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Preface

The 14th Information Security Conference (ISC 2011) was held on October
26–29, 2011 in Xi’an, China. The conference was sponsored by the China Com-
puter Federation (CCF) and co-organized by Xidian University and Shanghai
Jiao Tong University. The conference also received partial financial support from
the National 111 Program (B08038).

This year the conference received 95 submissions. They were evaluated on
the basis of their significance, novelty, technical quality, and practical impact.
Each paper was reviewed by three Program Committee members and the review-
ing process was “double-blind”. After careful reviews and intensive discussions,
25 papers were selected for presentation at the conference, and constitute this
Springer volume of proceedings, available at the conference. Beside the regular
program, ISC 2011 has two invited speakers, Feng Bao and Dieter Gollmann.
The Program Committee chose the paper “Replacement Attacks on Behavior
Based Software Birthmark” authored by Zhi Xin, Huiyu Chen, Xinche Wang,
Peng Liu, Sencun Zhu, Bing Mao, and Xie Li as the best paper, and the pa-
per “SudoWeb: Minimizing Information Disclosure to Third Parties in Single
Sign-On Platforms” authored by Georgios Kontaxis (student), Michalis Poly-
chronakis, and Evangelos Markatos as the best student paper. A few selected
papers have been recommended for publication in the ISI-ranked International
Journal of Information Security (IJIS).

There is a long list of people who volunteered their time and energy to put
together the conference and who deserve special thanks. Thanks to all the 58
members of the Program Committee and the 88 external reviewers for all the
hard work they put into evaluating the papers. We are also very grateful to all
the people whose work ensured a smooth organization process: the ISC Steering
Committee, and Masahiro Mambo in particular, for their advice; Publicity Co-
chairs Sara Foresti and Xiaofeng Chen; and Qingqi Pei, Yuanyuan Zuo, Xiaoyan
Zhu, and Yun Shi of the Organizing Committee.

Last but certainly not least, our thanks go to all the authors who submitted
papers and all the attendees.

August 2011 Xuejia Lai
Jianying Zhou

Hui Li
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Replacement Attacks on Behavior Based

Software Birthmark

Zhi Xin1, Huiyu Chen1, Xinche Wang1, Peng Liu2,
Sencun Zhu2, Bing Mao1, and Li Xie1

1 State Key Laboratory for Novel Software Technology,
Department of Computer Science and Technology,

Nanjing University, Nanjing 210093, China
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{mylobe.chen,xinchewang}@gmail.com
2 The Pennsylvania State University,

University Park, PA 16802, USA
sxz16@psu.edu, pliu@ist.psu.edu

Abstract. Software birthmarks utilize certain specific program charac-
teristics to validate the origin of software, so it can be applied to detect
software piracy. One state-of-the-art technology on software birthmark
adopts dynamic system call dependence graphs as the unique signature
of a program, which cannot be cluttered by existing obfuscation tech-
niques and is also immune to the no-ops system call insertion attack.
In this paper, we analyze its weaknesses and construct replacement at-
tacks with the help of semantics-equivalent system calls to unlock the
high frequent dependency between the system calls in an original system
call dependence graph. Our results show that the proposed replacement
attacks can destroy the original birthmark successfully.

Keywords: software birthmark, replacement attack.

1 Introduction

Software piracy has been deemed as one of the most serious threats to intellectual
property. A band of companies with high research and development input are
suffering from software counterfeiting. Business software alliance publishes a
study report about illegal copying and unauthorized resale of applications every
year, indicating 51.4 billion of huge loss in 2009 [25]. Microsoft just accused La
Familia, Mexico Drug Cartel, for suspicious piracy of Office 2007 in Mexico, and
this unauthorized business earned �2.2 million dollars every day [24]. To protect
their intellectual property, software vendors have adopted several categories of
approaches, including software watermark [26], tamper-proofing [28], obfuscation
[7], and software birthmark [3,4,5,6,8,15]. Among them, software watermark and
birthmark are both designed against program theft.

There are already a band of software watermarking methods [2,26] proposed in
the past, which embed “copyright notice” inside the original source code to iden-
tify the ownership of the software. Also, software birthmarks [3,8] identify the

X. Lai, J. Zhou, and H. Li (Eds.): ISC 2011, LNCS 7001, pp. 1–16, 2011.
� Springer-Verlag Berlin Heidelberg 2011



2 Z. Xin et al.

authorship by unique program characteristics in the event of suspected theft.
However, these watermarks and birthmarks are all easy to be radically tam-
pered by semantics-preserving obfuscation [16,32] or compiler’s optimization. So
researchers present dynamic API based birthmark [4,6,31] and behavior based
software birthmark [15], which are considered to be resistant to the existing
obfuscation methods. Dynamic API based birthmarks like SCSSB (System call
Short Sequence Birthmark) [31] identify a program with the partial trace of its
system calls. Furthermore, behavior based software birthmark not only consid-
ers the sequence of system calls but also utilizes the dependence relationships
between system calls to solidify the uniqueness of birthmark formed as SCDG
(system call dependence graph). In the graph, each vertex indicates a system call,
and each edge means dependence relationship between two system calls. Also,
the insight that SCDG captures distinctive program characteristics is accepted
by other security tasks, such as behavior based malware detection [9,11]. Com-
pared to the plentiful research works that have been done in birthmark-sabotage
obfuscation methods, the methods to evade dynamic API based birthmarks like
SCSSB and SCDG seem absent at the present time. Previously, a kind of eva-
sion attack called mimicry attack [19], has been designed to defeat a host-based
intrusion detection system (IDS). It can evade the IDS’s detection model by in-
serting no-ops system calls. Although no-ops system call insertion in spirit could
also be used to deceive SCSSB in a similar way, it is incapable of fooling the the
SCDG approach, because the inserted system calls would not have any depen-
dency relationship with the existing ones. That is, no-ops system call insertion
cannot directly hurt the effectiveness of the SCDG approach.

In this paper, we focus on designing evasion attacks on the dynamic API based
SCDG birthmarks. In particular, we propose a novel system call replacement
technique which tangles the existing dependence relationships without altering
the original program semantics and then “fool” the SCDG comparison algo-
rithm. Since the birthmark is a graph, the evasion approach must modify the
graph significantly and transform the dependence relationships to distinct for-
mats. Following this thought, there are four candidate techniques to achieve it:
(1) remove original vertex and edge; (2) insert new vertex and edge; (3) replace
original vertex; (4) replace original edge. Based on this observation, we analyze
the feasibility with each of these four thoughts. The first one is rarely adopted
because only the meaningless system calls can be deleted without alerting the
original function of program. Indeed, compiler may leach such useless system
calls already. The second method looks working since it certainly modifies the
original graph to another one. However, in practice it does not work either be-
cause all the insertions only increase the size of the whole graph in the periphery
but not the subgraph that indicates the uniqueness of a program. We illustrate
this problem in more detail in Section 3. The third one is feasible by replacing
a system call with a semantic equivalent one, such as replacing lseek with llseek.
However, even if we can summarize all the mappings following this strategy, a
new type of birthmark can be constructed easily to defeat this attack by treating
the semantic-equivalent ones the same [15].
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Finally, we adopt the fourth thought by replacing an original edge with a
new vertex and two new edges. This replacement approach affects the nature of
the graph. However, the embedded system calls must establish new dependence
relationship with two original system calls and also not generate any side effect
to original program semantics. We solve this challenging problem with several
elaborate system calls and parameters to make it “no-op” even it has dependence
relationship with the existing ones. And we also ensure the new-born dependence
relationships are common so that the replacement patterns cannot be recognized
and filtered facilely unless very complicated semantic analysis is involved in the
birthmark comparison algorithm, which is hard. Our replacement code can be
loaded as a specific dynamic library before standard dynamic library like libc.so
to perform the replacement in runtime. As a summary, the contributions of our
work can be enumerated as follows:

1. We designed and implemented a novel system call replacement technique
to modify the dependence relationships between system calls as a dynamic
library without changing any existing source code.

2. We summarized the rules to select the replacement system calls that have de-
pendence relationships with original system calls with the “no-op” semantic
and are also hard to be recognized.

3. To the best of our knowledge, our evasion research is the first one to de-
ceive the dynamic behavior based birthmark, which is the state-of-the-art
technology on software birthmark.

Although, this work is launched from a software copyright robber’s perspective,
we never intend to strengthen software piracy, but rather to explore the lim-
itations of the current software birthmark technology and also encourage the
development of better software birthmark techniques.

The remainder of this paper is structured as follows. First, Section 2 presents
our system call replacement framework and the rules to select replacement at-
tacks. Then Section 3 explains the effectiveness of replacement attacks. Section
4 details the implementation and Section 5 evaluates our empirical experiments.
Section 6 discusses the limitations of our work. In addition, we show the differ-
ence between our work and related works in Section 7. Finally, in Section 8, we
conclude the whole work.

2 Our Replacement Attack Framework

First, we will present the overview of our attack framework. Then we will illus-
trate the rationale of our various replacement attacks. Finally we will summarize
the rules on selecting proper system calls used for replacement.

2.1 Framework Overview

Our purpose is to deceive the isomorphism algorithms used by SCDG verifica-
tion. First, we define the system call dependence relationship, which includes
two system calls, dependence variable and dependence style.
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Definition 1 (SCDR: System Call Dependence Relationship). The sys-
tem call dependence relationship between two system calls can be represented as
a 4-tuple SCDR = (R,M,S,D) where

– R means Relier, whose output can be delivered to the posterior one.
– D means Dependent, whose input comes from the previous one.
– α : D → R means Dependent depends on Relier.
– M means Medium, which represents the variable passed from relier to

dependent.
– S means Style, which describes the output method from a relier, including

RV (return value) and PA (parameter). In another word, in RV situation,
the Medium is a return value from a relier, and relatively in PA situation,
the Medium exists as a parameter of the relier, which is filled during system
calling.

As explained before, we launch replacement attacks by replacing an existing edge
with a new vertex and two new edges, which transforms the current graph into a
new graph. An example has been presented in Fig 1. The dependence relationship
read→open has been replaced into read→lseek→open. The system call lseek is
declared as “off t output lseek (int filedes, off t offset, int whence)” in the Unix
environment [14], which is used to set the current file offset. In this example,
because the third parameter is SEEK SET, which means it does addressing from
the every beginning of a file, the return value output should be equal to the second
parameter of lseek plus zero. In other words, lseek merely assigns fd1 to output.
As such, the replacement still retains equivalent semantics.

After presenting a replacement attack example, we describe the set of depen-
dence relationships that our replacement technique may attack. As we know,
the total number of permutations of all the system calls is enormous, and also

int fd1;

char  buf[10] = {0};

int n = 0;

fd1 = open(path1,O_RDWR);

n = read(fd1, buf,  10);

close(fd1);

int fd1;

int output = 0;

char  buf[10] = {0};

int n = 0;

fd1 = open(path1,O_RDWR);

output = lseek(fd1, fd1, SEEK_SET);
n = read(output, buf,  10);

close(fd1);

Replacement

(a) the original SCDG

[1]open

[14]close [2]read

(b) the SCDG after replacement

[1]open

[14]close

[19]lseek

[2]read

Fig. 1. An example of replacement attacks in open→read relationship
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Dynamic system call 

dependency relation abstracter

Target binary code 

of 

plagiarized part  

19 non-trial 

programs

Popular system call 

dependency relations 

Dynamic system call 

dependency relation abstracter

The target set 

of popular

system call dependency 

relations 

Dynamic library with 

corresponding replacement 

attacks

The arsenal

with all the 

replacement attacks

The distribution 

software package with 

replacement attacks

(a) Popular System Call 
Dependency Relationships 

Abstraction

(b) Replacement Attacks Production and 
Packaging

Fig. 2. System overview

every pair of system calls occurs with a distinguishing frequency for each pro-
gram. We record them from 19 diverse non-trivial programs by abstracting and
counting their system call dependence relationships. The whole procedure can
be presented in Fig.2 (a), and we get all the system call dependence relation-
ships sorted by their occurrence frequencies. Then we choose the popular ones
by setting a threshold alpha, which is 1000 in this paper. Finally, we get 11 kinds
of popular system call dependence relationships presented in Table 1 as popular
system call dependence relationships with their names and system call numbers.
We believe that as long as our replacement attacks can disrupt these prevalent
relationships, they can deceive the SCDG verification algorithm effectively and
efficiently.

Also in Fig.2(b), we explain the whole procedure how the replacement attacks
deceive the SCDG birthmark. At the first place, we obtain the native binary code
of a program whose source code is plagiarized. Then, we feed it to our dynamic
system call dependence relationship abstracter, which distills dependence rela-
tionships that belong to popular system call dependence relationships. Against
this target set, our tool assembles the specific dynamic library with replacement
attacks. Then we modify the .dynamic section of the target binary code file to
ensure that the specific dynamic library is loaded before the standard dynamic
library is. The details are discussed in Section 4. Finally, this specific dynamic
library is packaged into the software package for distribution.

2.2 Various Replacement Attacks

In this section, we exhibit our replacement attack arsenal and also describe the
skills that we used to construct the replacement attack. We summarize all our
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Table 1. The list of popular system call dependence relationships frequency

Popular System Call Dependence Relationships
Programs Name stat64 open read close access llseek munmap llseek llseek mmap open

→read →read →open →open →read →open →mmap →write →mmap →open →write
195→3 5→3 3→5 6→5 33→3 140→5 91→192 140→4 140→192 192→5 5→4

Flock 2.0.3 2 0 0 1 0 0 0 0 0 0 0
Epiphany 2.22.2 6823 3013 1802 1950 111 13 83 1 6 164 8

Amaya 10 4 0 0 1 0 0 0 0 0 0 0
Opera 9.52 7 0 0 1 0 0 0 0 0 0 0
Galeon 2.0.7 1261 510 582 527 127 15 82 0 12 153 6

AbiWord 2.4.6 62 75 293 299 63 3 122 1 1 213 92
KWord 1.6.3 62 161 566 363 63 149 249 10 82 132 23
LyX 1.5.3 5927 2592 1852 2323 171 130 622 6 90 602 850
Kile 2.0.0 691 279 2478 1339 10840 2110 1218 7 2079 93 104

Gedit 2.22.3 1261 2679 1841 1739 86 42 65 6 9 142 11
Bluefish 1.0.7 5332 2629 1602 1615 95 22 84 4 20 100 100

GNU Emacs 22.2.1 847 250 986 441 119 1914 224 3230 65 78 8
Vim 7.1.138 134 23 112 75 0 20 28 0 18 27 20
Pidgin 2.5.2 5244 2537 2200 1944 100 213 360 3 209 0 8

Kopete 0.12.7 0 0 19 27 0 733 11 1 1 21 2
Kmess 1.5 566 146 423 246 1071 32 154 10 30 88 20

GnoCHM 0.9.9 105 44 69 45 0 0 23 0 0 2 0
Evince 2.22.2 12680 5710 2609 2926 95 11 37 2 6 88 27

Evolution 2.22.3 6457 327 3601 2289 194 344 554 22 272 355 19

SUM 51663 21333 21035 18151 13135 5751 3916 3301 2900 2240 1292

replacement attacks for 11 popular system call dependence relationships to three
categories based on the M (medium) type:

1. Handle the “file descriptors” medium. As we declared before, M (medium) is
the dependence variable, such as fd1 and off set in Fig 1. For this category,
there are four kinds of popular relationships as presented in Fig 3. We explain
the mechanism based on one of them, read→open. The original code in the
left top of Fig 3 shows this dependence relationship. We construct three types
of replacements for this category, which are also effective to all of them:

(a) “lseek” attack. This attack has been illustrated in Fig 1. lseek is used
to set the file offset. When we insert lseek in the middle position, it
breaks the original connection between open and read. Also, lseek→open,
read→lseek and read→lseek→open are all common dependence relation-
ships in programs. So this type of replacement is hard to detect.

(b) “dup and dup2” attack. “dup” and “dup2” system calls duplicate the
file descriptor and also construct corresponding internal data structure
for file operations. However, our replacement just transforms dependence
from original one into a duplicated one, which also sabotages the graph.

(c) “fcntl” attack. “fcntl” can change the properties of a file that is already
open. The parameter “F DUPFD” means duplicating an existing de-
scriptor. So it works just like “dup”. The return value fd1 is assigned to
fd2 equally.

2. Handle the “file path buffer” medium. Related to this category, the M
(medium) always occurs as a buffer which stores the string of some file path.
The S (style) is mostly PA (parameter). Variable path buffer in the right of
Fig 3 reveals this situation, which is a parameter of the read system call
and is filled with data read from the file. It is passed into the system call
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stat, which reads the file state in the path of path buff. We offer two kinds
of attacks here:

(a) “link” attack. System call “link” creates an extra directory entry point
to the target file’s i-node, the kernel data structure for a file. Later,
the stat system call gets the same file state information from another
temporary path “ xz path”, which is a temporary file path. Again, this
type of new dependence situation is common, so it is hard to detect such
replacements.

(b) “rename” attack. System call “rename” changes a file or a directory to a
new name, so it also modifies the dependence variable M (medium) from
path buffer to xz path. It works just like the “link” attack.

3. Handle the “memory address” medium. There are two kinds of popular depen-
dence relationships, which are connected with memory address M (medium),
including munmap→mmap2 and llseek→mmap2. System call “mmap2” is de-
clared as “void* mmap (void *addr, size t len, int prot, int flag, int filedes, off t
off);”. The programmers use this system call to map a given file to a region in
memory. Its return value represents the starting address of the mapped area.
For this category, we have not found any safe replacement.

stat64    read (195  3)
(example)
open      read ( 6  3)
access    read ( 33 3)
write      read ( 4  3)

File Path Buffer Medium

char _xz_path[] = xz_path ;

fd1 = open ( path, mode) ;
read  ( fd1,  path_buffer,  size );
link  ( path_buffer,  _xz_path );
stat (_xz_path,  file_stat); 

A. link Attack  ( No.9)

char _xz_path[] = xz_path ;

fd1 = open ( path, mode) ;
read  ( fd1,  path_buffer,  size );
rename ( path_buffer, 
_xz_path );
stat (_xz_path,  file_stat); 

B. rename Attack  (No.38)

fd1 = open ( path, mode) ;
read (fd1, path_buffer, size);
stat (path_buffer,  file_stat);

Original Code

Related Popular Relations

read    open ( 3  5 ) 
(exmaple)
close   open  ( 6  5 )
llseek  open  ( 140 5 )
mmap2 open  ( 192 5 )

File Descriptor Medium

fd1 = open ( path, mode) ;
fd2 = lseek ( fd1, fd1, SEEK_SET);
read (fd2,  buffer , size);
close (fd1);

A. lseek Attack  (No.19)

fd1 = open ( path, mode) ;
fd2 = dup(fd1);
read (fd2,  buffer , size);
close (fd1);

B. dup & dup2 Attack 
(No.41 and No.77)

fd1 = open ( path, mode) ;
fd2 = fcntl(fd1, F_DUPFD, 0);
read (fd2,  buffer , size);
close (fd1);

C. fcntl Attack (No.55)

fd1 = open ( path, mode) ;
read (fd1, buffer, size);
close (fd1);

Original Code

Related Popular Relations

Fig. 3. The replacement attacks related to “File Descriptor” and “File Path Buffer”
Medium

2.3 The Rules of Replacement Attacks Construction

From the previous analysis, we can distill skills on how to find these equivalent
replacements. First, the system calls with the same data type of parameters
and return values are good candidates, just like “dup” with integer in both
parameters and “link” with two char* parameters. For this rule, we have to
emphasize two things: the “return value” here means the output in semantic,
which could be either a real return-value or a parameter; the “same type” could
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be two types with the same size but not exactly the same language type, just
as the return-value of “lseek” with off t and one of its parameters with integer
which can be considered as the same type. Second, the context after replacement
should be as common as possible, which means if there is a novel approach to
match this replacement, it cannot easily decide whether this is a replacement
or just common code. We evaluate whether some replacement is common by
searching it in real code like 19 non-trivial programs. And all of our replacement
scenarios can be easily found. Although our skills are presented in the Unix
environment, they also can be used for other platforms, like Windows.

3 Effectiveness of Replacement Attacks

In this section, we first compare various graph-subgraph isomorphism algorithms
that can be used in SCDG verification and then choose one of them as the rep-
resentative to discuss the effectiveness of our replacement method by comparing
with new vertex and edge insertion attacks.

3.1 Graph-Subgraph Isomorphism Algorithms

Basically, there are three kinds of algorithms for (sub)graph isomorphism detec-
tion, including Nauty algorithm [10], Ullman algorithm [17] and VF algorithm
[30]. First, McKay’s Nauty algorithm reduces matching complexity by trans-
forming the graphs to a canonical form for quick graph isomorphism judgement.
However, it asks exponential time for matching. Furthermore, it cannot be used
to solve the graph-subgraph isomorphism problem, which makes it unavailable
for our experiment [12]. Another two alternative approaches are based on search-
ing and branch pruning of unprofitable paths. One is a backtracking algorithm
proposed by Ullmann [17], and the other is referred to as the VF algorithm [30]
based on a depth-first search strategy.

The key idea of the Ullmann algorithm is the employment of a procedure called
refinement procedure based on the depth-first brute-force search [17]. During
the procedure, the algorithm continually checks whether any vertex in G1 has
no corresponding vertex in G2. If no one is found, the algorithm terminates
at its SUCCEED exit. Otherwise, the algorithm jumps to its FAIL exit. The
refinement procedure is triggered after entering each node in the tree search,
which results in a reduction of the number of successor nodes that must be
searched. Relatively, VF has the similar principles to Ullmann, which uses a
set of feasibility rules to reduce computational cost of the matching process.
The feasibility rules can prune the search space significantly and speed up the
matching process. Although both VF and Ullmann algorithms can specify a
subgraph isomorphism, according to the experimental results [20], VF algorithm
achieves a better performance in matching time, and the Ullmann algorithm is
not always able to find a solution. So in our evaluation procedure we choose from
the VF family the algorithm VF2, a higher version of the VF algorithm, which
is also used by previous SCDG birthmark [15].
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3.2 Effectiveness Analysis against VF Algorithm

Then we discuss the effectiveness by comparing the effect of two potential meth-
ods against the SCDG birthmark, including new vertex and edge insertion and
our edge replacement. In our case, each node has two attributes, the system call
number and a unique index number. Control dependence relationships between
system calls are denoted as directed edges. We present an example of system call
dependence graph in Fig 4: Fig 4-(a) shows the SCDG birthmark of the plaintiff
program; Fig 4-(b) presents the SCDG of the suspect program. It is obvious that
Fig 4-(a) is a subgraph of Fig 4-(b), and they are graph-subgraph isomorphism.
Then in Fig 5-(b), we insert a node b8 with the attribute of close from the pe-
riphery and also replace an edge between open and read with a node c8 with the
attribute of lseek in the middle and also two other new edges. The VF algorithm
describes the whole procedure with State Space Representation (SSR), which
allows one to simultaneously make syntactic and semantic comparison of the
pairs of nodes to be matched. First, it checks whether the two nodes have the
same system call number in semantics feasibility rules. Then, it checks whether
the node pair meets the syntax feasibility rules defined by the VF algorithm [12].
The internal procedure of the VF algorithm contains three steps. First, for each
intermediate state s (initial state s0 contains no component), the algorithm com-
putes the candidate set P(s), which is composed by vertexes connected to the
mapped ones in M(s). Second, for each node pair p in P(s), the feasibility rules
are evaluated, which are used to judge whether to accept the new node. Then if
they succeed, state s’ would be obtained by adding p. The same operations will
be executed in a recursive way with the input of s’. Otherwise, another node
pair in P(s) will be considered. Until M(s) that records the recognized mapping
nodes pair covers all the nodes of G1, the algorithm specifies an isomorphism.
Otherwise, the algorithm exits with failure.

The insertion method presented in Fig.5-(b) and our replacement method
affect the isomorphism algorithm in different ways. With new vertex and edge
insertion in Fig 5-(b), after the algorithm accepts the first pair of matched nodes,
it gets the matched node pair set M(s)={ (a1, b1) ,(a2, b2)}. After several similar

a2

a3

a4 a1

a2

a3

a4

a5

a6

a7
stat read

open

read

stat

lseek munmap

mmapread

open

read

a1

Fig. 4. (a) the SCDG birthmark of the plaintiff program;(b) the SCDG of the suspect
program
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(a) (b)

a2

a3

b1

b2

b3

b4

b5

b6

b7
stat read

open

read

stat

lseek munmap

mmapread

open

read

a1

close

(c)

c1

c2

c3

c5

c6

stat

lseek munmap

mmapread

open

read

lseek
c4

c8b8

a4

c7

Fig. 5. (a) the SCDG of the plaintiff program;(b) the SCDG of the suspect program
with the insertion of b8;(c)the SCDG of the suspect program with the insertion of c8

matching steps, it gets M(s) = {(a1, b1), (a2, b2), (a3, b3), (a4, b4)}, which covers
all the nodes of Fig 5-(a). Then, the algorithm reports a graph-subgraph isomor-
phism between Fig 5-(a) and Fig 5-(b). However, with our edge replacement in
Fig 5-(c), after the algorithm checks the pairs of (a1, c1), (a2, c2) and (a3, c3), it
gets the P(s) = {(a4, c5), (a4, c6), (a4, c8)}. In other words, a4 (read) has three
matching candidates but none of them has the same system call number because
both c5 and c8 represent lseek and c6 contains mmap. For the plaintiff program,
there is no node left. So the algorithm exits with a failure. The replacement
attack is successful.

To summarize, insertion of new vertices and edges only enlarges the whole
graph but does not modify the characteristic-carrying subgraph, so it will not
evade the software birthmark evaluation. Relatively, our intermediate replace-
ments break the original structure of the mapping component of the graph, which
interferences the search of the VF algorithm and evades the verification.

4 Implementation

Our implementation includes two parts: one is dynamic system call dependence
relationship abstracter, which is implemented based on the SCDG construction
tool called Hawk [15], and the other is a tool called SCReplacer which generates
a dynamic library materializing the corresponding replacement attacks.

The Hawk tool is used to capture the system call traces and dependence
through machine code instrumentation at runtime. We extend Hawk to record
the the inter-system-call dependencies and obtain the statistic results to identify
the popular ones among all the system calls. Also, all the statistic results have
been presented in Table 1.

The other part of work is mainly about how to construct the dynamic library
that materializes the replacement attacks. We build our tool based on the ELF
hacking tool ERESI [18], which is a multi-architecture binary analysis framework
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using a specific domain specific language for reverse engineering and program
manipulation. We implement SCReplacer with the specific scripts to modify the
ELF binary files. First, we review the dynamic linking procedure on ELF files.
The .dynamic (Dynamic Symbol Table) section (in each ELF file) stores all the
symbol information for dynamic linking, which consists of an array of entries.
The entries are defined as Elf32 Dyn with two fields: one is called d tag, which
is the type of entry; the other is called d un, which presents the offset in .dynstr
section of the related string name. Inside these symbols, the dynamic linking
libraries are all marked as DT NEEDED in d tag field. When the runtime linker
starts the dynamic linking procedure, it traverses all of these library entries and
links them one by one. Basically, there are three steps involved in the replacement
attack as shown in Fig 6. First, we add our replacement code as a dynamic linking
library and mount it in the .dynamic section, listing it as a DT NEEDED entry
by replacing a useless exiting one (e.g., a DT DEBUG entry) stealthily, just like
the entry 12 with d tag as DT DEBUG in Fig 6. Second, our approach reuses
the library path which has existed in the .dynstr (Dynamic String Table) section
that stores all the strings of dynamic symbols. When we change entry 12 (see
Fig 6) from a DEBUG entry to a DT NEEDED entry, we modify the d val
attribute of the entry into a partial path of an existing one (i.e., reusing an
existing library path), so that our modification will be less noticeable, just like
rt.so.1 to librt.so.1. We can directly observe that rt.so.1 can be a substring of
librt.so.1 from the fourth char. Third, we force our dynamic library to be loaded
before the standard dynamic runtime library by moving our library closer to
the beginning of the startup (library-loading) queue, such as switching the order
between entry 00 and entry 12 in Fig 6.

[00] Name of needed library  => librt.so.1 {DT_NEEDED} \\
[01] Name of needed library  => libselinux.so.1 {DT_NEEDED} \\
[02] Name of needed library  => libacl.so.1 {DT_NEEDED} \\
[03] Name of needed library  => libc.so.6 {DT_NEEDED} \\
[04] Address of init function=> 0x08049508 {DT_INIT} \\
[05] Address of fini function=> 0x0805AF7C {DT_FINI} \\
...
[12] Debugging entry (unknown)=> 0x00000000 {DT_DEBUG} \\
... [00] Name of needed library  => librt.so.1 {DT_NEEDED}

...
[12] Name of needed library=> rt.so.1 {DT_NEEDED}
...

[00] Name of needed library  => rt.so.1 {DT_NEEDED}
...
[12] Name of needed library=> librt.so.1 {DT_NEEDED}
...

[00] Name of needed library  => librt.so.1 {DT_NEEDED}
...
[12] Name of needed library=> 0x00000000 {DT_NEEDED} 
...

(1)  Change the DT_DEBUG into  DT_NEEDED

(2)  Reuse the existing library path

(3)  Top the replacement library 

.dynamic section (Dynamic symbol table) with 
Elf32_Dyn entries

typedef struct {
Elf32_Sword d_tag; /* The type of symbol including DT_NEEDED,

DT_DEBUG, DT_INIT and so on. */
union
{
Elf32_Word d_val; /* Offset from the beginning of .dynstr,
Elf32_Addr d_ptr; ,storing the library path for this entry */
} d_un;

}  Elf32_Dyn;

The definition of dynamic entry  Elf32_Dyn

Fig. 6. .dynamic section symbols
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5 Evaluation

In this section, we present our experiments in a group of programs with effec-
tiveness and performance overhead. To the best of our knowledge, there is only
one SCDG birthmark analysis and production tool previously presented as a
research work [15]. We evaluate our replacement attacks against it. We rebuild
the VF2 subgraph-graph isomorphism algorithm by Networkx [23], which is the
same evaluation algorithm used in SCDG comparison [15] but is much more con-
venient to check and display the intermediate results. We test our experiments
with hardware configuration as Intel Core Duo CPU 2.53GZ and 512M memory
and also with software configuration as Ubuntu 9.04 and Linux kernel 2.6.28.

First, we test the effectiveness. The birthmark verification group in previous
work [15] include: GNU Aspell spell checker 0.60.5, which has been contained
by three other programs, including Bluefish 1.0.7, Kword 1.6.3, and Lyx 1.5.3.
First, we run the plaintiff program Aspell to check some spelling problems in a
test file and extract the birthmark from all the subtrees. Next, we assemble the
corresponding replacement attacks in specific dynamic libraries and run suspi-
cious programs linked with such libraries. Then, all the subtrees of suspicious
programs are extracted by using their spelling checking functions with the sim-
ilar test files. Finally, we verify the birthmark with suspicious program subtrees
in VF isomorphism algorithm. Also, three basic conditions about birthmark ac-
celerate the verification procedure: (1) The minimal size of subtrees must be
greater than 15; (2) A suspicious subgraph should be at least 0.9 the size of the
birthmark; (3) Every node has an attribute of system call number so that it can
prune the matching procedure earlier. We call the subtrees which satisfy these
conditions as “candidate subtrees”. As a result, we filter through the total 83
subtrees of Aspell to get the birthmark with 117 vertices and 123 edges , which is
also located in all the suspicious programs. However, after replacements, we can
observe the obvious differences in the system call distribution between Aspell
birthmark subtree and the relative subtrees in suspicious programs as presented
in Fig 7. The relative subtrees are generated by replacement attacks including
“lseek”, “link” and “dup”. All the verification procedures fail indeed after re-
placement. That is, because of our replacement attacks, software like Bluefish
and Lyx can stealthily use Aspell without being charged.

Second, we test the performance overhead of our replacement attacks. We run
all the suspicious programs with similar test files. Then every program uses its

Table 2. The effectiveness of replacement attacks

Plaintiff Graph profile Verification
program before replacement after replacement interruption

candidate subtrees vertexes edges candidate subtrees vertexes edges

Bluefish 10 20599 13665 10 26154 13708 �
Kword 15 41352 3528 15 43376 3645 �

Lyx 22 47244 29268 22 54192 29315 �
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Table 3. The overhead of replacement attacks

Plaintiff Extra overhead
program before replacement after replacement

C1(s) C2(s) C3(s) AVGc M1(s) M2(s) M3(s) AVGm

Bluefish 7.032 7.809 7.089 7.310 7.180 7.539 7.736 7.485

Kword 4.353 4.404 3.986 4.248 5.041 4.222 3.895 4.386

Lyx 4.322 4.056 4.458 4.289 4.804 4.877 4.662 4.768

Fig. 7. The system call distribution of birthmark subtree

own spelling check function to capture these bugs and replace them with the
right ones. We record the total time of our whole procedure, marked as Cn(s).
Also, we repeat the whole process after replacement and collect the total time
(marked as Mn(s)). We can observe that the average overhead is very low: 2.39%
for Bluefish, 0.68% for Kword and 11.18% for Lyx in Table 3. These overhead
basically all come from the embedded system calls.

6 Limitations and Future Work

We are aware of several defects of our work. The first thing is that we have
not gotten proper replacement attacks for the memory address M (medium),
such as munmap→mmap2 and llseek→mmap2. But from the current experiment
result, it may not be a big problem. The attacks that we already select deceive
the SCDG birthmark verification well. Next, our replacement attacks exist as a
dynamic library packaged with its original code. Even it can be masqueraded
to be a common dynamic library that is required by lots of other commercial
off-the-shelf software products, there is still some clue to perceive the library
interruption. We believe that the compiler-based system call insertion technique
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should be a better choice, which transforms the system call replacement into the
native code transparently. We take it as a future work.

7 Related Work

Software watermark techniques can be inadvertently sabotaged by semantic-
equal compiler optimizations like GNU GCC or be bypassed by a determined
attacker [13], such as additive attacks. Also, there are a band of obfuscation
methods [16,32] which can damage various birthmarks [3,5,8]. These obfuscation
tools mainly clutter the grammar structures like data structure, program control
flow and so on, which are all subject to the range of obfuscating transformations
[7]. But all of these tools cannot prejudice the birthmark based on dynamic
API sequence [21] and also the SCDG [15]. However, there are already dynamic
API related evading techniques existing in intrusion detection system field called
mimicry attack [19,29], which deceives an IDS by no-ops system call insertion.
But for SCDG birthmark, to the best of our knowledge, our work is the first
attempt toward evading it.

8 Conclusion

As the safeguard against software piracy, software birthmarks have been broadly
to evaluate the copyright of software programs. The latest software birthmark
technique constructs signature from dynamic system call dependence graph,
which cannot be evaded or sabotaged by current obfuscation methods. In this
paper, we capture its defect in evaluation procedure and construct the semantic-
safe system call replacements to deceive the birthmark successfully with low
performance overhead.
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Abstract. In ACM-DRM 2001, Kiayias and Yung [19] introduced a
classification of pirate decoders in the context of traitor tracing that put
forth traceability against history recording and abrupt pirate decoders.
History recording pirate decoders are able to maintain state during the
traitor tracing process while abrupt decoders can terminate the tracing
operation at will based on the value of a “React” predicate. Beyond this
original work, subsequently a number of other works tackled the problem
of designing traitor tracing schemes against such decoders but with very
limited success.

In this work, we present a new attack that can be mounted by abrupt
and resettable decoders. Our attack defeats the tracing algorithm that
was presented in [19] (which would continue to hold only for determin-
istic pirate decoders). Thus we show that contrary to what is currently
believed there do not exist any known tracing procedures against abrupt
decoders for general plaintext distributions. We also describe an attack
that can be mounted by history recording (and available) decoders.
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1 Introduction

Traitor tracing is a piracy detection mechanism for a setting where content is
illegally redistributed by licensed receivers to unlicensed ones, i.e., entities who
were not intended originally to receive the content. The redistribution is achieved
through the issuing of a malicious decoder that circumvents the access control
system used by the content distribution system. More specifically, a traitor trac-
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capable of performing an analysis to any working malicious decoder and recover
at least one of the keys that was used in its construction.

Following standard terminology the decoder created by an adversary is called
a pirate decoder, the user keys available to the adversary are called traitor keys
(and the users that divulge their keys to the adversary are called traitors); the
analysis process of the authority is called tracing. Traitor tracing emerged first
in the work of Chor, Fiat and Naor [6] as a solution to threats against broadcast
encryption shortly after the first non-trivial broadcast encryption scheme was
presented by Fiat and Naor [12].

Of particular interest to the present paper is the work of Kiayias and Yung
[19] that introduced a classification of stronger adversarial models for the con-
struction of pirate decoders. Since the introduction of traitor tracing schemes it
was assumed that the pirate decoder is “resettable” (i.e., it does not maintain
state along the tracing process) and available (i.e., the pirate decoder remains
available for as long the tracing process wishes to experiment with it). These
assumptions were relaxed in [19] where history-recording (i.e., decoders that do
maintain state throughout) and abrupt pirate decoders (i.e., decoders that may
terminate tracing if they detect it) were considered instead. In the terminol-
ogy of that paper, history-recording decoders were also called type-1 decoders,
abrupt decoders were also called type-2 decoders, while decoders that combined
both functionalities were called type-3 decoders, see Figure 1. In contrast, type-0
decoders were the decoders that were assumed in previous works such as that of
[6]. Traitor tracing schemes were presented for type-2 and type-3 decoders that,
in the latter case, utilized the ability to watermark (see e.g., [7]) the underlying
plaintext space. For the case of type-3 decoders a general transformation was
outlined (and applied to the scheme of [6]) that showed how type-0 schemes can
be “lifted” to the type-3 setting if watermarking is available. Other works that
followed up this model include [16,20,21].

Regarding the type-0 decoders, the positive results utilized a technique called
“hybrid colorings” that was implicit in previous works and is ubiquitous in almost
all traitor tracing schemes. This - almost universal - traitor tracing technique
can be summarized in the following fashion: the tracing center prepares a new

Abrupt
History Recording

Available
History Recording

Abrupt
Resettable

Available
Resettable

Type 0

Type 1

Type 3

Type 2

Fig. 1. The types of pirate decoders introduced in [19]
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transmission instruction of the multiuser encryption scheme that enables some
decoders to decrypt incorrectly, i.e. some receivers may fail to decrypt the trans-
mission, or simply decrypt in a different fashion compared to other receivers.
The coloring of the user population corresponds to the number of different ways
that the receivers decrypt the special ciphertext that induces the coloring. The
tracing center will interact with the pirate decoder and query the transmission
that induce such colorings which eventually will enable the recovery of at least
one traitor key embedded in the pirate decoder. Such technique is found useful
for tracing against type-0 (resettable and available) pirate decoders. The schemes
of the area employing this technique include[2,4,5,6,8,11,19,21,22,25].

Tracing abrupt type-2 decoders, in the absence of watermarking, proved to be
not an easy task. In the original modeling of the classes of advanced pirate de-
coders in [19] there was a simplifying assumption that was made : the abrupt de-
coders utilized a “React” predicate to determine when to terminate tracing that
was modeled as a deterministic predicate. Based on such assumption [19] proved
that hybrid colorings are useful in tracing such abrupt decoders, at least in a set-
ting where some ambiguity in tracing is permitted1. This positive result was then
extended to the first proposal for a public-key traitor tracing scheme with sublin-
ear ciphertext length and unambiguous tracing by Matsushita and Imai [21]2.

Our Contribution. While the assumption of a deterministic React predicate
might be reasonable in the description of a plausibility result it can be easily
argued to be unrealistic. Pirate decoders may behave in arbitrary fashion and
not utilize an explicit React predicate that is deterministic and known to the
tracer. In the present paper we address this issue. Specifically :

We consider the general case of abrupt decoders when the React predicate is
unknown to the tracer and incorporated as part of the program of the pirate
decoder. We then show that such abrupt decoders are untraceable for the hybrid
colorings traitor tracing technique. It is worth noting that in [19] it was stated
that the results would apply to probabilistic React predicates; while this holds
true it still assumes that the tracer possesses the knowledge of the probabilistic
behavior of React and this can be taken into account by the tracing procedure.
If this capability is missed, as it may very well be in practice, our new negative
result applies. For completeness we also present in full detail the attack that was
alluded to in [19] against tracing for available history-recording decoders. Our
result for abrupt decoders can in fact be seen as a probabilistic version of the
attack with history-recording decoders and from the adversarial point of view
can be seen as a tradeoff between memory and error-probability.

Related Work. After the introduction of traitor tracing, a number of subse-
quent constructions were presented [1,2,4,5,8,10,13,15,18,24,26,27,28] improving
either the security modeling or the efficiency parameters of these schemes.

1 In fact it was also claimed that it is possible to extend the results to the probabilistic
setting but this turns out to be false as we will see herein.

2 However, this scheme was broken by [20] and by [16] due to some other issues, i.e. the
scheme is not even traceable against type-0 decoders.



20 A. Kiayias and S. Pehlivanoglu

Two other tracing strategies based on a variant of hybrid colorings were put
forth in [23] called ‘binary search tracing’ and ‘noisy binary search tracing’.
The work by [17] gives an improvement on the round complexity of the tracing
technique that is the number of rounds of interaction that are required between
the tracing authority (or simply the tracer) and a rogue device in order for the
tracer to establish the desired identities. A new tracing strategy with such an
improvement was presented in [17] which relies on an application of fingerprinting
codes superimposed on the tracing process. We note that all these three tracing
strategies are succesful against only pirate decoders of type-0.

2 Traitor Tracing: Definitions

A traitor tracing scheme is based on an underlying encryption mechanism called
a multiuser encryption scheme (ME) that is a triple (KeyDist,Transmit,
Receive) of algorithms. The parameter of the scheme is the number of users n,
the number of receivers and is associated with three sets K, M, C corresponding
to the sets of keys, plaintexts and ciphertexts respectively. We next describe the
I/O of these procedures below:

– KeyDist. It is a probabilistic algorithm that on input 1n, it produces
(tk, ek, sk1, . . . , skn). The decryption key ski is to be assigned to the i-th
user while ek is the encryption key. The tracing key tk is some auxiliary
information to be used for tracing that may be empty.

– Transmit. It is a probabilistic algorithm that given a message m ∈ M, it
prepares an element c ∈ C. We will write the following to denote the distri-
bution of the output ciphertext for a given message: c ← Transmit(ek, m).

– Receive. It is a deterministic algorithm that on input c sampled from
Transmit(ek, m) and a user-key ski for some i ∈ [n] where (tk, ek, sk1, . . . ,
skn) ← KeyDist(1n), it either outputs m or fails. Note that Receive can
also be generalized to be a probabilistic algorithm but we will not take ad-
vantage of this here.

The above determine the syntax of the algorithms that define a multiuser en-
cryption scheme ME. We expect from such a scheme to satisfy correctness in the
usual sense. In particular we require that: for any n ∈ N, for any message m ∈ M
and for any u ∈ [n], it holds that

Prob[Receive(Transmit(ek, M), sku) ∈ m] = 1

where (tk, ek, sk1, . . . , skn) is distributed according to KeyDist(1n). Note that
the above may also generalized to hold with overwhelming probability.

A q-ary generalization of the above scheme takes input as a vector of q mes-
sages and is called the q-ary multiuser encryption scheme. In this setting the
correctness is generalized to return any of the q messages that are given as input
to the encryption algorithm (any of them would be considered a valid outcome
for the decryption operation).
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Security. The security requirement from a multiuser encryption scheme is stan-
dard: the scheme is semantically secure to an outsider who does not possess any
of the private keys. This is a quite standard notion for which we skip the de-
tails of the corresponding semantic security game that is considered between the
challenger and the adversary. We say that the scheme is ε-semantically secure if
the adversary winning the semantic security game has advantage at most ε.

In an alternative setting where the hybrid encryption approach is employed,
the content transmission operates at two levels: first, a one-time content key k is
selected and encrypted with the multiuser encryption scheme. Second, the actual
message will be encrypted with the key k and will be transmitted alongside the
encrypted key. It follows that a minimum requirement would be that the scheme
ME should be sufficiently secure to carry a cryptographic key k. As an encryp-
tion mechanism this is known in the context of public key cryptography as a
“Key Encapsulation Mechanism” [9]. The security model for such formalization
approach will focus on the type of security that needs to be satisfied by a mul-
tiuser encryption scheme in order to be used as a key encapsulation mechanism.
Such a formalization can be found in [17].

Black-Box Traitor Tracing. A black box traitor tracing scheme involves a fourth
algorithm TracePD which is an algorithm accessing a pirate decoder PD which
can be considered as a probabilistic circuit that takes as input a ciphertext c and
outputs some message m or fails. The tracing algorithm TracePD is given as
input the tracing key tk, and then queries the pirate decoder PD as an oracle.
It finally outputs a set S which is a subset of {1, . . . , n}.

In this setting, the tracer has merely black-box access to the pirate decoder.
Black-box traitor tracing may in some cases allow tracing to be performed re-
motely without the physical availability of the pirate decoder.

The major challenge in the black-box traitor setting is to extract information
regarding the original keys utilised in the construction of the pirate decoder.
The tracer will communicate with the pirate decoder using a set of specially
crafted queries. These queries will not be necessarily normal transmissions as
the tracing center is allowed to communicate with the decoder in an arbitrary
way. The response of the decoder may be equal to the decrypted plaintext, or
be simply of binary form, essentially “yes”, in case of returning the content in
the cleartext form, or “no”, in case of responding arbitrarily or jamming.

