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Abstract. A multisignature scheme allows an ad hoc set of users to sign
a message so that the resulting single signature certifies that the users en-
dorsed the message. However, all known multisignatures are either at the
price of complexity and additional trust of Certificate Authority (CA),
or sacrificing efficiency of computation and communication (including
both bandwidth and round). This paper proposes a new multisignature
scheme with efficient verification in the plain public key model. Our mul-
tisignatures enjoys the most desired features: (1) Our plain public key
model-based multisignatures do not impose any impractical key setup
or PKI requirements; (2) Our multisignature scheme is non-interactive,
which saves computation and communication in signature generation;
(3) Through pre-computation, our scheme achieves O(1) verification in
the plain public key model; (4) Provable tighter security under the stan-
dard CDH assumption ensures high level of security in both practice
and theory. Hence, our non-interactive multisignatures are of great use
in authentication of routes in networks.

1 Introduction

Multisignatures extend standard digital signatures to allow an ad hoc set of
� users to jointly sign a message which are very useful in applications such
as contract signing, authentication of routes in mobile networks, distribution
of a certificate authority (CA), aggregation of acknowledgements in multicast
and secure vehicular communications (refer to [1,2,3,4,5,6,7,8,9,10] for detailed
application scenarios).

Due to many practical reasons for applications, we desire that a multisignature
scheme might have the following features: (1) the resulting signature is shorter
than � separate signatures, even constant for �; (2) Multisignature generation
and verification (even key generation) are very fast; (3) The communication
overhead including rounds and messages transmitted in multisignature genera-
tion should be as fewer as possible (even reduced to a minimum); (4) Trust on
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the trusted third party (e.g., Certificate Authority) should be reduced as less as
possible. All these specific aspects are important in the real life applications of
multisignatures.

1.1 Rogue Key Attacks

In order to generate multisignatures of constant size, the homomorphic prop-
erties of arithmetic operations involved in standard signatures are often used.
However, these homomorphic properties that enable aggregation of signatures
into multisignatures often incurs rogue key attacks for multisignature schemes.
In this attack, the adversary chooses its public key as a function of those of
honest signers in such a way that it can forge multi-signatures easily[2,5]. For
example, rogue key attack succeeds if the verification key (combination of public
keys of signers) for multisignature has a fixed formula as PK =

∏�
i pki where

the adversary can choose pka = gs · (∏�−1
i pki)−1 and know the corresponding

private key s for PK = pka

∏�−1
i pki = gs (e.g., [11,12,3,13,14] are vulnerable

to such attacks in the plain setting). Actually rogue-key attack is considered as
a main menace for discrete logarithm based multi-signature schemes.

Early approaches prevent rogue-key attacks for multisignatures at the cost of
complexity and expense in the scheme, or using unrealistic and complicate key
setup assumptions on the public-key infrastructure (PKI)[1]. These key setup
operation assumptions include dedicated key generation (DKG), knowledge of
Secret Key (KOSK), proof of possesion of private key (POP) and the plain public
key model (PPK).

The first effort to prevent rogue key attacks (called DKG) is due to Micali et
al. [1]. However, the DKG is impractical because of expensive interactions of key
generation, complex and large public keys, and static group of signers. The sec-
ond approach, KOSK assumption needs a party to prove knowledge of its secret
key, during public key registration with a certificate authority (CA). The require-
ment of handing over the secret keys leads to obtaining simple constructions and
proofs of security [3,13]. However, the existing public key infrastructures (PKIs)
do not require proofs of knowledge of secret keys [15].

The third one is contributed by [14] and [5,6] where users are required to
provide proofs of procession of secret keys (during key registrations) in order to
prevent rogue key attacks. Ristenpart and Yilek in [14] showed that the schemes
in [3,13] by using the Key Registration (KR) model can be improved more secure
without reducing efficiency. A similar idea named the Key Verification (KV)
model was later proposed in [5,6], but having the multisignature receiver verify
the POP message (together with verification of PKI certificates)[16], instead of
the CAs during the key registration.

