like A!B means that if A is possible, then A is the first choice, and B is the
second one; if ¬A holds, then the first choice is not attainable and B is the actual choice.

We now introduce the language adopted in the rest of the paper to make precise the
above mentioned ideas. Let PROP be a set of propositional atoms, MOD = {B,G,O}
the set of modal operators, Lab be a set of arbitrary labels, and Act = {t1, . . . ,tn} ⊆
PROP be a set of basic actions (or tasks). The set Lit = PROP∪{¬p|p∈ PROP} denotes
the set of literals. The complementary of a literal q is denoted by ∼q; if q is a positive
literal p, then ∼q is ¬p, and if q is a negative literal ¬p then ∼q is p. The set of
modal literals is ModLit = {Xl,¬Xl|l ∈Lit,X ∈{G,O}}2. We introduce two preference
operators, ⊗ for obligations and ⊕ for goals, and we will use ! when we refer to one
of them generically. These operators are used to build chains of preferences, called
!-expressions. The formation rules for !-expressions are: (a) every literal is an !-
expression, (b) if A is an !-expression and b is a literal then A!b is an !-expression.
In addition we stipulate that ⊗ and ⊕ obey the following properties: (1) a! (b! c) =
(a! b)! c (associativity); (2)

⊙n
i=1 ai = (

⊙k−1
i=1 ai)! (

⊙n
i=k+1 ai) where exists j such

that a j = ak and j < k (duplication and contraction on the right). Such !-expressions
can be given both by the process designer, and can be obtained through construction
rules based on the particular logic adopted REF.

We adopt the classical definitions of strict rules, defeasible rules, and defeaters in
DL [9]. However, for the sake of simplicity, and to better focus on the non-monotonic
aspects that DL offers, in the remainder we use only defeasible rules. In addition we
have to take the modal operators into account. A defeasible rule is an expression r :
a1, . . . ,an⇒X c, where

2 For the belief modal operator B, we assume that the “X” modal operator is the empty modal
operator, thus essentially a modal literal Bl is equivalent to the unmodalised literal l.

Designing for Compliance: Norms and Goals 285

1. r ∈ Lab is the name of the rule;
2. a1, . . . ,an, the antecedent of the rule, is the set of the premises of the rule (alter-

natively, it can be understood as the conjunction of all the literals in it). Each ai is
either a literal or a modal literal;

3. X ∈MOD represents the type of modality introduced by the rule itself (from now
on, we omit the subscript B in rules for beliefs, i.e., a1, . . . ,an⇒ c will be used as
a shortcut for a1, . . . ,an⇒B c);

4. C is the consequent (or head) of the rule, which is an⊗-expression involving literals
in rules for obligations, an ⊕-expression involving literals in rules for goals, and a
single literal in rules for beliefs3.

Several obvious abbreviations on sets of rules can be used. For example, RX (RX [q]) de-
notes all rules introducing modality X (with consequent q), and R[q] =

⋃
X∈MOD RX [q].

With R[ci = q] we denote the set of rules whose head is ⊗n
j=1c j for obligation rules and

⊕n
j=1c j for goal rules where for some i, 1≤ i≤ n, ci = q.
The meaning of !-expressions as consequent of rules is the following:

For obligations, a rule a1, . . . ,an ⇒O o1 ⊗ o2 ⊗ . . . ⊗ ol means that if conditions
a1, . . . ,an hold, then the obligation in force is o1, but if ¬o1 is the case, then the new
obligation in force is o2, and so on. Then, obeying obligation ol represents the last
chance to obtain a still acceptable situation with respect to the regulative system in
force, but it is not possible to recover from its violation. In deontic logic, this type of
expressions, namely the activation of certain obligations in case of other obligations
being violated, is referred to as contrary-to-duty (abbreviated CTD) obligations, or
reparation obligations [2].

For goals, a rule a1, . . . ,an ⇒G g1⊕ g2⊕ . . .⊕ gm means that if conditions a1, . . . ,an

hold, then we have to reach the goal g1, but if it is not possible, then the goal to
achieve is g2, and so on. A chain for goals can be seen as a mean to express a pref-
erential list of organisational objectives such that every goal is more restrictive than
all other successive goals in the chain. As such, gm is the last acceptable outcome
we expect to obtain from the business process with respect to this particular chain.

The terminology defined so far is mostly taken from [7], where an extension of DL
with modal operators is introduced to differentiate modal and factual rules. However,
labelling the rules of DL produces nothing more but a simple treatment of the modali-
ties, thus two interaction strategies between modal operators are analysed:

1. rule conversions: using rules for a modality X as they were for another modal-
ity Y , i.e., the possibility to convert one type of conclusions into a different one.
For example, if ‘a car industry has the purpose of assembling perfectly working
cars’ and ‘it is known that in every working car there is a working engine’, then ‘a

3 It is worth noting that modalised literals can occur only in the antecedent of rules: the reason
is that the rules are used to derive modalised conclusions and we do not conceptually need
to iterate modalities. The motivation of a single literal as a consequent for belief rules is dic-
tated by the intended reading of the belief rules, where these rules are used to describe the
environment.

286 G. Governatori et al.

car industry has also the purpose of assembling working engines in every car pro-
duced’. Formally, we define a binary relation Convert ⊆ MOD×MOD such that
Convert(X ,Y) means ‘a rule of type X can be used also to produce conclusions of
type Y ’. This intuitively corresponds to the following logical schema:

Ya1, . . . ,Yan a1, . . . ,an⇒X b
Y b

Convert(X ,Y)

2. conflict-detection and conflict-resolution: it is crucial to identify criteria for de-
tecting and solving conflicts between different modalities. For example, if ‘a tyre
industry wants to produce cheaper tyres with a pollutant emission greater than pe’,
and ‘by law the pollutant emission must be lower than threshold pe’, then the
tyre industry can not economise the production if she wants to obey the law. For-
mally, we define an asymmetric binary relation Conflict⊆MOD×MOD such that
Conflict(X ,Y) means ‘rule types X and Y are in conflict and modality X prevails
over Y ’. Consider the following theory:

a⇒X c
b⇒Y ¬c

If both a and b are derivable and Conflict(X ,Y) holds, then we derive Xc.

As beliefs represent the factual knowledge of the organisation, belief rules can be used
to derive both obligations and goals. Thus, the following formulation of Convert arises:

Convert = {(B,G),(B,O)}

Furthermore, as our main purpose is to build a new process which is compliant with
a set of given norms, it seems reasonable that rules for obligations take precedence
over rules for goals (i.e., an organisation tries to achieve its purposes not violating the
norms). Hence, the following definition of Conflict (reflecting the behaviour of a social
agent as described in [7]) will be used in our analysis:

Conflict = {(B,O),(O,G),(B,G)}

The construction of the superiority relation combines two components: the first >sm

considers pairs of rules of the same modality. This component is usually given by the
designer of the theory and capture the meaning of the single rules, and thus encodes
the domain knowledge of the designer of the theory. The second component, >Conflict,
is obtained from the rules in a theory and depends on the meaning of the modalities.
Formally, the superiority relation > is such that >=>sm ∪>Conflict, where

– >sm⊆RX×RX such that if r > s, then if r ∈RX [p] then s∈RX [∼p] and > is acyclic;
– >Conflict is such that ∀r ∈ RX [p],∀s ∈ RY [∼p], if Conflict(X ,Y), then r >Conflict s.

2.2 Inference in Modal Defeasible Logic

Proofs in a modal defeasible theory T are linear derivations, i.e., sequences of tagged
literals of the form +∂X q and −∂X q. Given X ∈MOD, +∂X q means that q is defeasi-
bly provable in T with modality X , and −∂X q means that q is defeasibly refuted with

Designing for Compliance: Norms and Goals 287

modality X . Similarly,±∂q will be used as a shortcut of±∂Bq. The initial part of length
i of a proof P is denoted by P(1..i).

We now define when a rule is applicable or discarded. A rule for a belief is applicable
if all the literals in the antecedent of the rule are provable with the appropriate modalities,
while the rule is discarded if at least one of the literals in the antecedent is not provable.
For the other types of rules we have to take the relation Convert into account.

Definition 1. Let Convert be the conversion relation between elements in MOD.

– A rule r in RB is applicable iff ∀a ∈ A(r), +∂a ∈ P(1..n) and ∀Xa ∈ A(r), where
X ∈MOD, +∂X a ∈ P(1..n).

– A rule r ∈ R[ci = q] is applicable in the condition for ±∂X iff
1. r ∈ RX , ∀a ∈ A(r), +∂a ∈ P(1..n) and ∀Ya ∈ A(r) +∂Y a ∈ P(1..n), or
2. r ∈ RY , Convert(Y,X), A(r) �= /0, and ∀a ∈ A(r), +∂X a ∈ P(1..n).

– A rule r is discarded if we prove either −∂a or −∂X a for some a ∈ A(r).

The proof conditions for ±∂X are thus as follows:

+∂X : If P(n + 1) = +∂X q then
(1) ∃r ∈ R[ci = q] such that r is applicable, and ∀i′ < i, −∂ci′ ∈ P(1..n); and
(2) ∀s ∈ R[c j =∼q], either s is discarded, or ∃ j′ < j such that +∂X c j′ ∈ P(1..n), or

(2.1) ∃t ∈ R[ck = q] such that t is applicable and
∀k′ < k, −∂ck′ ∈ P(1..n) and t > s

−∂X : If P(n + 1) =−∂X q then
(1) ∀r ∈ R[ci = q], either r is discarded or ∃i′ < i such that +∂ci′ ∈ P(1..n), or
(2) ∃s ∈ R[c j =∼q], such that s is applicable and ∀ j′ < j, −∂X c j′ ∈ P(1..n) and

(2.1) ∀t ∈ R[ck = q] either t is discarded, or
∃k′ < k such that +∂ck′ ∈ P(1..n) or t �> s

Notice that the condition of provability of a literal q in a chain for obligations (or goals)
implies that all antecedents of the rule are provable in the theory, and that we have
proved that every element p prior to q in the chain is not defeasibly proved (i.e., we have
−∂ p). This means that the theory (process) fails to fulfil an obligation or achieving the
goal corresponding to p. Given an obligation or goal rule

a1, . . . ,am⇒X c1!·· ·! cn

if the rule is applicable, then the obligation (and possible ways to recover from its
violation) is in force (for an obligation rule) and that an organisation commits to a series
of progressively less stringent alternative goals (for a goal rule). In both interpretations
cn is the last chance to be compliant with the rule. In case of obligation, cn is the last
thing we can obey to to result in a situation that is still deemed as legal (though not an
ideal situation); in case of a goal, cm is the least of the acceptable outcomes of a process.