In our exposition, we will use the threshold σ to impose the adversarial con-
straint related to the success probability of the pirate decoder in decrypting
regular transmissions. This is of particular importance, since tracing would be
impossible against a pirate decoder that is not required to operate correctly at
least some of the time. More specifically, we say a pirate decoder is σ-pirate
decoder if for a randomly chosen m in the finite message space, we have that
Prob[PD(Transmit(ek, m) = m] ≥ σ. We next give a definition for black box
traitor tracing:

Definition 1. A multiuser encryption scheme ME = (KeyDist,Transmit,
Receive) is a black box traitor tracing scheme for t-coalitions with success
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probability 1−α against σ-pirates if there exists a tracing algorithm Trace such
that any polynomial time adversary A wins the following game with probability
at most α.

1. The adversary A outputs a set T = {u1, . . . , uj} ⊆ [n] of at most t colluding
receivers.

2. The challenger runs KeyDist(1n) and provides sku1 , . . . , skuj to A. It keeps
tk to itself.

3. The adversary A outputs a pirate decoder PD that is a σ-pirate.
4. The challenger now runs TracePD(tk) to obtain a set S ⊆ [n]. Note that

Trace is only given black-box oracle access to PD.

We say that the adversary A wins the above game if the set S is either an empty
subset or it is not a subset of T.

One may also consider a more general view of the black box tracing model, that
is related to the case that the pirate decoder is a tamper resistant box, such as a
music player and the response of the decoder is not the exact decryption of the
transmission but rather the actual rendering of the cleartext transmission on a
display device. In such case, the tracer can still extract useful information by
observing whether the given ciphertext results in music being played or not. It
is possible to address such issues in the above definition by adapting the notion
of σ-pirate accordingly; i.e. the decoder succeeds if the response of the decoder
is considered useful in its application domain as opposed to be plaintext m.

A pirate decoder is said to be resettable if the tracer has the capability to
reset the pirate decoder to its initial state and the decoder is available for a
new query. This gives the tracer the advantage of asking queries that will be
handled independently during the tracing process, i.e., effectively preventing the
decoder from using previous querying information submitted by the tracer in
order to decide its present action. In contrast, a history recording pirate decoder
“remembers” the previous queries made by the tracer and because the tracing
procedure is public, the history recording capability can be used by the decoder
to evade tracing.

A decoder is said to be available if it lacks a self-defensive mechanism, i.e,
even if it realizes some abnormality in the content-transmission it is incapable of
halting the tracer process. On the other occasion the decoder is called abrupt.
Abrupt pirate decoders are those devices that may take some counter-actions
against the tracing process and force it to stop. In any case (software aggressive-
counter actions or hardware shutting-down mechanisms) we will assume that the
tracer wants to avoid the occurrence of any such reaction and if such reaction
is triggered it is immediately detectable by the tracer. On the other hand, the
pirate decoder does not want such a mechanism to be triggered during normal
operation. Since it is not possible to force the pirate decoder not to use such
reaction mechanisms if they are available, what is needed to be shown is that
there are systems where the usage of such mechanisms is detrimental to the pirate
decoder itself (i.e. the triggering of the mechanism leaks some information about
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the traitor keys or it significantly interferes with the decoder’s data reception
capabilities).

It is possible to take into account all the above in definition 1 by (i) allowing
the oracle PD to maintain a state across invocations or not (this would corre-
spond to history-recording vs. resettable) (ii) allowing the oracle PD to output
a special symbol ⊥ after which every query to PD will be answered necessarily
by ⊥ (even in case of a resettable oracle PD). We also stress that our definition
of σ-pirate requires that the decoder succeeds in decrypting any proper trans-
mission with at least σ probability regardless of the other capabilities of the
decoder. This captures the fact that the decoder has to be useful at least above
a threshold σ.

2.1 Hybrid Colorings

The formalism for coloring discussed in [19], is a useful tool in describing how a
tracer can interact with the pirate decoder in order to obtain some information
about the keys it possesses. A coloring of the user population is a partition
{Ui}i∈N of U = {1, . . . , n}. The ciphertext space of a multiuser encryption scheme
is extended to allow the “coloring” of a user population. More specifically we
consider a new transmission instruction of the multiuser encryption scheme that
enables some decoders to decrypt incorrectly, i.e. some receivers may fail to
decrypt the transmission, or simply decrypt in a different fashion compared to
other receivers. The coloring of the user population corresponds to the number
of different ways that the receivers decrypt the special ciphertext that induces
the coloring.

We denote the new transmission by Transmitext(ek, m) and the set of new
ciphertext space by Cext. Given some s ∈ Cext, we define the following relation of
the set of users U : a ≡ b if and only if Receive(s, ska) = Receive(s, skb) (if the
Receive algorithm is probabilistic, the definition can be amended accordingly
while maintaining the properties of the equivalence relation — we will only
consider the case of deterministic decryption here). The equivalence classes of
≡ for some s ∈ Cext define a coloring over the user population. Observe that a
valid ciphertext defines only one equivalence class, i.e., all users are colored by
the same color.

We say that a multiuser encryption scheme can induce a family of colorings
{{U(j)

i }i}j if it is possible to extend the normal transmission such that given
1j we can produce s ∈ Cext that induces the coloring {U(j)

i }i over the user
population.

Hybrid colorings is a special collection of n + 1 partitions of the set of users:
{{U(n,r)

1 , U
(n,r)
2 }}r=0,...,n with,

U
(n,r)
1 = {1, . . . , r} U

(n,r)
2 = {r + 1, . . . , n}

where we set U
(n,0)
1 = U

(n,n)
2 = ∅ by definition. Hybrid colorings can be pro-

duced in a trivial traitor tracing scheme that is linear in transmission length
and parameterized by an encryption scheme (E, D). In such a scheme, a message
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is transmitted as 〈Ek1(m), . . . , Ekn(m)〉 where ki is given to the i-th receiver as
a secret key. This transmission will be denoted by TransmitL(ek, m) with L
signifying that transmission length is a linear function in the number of users.
We, next, decribe the special tracing transmissions in such scheme that extend
the normal transmission into the one that induces hybrid coloring. The tracing
queries consist of the special transmission Transmits

L(ek, m) for s = 0, 1, . . . , n
by substituting the first s ciphertexts with a random string.

Transmits
L(ek, m) =

〈Ek1(R), Ek2(R), . . . Eks(R), Eks+1(m), . . . Ekn(m)〉

where R is a random string of the same length as the message m. Finally, we say a
ciphertext c ∈ Cext if there exists some s ∈ {0, . . . , n} and m ∈ M such that c =
Transmits

L(ek, m) holds. It is now easy to observe that such extension makes it
possible for the linear length scheme to induce the hybrid colorings: a coloring of
type (U(n,s)

1 , U
(n,s)
2 ) is induced from the tracing ciphertexts Transmits

L(ek, m).
In this case, two colors exist: the users in set U

(n,s)
1 corresponds to the ones who

fail to decrypt while U
(n,s)
2 consists of the users who are capable of decrypting

the transmission.
It is shown in [19] that a black-box tracing algorithm exists for a multiuser

encryption scheme that can induce hybrid coloring. Such multiuser encryption
scheme is proven to be black-box traitor tracing for resettable decoders. A further
analysis from [17] shows that a number of O(n3 ln 1/ε

σ2 ) tracing transmissions
are needed to query a σ-pirate decoder where ε is the winning probability of
the tracer, i.e. the accusation probability of an innocent receiver. We note that
hybrid colorings (or sometimes called the linear tracing strategy) is a technique
that is implicit in almost all previous work and is ubiquitous in all traitor tracing
schemes (cf. a non-exhaustive list of [2,4,5,6,8,10,11,14,16,18,19,21,22,25,28].)

Tracing via hybrid colorings. We recall that the tracing strategy proceeds as
follows: for s = 0, . . . , n transmit λ = O(n2 ln 1/ε

σ2 ) ciphertexts of the form
Transmits

L(ek, m) and record the way the pirate decoder responds to such spe-
cial ciphertexts. In the case of available and resettable pirate decoder, there are
only two possible cases: (i) the decoder decrypts correctly or (ii) the decoder
chooses (or is forced to) not to decrypt correctly.

In the coloring view of the tracing procedure the following important obser-
vation can be made : a pirate decoder corrupting t traitors keys will be able to
identify only t + 1 colorings among all n + 1 possible colorings. More specifi-
cally, unless the user s′ + 1 is a traitor, then the two colorings (U(n,s′)

1 , U
(n,s′)
2 )

and (U(n,s′+1)
1 , U

(n,s′+1)
2 ) are indistinguishable in the views of the traitors, and it

also holds that the corresponding tracing ciphertexts are also indistinguishable
(assuming the security of the underlying scheme). The response of the pirate
decoder cannot be very different between these two cases.

Now to justify that tracing works the following argument is made : the cipher-
texts of the form Transmit0

L(ek, m) induce a coloring of (U(n,0)
1 , U

(n,0)
2 ) for which

the decoder decrypts with at least σ probability: all traitors have the same color
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of decrypting. On the other hand, the ciphertexts of the form Transmitn
L(ek, m)

induces a coloring of (U(n,n)
1 , U

(n,n)
2 ) for which the decoder fails to decrypt: all

traitors have the same color of not-decrypting. Hence, there will be a point s′ for
which the decoder switches from decrypting to not-decrypting that can be ob-
served with probability at least σ

n due to the triangular inequality. The observed
difference implies that the user with index s′+1 is a traitor with probability 1−ε
where ε is the approximation error that should be allowed since the tracer will
statistically recover the switching point by issuing λ ciphertexts (note that ε can
be made arbitrarily small). This tracing algorithm that utilizes hybrid colorings
will be denoted by TraceHC .

Hybrid Colorings Against History-recording Decoders. It is also stated in [19]
(but without presenting an analysis) that a history recording pirate decoder
with at least two traitor keys can defeat the hybrid color tracing strategy as
follows: upon detecting tracing, the decoder might continue to expose the first
plaintext (thus yielding the first color) as if it was given the regular transmission
for a random number of trials and then after the counter expires start returning
the plaintext that corresponds to the second color (note that both colors are
available to the decoder). Such behavior is possible due to the capability of
history-recording which means that a state is maintained across tracing tests.

Let us see how this strategy applies to the context of a linear length mul-
tiuser encryption scheme: the detection of the tracing procedure is possible
when the traitor set is partitioned into two by a transmission of the form
Transmits

L(ek, m), 0 < s < n, i.e., the case that there exists a traitor in both of
the intervals [1, s] and [s+1, n]. After the detection of tracing which will happen
when transmission of type s is passed in the hybrid coloring schema, a history-
recording decoder will continue decrypting for some number of ciphertexts and
then it will stop decrypting thus effectively switching to the other color. If it
happens that the two traitor keys are at locations i, j with |i− j| > 1 the pirate
decoder can force the tracer to accuse an innocent user with great probability.
In the next section, we will give a rigorous description for this attack.

Hybrid Colorings against Abrupt Decoders. Abrupt pirate decoders use a poly-
nomial time predicate React with domain the set of all partitions of the traitor
keys/indices. Upon inputting a ciphertext c ∈ C to the pirate decoder, the de-
coder calculates the partition of the traitor set based on the projection of the
coloring induced by c over the traitor keys. If the predicate React of the de-
coder returns true, then the decoder activates its self-defensive mechanism. In
[19] only deterministic predicates are considered and it is claimed that hybrid
colorings imply black box traitor tracing against abrupt decoders. The authors
further claim that such result can be easily extended to the general probabilistic
case. However, in the next section we will show that this claim is not correct by
presenting a probabilistic polynomial-time predicate which defeats the tracing
strategy induced by hybrid colorings.

It follows that all traitor tracing schemes (including [4,5,11,21]) that employ
tracing via hybrid colorings, (i.e., performing a walk with special transmissions
to randomize the ciphertexts one by one) would be susceptible to our attack.
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This means that such schemes can be useful for only available and resettable
decoders3.

3 Attack against Hybrid Coloring Based Tracing

The hybrid coloring tracing strategy is used to prove black-box traceability for
resettable and available σ-pirate decoders, for some σ > 0, by querying the de-
coder with the special tracing ciphertexts as many as some number λ times; this
approximates the success probability of decrypting these tracing ciphertexts.
The number λ is a function of σ, the number of receivers n and the failure prob-
ability ε that is desired in tracing; λ is not necessarily kept secret but we can
assume it is not known to the decoder, otherwise the analysis below can be fur-
ther simplified. We refer to the analysis of [17] and take λ = 75n2·ln(8/ε)

σ2 . However
the attacks would work for other values of λ in a straightforward manner. So
far in the categorization of the response of the decoder, we argued for a simple
interpretation of the response behavior of the pirate: given any ciphertext we
said a traitor or a pirate decoder will either decrypt or not. In the algorithm
description below we follow the more general interpretation that says that given
any ciphertext a pirate decoder will return a plaintext which will be considered
as its color (this is without loss of generality).

We next describe the attack on the hybrid coloring tracing that can be
mounted by any history recording decoder which does not even need to know
the value of λ in advance. Note that it is assumed that the value of λ is stable
across tracing (as it is the case for all previous positive results).

Description of the attack for history-recording pirates. The attack uti-
lizes the history-recording capability of the decoder to extract the value λ by
observing and maintaining a suitable counter. We assume a traitor coalition of
size at least 3 with traitor indices t1, t2, t3. The default plaintext that the de-
coder responds with is set to be the plaintext of the third traitor. The decoder
can count the number of special tracing ciphertexts that randomize only the
decryption available to traitor with index t1 as follows: the counter is initial-
ized to 0. When the traitor t1 starts returning a different plaintext compared to
traitors t2, t3 the pirate decoder starts counting and increments the counter with
every such ciphertext. When the traitor t2 starts to decrypt differently than t3
the value of the counter would be equal to λ × (t2 − t1) and hence the value of
λ can be computed by the decoder. Now a new counter will be initialized and
after another λ transmissions for which t3 decrypts differently compared to t1, t2
the decoder will start responding with the plaintext that the traitor t1 outputs.

3 We note that from these works only [19] and [21] claim traceability beyond type-
0 decoders. Note that [21] was already broken in due to other issues in [16]; Still
here we demonstrate that the problem is much deeper as we show that essentially
any attempt to trace abrupt decoders through hybrid coloring is ultimately flawed
and the only known scheme [19] believed to be secure against abrupt decoders is
ultimately also defeated.
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Input : Given a ciphertext c ∈ Cext

Parameters : Traitor identities T = {t1, . . . , ta} with a > 2
Variables : A triple of counters α, β and γ all set 0 initially

A color d, set to empty initially.
Compute the coloring induced by c and let di be the color of traitor ti.
Set d to be d3

If d1 �∈ {d2, d3} then increment α by 1.
If d1 = d2 and d3 �= d1 then do the following:

– If γ = 0 then set γ = α
t2−t1

and β = 1.
– Else if β ≤ γ then increment β by 1.
– Otherwise if β > γ then set d to be the color of d1.

Respond with the plaintext corresponding to color d.

Fig. 2. The high-level operation of the history-recording pirate decoder that breaks
the hybrid coloring strategy

Through out the above decoder-tracer interaction, there is a single switch from
the way the decoder responds: from the plaintext/color of the third traitor to the
plaintext/color of the first traitor. On the tracer side this happens, provided that
λ is correctly computed, when the type of tracing ciphertext/coloring changes
from (U(n,t2)

1 , U
(n,t2)
2 ) to (U(n,t2+1)

1 , U
(n,t2+1)
2 ). Hence the tracer will conclude that

t2 + 1 is the traitor index.
Following this logic, Figure 2 describes how a pirate decoder capable history-

recording can defeat the hybrid coloring strategy even without knowing the value
λ. The decoder, basically, calculates λ and will take the action so that the tracer
will accuse the user with index t2 + 1 always.

Theorem 1. (The attack for history-recording pirates) Consider a black box
traitor tracing algorithm TraceHC based on hybrid coloring technique that has
success probability 1 − ε against resettable σ-pirates for w coalitions. Let the
history-recording decoder D described in figure 2 corrupts the receivers in set
T = {t1, . . . , ta} with w ≥ a > 2 and t3 > t2 + 1. If the tracing algorithm
TraceHC is applied to the decoder D then it will accuse the innocent user t2 +1.

Proof of Theorem 1: The correctness of the statement of the theorem relies
on the accuracy of the computation of the λ value, that is the number of queries
requested by the tracing algorithm TraceHC for each type of coloring/tracing
ciphertext. As seen in the figure 2, the λ value is computed as α

t2−t1
. The α

counter is incremented whenever the tracing query induces one of the following
colorings {(U(n,t1)

1 , U
(n,t1)
2 ), . . . , (U(n,t2−1)

1 , U
(n,t2−1)
2 )}. Indeed, all these colorings

imply that d1, the color of the first traitor, is different than the rest of the
colors. For the next λ queries, as counted by the counter β, a coloring of type
(U(n,t2)

1 , U
(n,t2)
2 ) will be induced. Finally, starting from queries that induce a
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coloring of (U(n,t2+1)
1 , U

(n,t2+1)
2 ), the decoder will responds differently thus re-

sulting in the termination of tracing and an accusation to be made.
Recall the rationale used in proving the correctness of the the tracing algo-

rithm: unless t2 + 1 is a traitor, the decoder is not able to distinguish a coloring
of type (U(n,t2)

1 , U
(n,t2)
2 ) from a coloring of type (U(n,t2+1)

1 , U
(n,t2+1)
2 ). According

to this logic the tracer will conclude that t2 + 1 is a traitor. Hence, the decoder
of figure 2, by using its capability of history-recording, is capable of making the
tracer to accuse an innocent receiver. �

We note that the restriction in the above theorem that t3 > t2 + 1 is superficial
and we can easily modify the pirate decoder of figure 2 to obtain a similar
theorem where other users would be accused. We note that the value λ in many
cases will be public (or can be guessed). In this case the above attack can be
simplified to require only two traitors.

Remark. One may consider more sophisticated tracers that try to foil the above
attacker by making the calculation of λ harder or by hiding the order of the
traitors: specifically, a tracer, (1) may induce the hybrid coloring over a randomly
permuted set of indices of users or (2) may not let the traitors know their indices
or even (3) query a random value λ ciphertexts for different user locations.
These are indeed possible tracing counter-measures against a history-recording
decoder of Figure 2. However, our contribution in this section (and of the paper
in general as the discussion here applies to abrupt decoders as well) is to show
that the standard tracer in the literature that employs the hybrid coloring tracing
technique and was believed to be successful in a number of scenarios is foiled
because of our attacks. The design of better tracing algorithms as shown by our
results has to use more intricate arguments than those believed to be sufficient
used so far and as such is left to future work. We consider our work an important
step forward in understanding traitor tracing of these devices and any potential
upcoming improved tracing algorithms would have to circumvent the class of
attacks we introduce here.

Description of the attack for abrupt pirates. We now consider an abrupt
but resettable decoder. In Figure 3 we describe a pirate decoder that is equipped
with a self-defensive mechanism taking advantage of the way the hybrid color-
ings project themselves on the traitor keys. The decoder will respond to normal
transmissions (from its perspective) with σ = 1 probability while in the case
of tracing ciphertexts (that induce a different coloring to the users) it will re-
spond with a valid plaintext with probability 1− 1

n3 . This will make the decoder
stop responding for tracing ciphertexts that induces a coloring of {Un,s

1 , Un,s
2 }

for some value s. The receiver with index s will then be accused of piracy.
For the sake of ease of presentation we assume a traitor coalition of size at

least 2 with t2 − t1 − 1 = α for a suitably large α (we make this explicit below).
The correctness of the theorem, again similar to the case for history-recording
decoder, relies on the tracing algorithm TraceHC that queries λ = 75n2·ln(8/ε)

σ
transmissions for each type of coloring. We recall that the hybrid coloring tracing
algorithm was believed to be successful by [19,21] and the latter work proposed a
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Input : Given a ciphertext c ∈ Cext

Parameters : Traitor identities T = {t1, . . . , ta} with a > 1
Compute the coloring induced by c and let di be the color of traitor ti.
if React({d1, . . . , da}) returns true then then deploy the self-defensive
action with probability 1

n3

In any other case respond with the color of da.

The predicate React: returns true if d1 has a different color from the
rest of the traitor colors.

Fig. 3. The high-level operation of the abrupt but resettable pirate decoder that breaks
the hybrid coloring

scheme with hybrid colorings as the first sublinear tracing scheme against abrupt
decoders. Our attack presented herein thus fails all known tracing algorithms
against abrupt pirate decoders. We also remark that that repairing the tracer
needs non-trivial improvements to tracing that circumvent our attack; this is an
important open question.

We now present more formally the claim that the hybrid-coloring based stan-
dard tracing algorithm fails to be successful against abrupt decoders.

Theorem 2. (The attack for abrupt pirates) Consider the black box traitor trac-
ing algorithm TraceHC based on the hybrid coloring technique that has success
probability 1 − ε against resettable σ-pirates for w coalitions. Let the abrupt de-
coder D described in figure 3 corrupt the receivers in set T = {t1, . . . , ta} with
a > 1 and t2 − t1 − 1 = α > n

75 . If the tracing algorithm TraceHC is applied
to the decoder D then it will accuse an innocent user with probability at least
1 − ε

8 −
75 ln(8/ε)

n .

Proof of Theorem 2: The pirate decoder we designed decrypts any valid trans-
mission which essentially implies that σ = 1. During the tracing process the
decoder will be given (α + 1)75n2 · ln(8/ε) number of tracing ciphertexts that
induce a coloring of {Un,s

1 , Un,s
2 } for some s = t1, . . . t2 − 1. For each such trans-

mission the predicate React returns true, hence the decoder will deploy the self
defensive mechanism with probability σ0 = 1

n3 . If that happens then a receiver
with an index from {t1, . . . t2 − 1} would be accused of piracy.

To have the decoder defeat the tracer it should be that the decoder deploys
the self-defensive mechanism for an index from {t1 + 1, . . . , t2 − 1} but not t1.
The decoder succeeds in evading from tracing algorithm with probability (1 −
1/n3)75n2·ln(8/ε) as the decoder does not deploy the self-defensive mechanism
with probability 1−1/n3 for each transmission that induces {Un,t1

1 , Un,t1
2 }. That

probability is at least 1 − 1
n3 · 75n2 · ln(8/ε) = 1 − 75 ln(8/ε)

n as it holds that
(1 + x)a ≥ 1 + ax for any real number x > −1 and natural number a.

On the other hand, an innocent receiver will be accused with probability
1 − (1 − 1/n3)75αn2·ln(8/ε) as the probability of not deploying the self-defensive
mechanism for any of the transmissions that induce coloring {Un,s

1 , Un,s
2 }, for



30 A. Kiayias and S. Pehlivanoglu

some s = t1+1, . . . , t2−1, is at most (1−1/n3)75αn2·ln(8/ε). Given that α > n/75
the latter probability has an upper bound of e− ln 8/ε = ε/8. Hence, the decoder
succeeds in accusing an innocent receiver with probability at least 1− ε/8.

Overall, a pirate decoder described in Figure 3 will accuse an innocent receiver
with probability at least 1− ε

8 −
75 ln(8/ε)

n . �

4 Conclusion

In this paper, we propose a new attack against hybrid-coloring based tracing for
abrupt decoders. We also present in full detail the attack that was alluded to in
[19] against tracing for history-recording decoders. Our new attack exploits the
fact that the abrupt decoder may behave arbitrarily and not necessarily follow a
deterministic “React” predicate, whenever given a tracing ciphertext. This is a
realistic scenario, and given the fact that (in the absence of watermarking) there
was no other tracing technique against abrupt decoders other than the hybrid-
coloring one, the design of a traitor tracing scheme against history recording and
abrupt decoders is left as an open problem.
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Abstract. The property that the stream cipher RC4 can generate the
same keystream outputs under two different secret keys has been discov-
ered recently. The principle that how the two different keys can achieve
a collision is well known by investigating the key scheduling algorithm of
RC4. However, how to find those colliding key pairs is a different story,
which has been largely remained unexploited. Previous researches have
demonstrated that finding colliding key pairs becomes more difficult as
the key size decreases. The main contribution of this paper is propos-
ing an efficient searching algorithm which can successfully find 22-byte
colliding key pairs, which are by far the shortest colliding key pairs ever
found.

1 Introduction

The stream cipher RC4 is one of the oldest and most wildly used stream ciphers in
the world. It has been deployed to innumerable real world applications including
Microsoft Office, Secure Socket Layer (SSL), Wired Equivalent Privacy (WEP),
etc. Since its debut in 1994 [1], many cryptanalysis works have been done on it,
and many weaknesses have been exploited, such as [5] [6] and [7]. However, if
RC4 is used in a proper way, it is still considered to be secure. Thus it is still
considered to be a high valuable cryptanalysis target both in the industrial and
academic world.

In this paper, we focus on exploiting the weakness that RC4 can generate
colliding key pairs, namely, two different keys will result in the same keystream
output. This weakness was first discovered by [2] and later generalized by [3].
For any ciphers, the first negative effects that this property could bring is the
reducing of the key space. It seems that it is not very dangerous if the colliding
key pairs are not so many. However, [4] demonstrated a key recovery attack by
making use of this weakness, and the complexity of the attack depends heavily
on how fast we can find those colliding key pairs. In [2], it has demonstrated that
the shorter the key is, the harder it is to find the colliding key pairs. A searching
algorithm was proposed in [2] and a 24-byte colliding key pair was the shortest
one that experimentally found. Finding short colliding key pairs has its practical
� This author is supported by the Graduate Research Program.
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meaning mainly because that the key size deployed in most of the applications
are short ones which are between 16 bytes to 32 bytes, and also the link between
the attacks like [4].

Our main contribution is proposing a searching algorithm that can find short
colliding key pairs efficiently. 22-byte colliding key pair is experimentally found
by using our algorithm in about three days time while a 24-byte colliding key
pair was found in about ten days time in [2]. We also analyze the complexity
of both our algorithm and the one in [2] to support our experimental result
from a theoretical point of view, so that we can understand the new searching
techniques clearly.

This paper is organized as follows. In section 2, we give a short introduction
on RC4 algorithm and the details on the key collisions. In section 3, we review
the previous searching techniques including brute force searching and the one
proposed in [2]. Section 4 covers the new techniques we propose to reduce the
searching complexity followed by the new algorithm in section 5. Complexity
evaluations are described in section 6.

2 RC4 Key Collision

First we shortly describe the RC4 algorithm. The internal state of RC4 consists
of a permutation S of the numbers 0, ..., N−1 and two indices i, j ∈ {0, ..., N−1}.
The index i is determined and known to the public, while j and permutation S
remain secret. RC4 consists of two algorithms: The Key Scheduling Algorithm
(KSA) and the Pseudo Random Generator Algorithm (PRGA). The KSA gen-
erates an initial state from a random key K of k bytes as described in Algorithm
1. It starts with an array {0, 1, ..., N −1} where N = 256 by default. At the end,
we obtain the initial state SN−1.

Once the initial state is created, it is used by PRGA. The purpose of PRGA
is to generate a keystream of bytes which will be XORed with the plaintext to
generate the ciphertext. PRGA is described in Algorithm 2. Since key collision
is only related to KSA algorithm, we will ignore PRGA in the rest of the paper.

Algorithm 1. KSA
1: for i = 0 to N − 1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N − 1 do
6: j ← j + S[i] + K[i mod l]
7: swap(S[i], S[j])
8: end for

Algorithm 2. PRGA
1: i ← 0
2: j ← 0
3: loop
4: i ← i + 1
5: j ← j + S[i]
6: swap(S[i], S[j])
7: keystream byte zi = S[S[i] + S[j]]
8: end loop

We focus on the key collision pattern discovered in [2], which can generate
shorter colliding key pairs than other patterns discovered in [3]. In [2], it clearly
described how two keys K1 and K2 with the only one difference K2[d] = K1[d]+1
can achieve a collision. It traced two KSA procedure and two S-Box states
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generated by the two keys, and pointed out how two S-Box states become equal
to each other at the end of the KSA. Actually, the essence of the key collisions is
only related to some j values at some specific locations. If these conditions once
satisfied, a collision is expected. Thus we prefer to use another way to explain
the collision by listing all the j conditions. In this way, we only need to exam
the behavior of one key, since once the j values generated by this key satisfy all
the conditions, then deterministically, there exists another key that they form a
colliding key pair. To simplify, we check whether a given key K1 has a related
key K2 such that K2[d] = K1[d] + 1 and K1 and K2 can achieve a collision.
Then all we need is to confirm whether K1’s j behaviors satisfy the conditions
in Table 1.

Table 1. j conditions required to achieve a collision

Round Round Interval Class 1 Class 2

1 [0, d + 1] jd = d, jd+1 = d + k j0∼d−1 �= d, d + 1

2 [d + 2, d + k] jd+k = d + 2k jd+2∼d+k−1 �= d + k

... ... ... ... ... ... ... ...

t [d + (t − 2)k + 1, jd+(t−1)k = d + tk jd+(t−2)k+1∼d+(t−1)k−1 �=
d + (t − 1)k] d + (t − 1)k

... ... ... ... ... ... ... ...

n − 1 [d + (n − 3)k + 1, jd+(n−2)k = (d − 1) + (n − 1)k jd+(n−3)k+1∼d+(n−2)k−1 �=
d + (n − 2)k] d + (n − 2)k

n [d + (n − 2)k + 1, jd+(n−1)k−2 = S−1
d+(n−1)k−3[d], jd+(n−2)k+1∼d+(n−1)k−3 �=

d + (n − 1)k − 1] jd+(n−1)k−1 = d + (n − 1)k − 1 d + (n − 1)k − 1

The Round column presents the round number in the KSA steps in the Round
Interval column. There are n = � 256+k−1−d

k  rounds, which is also the times
that the key difference repeats during KSA. We separate the conditions into
two categories, Class 1 and Class 2. From Table 1, you see that the conditions
in Class 1 column are computational dominant compared with Class 2. This is
because for j at some time to be some exact value, probability will only be 2−8

assuming random distribution, while not equal to some exact value in Class 2 has
a relatively much higher probability. Also the main point for finding a colliding
key pair is how to meet those low probability conditions in Class 1 column. In
the rest of the paper, we focus on the Class 1 conditions. When we say a KSA
procedure (a trial) under some key K passes round i and fails at round i+1, we
indicate that all the Class 1 j conditions are satisfied in the previous i rounds
and fails at the i + 1-th round.

3 Known Searching Techniques

3.1 Brute Force Search

The most trivial method is to do the brute force search. The attacker simply
generates a random secret key K with length k, and runs the KSA to test its
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random variable j’s behavior. If the trial fails, then repeat the procedure until
one colliding key pair is found. In [2], it has been demonstrated that for each
trial, the successful probability is around ( 1

256 )n+2. Thus the complexity for the
brute force searching is 28(n+2). For 24-byte keys, the complexity is around 296,
and for 22-byte keys which is actually found by us, it is around 2104.

3.2 Matsui’s Searching Algorithm

A searching algorithm is proposed in [2]. Here we make a short introduction
on his searching technique which is described in Table 2. It defines a search
function with two related keys as input, and output a colliding key pair or fail.
When some trial fails to find the colliding key pair, the algorithm does not
restart by trying another random related key pair, instead, it modifies the keys
as K1[x] = K1[x]+y, K1[x+1] = K1[x+1]−y for every x and y. Since jx = jx+y
and jx+1 = jx + Sx[x + 1] + K1[x], thus jx+1 after the modification will not be
changed. This means that by modifying in this way, the next trial will have a
relatively close relation with the previous trial, in other words, if the previous
trial before the modification tends to achieve a collision, then the next trial after
the modification will also have the tendency. The algorithm recursively calls the
function Search(K1, K2) until it return a colliding key or fail.

4 New Techniques to Reduce the Searching Complexity

In this section, we propose several techniques to reduce the searching complexity
so that we can find short colliding keys in practical time.

4.1 Bypassing the First Round Deterministically

Our first observation is that we can pass the first round. Recall that in the first
round, there are two j conditions in Class 1 that we need to satisfy, namely

jd = d and jd+1 = k + d

As in [2], the setting of K[d + 1] = k − d − 1 always meets the condition
jd+1 = k+d since we have jd+1 = jd +d+1+K[d+1]. But still we have another
condition jd = d left in the first round. This condition can be easily satisfied by
modifying

K[d] = 255− jd−1

at the time when KSA is proceeded at index d − 1 after the swap. Since jd =
jd−1 + d + K[d] = d, and by modifying K[d] dynamically when the previous
value jd−1 is known, jd = d will always be satisfied. Then we can bypass the
first round and reduce the necessary number of rounds to n− 1.
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Table 2. Matsui’s Algorithm

Input: Key length k, d = k − 1

Output: colliding key pair K1 and K2 such that K2[d] = K1[d] + 1,

K1[i] = K2[i] if i �= d, KSA(K1) = KSA(K2).

1. Generate a random key pair K1 and K2 which differs at position d by one.

Set K1[d + 1] = K2[d + 1] = k − d − 1.

2. Call function Search(K1, K2), if Search(K1, K2)=1, collision is found, else goto 1.

Search(K1, K2) :

s = MaxColStep(K1, K2)

If s = 255, then return 1.

MaxS = maxx,yMaxColStep(K1〈x, y〉, K2〈x, y〉)
If Maxs ≤ s, then return 0.

C=0

For all x and y, do the following:

If MaxColStep(K1〈x, y〉,K2〈x, y〉) = MaxS, call Search(K1, K2)

C = C + 1

If C = MaxC, then return 0.

Notations:

MaxColStep(K1, K2): The maximal number of S-Box elements that S1 differs

from S2.

K〈x, y〉 : K[x] = K[x] + y, K[x + 1] = K[x + 1] − y, K[i] = K[i] if i �= x, x + 1.

4.2 Bypassing the Second Round with High Probability

If we choose the differential key index carefully, we find that the second round
can also be skipped with very high probability compared with the uniform distri-
bution. Generally speaking, we would like to choose d = k−1 so that in the KSA
procedure, the key differential index will be repeated as few times as possible.
Actually choosing the d at the indices close to k− 1 will have the same affect as
the last index k − 1. For example, for key with length 20-24 bytes, setting the
key differential at indices k − 1, k − 2, k − 3, k − 4 will cause the key differential
index to be repeated the same times during the KSA. Thus instead of setting
d = k − 1, let’s set

d = k − 3

so that after d, we have another two key bytes. For the first round and second
round, the following two j conditions are necessary to meet:

jd+1 = jk−2 = 2k − 3
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jd+k = j2k−3 = 3k − 3

and we have

j2k−3 = jk−2 + K[k − 1] +
k−3∑
i=0

K[i] +
2k−3∑

i=k−1

Si−1[i] (1)

P2nd= jk−2 + K[k − 1] +
k−3∑
i=0

K[i] +
2k−3∑

i=k−1

Sk−2[i] (2)

Thus by modifying

K[d + 2] = K[k − 1] = j2k−3 − jk−2 −
k−3∑
i=0

K[i]−
2k−3∑

i=k−1

Sk−2[i]

at the time i = k − 2 after the swap, with probability

P2nd =
256− (k − 2)

256
× 256− (k − 3)

256
× · · · × 256− 1

256
=

k−2∏
i=1

256− i

256

we can pass the second round.
This can be explained as follows. For two fixed j values jk−2 in the first

round, and j2k−3 in the second round, we have equation (1). At the time i =
k − 2 after the swap, we don’t know

∑2k−3
i=k−1 Si−1[i], but we can approximate

it by using
∑2k−3

i=k−1 Sk−2[i]. The conditions on this approximation is that for
i ∈ [k− 1, 2k− 4], j does not touch any indices [i + 1, 2k− 3], which gives us the
probability P2nd. Then if we set the K[d + 2] as before, with P2nd we can pass
the second round. Notice that the reason why we can modify K[d + 2] is related
to the choice of d. When modifying K[d + 2], we don’t wish the modification
will affect the previous execution, which has been successfully passed. When
modifying K[d + 2] trying to meet the second round condition, this key byte is
used for the first time during KSA, thus we won’t have the previous concern.
For short keys such as k = 24, P2nd = 0.36, and for k = 22, P2nd = 0.43. The
successful probability is thus much bigger compared with the uniform probability
2−8 = 0.0039.

4.3 Reducing the Complexity in the Last Round

In the last round, there are two j conditions need to be satisfied, namely,

j(n−1)k+d−2 = r such that S(n−1)k+d−3[r] = d

j(n−1)k+d−1 = d + (n − 1)k − 1

And from j(n−1)k+d−1 = j(n−1)k+d−2 +S(n−1)k+d−2[(n− 1)k + d− 1]+K[d− 1],
K[d − 1] can be decided if j(n−1)k+d−2 is fixed to some value. During the KSA
procedure, j(n−1)k+d−2 could be touching any indices, but with overwhelming
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probability, it will touch index d. This is because after step i = d, one of the two
S-Box differentials will be staying at index d till step i = (n− 1)k + d− 2 unless
it is touched by any j during the steps [d + 1, (n − 1)k + d − 3]. Thus we can
assume that

j(n−1)k+d−2 = d

and we can thus modify K[d − 1] at step i = d − 1 before the swap as follows:
K[d− 1] = j(n−1)k+d−1 − j(n−1)k+d−2 − S(n−1)k+d−2[(n − 1)k + d − 1] =
(n− 1)k + d− 1 − d − (d + 1) = (n − 1)k − d − 2

This modification indicates that if some trial meets the j(n−1)k+d−2 = d con-
dition in the last round, then with probability 1, the other condition in this
round on j(n−1)k+d−1 will be satisfied. Simply speaking, 216 computation cost is
required to pass the final round, while we reduce it to

Plast = 28 × (
255
256

)−((n−1)k−3)

For a 24-byte key, the computation cost can be reduced to around 29.2, which is
a significant improvement. The overall cost will be covered in the next section,
here we just demonstrate to give a intuition.

4.4 Multi-key Modification

In the area of finding hash collisions, multi-message modification is a widely used
technique that first proposed by [8]. MD5 and some other hash functions are
broken by using this technique. The idea is that when modifying the message
block at some later round i to satisfy the i-th round conditions, leaving the
previous rounds conditions satisfied (In hash functions, a message block is usually
processed for many rounds in different orders). Since finding the key collision
of RC4, to some degree, is related to finding hash collisions, we are motivated
by the multi-message modification technique and find that we can also do such
efficient modifications in finding RC4 colliding key pairs. Thus we call it multi-
key modification.

After adapting previous proposed techniques, we may easily bypass the previ-
ous two rounds. Start from the third round, however, all the key bytes have been
used more than once. This means that modifying any key bytes will definitely
affect the previous rounds, which could make the previous round conditions be-
come unsatisfied. In case of RC4, due to its property, we can to some degree
maintain the previous round conditions while modifying the key in any later
round. Let’s assume for some round 2 < t < n − 1 for the easy demonstration,
the t-th round conditions are not satisfied, namely, j(t−1)k+d �= tk + d, and all
the previous rounds conditions are satisfied. The following equations should all
be satisfied in order to pass the first t rounds.
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j2k+d = jk+d +
k−1∑
j=0

K[j] +
2k+d∑

j=k+d+1

Sj−1[j] (3)

j3k+d = j2k+d +
k−1∑
j=0

K[j] +
3k+d∑

j=2k+d+1

Sj−1[j] (4)

...... ......

j(t−1)k+d = j(t−2)k+d +
k−1∑
j=0

K[j] +
(t−1)k+d∑

j=(t−2)k+d+1

Sj−1[j] (5)

There are four parts in each of these equations, and when the trial fails to pass
the round t, (5) does not hold while all the previous equations hold. From the
satisfied equations, the sum of the secret key is fixed, and when modifying the
secret key in round t, we should not change the sum

∑k−1
j=0 K[j], otherwise the

previous equations will not be satisfied anymore. Then our problem now becomes
how to modify K to satisfy condition on j(t−1)k+d. There are many ways to
modify the secret key without changing the sum. Matsui’s algorithm actually
uses one of the ways, namely, K[x] = K[x] + y and K[x + 1] = K[x + 1] − y.
Setting the modification targets next to each other reduce the steps that different
j values will change the previous correct S-Box sum. Matsui’s algorithm tries
this modification for every x and y ( x ∈ [0, k−2], y ∈ [0, 255]) one by one, hoping
that for some x and y, the S-Box sum

∑(t−1)k+d
j=(t−2)k+d+1 Sj−1[j] will be the correct

one so that condition on j(t−1)k+d is satisfied, while leaving the all the previous
S-Box sum satisfied. We point out that modifying the secret key in this way have
some drawbacks. First, only some specific x and y values will satisfy the condition
on j(t−1)k+d leaving the previous conditions satisfied, while most of the other
modifications will fail. In other words, for passing round t, this modification can
be seen as brute force search (but its effect on the previous rounds is less than
brute force search, we will cover it in the complexity evaluation). Second, as
also mentioned in [2], such modification will generate many duplicated searching
paths. Especially, since it is a recursive algorithm, one duplication in the small
depth of the tree will cause a considerable amount of computation waste.

We discover that by adding a strategy on x and y in the key modification
instead of brute force search, we could overcome the previous two drawbacks.
Let’s again consider the trial that passes all the previous t − 1 rounds and fails
to pass the t-th round, where we assume 2 < t < n− 2. Let’s run the KSA until
step i = (t−1)k +d−1 after the swap, then we check if the Class 1 j conditions
on round t is satisfied or not, namely whether

S(t−1)k+d−1[(t−1)k+d] = j(t−1)k+d−j(t−2)k+d−
(t−1)k+d−1∑

j=(t−2)k+d+1

Sj−1[j]−
k−1∑
j=0

K[j]
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If the equation holds, we pass the t-th round and proceed the next round. Oth-
erwise, let’s denote

Δ(t−1)k+d = j(t−1)k+d − j(t−2)k+d −
(t−1)k+d−1∑

j=(t−2)k+d+1

Sj−1[j] −
k−1∑
j=0

K[j]

And we wish the value Δ(t−1)k+d could be at index (t− 1)k + d before i touches
it. We check if Δ(t−1)k+d ≤ (t − 2)k + d. If this is the case, it means that we
have available S-Box value that can be swapped here. In other words, modify
the key as follows:

K[Δ(t−1)k+d] = K[Δ(t−1)k+d] + (t− 1)k + d− jΔ(t−1)k+d

K[Δ(t−1)k+d + 1] = K[Δ(t−1)k+d + 1]− (t− 1)k − d + jΔ(t−1)k+d

We can store all the previous j values so that jΔ(t−1)k+d
is available when we need

it for the key modification. If Δ(t−1)k+d > (t− 2)k + d, it means that no matter
how we modify the key, we can not pass the i-th round by changing S[(t−1)k+d].
In this case, we go back one step to test if S(t−1)k+d−2[(t − 1)k + d − 1] is the
correct one assuming S(t−1)k+d−2[(t− 1)k + d] = S(t−1)k+d−1[(t− 1)k + d]. Keep
testing until i = (t−2)k+d+1. Now modifying the key becomes target oriented
instead of brute searching all x and y, and thus duplicated searches can be greatly
reduced. And another big advantage is that once the modification succeeds, we
pass the t-th round, while in [2], after the modification assures the passing of
the previous t − 1 rounds, we need to pass the t-th round in a random way.

4.5 New Searching Algorithm

All the techniques described previously compose our new searching algorithm,
which is summarized in Table 3. It is a recursive algorithm with recursive depth
set to be n, which is the maximum rounds. If the newsearch function returns
the maximum rounds, then it indicates that a collision is found. Note that when
implementing, it can be further optimized by combining Matsui’s algorithm and
our new proposed one to proceed part of the rounds accordingly, so that a
better performance could be achieved. For the simplicity, we just describe the
most straightforward way in Table 3.

5 Complexity Evaluation

5.1 Complexity for Our Proposed Algorithm

We will see from a theoretical point of view, how efficiently our proposed algo-
rithm can perform. We start by giving the following theorem which is important
to compute the complexity, and show the proof.
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Table 3. Proposed Searching Algorithm

Input: Key length k, different index d = k − 3, n = � 256+k−1−d
k

	
Output: K1 and K2 such that K2[d] = K1[d] + 1, K1[i] = K2[i] if i �= d,

KSA(K1) = KSA(K2)

1. Store the following j∗ values in the table, which are the conditions needed to be

satisfied. j∗d = d, j∗d+1 = k + d, j∗i = i + k for i ∈ {d + k, ..., d + k(n − 2)},
j∗d−2+k(n−1) = d, j∗d−1+k(n−1) = d − 1 + k(n − 1). (Class 1 j conditions)

2. Randomly generate a key K1 with key length k. Modify

K1[d − 1] = (n − 1)k − d − 2, K1[d + 1] = k − d − 1.

Set K2 = K1 and K2[d] = K1[d] + 1.

3. Run the KSA until i = d − 1 after the swap. Modify K1[d] = 256 − jd−1, and

K2[d] = K1[d] + 1.

4. Keep running the KSA until i = d + 1 after the swap. Modify

K1[d + 2] = j∗2k−3 − j∗k−2 −
∑k−3

i=0 K1[i] −
∑2k−3

i=k−1 S1,k−2[i]

K2[d + 2] = j∗2k−3 − j∗k−2 −
∑k−3

i=0 K2[i] −
∑2k−3

i=k−1 S2,k−2[i]

5. Set the recursive depth variable R = 0.

6. If newsearch(K1, K2)=n

Colliding key pair found. Output K1 and K2.

else goto 2.

newsearch(K1, K2):

If Round(K1, K2) = n

then return n.

MaxR = Round(K1, K2) = t − 1, set r = (t − 1)k + d

while r > (t − 2)k + d

set Δr = j(t−1)k+d − j(t−2)k+d −
∑r−1

j=r−k+1 Sj−1[j] −
∑k−1

j=0 K[j].