We note that either the KR model or the KOSK assumption needs non-
standard trust on the CAs because it requires the CAs must perform specific
verifications. If a CA is corrupted then the adversary can easily forge multisigna-
ture through rogue key attacks. On the other hand, the interaction and verifica-
tion during key registration also causes additional computational burden for the
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CAs. While the KV model causes additional computational cost of the verifier
(linear to the number of signers) during the verification of a multisignature.

Obviously, it is highly interesting and desirable to provide multisignature
schemes which are secure in the plain setting where no special registration pro-
cess is assumed for public keys registration. Bellare and Neven provided such a
scheme in the plain (public-key) model [2], the others are shown in [5,17,18]. In
the plain (public-key) model, there is no dedicated key generation (DKG) pro-
cedures, or well-formedness proofs accompanied to the public keys and a party
can obtain a certificate on any arbitrary key without any proof.

1.2 Multisignatures in the PPK Model

So far as we know, there are only very few multisignature schemes with provable
security in the plain public key model and all these multisignatures are proved
secure in the random oracle model [19].

The first multisignature in such a model was proposed by Boneh et al [18]
(for brevity BGLS), which is implied by the construction so-called aggregate
signature [20]. The main drawback of the BGLS scheme is the high cost of
verification. In fact verification of a single multisignature of the BGLS scheme
requires O(�) pairings where � is the number of signers participating in signing,
making it extremely impractical.

Under the DL assumption Bellare and Neven [2], provided a concrete mul-
tisignature scheme (denoted BN) with rather an efficient verification in the PPK
model. Followed the idea of [2], a lot of interactive multisignature schemes are
proposed [5,17] in the PPK model. However, the interaction is quite expensive
in many important application because communicating even one bit of data may
use significantly more power than executing one 32-bit instruction [21] and also
in many settings, communication is not reliable, and so the fewer interactions,
the better.

The only known non-interactive multisignature scheme with efficient verifi-
cation in the PPK model (the QX scheme) is proposed by Qian and Xu quite
recently in [22]. Comparing with the BGLS scheme, the QX scheme improves
verification efficiency by reducing pairing computation complexity O(�) to O(1).
However, security reduction of the QX scheme is even looser than that of the BN
scheme[2]. Intuitively, a tight security (proof) means that the scheme is almost
as hard to break as the underlying cryptographic problem to solve. Therefore, it
is always welcome to find a non-interactive multisignature scheme in the PPK
model with more tighter security reduction.

1.3 Our Contributions

We present a non-interactive multisignature scheme, which operates in the plain
public-key model and is proven secure based on the standard CDH assumption
in the random oracle model. Compared with the BGLS scheme, our scheme min-
imize the verification cost, by reducing (� + 1) pairings to two pairings through
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Table 1. Multisignature Comparison

Scheme Assump. Rounds Sign Comm. Cost Verify σ Size

BN [2] < DL 3 1 exp |G′|+ |q|+ l0 1 mexp(�+1) |G′|+ |q|
BGLS [18,20] ≈ CDH 1 1 exp |G| (� + 1) pr |G|

QX[22] << CDH 1 1 exp |G| 2pr + mexp(�+1) |G|
Ours ≈ CDH 1 2 exp 2 |G| 2 pr 2 |G|

Remark 1. For each scheme, we summarize the underlying cryptographic assumption;
number of rounds of the signing protocol (“1” means non-interactive); the compu-
tational complexity for each signer (Sign); the communication cost required for the
signing (Comm. Cost) ; the computational complexity for verifying a multisignature
(Verify); the size of multisignature (σ Size). For CDH-based schemes we assume the
symmetric pairing e : G×G→ GT for convenient comparison. For DL-based schemes,
we assume we work over a 160-bit elliptic-curve (EC) group G