We are going to formally capture this intuition. To this end we introduce the literal
⊥ whose interpretation is a non-compliant situation, and at the same time we provide
proof conditions to (defeasibly) derive it. Thus, to derive a non-compliant situation
(+∂⊥) there is an applicable rule such that all the elements of the head are violated (for
obligations) or not achieved (for goals). Conversely, to be compliant (−∂⊥) for every
applicable rule, at least one obligation has been complied with, or goal achieved.

288 G. Governatori et al.

More formally, for X ∈ {O,G}:

+∂X⊥: If P(n + 1) = +∂X⊥ then
(1) ∃r ∈ R such that r is applicable, and
(2) ∀ci ∈C(r) − ∂ci ∈ P(1..n).

−∂X⊥: If P(n + 1) =−∂X⊥ then
(1) ∀r ∈ R either r is discarded or
(2) ∃ci ∈C(r) such that if −∂c j ∈ P(1..n) for ∀ j ≤ i, then +∂ci ∈ P(1..n).

3 Norm and Goal Compliance

Informally, a business process is a collection of related activities (or tasks) to be per-
formed to achieve one or more organisational goals. Many years of thorough analysis
in the field of BPM led to the definition of several techniques apt to model and rea-
son about BPs, from the early stages like graphical modelling (e.g., BPMN) up to the
definition of running process instances starting from graphical models (e.g., BPEL).

In fact, the classical definition of BP as reported above does not take into account
many factors that deeply affect the phase of process definition and maintenance. For ex-
ample, when an organisation is seen as an entity embedded in an environment regulated
by norms, the concept of compliance comes into play. In this scenario, an organisation
has to take care both of the achievement of the goals it aims at (goal compliance), and
the norms in force in the environment (norm compliance).

The research field resulting from the interaction of BPM approach with legal reason-
ing, i.e. business process compliance, addresses all problems regarding the alignment
of the formal specifications of a (set of) BP(s), and the formal specifications of a set
of norms governing the surrounding environment. Most of the research in this field re-
gards the analysis of conditions and methodologies to check if a given (set of) BP(s) is
compliant with a set of given norms. An extensive survey about the topic is given in [2],
where the authors define a framework to suitably represent (1) BPs (through process
graphs, e.g., in BPMN), (2) norms (using Formal Contract Logic, shortly FCL, a com-
bination of classical DL [9] and a deontic logic of violations), and (3) the concept of
norm compliance. Without entering too much into details, BP models are extended with
annotated tasks, where annotations specifies: (1) the artefacts or effects of executing a
task, and (2) the rules describing the norms relevant for the process.

The main result given in this work is the definition of an algorithm that:

1. traverses the graph describing the BP and identifies the sets of effects (sets of liter-
als) for all the tasks (nodes) and propagates the effects in the process according to
the execution semantics specified (token-passing mechanism as in Petri Nets [10]).

2. for each task, uses the set of effects for that particular task to determine the nor-
mative positions triggered by the execution of the task. Thus, effects of the task are
used as a set of facts, and the conclusions of the defeasible theory resulting from
the effects and the FCL rules annotating the task are computed. In the same way ef-
fects are accumulated, the algorithm accumulates (undischarged) obligations from
one task in the process to the task following it in the process.

Designing for Compliance: Norms and Goals 289

3. for each task, compares the effects of the tasks and the obligations accumulated
up to the task. If an obligation is fulfilled by a task, the algorithm discharges the
obligation, otherwise if the obligation is violated, a violation is signalled. Finally,
if an obligation is not fulfilled nor violated, the obligation is kept in the stack of
obligations and propagated to the successive tasks.

In this framework, the concept of goal compliance is not mentioned, but it can be triv-
ially treated: BPs are given as an input of the compliance checking phase; as such, it
seems reasonable to assume that they already achieve the goals they were built for.

Based on the same ideas about conditions a system must satisfy to be compliant with
a set of norms, we are now ready to give an informal definition about what we intend for
a process to be goal compliant. Roughly speaking, given conditions describing states of
the environment we act in, we are able to perform some actions which lead us in a state
of the world where all the goals we aim for are achieved. For example, if we want to
go to the airport and not to be hungry, the actions of catching the train from our place
to the airport, and stopping in a fast food to buy an hamburger, result in a state of the
world where all our desires are fulfilled.

According to the motivations proposed in Subsection 2.1, we take in consideration
norms compensating other norms, we use the same intuition also for goals: we will con-
sider goals ‘compensating’ other goals, i.e., a system which fails to achieve a primary
goal A, but succeeds in reaching goal B such that B is less preferred than A but still
acceptable, is a system that reaches a desirable state of the world.

In other terms, where contrary-to-duty chains were meant to be norms repairing the
failure of the system to be adherent to previous norms, ‘contrary-to-duty chains’ for
goals can be seen as preference chains [11,12]. Let us assume to have the CTD of goals
⇒G A⊕B. Its meaning is that we would prefer A but, if A is not the case, then our second
preference is for B and, if also B is not the case, then we have no further preferences
(‘we give up’). De facto, such chains form a preference partial order among elements of
our theory4. In a situation like the previous one, while A represents the most preferable
goal, B is not just the less preferable goal but it embodies the last chance for the system
to be compliant with such a chain. B can be seen as an element of the set containing all
the minimal goals (the last elements in every chain for goals) to be achieved.

More formally, given a theory T describing our world, with Goals representing the
set of objectives, and Norms representing the set of obligations in force, a system is
norm and goal compliant if

1. norm compliant: each norm is not violated, or if so, it is compensated (i.e., there
no exists derivation in T leading to an opposite of an element in Norms that has no
further compensation);

2. goal compliant: the process ends having reached at least all the minimal objectives.
In other words, a business process is goal compliant if there exists at least one
possible way to execute it, and the execution satisfies at least one of the goal in
each active goal chains.

4 For example, we can express the fact that we have no preference between two elements, A and
B, by both A⊕B and B⊕A.

290 G. Governatori et al.

We now propose an example to better explain the new concepts introduced in this sec-
tion; in Section 4 where we will formalise it in our logic (Example 3).

Example 1. PeoplEyes is an eyeglasses manufacturer. Naturally, its final goal is to pro-
duce cool and perfectly assembled eyeglasses. The final steps of the production process
are to shape the lenses to glasses, and mount them on the frames. To shape the lenses,
PeoplEyes uses a very innovative and expensive laser machinery, while for the final
mounting phase two different machineries can be used. Although both machineries
work well, the first and newer one is more precise and faster than the other, so Peo-
plEyes prefers the usage of the first machinery as much as possible. Unfortunately, a
new norm comes in force stating that no laser technology can be used, unless human
staff wears laser-protective goggles.

If PeoplEyes has both human resources and raw material, and the three machineries
are fully working, but it has not yet bought any laser-protective goggles, all its goals
would be achieved but it would fail to comply with the regulatory, since the norm for
the no-usage of laser technology is violated and not compensated.

If PeoplEyes buys the laser-protective goggles, its entire production process also be-
comes norm compliant. If, at some time, the more precise mounting machinery breaks,
but the second one is still working, PeoplEyes still remains goal compliant since also the
usage of the second machinery leads to a state of the world where the goal of mount-
ing the glasses on the frames is reached. In this last scenario, PeoplEyes reaches the
‘minimal set’ of goals. Again, if PeoplEyes has no protective laser goggles and both the
mounting machineries are out of order, PeoplEyes production process is neither norm
nor goal compliant.

4 Designing for Compliance

We formalised in Section 2 the logic to use, while in Section 3 we informally described
what we intend for a process to be norm compliant and goal compliant.

Briefly recalling those ideas, a process adheres to the sets of goals and norms when,
during its execution, there is no violation of the ruling norms (or when a violation
occurs, the process compensates that), and once the process ends up, all the goals are
achieved (or at least a minimal set of them). Thus, to describe our processes we need

– A library of tasks: t1, . . . ,tn. Tasks correspond to actions that can be performed by
the system.

– Belief rules for the activation of a task t, and to obtain a specific condition c:
• c1, . . . ,cm,t1, . . . ,tn⇒ t;
• c1, . . . ,cm,t1, . . . ,tn⇒ c.5

5 Here we assume that a pre-condition for a task to begin its execution can include both logical
expressions and the previous execution of other tasks (task dependency), for example “We
buy an ice cream if the sun is shining and we go to downtown”. Notice that the study of
dependencies among tasks is out of the scope of this work; anyway, we refer to [13] for an
initial study of how to capture control flow patterns in Modal DL.

Designing for Compliance: Norms and Goals 291

– Rules for relationships between tasks: ti⇒O t1, . . . ,ti⇒O tn, meaning that if task ti
is performed, then tasks from t1 to tn must be executed as well.

– Rules describing obligations: c1, . . . ,cm ⇒O
⊗n

i=1 ai, where the consequent is a
reparative chain of obligations.

– Rules describing goals: c1, . . . ,cm⇒G
⊕n

i=1 ai, where the consequent is a preferen-
tial chain of goals.

In the following, when possible, we will use the subscripted literal t to denote a task,
and the subscripted literal c to denote a condition. Given a modal defeasible theory
T = (F,R,>), the set of facts F contains:

– literals for conditions that are to be considered true at the beginning of an instance
of a BP;

– literals for tasks that can be performed with no other conditions but the ones in F
(or without any condition at all);

We impose that no modalised literals for norms or goals are facts, since we do not
want in this preliminary analysis to consider primitive intentions and unconditional
obligations. Thus, primary norms and goals are translated in our framework as the cor-
responding modalised rules without antecedents.

Let us consider the following example to show how a theory can fail to be compliant
with respect to a modalised operator.