If Δr ≤ (t − 2)k + d

modify the key as follows:

K1[Δr] = K1[Δr] + r − jΔr K1[Δr + 1] = K1[Δr + 1] − r + jΔr

K2[Δr] = K2[Δr] + r − jΔr K2[Δr + 1] = K2[Δr + 1] − r + jΔr

If Round(K1, K2) ≤ MaxR or R = n

return Round(K1, K2).

Else R = R + 1, newsearch(K1, K2)

r = r − 1

Notation

Round(K1, K2) : The number of rounds that a key pair K1, K2 can pass. In other

words, key pair K1 and K2 satisfy all the j conditions in the

first Round(K1, K2) rounds.
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Theorem 1. Define Prt,(x,y) be the probability for a trial that passes round t
(t > 2) by modifying the secret key as K[x] = K[x] + y, K[x + 1] = K[x + 1]− y
according to the multi-key modification given the previous trial fails to pass the
t-th round. Then

Prt,(x,y) ≈
t∑

i=1

(
(
(t − 1)k − 2

256
) ×

i−2∏
j=0

(
256 − (t− j)k + x + 3

256
)4

× (t − i + 1)k − x − 3
256

×
3∑

j=0

(
256− (t − i + 1)k + x + 3

256
)
)

+
256− (t − 1)k + 2

256

Proof. Now let’s consider some trial that passes all the first t − 1 rounds and
fails to pass the t-th round. Then we modify the secret key at indices x and x+1
with value difference y so that K[x] = K[x] + y, K[x + 1] = K[x + 1]− y. Let’s
denote j

′

s,x, j
′

s,x+1 and js,x, js,x+1 be the j values for the current trial and the
trial after the key modification at the modified key indices at round s. It is easy
to see that for each such key modification, the change of the 4 j values at each
round will cause 4 S-Box values to be changed.

For the trial before the key modification, the successful pass of the first t− 1
rounds indicates the correct S-Box sum for some fixed key sum

∑k−1
i=0 K[i]. Since

our modification doesn’t change the key sum, thus, after the key modification,
the previous correct S-Box sum should still be satisfied in order to have a chance
to pass the t-th round. Otherwise, the key modification will only cause a failure
at an rather early round. For example if the previous trial passes the first t − 1
rounds, for the key modification in round s ≤ t − 1 (assuming this key modifi-
cation passes all the previous s-1 rounds), the S-Box sum

∑(t−1)k−1
i=x+(s−1)k Si−1[i]

should not be violated by the 4 changed j values j
′

s,x, j
′

s,x+1 and js,x, js,x+1.
First let’s consider the probability that due to the key modification that the

previous correct S-Box sum is violated. The modification is processed in the
same order as the KSA procedure. And notice that in each round, due to the key
modification, we have 4 changed j values, and they are checked in the sequence
j
′

s,x, js,x, j
′

s,x+1, js,x+1 whether the failure conditions are satisfied. Notice that
due to the use of the multi-key modification technique, the S-Box sum in the
t-th round can not be touched since we have already precomputed the sum and
are expecting the corresponding swap. The following events define the the S-Box
intervals that once touched, the previous correct S-Box sums will be violated
due to the modification in round s.

– As : j
′

s,x ∈ [x + (s − 1)k, tk − 3] (the original j
′

s,x violates the S-Box sum∑tk−3
i=x+(s−1)k Si−1[i])

– Bs : js,x ∈ [x + (s − 1)k, tk − 3] (the newly modified j
′

s,x violates the S-Box
sum

∑tk−3
i=x+(s−1)k Si−1[i]))
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– Cs : j
′

s,x+1 ∈ [x + (s− 1)k + 1, tk− 3] (the original j
′

s,x+1 violates the S-Box
sum

∑tk−3
i=x+(s−1)k+1 Si−1[i])

– Ds : js,x+1 ∈ [x + (s − 1)k + 1, tk − 3] (the newly modified js,x+1 violates
the S-Box sum

∑tk−3
i=x+(s−1)k+1 Si−1[i])

Denote Pr(Ss) to be the probability that the modification in round s will not
break the Class 1 j conditions that have been satisfied in the previous trial.

Pr(Ss) = (1 − Pr(As)) · (1 − Pr(Bs)) · (1 − Pr(Cs)) · (1 − Pr(Ds))
= Pr(Ās) · Pr(B̄s) · Pr(C̄s) · Pr(D̄s)

Denote Pr(Fs) to be the probability that the modification in round s will break
the Class 1 j conditions that have been satisfied in the previous trial so that the
current trial fails to pass round t.

Pr(Fs) = 1 − Pr(Ss)

The exact values for the four events can be computed as follows for s > 2:

Pr(As) = Pr(Bs) =
(t− s + 1) ∗ k − x − 2

256

Pr(Cs) = Pr(Ds) =
(t − s + 1) ∗ k − x − 3

256
Recall that the multi-key modification may fail because no available S-Box el-
ement can be swapped to the corresponding location in the t-th round. We
approximate this probability to be

Pr(Fmulti) ≈
256− (t − 1)k + 2

256

And the probability that we successfully find a candidate for the multi-key mod-
ification is

Pr(Smulti) ≈
(t − 1)k − 2

256
Then the total probability that after the key modification the trial fails to pass
the t rounds can be computed as follows:

Pr(F ) = Pr(Fmulti) + Pr(Smulti) · Pr(F1) + Pr(Smulti) · Pr(S1) · Pr(F2) +

· · ·+ Pr(Smulti)
t−1∏
i=1

Pr(Si) · Pr(Ft)

Thus the probability that for some key modification succeeds to pass the t-th
round while the trial before the modification passes the previous t− 1 rounds is

Prt,(x,y) = 1 − Pr(F )

After replacing with detailed parameters we complete our proof.
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Then the complexity can be derived by the Theorem 2.

Theorem 2. The complexity to find a colliding key pair for secret key with key
length k is

Compnew ≈ Pr−1
n,(x̄,ȳ)

where Prn,(x̄,ȳ) is the average case on all possible x and y, and n = � 256+k−1−d
k ,

d = k − 3.

To find 22-byte and 24-byte colliding key pairs, the complexity is around 245

and 240.

5.2 Complexity for Matsui’s Algorithm

In [2], a searching algorithm was proposed without giving the complexity evalu-
ation. In order to compare the efficiency, we also give the complexity evaluation
for algorithm proposed in [2]. Since Matsui’s algorithm is also a recursive based
algorithm, we can use a similar way as previous to analyze. We point out the
different points here.

Without using the multi-key modification technique that chooses the target
position to modify the key, it tries all the values for x and y, thus the S-Box in
the t-th round can be touched. Also they set key difference at d = k− 1. We can
redefine the following events that for the changed j value violating the S-Box
sum.

– AM
s : j

′

s,x ∈ [x + (s− 1)k, (t − 1)k − 1]
– BM

s : js,x ∈ [x + (s− 1)k, (t− 1)k − 1]
– CM

s : j
′

s,x+1 ∈ [x + (s− 1)k + 1, (t − 1)k − 1]
– DM

s : js,x+1 ∈ [x + (s − 1)k + 1, (t− 1)k − 1]

Since there is no concern for the multi-key modification failure , Pr(FM ) can be
denoted as

Pr(FM ) = Pr(FM
1 ) + Pr(SM

1 ) · Pr(FM
2 ) + · · ·+

t−2∏
i=1

Pr(SM
i )Pr(FM

t−1)

where

Pr(SM
s ) = (1 − Pr(AM

s )) · (1 − Pr(BM
s )) · (1 − Pr(CM

s )) · (1 − Pr(DM
s ))

= Pr(ĀM
s ) · Pr(B̄M

s ) · Pr(C̄M
s ) · Pr(D̄M

s )

and
Pr(FM

s ) = 1 − Pr(SM
s )

Also another big difference is that the modification of the key cannot guarantee
the passing of the t-th round. Thus we have to assume the t-th round Class 1 j
conditions will be satisfied randomly, namely,

PrM
t,(x,y) = (1 − Pr(FM )) × 2−8·(1+� t

n �)

This is because for any rounds except the last round, we have one j condition to
satisfy, and we have two in the last round. Then we have the following theorems.
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Theorem 3. Define PrM
t,(x,y) be the probability for a trial that passes round t by

modifying the secret key as K[x] = K[x]+y, K[x+1] = K[x+1]−y according to
the Matsui’s algorithm given the previous trial fails to pass the t-th round. Then
we have

PrM
t,(x,y) ≈

(
1 − (t − 1)k − x

256
×

3∑
i=0

(
256− (t − 1)k + x

256
)i −

t−1∑
i=2

( (t− j)k − x

256
×

i−1∏
j=1

(
256− (t − j)k + x

256
)4 ×

3∑
j=0

(
256− (t − i)k + x

256
)j
))

× 2−8(1+� t
n �)

Theorem 4. The complexity of Matsui’s algorithm to find a colliding key pair
for secret key with key length k is

Compmatsui = (PrM
n,(x̄,ȳ))

−1

where Prn,(x̄,ȳ) is the average case on all possible x and y, and n = � 256+k−1−d
k .

As a result, the complexity for finding 24-byte colliding key pair is around 248

and 253 for 22-byte keys. The following figure shows the complexity to search
for different colliding key pairs using two different algorithms.

We run the experiment under our proposed algorithm and successfully find
by far the shortest 22-byte colliding key pair in about three days computational
time by using parallel computer Cray XT5 (Quad-Core AMD Opteron 2.4GHz,
10 cores are used). In case of [2], around 10 days computational time and multiple
cpus were used (the detailed information was not published) to find a 24-byte
colliding key pair. Also, our proposed algorithm has a better efficiency searching
for other short colliding keys which seems difficult to find by using the algorithm

Fig. 1. Computational Complexity
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in [2]. Here is the concrete 22-byte colliding key pair found by us in hexadecimal
form:

K1(K2) : A2 27 43 A7 03 94 2F 17 75 BB A7 27 8F DD 3E 7B C6 A1 C7 81(82)
02 5A

6 Conclusion

In this paper, we investigate how to find RC4 colliding key pairs efficiently.
We propose several techniques that can be used to bypass several rounds faster
than brute force search, and the multi-key modification technique allows us to
further increase the searching efficiency without drawback of duplicate searching
which is the problem in [2]. We also give the complexity evaluation for both our
proposed algorithm as well as the one in [2]. And finally by showing by far the
shortest 22-byte colliding key pair ever found, we confirm that our algorithm
does work efficiently as expected.
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Abstract. Distance-bounding protocols aim at impeding man-in-the-
middle(MITM) attacks by measuring response times. Three kinds of at-
tacks are usually addressed: (1) Mafia attacks where adversaries relay
communication between honest prover and honest verifier in different ses-
sions; (2) Terrorist attacks where adversaries gets limited active support
from the prover to impersonate; (3) Distance attacks where a malicious
prover claims to be closer to the verifier than it really is. Many protocols
in the literature address one or two such threats, but no rigorous security
models —nor clean proofs— exist so far. For resource-constrained RFID
tags, distance-bounding is more difficult to achieve. Our contribution
here is to formally define security against the above-mentioned attacks
and to relate the properties. We thus refute previous beliefs about rela-
tions between the notions, showing instead that they are independent.
Finally we assess the security of the RFID distance-bounding scheme due
to Kim and Avoine in our model, and enhance it to include impersonation
security and allow for errors due to noisy channel transmissions.

1 Introduction

Man-in-the-middle attacks (MITM) are powerful strategies against identifica-
tion schemes: the adversary relays communication between prover and verifier,
making the latter accept. Following [16], pure relaying is called Mafia fraud. En-
vironments with no central authority and certificates, like RFID identification,
are especially subject to Mafia fraud, as indicated in [23, 15, 17, 22, 19]; several
works also show attacks on the HB protocol [27,20,18,9,32,30], which is designed
for low-power devices e.g. RFIDs. For an overview of RFID security see [28].

1.1 Distance Bounding Protocols

Distance bounding protocols were proposed by Brands and Chaum [8] as a coun-
termeasure against MITM attacks. The basic idea is that pure relay takes longer
than genuine responses; thus, if verifiers measure the time elapsed between send-
ing a value and receiving the reply, MITM attacks should be infeasible. In prac-
tice, verifiers check round-times for many fast or time-critical communication
phases (as opposed to slow or lazy phases, where round times do not matter).

X. Lai, J. Zhou, and H. Li (Eds.): ISC 2011, LNCS 7001, pp. 47–62, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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We mainly address RFID authentication, but our new framework applies to
general distance bounding. Here verifiers (in RFID, readers) indicate by a bit
if provers (in RFID, tags) are authenticated or not after some interaction. We
often use the terms readers/tags for provers/verifiers. RFID distance bounding
is extensively analysed in [1, 2, 3, 4, 8, 10, 12, 13, 15, 16, 17, 22, 23, 26, 29, 34, 36, 37].
See also [24] for a comprehensive overview. The three main attacks are: (1) Mafia
fraud, where adversaries try to impersonate to the reader while communicating
with an honest tag (the timing prevents pure message relay though); (2) Terror-
ist fraud, where tags may help the adversary by leaking information in offline
phases (tags should reveal no trivial information though, like the secret key); (3)
Distance fraud, where tags claim to be closer than it actually is. We also con-
sider the basic (often neglected) requirement for identification, i.e. slow-round
impersonation resistance, independent of the limited number of fast phases.

We exemplify the three attacks as follows: consider a gym locker with an
inbuilt RFID reader, for which Alice holds the unique pass key (an RFID tag).
One evening, Alice is not at the gym, but at a party. In the Mafia fraud scenario,
Bob is at the gym; his accomplice, Bobette, is at the party with Alice. Bob wants
to open the locker (without Alice’s consent for Mafia fraud). In this attack,
Bob and Bobette relay messages between the locker and Alice’s tag. If, on the
contrary, Alice wants Bob to use her locker (for this night only) we have Terrorist
fraud. Alice may now give Bob information to help him use her locker, but she
doesn’t want Bob to abuse her kindness and open the locker on his own, this
or any other time. For Terrorist attacks thus, Alice helps Bob herself: Bobette
is not needed. Finally, if Alice parked her car in a bad spot, she might want to
“prove” that she was at the gym instead (this is distance fraud) by opening the
locker, which can be opened only if the unique key is in direct proximity.

Several existing protocols implement resistance against one (or more) of the
above threats. A selection of such protocols is compared in Figure 1. The values
mentioned for [8,26,4,34,29] are those claimed by the respective papers (despite
a lack of formal approaches). We note that public-key constructions, as opposed
to private-key ones, are unsuitable for low-power devices like RFID. Also, most
existing work permits adversaries to impersonate the reader to the tag, thus
leaking information about fast-phase response times. If only bits are transmitted
in fast phases, the ideal impersonation bound would be 2Nc for Nc critical rounds;
however, most protocols allow impersonation and thus reach a lower than ideal
bound. To account for this Mafia fraud attack, under “Rounds”, we give the
number Nc of time-critical rounds required for a Mafia resistance of about 2−k.
We round down the number of rounds in [26, 34] to 2k. Note that [4] shows a
construction with reduced complexity, at the expense of security.

We lastly outline some related literature. Further related work follows in Sec-
tion 1.2. Recently, position-based cryptography [14] shows a model for deter-
mining if a prover is (exactly) at a claimed position — but in a single protocol
run, with many verifiers, unlike in Mafia and terrorist fraud. Adversaries in [14]
all have the same knowledge as the prover (knowing also the secret key). This
notion is closer to distance fraud, where tags must prove they are closer to the
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[8] [26] [4] [34] [29]

Mafia � � � � �
Terror × × × (�)1 ×

Distance � � � � �
Impersonation × × � × ×

Rounds Nc k > 2k k > 2k k
Storage Nc 2Nc O(2Nc ) 2 Nc 4Nc

Private-key × � � � �

Fig. 1. Claimed Security and Actual Efficiency of Distance Bounding Protocols at a
glance (1only special terrorists, no formal proof)

reader than they really are. However, exact positioning is unachievable for RFID,
requiring too many readers to deal with the high variance in response time. In
fact, recent work due to Hancke [25] suggests designing a distance bounding
channel limiting channel-specific variations of response times.

By contrast, self-delegation as in [21] and [11] resembles terrorist fraud. In
[21], self-delegated secondary keys are used to authenticate. Losing too many
such keys compromises the long-term key, like in terrorist fraud, where tags
partly reveal the key when helping the MITM. The model in [21] mainly differs
from ours in the following: [21] considers a public-key setting only (with server
certification of secondary keys); they analyse only signature-leakage; and no
online help is available. Also, the public-key cryptography and non-interactive
zero-knowledge proofs used in [21] are unsuitable for RFID. Finally the “all-or-
nothing” approach of transferable anonymous credentials [11] associates (with no
formal security model) sharing secret pseudonyms or credentials with recovering
a user’s full secret, as in terrorist fraud. The use of public-key infrastructures
also makes the idea inapplicable to RFID.

1.2 Our Contributions

Our contributions are threefold: (1) We give rigorous models for Mafia, terrorist,
and distance fraud, thus (2) formally relating these notions (we also refute claims
in [2,34] that terrorist fraud resistance implies distance fraud resistance). Finally,
we (3) assess the security of the prominent scheme in [29] in our model, making
it impersonation resistant and allowing for noisy channels.

The Practice behind the Theory. Practical RFID investigations [13,15,34,26,33,
25] show some design issues applicable for all low-power devices. We provide for
them in our framework. Firstly, due to the unreliable and noisy transmissions,
readers and tags should only exchange bits in time-critical phases [15, 25, 34].
Also, time-critical computations must be simple, taking consistent time so as
not to bias round-trip time and threshold values. Low-power devices like RFID
must use little storage; noise in both transmissions and time measurement must
also be provided for [15, 25, 34]. Our thresholds for failures during timed steps
add depth to the model, allowing pure relay in some phases.

Lastly, implementations may allow adversaries to predict a bit “halfway into
the signal” [17]. Also, as computation complexity may vary with received input,
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adversaries can get information from the reader or tag faster than expected. In
our model, adversaries may relay data as long as it is not purely duplicated.
We also suggest, as in [4], to add offline authentication (preferably) before the
necessarily-few fast phases: the often neglected, but essential requirement of
impersonation resistance is strongly defined in our model. Though schemes like
[8, 26] lack this enhancement, we use it for the scheme in [29].
The Models. A sound modeling of the above attacks is crucial to assessing pro-
tocol security. Many confusions regarding attack modes and successful MITM
attacks appear e.g. for the HB protocol [27,20,18,9,32,30]. As another example,
the allegedly secure Hitomi and NUS protocols were recently proved insecure [1].
We formalize game-based models while also considering practical conditions, and
can thus formally prove that, contrary to statements in [34] and [2], terrorist
fraud resistance does not imply distance fraud resistance. In fact, we show that
Mafia, terrorist, and distance fraud resistance are all independent (concretely,
we show protocols that are vulnerable to one attack, but resistant to all oth-
ers, including basic impersonation resistance for authentication). Thus terrorist
fraud resistance does not imply Mafia fraud resistance, nor vice versa.

Some groundwork has already been laid in this field by Avoine et al. [2], who
model Mafia, distance, and terrorist fraud in both a black-box and a white-box
sense i.e. giving adversaries access to the implementation of the primitive or not.
Distance-bounding protocols here have two main goals: authentication and dis-
tance checking; each type of fraud is also more formally defined. Adversaries may
choose from three main strategies: pre-ask (query prover before being queried
by verifier), post-ask (query prover after being queried by verifier), and early-
reply (respond before verifier sends query, without querying the prover). In the
black box model, Mafia and terrorist fraud are proved equivalent, whereas ter-
rorist fraud resistance is said to imply distance fraud resistance. In the white-box
model, terrorist fraud resistance implies both Mafia and distance fraud. Mafia
fraud resistance is equivalent in the black and white box models, and white-box
terrorist and distance fraud are strictly stronger than the black-box notions.

By contrast, our definitions are much more concrete and formal. Protocols
have many rounds (lazy or time-critical), and adversaries choose (possibly dif-
ferent) strategies at each round, unlike [2]. Our Mafia adversaries may relay
parts of the communication, e.g. flip bits, or purely relay (taint) some rounds.
Our Mafia and terrorist provers may be anywhere, unlike [2], where provers are
outside the target distance from the verifier. By using a simulator, we concretely
define “advantage for future attacks” [2] for terrorist fraud. Hence, we prove that
all security notions are independent. We also extend impersonation resistance to
lazy-phase authentication, thus preventing information leaks to fake provers.

In other related work, [31] considers honest provers only, and states no se-
curity goals, while the formal methods approach in thoroughly models distance
bounding, but treats wireless networks in general for provers and verifiers with
equal capacities (unlike for RFID, where tags are computationally weaker).
Also, some physical properties of RF communication, e.g. the unreliability of
tags’ backscattering and colliding signals, are unaccounted for. Cryptographi-
cally speaking, [35] provide no reliable definitions for the attacks above.
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Using our Framework. We assess the security of the Kim and Avoine proto-
col [29] in our model. Here, mutual tag-to-reader and reader-to-tag fast-phase
authentication yield good Mafia and distance fraud (but not impersonation-)
resistance. If reader authentication fails, tags respond randomly every round.
We first make the scheme in [29] impersonation resistant, then formally assess
its security in our model, proving also that it is not terrorist fraud resistant.

2 Preliminaries

We consider a single reader R and a single tag T , sharing a secret key generated
in Kg. We associate to R a clock and a database entry storing T ’s secret key.
Identification schemes ID = (Kg, T ,R) mark (consecutive) steps of the protocol
as lazy or time-critical. In time-critical steps, one party —usually the reader—
compares measured round-times Δt to a predetermined threshold tmax. Else the
phase is lazy. Protocols consist of arbitrary non-overlapping sequences of lazy
and time-critical phases, with possibly many consecutive time-critical phases.
Denote by Nc the number of time-critical phases. At most Tmax-many round-
times may exceed tmax, to account for transmission-time lags. Similarly, up to
Emax-many time-critical responses may be erroneous.

Definition 1. An identification scheme for timing parameters (tmax, Tmax, Emax,
Nc) is a triplet of efficient algorithms ID = (Kg, T ,R) with:

Key Generation. For parameter n ∈ N, Kg generates a secret key sk.
Identification. The joint execution of algorithms T (sk) and R(sk) generates,

depending on tmax, Tmax, Emax, Nc, a verifier output b ∈ {0, 1}.

We assume that the scheme is complete: for any n ∈ N and any key sk ← Kg(1n),
the decision bit b produced by honest party R(sk) interacting with honest party
T (sk) under the requirements following from the timing parameters, is 1 with
probability (negligibly close to) 1.

As noted also in [2], distance bounding enhances authentication with distance
seeking. Thus, tmax is a crucial parameter here. The parameters Emax and Tmax

are intrinsic to communication over noisy channels (e.g. RF channels between
readers and passive and semi-passive RFID tags1). In distance bounding, it is
unreasonable to separate transmission reliability from security, as round-time
measurements are crucial towards acceptance or rejection. Bit errors are un-
avoidable in RF communication, as stated in point 4 of Clulow et al.’s principles
for secure time-of-flight distance-bounding [15]. As shown in section 1, commu-
nication noise makes transmissions unreliable and introduce possible lags. We
can, however, set Tmax = Emax = 0 for extremely reliable scenarios.

1 Passive RFID tags have no power source and are very sensitive to metals and liquids
in particular. Semi-passive tags use their own power source for computation, but
rely on readers for communication, and are also affected by metals and liquids.
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3 Security Model

3.1 Communication Model

The adversary can access: a reader instance to which it impersonates the tag
(a reader-adversary session), a tag instance to which it impersonates the reader
(adversary-tag session), and an interface observing a genuine reader-tag protocol
for which the adversary cannot change transmissions (reader-tag session). The
adversary can access all interfaces concurrently and in many sessions (sessions
share a secret key, but have different random tapes). Each session has an iden-
tifier sid (given to the adversary, but not to protocol participants). We assume
that the adversary knows if an authentication attempt succeeded or not.2

In our concurrent single-reader-single-tag scenario (as opposed to a single
reader and multiple tags), many instances of the single tag may exist in parallel,
sharing the secret key, but not the random tape. The key is static, i.e., not
updated after executions. For many independent keys (multiple tags), adversaries
can always pick a tag to attack in our model. Three factors are crucial to multiple-
tag scenarios: the interdependency of the keys; the noise in the communication
due to tag-to-reader collisions (a factor modeled by Emax); and key management.
A formal approach for key update is, however, beyond the scope of this paper.

We assume message-driven attacks, i.e., honest parties reply as soon as they
receive a (protocol) message. The adversary schedules message delivery to honest
parties. We assume a global clock, assigning an integer clock(sid, k) to the k-th
protocol message, delivered in session sid to an honest party. The honest party’s
reply is assigned clock(sid, k+1) = clock(sid, k)+1. 3 Furthermore, clock(sid, k) <
clock(sid∗, k) if the adversary delivers the k-th message in session sid∗ after the
k-th message in session sid. Denote by Πsid[i . . . j] messages i to j exchanged in
session sid and by Πsid[1 . . . ] all messages exchanged in sid. Let viewA denote
the adversary’s view in an attack, containing its internal randomness and all the
transcripts (of communication with and among other parties).

Let t denote the adversary’s running time, including steps of honest par-
ties. Denote by qR (resp. qT and qobs) the maximal number of reader-adversary
(resp. adversary-tag and reader-tag) sessions. Below we refine the attacks and
define winning conditions for the adversary (who must non-trivially impersonate
the tag in a reader-adversary session). For an attack att we write Advatt

ID(A) for
the probability that the (t, qR, qT , qobs)-adversary A wins.

3.2 Mafia Fraud Detection Model

Mafia fraud adversaries can communicate arbitrarily with tag and reader, except
for purely relaying time-critical transmissions. We exclude only attacks where the
adversary relays exact transmissions, calling such time-critical phases tainted :
2 This is not a strong requirement. In practice the success of an authentication attempt

is marked by a physical event: a beep, the opening of a door, a green light etc.
3 We could also allow adversaries to delay message delivery from honest parties. Our

model and results are robust with respect to this idea, but this contradicts the
implementation of reliable time measurements and enable denial-of-service attacks.
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Definition 2 (Tainted Time-Critical Phase (Mafia)). A time-critical phase
Πsid[k . . . k + 2
− 1] = (mk, . . . , mk+2�−1) for k, 
 ≥ 1 of a reader-adversary ses-
sion sid, with the k-th message being received by the adversary, is tainted by the
phase Πsid∗ [k . . . k+2
−1] = (m∗

k, . . . , m∗
k+2�−1) of an adversary-tag session sid∗

if for all i = 0, 1, . . . , 
− 1 we have:

(mk, . . . , mk+2�−1) = (m∗
k, . . . , m∗

k+2�−1),
clock(sid, k + 2i) < clock(sid∗, k + 2i),

and clock(sid, k + 2i + 1) > clock(sid∗, k + 2i + 1).

As shown in Figure 2, our notion is slightly conservative. We account for com-
putation complexity depending on input values, allowing adversaries to receive
one reply, change the response, and relay it in time. But now adversaries could
flip redundant bits and relay crucial ones without tainting a phase. We nonethe-
less prefer to err on the safe side and give adversary more freedom, as obvious
redundancy is easily modified as shown for key exchange protocols [7, 6]. Sec-
ondly, time-critical phases are tainted if all transmitted messages are relayed in
two sessions. However, if a single transmission is relayed, the phase is untainted.
Here we give adversaries more freedom and get a stronger notion.

R A T R A T R A T
sid sid∗ sid sid∗ sid sid∗

mk−−−−→ mk−−−−→ mk−−−−→
mk−−−−→ m∗

k−−−−→ mk+1←−−−−
mk+1←−−−− mk+1←−−−− mk−−−−→

mk+1←−−−− mk+1←−−−− mk+1←−−−−

tainted untainted untainted
(pure relay) (distinct messages m∗

k �= mk) (distinct scheduling)

Fig. 2. Examples of Tainted and Untainted Time-Critical Phases

The adversary must now make the reader accept in session sid such that for
each adversary-tag session sid∗ at most Tmax phases of sid are tainted by sid∗:

Definition 3 (Mafia Fraud Resistance). For a distance-bounding identifica-
tion scheme ID with parameters (tmax, Tmax, Emax, Nc), a (t, qR, qT , qobs)-Mafia-
fraud adversary A wins against ID if the reader accepts in a reader-adversary
session sid such that any adversary-tag session sid∗ taints at most Tmax time-
critical phases of sid. Let Advmafia

ID (A) denote the probability that A wins.

Different adversary-tag sessions may taint different rounds of reader-adversary
session sid. As we count Tmax over all adversary-tag sessions the adversary wins
if it taints at most Tmax distinct phases. Protocols must prevent such attacks to
be Mafia fraud secure in concurrent settings. Further session interdependencies
should also be avoided so that messages from another session do not taint sid.
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3.3 Terrorist Attack Model

In a terrorist attack the tag aids the adversary in all short of revealing its secret
key, in fact wanting to ensure that the adversary only wins with the tag’s aid
(the dishonest prover controls the adversary’s access). Desmedt [16] concretely
describes the tag’s involvement as offline help in a single impersonation attempt.
The adversary now wins if the reader accepts, but the adversary cannot use the
help given by tag T ′ to impersonate further.

We formalize the idea by using ideas from proofs of computational ability
[38, 5], which exactly capture the intuition of terrorist attacks: given support
from a prover e.g. T ′, one can solve a hard problem e.g. identifying to the
reader. This is independent of how the prover gives support. We are not, however,
interested in the cases where T ′ yields the entire key (or large parts of it) and
mark certain auxiliary data given by T ′ as trivial, i.e. the data is trivial if it
allows one to successfully complete a “fresh” identification attempt without help
from T ′. This includes the case when T ′ gives the secret key, but circumvents
the problem of determining which parts of the key are helpful. Data is trivial if
it aids identification beyond the dedicated help in the session where T ′ helps.

We formalize the latter by demanding that no algorithm S, called simulator,
can use the data passed by T ′ to A to authenticate without the help of T ′

(to be fair, we allow S the same number qR of attempts as A). This is in line
with well-known simulation paradigms, and allows to compare the respective
success probabilities of the adversary A aided by T ′, and the simulator S using
A’s information to authenticate. If A is significantly more successful than S,
the attack is non-trivial and the protocol is insecure against terrorist attacks.
Note that “unsophisticated” adversaries may do worse than simulators for secure
schemes, thus yielding negative advantages.

For terrorist fraud, A acts as for Mafia fraud, but may query the “malicious”
interface T ′ in lazy phases. Sessions sid′ with T ′ are arbitrary, not following
protocol.In fact we may consider only one session sid′ when T ′ helps A. The tag
may not aid A in time-critical phases, a fact which we model by defining tainted
time-critical phases as pure-relay phases or rounds where A queries T ′.

Definition 4 (Tainted Time-Critical Phase (Terror)). A time-critical
phase Πsid[k . . . k+2
−1] = (mk, . . . , mk+2�−1) for k, 
 ≥ 1 of a reader-adversary
session sid, with the k-th message being received by the adversary, is tainted if
there is a session sid′ between the adversary and T ′ such that, for some i,

clock(sid, k) < clock(sid′, i) < clock(sid, k + 2
− 1).

For the new definition of tainted phases, terrorist fraud resistance demands that
for any terrorist fraud attacker A there exists a simulator S such that for any
supporting T ′, S is essentially as successful as A. We use concrete security state-
ments and omit quantification over A, S, and T ′ algorithms; this quantification
is included in subsequent security claims in the usual form (i.e., for any adversary
there exists a simulator such that for all tags the advantage is small).
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Definition 5 (Terrorist Fraud Resistance). Let ID be a distance-bounding
identification scheme with parameters (tmax, Tmax, Emax, Nc). Let A be a (t, qR,
q′T )-terrorist-fraud adversary, S be an algorithm running in time tS , and T ′ be
an algorithm running in time t′. Denote

Advterror
ID (A,S, T ′) = pA − pS

where pA is the probability that the reader accepts in one of the qR reader-
adversary sessions sid such that at most Tmax time-critical phases of sid are
tainted, and pS is the probability that, given viewA in an attack of A, S makes
the reader accept in one of qR subsequent executions.

Again, if the advantage is negative, A performs worse than S. Our notion is
quite strong: the simulator only gets to see A’s transcript in an offline phase,
instead of communicating with T ′ online. This guarantees stronger security and
saves us from dealing with issues related to the number of queries and successful
attacks (adversary vs. simulator).

How does our definition fit into previous efforts? Previous protocols [34, 4]
claim to achieve a security of (1/2)−Nc . This, however, corresponds to a tailor-
made strategy of T ′; other strategies may still exist. Proving that the advantage
in Definition 5 is negligible, then we prove that T ′ can only help trivially.

3.4 Distance-Fraud Model

For distance fraud an adversary must reply ahead of a time-critical phase or it
cannot respond in time. In practice this is enforced by a tight value of tmax. For
any time-critical phase, with possibly many communication rounds, the adver-
sary must commit to the first message to be sent. For any later rounds in the
phase, the adversary has time to reply even from farther away.

The order of committed and sent values is determined by on oracle CommitTo
with a single session sidCommitTo, taking tuples (sid, i, mi) from the adversary and
giving empty responses. The adversary commits to the first message of time-
critical phase i of session sid (message j in sid) at time clock(sidCommitTo, j). As the
adversary may repeatedly commit to this message, we take the last commitment
before phase i begins. A time-critical phase is tainted if the adversary returns
an answer it has not committed to.

Definition 6 (Tainted Time-Critical Phase (Distance)). A time-critical
phase Πsid[k . . . k+2
−1] = (mk, . . . , mk+2�−1) for k, 
 ≥ 1 of a reader-adversary
session sid, with the k-th message being received by the adversary, is tainted
if the maximal j with ΠsidCommitTo

[j] = (sid, k + 1, m∗
k+1) for some m∗

k+1 and
clock(sid, k) > clock(sidCommitTo, j) satisfies m∗

k+1 �= mk+1 (or no such j exists).

Definition 7 (Distance Fraud Resistance). For an identification scheme
ID with parameters (tmax, Tmax, Emax, Nc), a (t, qR, qT , qobs)-distance-fraud ad-
versary A wins against ID if the reader accepts in one of qR reader-adversary
sessions sid with at most Tmax tainted time-critical phases. Let Advdist

ID (A) be
the probability of A winning.
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3.5 Impersonation Resistance

We suggest a simple, but very strong definition of impersonation security as
a basic requirement of identification in our concurrent setting. Thus even ad-
versaries who actively take part in intertwined prover and verifier runs cannot
impersonate the prover. Whereas the previous properties concern time-critical
phases, impersonation security requires that an adversary cannot impersonate a
tag in lazy phases. This ensures that the reader leaks no time-critical informa-
tion to an invalid tag. Following the idea that parties should authenticate even if
the time-critical phases are not executed, we consider projections Π lazy

sid [1 . . . ] of
Πsid[1 . . . ] containing lazy phases transmissions only, and (not necessarily con-
secutive) indices ιlazysid = (i1, i2, . . . ) of lazy phase messages. The adversary wins
if a reader-adversary session succeeds and no adversary-tag session has the same
“lazy transcript”, created via pure relaying.

Definition 8 (Impersonation Resistance). In a distance-bounding identi-
fication scheme ID with parameters (tmax, Tmax, Emax, Nc) where R always go
first, a (t, qR, qT , qobs)-impersonation adversary A wins against ID if R accepts
in a reader-adversary session sid such that no adversary-tag session sid∗ has

Π lazy
sid [1 . . . ] = Π lazy

sid∗ [1 . . . ],

and
clock(sid, i) < clock(sid∗, i)

for any i ∈ ιlazysid ∩ ιlazysid∗ s.t. R has sent the i-th message to A in sid, and

clock(sid, j) > clock(sid∗, j)

for any j ∈ ιlazysid ∩ ιlazysid∗ such that the adversary has sent the j-th message to the
reader in sid. Let Advimp

ID (A) be the probability that A wins.

4 Relationship between Fraud Types

Impersonation security concerns lazy protocol phases, while Terrorist, Mafia,
and distance fraud attack time-critical phases. In our framework we refute the
idea in [34] that terrorist fraud resistance implies distance fraud resistance and
show that all properties are independent. Due to limited space, we leave the
formal proofs for the full version and give only an intuition below.

Theorem 1 (Security Diagram — Informal). If pseudorandom functions
exist, the following holds:

1. There exists a distance-bounding identification scheme that is impersonation-
secure, Mafia and distance fraud resistant, but not terrorist fraud resistant.

2. There exists a distance-bounding identification scheme that is impersonation-
secure, Terrorist and Mafia fraud resistant, but not distance fraud resistant.
Thus, terrorist fraud resistance does not imply distance fraud resistance.

3. There exists a distance-bounding identification scheme that is impersonation-
secure, Terrorist and distance fraud resistant, but not Mafia fraud resistant.
Thus, terrorist fraud resistance does not imply Mafia fraud resistance.
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Terrorist-Fraud Resistance. The enhanced Kim-Avoine scheme in Section 5 has
all properties except for terrorist-fraud resistance. The reason it fails against
terrorist attacks is that time-critical messages are predetermined by the lazy
phase and can be revealed without disclosing the secret key (thus providing
sufficient, but non-trivial offline help). In general, terrorist attacks are thwarted
by interlinking authentication sessions, such that malicious tags (partially) reveal
long-term secrets if they help the adversary. The difficulty in designing terrorist-
fraud resistant schemes is formally ensuring that the simulator can extract the
secret from the adversary and thus authenticate. The simulator’s only advantage
is that it can rewind executions and get responses for different challenges.

Distance-Fraud Resistance. We separate distance-fraud resistance from the other
properties by giving the tag a special key which makes time-critical responses
predictable. Honest parties never use this key, but malicious tags may use it to
commit distance fraud. Other security properties are unaffected, as the special
key is never used by honest parties. Distance-fraud resistance depends on the
unpredictability of each round’s answer. This is easily achieved by adding some
time-critical rounds where tags echo random bits.

Mafia-Fraud Resistance. We show Mafia fraud resistance independence by start-
ing with a protocol having all other security properties; the tag may use a bit to
indicate that time-critical bits are flipped. Then a man-in-the-middle adversary
can flip replies from an adversary-tag session and authenticate to the reader
without tainting the phases. There are two options to prevent Mafia fraud at-
tacks. Assume that in each fast phase the reader sends a random challenge. If
the adversary correctly predicts the challenge in a reader impersonation, it can
use the reply in the reader-adversary session without tainting the phase; for a
wrong prediction, the adversary guesses the answer instead. The overall success
is 3

4 per round as in, e.g., the Hancke and Kuhn protocol [26]. The other option
is to authenticate the reader by the fast phase challenges. Now the adversary-tag
session in the above attack aborts for a wrong prediction, dropping the adver-
sary’s success probability in the reader-adversary execution to 1

2 for subsequent
rounds. This is the strategy of the Kim-Avoine as discussed next.

5 Case Study: The Construction Due to Kim and Avoine

The scheme in [29] is Mafia and Distance fraud resistant. We tweak it to add
impersonation security, provide for noisy channels as in Section 2, then prove
it secure in our framework. The proof relies on the fact that the nonce pairs
exchanged in each run are quasi unique; also for any efficient adversary A′ the
advantage Advdist

PRF(A′) of distinguishing a pseudorandom function from a truly
random one is small (see Appendix A for a formal proof).

Theorem 2 (Security Properties). The distance bounding protocol ID in
Fig. 3 with parameters (Tmax, tmax, Emax, Nc) has the following properties:
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R(sk, IDR) T (sk, IDT , st)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lazy Phase

pick NR ← {0, 1}∗ pick NT ← {0, 1}∗
NR−−−−−−−−−−−−−−→ I ||C||D||v0 ||v1 ← PRF(sk, NR||NT )

I ||C||D||v0||v1 ← PRF(sk, NR||NT )
NT , I←−−−−−−−−−−−−−−

Verify I

set cnt := 0; errR := 0 set state st = ⊥; errT := 0
Time-Critical Phases

for i = 1, . . . , Nc

pick Si ← {0, 1}
Ri ← Si if Ci = 1
Ri ← Di if Ci = 0

Clock: Start
Ri−−−−−−−−−−−−−−→

if st �= rnd do:
if Ci = 1, then Ti = v0

i if Ri = 0
Ti = v1

i if Ri = 1
if Ci = 0, then Ti = v0

i if Ri = Di

Ti ← {0, 1} if Ri �= Di.
if Ri �= Di, do errT ← errT + 1
if errT > Emax, do st = rnd.

else Ti ← {0, 1}
Ti←−−−−−−−−−−−−−−

Clock: Stop, output Δt
set errR ← errR + 1 if Ti does not match

set cnt ← cnt + 1 if Δt > tmax

end of fast phase
output b = 1 if cnt ≤ Tmax and errR ≤ Emax, else b = 0

Fig. 3. Enhanced Kim/Avoine protocol

– It is not terrorist-fraud resistant.
– For any (t, qR, qT , qobs)-impersonation adversary A against ID there exists

a (t′, q′)-distinguisher A′ against PRF (with t′ = t + O(n) and q′ = qR +
qT + qobs) such that,

Advimp
ID (A) ≤ qR · 2−|I| + Advdist

PRF(A′) +
(

qT
2

)
· 2−|NT |

+
(

qR + qobs

2

)
· 2−|NR|.

– For any (t, qR, qT , qobs)-distance-fraud adversary A against ID there is a
(t′, q′)-distinguisher A′ against PRF (where t′ = t+O(n) and q′ = qR+qT +
qobs) such that, for Nt = Tmax + Emax

Advdist
ID (A) ≤ qR ·

(
Nc

Nt

)(
7
8

)Nc−Nt

+ Advdist
PRF(A′) +

(
qR + qobs

2

)
· 2−|NR|

– For any (t, qR, qT , qobs)-Mafia-fraud adversary A against ID there exists a
(t′, q′)-distinguisher A′ against PRF (where t′ = t+O(n) and q′ = qR+qT +
qobs) such that, for Nt = Tmax + 2Emax



A Formal Approach to Distance-Bounding RFID Protocols 59

Advmafia
ID (A) ≤ 5

8 · qR
(

Nc

Nt

)
· (Nc −Nt + 2) · 2−(Nc−Nt) + Advdist

PRF(A′)

+
(

qR + qobs

2

)
· 2−|NR| +

(
qT
2

)
· 2−|NT |

For a single impersonation attempt and Tmax = Emax = 0 we have up to small
terms the (almost optimal) bound 1

2 (Nc + 2) · 2−Nc for Mafia-Fraud resistance.
The distance fraud resistance of 7

8 per round is tight, corresponding to an ad-
versary who sends v0

i in round i (v0 is precomputed in the lazy phase).
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A Security Proof of the Protocol of Kim and Avoine

Proof. The protocol is not terrorist-fraud resistant: T ′ can forward adversary
A the value I||C||S||v0||v1. Now A authenticates successfully; a simulator can’t
authenticate, however, as a fresh session has new nonces in the lazy phase.

We prove Mafia-fraud resistance as follows: (1) replace honest parties’ PRF
output by independent random values I||C||D||v0||v1 for new nonces (NR, NT );
(2) show quasi-uniqueness of nonce pairs except in 1 adversary-tag session and
1 reader-adversary session s.t. A relays the nonces; (3) bound A’s winning prob-
ability in time-critical phases for at most one adversary-tag interaction.

Due to space limits, we only sketch steps (1) and (2). In (1), replacing PRF-
values by random (but consistent) values decreases A’s success probability by at
most the distinguishing advantage for PRF (else we use A to distinguish PRF).
For (2), if A does not relay nonces, the probability of colliding nonces is exactly(
qR+qobs

2

)
· 2−|NR| +

(
qT
2

)
· 2−|NT |.

Now let A lose if the nonces match apart from the case above. Thus the values
I||C||D||v0||v1 are independent. Let sid be a reader-adversary session where A
successfully impersonates to R. By assumption at most one other adversary-
tag session sid∗ has the same nonce pair. If sid∗ exists, it taints sid with high
probability (if sid∗ doesn’t exist, A can’t benefit from it). Suppose that sid∗

taints at most Tmax time-critical phases of sid. For the moment let Emax = 0;
we allow for Emax > 0 later.

Consider an untainted time-critical phase of sid where R sends Ri and expects
Ti, i.e. assume A successfully passed the first i − 1 time-critical phases. There
are four strategies for the adversary in this i-th phase:
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Go-Early. In session sid∗ A sends bit R∗
i to T before receiving Ri (i.e., clock(sid,

i + 2) > clock(sid∗, i + 2)). As Ri is random and independently chosen,
R∗

i �= Ri w.p. 1
2 – then A doesn’t receive Ti in sid∗ and must guess Ti in sid.

Also, session sid∗ becomes invalid with probability 1
4 .

Go-Late. In session sid, A replies to Ri with Ti before receiving T ∗
i in session

sid∗ (clock(sid, i + 3) < clock(sid∗, i + 3)). Now A wins the phase w.p. 1
2 .

Modify-it. A receives Ri in sid, sends R∗
i in sid∗, gets T ∗

i in sid∗, and forwards
Ti in sid. This scheduling is pure relay, but Ri �= R∗

i or Ti �= T ∗
i . If R∗

i is
wrong then T ∗

i was never sent by T in sid∗ and A can only guess Ti w.p. 1
2 ;

if Ri = R∗
i then Ti �= T ∗

i makes the reader reject.
Taint-it. The adversary taints this phase of sid through sid∗.

Tainting the phase makes R accept with probability 1, deducting 1 from the
remaining taintable phases. The Go-Late and Modify-it Strategy both succeed
w.p. at most 1

2 . Go-Early succeeds w.p. 3
4 , inactivating sid∗ w.p. 1

2 . Assume that
A taints the last Tmax time-critical phases (else we renumber the phases). For
the other P := Nc − Tmax phases let passi denote the event that A passes phase
i of sid. We have

Prob
[∧P

j=i
passj

∣∣∣∣∧i−1

j=1
passj

]
≤ 5

8
· Prob

[∧P

j=i+1
passj

∣∣∣∣∧i

j=1
passj

]
+ 1

2 ·
1
2 · 2

−P+i+1.