′. We assume the order
of G, GT and G

′ are equal (i.e., p = q). We denote by exp an exponentiation in group
G (or G

′ and GT ) whose order is q (or p), and by mexp(t) a multi-exponentiation with
t exponentiation coefficients (e.g., mexp(2) corresponds to gk1hk2 for some g, h, k1, k2),
by � the number of signers, by l0 the length of hash value, by pr a bilinear pairing, by
|G| the bit length of the representation for elements in group G, and by |p| the bits
length of p. DL stands for Discrete Logarithm, CDH stands for Computational Diffie-
Hellman. “ << ” and “ < ” means very loose security and loose security, respectively.
“ ≈ ” means close security.

pre-computation (cf. Table 1)1. The improvement in verification time is substan-
tial because one pairing costs about 6-20 exponentiations [2]. Given � signers,
the verification key is fixed (consisting of � partial verification keys that can be
derived from the public keys independently), which means that we can compute
once and for all, the verification key before signing or verification.

On the other hand, our scheme also enjoys a tighter security proof, compared
with both the BN scheme and the QX scheme. Then security parameters of our
scheme could be smaller than those of both the BN scheme and the QX scheme,
while preserving the same security level. Actually, our security proof shows that
an adversary can at most with probability roughly qs ·ε break our multisignature
scheme where ε is the upper bound of probability for breaking the underlying
cryptographic problem. While in the BN scheme the corresponding upper bound
is roughly

√
qh · ε. Let qh = 260, qs = 230, ε = 2−80, our scheme ensures 50 bits

of security level, while the BN scheme (or the QX scheme) ensures at most 10
bits of security level in practice. Compared with the QX scheme, our scheme
also saves the mult-exponentiation in verification of a multisignature. Detailed
comparisons amongst our scheme, the BN scheme, the BGLS scheme and the
QX scheme are depicted in Table 1.

1 Since the signers’ public keys are used as prefixes to the corresponding message in
the BGLS scheme, verification of the BGLS multisignature needs (� + 1) pairings
necessarily.
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Our technique for dealing with the rogue key attack in the plain public-key
model is quite different from those of [2]. Instead of using a dynamic key with
respective to messages [2] as the verification key for the multisignatures, we use
a combined key derived from the public keys of signers, irrelevant to messages.
Therefore, we can pre-compute the verification key for any group of signers
before knowing the signed messages. Such pre-computation could be done when
the certificates of public keys are verified.

The structure of our multisignatures are similar to that of the WMS scheme
[13] and its variant [14] which enables us to reduces the communication rounds of
multisignatures to optimal (non-interactive). The computational cost and com-
munication cost (the amount of data transmit in generating a single multisig-
nature) are the same as the WMS scheme [13] whose security holds under the
KOSK assumption, but not secure in the PPK model. Moreover, our multisig-
nature reaches high level of security, in fact our scheme is almost as secure as
the Computational Diffie-Hellman (CDH) problem.

2 Preliminaries

We recall the basic definitions for multisignatures, then review the cryptographic
complexity assumption in this section. We the notations of [22] in the following.

2.1 Definitions of Multisignatures

The definition of interactive multisignatures in the plain public-key model was
first formalized in [2] with � signers, each having as input its own public and
private keys as well as the public keys of the other signers. The signers interact
via a protocol to generate a multisignature.

In this paper, we consider the following non-interactive variant: Given the
same inputs as in an interactive scheme, each signer contributes a partial sig-
nature without interacting with each other, and the partial signatures can be
“assembled” into a multisignature by any one.

A non-interactive multisignature scheme MS = (Setup, Gen, MSign, MVf) con-
sists of three algorithms and one protocol (adapted from [2]):

– Setup(1λ): This is a randomized algorithm that takes as input a security pa-
rameter λ and produces a set of global public parameters pp. (This algorithm
should be run by a trusted party and pp can also be viewed as a common
reference string.)

– Gen(pp): This is a randomized algorithm that, on input of public parameters
pp, outputs (an honest) signer i’s private/public key pair (ski, pki).