Example 2. Let T be the theory with only the following rule:

r1 : ⇒X a!b

This modal rule is obviously applicable, as its antecedent is empty. Furthermore, no rule
whose consequent is ¬a is in the theory. By definition, we obtain +∂X a. Since there are
no belief rules for a (nor for b), the theory derives, in cascade: −∂a, +∂X b, −∂b and
+∂X⊥. Hence, T is not compliant with respect to modality X . If we add b as a fact, or
we introduce a rule like⇒ b, then T becomes compliant since we can derive +∂b (as a
compensation of a) which leads us to derive−∂X⊥.

The ideas enlightened by the previous example underpin the conceptual bases of this
work: the obligation to do a thing does not imply at all that such a thing should eventu-
ally be executed by the system. The same reasoning is valid also for goals: aiming at a
goal does not result in possessing the means to reach it. Moreover, if such an obligation
(goal) has no further compensation, then we definitely obtain a derivation for ⊥ with
respect to this particular chain.

The above reasoning allows us to give a formal definition of a theory to be norm
compliant and goal compliant based only on the modalised derivations of ⊥.

Definition 2 (Norm and Goal Compliance). Let T be a modal defeasible theory. T is
norm compliant if T � −∂O⊥ and it is goal compliant if T � −∂G⊥.

292 G. Governatori et al.

Example 3. We now extend Example 1 formalising it in our logic.

F = {Lenses, Frames}
R = {r0 :⇒G EyeGlasses r5 : MountingMach1⇒¬MountingMach2

r1 :⇒ Laser r6 : Glasses,MountingMach1⇒ EyeGlasses

r2 : Lenses,Laser⇒ Glasses r7 : Glasses,MountingMach2⇒ Eyeglasses

r3 :⇒MountingMach1 r8 :⇒O ¬Laser⊗WearGoggles

r4 :⇒MountingMach2 r9 :⇒G MountingMach1⊕MountingMach2}
>sm= {r4 > r3}

Since there no exists rule for goggles, the theory is goal compliant, but not norm com-
pliant. If we add

r10 :⇒WearGoggles

to R we are both norm and goal compliant, and also if we add

r11 : OutOfOrderMountingMach1⇒¬MountingMach1

and OutOfOrderMountingMach1 as a fact.

4.1 Revision in Case of Non Compliance

Norm and goal compliance give rise to non-trivial questions: what should we do when
a BP is not norm compliant or goal compliant, or even both? Are there (efficient) ways
to make a BP norm compliant once a violation of a norm occurs without affecting
goal compliance? And from the other point of view, how to make a BP goal compliant
once some of its goals are not achieved without affecting norm compliance? Answering
these questions attains the area of business process revision, which has received great
attention in recent years given its crucial influence on organisation practices.

Roughly speaking, all the efforts spent in this research area subscribe to two general
approaches. The first approach relies on modelling notations defining the structural as-
pects of BPs, which are extended with other formalisms apt to represent the behavioural
aspects. As an example, BPMN enriched with semantic annotations is able to describe
the effects implied by the execution of a particular task [2]. On the same grounds, sev-
eral translations from modelling notations into other formalisms have been proposed,
e.g., semantic nets [14] and BP graphs [15]. The second approach instead is completely
based on pure logical formalisms, where revising a BP means revising the logical the-
ory describing the BP itself. The underlying theory formally represents at the same time
the structure and the behaviour of the BP [13].

Describing pros and cons of both approaches is out of the scope of this paper and
will be matter of future work. However, it is worth taking both into account, as they
capture different (and interesting) aspects of revision. The first aims at revising a BP
at an higher level, in terms of removal, addition, swapping and substitutions of tasks
in the BP. On the other hand, the second one abstracts from the concepts of task and
conditions that trigger (or are caused by) a task: they are all denoted by literals in the

Designing for Compliance: Norms and Goals 293

same theory, and the main focus is on how they work together to derive other literals.
We suggest below one representative example of each approach, and we briefly report
some hints on how the proposed ideas could be exploited for our purposes.

Reusable modules. The first idea, given in [16] and developed in [17], relies on the ever
more emerging trend of designing BPs as related collections of reusable modules, i.e.,
set of standardised actions to be performed to achieve the goals modules have been built
for (thus giving goal compliance), and that can be used with slight or no modifications
also in other BPs. Modules are further augmented with built-in statements assuring that
the usage of a particular module in a BP implies the norm compliance with respect to
the statements specified in the module. This approach can be theoretically applicable
both when a norm uncompliant process is given, or must be built from scratch and we
have to assure its norm and goal compliance at design time. For the first case, we recall
that the algorithm given in [2] allows to know the exact point in a BP where a violation
of an obligation occurs. Thus, we can substitute the uncompliant part of the BP with a
module that reaches the same goals and compensates the previous violation(s). In the
second case, we try to build the process starting from a given repository of modules,
based on goals we want to achieve and norms we have to comply with.

Theory change via proof tags analysis. We have already afforded the problem of re-
vising defeasible theories by only changing the superiority relation between rules [18].
The major result is the identification of three relevant cases, named canonical, where a
revision operator could apply only changing the relative strength between pairs of rules.
More specifically, the revision operator could act on a defeasibly proved literal p and
makes it not provable anymore, i.e., from +∂ p to −∂ p (first case); or could act on a
defeasibly proved literal p and makes its opposite defeasibly proved, i.e., from +∂ p
to +∂∼p (second case); or more, could act on a not defeasibly proved literal p and
makes it defeasibly proved, i.e., from −∂ p to +∂ p (third case). Additional proof tags
other than strict (±Δ) and defeasible proof (±∂) for a literal are used to better study the
cases. Some preliminary work suggests that proof tags analysis could represent a valid
mean to categorise all possible situation an hypothetical revision operator has to cope
with. Indeed, by definition of +∂X⊥, there exists at least one rule r for goals or obliga-
tions such that (1) r is applicable, and (2) each element p in the chain is not defeasibly
provable as a belief, i.e., −∂ p holds. Thus, it seems reasonable that there are two ways
to regain compliance with respect to the corresponding modality: we can focus on the
consequent of r, making at least one element p on the chain defeasibly provable (and
falling in the third canonical case, that is from −∂ p to +∂ p); or we can focus on the
antecedent of r, making the rule discarded in the sense of Definition 1 (that is, making
at least an antecedent p not defeasibly provable with respect to its modality X). This is
represented by a modalised variant of the first canonical case, i.e., from +∂X p to−∂X p.

4.2 Compliance by Design

The idea of Compliance by Design is to create an entirely new process starting from
a fully declarative description of the specifications for a process and the norms. These
specifications are encoded in a modal defeasible theory. This theory describes the ca-
pabilities, resources of a company, and the environment the enterprise acts in; it also

294 G. Governatori et al.

contains the norms governing the business and the goals the enterprise wants to achieve.
We also assume such a theory to be norm and goal compliant. Thus, after the building
process ends up, there is no need of checking compliance again, since the process will
be compliant with norms and goals by design. Thus, from the fact that the theory we
work with has been proved to be compliant, it follows that a compliant process exists.
The issue is now to study methodologies to extract the graph of the process from the
initial theory. Our intuition is that a derivation of a task literal corresponds to a plan
leading to the achievement of the task. In this perspective the problem reduces to how
to assemble together from the many derivations of the goals the corresponding plans to
obtain a single business process graph.

In the current literature, two approaches appear promising for realising compliance
by design. The first approach, based on the process mining [19,20], consists in applying
the same techniques devised to induce a process graph starting from workflow logs, to
the many derivations from the theory leading to goals and norms. In the second method,
we start from the set of goals we want to achieve, and we iteratively construct the graph,
rule by rule, following the structure of the theory and using its extension.

Process Mining Approach. [19,20] define techniques and algorithms for discovering
workflow models starting from “workflow logs”. A workflow log contains informations
about the workflow as it is actually being executed: all the traces in a workflow log
are representative and a sufficiently large subset of the possible behaviours of systems
modeled in the workflows themselves. Through process mining, authors start from lin-
ear sequences of tasks to obtain complex structures capturing parallelism and choices.

We can apply the same methodologies in our case. The statement is motivated by the
following reasoning. Given a reachable goal, a derivation for it is a linear sequence of
(proved) literals in the theory. Thus, such a derivation can be understood as a log trace.
Even if, to obtain a literal, the derivation rule has a set of premises that contains more
than a single element, there exist procedures to automatically obtain derivations. For
example, given the theory with the only rule r : p,q⇒ t, where p and q are facts, we
obtain as derivations p→ q→ t and q→ p→ t. Being the theory compliant, the issue
is to extract all the traces from such derivations, and combine them together to get a
single business process graph.

Backward Graph Approach. BPs consist of separate activities. An activity is an action
that is a semantical unit at some level. In addition, an activity can be thought of as a
function that modifies the state of the process, making true some conditions, false some
others, and letting some tasks to start their execution. BPs are modelled as graphs with
individual activities as nodes. The edges on the graph represent the potential flow of
control from one activity to another.

The modal defeasible theory we start with is rich of informations: there are liter-
als describing tasks and conditions, rules describing the activations of tasks and their
effects, reparation chains both for norms and goals. Moreover, the superiority relation
states conditions under which a rule is activated (preferred) instead of another and, fi-
nally, patterns on the rules allow to identify parallel and (exclusive) choice structures.

We want to exploit all these informations to build the BP. The idea is to start from
the extension of the theory (i.e., the literals that have been defeasible proved) and from
the set of reachable goals, and to create a node for each goal that is a task. For each of

Designing for Compliance: Norms and Goals 295

them, we find out every rule proving it whose antecedents are all in the extension of the
theory, and we store them. For every such antecedent that is also a task literal, we create
a new node (if it does not exist yet) and we link it with a directed edge from it to the
corresponding goal node. For every new node, we iterate the process. The procedure
terminates when we reach literals for facts.

Notice that in the process described above, we never add nodes for conditions. This
follows from the fact that all the conditions needed for being norm and goal compliant
are already satisfied (since the initial theory is compliant). Thus, there is no need to
consider literals for conditions: we must only establish which antecedents generate such
literals and propagate these informations.

Since, nowadays, there is yet no algorithm computing this procedure, an empirical
proof of the termination does not exist. Anyway, the compliance of the theory implies
that every goal and norm is derived or compensated, and so the derivation process ends
in a finite number of steps. Since the above procedure represents a “backward mirror-
ing” of the derivation process, it also must come to an end.