The first term captures the success of Go-Late, Modify-It, and correct Go-Early-
prediction. The second term covers incorrect Go-Early prediction (w.p. 1

4 ); now
sid∗ is inactivated, and A must guess Ti for this and the next P − i − 1 rounds
(the responses are independent). Expanding the probabilities we obtain

Prob
[∧P

j=1
passj

]
≤ 2−P +

P−1∑
j=0

5
8
· 2−j · 2−P+j = 5

8 · (P + 2) · 2−P .

We sum over qR reader-adversary sessions, distribute Tmax + Emax “jokers” on
the reader side and Emax on the tag side, and obtain the claimed bound.

For impersonation security, the only way to generate colliding nonce pairs
(and produce authentication string I) is by lazy phase relay, which is an invalid
impersonation attack. For distinct nonce pairs, the probability that A sends
a correct I in a reader-adversary session is: qR · 2−|I| plus the distinguishing
advantage for the PRF plus the probability of colliding nonces.

Distance-bounding (the third statement) is proved as above: once the pseu-
dorandom values are replaced by truly random ones, the probability that Ci = 1
and v0

i �= v1
i is at least 1

4 for round i. Since A can commit only then, A fails with
probability at least 1

8 . Overall, A succeeds only w.p. 7
8 per round, except for a

number Tmax + Emax of phases.
��
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Abstract. In this paper, we propose a new high-speed stream cipher
called MASHA (Message Authenticated Streaming-encryption Heteroge-
neous Algorithm) with integrated MAC functionality. It simultaneously
encrypts plaintext and produces an authentication tag that assures data
and origin integrity. On the Intel Core 2, its speed is 11.92 cycles/byte,
which is faster than the time it takes to encrypt and authenticate using
well-known primitives SNOW 2.0 and SHA-256 in conjunction. We show
that MASHA is secure against all known attacks.

1 Introduction

Encryption and message authentication are necessary for secure communication
on a public network. These functions are frequently implemented separately
using a stream or block cipher to provide confidentiality, and an authentication
tag algorithm in order to provide data and origin integrity.

For example, AES-CBC can be run in two passes to generate ciphertext and an
authentication tag respectively. The mode of operation necessarily incorporates
a state, since in order to to provide integrity, the authentication tag must change
if encrypted blocks are swapped. There are modes of operation that encrypt and
authenticate n-block messages in O(n · log(n)) time [21]. However, it is more
natural to use stream ciphers, which incorporate the state, to perform both
tasks. Stream ciphers are both faster than block ciphers in software, and more
compact in hardware [20].

Stream ciphers that provide both encryption and authentication functionality
can be categorized on whether the authentication is ‘integrated’ or ‘external’. In
ciphers with integrated authentication, the keystream generation and authen-
tication algorithms share at least some of their state. The advantage of this is
efficiency, but the design of such algorithms must be carefully considered as the
attacker not only influences the key and IV during state initialization, but also
the plaintext during keystream generation. He may use carefully chosen plain-
text to commit message forgery, or to derive information about the shared state
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leading to key recovery. Stream ciphers using external authentication dedicate
extra state to the authentication task. The plaintext does not affect state used
by the keystream generation algorithm, limiting the attacker’s ability to recover
the key. Because the cipher has to manage the sufficient mixing of the dedicated
authentication state, external authentication algorithms tend to be slower, re-
ducing the advantage of using a stream rather than block cipher.

We propose an efficient stream cipher algorithm with integrated message au-
thentication called Message Authenticated Streaming-encryption Heterogeneous
Algorithm (MASHA). The cipher uses a 128-bit key in conjunction with a 192-bit
Initialization Vector (IV) to provide a 128-bit security level for both encryption
and message authentication. This is commensurate with a tag size of 256 bits,
providing much better security than the smaller tags produced by other stream
ciphers (see Section 2). We specify MASHA in Section 3. In Sections 4 and 5, we
outline design decisions made during its development, and show how it resists
common attacks. In Section 6, we show metrics for MASHA implemented on
common software platforms. In Section 7, we give concluding notes.

2 Related Work

The recentECRYPT eSTREAM [9] call for ciphers requested ciphers that included
an associated authentication component. Of the thirty-four candidates submitted
to eSTREAM, six included message authentication mechanisms. Three of these
were archived at the end of the first phase due to security or efficiency issues. Of
the remaining three ciphers, Phelix [22] offers integrated authentication. The abil-
ity of the attacker to control the plaintext, which is injected directly into the Phe-
lix state, leads to an attack [23] with complexity O(237) and with 234 chosen IVs.
The attack is attributed to the passage of the plaintext word through the state to
keystream without passing through sufficient confusion and diffusion layers (we
note that Phelix contains no s-boxes). It also requires that the attacker can reuse
key-IV pairs, which is in contradiction to the commonly assumed model of usage
for stream ciphers (ie. the cipher can only be attacked by this method when it is
used incorrectly). However, it was disqualified from round 3 of the eSTREAM pro-
cess due to the attack [2], which means that vulnerabilities due to reuse of key-IV
pairs should be taken seriously.

Of the other two ciphers, VEST [18] was discarded in eSTREAM round 2,
due to poor efficiency. NLS [11] uses an external authentication algorithm, called
Mundja [10], which uses modified SHA-256 in conjunction with a Cyclic Redun-
dancy Checksum (CRC). The use of an external algorithm means that the attacks
that apply to the authentication algorithm are unlikely to apply to the keystream
generation algorithm. However, Mundja was discarded at the end of round two
of the competition due to poor performance. This highlights the advantage of
integrated authentication.

Grain [12] was one of the ‘winners’ of eSTREAMs hardware portfolio, which
requires ciphers to use 80-bit keys for the sake of minimizing hardware gate
counts. Agren, Hell, Johansson and Meier [1] revised Grain by upsizing the key to
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128 bits, using a slightly different keystream generation mechanism, and adding
an external authentication mechanism that uses two thirty-two bit registers.
These registers are updated using a combination of plaintext and Grain state.
The plaintext never enters into the Grain state. The tag size of 32 bits is restric-
tive and small relative to the key size. No third-party analysis has followed, but
the algorithm is not very efficient in software.

Dragon-MAC [15] is an external message authentication algorithm based on
the Dragon stream cipher, a phase three candidate in eSTREAM. The MAC
is external, using the the Dragon F function but not its state, to provide data
integrity to the keystream. The MAC’s application is limited: being designed for
wireless sensor networks, it cannot be used with messages of longer than 256
bits. It also suffers from security problems due to the non-bijectivity of parts of
the F function, so that the attacker can commit message forgery in less than
O(232) time without changing multiple words of the message.

Hummingbird-1 and Hummingbird-2 [8] are lightweight stream ciphers with
integrated authentication. Hummingbird-2 uses a 128-bit key and 64-bit IV to
initialize a 128-bit state. Later on, the state is used to produce a tag of up to 128
bits. However, it is clear that the small state size relative to key size allows the
cipher to be attacked generically, so the security of the cipher and the tag are
unable to reach the security of MASHA: ie. 128 bits. Hummingbird is optimized
for hardware.

As can be seen above, none of the algorithms achieved a good balance between
utility, security and performance. In this paper, we provide the specification of
MASHA, which we believe achieves a good balance. MASHA is based on the K2
stream cipher [14]. K2 has survived for four years without any successful attacks
on the full version. It is currently being standardized by the ISO/IEC JTC 1/SC
27 committee, and has excellent performance in hardware and software. It seems
to be an ideal base for adding authentication.

3 MASHA

In this section, we describe the specification of MASHA. MASHA consists of two
feedback shift registers, FSR-A and FSR-B, comprising five and eleven 32-bit
stages respectively, and a Finite State Machine (FSM) with four internal 32-bit
registers R1, R2, L1, and L2. The total size of the internal state is 640 bits.
MASHA is shown in Figure 1, and its FSM in Figure 2.

3.1 Feedback Shift Registers

Let Ai
t and Bi

t respectively denote the ith register of FSR-A and FSR-B at time
t where A0

t and B0
t are produced as output at time t. Let At[p] = {0, 1} denote

the pth bit of At, where At[31] is the most significant bit of At. The symbol ⊕
denotes bitwise exclusive-or operation and the symbol � denotes 32-bit addition.

A byte string x denotes (x7, x6, ..., x1, x0), where x7 is the most significant bit
and x0 is the least significant bit. Let γ and δ respectively be the roots of the
primitive polynomials
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Fig. 1. MASHA

x8 + x7 + x5 + x3 + 1 ∈ GF (2)[x]

x8 + x6 + x3 + x2 + 1 ∈ GF (2)[x]

Let α0 and α1 be the roots of the irreducible polynomials of degree four

x4 + γ173x3 + γ248x2 + γ38x + γ121 ∈ GF (28)[x]

x4 + δ8x3 + δ254x2 + δ123x + δ77 ∈ GF (28)[x]

respectively. A 32-bit string Y denotes (Y3, Y2, Y1, Y0), where Yi is a byte string
and Y3 is the most significant byte. Y is represented by Y = Y3α

3
i + Y2α

2
i +

Y1αi + Y0 (i = 1, 2, 3).
The feedback polynomial for FSR-A is described as follows:

f(x) = α0x
5 + x4 + x2 + 1

The feedback function of FSR-A is defined as follows:

A4
t+1 = α0A

0
t ⊕ A1

t ⊕ A3
t

Ai
t+1 = Ai+1

t (0 ≤ i ≤ 3)

The feedback polynomial for FSR-B is described as follows:

f(x) = α1x
11 + x10 + x7 + x5 + x + 1
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Fig. 2. FSM of MASHA

The feedback function of FSR-B is based upon this polynomial, but during
each clock of the cycle, some of the operations in the FSR-B feedback poly-
nomial are modified by the values of ‘control bits’ in FSR-A. Control bits cl0t

and cl1t are binary variables defined as cl0t = At+2[31], cl1t = At+2[30]. The
feedback function is also modified by ciphertext components CH

t and CL
t , which

respectively represent the higher and lower 32-bits of ciphertext Ct. The feedback
function is defined as follows:

B10
t+1 = A3

t � MSub(α1B
0
t [⊕, �]cl0tB

1
t ⊕ B4

t [⊕, �]cl1tB
6
t ⊕ B10

t ⊕ CH
t )

B4
t+1 = A1

t � MSub(B5
t ⊕ CL

t )

Bi
t+1 = Bi+1

t (0 ≤ i ≤ 3, 5 ≤ i ≤ 9)

3.2 Nonlinear Function

The non-linear function of MASHA is fed the values of four registers of FSR-
B and that of internal registers R1, R2, L1, L2, and outputs 64 bits of the
keystream every clock. The primary source of non-linearity is the Sub function,
which is invoked four times per cycle.

The Sub step divides the 32-bit input into four bytes, applying a bijective
substitution to each, then uses the four bytes as input to a 32-to-32 bit linear
permutation. The substitution uses the AES s-box [6], and the permutation the
AES Mix Column operation. The substitution consists of two functions: g and
f . The g calculates the multiplicative inverse modulo the irreducible polynomial
m(x) = x8 + x4 + x3 + x + 1 without 0x00, and 0x00 is transformed to itself
(0x00). f is an affine transformation defined by;
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b7

b6

b5

b4

b3

b2

b1

b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11111000
01111100
00111110
00011111
10001111
11000111
11100011
11110001

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a7

a6

a5

a4

a3

a2

a1

a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊕

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
0
0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where a = (a7, ..., a0) is the input and b = (b7, ..., b0) is an output, and a0 and
b0 are the least significant bit (LSB). Let C be (c3, c2, c1, c0) and output D be
(d3, d2, d1, d0), where ci, di are 8-bit values. The linear permutation D = p(C)
is described as follows; ⎛

⎜⎜⎝
d0

d1

d2

d3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠
⎛
⎜⎜⎝

c0

c1

c2

c3

⎞
⎟⎟⎠

in GF (28) of the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1.
The points at which the ciphertext is prepared to enter FSR-B are protected

by a modified Sub, called MSub, which consists of the Sub prepended by the
AES MixColumn operations:

MSub(x) = Sub(p(x))

The permutation p(x) is the same as AES Mix Column operation.

3.3 Encryption and Decryption

Let keystream at time t be Zt = (zH
t , zL

t ) (each zx
t is a 32-bit value, and zH

t is
a higher string). The keystream zH

t , zL
t is calculated as follows:

zL
t = A4

t ⊕ (R2t � R1t)

zH
t = A0

t ⊕ (L2t � L1t)

A 64-bit plaintext message (PH
t , PL

t ) is encrypted to the ciphertext (CH
t , CL

t )
as;

CL
t = zL

t ⊕ P L
t

CH
t = zH

t ⊕ P H
t

During decryption, each 64-bit plaintext message (PH
t , PL

t ) is calculated from
the the ciphertext (CH

t , CL
t ) as;

ML
t = zL

t ⊕ CL
t

MH
t = zH

t ⊕ CH
t

The plaintext message is padded by adding the byte 0x80 followed by zero
bits until the padding reaches a multiple of 64 bits.
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3.4 State Update

After the encryption, the internal registers are updated as follows;

R1t+1 = Sub(L2t � B5
t ), R2t+1 = Sub(R1t)

L1t+1 = Sub(R2t � B0
t ), L2t+1 = Sub(L1t)

where Sub(X) is an output of the Sub step for X .
The registers of FSRs are also updated by the feedback functions which are

described in 3.1.

3.5 Streaming MAC Generation

After encryption of a plaintext message, constants Const1, Const2, Const3, and
Const4 are added to L1, L2, R1, and R2.

L1 = L1 ⊕ Const1, L2 = L2 + Const2

R1 = R1 ⊕ Const3, R2 = R2 + Const4

The constants Const1, Const2, Const3, and Const4 are 0xE10C33E5, 0x4C7
A8DCB, 0xC0EAD75E, and 0x394E6808, respectively. The algorithm then exe-
cutes additional 22 steps (‘blanking rounds’, using plaintext 0x0000) as a final-
ization process. A 256-bit authentication tag is produced by clocking the cipher
a further four steps. The concatenated keystream from this phase forms the tag.

3.6 Initialization Process

The internal state is initialized with a 128-bit initial key IK = (IK0, IK1,
IK2, IK3) and a 192-bit initial vector IV = (IV0, IV1, IV2, IV3, IV4, IV5) as
follows:

A0 = IK0, A
1 = IK1, A

2 = 0x00, A3 = IK2, A
4 = IK3,

B0 = IV0, B
1 = IV1, B

2 = IV2, B
3 = 0x00, B4 = 0x00,

B5 = IV3, B
6 = IV4, B

7 = IV5, B
8 = 0x00, B9 = 0x00,

B10 = 0x00

The remaining internal registers, R1, R2, L1 and L2 are set to 0x00. After the
above processes, the cipher clocks 28 times (t= 1, ..., 28), updating the internal
states both of FSR and the internal registers. The internal states are updated
as follows:

sL
t = A4

t � (R2t � R1t)

sH
t = A0

t ⊕ (L2t � L1t)

A4
t+1 = α0A

0
t ⊕ A1

t ⊕ A3
t ⊕ sL

t
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Ai
t+1 = Ai+1

t (0 ≤ i ≤ 3)

B10
t+1 = α1B

0
t [⊕, �]cl0tB

1
t ⊕ B4

t [⊕, �]cl1tB
6
t � B10

t ⊕ sH
t

Bi
t+1 = Bi+1

t (0 ≤ i ≤ 9)

R1t+1 = Sub(L2t � B5
t ), R2t+1 = Sub(R1t)

L1t+1 = Sub(R2t � B0
t ), L2t+1 = Sub(L1t)

The recommended maximum number of cycles for MASHA without re-
initializing is 258 cycles (264 keystream bits). MASHA cannot be used with re-
peated key-IV pairs, due to the presence of generic attacks against all stream
ciphers in this model.

4 Design Decisions

The main challenge in designing a stream cipher that offers integrated authenti-
cation is that this mode opens up an extra avenue of attack. For encryption-only
ciphers, the attacker is active only during the state initialization phase, when
it can orchestrate related-key attacks or manipulate the IV, to see how changes
influence the keystream. During keystream generation, the attacker reverts to
the passive role of monitoring the keystream.

For ciphers that offers authentication, the attacker has an active role during
keystream generation, by manipulating plaintext and/or ciphertext. For ciphers
with integrated authentication, choosing differences in the ciphertext can pro-
duce differences in keystream relatively quickly compared to during state initial-
ization, where the state is mixed and keystream suppressed for some non-trivial
number of cycles. In a chosen ciphertext attack, the attacker can perform mes-
sage modification at any time, to try to cancel differences in the internal state. If
the path between the ciphertext input position and the keystream is too short,
or does not contain sufficient non-linear components, it will be easy to learn
information about the internal state.

This kind of attack obtains maximum power when the attacker can replay key-
IVs, thereby generating the same keystream prefixes multiple times. Applying
ciphertexts with controlled differences when the differences in keystream is un-
controlled isn’t very effective, so the attacker needs to ensure that the keystreams
have no differences up to the first point of ciphertext injection. During our de-
sign and analysis phases, we assumed that the attacker can replay key-IVs a
limited number of times to produce identical keystreams. We designed MASHA
to provide maximum defence for this usage model. We should clearly state: we
do not permit MASHA to be reused with the same key-IV pairs.

4.1 Basing MASHA on the K2

The K2 cipher is based on the SNOW 2.0 cipher, which is one of the most suc-
cessful word-based stream ciphers, being faster than the Advanced Encryption
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Standard, and at least as secure for a 128-bit key. K2 is secure relative to SNOW
2.0 while retaining efficiency. Our design decision means that most of the analy-
sis on SNOW 2.0 and K2 can be leveraged to show the security of MASHA and
improve confidence in the design.

4.2 Effectiveness of FSR-A

MASHA contains a 160 bit autonomous FSR-A. The decision to maintain its
autonomy both guarantees a long period in the keystream, and ensures that
an attacker who manipulates the ciphertext, has no way to directly measure or
influence the contents of FSR-A. The output of the register is combined using
the unbiased exclusive-or operation to produce the keystream. It is analogous to
key whitening in block ciphers.

For many types of attacks, such as guess-and-determine and divide-and-conquer
attacks, the attacker must guess the contents of the relevant parts of FSR-A
in order to get the contributions of FSR-B and the FSM to the keystream.
Since FSR-A is larger than the 128-bit key, and its autonomy and means of
combinations are unbiased, many statistical attacks immediately infeasible.

4.3 Using MSub to Protect against Differential Plaintext Attacks

The operation for each tap of the feedback polynomial of FSR-B depends upon
the value of particular bits in the FSM, but with probability p = 1

2

t, t of the taps
are combined using exclusive-or. This means that without the MSubs and subse-
quent addition, the attacker can use message modification to cancel differences at
B10 and B4. For example, if the attacker injects Δ at time t, t+1, t+5 and t+7,
with probability p = 1

8 the attacker is able to isolate a single difference in the
FSM and analyse its affect in the keystream, uncomplicated by other differences
(see Table 1). The propagation of a difference through a single Sub operation
allows two candidates for the real values to be deduced with complexity O(210),
after which a guess-and-determine attack becomes more feasible.

With MSubs, the combination of B10 (respectively B5) with the ciphertext
means that a single byte difference Δ injected by the attacker is translated by the

Table 1. Propagation of Δ through reduced MASHA with no pre-B10 additions) to
keystream zH

t CH CL B10 B9 B8 B7 B6 B5 B4 zH p

0 Δ p

1 Δ Δ p−1

2 Δ

3 Δ

4 Δ

5 Δ Δ p−2

6 Δ

7 Δ p−3

8 Sub(Δ + c) + d
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first permutation of MSub into four byte differences, each of which pass through
an s-box to emerge to a known output difference with maximum probability 2−24.
This is then combined with unknown material from FSR-A (if the combination
with B10 uses exclusive-or, the output of MSub is combined with A3 using the
incompatible modular addition operation). The opportunity for the attacker to
use message modification in FSR-B is virtually non-existent. With differential
Δ → Δ across MSub, p (of Table 1) has maximum 2−25 rather than 2−1.
For many differences, this differential will have probability 0. The non-linear
addition will further decrease the probability, although this is not shown in the
calculation.

4.4 Separating MAC Generation from Encryption

Assume that we do not add constants before the pre-authentication blanking
rounds. The attacker acquire suppressed keystream words during blanking by
encrypting (PA: x) and (PB: x || 022) under the same key-IV.

MASHA’s twenty-two blanking rounds use an all-zero ciphertext and do not
emit ciphertext. The twenty-two ’all-zero’ words appended to x in the PB

message simulate the blanking rounds during the encryption of PA, but emit
keystream - the same keystream as that suppressed during encryption of PA,
since the key and IV are the same for both invocations. This leakage of sup-
pressed words can be used to attack the authentication process.

By adding constants to the internal state before the blanking rounds, that are
subsequently confounded by non-linear operations, we remove the ability of the
attacker to simulate the blanking rounds without keystream suppression, for the
cost of a few simple operations.

5 Analysis of MASHA

In this section, we discuss MASHA’s statistical properties and resistance against
common attacks.

5.1 Statistical Properties

The statistical properties of MASHA depend largely on those of output sequences
of FSR-A and FSR-B. FSR-A is unbiased and has a period of 2160 − 1 as ex-
pected for an LFSR of length 160 bits using an irreducible primitive feedback
polynomial.

We evaluated the statistical properties for the register outputs, and the cipher
keystream using the NIST Test Suite [17] and confirmed that they passed all the
relevant statistical tests. We did not find any short periods.

5.2 Resistance against Attacks

Time-Memory-Data Trade-Off attacks. MASHA was designed with two
Time-Memory Trade-off attacks in mind. The first, which inverts keystream



MASHA – Low Cost Authentication with a New Stream Cipher 73

into internal state, demands that the state size be at least twice the length of
the combined key and IV. The second, which inverts keystream to the key and
IV, requires that the IV be at least 1.5 times the length of the key. According
to Hong and Sarker [13], a TMD attack requires O(2

3(k+v)
4 ) pre-computation,

O(2
k+v
2 ) memory, and O(2

k+v
2 ) available data, enabling an online attack with

time complexity of O(2
k+v

2 ), where the lengths of the secret key and IV are k
and v, respectively. The IV, the secret key, and the internal state are sufficiently
large such that the cipher is immune to time-memory-data trade-off attacks.

Guess-and-Determine Attacks. The most efficient approach to launching a
guess-and-determine attack on MASHA is to completely guess the contents of
FSR-A, and virutally remove it from the cipher. Then by guessing five compo-
nents of the remaining cipher, the keystream and feedback polynomial of FSR-B
can be used to determine the remaining unknown components. Several words of
keystream can be used for consistency checking. The complexity of the attack is
O(2160+160 = 2320), far above that of brute force.

Linear Masking. Distinguishing attacks require a probabilistic linear relation
between keystream bits. It is easy to leverage the distinguishing attack by Nyberg
and Wallen [16] on SNOW 2.0 to analyze MASHA with respect to distinguishing
attacks, since both ciphers share the same non-linear components.

Their attack had a computation complexity of O(2174), which far exceeds the
complexity of brute-forcing MASHA’s 128-bit key.

SNOW 2.0 uses one Sub operation per generation of keystream word, whereas
MASHA uses four in the generation of keystream words. The attacker can con-
struct a linear recurrence from output keystream bits with fixed clock control
bits cl0t = cl1t for each cycle, in which two Sub operations are affected by the
linearization.

The number of involved substitutions is the same number of attacks on SNOW
2.0. Thus, we expect that the security of the cipher is the same level of SNOW
2.0 against distinguishing attacks, particularly as we cannot find a linear ap-
proximation with the probability less than 264.

Algebraic Attacks. We investigated the possibility of algebraic attacks [5]
under the assumption that FSR has regular clocking and the addition modulo
232 operation is replaced by the XOR operation. This attack is effective for
stream cipher algorithms that have a non-linear function with internal memory.
An algebraic attack on SNOW 2.0 was proposed by O. Billet and H. Gilbert[3],
which can also be applied to MASHA. The attacker determines internal registers
at time t, defined by linear equations that consist of initial values of internal state
variables, and constructs relationships between the input values of a non-linear
substitution and the corresponding output values, which are low degree algebraic
expressions. First, we obtain the following equation from the assumption:

R1t = Sub(At−1 ⊕ L1t−1 ⊕ zH
t−1), L1t−1 = Sub(R2t−2 ⊕ Bt),

R2t = At+4 ⊕ R1t ⊕ zL
t , = At+4 ⊕ Sub(At−1 ⊕ Sub(R2t−2 ⊕ Bt) ⊕ zH

t−1) ⊕ zL
t
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Table 2. Diffusion Process of Initial Key and IV

Register 0 2 8 12 16

A0 * * K K K, IV

A1 * * K K, IV K, IV

A2 * * K K, IV K, IV

A3 * K K K, IV K, IV

A4 * K K K, IV K, IV

B0 * * * IV K, IV

B1 * * * IV K, IV

B2 * * * IV K, IV

B3 * * * IV K, IV

B4 * * IV K, IV K, IV

B5 * * IV K, IV K, IV

B6 * * IV K, IV K, IV

B7 * * IV K, IV K, IV

B8 * * K, IV K, IV K, IV

B9 * * K, IV K, IV K, IV

B10 * IV K, IV K, IV K, IV

R1 * * IV K, IV K, IV

R2 * * * IV K, IV

L1 * * * IV K, IV

L2 * * * IV K, IV

We cannot obtain the linear recurrence as per the algebraic attack on SNOW
2.0. Furthermore, the linear approximation of the additions increases the com-
putational complexity of the algebraic attack [4]. Thus it is impossible to apply
this attack for the full-version of the cipher.

Analysis of the Initialization Process. The state initialization process gen-
erates the internal state of the cipher by thoroughly mixing the key and IV using
the keystream generation function (suppressing keystream, and feeding it back
into the state). All registers in the internal state depend on the initial key and
IV after sixteen cycles, as shown in Table 2. After this, the initialization process
still continues twelve cycles to further refine the mixing. This means that the
attacker who launches related key-IV attacks in this phase has no control over
differences in the state by the time keystream is generated.

Another attack on the initialization process is to generate collisions between
key-IV pairs such that the keystream produced is identical. The large state size
relative to combined key-IV size, and the combination of high non-linearity in
the FSM and its extensive diffusion process both mean it is infeasible to generate
collisions.

Attacks on MAC. Table 3 and Table 4 show diffusion of each difference in
messages PH and PL. After ten steps, the difference has diffused into all of
internal registers: R1, R2, L1, L2, and registers of FSR-B.
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Table 3. Diffusion Process of Difference in MH

Register 0 1 2 3 4 5 6 7 8 9 10

B0 * * * * * * * * * * Δ

B1 * * * * * * * * * Δ Δ

B2 * * * * * * * * Δ Δ Δ

B3 * * * * * * * Δ Δ Δ Δ

B4 * * * * * * Δ Δ Δ Δ Δ

B5 * * * * * Δ Δ Δ Δ Δ Δ

B6 * * * * Δ Δ Δ Δ Δ Δ Δ

B7 * * * Δ Δ Δ Δ Δ Δ Δ Δ

B8 * * Δ Δ Δ Δ Δ Δ Δ Δ Δ

B9 * Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ

B10 Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ

R1 * * * * * * Δ Δ Δ Δ Δ

R2 * * * * * * * Δ Δ Δ Δ

L1 * * * * * * * * Δ Δ Δ

L2 * * * * * * * * * Δ Δ

Table 4. Diffusion Process of Difference in ML

Register 0 1 2 3 4 5 6 7 8 9 10 11

B0 * * * * Δ * * * * * * Δ

B1 * * * Δ * * * * * * Δ Δ

B2 * * Δ * * * * * * Δ Δ Δ

B3 * Δ * * * * * * Δ Δ Δ Δ

B4 Δ * * * * * * Δ Δ Δ Δ Δ

B5 * * * * * * Δ Δ Δ Δ Δ Δ

B6 * * * * * Δ Δ Δ Δ Δ Δ Δ

B7 * * * * Δ Δ Δ Δ Δ Δ Δ Δ

B8 * * * Δ Δ Δ Δ Δ Δ Δ Δ Δ

B9 * * Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ

B10 * Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ

R1 * * * * * * * Δ Δ Δ Δ Δ

R2 * * * * * * * * Δ Δ Δ Δ

L1 * * * * * Δ * * * Δ Δ Δ

L2 * * * * * * Δ * * * Δ Δ

Table 5. Performance Evaluation

MASHA 11.92 cycle/byte + 2016 cycle

AES-CCM 60.40 cycle/byte

SHA-256 18.06 cycle/byte [19]

SNOW 2.0 4.50 cycle/byte [7]
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Thus, the number of steps for finalizing MAC generation is sufficient. To forge
a MAC, the adversary need to know all internal state bits, which requires more
efficient attack techniques than those that we have analysed (and we are not
aware of the existence of any).

The adversary can strive to accomplish message forgery, whereby different
plaintexts collide. As we showed in Section 4, MASHA is designed to resist
this attack, partly due to the use of MSub at the points at which ciphertexts
enters into the internal state. A single byte difference in a ciphertext propagates
to another with probability at most 2−24 before it enters the state, and faces
several non-linear operations before it emerges as keystream. It is difficult for
the attacker to cancel differences using message modification, and the system
quickly escalates out of his control.

6 Performance Analysis

Evaluation results on Core 2 E8600 3.33GHz (in 32-bit mode) are shown in
Table 4. The encryption/decryption speed of MASHA is 11.92 cycle/byte, and
additional 2016 cycles are required for the streaming MAC generation. The speed
of MASHA is much faster than that of AES-CCM. If we use SNOW 2.0 and
SHA-256 for encryption and message authentication, the throughput is totally
22.56 cycle/byte. Thus, MASHA is competitive against existing algorithms. The
initialization process of MASHA requires 1633 cycles.

The Sub operation can be implemented by instructions in the Intel AES-
NI (Advanced Encryption Standard) set. This is likely to result in a significant
speed-up that can’t be duplicated in external authenticators such as SHA-256 or
OCB, or using block and stream ciphers that don’t incorporate AES components.

7 Conclusion

The history of stream ciphers with authentication is not long, and can be summed
up by ciphers that use external authentication (slow), or integrated authentica-
tion (vulnerable to chosen ciphertext attacks under reuse of key-IV pairs).

It is likely that the NLS external MAC is more secure than its own keystream
generation algorithm, but its uncompetitive performance meant that it attracted
little interest. The Phelix cipher did attract a lot of interest, as one of few ciphers
to use integrated authentication, and with efficiency far surpassing block ciphers.
Its speed was in part due to a novel design style that eschewed s-boxes, and relied
only on repeated use of modular addition for non-linearity. It is consequently not
very surprising that it was broken by a differential-linear attack, albeit under a
forbidden usage model.

MASHA is based upon a conservative design style - a Linear Feedback Shift
Register, with non-linear filter, but specified with intelligence to ensure peak
performance and security. Core to its security is the repeated use of the Sub
function, which makes use of very well analysed AES confusion and diffusion
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components. The feedback taps in one of the shift registers are designed to re-
move attacker’s control of differences entering in the state as quickly as possible.
The path between the entry into the state of a difference as ciphertext, and its
exit as keystream is as long as possible, and traverses several highly non-linear
components. The other shift register acts as whitening to defeat a whole range
of statistical attacks.

Consequently, we believe that MASHA offers excellent security for a very low
price, providing 128-bit security for both encryption and generation of its 256-bit
authentication tag.
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A Test Vector

A test vector for MASHA is as follows;

Initial Key (128 bits):
0x00000000000000000000000000000000

Initial Vector (192 bits):
0x000000000000000000000000000000000000000000000000

Plaintext (256 bits):
0x0000000000000000000000000000000000000000000000000000000000000000

Ciphertext (256 bits):
0x2ab0811fe3f52101f78054c236992469d4bd4f907e42210a85cf6431b41ee4b5

Message Authentication Code (256 bits):
0x8aed4124ae5c1e830e48469f04a15265f4dcdbc2eb7240a3252cb71beff0df4a

http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
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Mathematics, Av. Päısos Catalans 26, E-43007 Tarragona, Spain

Abstract. Certificateless authenticated key exchange (CL-AKE) proto-
cols do not suffer from intricate certificate management or heavy trust
reliance on a third party. Unfortunately, these advantages are partially
counteracted in most CL-AKE protocols which require expensive pairing
operations. This paper proposes a new CL-AKE protocol without requir-
ing any pairing operation during the protocol execution, although a pair-
ing map may be required to realize a Decisional Diffie-Hellman (DDH)
oracle in the security proof. With implicit authentication, we illustrate
modular proofs in a security model incorporating standard definitions of
AKE protocols and certificateless cryptography. Analysis shows that our
protocol is also efficient.

1 Introduction

Since the seminal inception by Diffie and Hellman [9], key exchange (KE) proto-
cols have attracted much attention. Various approaches have been developed to
improve security and efficiency of KE protocols [10,20]. Among them, authen-
ticated key exchange (AKE) is one of the most attracting concepts. It allows
two or more parties to exchange a secret session key over an open network fully
controlled by an attacker. As a fundamental primitive, secure AKE protocols
can then serve as basic building blocks for constructing advanced protocols.

Most AKE protocols have been realized in the traditional public-key infras-
tructure (PKI) or Identity-based (ID-based) cryptosystem. However, PKI-based
protocols suffer from complicated certificate management while ID-based sys-
tems are subject to the so-called key escrow problem. One may note the key
generation center (KGC) as a passive attacker in ID-based AKE protocols can-
not learn the negotiated session keys among the users. However, there is no way
to guarantee that a malicious KGC can only launch passive attacks, and indeed,
an actively attacking KGC can impersonate any user to accomplish the AKE
protocol and then eavesdrop the communications without being detected. Thus,
in addition to avoiding the heavy certificate management burden in PKI based
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AKEs, it is also of interest to relieve the heavy trust reliance on KGC in ID-based
AKEs.

Recent efforts have been devoted to eliminate these limitations in AKE pro-
tocols. The most promising approach is the Certificateless cryptography (CLC)
[1]. In a CLC setting, a semi-trusted Key Generation Center (KGC) helps each
user to generate his/her private key but cannot access the full private key of
any user. Thus, the key escrow problem is removed in CLC. Further, the public
key of a user is computed from KGC’s public parameters and a secret value
chosen by the user in CLC. Hence, CLC does not need an additional certificate
to show the authorship of a public key. Pioneered by the work of Al-Riyami
and Paterson who presented the first certificateless AKE (CL-AKE) protocol
from pairings [1], quite a number of bilinear pairings based CL-AKE protocols
have been proposed [1,18,19,21,22,23,25]. Most of these protocols make the ef-
forts to reduce the number of pairing operations required in their protocols. The
up-to-date protocol due to Zhang et al. [25] requires only one pairing operation.

In view of both security and efficiency, it is of great interest to build CL-AKE
protocols without bilinear pairings. In 2009, Catalano et al. [6] proposed a CL-
AKE protocol based on Fiore-Gennaro’s ID-based key exchange [11]. Almost the
same time, two independent CL-AKE protocols without bilinear pairings were
proposed in [12,15]. However, Yang and Tan [24] showed that both protocols are
insecure and proposed a provably secure pairing-free CL-AKE protocol along
with a new model for CL-AKE. Their CL-AKE model integrates the typical
two types of attacks in CLC, and also incorporates the underlying idea of PKI
based AKE protocols. To this goal, a signature is included in the public key of
each user. Independent of Yang-Tan’s work, He et al. [14] also proposed a CL-
AKE protocol without pairings recently. Unfortunately, Han [13] later showed
that He et al.’s protocol can not resist the Type I adversary in CLC. These
studies reveal that it is far from trivial to construct secure pairing-free CL-AKE
protocols, although they are desirable in practice.

In this paper, we make further efforts toward secure pairing-free CL-AKE
protocols. We propose a new CL-AKE protocol without requiring any pairing
operation during the protocol execution. To achieve active security, we employ
implicit authentication. We define a formal security model for CL-AKE protocols
incorporating standard definitions of AKE protocols and CLC. We then prove
the security of the proposed protocol with Kulda-Paterson’s modular approach
[17] in the mBR model. One may note that the proof of one of our main security
results relies on the GDH assumption which requires a DDH oracle. This implies
that our protocol can only be implemented in GDH groups. So far, the only
known GDH groups are constructed from symmetric pairing groups. Indeed, in
all existing secure paring-free CL-AKE protocols [6,24], oracles similar to the
DDH oracle are required. With available implementation technologies, a pairing
map is necessary for their security proofs to be valid in these protocols. However,
since the goal of pairing-free CL-AKE protocols is to eliminate expensive pairing
operations during the run of the AKE protocol, the requirement of pairings
merely in security proofs does not deviate this goal.
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The rest of this paper is organized as follows. A brief review of some basic
concepts and security notions used in our scheme is described in Section 2. In
Section 3, we propose a new pairing-free CL-AKE protocol based on the GDH
assumption. In Section 4, the efficiency and security comparison between the
our proposal and up-to-date protocols is conducted. Finally, the conclusions are
given in Section 5.

2 Preliminaries

2.1 Computational Assumptions

Our protocol relies on some computational assumptions in a finite cyclic group
G of a prime order p. Specifically, the proposal is built on the GDH assumption
which states that the CDH problem is hard even if a probabilistic polynomial-
time (PPT) attacker can query a DDH oracle whether {P, aP, bP, cP} ∈ G for
randomly chosen a, b, c ∈ Zp is a DDH tuple. Here, {P, aP, bP, cP} is called a
DDH tuple if c = ab mod p.

Definition 1 (CDH Problem). Given {P, aP, bP} ∈ G for a randomly sam-
pled element P ∈ G and random values a, b ∈ Zp, compute abP ∈ G.

Definition 2 (GDH Problem). Given {P , aP , bP} ∈ G for some random
values a, b ∈ Zp, compute the element abP with the help of a DDH oracle.

Since the only known DDH oracle is realized in symmetric pairing groups over
elliptical curves [8], this implies that our protocol can only be realized in sym-
metric pairing groups. However, this does not violate our goal to eliminate time-
consuming pairing operations in our protocol because the DDH oracle is only
used in the proof while we do not require any pairing computation when running
the protocol.

Also, for clarity, we employ the equivalent variant of the CDH assumption,
i.e., the Divisible CDH (DCDH) assumption [2] reviewed as follows.

Definition 3 (DCDH Assumption). Given {P, aP, bP} ∈ G for some ran-
dom values a, b ∈ Zp, for any PPT algorithm, it is hard to compute ab−1P .

2.2 Modeling CL-AKE Protocols

A CL-AKE protocol consists of four PPT algorithms: Setup, Partial-Private-
Key-Generate, User-key-Generate and Key-Agreement. These algorithms are de-
fined as follows.

Setup. It is run by KGC. It takes as input a security parameter k and returns
a master-key and a list of system parameters params.

Partial-Private-Key-Generate. It is also run by KGC. It takes as input the
parameter list params, master-key and an entity’s identity IDi, to produce
the entity’s partial private key DIDi .
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User-key-Generate. It takes as input a parameter list params, an entity’s
identity IDi, to produce a secret value uskIDi and public key upkIDi for
this entity.

Key-Agreement. This is a PPT interactive algorithm involving two entities A
and B. The inputs are the system parameters params for both A and B, plus
{DIDA , uskIDA , upkIDA , IDA} for A and {DIDB , uskIDB , upkIDB , IDB} for
B. Here, DIDA and DIDB are the respective partial private keys of A and
B; {uskIDA , upkIDA} and {uskIDB , upkIDB} are the user secret value and
public key of A and B respectively; IDA is the identity of A and IDB is
the identity of B. Eventually, if the protocol does not fail, A and B obtain
a secret session key KAB = KBA = K.

2.3 Security Definitions of CL-AKE Protocol

Motivated by the model of Zhang et al. [25] and the modified Bellare-Rogaway
model (mBR model) [3], we present a security model for CL-AKE protocols. The
security of our protocol Π is defined by the following game between a challenger
CH and an adversary A ∈ {A1,A2}. Here, Type I adversary A1 models an
adversary who does not know the master-key of KGC, but has the ability to
replace the public key of any entity with a value of her choice. Type II adversary
A2 models a malicious KGC who knows the master-key, but cannot replace the
target user’s public key. We use the oracle Πs

i,j to represent the s-th instance
between participant i and partner participant j in a session. At the beginning
of the game, CH runs the Setup algorithm, takes as input a security parameter
k to obtain the master-key and the system parameters params. If A is a Type I
adversaryA1, CH sends params to A and keeps the master-key secret; otherwise,
A is a Type II adversary A2, and CH sends params with the master key to A.

A is modeled by a PPT Turing machine. All communications go through
the adversary A. Participants only respond to the queries by A and do not
communicate directly among themselves. Assume that participant i has identity
i. A can relay, delete, modify, interleave or delete all the message flows in the
system. Note that A is allowed to make a polynomial number of queries, including
one Test query defined as follows.

– Create(IDi): This allows A to ask CH to set up a new participant i. On
receiving such a query, CH generates the public/private key pair for i.

– Public-Key(IDi): A can request the public key of a participant i. To respond,
CH outputs the public key upkIDi of participant i.

– Partial-Private-Key(IDi): On input an identity IDi, CH outputs the corre-
sponding partial private key DIDi of participant i.

– Corrupt(IDi): On input an identity IDi, CH outputs the partial private key
DIDi and secret value uskIDi of participant i.

– Public-Key-Replacement(IDi, upk′
IDi

): For a participant i, A can choose a
new public key upk′

IDi
and then set upk′

IDi
as the new public key of this

participant. CH will record these replacements which will be used later.
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– Send(Πt
j,i,M): A can send a message M of her choice to an oracle, say

Πt
j,i, in which case participant i assumes that the message has been sent by

participant j. A may also make a special Send query with M = λ to the
oracle Πt

j,i, which demonstrates i to initiate a protocol run with j. An oracle
is an initiator if the first message it has received is λ. If an oracle does not
receive a message λ as its first message, then it is a responder oracle.

– Reveal(Πt
j,i): A can ask a particular oracle to reveal the session key (if any)

it currently holds to A.
– Test(ΠT

I,J): At some point, A has to make a Test query to a fresh oracle
ΠT

I,J (see Definition 4). To answer the query, CH flips a fair coin b ∈ {0, 1},
and returns the session key held by ΠT

I,J if b = 0, or a random sample from
the distribution of the session key if b = 1.

Definition 4. (Fresh oracle). Here, Πs
i,j is fresh if (1) Πs

i,j has accepted the
request to establish a session key; (2) Πs

i,j has not been revealed; (3) there is no
matching conversation1 of oracle Πs

i,j has been revealed; (4) participant j �= i
has not been corrupted; (5) if A is a Type I adversary, A has never requested
the partial private key of participant j; and, if A is a Type II adversary, A has
never replaced the public key of participant j.

Note that definition 4 allows participant i to be corrupted, and thus can be used
to address the key-compromise impersonation property as well as the partial
forward secrecy property. After a Test query, A can continue to query the oracles
except that it cannot make a Reveal query to the test oracle ΠT

I,J or to ΠS
J,I who

has a matching conversation with ΠT
I,J (if it exists). In addition, if A is a Type

I adversary, A cannot request the partial private key of the participant J ; and
if A is a Type II adversary, A cannot replace the public key of the participant
J . Finally, A outputs its guess b′ for b. A’s advantage AdvantageA(k) is defined
as the probability |Pr[b = b′]− 1

2 |.
The security of CL-AKE protocol can be defined using the concept of A’s

advantage as follows:

Definition 5. A certificateless two-party AKE protocol is said to be secure if:

1. In the presence of a benign adversary, two oracles, Πs
i,j and Πt

j,i, running
the protocol both accept holding the same session key, and the session key is
distributed uniformly at random on {0, 1}k; and

2. For any adversary A, AdvantageA(k) is negligible.

Similarly to [25], since A is formalized in a way that it can perform all kinds
of known attacks in the real world, then a protocol provides desirable security
attributes including known session key security, forward secrecy, key compro-
mise impersonation resilience and unknown key-share resilience when it satisfies
Definition 5.
1 Let the session ID be the concatenation of the messages in a session. Two oracles

Πs
i,j and Πt

j,i are said to have a matching conversation with each other if they have
the same session ID.



84 H. Xiong, Q. Wu, and Z. Chen

2.4 Kudla and Paterson’s Modular Approach

To provide a concise but precise security proof for AKE protocols in mBR model,
Kudla and Paterson proposed a reduced game called Computational No Reveal-
mBR game (cNR-mBR game) [17], which is regarded as one of the best solutions
to prove AKE protocols [5,7]. In this subsection, we explore this approach to
simplify our security model. The simplified cNR-mBR game is identical to the
security game described in section 2.3 except that A is not allowed to ask Reveal
queries and A no longer makes a Test query. Instead, an adversary must choose
a fresh oracle Πs

i,j at the end of the game, and it must compute the session key
instead of deciding between a session key and a random value to win the game.
In such a game, the security of the protocol is defined as the probability that A
outputs a session key K such that K = KΠs

i,j
. Thus, the simplified cNR-mBR

security model can be defined as follows:

Definition 6. A CL-AKE protocol is said to be cNR-mBR-secure if:

1. In the presence of a benign adversary, two oracles running the protocol both
accept holding the same session key, and the session key is distributed uni-
formly at random on {0, 1}k; and

2. For any adversary A, AdvantageA(k) in the cNR-mBR game is negligible.

To employ the modular approach, we need first transform the target protocol Π
into a corresponding protocol π which is identical to Π except that Π produces
a hashed session key while π utilizes the input string of the hash function as the
session key. Then prove the security of π in the simplified cNR-mBR game using
Definition 6. Finally, the security of π in cNR-mBR game can be associated with
that of Π in the mBR game according to the following theorem.