– MSign(pp, {ski}, M, L): Given public parameters pp, a message M and a
(multi)set L = (pk1, . . . , pk�) of purported signers (note that pki = pkj

for some i �= j is allowed in the plain public-key model because one can
simply claim another’s public key as its own), signer i uses its private key
ski to compute a partial signature σi and then broadcasts σi. Given σj for
j = 1, . . . , �, any one can obtain a multisignature σ with respect to the public
keys on L.
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– MVf(pp, M, σ, L): Given L = (pk1, . . . , pk�), pp, a message M , a multisigna-
ture σ, this deterministic algorithm outputs 0 (reject) or 1 (accept).

We require a multisignature scheme to be correct, meaning that every multisig-
nature σ obtained from the partial signatures of legitimate signers (according to
MSign) is always accepted as valid.

Experiment ExpMS
uu.cma(A):

1. pp ← Setup(1λ); (pk�, sk�) ← Gen(pp); M ← φ where M is the set of
pairs (M, L) previously queried for signatures.

2. Run A(pp, pk�) as follows:
– A can choose arbitrary public key for any user, possibly as a function

of the honest user’s public key pk�.
– To obtain a multisignature, A can invoke the execution of

MSign(·, ·, ·, ·) (concurrently) by presenting a message M and a
(multi)set L = (pk1, . . . , pkn) for any n, as long as pk� appears at
least once in L.

– If the multisignature scheme uses hash functions that are treated as
random oracles, A can submit strings and obtain their corresponding
hash values.

3. Eventually, A outputs an alleged multisignature σ� on a message M� with
respect to L� = (pk1, . . . , pk�). If

MVf(pp, M�, σ�, L�) = 1

and
(pk� ∈ L�) ∧ (M�, L�) /∈M = 1

then return 1, otherwise 0.

Fig. 1. Experiment for security definition

Intuitively, security of multisignature scheme requires that it is infeasible for
adversary A to forge a multisignature with respect to a new message which
extends the classical security notion of digital signature scheme known as ex-
istential unforgeability under adaptively chosen-message attacks [23]. Following
[2,5], we can assume there is a single honest signer. Then, unforgeability must
hold despite that in the plain public-key model, the adversary can corrupt all
other signers and choose their public keys arbitrarily (even registering the pub-
lic key of the honest user as their own public keys), and can interact with the
honest signer in any number of concurrent signing instances before outputting
its forgery.

Formally, we define the advantage of A against multisignature scheme MS as
the probability that the experiment ExpMS

uu.cma(A) in Figure 1 outputs 1.
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We say the adversary (t, qs, qh, �, ε)-breaks multisignature scheme MS, if it in
time t, after qs signature queries or qs invocations of MSign(·, ·, ·, ·), and option-
ally qh queries to the hash functions (if any) that are treated as random oracles,
has an advantage at least ε in forging a multisignature co-signed by � signers,
namely

Pr[ExpMS
uu.cma(A) = 1] ≥ ε.

If there is no such adversary, we say the multisignature scheme is (t, qs, qh, �, ε)-
secure.

2.2 Cryptographic Complexity Assumption

Let G and GT be two (multiplicative) cyclic groups of prime order p where the
group action on G and GT can be computed efficiently, g be a generator of
G, e : G × G → GT be an efficiently computable map (i.e., pairing) with the
following properties:

• Bilinear: for all (u, v) ∈ G×G and a, b ∈ Zp, e(ua, vb) = e(u, v)ab;
• Non-degenerate: e(g, g) �= 1.

For specific applications, we recommend the asymmetric setting, namely G1 �=
G2 for bilinear maps (i.e., e : G1 × G2 → GT ), that allows for short signatures
without side-effect. Our scheme is also adaptable for such a setting. For more
details, refer to [24,25].

We define the computational Diffie-Hellman problem (with pairings) as follow.

Definition 1 (CDH). Given (g, ga, h) ∈ G × G × G for some a
R← Zp and

h
R← G, find ha ∈ G.

Define the success probability of an algorithm A solving the CDH problem as

Advcdh
A

def
= Pr

[
ha ← A(g, ga, h) : g

R←G, a
R←Zp, h

R←G

]
.