5 Conclusions

The first contribution of this paper is the introduction of the notion of “goal compliance”
and we have argued that to check whether a BP achieves the goals of an organisation
can be dealt with the same methodology as “norm compliance”. This provides a further
motivation to subscribe to the declarative way to specify processes.

While the idea behind this work looks very natural and at the core of BPs and
glimpses of it can be found in closely related areas (e.g., process verification [10] and
automated planning [21]), to the best of our knowledge, this is the first work that ex-
plicitly addresses the two types of compliance from a fully declarative point of view,
and proposes a formal framework for modelling and reasoning with them. The paper
identifies further areas of research –in the compliance by design space– stemming from
the work presented here, namely: process compliance resolution (how to revise a non-
compliant theory) and process derivation (how to extract a business process from com-
pliant declarative specifications for it). We have outlined some possible developments
inspired by automated planning [21] and process mining [20].

The closest work to our approach is [22] proposing LTL (Linear Temporal Logic)
to describe compliance rules, to use automated reasoning techniques to generate LTL
models of processes and then using process mining techniques to extract business pro-
cesses. The main limitations of this work is that, while LTL is suitable to represents the
temporal relationships involving the tasks, alone is not suitable to faithfully represent
the normative (nor business) requirements.

Defeasible Logics are a very powerful tool to describe an environment, and in the
years scholars extended the primitive formalism to deal with many different kinds of
situations. [23] introduces a temporalised DL, while [13] describes many types of obli-
gations, and shows how control flows (and other relationships among process tasks) are
modelled using the various types of obligations. It seems very likely that the formalism
introduced in this work can be further extended to handle both temporal constraints,
and different types of obligations either when determining if a Modal DL theory is

296 G. Governatori et al.

compliant with sets of norms and goals, revising it, or creating a business process start-
ing from its compliance. It seems also of great interest to incorporate idea from [24] to
model resources and complex events in our logical framework.

Acknowledgements. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy, the Aus-
tralian Research Council through the ICT Centre of Excellence program and the
Queensland Government.

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. Computer Science - R&D 23, 99–113 (2009)

2. Governatori, G., Sadiq, S.: The journey to business process compliance. In: Handbook of
Research on BPM, pp. 426–454 (2008)

3. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Transactions on Computational Logic 2, 255–287 (2001)

4. Governatori, G.: Representing business contracts in RuleML. International Journal of Coop-
erative Information Systems 14, 181–216 (2005)

5. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business processes
and business contracts. In: Hung, P.C.K. (ed.) 10th International Enterprise Distributed Ob-
ject Computing Conference (EDOC 2006), pp. 221–232. IEEE Computing Society (2006)

6. Sadiq, S., Governatori, G., Naimiri, K.: Modelling of control objectives for business process
compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 149–164. Springer, Heidelberg (2007)

7. Governatori, G., Rotolo, A.: Bio logical agents: Norms, beliefs, intentions in defeasible logic.
Journal of Autonomous Agents and Multi Agent Systems 17, 36–69 (2008)

8. Governatori, G., Rotolo, A.: Logic of violations: A gentzen system for reasoning with
contrary-to-duty obligations. Australasian Journal of Logic 4, 193–215 (2006)

9. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Trans. Comput. Logic 2, 255–287 (2001)

10. van der Aalst, W.M.P.: The application of petri nets to workflow management. Journal of
Circuits, Systems, and Computers 8, 21–66 (1998)

11. Dastani, M., Governatori, G., Rotolo, A., van der Torre, L.: Programming cognitive agents in
defeasible logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 621–636. Springer, Heidelberg (2005)

12. Dastani, M., Governatori, G., Rotolo, A., van der Torre, L.: Preferences of agents in defeasi-
ble logic. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 695–704.
Springer, Heidelberg (2005)

13. Governatori, G., Rotolo, A.: Norm compliance in business process modeling. In: [25], pp.
194–209

14. Ghose, A., Koliadis, G.: Auditing Business Process Compliance. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180. Springer, Heidelberg
(2007)

15. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of busi-
ness process models: Metrics and evaluation. Inf. Syst. 36, 498–516 (2011)

16. Schumm, D., Leymann, F., Ma, Z., Scheibler, T., Strauch, S.: Integrating Compliance into
Business Processes Process Fragments as Reusable Compliance Controls. Universitätsverlag
Göttingen, 2125–2137 (2010)

Designing for Compliance: Norms and Goals 297

17. Schumm, D., Türetken, O., Kokash, N., Elgammal, A., Leymann, F., van den Heuvel, W.J.:
Business Process Compliance Through Reusable Units of Compliant Processes. In: Daniel,
F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp. 325–337. Springer, Heidelberg
(2010)

18. Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Superiority based revision of
defeasible theories. In: [25], pp. 104–118

19. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In:
Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–
483. Springer, Heidelberg (1998)

20. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16, 1128–1142 (2004)

21. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice. Morgan
Kaufmann (2004)

22. Awad, A., Goré, R., Thomson, J., Weidlich, M.: An Iterative Approach for Business Process
Template Synthesis from Compliance Rules. In: Mouratidis, H., Rolland, C. (eds.) CAiSE
2011. LNCS, vol. 6741, pp. 406–421. Springer, Heidelberg (2011)

23. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic.
In: ICAIL 2005, pp. 25–34. ACM Press (2005)

24. Governatori, G., Rotolo, A., Sadiq, S.: A model of dynamic resource allocation in workflow
systems. In: ADC 2004, pp. 197–206. ACS (2004)

25. Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.): RuleML 2010. LNCS, vol. 6403. Springer,
Heidelberg (2010)

F. Olken et al. (Eds.): RuleML 2011 - America, LNCS 7018, pp. 298–312, 2011.
© Springer-Verlag Berlin Heidelberg 2011

LegalRuleML: XML-Based Rules and Norms

Monica Palmirani1, Guido Governatori2, Antonino Rotolo1, Said Tabet3,
Harold Boley4, and Adrian Paschke5

1 CIRSFID, University of Bologna, Italy
{monica.palmirani,antonino.rotolo}@unibo.it

2 NICTA, Brisbane, Australia
guido.governatori@nicta.com.au

3 EMC Corporation, Office of the CTO, Hopkinton, MA, USA
said.tabet@emc.com

4 Institute for Information Technology, National Research Council Canada
Fredericton, NB, Canada

harold.boley@nrc.gc.ca
5 Computer Science Department, Freie Universitaet Berlin, Germany

paschke@inf.fu-berlin.de

Abstract. Legal texts are the foundational resource where to discover rules and
norms that feed into different concrete (often XML-based) Web applications.
Legislative documents provide general norms and specific procedural rules for
eGovernment and eCommerce environments, while contracts specify the
conditions of services and business rules (e.g. service level agreements for
cloud computing), and judgments provide information about the legal
argumentation and interpretation of norms to concrete case-law. Such legal
knowledge is an important source that should be detected, properly modeled
and expressively represented in order to capture all the domain particularities.
This paper provides an extension of RuleML called LegalRuleML for fostering
the characteristics of legal knowledge and to permit its full usage in legal
reasoning and in the business rule domain. LegalRuleML encourages the
effective exchange and sharing of such semantic information between legal
documents, business rules, and software applications.

Keywords: Legal Rules, Legal XML Standards, Semantic Web, Legal
Reasoning, LegalRuleML.

1 Rationale

The AI & Law community dedicated a good part of the last twenty years to model
legal norms using different logics and formalisms [30]. The methodology used starts
with a re-interpretation of a legal text by a Legal Knowledge Engineer who extracts
the norms, applies models and a theory within a logical framework, and finally
represents the norms using a particular formalism. In the last decade, several Legal
XML standards were proposed to describe and represent legal texts [23; 35; 4] with
XML based rules (RuleML, SWRL, RIF, LKIF, etc.) [12; 7]. In the meantime, the
Semantic Web, in particular Legal Ontology research combined with semantic norm

 LegalRuleML: XML-Based Rules and Norms 299

extraction based on Natural Language Processing (NLP) [10; 8; 25; 24], gave a great
impulse to the modeling of legal concepts [7]. In this paramount scenario, there is
urgent need to find a robust and expressive XML annotation, compliant with the
Semantic Web technologies, able to meet all the unique particular aspects rising from
the legal domain and in the same time close the gap between legal text descriptions,
using XML techniques, and norms modeling, in order to realize an integrated and
self-contained representation of legal resources available on the Web [26; 22]. This
integration is fundamental for fostering Semantic Web advantages applied to legal
norms like: NLP, IR, graph representation, Web ontologies and rules, etc.

The second requirement is to capture the processes description embedded into the
norms for extracting the business rules and for passing them to other important appli-
cations like workflow or business rule engines. There is a gap currently between the
norms modeling and business rules, even if the latter are strongly influenced by the
former. This knowledge is an important input for several applications in Cloud com-
puting, eGovernment, eCommerce [20; 14; 31], eHealth, etc. Of particular importance
in such scenario, the requirement for compliance checking [32; 16; 18; 19] theory and
applications.

The third aspect is to permit an agile annotation of all the instruments necessary to
capture the legal norms [11] that usually the normal rule XML standard doesn’t in-
clude. Our goal is to have an expressive XML standard for modeling normative rules
that will satisfy the legal domain requirements. This will enable a legal reasoning
level on top of the ontological layer, following the Tim Berners-Lee semantic web
stack1. Finally, particular attention is paid to the Linked Open Data [3] approach to
modeling, regarding not only the semantics of raw data (act, contracts, court files,
judgments, etc.), but also of rules in conjunction with their functionality and usage.
Without rules or axioms, legal concepts represent nothing more than a taxonomy [35].

Fig. 1. LegalRuleML position in the current RuleML architecture (adapted from [5])

1 http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#%2824%29

300 M. Palmirani et al.

In this scenario we have extended RuleML [5; 6; 38; 34] to include, in orthogonal
way (see Fig. 1), a new dialect capturing all those requirements, not fully incorporated
in the original version of RuleML. We call this new dialect LegalRuleML. It is posi-
tioned between the Deliberation rules and the Reaction Rules facilitating the modeling
of either norms or business rules. This approach provides support for the implementa-
tion of reasoning engines combining both norms and business rules.