Theorem 1. [17] Suppose that a key exchange protocol Π produces a hashed
session key on completion of the protocol (via hash function H) and that Π has
strong partnering2. If the cNR-mBR security of the corresponding π is proba-
bilistic polynomial time reducible to the hardness of the computational problem
of some relation f , and the session string decisional problem for Π is polyno-
mial time reducible to the decisional problem of f , then the mBR security of Π
is probabilistic polynomial time reducible to the hardness of the Gap problem of
f , assuming that H is a random oracle.

2.5 Preciseness of Modular Approach

Kudla and Paterson’s modular proof removes the requirement for Reveal queries,
and simplifies the proof while still maintaining the precision and correctness of
the proof result. In this subsection, we analyze the reason.
2 If there exists an adversary A, which when attacking Π in an mBR game with non-

negligible probability in the security parameter k, can make any two oracles Πu
a,b

and Πv
b,a accept holding the same session key when they are not partners, then we

say that Π has weak partnering. If Π does not have weak partnering, then we say
that Π has strong partnering.
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In the security proof of the mBR model, the challenger CH has to answer
the adversary’s Reveal queries. For queries Reveal(Πs

I,j) where I denotes the
attacked party, CH is not able to answer since CH usually has to solve a difficult
computational problem which CH doesn’t know how to solve. Otherwise, the
session key could be computed with the oracle’s ephemeral random value and
the partner’s secret value and partial private key, which violates key compromise
impersonation resilience. Regarding the other possible Reveal queries, CH can
answer them easily because CH knows the corresponding secret value and partial
private key. However, CH has to answer both kinds of Reveal queries because
this simulates the known session key attack. In order to respond the queries to
maintain the indistinguishability with the real world, various methods have been
proposed, and a survey of these methods can be found in [7].

The modular approach addresses this problem with the cNR-mBR game which
removes the Reveal query. This removal will not affect the correctness of the secu-
rity proof since the modular approach assumes that there exists a certain method
for CH to answer the impossible Reveal(Πs

I,j) queries, and this method is given in
the proof process of Theorem 1. The method which employs a random oracle and
a decisional oracle is identical to all AKE protocols Π of the similar category. A
direct proof for any correct Π can be given by combining the method and the proof
in the cNR-mBR game (see an example of our protocol in Appendix A). However,
instead of doing so, one can use the modular approach to simply obtain the cNR-
mBR security and then apply Theorem 1 to obtain the security of Π . Since the
cNR-mBR game is conceptually simple, it is easy to maintain the indistinguisha-
bility and to obtain precisely the cNR-mBR security. By employing Theorem 1,
the final security conclusion for Π is also precise. For a comprehensive study of
Kudla and Paterson’s modular proof we refer the readers to [17].

3 Proposed CL-AKE Protocol without Pairings

3.1 Protocol Description

Our proposed protocol is inspired by the work due to Cao et al. [4] and Zhang et
al. [25]. Similarly to other CL-AKE protocols, the proposed one requires a key
generator center (KGC) and consists of four phases: system setup, partial key
extraction, user key generation and key exchange phase.

Setup: Given a security parameter k ∈ Z, the algorithm works as follows:

1. Run the parameter generator on input k to generate a prime p and determine
the tuple {Fp, E/Fp, G, P} as defined in Sect. 2.

2. Choose a master-key x ∈R Z∗
p, and compute Ppub = xP .

3. Choose cryptographic hash functions H1 : {0, 1}∗ × G → Z∗
p and H2 :

{0, 1}∗2 × G9 → {0, 1}k. Finally the PKG’s master-key x is kept secret and
the system parameters {Fp, E/Fp, G, P, Ppub, H1, H2} are published.

Partial-Private-Key-Generate: Given a user’s identity IDU ∈ {0, 1}∗, KGC first
chooses at random rU ∈R Z∗

p, and computes RU = rUP , h = H1(IDU‖RU )
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and sU = (rU + hx)−1. It then sets this user’s partial private key (sU , RU ) and
transmits it to user IDi secretly.

It is easy to see that user IDU can validate her partial private key by checking
whether the equation sU (RU +H1(IDU‖RU )Ppub) = P holds. The partial private
key is valid if the equation holds and vice versa.

User-key-Generate: The user IDU selects a secret value xU ∈R Z∗
p as his user

secret key uskU , and computes his public key as upkU = xUP .

key exchange: Assume that an entity A with identity IDA has full private key
(sA, RA, xA) and public key upkA, and an entity B with identity IDB has full
private key (sB , RB, xB) and public key upkB. The message flows and compu-
tations of a protocol run are described below.

1. To start an AKE session with the intended responder B, the initiator A will
send {IDA, upkA, RA} to B. On receiving the initiation message from A, B
does the following.
(a) Choose at random the ephemeral key b ∈R Z∗

p and compute the key
token TB = b(RA + H1(IDA‖RA)Ppub);

(b) Send {IDB, upkB, RB} and the key token TB to A.
2. On receiving {IDB, upkB, RB, TB}, A does the following.

(a) Choose at random the ephemeral key a ∈R Z∗
p and compute the key

token TA = a(RB + H1(IDB‖RB)Ppub);
(b) Send the key token TA to B.

3. Then both A and B can compute the shared secrets as follows. Partici-
pant A computes sATB = bP and K1

AB = bP + aP , K2
AB = a · bP and

K3
AB = a · upkB + uskA · bP . Participant B computes sBTA = aP and

K1
BA = aP + bP , K2

BA = b · aP and K3
BA = b · upkA + uskB · aP . The

shared secrets are consistent because K1
AB = bP + aP = K1

BA, K2
AB =

abP = K2
BA, K3

AB = a · upkB + uskA · bP = uskB · aP + b · upkA =
K3

BA. Thus the agreed session key for A and B can be computed as K =
H2(IDA, IDB, upkA, upkB, RA, RB, TA, TB, K1

AB, K2
AB, K3

AB)

3.2 Security Analysis

Next we prove the security of the new protocol using Kudla and Pa-
terson’s model. We first turn our new protocol Π into a related pro-
tocol π, which is similar to the former except that π uses the string
(IDA, IDB, upkA, upkB, RA, RB, TA, TB, K1

AB, K2
AB, K3

AB) as the session key
while Π uses H2(IDA, IDB, upkA, upkB, RA, RB, TA, TB, K1

AB, K2
AB, K3

AB).
Then we prove the cNR-mBR security of π.

Lemma 1. Suppose that if for protocol π there is a Type I adversary A1 who
can win in the cNR-mBR game with advantage at least ε, then the CDH problem
can be solved with non-negligible advantage by an algorithm CH.

Proof. Suppose CH is given an instance (aP, bP ) ∈ G of the CDH problem, and
is tasked to compute cP ∈ G with c = ab mod p. To do this, CH simulates a
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challenger with A1. CH stipulates the hash function H1 and maintains an H1-list
which is initialized empty. The number of participants in the game is denoted by
np(k) and the number of sessions each participant may be involved in is denoted
by ns(k). The full private key for the i-th participant IDi is (si, Ri, xi) and IDi

is the corresponding identifier. CH generates IDi’s partial private key as follows:
CH first chooses at random I ∈ {1, · · · , np(k)}, then chooses RI ∈R G and

sets {⊥, RI} as IDI ’s partial private key. The system public key can be denoted
as Ppub = H1(IDI , RI)−1(bP − RI) which implicitly means that s−1

I P = bP .
For IDi with i ∈ {1, · · · , np(k)} and i �= I, CH sets the partial private key by
first choosing at random (si, hi) ∈R Z∗

p. Then CH computes Ri = s−1
i P −hiPpub

and sets (si, Ri) as IDi’s partial private key. After that, CH passes Ri and IDi

to A1 and adds {IDi, Ri, si, hi} to the H1-list for i ∈ {1, · · · , np(k)}.
Then CH picks at random J ∈ {1, · · · , np(k)} �= I, v ∈ {1, · · · , ns(k)}, and

CH starts A1 by answering A1’s queries as follows:
H1(IDi, Ri) query: If the tuple {IDi, Ri, si, hi} is already in the H1-list, CH

responds with hi, otherwise, CH chooses hi ∈R Z∗
p, adds {IDi, Ri, si, hi} to the

H1-list and returns hi to A1.

Create(IDi): CH maintains an initially empty list C consisting of tuples of the
form (IDi, Ri, si, xi, upki). For simplicity, we assume that all the Create queries
are distinct. On receiving a Create query on IDi, CH first makes an H1 query to
obtain a tuple {IDi, Ri, si, hi}, then chooses a random xi ∈R Z∗

p and computes
the public key upki = xiP for IDi with i ∈ {1, · · · , np(k)}. Finally the tuple
(IDi, Ri, si, xi, upki) is added to C. Without loss of generality, we assume that,
before asking the following queries, A1 has already asked some Create queries on
the related queries.

Public-key(IDi): On receiving this query, CH first searches for a tuple (IDi, Ri,
si, xi, upki) in C which is indexed by IDi, then returns upki as the answer.

Partial-Private-Key(IDi): Whenever CH receives this query, if IDi = IDI , CH
aborts; else, CH searches for a tuple (IDi, Ri, si, xi, upki) in C which is indexed
by IDi and returns (Ri, si) as the answer.

Corrupt(IDi): Whenever CH receives this query, if IDi = IDI , CH aborts; else,
CH searches for a tuple (IDi, Ri, si, xi, upki) in C which is indexed by IDi and
if xi = null, CH returns null; otherwise CH returns (Ri, si, xi) as the answer.

Public-Key-Replacement(IDi, upk′
i): On receiving this query, CH searches for a

tuple (IDi, Ri, si, xi, upki) in C which is indexed by IDi, then updates upki to
upk′

i and sets xi = null.

Send(Πs
i,j , M): If Πs

i,j �= Πv
J,j , then CH acts according to the protocol specifica-

tion. Otherwise, CH responds with the tuple (IDj , upkj, Rj , aP ).
The probability that A1 chooses Πv

J,j as the Test oracle and that IDj = IDI

is 1
n2

p(k)ns(k) . In this case, A1 would not have corrupted IDI , and so CH would
not have aborted. If A1 can win in such a game, then at the end of this game,
A1 will output its guess of the session key of the form {0, 1}∗ × {0, 1}∗ × A ×
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B ×C ×D×E ×F ×G×H × I, and CH can output G− sJM where M is the
input message of Send(Πv

J,j, M) query. Thus CH can solve the DCDH problem
with non-negligible probability c

n2
p(k)ns(k) within t(k) where c is a constant. Then

according to the equivalence between the DCDH and the CDH problems, the
CDH problem can be solved with advantage at least ( c

n2
p(k)ns(k) )

2. ��

Lemma 2. Suppose that if for protocol π there is a Type II adversary A2 who
can win in the cNR-mBR game with advantage at least ε, then the CDH problem
can be solved with non-negligible advantage by an algorithm CH.

Proof. Suppose that there exists a Type II adversary A2 who can win the game
with a non-negligible advantage in polynomial-time. Then we show that there is
an algorithm CH that solves the CDH problem with non-negligible probability.

Suppose CH is given an arbitrary input (P, aP, bP ) ∈ G of the CDH problem.
We show how CH can use A2 to solve the CDH problem, i.e., to compute abP .
CH first chooses x ∈R Z∗

p at random and sets Ppub = xP as the system public
key. After that, x is sent to A2 by CH. CH stipulates the hash function H1 and
maintains an H1-list which is initialized empty. The number of participants in
the game is denoted by np(k) and the number of sessions each participant may
be involved in is denoted by ns(k). The full private key for the i-th participant
IDi is (si, Ri, xi) and IDi is the corresponding identifier. CH chooses at random
ri ∈R Z∗

p, computes Ri = riP and si = (ri + H1(IDi‖Ri)x)−1, and sets (si, Ri)
as IDi’s partial private key.

Then CH picks at random I, J ∈ {1, · · · , np(k)}, v ∈ {1, · · · , ns(k)}, and CH
starts A2 by answering A2’s queries as follows:

H1(IDi, Ri) query: If the tuple {IDi, Ri, si, hi} is already in the H1-list, CH
responds with hi; otherwise, CH chooses hi ∈R Z∗

p, adds {IDi, Ri, si, hi} to the
H1-list and returns hi to A2.

Create(IDi): CH maintains an initially empty list C consisting of tuples of the
form (IDi, Ri, si, xi, upki). For simplicity, we assume that all the Create queries
are distinct. On receiving a Create query on IDi, CH sets the public key as bP
and the user secret key as ⊥ for IDi with i = I; otherwise, CH chooses a random
xi ∈R Z∗

p and computes the public key as xiP and user secret key as xi for IDi

with i ∈ {1, · · · , np(k)} and i �= I. After that, CH makes an H1 query to obtain
a tuple {IDi, Ri, si, hi}. Finally the tuple (IDi, Ri, si, xi, upki) is added to C.
Without loss of generality, we assume that, before asking the following queries,
A2 has already asked some Create queries on the related queries.

Public-key(IDi): On receiving this query, CH first searches for a tuple (IDi, Ri,
si, xi, upki) in C which is indexed by IDi, then returns upki as the answer.

Corrupt(IDi): Whenever CH receives this query, if IDi = IDI , CH aborts; else
CH searches for a tuple (IDi, Ri, si, xi, upki) in C which is indexed by IDi and
returns (Ri, si, xi) as the answer.

Public-Key-Replacement(IDi, upk′
i): On receiving this query, if IDi = IDI , CH

aborts; otherwise, CH searches for a tuple (IDi, Ri, si, xi, upki) in C which is
indexed by IDi, then updates upki to upk′

i and sets xi = null.
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Send(Πs
i,j , M): If Πs

i,j �= Πv
J,j , then CH acts according to the protocol specifica-

tion. Otherwise, CH responds with the tuple (IDj , upkj, Rj , aP ).
The probability that A2 chooses Πv

J,j as the Test oracle and that IDj = IDI

is 1
n2

p(k)ns(k) . In this case, A2 would not have corrupted IDI , and so CH would
not have aborted. If A2 can win in such a game, then at the end of this game,
A2 will output its guess of the session key of the form {0, 1}∗ × {0, 1}∗ × A ×
B ×C ×D×E × F ×G×H × I, and CH can output I − sJM where M is the
input message of Send(Πv

J,j, M) query. Thus CH can solve the DCDH problem
with non-negligible probability c

n2
p(k)ns(k) within t(k) where c is a constant. Then

according to the equivalence between the DCDH and the CDH problems, the
CDH problem can be solved with advantage at least ( c

n2
p(k)ns(k) )

2. ��

Before applying Theorem 1 to the above result, we have to prove that protocol
Π satisfies the property of strong partnering.

Lemma 3. Protocol Π has strong partnering in the random oracle model.

Proof. Let pa denote the partner of user a. Suppose an adversary A can have
two oracles Πs

i,pi and Πt
j,pj accept holding the same session key when pi �= j and

pj �= i.
If Πs

i,pi is an initiator for the session key, it has to make a query of the form
{IDi, IDpi, A, B, C, D, E, F, G, H, I} to the random oracle H2, and to receive hi

2

as the session key. For Πt
j,pj to have the same session key, it must have made

the H2 query of the form {IDpj, IDj , A, B, C, D, E, F, G, H, I} since IDj �= IDi.
Then it must have IDpj = IDi and vice versa. Thus Πs

i,pi and Πt
j,pj are partners,

which contradicts the assumption. Thus it is impossible for the adversary A to
obtain a qualified Πt

j,pj when Πs
i,pi is an initiator; the same can be proved when

Πs
i,pi is a responder. This completes the proof. ��

Theorem 2. Our protocol Π is secure in the random oracle model assuming the
hardness of Gap Diffie-Hellman problem.

Proof. The theorem follows directly from Theorem 1 and Lemmas 1-3. Thus, the
protocol provides known session key security, key compromise impersonation
resilience and unknown key share resilience, which is satisfied even in face of
Kaliski’s UKS attack, as shown in [16]. ��

Theorem 3. Our protocol has the perfect forward secrecy property if the CDH
problem in G is hard.

Proof. Suppose that A and B established a session key K using our CL-AKE
protocol, and later, their full private key (sA, RA, xA) and (sB, RB, xB) were
compromised. Let a and b be the secret random numbers chosen by A and B,
respectively, during the establishment of their session key. It is easy to see that,
to compute the established session key K, the adversary who owns (sA, RA, xA),
(sB, RB, xB), sBTa = aP and sATb = bP for unknown a, b must know the value
of abP . However, to compute the value of abP without the knowledge of either a
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or b, the adversary must have the ability to solve the CDH problem in G. Under
the CDH assumption, this probability is negligible. Hence, our protocol has the
perfect forward secrecy property. ��

4 Comparison

In this section we compare the efficiency of the proposed protocols, Zhang et al.
[25]’s protocol which is the most efficient existing CL-AKE protocol based on
pairings, and Yang-Tan [24]’s protocol which is the up-to-date provably secure
pairing-free CL-AKE protocol. Here we only consider the costly operations and
we omit the computation efforts which can be pre-computed. We denote by P
a pairing operation, by E an exponentiation, by ME a multi-exponentiation
(≈ 1.5E), by V a signature verification and by σ a signature.

Table 1. Performance comparison of different protocols

Protocol Computation Bandwidth Assumption

Yang-Tan’s [24] 5E + 3ME + 1V 6|G| + 2|σ| Gap-DH
Zhang et al.’s [25] 5E + 1P 4|G| CDH,BDH

Our protocol 7E 6|G| Gap-DH

According to the benchmark of pairing [7], 1 pairing operation is roughly
equivalent to 3 exponentiation in computation. Thus, comparing with these two
protocols, our protocol is the most efficient one in computation, while Zhang
et al.’s protocol requires less communication. Note that the security proofs of
existing pairing-free CL-AKEs require the GDH assumption. With available im-
plementation technologies, a pairing map is needed to realize the DDH oracle in
the GDH assumption. However, since the goal of pairing-free CL-AKE protocols
is to eliminate expensive pairing operations during the run of the AKE protocol,
the requirement of pairings merely in security proofs does not deviate this goal.

5 Conclusions

We have proposed CL-AKE protocol without any pairing operation during the
protocol execution. The proposed protocol realizes a pairing-free CL-AKE pro-
tocol with implicit authentication, and its security has been proved in Kudla and
Paterson’s security model. Since the existing pairing-free CL-AKE protocols rely
on the GDH assumption to complete the proofs, this implies that the CL-AKE
protocols so far are not fully pairing-free. Hence, it remains an interesting prob-
lem to construct efficient fully pairing-free CL-AKE protocols without relying
on GDH-like assumptions.
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A A Direct Proof for the Proposed Protocol

In this section, we present a direct proof in the original security model for our
CL-AKE protocol to show the preciseness of the modular approach. The proof
is based on a combination of the method proposed in the modular approach and
the proof in the cNR-mBR game.

Theorem 4. Suppose that if for our protocol Π there is a Type I adversary A1

who can win in the security game described in Definition 5 with advantage at
least ε, then the CDH problem can be solved with non-negligible advantage.

Proof. Suppose CH is given an instance (aP, bP ) ∈ G of the CDH problem, and
is tasked to compute cP ∈ G with c = ab mod p. To do this, CH simulates a
challenger with A1. CH stipulates the hash function Hi(i = 1, 2) and maintains
an Hi-list which is initialized empty; CH also maintains for Send queries an ini-
tially empty Ω-list and for Reveal queries an initially empty Λ-list. The number
of participants in the game is denoted by np(k) and the number of sessions each
participant may be involved in is denoted by ns(k). The full private key for the
i-th participant IDi is (si, Ri, xi) and IDi is the corresponding identifier. CH
generates IDi’s partial private key as follows:
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CH first chooses P0 ∈ G at random and sets P0 as the system public key
Ppub. Then CH chooses at random I ∈ {1, · · · , np(k)} and generates the partial
private key for IDI . CH chooses hI ∈R Z∗

p and computes RI = bP −hIP0 which
implicitly means that s−1

I P = bP . Then (⊥, RI) is set as IDI ’s partial private
key. For IDi with i ∈ {1, · · · , np(k)} and i �= I, CH sets the partial private key by
first choosing at random (si, hi) ∈R Z∗

p. Then CH computes Ri = s−1
i P −hiPpub

and sets (si, Ri) as IDi’s partial private key. After that, CH passes (si, Ri) and
IDi to A1 and adds {IDi, Ri, si, hi} to the H1-list for i ∈ {1, · · · , np(k)}.

Then CH picks at random J ∈ {1, · · · , np(k)} �= I, v ∈ {1, · · · , ns(k)}, and
CH starts A1 by answering A1’s queries as follows:

H1(IDi, Ri) query: If the tuple {IDi, Ri, si, hi} is already in the H1-list, CH
responds with hi, otherwise, CH chooses hi ∈R Z∗

p, adds {IDi, Ri, si, hi} to the
H1-list and returns hi to A1.

Create(IDi): CH maintains an initially empty list C consisting of tuples of the
form (IDi, Ri, si, uski, upki). On receiving a Create query on IDi, CH first makes
an H1 query to obtain a tuple {IDi, Ri, si, hi}, then chooses a random xi ∈R Z∗

p

as the secret value uski and computes the public key upki = xiP for IDi with
i ∈ {1, · · · , np(k)}. Finally the tuple (IDi, Ri, si, uski, upki) is added to C.

Corrupt(IDi): Whenever CH receives this query, if IDi = IDI , CH aborts; else,
CH searches for a tuple (IDi, Ri, si, uski, upki) in C which is indexed by IDi

and returns (Ri, si, uski) as the answer.

Send(Πs
i,j , M): CH maintains an Ω-list of the form {Πs

i,j , transs
i,j , t

s
i,j} where

transs
i,j is the transcript of Πs

i,j so far and tsi,j will be described later.

– If Πs
i,j �= Πv

i,J , then CH acts according to the specification of protocol Π .
Note that when M is not the second message to Πs

i,j , CH chooses at random
tsi,j ∈R Z∗

p and computes the reply as tsi,jP . Then CH updates the tuple
indexed by Πs

i,j in Ω-list.
– Otherwise, CH responds with aP and update the tuple {Πs

i,j , transs
i,j , t

s
i,j}

with tsi,j =⊥.

Reveal(Πs
i,j): CH maintains a Λ-list of the form {IDs

ini, IDs
resp, upks

ini, upks
resp,

Xs
ini, Y

s
resp, Π

s
i,j , K

s
i,j} where IDs

ini and upks
ini is the identification and public

key of the initiator, and IDs
resp and upks

resp is the identification and public key
of the responder in the session which Πs

i,j engages in. The description of the
other items will be given below.

– If Πs
i,j = Πv

i,J , abort.
– Else if i �= I, CH extracts (si,Ri, uski) from C , and goes through Ω-list

for corresponding (Xi, Yj) and tsi,j . According to the specification of security
game in Definition 5, there must be such an item in Ω-list. So CH computes
Z1

s = siYj + tsi,jP , Z2
s = tsi,jsiYj and Z3

s = tsi,jupks
resp + uski · siYj . After

that, CH makes an H2 query. If Πs
i,j is the initiator oracle, then the query

is of the form {IDi, IDj, upki, upkj, Ri, Rj , Xi, Yj , Z
1
s , Z2

s , Z3
s} or else of the

form {IDj, IDi, upkj , upki, Rj , Ri, Yj , Xi, Z
1
s , Z2

s , Z3
s}. At last, CH sets H2

responses h2
s as Ks

i,j .
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– Else if i = I, CH goes through Ω-list for corresponding (Xi, Yj) and
tsi,j . CH go through the H2-list to see if there exists a tuple indexed by
{IDi, IDj , upki, upkj, Xi, Yj} if Πs

i,j is a initiator; otherwise indexed by
{IDj, IDi, upkj, upki, Yj , Xi}. If there exists such a tuple, and the corre-
sponding Z1

u, Z2
u and Z3

u satisfies the equations ê(Z1
u − tsi,jP, Ri + hiPpub) =

ê(P, Yj), ê(Z2
u, P ) = ê(Xi, Yj) and ê(Z3

u− tsi,jupkj , Ri +hiPpub) = ê(upki, Yj)
given a proper bilinear map ê for group G, then obtain the corresponding
h2

u as Ks
i,j . Else CH chooses at random Ks

i,j ∈ {0, 1}k.
– Insert the tuple {IDs

ini, IDs
resp, upks

ini, upks
resp, X

s
ini, Y

s
resp, Π

s
i,j , K

s
i,j} into

the Λ-list and return Ks
i,j.

H2(IDi, IDj, upki, upkj , Ri, Rj , Xi, Yj , Z
1
u, Z2

u, Z3
u) query: H2-list is of the form

{IDi, IDj, upki, upkj , Ri, Rj , Xi, Yj , Z
1
s , Z2

s , Z3
s , h1

u}, and CH responds with H2

queries (IDi, IDj , upki, upkj, Ri, Rj , Xi, Yj , Z
1
u, Z2

u, Z3
u) as follows:

– If a tuple indexed by (IDi, IDj , upki, upkj, Ri, Rj , Xi, Yj , Z
1
u, Z2

u, Z3
u) is al-

ready in H2-list, reply with the corresponding h1
u.

– If there is no such a tuple,

• If the equations ê(Z1
u−tsi,jP, Ri+hiPpub) = ê(P, Yj), ê(Z2

u, P ) = ê(Xi, Yj)
and ê(Z3

u − tsi,jupkj, Ri + hiPpub) = ê(upki, Yj) hold given a proper bi-
linear map ê for group G, CH goes through the Λ-list. If there is such a
tuple indexed by {IDi

u, IDj
u, upki

u, upkj
u, Xu, Yu} in Λ-list, then obtain

the corresponding Ks
i,j as h2

u. Else CH chooses at random h2
u ∈ {0, 1}k.

• Else if the equations do not hold, CH chooses at random h2
u ∈ {0, 1}k.

– Insert the tuple {IDi, IDj, upki, upkj, Ri, Rj , Xi, Yj , Z
1
s , Z2

s , Z3
s , h1

u} into the
H2-list and return h2

u.

The probability that A1 chooses Πv
J,j as the Test oracle and that IDj = IDI is

1
n2

p(k)ns(k) . In this case, A1 would not have corrupted IDI or reveal Πv
J,j, and so

CH would not have aborted. If A1 can win in such game, then at the end of this
game, A1 will output its guess of the session key of the form {0, 1}∗ × {0, 1}∗ ×
A×B×C×D×E×F ×G×H×I, and CH can output G−sJM where M is the
input message of Send(Πv

J,j, M) query. Thus CH can solve the DCDH problem
with non-negligible probability c

n2
p(k)ns(k) within t(k) where c is a constant. Then

according to the equivalence of the DCDH and the CDH assumptions, the CDH
problem can be solved with advantage at least ( c

n2
p(k)ns(k) )

2.
As can be seen, in the above proof, the Reveal queries are answered using

the method proposed by the modular proof. The rest of the proof is identical
to the proof in the cNR-mBR game. Since the method to answer the Reveal
queries is common to every protocol, it’s safe to omit the proof for the Type
II adversary A2. Thus by providing the cNR-mBR security of a protocol, one
can obtain the corresponding ordinary security claim. Therefore, the modular
approach can provide a correct security proof for a protocol.
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Abstract. In 2003, L. H. Encinas, J. M. Masqué and A. Q. Dios pro-
posed an algorithm for generating the RSA modulus N with a large pri-
vate key d, which was claimed secure. In this paper, we propose an attack
on Encinas-Masqué-Dios algorithm and find its security flaw. Firstly, we
prove that Encinas-Masqué-Dios algorithm is totally insecure when the
public exponent e is larger than the sum of the two primes p and q.

Secondly, we show that when e is larger than N
1
4 , Encinas-Masqué-Dios

algorithm leaks sufficient secret information and then everyone can re-
cover the factorization of the RSA modulus N in polynomial time.

Keywords: Cryptanalysis, RSA, Key generation algorithm, Lattice ba-
sis reduction, Partial key exposure attack.

1 Introduction

The RSA cryptosystem [13], which is one of the most important public key cryp-
tosystems, has been widely used in electronic commerce, secure communication,
digital signature and so on. Let N = pq be an n-bit RSA modulus, where p and
q are two distinct large primes. Let e and d be the public and private exponents
satisfying ed ≡ 1 (mod φ(N)), where φ(N) is the Euler totient function. First
of all, the parameters d, p, q and φ(N) must be kept secret from the attackers.

In order to speed up the decryption or signing process in the RSA cryp-
tosystem, a short private exponent d may be used to accelerate the computation
m = cd (mod N). However, the breakthrough idea of M. Wiener [15] introduced
a short private key attack with the continued fraction algorithm. M. Wiener
proved that every public exponent e < N1.5 corresponding to a private expo-
nent d < 1

3N0.25 yields the factorization of the RSA modulus N = pq in poly-
nomial time. E. Verheul and H. Tilborg [14] extended the attack to d > 1

3N0.25,
which required an exhaustive search of 2t + 8 bits with t = log2(d/n0.25). At
EUROCRYPT 1999, D. Boneh and G. Durfee [2] improved the attack bound

X. Lai, J. Zhou, and H. Li (Eds.): ISC 2011, LNCS 7001, pp. 95–101, 2011.
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to d < N0.292 by using LLL algorithm [10] and Coppersmith’s method for find-
ing small roots of modular polynomial equations [4]. At ASIACRYPT 1998, D.
Boneh, G. Durfee and Y. Frankel [3] proposed the partial key exposure attacks on
RSA cryptosystem and showed that a quarter of the leaked least significant bits
of d are sufficient for recover all of d efficiently. Many other lattice-based attacks
on RSA and other cryptosystems can be found in the literature [1,5,8,9,11,12].

In spite of choosing a short private key, L. H. Encinas, J. M. Masqué and A. Q.
Dios [6,7] proposed an algorithm for generating the RSA modulus N = pq with a
large private key d. Note that the public and private keys satisfy ed−kφ(N) = 1
in RSA cryptosystem. In Encinas-Masqué-Dios algorithm, the private key is
generated with the form of d = 1+kφ(N)

e where k = e− 1. In [6,7], L. H. Encinas
et al. claimed that the RSA key generated by their algorithm was secure against
the aforementioned attacks.

In this paper, we propose an attack on Encinas-Masqué-Dios algorithm and
show that it is insecure when e > N

1
4 . Firstly, we prove that Encinas-Masqué-

Dios algorithm can be broken when e > p + q. Secondly, it is showed that when
e > N

1
4 , everyone can also break Encinas-Masqué-Dios algorithm and compute

the private exponent d in polynomial time.
The rest of this paper is organized as follows. In Section 2, we review Encinas-

Masqué-Dios RSA key generation algorithm. In Section 3, we propose the attack
on Encinas-Masqué-Dios algorithm when e > N

1
4 . Finally, in Section 4 we con-

clude the paper.

2 Preliminaries

2.1 Notations and Definitions

The RSA cryptosystem [13] can be described as follows. Let N = pq be an n-bit
RSA modulus, where p and q are two distinct primes. Let e, d be the public and
private exponents, i.e. ed ≡ 1 (mod φ(N)).

For convenience, we set s = p + q and denote by k the integer such that

ed− kφ(N) = ed− k(N − s + 1) = 1.

Note that φ(N) = N − p− q +1 < N . When d < φ(N), we obtain that k < e.
The public key 〈N, e〉 is published to all while the private key 〈p, q, d〉 must be
kept secret. The encryption process (or verification of a signature) is to calculate
c = me (mod N) while the decryption process (or signing of a signature) is to
compute m = cd (mod N).

2.2 Review of Encinas-Masqué-Dios RSA Key Generation
Algorithm

The fundamental idea of Encinas-Masqué-Dios algorithm [6,7] is to generate the
special RSA key satisfying ed− kφ(N) = 1 where k = e− 1.

Encinas-Masqué-Dios algorithm is shown in Algorithm 1 and its properties
are shown in Proposition 1 and 2, which are described in detail in [6,7].
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Algorithm 1. Encinas-Masqué-Dios algorithm [6,7].

Output: The RSA modulus N = pq and the public and private keys e and d.
1. Choose a public exponent e > 2.
2. Generate a large prime p such that rp(rp − 1) ∈ Z∗

e , where rp = p (mod e).
3. Compute the prime q = rp(rp − 1)−1 (mod e) + ke, where k is an integer.
4. Compute N = pq and φ(N) = (p − 1)(q − 1), and verify that 1 < e < φ(N)

and gcd(e, φ(N)) = 1.
5. Finally, compute the private exponent d, where 1 < d < φ(N) and

ed ≡ 1 (mod φ(N)). It can be obtained by d = 1+(e−1)φ(N)
e

.

Proposition 1. [6,7] Let e and d be the public and private keys with the RSA
modulus N = pq, where ed = 1 + kφ(N). If k = e− 1, it follows that d > 2

3φ(N)
and bitlength(d)>bitlength(N)−2, where bitlength(a) means the length of binary
representation of the integer a.

Proposition 2. [6,7] Let e and d be the public and private keys with the RSA
modulus N = pq, where ed = 1 + kφ(N) with k = e − 1. Let rp = p (mod e)
and rq = q (mod e) be the residues of p and q modulo e respectively, and let
Se = {r ∈ Z∗

e |r(r − 1) is invertible modulo e}. Then we have
(1) It holds that rp, rq ∈ Se and rq = rp

rp−1 .
(2) If e = pm1

1 · · · pmt
t is the prime factorization of e, we have

#Se =
t∏

i=1

(pi − 2)pmi−1
i .

Conversely, if p and q are arbitrary primes satisfying (1), we have k = e − 1.

3 The Proposed Attack on Encinas-Masqué-Dios RSA
Key Generation Algorithm

The basic idea of our attack is described as follows. In Encinas-Masqué-Dios
algorithm [6,7], the private key d and the public key e satisfy the following
equation

ed − (e− 1)φ(N) = ed − (e− 1)(N − p − q + 1) = 1.

Let φ(N)e = φ(N) (mod e) be the residue of φ(N) modulo e, i.e. 0 ≤
φ(N)e < e. We can compute φ(N)e = 1 = −(e − 1)−1 (mod e) by using
the extended Euclidean algorithm. It follows that

φ(N) = N − p − q + 1 ≡ 1 (mod e).

Thus we have N ≡ p + q (mod e), which means that p + q (mod e) is
revealed to everyone.

In this section, we first give a simple attack on Encinas-Masqué-Dios algorithm
when e > p + q. Secondly, we prove that when e > N

1
4 holds, the leakage of

φ(N)e = φ(N) (mod e) suffices to break the whole RSA cryptosystem since we
can recover the factorization of N = pq and compute the private exponent d.
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3.1 Encinas-Masqué-Dios Algorithm Is Insecure When e > p + q

When e > p + q, we can obtain the large integer p + q directly by computing N
mod e since that N ≡ p + q (mod e). The revealed value p + q is sufficient for
recovering the factorization of the RSA modulus N .

The secret primes p and q are computed easily by solving the following equa-
tion, where s = N (mod e) is known,{

N = pq,
s = p + q.

When the primes p and q are known, one can compute the Euler function φ(N) =
(p− 1)(q− 1) = N + 1− (p + q) and the private key d by d = e−1 (mod φ(N))
with the extended Euclidean algorithm. Hence Encinas-Masqué-Dios algorithm
is insecure when e > p + q.

3.2 Encinas-Masqué-Dios Algorithm Is Insecure When e > N
1
4

When e > N
1
4 , we can also compute p + q (mod e) by using a similar method.

However, since it holds that p + q > N
1
2 , we can only obtain p + q (mod e),

which may be only a part of the integer p + q. Thus the method in Subsection
3.1 can not work.

Now we propose the attack on Encinas-Masqué-Dios algorithm, which is based
on lattice-based method [3,4,10], when it holds that e > N

1
4 . The method is

described in Attack 1. Note that the attack in Subsection 3.1 can be included
in Attack 1 since the assumption e > p + q > N

1
2 is a part of the assumption

e > N
1
4 .

Attack 1. Attack on Encinas-Masqué-Dios algorithm when e > N
1
4 .

Input: The RSA modulus N and the public key e, where e > N
1
4 and

ed − (e − 1)φ(N) = 1.
Output: The primes p and q, which satisfy N = pq, and the private key d.
1. We compute se = N (mod e). Let t = se or t = se + e.
2. By solving the equations in two variables rp and rq, t = rp + rq and rq =

rp

rp−1
,

we obtain rp and rq, where rp = p (mod e) and rq = q (mod e).
3. Using Coppersmith’s lattice-based method, we calculate the primes p and q

by finding the small solution (x0, y0) of the bivariate equation
f(x, y) = (ex + rp)(ey + rq) − N = 0.

4. Finally, we compute the RSA private key d = e−1 (mod φ(N)).

Before analyzing the correctness and efficiency of Attack 1, we first review the
results of Coppersmith [3,4] and Boneh-Durfee-Frankel method [3] as follows.

Theorem 1. [3,4] Let p(x, y) be an irreducible polynomial in two variables over
Z, of maximum degree δ in each variable separately. Let X and Y be upper
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bounds on the desired integer solution (x0, y0), and let W = maxi,j |pij |X iY j. If
for some ε > 0, XY < W 2/(3δ)−ε then in time polynomial in (log W, 2δ), one
can find all integer pairs (x0, y0) such that p(x0, y0) = 0, |x0| ≤ X and |y0| ≤ Y .

Theorem 2. [3] Let N = pq be an n-bit RSA modulus. Let r ≥ 2
n
4 be given

and suppose p0 = p (mod r) is known. Then it is possible to factor N in time
polynomial in n. (We denote the running time Tc(n)).

Now we give the analysis of Attack 1 in Proposition 3.

Proposition 3. Let N = pq be an n-bit RSA modulus. Let 1 < e, d < φ(N)
satisfy ed − (e − 1)φ(N) = 1, where e is the public exponent. If e > N

1
4 holds,

then there is a O(Tc(log N)+log3 N) polynomial time algorithm that can recover
the private exponent d and the factorization of N = pq.

Proof. (Correctness) Let rp = p (mod e) and rq = q (mod e), where 0 <
rp < e and 0 < rq < e, be the residues of p and q modulo e respectively. Let
s = p + q be the sum of the primes p and q, and se = p + q (mod e) be the
residue of p + q modulo e, where 0 < se < e.

Then it follows that rp + rq = se or rp + rq = se + e holds.
In Encinas-Masqué-Dios algorithm [6,7], the private key d and the public key

e satisfy the equation ed− (e−1)φ(N) = 1. Let φ(N)e = φ(N) (mod e) be the
residue of φ(N) modulo e. We can compute φ(N)e = 1 = −(e− 1)−1 (mod e)
by using the extended Euclidean algorithm. It follows that

φ(N) = N − p − q + 1 ≡ 1 (mod e).

Thus we have N ≡ p + q (mod e) and compute the value se = N (mod e)
directly.

According to Proposition 2, we have that rq = rp

rp−1 . Thus the following
quadratic equations in two variables rp and rq are obtained, one of which is
correct. {

rp + rq = se,
rq = rp

rp−1 .

or {
rp + rq = se + e,
rq = rp

rp−1 .

By solving the above equations, we can obtain rp and rq. According to Theorem
2 [3], if rp = p (mod e) is known with e > N

1
4 , we can factor N = pq in

polynomial time in log N .
Finally, when the primes p and q are known, we can compute the Euler func-

tion φ(N) = (p−1)(q−1) = N +1− (p+q). Then it follows that the private key
d can be obtained by d = e−1 (mod φ(N)) with the extended Euclidean algo-
rithm. Hence Encinas-Masqué-Dios algorithm can be broken completely when
e > N

1
4 .
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(Efficiency) In Step 4 of Attack 1, the main operation is the extended Eu-
clidean algorithm with the computational complexity O(log3 N). Step 1 consists
of arithmetic operations such as modular additions and reductions modulo e,
which have the computational complexity O(log N). Step 2 of Attack 1 includes
the computation of finding the square roots of an integer, which have the com-
putational complexity O(log3 N). In Step 3 of Attack 1, the LLL algorithm is
applied to finding the small solution of a bivariate equation, which can be com-
pleted in polynomial time in log N (We denote Tc(log N)).

Thus, Attack 1 can also compute the private key d and recover the factoriza-
tion of the RSA modulus N in polynomial time O(Tc(log N) + log3 N). ��

4 Conclusion

In this paper, we propose an attack on Encinas-Masqué-Dios algorithm and show
that Encinas-Masqué-Dios algorithm is insecure when e > N

1
4 , in which case one

can compute the private exponent d in polynomial time. Therefore, it is still an
interesting problem to choose secure and efficient keys in the RSA cryptosystem.
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6. Encinas, L.H., Masqué, J.M., Dios, A.Q.: Large decryption exponents in RSA.
Applied Mathematics Letters 16, 293–295 (2003)
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Abstract. As well-known results, timed-release encryption (TRE) and
public key encryption scheme with keyword search (PEKS) are very close
to identity-based encryption (IBE), respectively. It seems natural that
there is a close relationship between TRE and PEKS. However, no ex-
plicit bridge has been shown between TRE and PEKS so far. In this
paper, we show that TRE can be generically constructed by PEKS with
extended functionalities, called secure-channel free PEKS (SCF-PEKS)
with adaptive security, and discuss the reason why PEKS and (non-
adaptive) SCF-PEKS are not suitable for constructing TRE. In addition
to this result, we also show that adaptive SCF-PEKS can be generically
constructed by anonymous IBE only. That is, for constructing adaptive
SCF-PEKS we do not have to require any additional cryptographic prim-
itive compared to the Abdalla et al. PEKS construction (J. Cryptology
2008), even though adaptive SCF-PEKS requires additional functionali-
ties. This result seems also independently interesting.

1 Introduction

Timed-Release Encryption (TRE): Timed-release encryption (TRE) was
proposed by May [22], where even a legitimate recipient cannot decrypt a cipher-
text before a semi-trusted time server (TS) sends (or broadcasts) a time-release
key sT assigned with a release time T of the encryptor’s choice. As a well-known
result, (public key based) TRE is very close to identity-based encryption (IBE).
More precisely, generic constructions of TRE based on IBE, public key encryp-
tion (PKE), and one-time signature (OTS) have been proposed [8,21,24]. Since
PKE can be constructed by IBE (and OTS) [6], and digital signature can be
constructed by the extraction algorithm of IBE [9], we can say that TRE can be
generically constructed by IBE. As an intuition, TRE might be close to other
cryptographic primitives which are also close to IBE. So, next we introduce
public key encryption scheme with keyword search (PEKS) as such a primitive.

Public key Encryption scheme with Keyword Search (PEKS): PEKS
was proposed by Boneh et al. [5]. This scheme considers searching keywords
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from encrypted data. Briefly, the flow of PEKS is as follows: A receiver makes
a trapdoor tω for a keyword ω, and uploads it on an e-mail server. A sender
makes an encrypted keyword (which is encrypted by using a keyword ω′ and
the receiver’s public key), and sends it to the server. The server outputs 1 if
ω = ω′, by using tω, and 0 otherwise. As a way to construct PEKS, Abdalla et
al. [1] showed that a generic construction of PEKS based on anonymous IBE is
sufficient. Next, we discuss the relationships among IBE, TRE, and PEKS.

The Relationships among IBE, TRE, and PEKS: One may think that
TRE can be generically constructed by PEKS, since IBE (with 1-bit plaintext
space) can be constructed by PEKS [5], and TRE can be generically constructed
by IBE [8,24]. However, since generic constructions of TRE based on IBE [8,24]
implicitly1 require multi-bit plaintext space, we cannot conclude that TRE can
be generically constructed by PEKS (so we denote it with “?” in Fig 1 later).
There are two easy-to-find ways for showing a relationship between TRE and
PEKS: (1) for IBE, show that 1-bit plaintext space is enough to make multi-bit
plaintext space (as in the PKE case shown by Myers and Shelat [23]), or (2)
propose a generic construction of TRE based on IBE with just 1-bit plaintext
space. We do not conclude that these are possible or impossible, but try to
establish a bridge between TRE and PEKS from another perspective in this
paper. To do so, we revisit PEKS with extended functionalities, called secure-
channel free PEKS (SCF-PEKS).

Security Conditions of Previous Secure Channel Free PEKS (SCF-
PEKS) Schemes and its Theoretic Extension: PEKS schemes ensure that
the server (or an outsider) does not learn anything about keywords chosen by
the sender without trapdoor information. If trapdoors are revealed, then anyone
can execute the test procedure. Therefore, trapdoors cannot be sent via public
(i.e., insecure) channels. So, in PEKS schemes, a secure channel (such as secure
socket layer (SSL) and transport layer security (TLS)) between a receiver and
a server is required, and establishing secure channel requires additional setup
costs. To solve this problem, secure channel-free PEKS (SCF-PEKS) have been
proposed [2,15,16,19], where the server has a public/secret key pair, and the
sender makes an encrypted keyword (which is encrypted by using a keyword ω′

and both the server’s public key and the receiver’s public key), and sends it to
the server. The server outputs 1 if ω = ω′ by using the trapdoor tω and its own
secret key, and 0 otherwise. Even if tω is sent via an insecure channel, no entity
(except the server) can run the test procedure.