The probability is taken over the uniform random choice of g from G, of a from
Zp, of h from G, and the coin tosses of A. We say the algorithm A (t, ε)-solves
the CDH problem if A runs in time at most t and Advcdh

A ≥ ε. We say the CDH
problem is (t, ε)-intractable if there is no algorithm A that can (t, ε)-solve it.

3 Our Construction

Our scheme uses the Waters-like signature (e.g., σ = (sk · H(m)r, gr)) to con-
struct multisignatures, however this scheme is different from the WMS multisig-
nature scheme in [13] since security of our scheme is proved in the plain public
key model (with random oracles) while the WMS multisignature (whose security
is proved in the KOSK model) must impose additional requirement on the tra-
ditional PKIs to ensure security (e.g., it requires the CAs and users to perform
additional protocols to get public key certificated).
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Our scheme does not require the signers to share a common random or commit
[2,17] during multisignature generation as well, otherwise it seems impossible to
reduce the round of signing to minimum. Although our construction is similar to
the WMS scheme [13], security of multisignatures in the plain public key model
does not rely on the trust of the CAs because of the plain public key model.
While security of the WMS scheme are proved in the KOSK model that means
security also relies on the trust of the CAs. Therefore, our scheme reduces the
trust of the third party (e.g., CA) because even a malicious CA can’t do any
harm to the honest users in our system.

Our scheme consists of the following algorithms (or protocols):

Setup(1λ): On input a security parameter λ, select global public parameters
pp = (G, GT , p, g, e, H, Hm), where Hm : {0, 1}∗ → G and H : G → G are
secure hash functions (viewed as random oracles here). This algorithm may
be run by a trust party.

Gen(pp): On input pp, an honest user i selects xi
R← Zp and its private/public

key pair is (ski, pki) where

ski = H(pki)xi , pki = gxi .

MSign(pp, {ski}, M, L): On input pp, message M and L = (pk1, . . . , pk�), user i
(1 ≤ i ≤ �) executes the following:

1. Pick a random ri
R←Zp and compute

si ← ski ·Hm(M ||L)ri and ti ← gri.

2. Broadcast σi = (si, ti) as the partial signature for message M (which is
a standard signature already).

Given partial signatures σ1, . . . , σ�, any one can compute the multisignature
for group L as follows:

σ =
⊗

1≤j≤�

σj = (
∏

1≤j≤�

si,
∏

1≤j≤�

ti).

MVf(pp, M, σ, L): Given pp, L = (pk1, . . . , pk�), message M , and an alleged
multisignature σ = (s, t), a verifier accepts the multisignature if

e(s, g) = e(Hm(M ||L), t) ·
∏

pki∈L

Ai,

where Ai = e(H(pki), pki) and rejects otherwise.

Theorem 1. Our multisignature scheme is correct. Namely any multisignature
generated by legal signers can be verified.
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Proof. The scheme is correct because

e(s, g) = e

((
�∏

i=1

H(pki)xi

)

·Hm(M ||L)r, g

)

= e(Hm(M ||L)r, g) ·
�∏

i=1

e(H(pki), gxi)

= e(Hm(M ||L), t) ·
�∏

i=1

e(H(pki), pki)

= e(Hm(M ||L), t) ·
∏

pki∈L

Ai,

where

r =
�∑

i=1

ri and t = gr.

Remark 2. In our scheme, each signer generates its own randomness. Without
any shared common random generator, we reduce the round of communication
to minimum. On the other hand, our multisignature generation is also quite
simple and straightforward: each signer produces its Waters-like signature σ =
(sk ·H(m)r, gr) on the message, then the multisignature is just the component-
wise product of these signatures.

Remark 3. To compute Ai = e(H(pki), pki) needs one pairing computation,
while this computation is once for all and can be finished when checking the
validity of the public key certificates of signers. Therefore this computation of
pairing can be saved through pre-computation before multisignature verification
since Ai is independent from messages. Comparing with those in the plain pub-
lic key model, our multisignature scheme is the most efficient one in verification
since our scheme achievesO(1)-verification (respective to pairing computations).