2 Characteristics of Legal Norms

RuleML provides a good framework to start working towards the above-mentioned
goals. We define the main characteristics needed for modeling norms and the essential
features needed to apply legal reasoning in effective and computable way. We can
divide the characteristics in three main groups: semantic features, logic features, and
legal process features.

2.1 Semantic Features

ISOMORPHISM [1] To ease validation and maintenance, there should be a one-to-one
correspondence between the rules in the formal model and the units of natural
language text which express the rules in the original legal sources, such as sections of
legislation. This entails, for example, that a general rule and separately stated
exceptions, in different sections of a statute, should not be converged into a single
rule in the formal model.

REIFICATION [13] Rules are objects with properties, such as:

• Jurisdiction. The limits within which the rule is authoritative and its effects
are binding (of particular importance are spatial and geographical references
to model jurisdiction).

• Authority [29] Who produced the rule, a feature which indicates the ranking
status of the rule within the sources of law (whether the rule is a
constitutional provision, a statute, is part of a contract clause or is the ruling
of a precedent, and so on).

• Temporal properties [28, 15, 27] Rules usually are qualified by temporal
properties, such as: the time when the norm is enforced and/or has been
enacted; the time when the norm can produce legal effects; the time when the
normative effects hold.

RULE SEMANTICS. Any language for modeling legal rules should be based on precise
and rigorous semantics, which allow for the correct computation of legal effects that
should follow from a set of legal rules.

NORMATIVE EFFECTS. There are many normative effects that follow from applying
rules, such as obligations, permissions, prohibitions and also more articulated effects
such as those introduced, e.g., by Hohfeld (see [36]). Below is a rather comprehensive
list of normative effects [33]:

 LegalRuleML: XML-Based Rules and Norms 301

• Evaluative indicates that something is good or bad, is a value to be
optimized or an evil to be minimized. For example, ''Human dignity is
valuable'', ''Participation ought to be promoted'';

• Qualificatory describes a legal quality to a person or an object. For example,
''Joe is a citizen'';

• Definitional specifies the meaning of a term. For example, ''Tolling
agreement means any agreement to put a specified amount of raw material
per period through a particular processing facility'';

• Deontic typically imposes the obligation or confers the permission to do a
certain action. For example, ''x has the obligation to do A'';

• Potestative assigns powers. For example, ''A worker has the power to
terminate his work contract'';

• Evidentiary establishes the conclusion to be drawn from certain evidence.
For example, ''It is presumed that dismissal was discriminatory'';

• Existential indicates the beginning or the termination of the existence of a
legal entity. For example, ''The company ceases to exist'';

• Norm-concerning effects states modifications of norms such as abrogation,
repeal, substitution, and so on.

VALUES [2]. Usually, some values are promoted by legal rules. The modeling of rules
sometimes needs to support the representation of values and value preferences, which
can also play the role of meta-criteria for solving rule conflicts (given two conflicting
rules r1 and r2, value v1, promoted by r1, is preferred to value v2, promoted by r2,
and so r1 overrides r2).

2.2 Logic Features

DEFEASIBILITY [13; 29; 37]. When the antecedent of a rule is satisfied by the facts of
a case (or via other rules), the conclusion of the rule presumably holds, but is
not necessarily true. The defeasibility of legal rules breaks down into the following
issues:

• Conflicts [29]. Rules can conflict, namely, they may lead to incompatible
legal effects. Conceptually, conflicts can be of different types whether two
conflicting rules: i) are such that one is an exception of the other (i.e., one is
more specific than the other); ii) have a different ranking status; iii) have
been enacted at different times.

• Exclusionary rules [13; 29; 37]. Some rules provide one way to explicitly
undercut other rules, namely, to make them inapplicable.

CONTRAPOSITION [29]. Rules do not counterpose. If the conclusion of a rule is not
true, the rule does not sanction any inferences about the truth of its premises.

CONTRIBUTORY REASONS OR FACTORS [37]. It is not always possible to formulate
precise rules, even defeasible ones, for aggregating the factors relevant for resolving a
legal issue. For example: ''The educational value of a work needs to be taken into
consideration when evaluating whether the work is covered by the copyright doctrine
of fair use.''

302 M. Palmirani et al.

RULE VALIDITY [17]. Rules can be invalid or become invalid. Deleting invalid rules
is not an option when it is necessary to reason retroactively with rules, which were
valid at various times over a course of events. For instance: The annulment of a norm
is usually seen as a kind of repeal, which invalidates the norm and removes it from the
legal system as if it had never been enacted. The effect of an annulment applies ex
tunc: annulled norms are prevented from producing any legal effects, also for past
events. An abrogation on the other hand operates ex nunc: The rule continues to apply
for events that occurred before the rule was abrogated.

2.3 Legal Process Features

LEGAL PROCEDURES. Rules not only regulate the procedures resolving legal conflicts
(see above), but also are used for arguing or reasoning about whether or not some
action or state complies with other, substantive rules. In particular, rules are required
for procedures which regulate methods detecting violations of the law; determine the
normative effects triggered by norm violations, such as reparative obligations,
namely, which are meant to repair or compensate violations. Note that these
constructions can give rise to very complex rule dependencies, because the violation
of a single rule can activate other (reparative) rules, which in turn, in case of their
violation, refer to other rules, and so forth.

PERSISTENCE OF NORMATIVE EFFECTS [15]. Some normative effects persist over
time unless some other and subsequent event terminates them. For example: ''If one
causes damage, one has to provide compensation.'' Other effects hold on the condition
and only while the antecedent conditions of the rules hold. For example: ''If one is in a
public office, one is forbidden to smoke''.

An interesting question is whether rule interchange languages for the legal domain
should be expressive enough to fully model all the features listed above, or whether
some of these requirements can be met at the reasoning level, at the level responsible
for structuring, evaluating and comparing legal arguments constructed from rules and
other sources.

3 LegalRuleML

To extend RuleML into LegalRuleML, we have defined two more XML-schemas:
LegalMeta.xsd module and Legal_operators.xsd module (see Fig.2). Legal_meta.xsd
is devoted to model all the legal metadata concerning the legal rules.
Legal_operators.xsd defines the legal operators: deontic operators and behaviours. It
is also necessary to have a module to connect derivation rules with reaction rules, in
order to foster the potentiality of the reaction rules. This paper is a preliminary
proposal for testing the rational presented in the § 1 and 2, so in the future we intend
to modularize better the schemas in order to improve scalability and maintenance over
the time. This proposal aims to open a debate, not to fix a solution, and make possible
the mark-up of some pilot cases in order to evaluate the correctness of the solution in
the RuleML community.

 LegalRuleML: XML-Based Rules and Norms 303

Fig. 2. Legal_metadata module included in the datalog component (adapted from [34])

3.1 Legal Meta Data

The root tag of Legal_metadata.xsd is metaInfo that includes the following
optional metadata:

Fig. 3. MetaInfo module organization

─ identification block provides information on the authors of the rules;
─ references block provides identification of the textual fragments involved in

the rules modeled;

304 M. Palmirani et al.

─ sources block models the connections with the textual fragments and the rules;
─ events block provides the definition of any temporal event;
─ timesInfo block adds semantic information to the events;
─ rulesInfo block models the meta information concerning the rules;
─ hierarchy block defines the ranging of the rules in the defeasibility logic.

Identification of the Annotators. This part of metadata is modeled to allow a mul-
tiple annotation of the rules coming from different authors. In the legal domain it is
common to find different interpretations of the norms and equally legitimate under the
legal point of view. So the identification of the authors permits to define a trust policy
on the base of the context or of the authoritativeness of the annotator. If a constitu-
tional judge annotates a rule, the trustiness is higher rather than an interpretation of a
Ph.D. student of a law school. On the other side sometime the rules could be slightly
different from the context and the inference engine could take in consideration a par-
ticular set of rules on the base of the role expressed by the author (e.g. regional vs.
state interpretation). For this reason, we have the attribute as for identifying the role
of the author in the annotation of the rule.

<identifications>
 <identification id="aut1"

uri="http://www.cirsfid.unibo.it/monica.palmirani.owl"
as="author"/>

 <identification id="aut2"
uri="http://www.nicta.com.au/guido.governatori.owl"
as="editor"/>
</identifications>

In this section two authors (aut1, aut2) are defined and connected with their ontolo-
gy and role (aut1 is the author of the rule, aut2 is the editor of the rule). The same
could be applied to the authorities, institutions, legal entities, juridical persons.

Sources and References for Isomorphism. The references and sources
blocks are strictly connected together and they provide a solution to the isomorphism
requirement. The references block defines the entire textual fragment involved in
the rules modeling, and the sources block connects rules with the appropriate ref-
erences. Because we have some time N:M relationship with text and rules, this me-
chanism permits the redundancy of the text resource URI and in the meantime con-
nects one rule to multiple part of the text or vice versa multiple rules to the same
fragment of text.

<references>
 <reference id="customerContract" uri="http://text1#art1"/>
 <reference id="customerContract2" uri="http://text1#art2"/>
</references>

<sources>
 <source element="#rule1" refersTo="#customerContract"/>
 <source element="#rule1" refersTo="#customerContract2"/>
 <source element="#rule2" refersTo="#customerContract2"/>
</sources>

This is particularly true in case of penalty-reparation rule. Usually the definition of
the penalty is expressed in one clause and the conditions of reparation in another

 LegalRuleML: XML-Based Rules and Norms 305

clause, but together they determine the body and the header of a unique normative
rule. In the following fragment we have two citations (clauses 8 and 5) that constitute
the body of the rule and the header is in the clause 10.

Clause 10, point 1, letter c)

If Google does not meet the Google Apps SLA (clause 8), and if Customer meets its
obligations under this Google Apps SLA (clause 5), Customer will be eligible to
receive the Service Credits of X days.