Next, we discuss the security conditions of the previous SCF-PEKS.
The security model considered in [2,15,16,19] does not capture the test queries
(i.e., “CPA-like” security). As an exception, Rhee et al. have considered test
queries [26]. However, this definition is still weak (i.e., “Unquoted CCA-like” se-
curity [23]), where an adversary is not allowed to issue the test queries

1 That is, a plaintext of IBE has the form Kv||(M ⊕ r), where Kv is a verification key
of OTS, M is a plaintext of TRE, and r is a random number.
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adaptively. By considering the CCA2 security, SCF-PEKS must be secure even
if a “malicious-but-legitimate” receiver can be admitted to issue test queries
adaptively. We insist that this adaptive (i.e., “CCA2-like”) security is the natural
extension of the SCF-PEKS security theoretically2 , which is called adaptive
SCF-PEKS.

Our Contribution: In this paper, we show the relationships of IBE, TRE, and
adaptive SCF-PEKS (dashed arrows in Fig 1).

Anonymous IBE

IBE Adaptive SCF-PEKS

SCF-PEKS

PEKS
TRE

?

X → Y : Y can be generically constructed by X

: previous results

: our works (1&2)

[5]

[8,21,24]
[1]

2

1

Fig. 1. Relationships of IBE, TRE, and adaptive SCF-PEKS

1. We show that TRE (with 1-bit plaintext space) can be constructed generi-
cally from adaptive SCF-PEKS.

– We discuss the detailed reason why PEKS and (non-adaptive) SCF-
PEKS are not suitable for constructing TRE in Section 4.3.

2. We propose a generic construction of adaptive SCF-PEKS based on anony-
mous IBE, selective-tag chosen-ciphertext (IND-stag-CCA) secure tag-based
encryption (TBE), and strongly existentially unforgeable (sUF) OTS. This
is the first generic construction of SCF-PEKS.

– IND-stag-CCA-secure TBE can be constructed by selective-ID chosen
plaintext (sID-CPA) secure IBE [20], and digital signature can be con-
structed by IBE [9]. So, our result shows that adaptive SCF-PEKS can
be constructed by anonymous IBE only.

– No additional cryptographic primitive is required from a generic con-
struction of PEKS [1], even though adaptive SCF-PEKS requires addi-
tional functionalities.

2 The word “theoretically” means that here we do not discuss the necessity and prac-
ticality of adaptive SCF-PEKS. However, since malicious receivers can use the server
as the test oracle in the SCF-PEKS usage, our adaptive security notion might be
useful in practice.
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2 Preliminaries

In this section, we define the building tools for our generic TRE and adaptive
SCF-PEKS construction. x

$← S means that x is chosen uniformly from a set
S. y←A(x) means that y is an output of an algorithm A under an input x. We
denote State as the state information transmitted by the adversary to himself
across stages of the attack in experiments.

2.1 Definition of TRE

We refer the Dent et al. TRE definition [10] (which is used by Nakai et al. [24]
and Matsuda et al. [21]). As an exception, we exclude pre-open capability from
the Dent et al. definition. In the following, T and MTRE are a release-time space
and a plaintext space, respectively.

TRE scheme Π consists of four algorithms, TRE.Setup, TRE.UKG, TRE.Ext,
TRE.Enc, and TRE.Dec. A global parameter prm and a master secret key
msk are given by executing TRE.Setup(1κ). A user’s public key pku and a
user’s secret key sku are given by executing TRE.UKG(1κ). For a release-
time T ∈ T , a time-release key sT corresponding to release-time T is
given by executing TRE.Ext(prm, msk, T ). For a message M ∈ MTRE and
T ∈ T , where MTRE is the message space of TRE, an encryptor runs
TRE.Enc(prm, pku, T, M), and obtains a ciphertext CTRE . The message M is
computed by executing TRE.Dec(prm, sku, sT , CTRE). Correctness is defined as
follows: For all (prm, msk) ← TRE.Setup(1κ), all (pku, sku) ← TRE.UKG(1κ),
all M ∈ MTRE , and all T ∈ T , TRE.Dec(prm, sku, sT , C) = M holds, where
C ← TRE.Enc(prm, pku, T, M) and sT ← TRE.Ext(prm, msk, T ).

Next, we define time-server security, called IND-TR-CCATS. It guarantees
that no TS can decrypt a ciphertext.

Definition 1 (Time-server Security). A TRE scheme Π is said to be
IND-TR-CCATS secure if the advantage is negligible for any PPT adversary
A, where

AdvIND-TR-CCATS
Π,A (1κ) =

∣∣Pr
[
(prm, msk) ← TRE.Setup(1κ);

(pku, sku) ← TRE.UKG(1κ); (M∗
0 , M∗

1 , T ∗, State) ← ADEC(find, prm, msk, pku);

μ
$← {0, 1}; C∗

TRE ← TRE.Enc(prm, pku, T ∗, M∗
μ); μ′ ← ADEC(guess, C∗

TRE , State);

μ = μ′]− 1/2
∣∣

that DEC is a decryption oracle, where, for input of a ciphertext CTRE and T ,
it returns the corresponding plaintext M . Note that (C∗

TRE , T ∗) are not allowed
as input to DEC.

Next, we define insider security, called IND-TR-CPAIS. It guarantees that no
receiver can decrypt a ciphertext before the corresponding time-release key is
published.
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Definition 2 (Insider Security). A TRE scheme Π is said to be
IND-TR-CPAIS secure if the advantage is negligible for any PPT adversary A,
where

AdvIND-TR-CPAIS
Π,A (1κ) =∣∣Pr

[
(prm, msk) ← TRE.Setup(1κ); (pku, sku) ← TRE.UKG(1κ);

(M∗
0 , M∗

1 , T ∗, State) ← AEXT RACT (find, prm, pku, sku); μ
$← {0, 1};

C∗
TRE ← TRE.Enc(prm, pku, T ∗, M∗

μ); μ′ ← AEXT RACT (guess, C∗
TRE , State);

μ = μ′]− 1/2
∣∣

that EXT RACT is an extract oracle, where, for input of T , it returns the cor-
responding time-release key sT . T ≥ T ∗ is not allowed as input to EXT RACT .

One may think that the notion “CPA” is weak, and a stronger notion can be
defined. Actually, the TRE definition [7,14] achieves such strong security, where
A can access the decryption oracle. However, if no other public key (pk �= pku)
is considered, such decryption oracle is redundant, since A has sku. Therefore,
as in [10,21,24], we adopt the CPA notion in this paper.

2.2 Definitions of sUF OTS

A strongly existentially unforgeable (sUF) OTS against adaptively chosen
message attack (CMA) [4] Π consists of three algorithms, Sig.KeyGen, Sign
and Verify. Sig.KeyGen is a probabilistic algorithm which outputs a sign-
ing/verification key pair (Ks, Kv) from the security parameter 1κ. Sign is a
probabilistic algorithm which outputs a signature σ from Ks, and a message
M ∈ MSig, where MSig is the message space of a signature scheme. Verify is
a deterministic algorithm which outputs a bit (1 means that σ is a valid signa-
ture, and 0 otherwise) from σ ∈ Ssig , Kv and M , where Ssig is the signature
space. Correctness is defined as follows: For all (Ks, Kv) ← Sig.KeyGen(1κ) and
all M ∈MSig, Verify(Kv, σ, M) = 1 holds, where σ ← Sign(Ks, M).

Definition 3 (one-time sUF-CMA). A signature scheme is said to be one-
time sUF-CMA secure if the advantage Advone-time sUF-CMA

Π,A (1κ) is negligible
for any probabilistic polynomial-time (PPT) adversary A in the following exper-
iment.

Advone-time sUF-CMA
Π,A (1κ) := Pr

[
(Ks, Kv) ← Sig.KeyGen(1κ);

(M, State) ← A(Kv); σ ← Sign(Ks, M); (M∗, σ∗) ← A(State, σ);
(M∗, σ∗) �= (M, σ); Verify(Kv, σ∗, M∗) = 1]

2.3 Definitions of IND-Stag-CCA Secure TBE

A TBE scheme [20] Π consists of three algorithms, TBE.KeyGen, TBE.Enc
and TBE.Dec. The public key pk and the secret key sk are given by execut-
ing TBE.KeyGen(1κ), where κ ∈ N is the security parameter. For a message
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M ∈MTBE with a tag t ∈ T AG, where MTBE is the message space and T AG is
the tag space of TBE, an encryptor runs TBE.Enc(pk, t, M), and obtains a cipher-
text CTBE . The message M is computed by executing TBE.Dec(sk, t, CTBE).
Correctness is defined as follows: For all (pk, sk) ← TBE.KeyGen(1κ), all
M ∈ MTBE , and all t ∈ T AG, TBE.Dec(sk, t, CTBE) = M holds, where
CTBE ← TBE.Enc(pk, t, M).

The security experiment of TBE under selective-tag CCA (IND-stag-CCA) is
defined as follows.

Definition 4 (IND-stag-CCA). A TBE scheme is said to be IND-stag-CCA
secure if the advantage is negligible for any PPT adversary A in the following
experiment.

AdvIND-stag-CCA
Π,A (1κ) =

∣∣Pr
[
(t∗, State) ← A(1κ); (pk, sk) ← TBE.KeyGen(1κ);

(M∗
0 , M∗

1 , State) ← ADEC(find, pk, State); μ
$← {0, 1};

C∗
TBE ← TBE.Enc(pk, t∗, M∗

μ); μ′ ← ADEC(guess, C∗, State);μ = μ′]− 1/2
∣∣

that DEC is a decryption oracle for any tag t �= t∗, where for input of a ciphertext
(CTBE , t) �= (C∗

TBE , t∗), it returns the corresponding plaintext M . Note that
(C∗

TBE , t∗) is not allowed as input to DEC.

2.4 Definitions of Anonymous IBE

IBE scheme Π consists of four algorithms, IBE.Setup, IBE.Extract, IBE.Enc and
IBE.Dec. The public key pk and the master key mk are given by executing
IBE.Setup(1κ). For an identity ID ∈ ID, where ID is the identity space, a secret
key corresponding to ID skID is given by executing IBE.Extract(pk, mk, ID).
For a message M ∈ MIBE and ID ∈ ID, where MIBE is the message space
of IBE, an encryptor runs IBE.Enc(pk, ID, M), and obtains a ciphertext CIBE .
The message M is computed by executing IBE.Dec(skID, CIBE). Correctness is
defined as follows: For all (pk, mk) ← IBE.Setup(1κ), all M ∈ MIBE, and all
ID ∈ ID, IBE.Dec(skID, CIBE) = M holds, where CIBE ← IBE.Enc(pk, ID, M)
and skID ← IBE.Extract(pk, mk, ID).

Next, we define the security experiment of IBE under chosen ciphertext attack
(IBE-IND-CCA) as follows.

Definition 5 (IBE-IND-CCA). An IBE scheme is said to be IBE-IND-CCA
secure if the advantage is negligible for any PPT adversary A in the following
experiment.

AdvIBE-IND-CCA
Π,A (1κ) =

∣∣Pr
[
(pk, mk) ← IBE.Setup(1κ);

(M∗
0 , M∗

1 , ID∗, State) ← AEXTRACT ,DEC(find, pk); μ
$← {0, 1};

C∗
IBE ← IBE.Enc(pk, ID∗, M∗

μ); μ′ ← AEXTRACT ,DEC(guess, C∗
IBE , State);

μ = μ′]− 1/2
∣∣
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that EXT RACT is an extract oracle, where, for input of an identity ID, it
returns the corresponding secret key skID. ID∗ is not allowed as input to
EXT RACT . DEC is a decryption oracle, where, for input of a ciphertext C and
an identity ID, it returns the corresponding plaintext M . (ID∗, C∗

IBE) is not
allowed as input to DEC. Chosen plaintext security (IBE-IND-CPA) is simply
defined by removing DEC from the IBE-IND-CCA experiment.

Next, we define anonymity experiment of IBE under CPA (IBE-ANO-CPA).

Definition 6 (IBE-ANO-CPA). An IBE scheme is said to be IBE-ANO-CPA
secure if the advantage is negligible for any PPT adversary A, where

AdvIBE-ANO-CPA
Π,A (1κ) =

∣∣Pr
[
(pk, mk) ← IBE.Setup(1κ);

(ID∗
0 , ID∗

1 , M
∗, State) ← AEXT RACT (find, pk); μ

$← {0, 1};
C∗

IBE ← IBE.Enc(pk, ID∗
μ, M∗); μ′ ← AEXTRACT (guess, C∗

IBE , State);

μ = μ′]− 1/2
∣∣

Note that ID∗
0 and ID∗

1 are not allowed as input to EXT RACT .

Definition 7 (Anonymous IBE). An IBE scheme is said to be anonymous
IBE if the IBE scheme is both IBE-IND-CPA secure and IBE-ANO-CPA secure.

3 Definitions of Adaptive SCF-PEKS

In this section, we define security requirements of SCF-PEKS. An SCF-PEKS
scheme Π consists of five algorithms, SCF-PEKS.KeyGenS, SCF-PEKS.KeyGenR,
SCF-PEKS.Trapdoor, SCF-PEKS.Enc and SCF-PEKS.Test. The server public key
pkS and the server secret key skS are given by executing SCF-PEKS.KeyGenS(1κ),
and the receiver public key pkR and the receiver secret key skR are given by ex-
ecuting SCF-PEKS.KeyGenR(1κ), where κ ∈ N is the security parameter. For
a keyword ω, a trapdoor tω is given by executing SCF-PEKS.Trapdoor(skR, ω),
and a ciphertext λ is given by executing SCF-PEKS.Enc(pkS , pkR, ω). The server
has a public/secret key pair (pkS , skS), and a sender makes a ciphertext λ
(which is encrypted by using a keyword ω′, pkS , and pkR), and sends λ to
the server. The server runs SCF-PEKS.Test(λ, skS , tω), whose output is 1 if
ω = ω′, and 0 otherwise. Note that obviously SCF-PEKS implies PEKS (i.e.,
if skS is publicly opened and (tω , skS) is regarded as a trapdoor of PEKS,
then such a function-downgraded SCF-PEKS is PEKS). Correctness is de-
fined as follows: For all (pkS , skS) ← SCF-PEKS.KeyGenS(1κ), all (pkR, skR) ←
SCF-PEKS.KeyGenR(1κ), and all ω ∈ K, SCF-PEKS.Test(λ, skS , tω) = 1 holds,
where λ ← SCF-PEKS.Enc(pkR, pkS , ω), tω ← SCF-PEKS.Trapdoor(skR, ω), and
K is a keyword space.

Next, we consider two security requirements “consistency” and “keyword
privacy”.



Adaptive Secure-Channel Free Public-Key Encryption 109

Definition 8 (Consistency). The SCF-PEKS scheme is said to be computa-
tionally consistent if the advantage is negligible for any PPT adversary A in the
following experiment.

AdvSCF-PEKS-CONSIST
Π,A (1κ) = Pr

[
(pkS , skS) ← SCF-PEKS.KeyGenS(1κ);

(pkR, skR) ← SCF-PEKS.KeyGenR(1κ); (ω, ω′) ← A(pkS , pkR); ω �= ω′;
λ ← SCF-PEKS.Enc(pkS , pkR, ω); tω′ ← SCF-PEKS.Trapdoor(skR, ω′);

SCF-PEKS.Test
(
λ, skS , tω′

)
= 1
]

Next, we define two security notions for keyword privacy, “indistinguishability
against chosen keyword attack with the server’s secret key” (IND-CKA-SSK for
short) and “indistinguishability against chosen keyword attack with all trap-
doors” (IND-CKA-AT for short). In the IND-CKA-SSK experiment, an adver-
sary A is assumed to be a malicious server. Therefore, A is given the server’s
secret key skS , whereas A cannot obtain the receiver’s secret key skR. Instead
of obtaining skR, A can issue a query to a trapdoor oracle T RAP , which for
an input keyword ω, returns a trapdoor tω. Note that A cannot query the chal-
lenge keywords ω∗

0 and ω∗
1 to T RAP . As in the definition of [26], A computes

(pkS , skS), and gives pkS to the challenger. So, we omit skS in the following
experiment.

Definition 9 (IND-CKA-SSK). An SCF-PEKS scheme is said to be IND-
CKA-SSK-secure if the advantage is negligible for any PPT adversary A in the
following experiment.

AdvIND-CKA-SSK
Π,A (1κ) =∣∣Pr

[
(pkS , State) ← A(1κ); (pkR, skR) ← SCF-PEKS.KeyGenR(1κ);

(ω∗
0 , ω∗

1 , State) ← AT RAP (find, pkR, State); μ
$← {0, 1};

λ∗ ← SCF-PEKS.Enc(pkS , pkR, ω∗
μ); μ′ ← AT RAP (guess, λ∗, State);

μ = μ′]− 1/2
∣∣

Remark: Note that, for our TRE construction, the adversarial server’s key
generation above is not required. That is, the weaker definition can be used,
where C can run (pkS , skS) ← SCF-PEKS.KeyGenS(1κ), and sends (pkS , skS) to
A in our proof of Theorem 2.

Next, we define the adaptive-IND-CKA-AT experiment. In this experiment,
an adversary A is assumed to be a malicious-but-legitimate receiver or outsider.
Therefore, A is given the receiver’s secret key skR, whereas A cannot obtain
the server’s secret key skS . This means that A knows all trapdoors. A can
issue a query to a test oracle T EST , which for an input (λ, tω) which satisfies
(λ, tω) �∈ {(λ∗, tω∗

0
), (λ∗, tω∗

1
)}, returns the result of the test algorithm. As in the

definition of [26], A computes (pkR, skR), and gives pkR to the challenger. So,
we omit skR in the following experiment.
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Definition 10 (Adaptive-IND-CKA-AT). An SCF-PEKS scheme is said
to be adaptive-IND-CKA-AT-secure if the advantage is negligible for any PPT
adversary A in the following experiment.

AdvAdaptive-IND-CKA-AT
Π,A (1κ) =∣∣Pr

[
(pkS , skS) ← SCF-PEKS.KeyGenS(1κ); (pkR, State) ← A(1κ);

(ω∗
0 , ω∗

1 , State) ← AT EST (find, pkS , State); μ
$← {0, 1};

λ∗ ← SCF-PEKS.Enc(pkS , pkR, ω∗
μ); μ′ ← AT EST (guess, λ∗, State);

μ = μ′]− 1/2
∣∣

Remark: As in the IND-CKA-SSK, for TRE construction, the adversarial
receiver’s key generation above is not required. That is, we use the weaker
definition, where C can run (pkR, skR) ← SCF-PEKS.KeyGenR(1κ), and sends
(pkR, skR) to A in our proof of Theorem 1.

4 Adaptive SCF-PEKS Implies TRE

4.1 Proposed TRE Construction Based on Adaptive SCF-PEKS

In this section, we propose a generic construction of TRE (with 1-bit plaintext
space) based on adaptive SCF-PEKS. Our construction adopts the Boneh et
al. IBE construction from PEKS [5], namely, for a plaintext 0 (resp. 1) and a
release-time T , the time-release key is a trapdoor of the keyword T ||0 (resp.
T ||1). In the following construction, a SCF-PEKS receiver is regarded as a TS,
and a SCF-PEKS server is regarded as a TRE receiver. We set T = K and
MTRE = {0, 1}.

Protocol 1 (TRE based on adaptive SCF-PEKS)

TRE.Setup(1κ) : Run (pkR, skR) ← SCF-PEKS.KeyGenR(1κ), set prm = pkR and
msk = skR, and return prm and msk.

TRE.UKG(1κ) : Run (pkS , skS) ← SCF-PEKS.KeyGenS(1κ), set pku = pkS and
sku = skS, and return pku and sku.

TRE.Ext(prm, msk, T ) : Run tT0 ← SCF-PEKS.Trapdoor(msk, T ||0) and tT1 ←
SCF-PEKS.Trapdoor(msk, T ||1), set sT = (tT0, tT1), and return sT .

TRE.Enc(prm, pku, T, M) : For M ∈ {0, 1}, run λ ← SCF-PEKS.Enc(prm, pku,
T ||M), set C = λ, and return C.

TRE.Dec(prm, sku, sT , C) : Parse sT = (tT0, tT1). If
SCF-PEKS.Test(C, sku, tT0) = 1 holds, then output M = 0. Else if
SCF-PEKS.Test(C, sku, tT1) = 1 holds, then output M = 1. Otherwise,
output ⊥.

Obviously, correctness holds if the underlying SCF-PEKS satisfies correctness.
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4.2 Security Analysis of Our TRE Construction

Theorem 1. Our TRE construction satisfies IND-TR-CCATS if the underlying
SCF-PEKS satisfies adaptive IND-CKA-AT and consistency.

Proof: Let A be an adversary who can break the IND-TR-CCATS se-
curity of our TRE construction, and C be the challenger of the adaptive
IND-CKA-AT game. Then we construct an algorithm B which can break
the adaptive IND-CKA-AT security (or consistency) of the underlying SCF-
PEKS. First, C runs (pkR, skR) ← SCF-PEKS.KeyGenR(1κ) and (pkS , skS) ←
SCF-PEKS.KeyGenS(1κ), and sends (pkR, skR, pkS) to B. B sets prm = pkR,
msk = skR, and pku = pkS , and sends (prm, msk, pku) to A.
Phase 1: For a decryption query (C, T ), B issues two test queries (C, T ||0) and
(C, T ||1) to C. If C answers 0 for both queries, then B answers ⊥. If C answers 1
for both queries, B can break consistency and aborts. Else, C answers 1 for the
query (C, T ||M) (M ∈ {0, 1}). Then B answers M .
Challenge: A sends (M∗

0 , M∗
1 , T ∗) to B. W.l.o.g, we set M∗

0 = 0 and M∗
1 = 1. B

sends (T ∗||M∗
0 , T ∗||M∗

1 ) = (T ∗||0, T ∗||1) to C as the challenge keywords. C sends
λ∗ to B. B sets C∗ = λ∗, and sends C∗ to A. Note that C∗ is a TRE ciphertext
against either M∗

0 or M∗
1 .

Phase 2: For a decryption query (C, T ) �= (C∗, T ∗), B issues two test queries
(C, T ||0) and (C, T ||1) to C. If C answers 0 for both queries, then B answers ⊥.
If C answers 1 for both queries, B can break consistency and aborts. Else, C
answers 1 for the query (C, T ||M) (M ∈ {0, 1}). Then B answers M .
Guess: Finally, A outputs the guessing bit μ′ ∈ {0, 1}. B outputs μ′ as the
guessing bit of the adaptive IND-CKA-AT game. ��

Theorem 2. Our TRE construction satisfies IND-TR-CPAIS if the underlying
SCF-PEKS satisfies IND-CKA-SSK.

Proof: Let A be an adversary who can break the IND-TR-CPAIS security of our
TRE construction, and C be the challenger of the IND-CKA-SSK game. Then
we construct an algorithm B which can break the IND-CKA-SSK security of the
underlying SCF-PEKS. First, C runs (pkR, skR) ← SCF-PEKS.KeyGenR(1κ) and
(pkS , skS) ← SCF-PEKS.KeyGenS(1κ), and sends (pkR, pkS, skS) to B. B sets
prm = pkR, pku = pkS , and sku = skS , and sends (prm, pku, sku) to A.
Phase 1: For an extraction query T , B issues two trapdoor queries T ||0 and
T ||1. C sends tT0 and tT1 to B. B sets sT = (tT0, tT1), and sends sT to A.
Challenge: A sends (M∗

0 , M∗
1 , T ∗) to B. B sends (T ∗||0, T ∗||1) to C as the chal-

lenge keywords. C sends λ∗ to B. B sets C∗ = λ∗, and sends C∗ to A. Note that
C∗ is a TRE ciphertext against either M∗

0 or M∗
1 .

Phase 2: For an extraction query T �= T ∗, B issues two trapdoor queries T ||0
and T ||1. C sends tT0 and tT1 to B. B sets sT = (tT0, tT1), and sends sT to A.
Guess: Finally, A outputs the guessing bit μ′ ∈ {0, 1}. B outputs μ′ as the
guessing bit of the IND-CKA-SSK game. ��
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4.3 Discussion: The Reason Why PEKS and Non-adaptive
SCF-PEKS Are Not Suitable for Constructing TRE

First, we make it clear that we do not deny the possibility of TRE construction
based on either PEKS or non-adaptive SCF-PEKS in the following discussion.
But we observe that TRE requires two entities, called TS and receiver, and these
entities have their public/secret key pair, respectively. So, it is hard to directly
implement TRE from PEKS since PEKS requires just one entity (i.e., receiver).
From the above considerations, SCF-PEKS is suitable for constructing TRE,
since SCF-PEKS requires two entities, called server and receiver. Next, we need
to implement the oracles defined in TRE security requirements in the SCF-PEKS
context. The extraction query (in the IND-TR-CPAIS experiment) can be imple-
mented by the trapdoor oracle (IND-CKA-SSK) in the non-adaptive SCF-PEKS
context. However, the decryption query (in the IND-TR-CCATS experiment) is
hard to be implemented in the “non-adaptive” SCF-PEKS context, since no test
query is considered in the IND-CKA-AT experiment. On the contrary, the de-
cryption query can be handled by the test oracle in the adaptive SCF-PEKS
context. This is the reason why we apply SCF-PEKS with adaptive security for
constructing TRE. Note that although decryptable PEKS [12,13,17] might han-
dle the decryption query, it requires just one entity, and therefore it is hard to
directly implement TRE from decryptable PEKS. As a remark, IND-TR-CPATS

secure TRE can be constructed from non-adaptive SCF-PEKS from the above
considerations.

5 Anonymous IBE Implies Adaptive SCF-PEKS

5.1 Proposed Adaptive SCF-PEKS Construction

In this section, we give a generic construction of adaptive SCF-PEKS based
on anonymous IBE, IND-stag-CCA TBE, and sUF OTS. In our construction,
a ciphertext of an anonymous IBE scheme (say CIBE) is used as a “plain-
text” of a TBE scheme to hide keyword information from an adversary. From
the result of the decryption of the TBE scheme, the ciphertext CIBE must
be obtained. In addition, usually, CIBE �∈ MTBE . To handle this condition,
we apply the KEM/DEM framework [28] (a.k.a. hybrid encryption), where
KEM stands for key encapsulation mechanism, and DEM stands for data en-
capsulation mechanism. By using TBE KEM (see Section 6 of [20]), compute
(K, CTBE) ← TBE.Enc(pk, t), and encrypt CIBE as a plaintext of the CCA
secure DEM such that e = EK(CIBE). Note that a CCA-secure DEM can be
generically constructed from any pseudorandom functions without redundancy.
So, even if we assume that a CCA secure DEM exists, we do not need any addi-
tional cryptographic primitive, except anonymous IBE, for constructing adaptive
SCF-PEKS. From now on, we assume that CIBE ∈ MTBE and e = EK(CIBE)
is implicitly included in CTBE (i.e., CIBE is obtained from the decryption of
CTBE).

In the following construction, we use a target collision resistant (TCR) hash
function [3] Htag : {0, 1}∗ → T AG.
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Protocol 2 (Our Construction of Adaptive SCF-PEKS)

SCF-PEKS.KeyGenS(1κ): Run (pkS , skS) ← TBE.KeyGen(1κ), and output (pkS ,
skS).

SCF-PEKS.KeyGenR(1κ): Run (pkR, skR) ← IBE.KeyGen(1κ), and output (pkR,
skR).

SCF-PEKS.Trapdoor(skR, ω): Run tω ← IBE.Extract(skR, ω), and output tω.

SCF-PEKS.Enc(pkS , pkR, ω): Generate (Ks, Kv)
$← Sig.KeyGen, compute t =

Htag(Kv), choose R
$← MIBE, run CIBE ← IBE.Enc(pkR, ω, R), CTBE ←

TBE.Enc(pkS , t, CIBE), and σ ← Sign(Ks, (CTBE , R)), and output λ =
(CTBE , Kv, σ).

SCF-PEKS.Test(λ, skS , tω): Let λ = (CTBE , Kv, σ). Compute t = Htag(Kv), run
C′

IBE ← TBE.Dec(skS , t, CTBE) and R′ ← IBE.Dec(tω, C′
IBE). Output 1 if

1=Verify(Kv, σ, (CTBE , R′)), and 0 otherwise.

Obviously, correctness holds if the underlying TBE, IBE, and OTS satisfy
correctness.

By observing our construction, non-adaptive SCF-PEKS (i.e., IND-CKA-AT
without test queries, which has the same security requirement with Fang et
al. [11]) can be constructed by reducing the one-time signature part and replacing
the TBE part with CPA-secure PKE (i.e., chosen plaintext security is enough).
A ciphertext is (CPKE , R), where CIBE ← IBE.Enc(pkR, ω, R) and CPKE ←
PKE.Enc(pkS , CIBE). As in our adaptive SCF-PEKS construction, we assume
that CIBE ∈ MPKE , where MPKE is the message space of the underlying
PKE scheme. The test procedure is described as follows. Compute C′

IBE ←
PKE.Dec(skS , CPKE) and R′ ← IBE.Dec(tω, C′

IBE). Output 1 if R′ = R, and 0
otherwise.

5.2 Security Analysis of Our Adaptive SCF-PEKS Construction

Theorem 3. The SCF-PEKS scheme constructed by our method is computa-
tionally consistent if the underlying IBE scheme is IBE-IND-CPA secure.

Proof: Let A be an adversary who breaks the computational consistency of
SCF-PEKS constructed by the protocol 1, and C be the challenger of the IBE-
IND-CPA experiment. Then, we can construct an algorithm B that breaks the
IBE-IND-CPA security of the IBE scheme. First, C runs IBE.Setup(1κ), and
gives pk to B. B sets pk as pkR, runs (pkS , skS) ← TBE.KeyGen(1κ), and gives

(pkR, pkS) to A. B obtains keywords ω and ω′ from A. B chooses R0, R1
$←

MIBE as the challenge messages, and sends (ω, R0, R1) to C. C gives C∗
IBE ←

IBE.Enc(pkR, ω, Rμ) to B, where μ ∈ {0, 1}. B gets a trapdoor tω′ by issuing an
EXT RACT query. If IBE.Dec(tω′ , C∗

IBE) = R1, then B outputs 1, otherwise B
outputs 0. ��

Theorem 4. The SCF-PEKS scheme constructed by our method is IND-CKA-
SSK secure if the underlying IBE scheme is IBE-ANO-CPA secure.
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Proof: Let A be an adversary who breaks the IND-CKA-SSK security of SCF-
PEKS constructed by the protocol 1, and C be the challenger of the IBE-ANO-
CPA experiment. Then we can construct an algorithm B that breaks the IBE-
ANO-CPA security of the underlying IBE scheme. First, C runs IBE.Setup(1κ),
and gives pk to B. B sets pk as pkR. A runs (pkS , skS) ← TBE.KeyGen(1κ), and
gives pkS to B. For a T RAP query ωi, B forwards ωi to C as an EXT RACT
query of the IBE scheme, gets tωi , and answers tωi to A.

In the Challenge phase, A sends the challenge keywords ω∗
0 and ω∗

1 to B. B
chooses R∗ $←MIBE , and computes the challenge ciphertext as follows:

1. B sends (R∗, ω∗
0 , ω∗

1) to C.
2. C gives C∗

IBE ← IBE.Enc(pkR, ω∗
μ, R∗) to B, where μ ∈ {0, 1}.

3. B generates (K∗
s , K∗

v ) $← Sig.KeyGen, and computes t∗ = Htag(K∗
v ), C∗

3 ←
TBE.Enc(pkS , t∗, C∗

IBE), and σ∗ ← Sign(K∗
s , (C∗

TBE , R∗)).
4. B sends λ∗ = (C∗

TBE , K∗
v , σ∗) to A.

Note that A can compute C∗
IBE ← TBE.Dec(skS , Htag(K∗

v ), C∗
TBE). In addition,

R∗ may be revealed from σ∗ without contradicting unforgeability property. How-
ever, this situation is the same as in the IBE-ANO-CPA experiment, where A
inputs ID∗

0 := ω∗
0 , ID∗

1 := ω∗
1 , and M∗ := R∗, and gets the challenge ciphertext

C∗
IBE . Finally, B outputs μ′, where μ′ ∈ {0, 1} is the output of A. ��

Theorem 5. The SCF-PEKS scheme constructed by our method is adaptive-
IND-CKA-AT secure if the underlying TBE scheme is IND-stag-CCA secure,
the underlying signature is one-time sUF-CMA secure, and Htag is a TCR hash
function.

Proof: Let A be an adversary who breaks the adaptive-IND-CKA-AT security
of SCF-PEKS constructed by the protocol 1, and C be the challenger of the IND-
stag-CCA experiment. Then, we can construct an algorithm B that breaks the
IND-stag-CCA security of the underlying TBE scheme. First, B runs (K∗

s , K∗
v ) ←

Sig.KeyGen(1κ), and sends t∗ := Htag(K∗
v ) to C as the challenge tag. C runs

TBE.KeyGen(1κ), and gives pk to B. B sets pk as pkS . A runs (pkR, skR) ←
IBE.Setup(1κ), and gives pkR to B. Let (SCF-PEKS.Enc(pkS , pkR, ωj) := (CTBE ,
Kv, σ), tωj ) be a T EST query, where ωj ∈ ID. B computes t = Htag(Kv), and
answers as follows:

t �= t∗ : B can use the DEC oracle of the underlying TBE scheme as follows.
1. B forwards (CTBE , t) to C as a DEC query of the TBE scheme.
2. C answers C′

IBE ← TBE.Dec(sk, t, CTBE).
– Note that if t is not the legitimate tag of CTBE , then C answers ⊥.

In this case, B answers 0.
3. B computes R′ ← IBE.Dec(tωj , C

′
IBE).

4. If Verify(Kv, σ, (CTBE , R′)) = 1, then B returns 1, and 0 otherwise.
t = t∗ : If Kv �= K∗

v , then B breaks the TCR property of Htag. If Kv = K∗
v (we

call this a forge1 event), then B gives a random answer in C, and aborts.
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In the Challenge phase, A sends the challenge keywords ω∗
0 and ω∗

1 to B. B
chooses R∗ $←MIBE , and computes the challenge ciphertext as follows:
1. B computes CIBE,0 ← IBE.Enc(pkR, ω∗

0 , R∗) and CIBE,1 ← IBE.Enc(pkR,
ω∗

1 , R∗).
2. B sends (M∗

0 , M∗
1 ) := (CIBE,0, CIBE,1) to C as the challenge messages of the

IND-stag-CCA experiment of the TBE scheme.
3. C gives C∗

TBE ← TBE.Enc(pkS , t∗, M∗
μ) to B.

4. B computes σ∗ ← Sign(K∗
s , (C∗

TBE , R∗)), and sends λ∗ = (C∗
TBE , K∗

v , σ∗) to
A.

Again, let (SCF-PEKS.Enc(pkS , pkR, ωj) := (CTBE , Kv, σ), tωj ) be a T EST
query, where ωj ∈ ID. B computes t = Htag(Kv), and answers as follows:

In the case tωj ∈ {tω∗
0
, tω∗

1
} :

t = t∗ : If Kv �= K∗
v , then B breaks the TCR property of Htag. If Kv = K∗

v

(we call this a forge2 event), then B gives a random answer in C, and
aborts.

t �= t∗ : Then B can use the DEC oracle of the underlying TBE scheme as
follows. .
1. B forwards (CTBE , t) to C as a DEC query of the TBE scheme.
2. C answers C′

IBE ← TBE.Dec(sk, t, CTBE).
– Note that if t is not the legitimate tag of CTBE , then C answers
⊥. In this case, B answers 0.

3. B computes R′ ← IBE.Dec(tωj , C
′
IBE).

4. If Verify(Kv, σ, (CTBE , R′)) = 1, then B returns 1, and 0 otherwise.

In the case tωj �∈ {tω∗
0
, tω∗

1
} :

(CT BE, Kv, σ) = (C∗
T BE, K∗

v , σ∗) : B returns 0, since (C∗
TBE , K∗

v , σ∗) is
an SCF-PEKS ciphertext of either ω∗

0 or ω∗
1 .

(CT BE, Kv, σ) �= (C∗
T BE, K∗

v , σ∗) : B runs the same simulation as in the
find stage.

If B does not abort, then our simulation is perfect. Finally, B outputs μ′, where
μ′ ∈ {0, 1} is the output of A.

Next, we prove that Pr[forge] := Pr[forge1 ∨ forge2] is negligible. We construct
an algorithm B′ which can win the sUF game with probability at least Pr[forge].
B′ obtains K∗

v from the sUF challenger, instead of executing Sig.KeyGen(1κ). B′

runs (pkS , skS) ← TBE.KeyGen(1κ), and gives pkS to A. A runs (pkR, skR) ←
IBE.Setup(1κ), and gives pkR to B. Since B′ has skS , B′ can answer any T EST
queries. In the challenge phase of the adaptive-IND-CKA-AT experiment, B′

computes t∗ = Htag(K∗
v ), chooses R∗ $← MIBE, runs C∗

IBE ← IBE.Enc(pkR, ωμ,
R), and C∗

TBE ← TBE.Enc(pkS , t∗, C∗
IBE), sets M∗ := (C∗

TBE , R∗), sends M∗

to the sUF challenger, and obtains σ∗ from the sUF challenger. Therefore, B′

makes at most one signature query. Note that we do not have to care about
the value μ ∈ {0, 1}, since we only have to guarantee that λ∗ = (C∗

TBE , K∗
v , σ∗)

is a valid SCF-PEKS ciphertext. In the forge events, A sends a T EST query
((CTBE , Kv, σ), tωj ) with Kv = K∗

v .
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forge1 : In this case, B′ can obtain a signature without issuing the signature
query. B′ computes CIBE ← TBE.Dec(skS , Htag(Kv), CTBE) and R′ ←
IBE.Dec(tωj , CIBE). If ((CTBE , R′), σ) is not a valid signature pair, then B′

returns 0 as the answer of this T EST query. Otherwise, if ((CTBE , R′), σ) is
a valid signature pair, then B′ submits a forged pair ((CTBE , R′), σ) to the
sUF challenger and wins.

forge2 : Now tωj ∈ {tω∗
0
, tω∗

1
}. Then (CTBE , σ) �= (C∗

TBE , σ∗). B′ computes
CIBE ← TBE.Dec(skS , Htag(Kv), CTBE) and R′ ← IBE.Dec(tωj , CIBE). If
((CTBE , R′), σ) is not a valid signature pair, then B′ returns 0 as the answer
of this T EST query. Otherwise, if ((CTBE , R′), σ) is a valid signature pair,
then B′ submits a forged pair ((CTBE , R′), σ) to the sUF challenger and
wins.

Therefore, Pr[forge] := Pr[forge1 ∨ forge2] is negligible, since the underlying sig-
nature is sUF. ��

6 Conclusion

In this paper, to show the relationships of IBE, TRE, and adaptive SCF-PEKS,
we propose a generic construction of TRE with 1-bit plaintext space (resp. adap-
tive SCF-PEKS) from adaptive SCF-PEKS (resp. anonymous IBE). Our first
result seems interesting since no bridge between TRE and PEKS primitive has
been known before. In addition, no generic construction of SCF-PEKS has been
proposed so far. That is, our second construction also seems independently in-
teresting.

As future works, it is interesting to consider the keyword guessing at-
tacks [18,29], namely, if adaptive SCF-PEKS can handle keyword guessing at-
tack, then what happens in the TRE context. In addition, we expect that the
wildcard searching capability [27] might lead to a construction of time-specific
encryption [25], where the time “interval” can be specified. Finally, a construc-
tion of TRE with multi-bit plaintext space from adaptive SCF-PEKS needs to
be revisited.
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Abstract. The main contributions of this paper are twofold. On the
one hand, the twin Diffie-Hellman (twin DH) problem proposed by Cash,
Kiltz and Shoup is extended to the n-Diffie-Hellman (n-DH) problem for
an arbitrary integer n, and this new problem is shown to be at least
as hard as the ordinary DH problem. Like the twin DH problem, the
n-DH problem remains hard even in the presence of a decision oracle
that recognizes solution to the problem. On the other hand, observe that
the double-size key in the Cash et al. twin DH based encryption scheme
can be replaced by two separated keys each for one entity, that results
in a 2-party encryption scheme which holds the same security feature
as the original scheme but removes the key redundancy. This idea is
further extended to an n-party case, which is also known as n-out-of-n
encryption. As examples, a variant of ElGamal encryption and a variant
of Boneh-Franklin IBE have been presented; both of them have proved
to be CCA secure under the computational DH assumption and the
computational bilinear Diffie-Hellman (BDH) assumption respectively,
in the random oracle model. The two schemes are efficient, due partially
to the size of their ciphertext, which is independent to the value n.

Keywords: the (strong) n-DH assumption, the (strong) n-BDH
assumption, multiple public key encryption, multiple identity-based
encryption.

1 Introduction

In EUROCRYPT 2008 [6], Cash, Kiltz and Shoup proposed a new computational
problem and named it the twin Diffie-Hellman (twin DH) problem with the
meaning that given a random triple of the form (X1, X2, Y ) ∈ G3 for a cyclic
group G, compute dh(X1, Y ) and dh(X2, Y ), where dh is the DH function. They
also proposed the strong twin DH problem, which is the twin DH problem under
the condition that an adversary is given access to a corresponding decision twin
DH oracle. They proved that the strong twin DH problem is as hard as the
(ordinary) DH problem, i.e., given a random pair of the form (X, Y ) ∈ G2,
compute dh(X, Y ).
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The motivation of their introducing the (strong) twin DH problem is the fol-
lowing: it is well-known that there exist many cryptographic constructions (e.g.,
the Diffie-Hellman non-interactive key exchange protocol [17] and the Cramer-
Shoup encryption scheme [13]) which are based on the DH problem, but security
of these constructions can only be proved under the strong DH problem, i.e., the
adversary is given access to a decision DH oracle. The reason is that in the
security proof, the simulator need the help of the decision oracle to keep the
simulation coherent throughout the game. By employing the strong twin DH
problem in these constructions, they can successfully prove that the modified
constructions are secure under the DH problem, since the strong twin DH prob-
lem implies the DH problem. This is a clever trick.

However, their method is not cost free. In order to employ the twin DH
problem, their modified construction is “a bit less efficient” than the original
one; specifically, the modified construction doubles the key of the original one.
For example, in their twin Identity-Based Encryption (IBE) scheme, a master
key of a Key Generation Center (KGC) is twin private/public key pairs, written
as ((x1, X1), (x2, X2)), instead of one (x, X) in the original IBE scheme, and
accordingly, an user’s secret key associated with this user’s identity id (served
as a public key of the user) is also two secret values written as (S1, S2), each of
which is computed under one master key pair. Therefore, a key redundancy is
the cost of tighter security reduction.

Can we use this key redundancy to achieve some extra useful function with-
out imposing an efficiency penalty? Observe that in their twin IBE scheme, the
identity value id in computing S1 does not have to be the same as in comput-
ing S2; the two private/public master key pairs (x1, X1) and (x2, X2) can each
belong to an individual KGC. With this slight modification, a user can have
two independent identities each associated with one KGC. For example, Alice
has her working email address associated with her employer as one KGC and
her passport number associated with the government of her country as another
KGC. These two KGCs are independent authorities, and do not necessarily have
any trust relation or communication between them. Furthermore, the number of
the identities and KGCs in the IBE scheme may not be restricted to two1.

This observation leads to the main contributions of our paper that the twin
DH problem can be extended to the n-DH problem for an arbitrary number
n, which enables us to build an efficient encryption scheme with multiple pub-
lic keys and an efficient IBE scheme with multiple KGCs and identities. This
type of encryption is also known as n-out-of-n encryption, in which a given
message is encrypted under a set of n individual public keys, and the associ-
ated decryption operation makes use of the n corresponding secret keys. It is
relevant to other well-known encryption primitives with multi-receivers, such
as broadcast encryption [5, 16] (known as 1-out-of-n encryption) and threshold
cryptosystem [15] (known as t-out-of-n encryption). The latter has an attractive

1 The multi-KGC IBE is not an unsolved problem and could be implemented from
extending an existing IBE scheme, but we want to show how we can do it efficiently
using n-out-of-n encryption.
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application, namely attribute-based encryption (ABE) [20, 3]. Compared with
the well-explored t-out-of-n threshold encryption or ABE schemes, e.g. using a
secret sharing technique [24], an n-out-of-n encryption scheme seems a naive so-
lution. But we think it is worthy studying this solution properly since it has the
advantage of simplicity in both algorithm implementation and security analysis.

More specifically, there are a number of contributions in this paper. Here we
describe a brief overview of each contribution individually.

The n-DH problem. We present a modification of the twin DH problem [6]
by extending the number of the (ordinary) DH instances from 2 to an arbitrary
integer n, and name it the n-DH problem. Intuitively, the n-DH problem is that
given a random n+1 tuple of the form (X1, . . . , Xn, Y ) ∈ Gn+1 for a cyclic group
G, compute (dh(X1, Y ), . . . , dh(Xn, Y )) where dh is the DH function. We also
present the strong n-DH problem which is the n-DH problem under the condition
that an adversary is given access to a corresponding decision n-DH oracle. We
prove that the strong n-DH problem is just as hard as the DH problem.

The n-BDH problem. We present a modification of the twin Bilinear-DH
(twin BDH) problem [6, 12]. by extending the number of the (ordinary) BDH
instances from 2 to an arbitrary integer n, and name it the n-BDH problem.
Intuitively, the n-BDH problem is that given a random 2n + 1 tuple of the form
(X1, . . . , Xn, Y, Z1, . . . , Zn) ∈ G2n+1 for a cyclic group G, compute (bdh(X1, Y ,
Z1), . . . , bdh(Xn, Y, Zn)) where bdh is the BDH function. We also present the
strong n-BDH problem which is the n-BDH problem under the condition that an
adversary is given access to a corresponding decision n-BDH oracle. We prove
that the strong n-BDH problem is just as hard as the BDH problem.