Remark 4. As in many applications, signers might not know who (included L)
are going to sign the message M , it is also interesting to find a proper mul-
tisignature scheme that can be applied to this situation. Indeed, we only need
replace “M ||L” by “M” in our signing protocol to yield such a scheme. How-
ever, it security only prevents forgery on a new message [13,14], not a pair of
message/signers.

4 Security Analysis

We state the result of security for our multisignature scheme in the following
theorem.
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Theorem 2. If there is an algorithm A in the random oracle model that (t, qs,
qh, �, ε)-breaks our scheme, then there is an algorithm B that (t′, ε′)-solves the
CDH problem, where

t′ = t +O(qh + 3qs + � + 2)Te and ε′ =
ε

e(qs + 1)
,

Te is the running-time of exponentiation in G, qh and qs are the bound of two
hash queries to Hm, H and signature queries, respectively, and the mathematical
constant e is the base of the natural logarithm.

Proof. The strategy is to construct algorithm B that solves the computational
Diffie-Hellman problem, by utilizing algorithm A which (t, qs, qh, �, ε)-breaks our
multisignature scheme where qh = qH +qHm is the total number of hash queries.

Suppose B is given (g, ga, h) ∈ G×G×G for a
R← Zp, h

R← G, and asked to find
ha. Without loss of generality, assume user 1 is the honest signer. B simulates
the random oracles Hm(·) and H(·), the signature oracle OMSign(pp, pk�, M, L)

for providing user 1’s partial signatures valid under the public key pk� def
= pk1 =

gx1
def
= ga with x1

def
= a unknown to B.

Setup. B gives A the public key pk� = ga and other public parameters (G, GT ,
e, Hm(·), g, H(·)).

Hm(M ||L)-Queries. B responds to queries to random oracle Hm(·) as follows:

1. If there is a tuple (M ||L, b, r, Hm(M ||L)) in the Hm-list which is initially
empty, return Hm(M ||L); otherwise, execute the following.

2. Choose r
R←− Zp, a bit b

δ←− {0, 1} such that b takes 1 with probabil-
ity δ that will be specified later, return Hm(M ||L) = hb · gr and add
(M ||L, b, r, Hm(M ||L)) to the Hm-list.

H(X)-Queries. B initializes an H-list which only has (pk�, h · gk, k) for k
R←−

Zp, by setting H(pk�) = h · gk and then executes as follows:

1. If (X, H(X), k) has been defined, return H(X); otherwise do the follow-
ing.

2. Choose k
R←− Zp, return H(X) = gk and add (X, H(X), k) to the H-list.

Note that if the argument of the query cannot be parsed as X ∈ G, B simply
returns a random element of G, while preserving consistency if the same
query has been asked before.

OMSign(pp, pk�, M, L)-Queries. B proceeds as follows:

1. If pk� /∈ L, return ⊥ and abort; otherwise find (M ||L, b, r, Hm(M ||L))
(where Hm(M ||L) = hb ·gr) in the Hm-list. (We assume that A has asked
the corresponding hash values; otherwise B just acts as if it is responding
to the hash queries to Hm(·).)
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2. If b = 0, abort; otherwise randomly choose α from Zp and compute

s1 = (ga)k−r(hgr)α

= (hgk)x1(hgr)α−x1

= H(pk1)x1Hm(M ||L)α−x1 ,

t1 = gα−x1 = gα(gx1)−1 = gα(ga)−1.

3. Output σ1 = (s1, t1).
Note that σ1 = (s1, t1) is valid when we set randomness r′ = α− a.

Output ha. Eventually A outputs a multisignature forgery σ = (s, t) on mes-
sage M� with respect to L = (pk� = pk1, pk2, . . . , pk�), where (M�, L) /∈M
(the set of previously queried messages and the signing group for partial
signatures from user 1). Since σ is valid, we know that for some d ∈ Zp,

s =

(
�∏

i=1

H(pki)xi

)

·Hm(M�||L)d, t = gd.