This rule is modeled in such way:

<references>
 <reference id="GoogleSLA" uri="http://text1#clouse8"/>
 <reference id="GoogleSLA" uri="http://text1#clouse5"/>
 <reference id="GoogleSLA" uri="http://text1#clouse10"/>
</references>

<sources>
 <source element="# rule1_body " refersTo="#GoogleSLA8"/>
 <source element="#rule1_body" refersTo="#GoogleSLA5"/>
 <source element="#rule1_header" refersTo="#GoogleSLA10"/>
</sources>

Events and Temporal Parameters. The events block detects the events related to
a set of norms, in neutral way, without any semantic interpretation. The timesInfo
block assigns the legal semantic to each group of events. In this way we could con-
nect each atom, body, header, rule with the appropriate timesInfo block without
any redundancy of data, preserving a compact annotation and high expressiveness.
Next, we use attributes not elements in order to avoid both temporal predicates and
arbitrary nomenclature to the functions.

Consider now the following clause coming from a SLA contract:

A customer is “Premium” if their spending has been min 5000 dollars
in the previous year

We have at least four temporal events in this provision: a) the time when the text
creates rights, duties and obligations (e.g. time of enter into force, after the signature
of the contract); b) the time when the provision is effective (e.g. the time when the
service starts, 1 Jan 2012); c) the time when the provision is applicable (e.g. after at
least one year from the efficacy time); d) the temporal conditions included in the
provision that is a dynamic dimension (e.g. “previous year”). A new question arise
concerning the continuity of the temporal condition: i) the customer have to spend at
least one order min 5000 dollars (only one event is sufficient); ii) the customer could
aggregate several spending for min 5000 dollars (set of events create the condition);
iii) the customer have to maintain their orders min 500 dollars (continuity of
condition). For this reason we have introduced an attribute (perdurant) with
several parameters: and (true for all ti of an interval), or (true if at least one ti satisfies
the condition), xor (true if only one ti satisfies the condition) , agg (true if the
aggregation of a set of ti satisfies the condition).

306 M. Palmirani et al.

We can model those events as follow:

<events>
 <event id="e1" value="2011-08-25T01:01:00.0Z"/>
 <event id="e2" value="2012-01-25T01:01:00.0Z"/>
 <event id="e3" value="2013-01-25T01:01:00.0Z"/>

</events>

<timesInfo>
 <times id="t1">
 <time start="#e1" timeType="efficacy"/>
 <time start="#e1" timeType="inforce"/>
 <time start="#e3" timeType="application"/>
 </times>
 <times id="t2">
 <time duration="-P01Y" timeType="internal" timeType
="application" perdurant="agg"/>
 </times>
</timesInfo>

Note the time of application “previous year” is modeled as internal event of the norm
and represented using the negative period of duration (-P1Y, following the standard
syntax of xsd).

The mechanism presented for modeling the temporal parameters connects times to
norms and rules and it fosters effective legal reasoning algorithm about facts occurred
in the past, or that happen in the future, with uncertain events and with complex con-
ditionals.

Hierarchy and Type of Norms. The non-monotonic legal reasoning needs to
manage the hierarchy of rules [see § 2]. The hierarchy block defines the superiority
relationship between two rules: it is a binary operator that creates a meta-rule among
existing rules.

Because the superiority relationship depends to some conditions we have several
attributes that anchor the association to specific parameters: author and time. It is so
possible to have the same rule with different superiority relationship, made in a dif-
ferent time, by a different author.

<hierarchy>

 <range id="rng1" function="superior" from="#rule1"

to="#rule2" timesBlock="#t1" author="#aut2"/>

</hierarchy>

Semantic Qualification of Rules. In the rulesInfo block, we define some proper-
ties of the rule like the ruleType (e.g. defeasible, defeater, strict, metaRule), the
author and qualification using the attribute refersTo. Fostering the referesTo
attributes we could connect any external legal concept defined with a given ontology.

<rulesInfo>
 <ruleInfo source="#rule1" ruleType="defeasible" refersTo
="/ontology/usaJurisdiction.owl" author="#aut2"/>

 LegalRuleML: XML-Based Rules and Norms 307

 <ruleInfo source="#rule1" ruleType="strict" refers-
To="/ontology/definition.owl" author="#aut2"/>
</rulesInfo>

Let us come back to our example:

A customer is “Premium” if their spending has been min 5000 dollars
in the previous year.

The above is modeled as follow in enriched way, ready for legal reasoning base don
defeasible logic.

<Assert mapClosure="universal">
 <Implies timesBlock="#t2" ruleType="defeasible" id="rule1">
 <then timesBlock="#t1">
 <Atom id="atm1">
 <Rel>premium</Rel>
 <Var>customer</Var>
 </Atom>
 </then>
 <if timesBlock="#t1">
 <Atom id="atm2" timesBlock="#t3">
 <Rel>previous year spending</Rel>
 <Var>customer</Var>
 <Var>x</Var>
 <Data>= 5000$ </Data>
 </Atom>
 </if>
 </Implies>
</Assert>

3.2 Legal Operators

In the module Legal_operators.xsd we have defined all the operators needed for man-
aging deontic logic and behaviors like violation and reparation.

Fig. 4. Legal_operators.xsd elements

308 M. Palmirani et al.

Behavior represents a particular sequence of deontic operators that starts with an
obligation or a prohibition and ends with a permission.

The violation is a unary relationship that refers to the obligation/prohibition
subject of the violation. The reparation is a unary relationship providing a link to
the relevant penalty.

For a better understanding of their usage, we describe an example coming from the
US Code related to the infringement of the copyright, Title 18, Chapter 6:

§ 602 (b) In a case where the making of the copies or phonorecords would have
constituted an infringement of copyright if this title had been applicable, their im-
portation is prohibited.

To model this example, we first start with the rule 602b where we find in the conclu-
sion a prohibition to import material that infringes the copyright law:

<Implies id="rule602b">
 <then>
 <prohibition>
 <Atom id="rule602b-prh1-atm1">
 <Rel>importation is prohibited</Rel>
 <Var>z</Var>
 </Atom>
 </prohibition>
 </then>
 <if>
 <And>
 <Atom id="rule602-if-atm1">
 <Rel>copies or phonorecords</Rel>
 <Var>z</Var>
 </Atom>
 <Atom id="impl602-1-if-atm2">
 <Rel>without the authority of the owner of copyright
</Rel>
 <Var>x</Var>
 </Atom>
 </And>
 </if>
</Implies>

After that, we assume as a fact the penalty statement in case of a copyright infringe-
ment following the 504 (c)(1):

§ 504. Remedies for infringement: Damages and profits
(c) Statutory Damages.—
(1) Except as provided by clause (2) of this subsection, the copyright owner may
elect, at any time before final judgment is rendered, to recover, instead of actual
damages and profits, an award of statutory damages for all infringements involved
in the action, with respect to any one work, for which any one infringer is liable
individually, or for which any two or more infringers are liable jointly and several-
ly, in a sum of not less than $750 or more than $30,000 as the court considers just.
For the purposes of this subsection, all the parts of a compilation or derivative
work constitute one work.

 LegalRuleML: XML-Based Rules and Norms 309

<Atom id="atm504">
 <penalty id="atm504-pnl1">
 <obligation id="obl2" subject="z" beneficiary="y"
timesBlock="#t2">
 <Atom id="atm504-pnl1-atm1">
 <Rel>award of statutory damages to</Rel>
 <Var>z</Var>
 <Data>min $750 </Data>
 <Data>max $30,000 </Data>
 </Atom>
 </obligation>
 </penalty>
</Atom>

Finally we define a new rule that connects the reparation with the violation of the
rule602b, and the reparation with the penalty (see the penalty="#atm504-pnl1"
attribute). We have reparation only if the subject violated the rule602 and has paid the
award of statutory damages to the copyright owner.

<Implies id="rule602b-rep">
 <then>
 <reparation id="rule602b-rep1" penalty="#atm504-pnl1"/>
 </then>
 <if>
 <violation source="#rule602b"/>
 </if>
</Implies>

3.3 Semantic Qualification of Negation

One of the main problems in legal reasoning is to qualify the negation. To solve this
problem, we have customized the module neg_module.xsd and naf_module.xsd in
order to include a link to the semantic meaning. The attribute refersTo permits to
link the markup to specific concept ontology.

<xs:attributeGroup name="Neg.attlist">
 <xs:attributeGroup ref="refersTo"/>
</xs:attributeGroup>

<xs:attributeGroup name="Naf.attlist">
 <xs:attributeGroup ref="refersTo"/>
</xs:attributeGroup>

3.3 Extension of the RuleML Modules

To support the application of that metadata, we have extended several modules, like
atom_module.xsd that could host the time parameters and the id attribute:

<xs:attributeGroup name="Atom.attlist">
 <xs:attributeGroup ref="closure.attrib"/>
 <xs:attributeGroup ref="timesBlock"/>
 <xs:attributeGroup ref="idReq"/>
</xs:attributeGroup>

310 M. Palmirani et al.

The connective_module.xsd is extended in order to define, apart from the time
parameters and the id, the type of rule, following the defeasible classification: strict,
defeasible, defeater, metaRule.

<xs:attributeGroup name="Implies.attlist">
 <xs:attributeGroup ref="closure.attrib"/>
 <xs:attributeGroup ref="direction.attrib"/>
 <xs:attributeGroup ref="material.attrib"/>
 <xs:attributeGroup ref="timesBlock"/>
 <xs:attributeGroup ref="idReq"/>
 <xs:attributeGroup ref="ruleTypeDef"/>
</xs:attributeGroup>

In legal_metadata.xsd we define the list of values:

<xs:simpleType name="ruleTypeValue">
 <xs:restriction base="xs:token">
 <xs:enumeration value="strict"/>
 <xs:enumeration value="defeasible"/>
 <xs:enumeration value="defeater"/>
 <xs:enumeration value="metaRule"/>
 </xs:restriction>

</xs:simpleType>

4 Conclusion

This paper presents an extension of RuleML customized to support legal
requirements. The goal is to have a clear and expressive XML language integrated as
part of the RuleML family capable to support the modeling and the representation of
legal norms and rules. In this first step we have implemented the following features:

Table 1. List of LegalRuleML features and the extended modules

Features LegalRuleML RuleML extension
Isomorphism sources and references legal_meta.xsd
Jurisdiction refersTo legal_meta.xsd
Authority author legal_meta.xsd
Temporal parameters event and timesInfo legal_meta.xsd

connective_module.xsd
atom_module.xsd

Qualification/Definitional/
Valuable

refersTo legal_meta.xsd

Semantic of Negation refersTo Neg_module.xsd
Naf_module.xsd

Deontic operators legalOperator legal_operators.xsd
connective_module.xsd
atom_module.xsd

Defeasible logic hierarchy and typeRules legal_meta.xsd
Behaviors legalOperator legal_operators.xsd

connective_module.xsd
atom_module.xsd

 LegalRuleML: XML-Based Rules and Norms 311

LegalRuleML language aims to interoperate with Reaction RuleML modules. Our
next steps include a better modularization of the main features from a syntactical
point of view, extend the modularization to all the modules of the Declarative Rules
and Reactive Rules, and develop a proof of concept implementing a sample set of acts
and contracts. The LegalRuleML Initiative has been working with OASIS, especially
the LegalXML Technical Committee, on organizing future efforts.