Concept and example of an MPKE scheme. We formalize the concept of
an n-out-of-n public key encryption scheme and call it a Multiple Public Key En-
cryption (MPKE) scheme. MPKE schemes can be used in those applications,
which requires that either a decryptor must be in the possession of n private
keys (e.g., each can be bound with an particular attribute) or that n decryptors
(each with an individual key) must work together, in order to decrypt a given
ciphertext. As a concrete MPKE example, we present a new modification of the
hashed ElGamal encryption scheme [1], and name it the n-ElGamal encryption
scheme. Based on the strong n-DH assumption (that implies based on the or-
dinary DH assumption), we prove that the n-ElGamal encryption scheme has
chosen ciphertext security in the random oracle [2].

Concept and example of an MIBE scheme. We formalize the concept of a
Multiple Identity-Based Encryption (MIBE) scheme, which is an MPKE scheme
with the identity-based key setting under the condition that the n KGCs, each
generating a private key from an identity value, can be independent to each
other. This type of IBE schemes has already been introduced in the literature,
e.g. [7, 10, 11]. To the best of our knowledge, the security of the schemes in [7,
10, 11] have not been rigorously analyzed. As a concrete MIBE example, we
present a new modification of the Boneh-Franklin IBE scheme [4] and name it
the n-IBE scheme. Based on the strong n-BDH assumption (that implies based
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on the ordinary BDH assumption), we prove that the n-IBE scheme has chosen
ciphertext security in the random oracle [2].

The rest of this paper is organized as follows. We describe definitions of the
(strong) n-BDH assumption in Section 2 and of the (strong) n-BDH assumption
in Section 3. After that, we present definitions of security models for MPKE
schemes and MIBE schemes in Section 4, followed by a concrete MPKE scheme
with a rigorous security analysis in Section 5, and a concrete MIBE scheme in
Section 6 (due to the limited space, its rigorous security analysis is in the full
paper [8]). We end the paper with conclusions and some open questions for future
work in Section 7.

2 The n-DH Assumption

Let G be a cyclic group of prime order p and with generator g, and let dh be
the DH function defined as

dh(X, Y ) := Z, where X = gx, Y = gy and Z = gxy.

Recall that the DH assumption states it is hard to compute dh(X, Y ) given
random X, Y ∈ G. We define the n-DH function function by

ndh : Gn+1 → Gn, (X1, . . . , Xn, Y ) �→ (dh(X1, Y ), . . . , dh(Xn, Y )).

We also define a corresponding n-DH predicate by

ndhp(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn) := ndh(X1, . . . , Xn, Ŷ ) ?= (Ẑ1, . . . , Ẑn).

The n-DH assumption states that it is hard to compute ndh(X1, . . . , Xn, Y ) given
random X1, . . . , Xn, Y ∈ G. Accordingly, the strong n-DH assumption states
that it is hard to compute ndh(X1, . . . , Xn, Y ) given random X1, . . . , Xn, Y ∈ G

along with access to the predicate ndhp(X1, . . . , Xn, ·, ·, . . . , ·), which returns
ndhp(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn) on input (Ŷ , Ẑ1, . . . , Ẑn). We have the follow-
ing theorem to address the relation between the DH assumption and the (strong)
n-DH assumption:

Theorem 2.1 (DH via strong n-DH). The (ordinary) DH assumption holds
if and only if the strong n-DH assumption holds.

It is clear that the DH assumption implies the n-DH assumption. We now prove
that the DH assumption implies the strong n-DH assumption. To do this, by
following the trapdoor test technique of [6], we first create a trapdoor test.

Theorem 2.2 (Trapdoor Test for n-DH). Let G be a cyclic group of prime
order p with generator g. Let I = {2, . . . , n}, and suppose X1, ri, si for all
i ∈ I are mutually independent random variables, where X1 is randomly taken
in G, and each of ri and si is uniformly distributed over Zp, and define the
random variables Xi := gsi/Xri

1 . Further suppose that Ŷ , Ẑ1, · · · , Ẑn are random
variables taking values in G, each of which is defined as some function of Xi for
all i ∈ {1} ∪ I. Then we have:
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1. Each Xi for i ∈ I is uniformly distributed over G;
2. All Xi for i ∈ {1} ∪ I are mutually independent;
3. If Xi = gxi for i ∈ {1} ∪ I, then the probability that the truth value of

Ẑ1
r2

Ẑ2 = Ŷ s2 ∧ · · · ∧ Ẑ1
ri

Ẑi = Ŷ si ∧ · · · ∧ Ẑ1
rn

Ẑn = Ŷ sn (1)

does not agree with the truth value of

Ẑ1 = Ŷ x1 ∧ · · · ∧ Ẑi = Ŷ xi ∧ · · · ∧ Ẑn = Ŷ xn (2)

is at most (1/p)n−1; moreover if (2) holds, then (1) certainly holds.

Proof. Observe that si = rix1 + xi for i ∈ I where I = {2, . . . , n}. It is not
difficult to verify that each Xi for i ∈ I is uniformly distributed over G, and
that all Xi for i ∈ {1}∪ I and ri for i ∈ I are mutually independent, from which
the items 1 and 2 follow. To prove the item 3, condition on fixed values of Xi

for i ∈ {1} ∪ I. In the resulting conditional probability space, each ri for i ∈ I
is uniformly distributed over Zp, while all xi, Ŷ , Ẑi for i ∈ {1} ∪ I are fixed. If
(2) holds, (1) certainly holds, because si = rix1 + xi for i ∈ I. Conversely, if (2)
does not hold, we show that (1) holds with probability at most (1/p)n−1. We
take the n−1 equations of (1) separately. Each of them uses the same argument
as in the proof of the trapdoor test of [6]. Observe that (1) is equivalent to

(Ẑ1/Ŷ x1)r2 = Ŷ x2/Ẑ2∧· · ·∧(Ẑ1/Ŷ x1)ri = Ŷ xi/Ẑi∧· · ·∧(Ẑ1/Ŷ x1)rn = Ŷ xn/Ẑn.
(3)

Let us take a look at the (i−1)th equation of (3). We can see that if Ẑ1 = Ŷ x1

and Ẑi �= Ŷ xi no matter whether the other equations of (2) holds or not, then
this equation certainly does not hold. This leaves us with the case Ẑ1 �= Ŷ x1 .
In this case, the left hand side of the equation is a random element of G (since
ri is uniformly distributed over Zp), but the right hand side is a fixed element
of G. So this equation holds with probability 1/p. (3) holds if and only if n − 1
different equations all hold. Now, we argue that these n−1 equations are mutually
independent, because each ri for i ∈ I is uniformly distributed over Zp, therefore,
the probability that (3) holds is at most (1/p)n−1. ��

Using this trapdoor test as a tool, we can prove Theorem 2.1. Let B be a DH
adversary. Denote its advantage by AdvDHB,G with the meaning of the proba-
bility that B computes dh(X, Y ), given random X, Y ∈ G. Let A be a strong
n-DH adversary. Denote its advantage by AdvnDHA,G with the meaning of the
probability that A computes ndh(X1, . . . , Xn, Y ), given random Xi, Y ∈ G for
i ∈ {1, . . . , n}, along with access to the predicate ndhp(X1, . . . , Xn, ·, ·, . . . , ·),
which on input (Ŷ , Ẑ1, . . . , Ẑn), returns ndhp(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn). Theo-
rem 2.1 is a special case of the following:

Theorem 2.3. Suppose A is a strong n-DH adversary that makes at most Qd

queries to its decision oracle, and runs in time at most τ . Then there exists a
DH adversary B with the following properties: B runs in time at most τ , plus
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the time to perform O(Qd log q) group operations and some minor bookkeeping;
moreover, (

1− Qd

pn−1

)
AdvnDHA,G ≤ AdvDHB,G.

In addition, if B does not output “failure”, then its output is correct with prob-
ability at least 1 −Qd/pn−1.

Proof. The DH adversary B works as follows, given a challenge instance (X, Y )
of the DH problem. First, B chooses ri, si ∈ Zp for i ∈ I and I = {2, ..., n}
at random, sets X1 := X and Xi := gs/Xri

1 , and gives A the challenge in-
stance (X1, . . . , Xn, Y ). Second, B processes each decision query (Ŷ , Ẑ1, . . . , Ẑn)
by testing if

Ẑ1
r2

Ẑ2 = Ŷ s2 ∧ · · · ∧ Ẑ1
ri

Ẑi = Ŷ si ∧ · · · ∧ Ẑ1
rn

Ẑn = Ŷ sn

holds. Finally, if and when A outputs (Z1, . . . , Zn), B tests if this output is
correct by testing whether

Zr2
1 Z2 = Y s2 ∧ · · · ∧ Zri

1 Zi = Y si ∧ · · · ∧ Zrn
1 Zn = Y sn

holds; if this does not hold, B outputs “failure”, and otherwise, B outputs Z1.
Provide the oracle simulation is perfect, adversary A’s view is identical to

its view in the real environment. It remains to calculate the accuracy of the
trapdoor test. Note that the probability of the trapdoor test returning a wrong
decision result for a query is at most (1/p)n−1, and this happens at most Qd

times. Therefore the trapdoor test can simulate the decision oracle perfectly with
probability at least 1−Qd/pn−1. Theorem 2.3 follows immediately. ��

3 The n-BDH Assumption

In groups equipped with a pairing e : G × G → GT where G and GT are cyclic
groups of prime order p and G is with generate g, we recall that the BDH function
is defined as

bdh(X, Y, Z) := W, where X = gx, Y = gy, Z = gz, and W = e(g, g)xyz.

The BDH assumption states that computing bdh(X, Y, Z) for random X, Y, Z ∈
G is a hard problem. The strong BDH assumption [21] states that the BDH
problem remains hard even with the help of a corresponding decision oracle.

Note that for the purpose of describing our main results as simply as possible,
without loss of the generality, we make use of symmetric pairings (also called
Type-1 pairings). It does not mean that our proposed assumptions and schemes
only work with symmetric pairings. Without changing the main results of this
paper, this symmetric pairing representation can be modified to the asymmetric
pairing one (i.e., e : G1 × G2 → GT where G1, G2 and GT are cyclic groups of
prime order p). More specifically, one may use Type-2 pairings, where there is
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an efficiently computable group isomorphism ψ : G2 → G1 mapping g2 ∈ G2

to g1 ∈ G1, or Type-3 pairings, where there is no known efficiently computable
group isomorphism ψ : G2 → G2 mapping g2 to g1. We refer readers to [19] for
the details of these three types of pairings.

We define the n-BDH function by

nbdh : Gn → Gn
T ,

(X1, . . . , Xn, Y, Z1, . . . , Zn) �→ (bdh(X1, Y, Z1), . . . , bdh(Xn, Y, Zn)).

We also define a corresponding n-BDH predicate by

nbdhp(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn, Ŵ1, . . . , Ŵn) :=

nbdh(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn) ?= (Ŵ1, . . . , Ŵn).

The n-BDH assumption states that it is hard to compute nbdh(X1, . . . , Xn, Y ,
Z1, . . . , Zn) given random X1, . . . , Xn, Y, Z1, . . . , Zn ∈ G. The strong n-BDH
assumption states that it is hard to compute nbdh(X1, . . . , Xn, Y, Z1, . . . , Zn),
given random X1, . . . , Xn, Y, Z1, . . . , Zn ∈ G, along with the access to the predi-
cate nbdh(X1, . . . , Xn, ·, ·, . . . , ·, ·, . . . , ·), which on input (Ŷ , Ẑ1, . . . , Ẑn, Ŵ1, . . . ,
Ŵn), returns nbdhp(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn, Ŵ1, . . . , Ŵn).

We have the following result to address the relation between the BDH as-
sumption and the (strong) n-BDH assumption:

Theorem 3.1 (BDH via strong n-BDH). The (ordinary) BDH assumption
holds if and only if the strong n-BDH assumption holds.

It is clear that the BDH assumption implies the n-BDH assumption. We prove
that the BDH assumption implies the strong n-BDH assumption. Again, by
following the technique developed in [6], we first create a trapdoor test.

Theorem 3.2 (Trapdoor Test for n-BDH). Let G be a cyclic group of prime
order p with a generator g and a pairing e : G× G → GT , where GT is another
cyclic group of order p. Let I = {2, . . . , n}, and suppose X1, ri, si for i ∈ I are all
mutually independent random variables, where X1 is randomly taken in G, and
each of ri and si is uniformly distributed over Zp, and define the random vari-
ables Xi := gsi/Xri

1 for i ∈ I. Further suppose that (Ŷ1, . . . , Ŷn, Ẑ, Ŵi, . . . , Ŵn)
are random variables taking values in G, each of which is defined as some func-
tion of Xi for all i ∈ {1} ∪ I. Then we have:

1. Each Xi for i ∈ I is uniformly distributed over G;
2. All Xi for i ∈ {1} ∪ I are mutually independent;
3. If Xi = gxi for i ∈ {1} ∪ I, the probability that the truth value of

Ŵ1
r2

Ŵ2 = e(Ŷ2, Ẑ)s2∧· · ·∧Ŵ1
ri

Ŵi = e(Ŷi, Ẑ)si∧· · ·∧Ŵ1
rn

Ŵn = e(Ŷn, Ẑ)sn

(4)
does not agree with the truth value of

Ŵ1 = e(Ŷ1, Ẑ)x1 ∧ · · · ∧ Ŵi = e(Ŷi, Ẑ)xi ∧ · · · ∧ Ŵn = e(Ŷn, Ẑ)xn (5)

is at most (1/p)n−1; moreover if (5) holds, then (4) certainly holds.
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The proof of this theorem is similar to the proof of Theorem 2.2. Due to the
limited space, we have put this proof in the full paper [8].
Using this trapdoor test as a tool, we can prove Theorem 3.1. Let B be a BDH
adversary. Denote its BDH advantage by AdvBDHB,G with the meaning of the
probability that B computes bdh(X, Y, Z), given random X, Y, Z ∈ G. Let A be
a strong nbdh adversary. Denote its advantage by AdvnBDHA,G with the mean-
ing of the probability that A computes ndh(X1, . . . , Xn, Y, Z1, . . . , Zn), given
random Xi, Y, Zi ∈ G for i ∈ {1, . . . , n}, along with access to a decision ora-
cle for the predicate nbdhp(X1, . . . , Xn, ·, ·, . . . , ·, ·, . . . , ·), which on input
(Ŷ , Ẑ1, . . . , Ẑn, Ŵ1, . . . , Ŵn), returns nbdhp(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn, Ŵ1, . . . ,
Ŵn). Theorem 3.1 is a special case of the following:

Theorem 3.3. Suppose A is a strong n-BDH adversary that makes at most Qd

queries to its decision oracle, and runs in time at most τ . Then there exists a
BDH adversary B with the following properties: B runs in time at most τ , plus
the time to perform O(Qd log q) group operations and some minor bookkeeping;
moreover, (

1 − Qd

pn−1

)
AdvnBDHA,G ≤ AdvBDHB,G.

In addition, if B does not output “failure”, then its output is correct with
probability at least 1 −Qd/pn−1.

The proof of this theorem is similar to the proof of Theorem 2.3. Again, due to
the limited space, we have put this proof in the full paper [8].

4 Definitions of MPKE and MIBE

In this section we present formal definitions of a Multiple Public Key Encryption
(MPKE) scheme and of a Multiple Indentity-Based Encryption (MIBE) scheme,
including their security notion: chosen ciphertext security, which are based on
the usual definitions of chosen ciphertext security for a public key encryption
scheme [22] and an identity-based encryption scheme [4]. Recall that these two
types of encryption schemes are n-out-of-n encryption schemes. In the security
model an adversary is not allowed to corrupt any decryption key from the entirely
n set of the keys.

4.1 Multiple Public Key Encryption

A Multiple Public Key Encryption scheme (say MPKE), with a security pa-
rameter 1κ and associated system parameters params (include descriptions of a
finite key space K, a finite message space M, and a finite ciphertext space C),
is specified by three algorithms: KeyGen, Encrypt, and Decrypt:
KeyGen: takes 1κ and params as input, and generates a set n of public and secret
key pairs, written as (pki, ski) ∈ K for i = 1, . . . , n. We also denote the n public
keys by pk = (pk1, . . . , pkn) and the n secret keys by sk = (sk1, . . . , skn).
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Encrypt: takes as input params, pk, and a message M ∈ M. It returns a cipher-
text C ∈ C.
Decrypt: takes as input params, a ciphertext C ∈ C and sk, and returns M .

These algorithms must satisfy the standard consistency constraint, namely when
(pk, sk) ← KeyGen(1κ, params), then

∀M ∈ M : Decrypt(params, C, sk) = M where C = Encrypt(params,pk, M).

Chosen ciphertext security of the scheme MPKE is defined by the following attack
game, played between a challenger CH and an adversary A:

Setup. The challenger takes a security parameter 1κ and associated params, and
runs the KeyGen algorithm. It gives the resulting pk together with params to A,
and keeps the corresponding sk to itself.
Phase 1. A makes a number of decryption queries to the challenger, where the
input to each query is a ciphertext, say Ĉ. To answer such a query, the challenger
decrypts Ĉ and sends the result to A. These queries may be asked adaptively,
that is, each query may depend on the replies to previous queries.
Challenge. Once the adversary decides that Phase 1 is over, it outputs two
equal length plaintexts M0, M1 ∈ M on which it wishes to be challenged. The
challenger picks a random bit β ∈ {0, 1}, encrypts Mβ , and sends the resulting
ciphertext C∗ as the challenge to A.
Phase 2. A issues more decryption queries as in Phase 1, but with the restriction
that Ĉ �= C∗. These queries may be asked adaptively as in Phase 1.
Guess. Finally, A outputs a guess β′ ∈ {0, 1} and wins the game if β = β′.

We refer to such an adversary A as an IND-CCA adversary. We define adversary
A’s advantage over the scheme MPKE by AdvCCAA,MPKE(κ) =

∣∣Pr[β = β′]− 1
2

∣∣ .
The probability is over the random bits used by the challenger and the adversary.

Definition 4.1. We say that a multiple public key encryption scheme MPKE is
IND-CCA secure if for any probabilistic polynomial time IND-CCA adversary A
the advantage AdvCCAA,MPKE(κ) is negligible2.

When we analyze the scheme MPKE in the random oracle model, then hash
functions are modeled as random oracles, and both the challenger and adversary
are given access to the random oracles in the above attack game. In that case,
we write AdvCCAro

A,MPKE(κ) for the corresponding advantage.

4.2 Multiple Identity-Based Encryption

A Multiple Identity-Based Encryption scheme, denoted by MIBE, is specified by
four algorithms: Setup, Extract, Encrypt and Decrypt:
2 We say that a function f(κ) is negligible if for every c > 0 there exists a value κc

such that f(κ) < 1/κc for all κ < κc.
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Setup: takes a security parameter 1κ, and returns system parameters params
and a set n of master public and secret key pairs, written as (mpki, mski) for
i = 1, . . . , n; without loss of generality, each key pair (mpki, mski) is associated
with the i-th of a set n KGCs. We denote the n master public keys by mpk =
(mpk1, . . . , mpkn) and the n master secret keys by msk = (msk1, . . . , mskn).
The parameters params include a description of a finite message space M, and
a description of a finite ciphertext space C.
Extract: takes as input params, a master key mski and an arbitrary identity idi ∈
{0, 1}∗ for i ∈ {1, . . . , n}. It returns a secret key ski. By repeating the Extract
algorithm n times with different i values, one can obtain sk = (sk1, . . . , skn)
associated with id = (id1, . . . , idn). Note that mski and idi do not have to
uniquely match to each other. Theoretically speaking, any arbitrary identity can
bind with any master key, and therefore, the case idi = idj for i �= j is allowed.
Encrypt: takes as input params, pk, id and a message M ∈ M. It returns a
ciphertext C ∈ C.
Decrypt: takes as input params, a ciphertext C ∈ C and sk, and returns M .

These algorithms must satisfy the standard consistency constraint, namely when
(mpk, msk, params) ← Setup(1κ) and sk ← Extract(params,msk, id), then

∀m ∈ M : Decrypt(params, C, sk)=M where C =Encrypt(params,mpk, id, M).

Chosen ciphertext security of scheme MIBE is defined by the following attack
game, played between a challenger CH and an adversary A:

Setup. The challenger runs the Setup algorithm. It gives the adversary the
resulting params and mpk, and keeps the associated msk to itself.
Phase 1. The adversary issues queries q1, . . . , qm where query qi is one of:
– Extraction query 〈i, îdi〉. The challenger responds by running algorithm

Extract to generate the private key ŝki associated with îdi and mski. It
sends ŝki to A.

– Decryption query 〈îd, Ĉ〉. The challenger responds by running algorithm
Extract n times to generate the private key ŝk corresponding to îd. It then
runs algorithm Decrypt to decrypt the ciphertext Ĉ. It sends the resulting
plaintext to A.

These queries may be asked adaptively, that is, each query qi may depend on
the replies to q1, . . . , qi−1.
Challenge. Once the adversary decides that Phase 1 is over it outputs two equal
length plaintexts M0, M1 ∈M and a set of identities îd

∗
on which it wishes to be

challenged. The only constraint is that each element id∗i of îd
∗

did not appear in
any private key extraction query associated with mski in Phase 1. The challenger
picks a random bit β ∈ {0, 1} and set C∗ = Encrypt(params,mpk, îd

∗
, Mβ). It

sends C∗ as the challenge to the adversary.
Phase 2. The adversary issues more queries qm+1, . . . , qr where qi is one of:
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– Extraction query 〈i, îdi〉, where îdi �= the i-th element of îd
∗
. Challenger

responds as in Phase 1.

– Decryption query 〈îd, Ĉ〉 �= 〈îd∗
, C∗〉. Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.
Guess. The adversary outputs a guess β′ ∈ {0, 1} and wins the game if β = β′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define A’s
advantage over the scheme MIBE by AdvCCAA,MIBE(κ) = |Pr[β = β′] − 1

2 |. The
probability is over the random bits used by the challenger and the adversary.

Definition 4.2. We say that a Multiple IBE scheme MIBE is IND-ID-CCA se-
cure if for any probabilistic polynomial time IND-ID-CCA adversary A the ad-
vantage AdvCCAA,MIBE(κ) is negligible.

When we analyze such a scheme MIBE in the random oracle model, we write
AdvCCAro

A,MIBE(κ) for the corresponding advantage.

5 The n-ElGamal Encryption Scheme

In this section, we present details of the n-ElGamal encryption scheme. The
scheme makes use of a hash function H and a symmetric cipher SE = (E, D).
Let G be a cyclic group of prime order p and with generator g. A set of pub-
lic keys for this scheme is denoted by a n-tuple of random group elements
pk = (X1, . . . , Xn), with a set of corresponding secret keys denoted by sk =
(x1, . . . , xn), where Xi = gxi for i ∈ I and I = (1, . . . , n). To encrypt a message
m ∈M, one chooses a random y ∈ Zp, and computes

Y := gy, Zi := Xy
i for i ∈ I, k := H(Y, Z1, . . . , Zn), C := E(k, M).

The ciphertext is (Y, c). Decryption works accordingly: given (Y, c) and secret
key sk, one computes

Zi := Y xi for i ∈ I, k := H(Y, Z1, . . . , Zn), M := D(k, C).

As mentioned earlier, the size of the ciphertext in this scheme is independent
to the number of public and secret keys n. Like the twin ElGamal encryption
scheme [6], the scheme does not add redundancy in the ciphertext in order to
achieve CCA security, as in the Fujisaki-Okamoto transformation [18]. Following
the arguments in [1,6,14], we now show that the n-ElGamal encryption scheme
is secure against chosen ciphertext attack, under the strong n-DH assumption.
By Theorem 2.1, the same holds under the (ordinary) DH assumption. Formally
speaking, we denote the n-ElGamal encryption scheme MPKEndh, and analyze
security of this scheme with the following theorem, under the security model
previously defined in Section 4.1.

Theorem 5.1. Suppose H is modeled as a random oracle, SE is secure against
chosen ciphertext attack, and the DH assumption holds in G. The MPKEndh is
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secure against chosen ciphertext attack. In particular, suppose A is an adversary
that carries out a chosen ciphertext attack against MPKEndh in the random oracle
model, and A runs in time τ , and makes at most Qh hash queries and Qd

decryption queries. Then there exists an adversary Bdh against the DH problem
and an adversary Bsym against the chosen ciphertext security of SE, such that
both Bdh and Bsym run in time at most τ , plus the time to perform O((Qh +
Qd) log p) group operations; moreover,

AdvCCAro
A,MPKEndh

≤
(

pn−1

pn−1 −Qh

)
AdvDHBdh,G

+ AdvCCABsym,SE
.

Proof. We proceed with a sequence of games.
Game 0. This is the original chosen ciphertext attack game for a MPKE scheme
as defined in Section 4.1. Let S0 be the event that β′ = β in this game.
Setup: To start the game, the challenger generates the secret key set sk =
(x1, . . . , xn) and their corresponding public key set pk = (X1, . . . , Xn). The
challenger gives pk to the adversary.
Hash oracle query 〈Ŷ , Ẑ1, . . . , Ẑn〉: The challenger maintains a list of tuples
(Y, Z1, . . . , Zn, k) as explained below. We refer to this list as the L list, which
is initially empty and indexed by elements of Gn+1. Whenever the adversary
makes a query 〈Ŷ , Ẑ1, . . . , Ẑn〉, if there is already a tuple on the L list indexed
by it then the challenger responds with L[Ŷ , Ẑ1, . . . , Ẑn] = k̂. Otherwise, the
challenger picks a random symmetric key k̂, adds the tuple 〈Ŷ , Ẑ1, . . . , Ẑn, k̂〉 to
the L list and responds the adversary with k̂.
Phase 1 - Decryption query 〈Ŷ , Ĉ〉: The challenger answers the decryption
queries using sk. The challenger need to call the H query in this operation.
Challenge: Once the adversary decides that Phase 1 is over it outputs two
messages M0, M1 on which it wishes to be challenged. The challenger chooses
a random y ∈ Zp, sets Y := gy, Zi = Xy

i for i = 1, . . . , n, then fetches the
symmetric key k by querying H with 〈Y, Z1, . . . Zn〉, and computes c := Ek(Mβ),
and returns the ciphertext (Y, C) to A.
Phase 2. The decryption queries in Phase 2 are processed just as in Phase 1.
Guess: The adversary A outputs its guess β′ for β.
That finishes the description of Game 0. Despite the syntactic difference, it is
clear that

AdvCCAro
A,MPKEndh

= |Pr[S0]− 1/2|. (6)

Game 1. We now describe Game 1, which is the same as Game 0, but with the
following difference: the challenger will abort the game if the adversary query H
at 〈Y, Z1, . . . , Zn〉 either in Phase 1 or Phase 2. Everything else remains exactly
the same as Game 0. Let S1 be the event that β′ = β in Game 1 and F be the
event that the adversary queries the random oracle at 〈Y, Z1, . . . Zn〉 in Game 1.
Since Game 0 and Game 1 proceed identically unless F occurs, we have

|Pr[S1]− Pr[S0]| ≤ Pr[F ]. (7)
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We claim that

Pr[F ] ≤ AdvnDHBndh,G
, (8)

where Bndh is an efficient strong n-DH adversary that makes at most Qh decison
oracle queries. Next we detail how Bndh plays the role of the challenger in Game
1 to gain the advantage as claimed.
Setup: Bndh is given (X1, . . . , Xn, Y ) as the n-DH challenge instance. Bndh

gives the adversary pk = (X1, . . . , Xn). Note that the only difference between
Bndh and the challenger in Game 1 is that the former does not know the sk =
(x1, . . . , xn).
Hash oracle queries: Except processes the queries the same way as the chal-
lenger does in Game 1, for every random oracle query (Ŷ , Ẑ1, . . . , Ẑn), Bndh sends
this tuple to its own decision oracle, and marks it “good” or “bad” accordingly.
Phase 1 - Decryption queries: Bndh can process the decryption queries with-
out using the secret key: given a ciphertext (Ŷ , ĉ), it checks if it has already seen
a “good” tuple of the form (Ŷ , ·, . . . , ·) in L; if so, it uses the key associated with
that tuple; if not, it generates a random key, and it will stay on the lookout for a
“good” tuple of the form (Ŷ , ·, . . . , ·) in future random oracle queries, associating
this key with that tuple to keep things consistent.
Challenge: Once the adversary decides that Phase 1 is over it outputs two
messages M0, M1 on which it wishes to be challenged. Bndh checks if there is a
“good” tuple of the form (Y, ·, . . . , ·), if so, it aborts; if not, it generates a random
key k (it will stay on the lookout for a “good” tuple of the form (Ŷ , ·, . . . , ·) in
future random oracle queries, associating this key with that tuple to keep things
consistent), and computes c := Ek(Mβ), and returns the ciphertext (Y, c) to A.
Phase 2 - Decryption queries: The decryption queries in Phase 2 are pro-
cessed just as in Phase 1. If the adversary issues a “good” tuple of the form
(Y, ·, . . . , ·), Bndh aborts.
Guess: The adversary A outputs its guess β′ for β.
At the end of the game, Bndh checks if it has seen a “good” tuple of the form
(Y, ·, . . . , ·); if so, it outputs the last n components. According to the definition
of event F , Equation (8) follows immediately. Theorem 2.3 gives us an efficient
DH adversary Bdh with

AdvnDHBndh,G
≤ pn−1

pn−1 −Qh
AdvDHBdh,G

.

Finally, it is easy to see that in Game 1, the adversary is essentially playing the
chosen ciphertext attack game against SE. Thus, there is an efficient adversary
Bsym such that

|Pr[S1] − 1/2| = AdvCCABsym,SE
. (9)

Theorem 5.1 now follows by combining (6)-(9). ��
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6 The n-IBE Scheme

We now present details of the n-IBE scheme. Let G and GT be two cyclic groups
of prime order p and G with generator g, and further let the two groups be
equipped with a pairing e : G × G → GT . A master public key set is a tu-
ple of n group elements mpk = (X1, . . . , Xn), where Xi = gxi for i ∈ I and
I = {1, . . . , n}. The corresponding master private key set is a tuple msk =
(x1, . . . , xn), which are selected at random from Zp. We treat the secret/public
master key set (msk,mpk) as n separate key pairs (x1, X1), . . . , (xn, Xn), which
belong to n Key Generation Centers (KGCs) respectively. This scheme uses a
symmetric cipher SE = (E, D) and two hash functions H and G, where G is de-
fined as G × {0, 1}∗ → G, and H is defined as ({0, 1}∗)n × G × Gn

T× → {0, 1}λ

(λ is the length of a symmetric key in algorithm SE).
A private key set associated with n individual identities, denoted by id =

(id1, . . . , idn) for idi ∈ {0, 1}∗ and i ∈ I, is a tuple of n group elements sk =
(S1, . . . , Sn). The i-th element of sk is Si = G(Xi, idi)xi . To encrypt a message
M ∈M for id, one chooses y ∈ Zp at random and sets

Y := gy, Wi := e(G(Xi, idi), Xi)y for i ∈ I,

k := H(id1, . . . , idn, Y, W1, . . . , Wn), C := E(k, M).

The ciphertext is (Y, C). To decrypt using sk for id, one computes

Wi := e(Si, Y ) for i ∈ I, k := H(id1, . . . , idn, Y, W1, . . . , Wn), M := D(k, C).

Similar to the n-ElGamal encryption scheme in Section 5, the length of the
ciphertext in the n-IBE scheme is independent to the number of KGCs and iden-
tities n. Like the twin IBE scheme of [6], the n-IBE scheme does not add redun-
dancy to the ciphertext as in the Fujisaki-Okamoto transformation [18], which,
e.g., is used in the Boneh-Franklin IBE scheme [4] and the Sakai-Kasahara IBE
scheme [9, 23]. Now we denote our n-IBE scheme by MIBEnbdh. It holds cho-
sen ciphertext attack security under the strong n-BDH assumption, as shown
in Theorem 6.1. By Theorem 3.1, it also means to be secure under the BDH
assumption. The theorem can be proved by following the security analysis ap-
proach for the twin IBE scheme in [6] (the approach was originally proposed
in [21]). Due to the limited space, we have put this proof in the full paper [8].

Theorem 6.1. Suppose H and G are modeled as random oracles. Further, sup-
pose the BDH assumption holds with (G, GT , e), and that the symmetric cipher
SE = (E, D) is secure against chosen ciphertext attack. Then MIBEnbdh is se-
cure against the chosen ciphertext attack. In particular, suppose A is an ad-
versary that carries out a chosen ciphertext attack against MIBEnbdh, and that
A runs in time τ , and makes at most Qh hash H queries, Qg hash G queries,
Qd decryption queries, and Qe secret key ski extraction queries associated with
idi, where ski (idi) is an element of id (sk). Then there exist a BDH adver-
sary Bbdh and an adversary Bsym against the chosen ciphertext security of SE,
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such that both Bbdh and Bsym run in time at most τ , plus that time to perform
O((Qe + Qh + Qg + Qd) log p) group operations; moreover3

AdvCCAro
A,MIBEnbdh

≤
(

eQe

n

)n

·
(

qn−1

qn−1 −Qh
· AdvBDHBbdh,G

+ AdvCCABsym,SE

)
.

7 Conclusions

We have proposed a new computational problem called the n-DH problem, which
is an extension of the twin DH problem of [6], and also proposed the associated
strong n-DH problem and the (strong) n-BDH problem. We have shown that the
strong n-DH (n-BDH) problem is as hard as the ordinary DH (BDH) problem.
We have introduced a formal definition of n-out-of-n encryption which has two
versions, namely MPKE and MIBE for the conventional public key setting and
identity-based key setting respectively. We have also proposed an efficient MPKE
(MIBE) scheme and proved it is CCA secure under the DH (BDH) assumption.

In our security model for an MPKE (MIBE) scheme, the adversary is not
allowed to corrupt any individual key in the whole set of n keys, which is used in
the challenge phase. This security model suits our target applications of multiple
key encryption very well, where the decryption process requires that either a
decryptor must holds n keys or that n decryptors much work together. However,
whether this model can be strengthened and whether there is any practical
motivation to any enhancement of the model might be an interesting topic for
further investigation. Whether there are other applications which can benefit
from the (strong) n-DH/n-BDH problem is another question which could lead
to some future research.
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Abstract. As evidenced by the recent botnet turf war between SpyEye
and Zeus, the cyber space has been witnessing an increasing number of
battles or wars involving botnets among different groups, organizations,
or even countries. One important aspect of a cyber war is accurately
estimating the attack capacity of the enemy. Particularly, each party in
a botnet war would be interested in knowing how many compromised
machines his adversaries possess. Towards this end, a technique often
adopted is to infiltrate into an adversary’s botnet and enumerate ob-
served bots through active crawling or passive monitoring methods.

In this work, we study potential tactics that a botnet can deploy to
protect itself from being enumerated. More specifically, we are interested
in how a botnet owner can bluff the botnet size in order to intimidate
the adversary, gain media attention, or win a contract. We introduce
RatBot, a P2P botnet that is able to defeat existing botnet enumeration
methods. The key idea of RatBot is the existence of a fraction of bots
that are indistinguishable from their fake identities. RatBot prevents
adversaries from inferring its size even after its executables are fully
exposed. To study the practical feasibility of RatBot, we implement it
based on KAD, and use large-scale high-fidelity simulation to quantify
the estimation errors under diverse settings. The results show that a naive
enumeration technique can significantly overestimate the sizes of P2P
botnets. We further present a few countermeasures that can potentially
defeat RatBot’s anti-enumeration scheme.

1 Introduction

Due to its open nature, the cyber space has been witnessing a growing number
of battles or wars among different groups, organizations, or even countries. The
recent botnet turf war between SpyEye and Zeus fighting for bots [7] suggests
that botnets can play an important role in cyber warfare. In a real battle or war,
it is crucial for each party to know the attack capacities of his adversaries. Simi-
larly, in a cyber war involving botnets, a party would be interested in estimating
accurately how many compromised machines his opponents possess.
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Currently, a commonly adopted approach to estimating botnet sizes is to
infiltrate into an adversary’s botnet and enumerate observed bots through ei-
ther active crawling or passive monitoring methods [13,12]. Different techniques
have been used to enumerate existing botnets, such as the Storm botnet, and
they sometimes led to inconsistent results, spanning from 500,000 [13] to 50 mil-
lion [25]. Despite technical challenges such as NAT and DHCP that render it
difficult to estimate botnet sizes accurately, advanced techniques can be applied
to sift out these effects. For instance, the passive enumeration approach proposed
by Kang et al. can enumerate bots sitting behind a firewall or a NAT [13], and
the UDmap algorithm developed by Xie et al. [29] helps mitigate the effects of
dynamic IP addresses when enumerating bots based on their IP addresses.

In this work, however, we aim to address a more fundamental question: can
a botnet be intelligently designed so that accurately estimating its size is inher-
ently difficult? Particularly, we are interested in exploring potential tactics that
a botmaster can use to bluff his botnet size. In a cyber battle, overestimating
the size of the adversary’s botnet can lead to the effect of intimidation: a party
at a disadvantageous position can deploy this tactic to scare off a stronger oppo-
nent. In another example, a party can use this tactic to trick his adversary into
using an overly high amount of resources to defend against an attack launched
from one botnet so that he would hold advantage over his adversary in a differ-
ent cyber battle that takes place simultaneously. Furthermore, when two botnet
owners compete for the same customer who wants to use the larger botnet for,
say, spamming or DDoS attacks, one botnet owner may apply the bluffing tac-
tics to get the bid. Sometimes, a botnet owner may want his botnet size to be
overestimated so that he can draw some media attention.

To study the power of such bluffing tactics, we design a hypothetical botnet
called RatBot, which protects itself from being enumerated. RatBot employs the
peer-to-peer (P2P) structure to improve its resilience against a single point of
failure. The key idea of RatBot is the existence of a fraction of bots that are
indistinguishable from their fake identities, which are spoofing IP addresses they
use to hide themselves. RatBot prevents adversaries from inferring its size even
after its executables are fully exposed. This is done with heavy-tailed distribu-
tions to generate the number of fake identities for each bot so that the sum of
observed fake identities converges only slowly and thus has high variation.

Due to its anti-enumeration mechanism by design, RatBot distinguishes itself
from those technical challenges (e.g., NAT and DHCP) making it difficult to
enumerate bots accurately and is thus immune to existing solutions that aim to
address these challeges. The wide deployment of NAT actually leads to underes-
timation of botnet sizes, which is contrary to the design goal of RatBot. Another
distinguishing feature is that the degree to which RatBot can bluff about its size
is controllable by the attacker. This is ideal in some situations (e.g., cyber war)
where the attacker wants to adjust his bluffing tactics dynamically.

To study the practical feasibility of RatBot, we implement it using the ac-
tual development code of aMule, a P2P client software that uses KAD for its
P2P communications [2]. We further develop a distributed simulation testbed
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to evaluate the effectiveness of RatBot in misleading botnet size estimation. We
perform a variety of tests with different settings and the results show that a
naive botnet enumeration approach by counting the IP addresses observed from
the P2P botnets could significantly overestimate their sizes.

The remainder of this paper is organized as follows. Section 2 presents related
work and Section 3 gives the threat model. In Section 4, we discuss the design
of RatBot, and provide the rationale of such design in Section 5. We introduce
the implementation of RatBot in Section 6 and use large-scale simulation to
evaluate its performance in Section 7. In Section 8, we further discuss potential
countermeasures against RatBot and draw concluding remarks in Section 9.

2 Related Work

Behaviors of real-world botnets have been analyzed to provide insights into how
botnets operate in reality [4,12,13]. Complementary to these efforts, our work
sheds light on the potential challenges regarding enumerating zombie machines
in P2P botnets accurately. In spirit, our work is similar to that of Rajab et
al. [18] as both explore the challenges of estimating botnet sizes, but ours focuses
on P2P botnets rather than IRC botnets. Some previous work has shown that
multiple factors contribute to inaccurate botnet size estimation, including DHCP
and NAT effects [24]. Our results show that even if advanced techniques are
deployed to sift out these effects [13,29], the botnet can still adopt sophisticated
obfuscation techniques to make it a difficult task to estimate its size accurately.

A plethora of botnet detection techniques have been developed recently. Gu et
al. have proposed a series of bot detection methods exploiting spatial-temporal
correlation inherent in bot activities [11,10]. Other botnet detection techniques
include DNS-based methods [19], ISP-level analysis [14], signature-based ap-
proaches [9], and flow-level aggregation and mining [31]. Our work is orthogonal
to these efforts and focuses on anti-enumeration tactics.

Hypothetical botnets proposed previously include Super-Botnet [27], Over-
bot [20], AntBot [30], and hybrid P2P botnets [28]. Our work differs from these
work on two aspects. First, our work focuses specifically on hypothetic P2P bot-
nets that aim to inflate the adversary’s estimation of botnet sizes. Second, we
have used large-scale high-fidelity simulation to quantify the estimation errors
under diverse settings rather than presenting the design from a conceptual level.

The design and implementation of RatBot presented in this work is based on
the Storm botnet, which used the KAD protocol. Besides the Storm botnet, a
few other botnets also applied the P2P protocol to organize their bots, such as
Nugache [26], Waledac [23], and Conficker [17]. Although none of these botnets
have applied anti-enumeration techniques to inflate the number of bots they
have, some methods developed for RatBot can be borrowed to enhance their
resilience against enumeration by the adversaries. However, as we shall discuss
later, there is a tradeoff among operational flexibility, local detectability, and
resilience against enumeration in the design space of P2P botnets.
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3 Threat Model

In this work, we consider two families of P2P botnets: immersive P2P botnets
and exclusive P2P botnets. For an immersive P2P botnet, the botmaster delivers
C&C information through a P2P network that has normal P2P nodes in ad-
dition to bots. The original Storm botnet, for instance, was an immersive P2P
botnet because the C&C information was delivered to the Storm bots through
the Overnet network. An exclusive P2P botnet, by contrast, has bots exclusively
as its peers and thus does not have any normal P2P user traffic in it. Since the
Overnet network was shut down, the Storm botnet became an exclusive P2P
botnet dubbed Stormnet because only bots can participate in the botnet.

The two primitive operations in a P2P network are publish and search. The
publish primitive is used to publish a data item either on the machine used
by the caller itself (e.g., in an unstructured P2P network) or on a machine
with an identifier that is close to that of the data object (e.g., in a structured
P2P network). The search primitive is used by a peer node to search for data
items that satisfy some specific conditions, such as containing certain keywords
or producing a certain hash digest. In this work, we assume that in the P2P
network search operations are spoofable, that is to say, a peer node can request a
peer to find a data item using a spoofed source IP address. This holds for many
P2P networks, which use UDP to implement the request/response mechanism in
a search operation. For instance, the widely deployed KAD protocol uses UDP
for signaling and TCP for data transfers [16].

It will be seen later that spoofable search operations play a key role in the
design of RatBot for hiding authentic search operations. It is, however, noted
that these constraints limit the design of RatBot only when it is implemented as
an immersive P2P botnet. For an exclusive P2P botnet, as bots do not require an
existing P2P network for their C&C communications, the botmaster has more
freedom on the implementation of spoofable search operations.

In this work, we assume a reasonable adversarial model from the attacker’s
standpoint. First, we do not assume that the P2P botnet deploys a strong au-
thentication scheme. As evidenced by previous efforts of successfully reverse-
engineering the Storm bot executable, it is possible for white-hat security ana-
lysts to reveal secret keys used for bot communications through static or dynamic
malware analysis, and create fake bots to infiltrate into the P2P botnet [12,13].
Second, we also assume that the white-hat security analyst, through thorough
static code analysis, possesses full knowledge about the functionalities of an
authentic bot, including its communication protocol and anti-enumeration tech-
niques. Third, we assume that the behaviors of a fake bot and an authentic bot
are indistinguishable to the bots. A fake bot can intercept any message that
passes through it, thus obtaining the source IP address it has used. Fourth, a
fake bot may stay in the P2P botnet for a long time so that for some P2P pro-
tocols (e.g., KAD) a large number of peer nodes would add it to their contact
lists, or actively crawl the P2P network to obtain a list of observed P2P nodes.

In the paper, we use the adversary and the white-hat security analyst inter-
changeably. Next, we shall present the design of RatBot.
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4 RatBot Design

The key idea of RatBot is the existence of an army of obscure bots, each of which
creates a list of fake identities to hide itself. In this work, we assume that the
identity of a bot is manifested as the IP address that it uses to communicate
with other peers in the network. Although the P2P identifier (e.g., KAD ID)
of a bot can also be used for enumeration purpose, these identifiers sometimes
can be changed by bots, thus leading to inaccurate estimate of the botnet size.
Moreover, a compromised machine can run multiple instances of bot executable
and counting each instance as a bot overestimates the size of a botnet.

Legend

Normal peer

Explicit bot

Obscure bot

BA
B is A’s neighbor

Fig. 1. RatBot Architecture

As opposed to obscure bots, we say
the remaining bots are explicit bots. By
their nature, explicit bots can be enu-
merated. In Figure 1, we present the
architecture of RatBot in the form of
an immersive P2P botnet. If RatBot
is an exclusive P2P botnet, no normal
peers would exist.

4.1 Obscure Bot Selection

When a machine is infected and becomes a bot, it decides whether it should
be an obscure bot. As an obscure bot uses spoofed IP packets to hide its true
identity, an obscure bot must be able to spoof IP packets. Not every end host in
the Internet, however, possesses such a capability due to reasons such as NAT
deployment and blocking of spoofed packets by firewalls or the host operating
systems [5]. We thus let each bot contact a dedicated server during its bootstrap-
ping phase. The server is hardcoded in the bot executable code1. When a bot
contacts a server, it generates a UDP query packet with an arbitrary spoofed
source; the payload of the packet carries the authentic IP address of the bot. If
the packet arrives at the server, it means that the bot is capable of spoofing. The
server decides whether the bot should become an obscure bot and if so, sends
back a response packet to the bot using its authentic IP address carried in the
query packet. If the bot receives the response packet within a certain period of
time, it becomes an obscure bot; otherwise, it is an explicit bot.