Then, B executes the following to compute ha:
1. Perform additional queries H(pki) for 1 ≤ i ≤ �, making sure that H(pki)

for 2 ≤ i ≤ � is defined.
2. Let J be the index such that pki = pk1 and Δ be the number of such

keys for 1 ≤ i ≤ �.
3. Find (M�||L, b�, r�, Hm(M�||L)) in the Hm-list.
4. If b� = 1, abort; otherwise b� = 0 compute and output

ha =

⎛

⎝s · t−r� ·
∏

pki �=pk1

pk−ki

i · (ga)−k1Δ

⎞

⎠

Δ−1

(4.1)

because

s · t−r� ·
⎛

⎝
∏

pki �=pk1

pkki

i

⎞

⎠

−1

· (ga)−k1Δ

= s ·
(
g−r�

)d

·
⎛

⎝
∏

pki �=pk1

(gki)xi

⎞

⎠

−1

· (ga)−k1Δ

= s ·Hm(M�||L)−d

⎛

⎝
∏

pki �=pk1

H(pki)xi

⎞

⎠

−1

· (ga)−k1Δ

=
∏

pki=pk1

H(pki)xi · (ga)−k1Δ

=
(
(hgk1)x1

)Δ · (gx1)−k1Δ

= haΔ.

where H(pki) = gki for pki �= pk1 and x1 = a.
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Although B perfectly simulates the random oracle Hm(·), in the simulation of
OMSign(·, ·, ·, ·) B succeeds with probability δ, namely the probability that bi = 1
for each i = 1, . . . , qs. Thus B doesn’t abort in the simulation of the signature
oracle with probability

Pr

[
qs∧

i=1

(bi = 1)

]

=
qs∏

i=1

Pr [bi = 1] = δqs .

When A outputs a valid forgery, B will abort if b� = 1. Therefore, B succeeds
with probability that b� = 0 at that time (i.e., 1 − δ). Let E denote the event
that A outputs a valid forgery, and Esuc|E denote the event B succeeds in solving
the CDH problem (i.e., outputting ha) under the condition that E happens. We
have Pr[Esuc|E ] = (1 − δ)δqs . Then,

εB = Pr[E
∧
Esuc]

= Pr[E ] · Pr[Esuc|E ]
= ε · (1 − δ)δqs

Let f(δ) = (1 − δ)δqs . Since f is maximal at δ0 = qs

qs+1 , we know f(δ0) ≥
1

e·(qs+1) , where the mathematical constant e is the base of the natural logarithm.
Therefore,

εB ≥ ε′

e · (qs + 1)
.

Finally, for the running-time of B, we take into account the running-time t
of A, the exponentiations on hash queries A made, and the linear number of
exponentiations in each signing query and � + 2 exponentiation on extracting
ha. This takes time at most t +O(qh + qs + � + 2) · Te, where Te is running-time
of exponentiation and qh, qs are the number of hash queries to Hm and signature
queries OMSign(·, ·, ·, ·), respectively.

5 Additional Related Work

The BGLS scheme was originally proposed for the purpose of aggregate signa-
tures [18], and was later shown (through a new analysis [20]) to be a secure
multisignature scheme as well. However, the BGLS scheme is extremely ineffi-
cient in multisignature verification. While in principle sequential aggregate sig-
natures (e.g., [26,27]) can be used to construct multisignatures, this approach
has drawbacks such as interactive signing (signers cannot contribute their partial
signatures independently) and expensive verification time. Other aggregate sig-
natures impose special strong assumption on time synchronization [28,29] which
also will impose additional operational assumption for multisignatures.
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6 Conclusion

We presented an efficient non-interactive multisignature scheme in the plain pub-
lic key model. Our scheme not only reduces the trust assumption on the third
party and but also achieves optimal rounds of communication. This scheme,
to our best knowledge enjoys a tighter security proof, comparing with non-
interactive construction in the plain public key model. Furthermore, our scheme
only needs O(1) (pairings) in verification through pre-computation. We believe
it is amongst the most practical schemes currently available in many realistic
application scenarios.

Acknowledgements. This work has been supported by the National Natural
Science Foundation of China, Grant No. 60873217, 61172085, 11061130539 and
61021004.