References

1. Bench-Capon, T., Coenen, F.: Isomorphism and legal knowledge based systems. Artificial
Intelligence and Law 1(1), 65–86 (1992)

2. Bench-Capon, T.: The missing link revisited: The role of teleology in representing legal
argument. Artificial Intelligence and Law 10(1-3), 79–94 (2002)

3. Berners-Lee, T.: Long Live the Web: A Call for Continued Open Standards and Neutrality.
Scientific America (2010)

4. Boer, A., Radboud, W., Vitali, F.: MetaLex XML and the Legal Knowledge Interchange
Format. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable Models
of the Law. LNCS (LNAI), vol. 4884, pp. 21–41. Springer, Heidelberg (2008)

5. Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The Overarching Specification of Web
Rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403,
pp. 162–178. Springer, Heidelberg (2010)

6. Boley, H., Tabet, S., Wagner, G.: Design rationale for RuleML: A markup language for
Semantic Web rules. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L. (eds.) Proc.
SWWS 2001, The First Semantic Web Working Symposium, pp. 381–401 (2001)

7. Breuker, J., Boer, A., Hoekstra, R., Van Den Berg, C.: Developing Content for LKIF: On-
tologies and Framework for Legal Reasoning. In: Legal Knowledge and Information Sys-
tems, JURIX 2006, pp. 41–50. ISO Press, Amsterdam (2006)

8. De Maat, E., Winkels, R.: Automated Classification of Norms, in Sources of Law. In:
Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of
Legal Texts. LNCS, vol. 6036, pp. 170–191. Springer, Heidelberg (2010)

9. Francesconi, E., Passerini, A.: Automatic Classification of Provisions in Legislative Texts.
In: ICAIL 2007, vol. 15, pp. 1–17. ACM (2007)

10. Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D.: Semantic Processing of Legal
Texts: Where the Language of Law Meets the Law of Language. Springer, Heidelberg
(2010)

11. Gordon, T.F., Governatori, G., Rotolo, A.: Rules and Norms: Requirements for Rule Inter-
change Languages in the Legal Domain. In: Governatori, G., Hall, J., Paschke, A. (eds.)
RuleML 2009. LNCS, vol. 5858, pp. 282–296. Springer, Heidelberg (2009)

12. Gordon, T.F.: Constructing Legal Arguments with Rules in the Legal Knowledge Inter-
change Format (LKIF). In: Computable Models of the Law, Languages, Dialogues,
Games, Ontologies 2008, pp. 162–184. Springer, Heidelberg (2008)

13. Gordon, T.F.: The Pleadings Game; An Artificial Intelligence Model of Procedural Justice.
Springer, New York (1995); Book version of 1993 Ph.D. Thesis; University of Darmstadt
(1993)

14. Governatori, G., Pham, D.H.: Dr-contract: An architecture for e-contracts in defeasible
logic. International Journal of Business Process Integration and Management 5(4) (2009)

15. Governatori, G., Rotolo, A.: Changing legal systems: Legal abrogations and annulments in
defeasible logic. The Logic Journal of IGPL (2010)

16. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: Proc. EDOC 2006, pp. 221–232. IEEE (2006)

312 M. Palmirani et al.

17. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible
logic. In: Proc. ICAIL 2005, pp. 25–34. ACM Press (2005)

18. Governatori, G., Rotolo, A.: Norm Compliance in Business Process Modeling. In: Dean,
M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 194–209.
Springer, Heidelberg (2010)

19. Governatori, G.: Representing business contracts in RuleML. International Journal of Co-
operative Information Systems 14(2-3), 181–216 (2005)

20. Grosof, B.: Representing e-commerce rules via situated courteous logic programs in Ru-
leML. Electronic Commerce Research and Applications 3(1), 2–20 (2004)

21. Hage, J.C.: Reasoning with Rules – An Essay on Legal Reasoning and its Underlying Log-
ic. Kluwer Academic Publishers, Dordrecht (1997)

22. Hu, Y.-J., Boley, H.: SemPIF: A Semantic Meta-policy Interchange Format for Multiple
Web Policies. In: Web Intelligence 2010, pp. 302–307 (2010)

23. Lupo, C., Vitali, F., Francesconi, E., Palmirani, M., Winkels, R., de Maat, E., Boer, A.,
Mascellani, P.: General xml format(s) for legal sources - Estrella European Project IST-
2004-027655. Deliverable 3.1, Faculty of Law. University of Amsterdam, Amsterdam, The
Netherlands (2007)

24. Mazzei, A., Radicioni, D.P., Brighi, R.: NLP-Based Extraction of Modificatory Provisions
Semantics. In: ICAIL 2009, pp. 50–57. ACM Press, New York (2009)

25. Palmirani, M., Brighi, R.: Model Regularity of Legal Language in Active Modifications.
In: Casanovas, P., Pagallo, U., Sartor, G., Ajani, G. (eds.) AICOL-II/JURIX 2009. LNCS,
vol. 6237, pp. 54–73. Springer, Heidelberg (2010)

26. Palmirani, M., Contissa, G., Rubino, R.: Fill the Gap in the Legal Knowledge Modelling.
In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 305–
314. Springer, Heidelberg (2009)

27. Palmirani, M., Governatori, G., Contissa, G.: Modelling temporal legal rules. In: ICAIL
2011 Proceedings. ACM (2011)

28. Palmirani, M.: Time Model in Normative Information Systems. In: Proceedings of the
Workshop The Role of Legal Knowledge in eGovernment, ICAIL 2005 (2005)

29. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting argument in legalrea-
soning. Artificial Intelligence and Law 4(3-4), 331–368 (1996)

30. Proceeding of the 13th International Conference on Artificial Intelligence and Law, Pitts-
burgh, June 6-10. ACM, NY (2011)

31. Rotolo, A., Sartor, G., Smith, C.: Good faith in contract negotiation and performance. In-
ternational Journal of Business Process Integration and Management 5(4) (2009)

32. Rotolo, A.: Rule-based agents, compliance, and intention reconsideration in defeasible log-
ic. In: Pasche, A. (ed.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 67–82. Springer,
Heidelberg (2011)

33. Rubino, R., Rotolo, A., Sartor, G.: An OWL Ontology of Fundamental Legal Concepts. In:
JURIX 2006, pp. 101–110. IOS (2006)

34. RuleML. The Rule Markup Initiative, http://www.ruleml.org (August 20, 2009)
35. Sartor, G., Palmirani, M., Francesconi, E., Biasiotti, M.: Legislative XML on Semantic

web. Springer, Heidelberg (2011)
36. Sartor, G.: Legal concepts as inferential nodes and ontological categories. Artif. Intell.

Law 17(3), 217–251 (2009)
37. Sartor, G.: Legal Reasoning: A Cognitive Approach to the Law. In: Pattaro, E., Rottleuth-

ner, H., Shiner, R., Peczenik, A., Sartor, G. (eds.) A Treatise of Legal Philosophy and
General Jurisprudence, vol. 5. Springer, Heidelberg (2005)

38. Wagner, G., Antoniou, G., Tabet, S., Boley, H.: The abstract syntax of RuleML – towards
a general web rule language framework. In: Proc. Web Intelligence 2004, pp. 628–631.
IEEE Computer Society (2004)

Author Index

Aasman, Jans 12
Ali, Chaudhry Usman 97
Al Manir, Mohammad Sadnan 33
Artikis, Alexander 155, 237
Athan, Tara 17

Bak, Jaroslaw 112
Becker, Moritz Y. 49
Biletskiy, Yevgen 58
Billet, Yves-Gaël 222
Boley, Harold 17, 97, 298
Bragaglia, Stefano 267
Brzykcy, Grażyna 112

Chesani, Federico 267
Courter, Andrew 140
Cristani, Matteo 282

de Sainte Marie, Christian 1

Fayolle, Jacques 222
Feldman, Jacob 208
Fry, Emory 252, 267

Gao, Le 140
Governatori, Guido 282, 298
Gravier, Christophe 222
Grosof, Benjamin 13

Hall, John 14

Jedrzejek, Czeslaw 112

Kao, Eric Jui-Yi 66

Mackay, Jason 49
Meersman, Robert 193
Mello, Paola 267
Montali, Marco 267

Nazarenko, Adeline 179

Olivieri, Francesco 282
Omrane, Nouha 179
Osmun, Taylor 58

Paliouras, Georgios 155
Palmirani, Monica 298
Paschke, Adrian 97, 128, 298
Pitt, Jeremy 237
Pohlman, Marlin 230

Rosina, Peter 179
Rotolo, Antonino 298

Scannapieco, Simone 282
Schaumeier, Julia 237
Shiva, Foruhar Ali 171
Shuman, Mary 140
Skarlatidis, Anastasios 155
Sottara, Davide 252, 267
Spies, Marcus 2
Springer, Florian 128
Szulman, Sylvie 179

Tabet, Said 230, 298
Tang, Yan 193
Thébeau, Patrick 58
Theobald, Martin 81

Urban, Susan D. 140, 171

Vanthienen, Jan 10
Vincent, Paul 11, 128
Vouros, George A. 155

Webber, David R.R. 15
Westphal, Christoph 179

Yahya, Mohamed 81

Zhao, Zhili 97

	Title
	Preface
	Conference Organization
	Table of Contents
	Keynotes Speakers (Abstracts and Short Papers)
	Business Executives Sharing Knowledge with Inference Engines: News from the ONTORULE Project
	Rule-Enhanced Domain Models for Cloud Security Governance, Risk and Compliance Management
	Introduction
	Domain Models and Intelligent Processing in Software Assurance and GRC for Cloud Services
	Domain Ontologies and Rules Processing – The State of the Art
	Basic Architecture of Domain Models for Cloud Security GRC
	References