References

1. Micali, S., Ohta, K., Reyzin, L.: Accountable-Subgroup Multisignatures: Extended
Abstract. In: Eighth ACM Conference on Computer and Communications Security,
pp. 245–254. ACM Press, New York (2001)

2. Bellare, M., Neven, G.: Multisignatures in the Plain Public-Key Model and a Gen-
eral Forking Lemma. In: 13th ACM Conference on Computer and Communications
Security, pp. 390–399. ACM Press, New York (2006)

3. Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

4. Kim, J., Tsudik, G.: Srdp: Securing Route Discovery in DSR. In: Second Annual
International Conference on Mobile and Ubiquitous Systems: Networking and Ser-
vices, pp. 247–260. IEEE Press, Los Alamitos (2005)

5. Bagherzandi, A., Cheon, J., Jarecki, S.: Multisignatures Secure under the Discrete
Logarithm Assumption and a Generalized Forking Lemma. In: The 15th ACM
Conference on Computer and Communications Security, pp. 449–458. ACM Press,
New York (2008)

6. Bagherzandi, A., Jarecki, S.: Multisignatures Using Proofs of Secret Key Possession,
as Secure as the Diffie-Hellman Problem. In: Ostrovsky, R., De Prisco, R., Visconti,
I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 218–235. Springer, Heidelberg (2008)

7. Castelluccia, C., Jarecki, S., Kim, J., Tsudik, G.: Secure Acknowledgment Aggrega-
tion and Multisignatures with Limited Robustness. Comput. Netw. 50, 1639–1652
(2006)

8. Lin, X., Sun, X., Ho, P.H., Shen, X.: Gsis: A Secure and Privacy Preserving Protocol
for Vehicular Communications. IEEE Trans. on Vehicular Tech. 56, 3442–3456
(2007)

9. Lu, R., Lin, X., Zhu, H., Ho, P.H., Shen, X.: Ecpp: Efficient Conditional Privacy
Preservation Protocol for Secure Vehicular Communications. In: The 27th Con-
ference on Computer Communications IEEE INFOCOM 2008, pp. 14–18. IEEE
Press, Los Alamitos (2008)

10. Lu, R., Lin, X., Shen, X.: Spring: A social-based Privacy-Preserving Packet For-
warding Protocol for Vehicular Delay Tolerant Networks. In: The 29th Conference
on Computer Communications, IEEE INFOCOM 2010, pp. 14–19. IEEE Press,
Los Alamitos (2010)



354 Y. Zhou, H. Qian, and X. Li

11. Itakura, K., Nakamura, K.: A Public Key Cryptosystem Suitable for Digital Mul-
tisignatures. NEC Research & Development 71, 1–8 (1983)

12. Ohta, K., Okamoto, R.: Multisignature Schemes Secure Against Active Insider
Attacks. IEICE Transactions on Fundamentals E82-A, 21–31 (1999)

13. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate
Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

14. Ristenpart, T., Yilek, S.: The Power of Proofs-of-Possession: Securing Multiparty
Signatures Against Rogue-Key Attacks. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007)

15. Adams, C., Farrell, S., Kause, T., Monen, T.: Internet X.509 Public Key Infras-
tructure Certificate Management Protocol, cmp (2005)

16. Schaad, J.: Internet X.509 Public Key Infrastructure Certificate Request Message
Format (2005)

17. Ma, C., Weng, J., Li, Y., Deng, R.: Efficient Discrete Logarithm Based Multi-
Signature Scheme in the Plain Public Key Model. Des. Codes Cryptography 54,
121–133 (2010)

18. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432.
Springer, Heidelberg (2003)

19. Bellare, M., Rogaway, P.: Random Oracles Are Practical: a Paradigm for Designing
Efficient Protocols. In: 10th ACM Conference on Computer and Communications
Security, pp. 62–73. ACM Press, New York (1993)

20. Bellare, M., Namprempre, C., Neven, G.: Unrestricted Aggregate Signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 411–422. Springer, Heidelberg (2007)
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