	Rules, Tables and Decisions: A Family History Tale
	Event-Driven Rules: Experiences in CEP

	Invited Presentations (Abstracts)
	Efficient Rule and Query Execution with CLIF++
	Recent Advances in the SILK Knowledge Representation and Its Usage
	Rules and OMG Standards
	Understanding NIEM and Rules Needs
	Introduction
	Short Term Needs

	Rules, Semantic Technology, and Cross-Industry Standards
	Design and Implementation of Highly Modular Schemas for XML: Customization of RuleML in Relax NG
	Introduction
	Design of the RuleML Relax NG Schema
	GUI Web-App and Language Options Encoding
	Parameterized Schema
	Design Patterns for Modules
	Transformation

	Implementation of the RuleML Schema Design
	Implementation in RuleML 0.91
	Implementation in RuleML 1.0
	Preview of Proposed RuleML 1.1

	Conclusions
	References

	Towards RIF-OWL Combination: An Effective Reasoning Technique in Integrating OWL and Negation-Free Rules
	Introduction
	Preliminaries
	Combination of DLs and Rules

	Reasoning in Combined Knowledge Base
	Our Approach
	Properties of the Algorithm
	Computational Complexity of the Algorithm

	Restrictions on Knowledge Base Components
	Disjunction
	Modular Reasoning
	Named/Unnamed Objects
	Equality (Inequality)

	Implementation and Experiments
	Relationship with Other Combination Approaches
	Conclusion
	References

	Relaxed Safeness in Datalog-Based Policies
	Introduction
	Datalog and Safeness: Background
	I/O-Safeness
	Advanced Applications of I/O-Safeness
	Preventing Intractable Policies
	Constraints and Functions
	Hierarchical Policies

	Conclusion
	References

	Knowledgebase Representation Language Interoperation Tool
	Introduction
	System Architecture
	Java Interoperation Object (JIO)
	Slots

	Positional-Slotted Knowledge (POSL) JIO Mapping
	Notation 3 (N3)
	Example Usage and Conclusion
	References

	Rules and Automated Reasoning
	Consistency and Provenance in Rule Processing
	Introduction
	Motivating Example
	Formal Development
	Complexity and Rewriting
	NP-Completeness

	Provenance
	Computing Existential Answers via Provenance
	Answer Set Programming
	Related Work
	Future Work
	References

	D2R2: Disk-Oriented Deductive Reasoning in a RISC-Style RDF Engine
	Introduction
	Contributions

	Related Work
	Datalog Query Evaluation
	QSQR with Dynamic Join Ordering and Chaining
	Join Ordering
	Sub-query Scheduling

	D2R2 System Architecture
	RDF-3X
	RDF-3X Integration
	Recursive Query Evaluation

	Experimental Evaluation
	Handling of Extensional Queries
	Effect of Chaining
	YAGO Comparative Runs
	LUBM Comparative Runs

	Conclusions
	References

	Principles of the SymposiumPlanner Instantiations of Rule Responder
	Introduction
	Related Work
	Rule Responder for Symposium Organization
	Issues in Symposium Organization
	Interaction with Users
	Communication between Distributed Agents
	Integration with External Information
	Role Assignment

	Conceptual Architecture
	Organizational Agent
	Personal Agents

	SymposiumPlanner System
	Mule Enterprise Service Bus
	Platform-Specific Rule Responder Agents
	Reaction RuleML
	SymposiumPlanner User Client

	Conclusion
	References

	Extended Rules in Knowledge-Based Data Access
	Introduction
	Rule-Based System and Reasoning Scheme
	Rules and Facts
	Rule-Based System
	Magic Transformation
	Sideways Information Passing and Adorned Rules

	Query Answering with a Rule-Based System
	Overview of the Method
	Generation of the Extended Rules
	Mapping between Predicates and Relational Data
	Reasoning and the Query Algorithm

	Query Implementation and Performance Evaluation
	Implementation
	Performance Evaluation

	Related Work
	Conclusions and Future Work
	References

	Rule-Based Event Processing and Reaction Rules
	Standards for Complex Event Processing and Reaction Rules
	Introduction
	The CEP Standards Reference Model
	Business and Technical Perspective
	Domain Specific and General Standards
	Standards per the CSRM Classification

	Standards in CSRM Areas
	CEP Reference Architecture and CEP Design Patterns
	Standard CEP Vocabularies and Semantic Ontologies
	Computational Independent Standard for Simple and Complex Event Modeling
	CEP Technology Standards

	Conclusion
	References

	Supporting Data Consistency in Concurrent Process Execution with Assurance Points and Invariants
	Introduction
	Related Work
	Background for the Use of Invariants
	Delta-Enabled Grid Services
	Service Composition and Recovery with APs

	Invariant Monitoring System
	Overview
	Invariant Specification

	Prototype of the Invariant Monitoring System
	Registration of Invariants and Monitored Objects
	The Invariant Evaluation Web Service
	The Delta Analysis and Filtering Process

	Testing and Evaluation
	Summary and Future Work
	References

	Probabilistic Event Calculus Based on Markov Logic Networks
	Introduction
	Event Calculus: A Succinct Presentation
	Event Calculus in Markov Logic Networks
	The Law of Inertia in Probabilistic Event Calculus
	Application to Activity Recognition
	Related Work
	Conclusions
	References

	On Applying Temporal Database Concepts to Event Queries
	Introduction
	Temporal Database Operators
	Example Use Cases
	A Relational Framework for Temporal Event Queries
	Relational Algebra for Temporal Queries
	Incremental Evaluatiion of Temporal Queries

	Summary and Future Work
	References�

	Vocabularies, Ontologies and Business Rules
	Lexicalized Ontology for a Business Rules Management Platform: An Automotive Use Case
	Introduction
	The Audi BRMS or Platform
	The Role of the Lexicalized Ontology in BRMS
	Formalization of Domain Knowledge
	Semantic Annotation of Documents
	Normalization of Vocabularies
	Documentation of the Shared Knowledge
	Formalism for the Audi Lexicalized Ontology

	Experiments in the Audi Use Case
	The Audi BRMS Ontology
	Semantic Querying
	Document Mining

	Related Work
	Conclusion
	References

	Towards Directly Applied Ontological Constraints in a Semantic Decision Table
	Introduction
	Background: Semantic Decision Tables
	Directly Applied Ontological Constraints
	Value Constraint
	Cardinality and Occurrence Frequency
	Mandatory
	Uniqueness
	Exclusive-Or
	Subtyping

	Related Work
	Discussion, Conclusion and Future Work
	References

	Representing and Solving Rule-Based Decision Models with Constraint Solvers
	Introduction
	The Decision Model
	Rule Families
	Business Glossary
	Top-Down Design
	Test Cases and Real Data

	Constraint-Based Implementation
	Fact Types as Constrained Variables
	Rules as Conditional Constraints
	Consistency Validation
	Finding Solutions for Partially Defined Decision Models

	Related Work and Future Development
	References

	SWRL-Based Context Awareness for Application Servers Hosting Digital Services
	Needs for a Semantic CAS
	Related Works
	Context-Awareness
	Architectures of Context-Aware Applications
	Existing Works on Context-Aware Systems

	Rule Driven Context-Awareness
	Storing Context in a Domain Ontology
	Reference Scenario

	Conclusion
	References

	Cloud Computing and Rules
	Cloud Computing: Combining Governance, Compliance, and Trust Standards with Declarative Rule-Based Frameworks
	Introduction
	Background
	Key Focus Areas

	Multi-security and Cloud
	Cloud Computing and RuleML
	Policy-Based Multi-tenancy
	Conclusions
	References

	Role Assignment in Institutional Clouds for Rule-Based Enterprise Management
	Introduction
	Background
	Institutional Rules
	Institutionalised Power
	Dynamic Specifications
	Institutional Rules as Dynamic Specifications

	Institutional Rules for Role Assignment
	Dynamic Specification of Role Assignment
	Fluents (Institutional Facts)
	Expressed Preferences – Voting
	Operational-Choice Rule – Member Role Assignment
	Collective-Choice Rule – Gatekeeper Role Assignment

	Testbed and Evaluation
	Testbed Specification and Algorithm Design
	Experimental Results and Discussion

	Related and Further Work
	Summary and Conclusions
	References

	Clinical Semantics and Rules
	Standards, Data Models, Ontologies, Rules: Prerequisites for Comprehensive Clinical Practice Guidelines
	Introduction
	Foundational Pillars
	Decision Logic
	Guideline Formalisms
	Clinical Data Models
	Semantics and Terminology Services

	Towards Semantic Guidelines
	Uncertainty Enriched Systems
	Vagueness
	Uncertainty

	Runtime Adaptation
	Distributed Decsion Support Services and Knowledge Management Respository
	Conclusion
	References

	Event Condition Expectation (ECE-) Rules for Monitoring Observable Systems
	Introduction
	Expectations, Their Fulfillment and Violation
	Related Works
	Desiderata for the Notion of Expectation
	Desiderata for a Framework Supporting Expectations
	Desiderata for the ECE-Rules

	The Drools Rule Engine
	The ``expect'' Extension to the Drools Language
	The ECE Language
	The Expectation Meta-Model
	Rule Generation

	A Use Case in the Medical Field
	Conclusions
	References

	Rules and Norms
	Designing for Compliance: Norms and Goals
	Introduction
	Logics
	Language of Modal Defeasible Logic
	Inference in Modal Defeasible Logic

	Norm and Goal Compliance
	Designing for Compliance
	Revision in Case of Non Compliance
	Compliance by Design

	Conclusions
	References

	LegalRuleML: XML-Based Rules and Norms
	Rationale
	Characteristics of Legal Norms
	Semantic Features
	Logic Features
	Legal Process Features

	LegalRuleML
	Legal Meta Data
	Legal Operators
	Semantic Qualification of Negation
	Extension of the RuleML Modules

	Conclusion
	References

	Author Index