How does the server decide whether a bot should be an obscure bot? Suppose
that it knows the size of the current botnet; this can be done by simply letting
each newly infected bot report to it using their authentic IP addresses. The
server then makes its decision by aiming to have a fraction ξ of the entire botnet
as obscure bots. ξ is not hardcoded in the bot executable and it is thus not
known to the adversary. Hence, the adversary cannot estimate the botnet size
as m/(1− ξ), where m is the number of explicit bots that he has observed.

1 To improve the resilience of the botnet, multiple servers can be specified in the
executable code. Also, fast flux techniques can be used to prevent easy disruption.
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4.2 Identity Obfuscation

Once a bot decides that it is an obscure bot, it randomly generates a list of
spoofing IP addresses that it will use to obfuscate its own IP address later in
P2P communications. The spoofing IP addresses should be chosen to be difficult
for the adversary to verify their validity, even if the adversary is able to reverse-
engineer the bot code. For example, these spoofing IP addresses should avoid
using those from the dark IP address subspace, and being too concentrated in
a small IP address subspace. The detail of such algorithm is beyond the scope
of this work. For a given obscure bot, how many spoofing IP addresses does it
create? The answer provides a key role in the level of difficulty for the adversary
to infer the correct botnet size. Consider a simple scheme in which each obscure
bot generates a constant number k of spoofing IP addresses. As explained later,
a distinguishing feature of an obscure bot is that it does not respond to any
request by another peer. Suppose that the adversary can enumerate the entire
list of IP addresses S that do not respond to any normal P2P requests. Then,
the number of obscure bots can be estimated at |S|/(k + 1) if it is assumed that
spoofing IP addresses do not overlap.

Two observations are worth noting here. First, as obscure bots generate spoof-
ing IP addresses independently, these spoofing IP addresses may overlap in prac-
tice. But given that the large IP address space to spoof, the probability of such
overlapping should be low. Second, due to the P2P structure of the botnet and
independent generation of spoofing IP addresses by individual bots, compromis-
ing a small number of bots, although helping the adversary rule out the spoofing
addresses used by these bots, does not prevent the overall size of the botnet from
still being overestimated.

We now discuss how RatBot chooses the number of spoofing IP addresses per
bot. Consider a botnet with n obscure bots. Let Xi denote the number of spoofing
IP addresses obscure bot i generates. RatBot uses two levels of obfuscation. For
the first level (distribution-level obfuscation), RatBot uses a distribution
with high variation to generate Xi, such as the Pareto distribution with PDF:

f(x) =
{

αxα
m

xα+1 for x ≥ xm,
0 for x < xm,

where xm and α are the cutoff and scale parameters, respectively. The mean of
the Pareto distribution is αxm/(α−1) and its variance is (xm/(α−1))2·α/(α−2).
It is noted that when α ≤ 2, the variance becomes infinite. If we set α ≤ 2,
then we cannot apply the central limit theorem on

∑n
i=1 Xi due to the infinite

variance. It is noted that Xi drawn from the Pareto distribution is a float number.
In practice, we generate �Xi spoofing IP addresses for sure, where �x denotes
the largest integer no greater than x, and an extra one with probability Xi−�Xi.

In Section 5, we shall present the rationale behind using the Pareto distri-
bution for generating Xi and also its limitation. To make size estimation even
more difficult, RatBot employs another level of obfuscation in generating Xi

(parameter-level obfuscation). Instead of using a fixed mean for Xi, the
mean of Xi on the i-th obscure bot actually depends on certain attributes of the
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bot itself. Measurements from the Storm botnet suggest that bot infection is not
uniformly distributed either over different ASes or geographically [6]. Hence, we
let the mean number of spoofing IP addresses generated by an obscure bot be a
function of the time zone where the bot is located. In previous works, security
analysts used the observed IP addresses to derive their geographic locations us-
ing IP geolocation tools [1] and thus their corresponding time zones. Now that
spoofed IP addresses are used, it is difficult to accurately infer the time zone of
each bot, which renders it hard to estimate the mean of each Xi.

An obscure bot may use a dynamic IP address to communicate with other
peers. Whenever the obscure bot observes that the IP address of the hosting
machine has changed, it regenerates its spoofing IP addresses as above.

4.3 Bot Behavior Description

In a typical P2P protocol, a packet between two peers can be classified into three
categories: request, response, and data transfer. TCP makes spoofing difficult
because it requires handshaking between peers. In many normal P2P networks,
request and response signaling packets are delivered through UDP and data
transfer uses TCP. We consider the two cases in the following. (1) If the P2P
botnet is an exclusive P2P botnet, UDP can be chosen by design for delivering all
request, response and data transfer packets. (2) If the P2P botnet is an immersive
one, the botmaster does not have the freedom to choose the transport layer
protocol. In this study, we assume that request and response signaling packets use
UDP. If bot communications do not involve any data transfer packets, spoofing
becomes much easier; however, if the P2P protocol uses TCP for data transfer
and bots need data transfer for C&C messages, it leaves a door for more accurate
bot size estimation by the adversary, as will be explained in Section 8.

For an explicit bot, its behavior conforms to the standard P2P protocol. For
an obscure bot b, let I(b) denote the set of spoofing IP addresses associated with
it. The behaviors of an obscure bot are given as follows.

Response packets. An obscure bot does not respond to any request by another
peer. On the arrival of a request packet, it silently drops the packet. As the packet
is delivered through UDP, which is connectionless, the origin of the request
packet does not know whether the recipient receives the packet or not.

Request packets. We first consider a naive packet-level obfuscation scheme for
request packets. When an obscure bot b needs to send out a request packet to
peer A at time t, it replicates the packet for |I(b)| times and each of these packets
uses a distinct source IP address from set I(b). Including the original request
packet, there are in total |I(b)|+1 packets to be sent to peer A. For each obscure
bot, we define its obfuscation window as w time units. We randomly reorder the
|I(b)| + 1 packets as p0, p1, ..., and p|I(b)|. Packet p0 is sent out at time t. The
interval between the sending times of packet pi and pi+1 where i = 0, 1, ..., |I(b)|
is drawn from an exponential distribution with mean w/|I(b)|.

As the order of the packets is random, the recipient peer, if a monitoring node
by the adversary, cannot determine which packet carries the authentic source IP
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address. However, every time a request packet with an authentic source IP is sent,
packets with all associated spoofing IP addresses are also sent to the recipient.
Hence, if the recipient is a monitoring node deployed by the adversary, she
can cluster IP addresses with the same (or approximately the same) number of
appearances within w time units. It is highly unlikely that source IP addresses
in normal request packets would show such strong correlation as in the naive
obfuscation scheme. As such, even though the adversary does not know exactly
which source IP address is authentic, he can still infer the actual size of the
botnet by assuming that IP addresses frequently appearing in the same interval
of w time units would come from the same obscure bot.

It is noted that request packets are usually used by a bot to search for C&C
messages from the botmaster. Hence, to prevent correlation-based analysis, Rat-
Bot uses a session-level obfuscation scheme for each search operation. Figure 2
illustrates the difference between packet-level and session-level obfuscation. Sup-
pose that an obscure bot needs to find a data item with key K. We call it an
authentic session, which contains the whole sequence of the peer nodes this bot
has contacted in order to accomplish this search operation.

For each of its spoofing IP addresses, the obscure bot will create a spoofing
session, which contains a sequence of peer nodes that are randomly drawn from
a local peer node repository. This repository, denoted R, contains peers that
were observed in the past authentic sessions and also the current neighbors that
the obscure bot knows. It is noted that peers in an authentic session may appear
with a certain order. For instance, when a bot searches a data item with key K
in a DHT P2P network, peers in the authentic session are ordered (or partially
ordered) in their distances from key ID K. Hence, when constructing the sequence
of peers in a spoofing session, such orders are also mimicked.

The intervals between the starting times of sessions, including both authentic
and spoofing ones, are randomly drawn from an exponential distribution with
mean γ time units. The order of the starting times of spoofing sessions is ran-
domized. The authentic session is inserted among the top φ spoofing sessions,
if there are so many, and its place is also randomly chosen. The decision on φ
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should make it difficult to tell which session is authentic but meanwhile ensure
that the start of the authentic session would not be postponed significantly due
to obfuscation. In our implementation, we let φ be 5.

Let Ψ denote the empirical distribution of the number of request packets sent
in an authentic session. For each spoofing session, we use Ψ to generate the
number of request packets. Each of these request packet carries the spoofing IP
address as its source IP and search key K, and is sent to every peer node in
the corresponding spoofing session. The interval between two request packets is
randomly drawn from the empirical distribution of the intervals between request
packets in the past authentic sessions. We use Γ to denote this distribution.

Data transfer packets. If botnet C&C information is stored as a file, each
bot needs to fetch the file from the host machine. If RatBot is designed to be an
exclusive P2P botnet, UDP can be chosen for data transfer. Otherwise, if it is an
immersive P2P botnet, RatBot makes its decisions in the following order: (1) If
the C&C information can be spread without involving data transfer, RatBot will
not use data transfer. For instance, C&C information can be stored as metadata
tags in a KAD-based P2P network. (2) If the P2P network allows UDP for data
transfer, RatBot will use UDP instead of TCP for data transfer. (3) Only if the
P2P network uses only TCP for data transfer, RatBot would use TCP. It is noted
that the third option exposes the identity of obscure bots if the peer hosting the
C&C information is actually a monitoring node deployed by the adversary. This
is because TCP requires a three-way handshake between the obscure bot and
thus the host machine and the connection cannot be spoofed.

5 Rationale

In this section, we explain why a high variance distribution such as the Pareto
distribution is used to generate Xi in Section 4.2. As we assume an adversarial
model in which the adversary knows the distribution used to generated Xi, we
must ensure that the adversary’s knowledge does not lead to a good estimation
of the botnet size. The adversary also knows that an observed IP address cannot
be from an explicit bot if it is used in response packets. Let M be the number
of IP addresses observed by the adversary that never respond to any requests.
The challenge is: can the adversary infer the number of obscure bots provided
that he knows the distribution used to generate Xi?

If only the distribution-level obfuscation is used, all Xi are independent and
identically-distributed random variables. According to the law of large numbers,∑n

i=1 Xi always approaches nμ, where μ is the mean of Xi, when n is large. As
the adversary knows the distribution and thus μ, he can estimate the botnet size
as M/(μ+1). To defeat this type of inference, it is necessary to use a distribution
that converges so slowly that

∑n
i=1 Xi can still be far away from nμ at reasonable

scales of botnet sizes.
The Chebyshev’s inequality tells us that P{|Y − Ȳ | ≥ t} ≤ t−2V ar(Y ), where

Ȳ and V ar(Y ) are the mean and variance of random variable Y , respectively.
Hence, the convergence speed of

∑n
i=1 Xi is affected by the variation of Xi. That
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explains our choice of the Pareto distribution: for α < 2, its variation is infinite
and thus slows down the convergence of

∑n
i=1 Xi.

Suppose that there are 100, 000 obscure bots and the average number of spoof-
ing IP addresses an obscure bot generates is 20. We consider four different set-
tings for the scale parameter: α = 1.01, 1.1, 1.5, and 1.8. We set the cutoff
parameter accordingly to obtain the same mean for Xi. We simulate 1000 cases
with different random number generation seeds. In each case, we assume that
the adversary sees all the obscure and spoofed IP addresses. Let the observed
total number be M . The adversary estimates the number of actual obscure IP
addresses as M/21 as each obscure IP address has 20 spoofed ones. The following
table shows the mean and the standard deviation of the adversary’s estimation:

α 1.01 1.1 1.5 1.8
mean 23596.80 81758.83 99854.08 99962.19

standard deviation 83014.82 91258.15 4553.54 1262.98

From the table, it is clear that when α is close to 1, the variability of the
estimated bot size becomes more significant. For instance, when α = 1.01, even
after 1000 sample runs, the derived mean is still far away from the actual one,
which is 100000. In reality, the adversary witnesses the result of only one sample;
hence, if α is small and thus the variability is very high, the adversary will get
an estimate on the botnet size with high variation.

Using heavy tailed distributions such as the Pareto distribution to generate Xi

does have its limitation, even though they can produce highly variable results.
The high variation of these distributions actually results from their high skewness
in their probability density functions. Figure 3 depicts the probability density
function of the Pareto distribution when α = 1.01 and the mean is 20. Clearly,
it is highly skewed as P(Xi ≤ 1) = 0.805, which means that around 80% of the
data points, if drawn from this distribution, would stay below 1.

To see how this would help the adversary’s estimation, we simulate the ob-
served number of spoofing IPs when there are 1000, 10000, 100000, and 1000000
obscure bots. Each obscure bot uses the Pareto distribution with mean 20 and
scale parameter 1.01 to generate the number of spoofing IP addresses. For each
scenario, we simulate 1000 times. The results are shown in Figure 4, where each
data point represents the number of observed spoofing IPs. Note that for each
scenario, the number of observed spoofing IPs is highly clustered among the
1000 sample runs. Suppose that the adversary has observed 3000 spoofing IP
addresses. Then, he can infer that the real size of the botnet is likely to lie be-
tween 10000 and 100000. Hence, RatBot uses another level of obfuscation (i.e.,
parameter-level obfuscation) to defeat such kind of statistical inferences.

6 Kad-Based RatBot Implementation

In this section, we discuss how to implement RatBot based on KAD, which ex-
tends from the Kademlia protocol proposed by Maymounkov and Mazieres [15].
Our implementation of RatBot is based on a popular KAD client, aMule2. UDP
2 The version we used in our study is aMule 2.1.3.
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is used in aMule for searching and publishing data objects. If it is an explicit bot,
we keep the original implementation intact. Otherwise if it is an obscure bot, we
make the following modifications. First, when the bot receives a request mes-
sage, it drops the message immediately. A request message in KAD carries some
special operation types, such as KADEMLIA HELLO REQ, KADEMLIA SEARCH REQ,
KADEMLIA REQ, KADEMLIA PUBLISH REQ, etc.

Second, in the KAD protocol peers regularly send KADEMLIA HELLO REQ mes-
sages to each other to exchange liveness information. It is noted that the adver-
sary can use such messages to determine whether a peer is an obscure bot or
just a spoofed IP address. There are two solutions to this. One option is that
the obscure bot obfuscates these messages as well, using spoofing IP addresses.
The flip side of this approach is that peers may inject those spoofed IP ad-
dresses into their routing tables, thus affecting normal routing operations. The
other solution is that an obscure bot does not send out such messages at all.
Even though obscure bots and their spoofed IP addresses may still be inserted
into their neighbors’ routing tables when their neighbors receive search requests
from them, the lack of liveness messages makes them less likely to be chosen in
a search process because KAD prefers long-lived nodes when forwarding search
requests. Also, when a peer node finds that a neighbor has not been alive for a
certain period of time, it removes that neighbor from its routing table. Given
these considerations, we adopt the second approach in our implementation.

Third, as obscure bots do not send out KADEMLIA HELLO REQ messages
to their peers, their peers do not send back response messages with type
KADEMLIA HELLO RES. According to the standard KAD protocol, obscure bots’
routing tables would shrink faster because neighbors without liveness messages
are removed from the routing table after a certain period of time. To avoid
this, we increase the longevity of each neighbor without liveness messages in an
obscure bot’s routing table from the original two minutes to two hours.

Fourth, a KAD node initiates some random search operations when a bucket
does not have enough contacts in its routing table. For an obscure bot, it has
to use its authentic IP address for such random lookups. It is necessary to ob-
fuscate these searches also, because otherwise the adversary can infer whether
an observed IP address is authentic or not by how many unique keys it uses for
searching. In our implementation, we obfuscate these random searches as well.



146 G. Yan, S. Chen, and S. Eidenbenz

Finally, we let RatBot use the metadata tags in KAD, such as filenames, to
hide C&C information. Hence, no data transfer is needed for normal bot opera-
tions. Also, obscure bots never publish any information into the P2P network;
they only passively search commands given from the botmaster. The botmaster
uses only explicit bots to publish his C&C information.

7 Experimental Evaluation

We now evaluate the effectiveness of RatBot in preventing the adversary from
obtaining an accurate estimate on the botnet size. Due to the destructive nature
of RatBot, we do this in a simulated environment to avoid legal and ethical is-
sues. Our KAD-based implementation of RatBot used the actual implementation
code of aMule. We further intercepted all system calls in it, such as time-related
and socket functions and replaced them with simulated function calls specific to
our local distributed simulation platform. According to the literature, behaviors
of both normal P2P users and bots exhibit strong time zone effects [21,8]. To in-
corporate these details into our simulation, we model the geographic distribution
of normal KAD peers based on previous measurements on the KAD network [21]
and that of bots according to the Storm botnet IP distribution [6].

Our model of normal P2P user behaviors is based on the observations on the
online patterns of normal KAD users [22]. The starting time of a normal peer
being online is modeled with a Gaussian distribution with mean at 7:00pm and
standard deviation at 2 hours, and the duration of an online session is generated
with a three-parameter Weibull distribution. The online activity model of a bot
machine is simply defined as follows: the starting time of it being online is drawn
from a Gaussian distribution with mean at 8:00am and the end time is drawn
from a Gaussian distribution with mean at 6:00pm; for both distributions, the
standard deviation is one hour. This model reflects people’s normal work hours.

The number of spoofing IP addresses corresponding to an obscure bot is gen-
erated from a Pareto distribution whose parameters are set as follows. Let us
number the 24 time zones from 1 to 24. The mean of the Pareto distribution is
drawn from a Gaussian distribution with mean and standard deviation set as 2z
and 4z, respectively, where z is the time zone number of the obscure bot. The
scale parameter of the Pareto distribution is 1.05 and its cutoff parameter can
be calculated accordingly from its mean. In each experiment of this study, we
use 100 processors from a cluster machine to simulate the behaviors of RatBot.

7.1 Exclusive RatBot

In the first set of experiments, we study the behavior dynamics of exclusive
RatBots. We let the botmaster send out a command every day. To improve the
reachability of the command to individual bots, the botmaster uses five bots to
publish it with 32 keys (as in the Storm botnet) periodically every 100 seconds.
Each individual bot, when online, periodically searches the command every 100
seconds with these 32 keys until it gets the command successfully. We simulate
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10,000 bots and vary the number of obscure bots among {1000× i}i=0,1,2,3,4,5.
Among the 10,000 bots, 10% of them are P2P servers that always stay online.
We assume an adversarial model in which the adversary controls 10 servers
that can be used to monitor bot traffic. We simulate the botnet for two days:
the first day is used as a ramp-up phase for each obscure bot to obtain some
empirical distributions, and the second day is used for testing. For each scenario,
we simulate it for 20 times with different random number seeds.

We first verify our implementation to ensure that behaviors of spoofing ses-
sions are close to those of authentic sessions. In Figure 5, we depict the frequency
histogram of the number of appearances of packets from spoofing and authentic
sessions observed by the monitors, respectively, in five runs when there are 1000
obscure bots. There is no obvious systematic difference between authentic and
spoofing sessions that can be exploited to differentiate them. From the simula-
tion results, we also note that regardless of the number of obscure bots in the
RatBot, almost every individual bot gets the command eventually. Hence, the
existence of obscure bots does not affect the utility of the P2P botnet.

Figure 6 gives the median, smallest, and largest number of IP addresses ob-
served by the adversary in 20 sample runs eventually and after one day, respec-
tively, under different number of obscure bots. In the eventual results, we show
the total number of spoofing IP addresses generated by obscure bots plus the
number of actual bots. We notice that after one day, the adversary observes
a large fraction of both actual and spoofing IP addresses. This is because we
assume the adversary is able to deploy monitors among the core servers of the
P2P botnet and the bots search the command frequently.

Unsurprisingly, if we increase the number of obscure bots, the number of ob-
served IP addresses by the adversary also increases. When there are 4000 or 5000
obscure bots, there are cases where the total number of IP addresses observed
by the adversary exceeds 100,000, suggesting that the obfuscation technique of
RatBot can lead to an overestimation more than 10 times of its actual size. On
the other hand, given the same number of obscure bots, the observed number of
IP addresses also varies significantly among different runs. In some scenarios, the
largest number of IP addresses observed is twice as much as the smallest number
of IP address observed in the 20 sample runs. It is also noted that the median
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tends to be close to the minimum due to the fact that the Pareto distribution is
skewed towards its cutoff parameter at its lower end.

7.2 Immersive RatBot

We now evaluate how immersive RatBot affects the accuracy of botnet size esti-
mation. We simulate a P2P network with 7,000 normal peers and 3,000 bots. The
botmaster uses five bots to publish commands with 32 keys periodically every
half hour. Each bot uses these 32 keys to search for the current command every
half hour until it obtains the command successfully. Here, we let bots perform
publish and search operations less frequently than those in exclusive RatBot
because normal P2P peers may treat these bots performing frequent operations
as abnormal and thus limit interations with them. Among 7,000 normal peers,
990 of them always stay online as servers. We assume the adversary deploys 10
monitors in the network and they appear as servers always online. Each monitor
is also a captured bot and can be used to reveal the 32 keys used by the bots to
search the current command. The monitor identifies a peer as a bot if it observes
that the peer uses any of these keys to search or publish a data item in the P2P
network. We vary the number of obscure bots among 0, 1000, 2000, and 3000.
For each scenario, we simulate it for four days, the first of which is used as a
ramp-up phase for each obscure bot to obtain some empirical distributions and
the remaining days are used for testing. We simulate each scenario 20 times.
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Figure 7 depicts the number of bots ob-
served by the adversary under different num-
bers of obscure bots. For visual clarity, we
shift the points horizontally slightly to pre-
vent overlapping. For each scenario, we show
the median, minimum, and maximum among
the 20 sample runs. The results correspond-
ing to “Eventually” show the sum of both the
number of authentic bots (including obscure
bots) and the total number of spoofing IP
addresses generated by all obscure bots.

According to the results, we make the fol-
lowing observations. First, the existence of
obscure bots produces estimated botnet sizes
with high variation. For instance, after three days, if there are no obscure bots,
the ratio of the maximum and the minimum of observed bots is 1.016; when we
introduce 1000, 2000, and 3000 obscure bots, the ratio becomes 3.405, 2.637, and
2.006, respectively. Such high variation renders it difficult for the adversary to
infer the true size of the botnet. Second, it is obvious that increasing the num-
ber of obscure bots helps inflate the number of observed bots by the adversary.
When there are 1000 obscure bots, the ratio of the median number of observed
bots after three days to the true size of the botnet is only 4.5, but when there
are 3000 obscure bots, this number becomes 12.8. Hence, the botmater can use
the fraction of obscure bots to control the error in the adversary’s estimation.
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8 Countermeasures

Given the disruptive nature of RatBot, it is important for us to understand
its weakness and potential methods to mitigate it. In this section, we present
a few countermeasures that can defeat the obfuscation techniques deployed by
RatBot. First, RatBot requires each bot to contact a central server initially to
decide whether it should work as an obscure bot. The server can easily become
a single point of failure. If the adversary manages to monitor traffic from and/or
to this server, the identities of true bots can be revealed. With regard to this, it
is noted that each bot only needs to contact this server during the bootstrapping
phase. As there is little communication for this purpose, it is a difficult task to
monitor such traffic. Moreover, existing botnets commonly apply distributed
server farms and fast-flux techniques to improve resilience of their services.
These techniques can also be applied here to prevent the single failure of the
server.

In order for RatBot to operate, the search operation must be spoofable. Hence,
if a P2P network deploys anti-spoofing techniques, RatBot cannot survive in
it. For example, the P2P network can simply use TCP for all signaling and
data transfers. Even if UDP is used for signaling, the P2P network can add
a level of anti-spoofing mechanism in a query: when Peer A receives a query
from Peer B, it sends back a confirmation request to Peer B and only an-
swers Peer B’s query after receiving a reply from Peer B on its request. It is
noted that this countermeasure works only against immersive RatBot because
the botnet has to be blended into an existing P2P network. Albeit effective in
defeating the anti-enumeration scheme by RatBot, fully deploying anti-spoofing
techniques in all enterprise networks and ISPs still has a long way to go [5]. For
instance, the recent analysis of 5,000 DDoS attacks suggests that a significant
fraction of them still used spoofing techniques to generate large volumes of attack
traffic [3].

If the RatBot needs TCP data transfer to fetch the command, the adversary
can deploy monitors in the P2P network and place those command data on
them. By monitoring which machines fetch the command data, the adversary
can obtain a list of authentic bots as the three-way handshaking mechanism in
TCP cannot be spoofed with spurious IP addresses.

Another effective approach to defeat RatBot is deploying anti-spoofing tech-
niques in the whole Internet. The degree to which the RatBot can obfuscate its
size depends on how many obscure bots it has to perform spoofing operations. If
the majority of Internet addresses cannot be spoofed, we can still obtain a good
estimate on the size of RatBot by simply ignoring those obscure bots.

RatBot’s relying on spoofing packets for obfuscation introduces another weak-
ness: enterprise networks and ISPs can detect the existence of bots in their
networks by looking for hosts that send out spoofed packets. RatBot prevents
enumeration by the adversary at the global level at the price of increased vul-
nerability to detection at the local level due to its use of spoofing packets.



150 G. Yan, S. Chen, and S. Eidenbenz

9 Conclusions

In recent years, botnets, which emerge as a major cyber threat, have been widely
used to send spamming emails and launch DDoS attacks. In a botnet war, a bot-
net owner may want to bluff his botnet size in order to intimidate the adversary,
gain media attention, or win a contract. In this work, we explore the tactics
that a botnet may use to achieve this goal. We present the design of a type
of P2P botnets called RatBot, which applies obfuscation techniques to defeat
standard enumeration techniques, and use large-scale high-fidelity simulation to
evaluate its performance. We hope our work will raise the awareness of white-hat
cyber-security practitioners on the challenges of estimating the sizes of botnets
accurately and adopt effective countermeasures in practice.
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Abstract. Spam over Internet Telephony (SPIT) is a threat to the use
of Voice of IP (VoIP) systems. One kind of SPIT can make unsolicited
bulk calls to victims’ voice mailboxes and then send them a prepared
audio message. We detect this threat within a collaborative detection
framework by comparing unknown VoIP flows with known SPIT sam-
ples since the same audio message generates VoIP flows with the same
flow patterns (e.g., the sequence of packet sizes). In practice, however,
these patterns are not exactly identical: (1) a VoIP flow may be unexpect-
edly altered by network impairments (e.g., delay jitter and packet loss);
and (2) a sophisticated SPITer may dynamically generate each flow. For
example, the SPITer employs a Text-To-Speech (TTS) synthesis engine
to generate a speech audio instead of using a pre-recorded one. Thus, we
measure the similarity among flows using local-sensitive hash algorithms.
A close distance between the hash digest of flow x and a known SPIT
suggests that flow x probably belongs the same bulk of the known SPIT.
Finally, we also experimentally study the detection performance of the
hash algorithms.

1 Introduction

Email spam has been a serious problem to annoy Internet providers and users
for many years. It practically costs little for sending out massive junk emails
by using an automatic tool without human interaction. The huge volume of
spam introduces a significant overload on the network infrastructures and also
consumes storage resources. The same phenomenon is foreseen to appear on
Voice over IP (VoIP) as well, since the cost of making a VoIP call is low and
the user-equipments of VoIP can be programmed. It is known as Spam over
Internet Telephony (SPIT), which could automatically launch calls to a number
of VoIP users and then play a pre-recorded audio in a conversation. Like Email
spam, the SPIT has been predicted to be a serious problem when VoIP is widely
accepted [1]. Considering the nature of telephony, there might be two kinds for
a SPIT, namely online SPIT and offline SPIT. In online SPIT, the callee of
a SPIT is available and thus the callee needs to decide whether to answer it
or not. Therefore, the online SPITs annoy users by continuously drawing their
attentions to answer the calls. In contrast, the offline SPIT means that the callee
of a SPIT is not available and cannot make an answer personally. In this case,
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the SPIT will be redirected to and answered by the callee’s voice mailbox server.
The voice mailbox server then stores the SPIT flow and later plays it to the
callee. As a result, a user’s voice mailbox might be filled up with junk voice
messages and leaves no room for useful ones. Some previous anti-SPIT solutions
designed for online SPIT prevention [2,3,4] by monitoring the callee’s interaction.
For example, a call is likely to be a SPIT if the callee quickly hangs it up, or
there is no alternate-greeting at the beginning of the conversation. To avoid
being detected by these methods, offline SPIT is an alternative since no callee’s
interaction is involved. Therefore, SPITs can be mounted when the callees are
unavailable (e.g., during the midnight).

The profit model of spammers (SPITers) requires them to flood the same
information to a number of users. Therefore, a collaborative detection architec-
ture can tell whether a new email (VoIP flow) is a spam (SPIT) by comparing it
with a list of known spams (SPITs), which are shared by users or other service
providers. A new email (VoIP flow) is considered as a spam (SPIT) if it matches
one of the known spams (SPITs). However, sophisticated spammers [5,6] might
dynamically generate near-duplicate emails rather than sending the same copies
in case of being detected. For instance, a script can help them to append a few
random strings or replace some words with their synonyms in a spam message
before sending it out. In this case, the generated spams are similar but not iden-
tical any more. One countermeasure is to use a local-sensitive hash algorithm,
which takes a text message as input and produces a binary hash digest to iden-
tify this message. Different to traditional hash algorithms, local-sensitive hash
algorithm generates digests with a close Hamming distance to similar messages.
Therefore, near-duplicate email spams can be detected within the architecture
by measuring the distance between digests of messages.

Our work is focused on detecting near-duplicate offline SPITs within a collab-
orative detection architecture. To the best of our knowledge, there is no previous
research especially focused on this field. The detection is based on comparing the
sequence of packet sizes of a flow. It is inspired by previous work which shows that
the variation of VoIP packet sizes mostly depend on the utterance [7,8]. Thus, the
same SPIT audio leads to the same variation of packet sizes in SPIT flows. Nev-
ertheless, there are many methods to generate near-duplicate SPITs in practice:
First, a SPIT might be accidently altered by network impairments like delay jit-
ter and packet loss, or be truncated due to the maximum limitation of a voice mail
message; In addition, a sophisticatedSPITermight use a text-to-speech (TTS) syn-
thesis engine to dynamically generate utterance audio, which leads to different flow
patterns. The near-duplicate SPITs convey similar content but without identical
flow patterns. To solve the problem, we evaluated two local-sensitive hash algo-
rithms, which take flow patterns (mainly the sequence of packet sizes) as input and
produce a hash digest to identify a flow. Two digests with close Hamming distance
suggests that their identified flows have similar content.

In summary, the contributions of our paper include: (1) We discuss the meth-
ods for near-duplicating SPITs; and (2) We evaluate the detection performance of
two local-sensitive hash algorithms on this problem. The remainder of this paper
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is organized as follows: Section 2 introduces background on VoIP. We introduce
our research problem, collaborate detection architecture and near-duplicating
methods in Section 3; The two local-sensitive hash algorithms are described in
Section 4, with the experimental results for performance evaluation in Section 5.
In Section 6, we summarize related work in SPIT and near-duplicating email
spam. Finally, we conclude this paper in Section 7.

2 Background

VoIP relies on two kinds of protocols: a signaling protocol for call setup and
termination (e.g., the Session Initiation Protocol (SIP) [9]) and a media delivery
protocol for voice packets transmission (e.g., the Realtime Transport Protocol
(RTP) [10]). A caller sends a call request (an INVITE message) to a callee and
waits for the response. If the callee agrees to accept the request, he/she will
reply a positive answer (a 200 OK message) to the caller. Then callee replies a
ACK message and a session based on RTP protocol will be established between
them. If there is no answer for a call request, the service provider can redirect
the request to the callee’s voice mailbox server which records the session and
later plays it to the callee.

In a RTP session, the communication partners constantly send RTP packets
with each other in a fixed time interval (e.g., 20 ms). The payloads of RTP packets
are encoded and decoded from analog audio signals using a codec algorithm (e.g.,
G.711 [11] and Speex [12]). Utterance is sampled at 8-64k samples per second (Hz)
by a user-agent. As a performance requirement, the packet inter-arrival time of
voice flow is fixedly selected between 10 and 50 ms, with 20 ms being the common
case. Thus, given a 8kHz voice source, we have 160 samples per packet with 20 ms
packets interval. The size of each RTP packet payload depends on the encoding
bit rate of the selected codec, which can be classified as: Fixed Bit Rate (FBR) and
Variable Bit Rate (VBR). A FBR codec (e.g., G.711) always adapts a constant bit
rate and thus the user-agent produces RTP packets with a equal size. On the other
hand, a VBR codec (e.g., Speex) dynamically selects the most appropriate bit
rate for the input audio based on a scheme known as code-excited linear prediction
(CELP) [13]. An empirical statistic result [7,8] shows that the selected bit rates
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Fig. 1. The audio signal and corresponding RTP packet sizes
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are significantly lower for fricative sounds (e.g., “f”) than vowel sounds (e.g., “aa”).
Currently many VoIP providers (including skype [14]) use VBR codecs to preserve
network bandwidth while maintaining call quality. For example,
Figure 1 shows an utterance audio input with the resulting RTP packet sizes. We
can observe their relationship: the less amplification, the less packet size.

Thus, the packet size variation can be used to identify a VoIP flow. In this pa-
per, we define a VoIP flow containing a sequence of RTP packets in the received
order. A SPIT is a unsolicited VoIP flow and a SPITer is a tool which generates
SPITs. In contrast, a ham VoIP flow denotes a VoIP flow from a legitimate user.

3 The Problems

This section introduces a general collaborative detection architecture. We also
describe the challenges brought by near-duplicate SPITs.

3.1 Collaborative Detection Architecture

The general detecting architecture is illustrated in Figure 2. A SPITer aims to send
SPITs to users’ voice mailboxes. He initializes calls at the time when the callees are
probably not available (e.g., at midnight). Since there is no answer from callees, a
SIP proxy will redirect SPITs to a voice mail server. A RTP session will be built
between the SPITer and the voice mail server. The voice mail server stores the re-
ceived RTP packets (e.g., in .pcap format) and later replays them to authorized
users on demand. Note that the voice mail server here does not decode its captured
flow due to privacy protection. It only stores received VoIP flows. We refer a stored
flowasavoicemailmessage record. Later on, usersmayfindSPIT in theirmailboxes
and thus report to an anti-SPIT server.The anti-SPIT servermaintains a database
containing the reported SPITs. It also scans each unread voice mail message record
in the voice mailboxes. A record is probably a SPIT if its pattern matches that of
the known SPITs. When a CELP VBR codec is applied, the generated RTP packet
sizes varies depending on the input audio. Thus, the same audio leads to the same
variation of packet sizes. We take it as the matching pattern to detect SPITs. Re-
actions can be performed based on the detection result (e.g., label it as a SPIT or
remove it from the voice mailbox).

Some requirements for this architecture are shown as follows:

1. Req.1 Privacy: The anti-SPIT server is not authorized to read the details
of a voice mail message record which is going to be checked. At most, it
is allowed to read the packet size and packet arrival time of a record. This
requirement is set to protect the users’ privacy.

2. Req.2 Efficiency: The detection should not take much system resources
(e.g., CPU, memory storage). In addition, the time cost for each comparison
should be acceptably small.
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Fig. 2. The collaborative SPIT detection architecture

3. Req.3 Accuracy: The detection scheme should be robust enough against
near-duplicate SPITs, which will be introduced in the next Section. The
false detection rates including the false positive rate and false negative rate
should be low.

3.2 Near-Duplicate SPIT

The collaborative detection architecture works based on the pattern match be-
tween unknown records with known SPITs. Thus, the design of the matching
scheme is critical. Precisely matching is unrealistic since the patterns of a SPIT
might be changed due to unintentional and intentional reasons.We name the SPIT
whose patterns have been changed in the following ways as near-duplicate SPIT.

Unintentional Near-Duplicating. It indicates that patterns of a SPIT is
accidentally modified due to the following reasons:

– Delay jitter: Delay jitter indicates the variations of inter-packet delays
in a flow. A serious variation of inter-packet delay may distort the original
sequence of packets. For example, a VoIP flow with initiated sequence packets
(p1, p2, p3) might be reordered to (p1, p3, p2) in the recipient side.

– Packet loss: Packet loss indicates the amount of packets which are acciden-
tally dropped in the transmission. For example, a VoIP flow with initiated
sequence (p1, p2, p3) might arrives as (p1, p3) at the recipient, with p2 being
lost. In this example, the packet loss rate is 33%.

– Maximum duration control:Users might set a policy to limit the maximum
duration of a voice mail message record (e.g., 5 seconds). The exceeding parts
will be truncated and discarded if the duration of a voice mail message record
is larger than the limitation. For example, a VoIP flow with initiated sequence
(p1, p2, p3) turns to (p1, p2) in the voice mailbox with the maximum duration
as 40 ms (2 × 20ms/packet). The p3 has been discarded due to the policy.

Intentional Near-Duplicating. It indicates that a SPITer modifies the pat-
terns of a SPIT on purpose. For example, a SPITer slightly changes the infor-
mation to be conveyed and employs a new speaker to read them. The utterance
is changed and thus the packet size sequence of the new SPIT is different to the
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previous ones. However, it defies the profit-model of SPITing since it is costly
and not scalable. We define the SPIT dilemma: A SPITer would like to change
the pattern of a SPIT to avoid being detected. However, the SPITer has to avoid
high cost and inconvenience. In addition, the SPITer does not want to change
too much about the conveyed information.

To tackle this problem, a SPITer can use a Text-To-Speech (TTS) synthetic en-
gine, which generates audio from a normal language text. A TTS synthetic engine
first finds pronunciations of the words in the text and assigns prosodic structure to
them (e.g., phrasing, intonation). Then, it generates an audio waveform by map-
ping and concatenating the symbolic linguistic to pieces of recorded speech. A pop-
ular open source implementation of TTS engine is Festival [15] developed by Uni-
versity of Edinburgh and Carnegie Mellon University. It contains several recorded
speech databases contributed by English speakers with different accents. Users can
setup the speed and accent of the generated audio speech. By using a TTS engine, a
SPITer candynamically generateutterance audio froma text rather thanpreparing
a recorded one. The following methods can automatically generate near-duplicate
SPITs from a text message (a master text message).

Fig. 3. An overview of methods to generate near-duplicate SPITs

– Modify the master text: A TTS engine pronounces the words in a given text.
Thus different texts will lead to different utterance audio.
• Append random strings: A SPITer can append random words to a master

text. It will affect less the users’ understanding, since an audio speech
is played from the beginning. A user is assumed to get the meaningful
information and then neglect the appended part.

• Words replacement: Some words of the master text can be replaced by
synonyms defined in a thesaurus without altering too much information
of the text. A SPITer can randomly choose a synonym to substitute an
arbitrary selected word in the master text.

– Tune up the TTS parameters: Some parameters of the TTS engine can be
tuned up to generate a different audio even with the same master text input.
• Select speech speed: A SPITer can slightly tune the speech speed for the

generated audio.
• Select speech accent: A SPITer can select the speech voice with different

accents for synthesis. Festival provides some build-in accents.

These methods can effectively change the patterns of a generated SPIT, while
have little impact on the information conveyed by the SPITs. Figure 3 illustrates
an overview picture of producing near-duplicate SPITs.
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4 Matching Algorithms

In this section, we focus on the matching approach of the collaborative detection
architecture, especially, the matching approach should satisfy the requirements
listed in Section 3. We consider to employ local-sensitive hash algorithms to
fulfill the requirements. The local-sensitive hash algorithm takes the variation of
packet sizes of a VoIP flow as input and produces a binary hash digest with a
fixed length. As shown in Section 2, the variation of packet sizes of a VoIP flow
is a unique feature to identify an speech audio. Moreover, different to traditional
hash algorithms, a local-sensitive hash algorithm produces close-distanced hash
digests for similar inputs. In this way, the anti-SPIT server generates a hash
digest for an unknown voice mail record and compares it with each hash digest
of known SPITs by calculating the distance between them.

There are advantages to use local-sensitive hash algorithms: (1) The anti-SPIT
server does not need to read the actual content of a voice mail record. Only the
variation of packet sizes is needed to generate hash digests for matching. (2) The
efficiency of matching is enhanced by just measuring the distance between hash
digests, which are with short and fixed length. (3) We measure the similarity
between a voice mail record and a known SPIT. It is robust to counteract SPIT
near-duplicating. Thus, it fulfills Req. 1 and Req. 2 proposed in Section 3. We
do not know whether it meets Req. 3 yet. For unintentional near-duplicating
SPITs, parts of a SPIT remain unchanged. If a SPIT employs a TTS synthetic
engine and modifies the master text to produce SPITs, the modified text and the
master text still have some overlap. Even if a SPIT applies different accents of
a TTS synthetic engine, the generated SPITs might have the similar packet size
variation since [7,8] suggest the generated packet sizes for some phonemes mostly
depends on the phonemes themselves. However we do not know whether these
similarities on packet size variation are enough for detection. How the method
actual fulfills Req. 3 will be examined in experiment described in Section 5.
The rest of this section introduces two local-sensitive hash algorithms, namely
Coskun algorithm and Nilsimsa algorithm.

4.1 Coskun Hash Algorithm

Coskun et al. [16] proposed a local-sensitive hash algorithm to correlate VoIP
flows for user tracking. The algorithm takes packet sizes and the packet arrival
time of a VoIP flow as input. Given a VoIP flow containing P packets, let Ti

indicate the arrival time of the ith packet and let Bi denote the payload size
of the ith packet, where i = 0, 1, · · · , P − 1. h is the hash digest with L bits
and H is a projection array containing L integers. R1(), · · · , RL() are L smooth
pseudorandom functions (e.g., we use Rl(x) = sin(x + l) tan(x + l)). Initially,
all elements in H are initialized with 0. For each packet from 1 to P − 1, the
algorithm calculates its size difference from the previous one (as BΔ

i = Bi−Bi−1)
and the relative arrival time since the arrival time of the first packet (as T̂i =
Ti−T0). Then, the algorithm projects T̂i on the smooth pseudorandom functions.
The elements in H are updated using the BΔ

i multiplied by the projecting result.
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Finally, each bit of h is produced depending on the signs of the corresponding
integers in H :

hl = sign1(Hl)

{
1, if Hl ≥ 0
0, if Hl < 0

(1)

where l = 1, 2, · · · , L. The detailed algorithm of Coskun hash algorithm is shown
below in Algorithm 1.

H ← [0, 0, 0, · · · , 0] // initialize H1, H2, · · · , HL

for all captured packet i with i = 0, 1, · · · , P − 1 do
if i = 0 then

flowStart ← Ti // arrival time of the first packet
else

T̂i ← Ti − flowStart // relative arrival time
BΔ

i = Bi − Bi−1 // packet size different
H ← H + BΔ

i [R1(T̂i), · · · , RL(T̂i)] // Rl(T̂i) = sin(T̂i + l) tan(T̂i + l)
end if

end for
h = sign1(H)

Algorithm 1. The Coskun flow hash algorithm [16]

4.2 Nilsimsa Hash Algorithm

Nilsimsa algorithm [17] computes a hash digest for a text by taking a trigram of
characters within a sliding window moving over the text as the input. We reuse
some notations from Section 4.1: Given a VoIP flow containing P packets, let Bi

denote the payload size of the ith packet. h is the produced hash digest with L bits
and H is a projection array containing L integers. The size of the slide window is
w. For a given text ”drugdeal”, the slide window (with w = 5 as a default) is first
located at ”drugd”. The algorithm then emulates all trigrams of characters from
the window. The trigrams are not necessary to be adjacent in the text, but should
be in the same sequence. For instance, ”dru, drg, drd, dug, dud, dgd, rug, rud, ugd”
are the trigrams for ”drugd”. Then all the trigrams are hashed using a traditional
hash algorithm (e.g., MD5) and one hash digest is mapped from 1 to l to hit one
element in H , whose value is increased by 1. The slide window thus moves from
left to right and the operations are repeated. Finally, each bit of h is generated
depending on the corresponding integers in H :

hl = sign2(Hl) =

{
1, if Hl ≥ φ

0, if Hl < φ
(2)

where l = 1, 2, · · · , L and the φ is the median of the values in H elements.
The Nilsimsa algorithm has been applied in Spamassassin [18], a widely used
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open-source email spam filter to find clusters of similar email spam messages. The
evaluation results in [6,5] show that this algorithm performs well to counteract
near-duplicate email spams. Different to the traditional Nilsimsa algorithm, we
takes the packet sizes as input instead of text characters. The detailed algorithm
of Nilsimsa hash algorithm for VoIP flows is shown below in Algorithm 2.

H ← [0, 0, 0, · · · , 0] // initialize H1, H2, · · · , HL

for all captured packet i with i = 0, 1, · · · , P − 1 − w do
for all trigram from window {Bi, · · · , Bi+w−1} do

H [Hash(trigram) mod l] + + // trigram < Bi, Bi+1, Bi+2 >, · · ·
end for

end for
h = sign2(H)

Algorithm 2. The Nilsimsa flow hash algorithm [17]

5 Experimental Results

To evaluate the performance of the two algorithms, we did a series of experi-
ments. In this section, we first introduce how we selected the samples for evalu-
ation and then explain the process of the experiments. Finally, we show the test
results.

5.1 Sample Collection

We assume that SPITs contain brief information, thus we choose Short Message
Service (SMS) spam samples as master messages to generate our near-duplicate
SPITs. We employ the SMS spam corpus [19] provided by Almeida and Hidalgo.
The original corpus contains both legitimate messages and spams. We only ex-
tract spams for testing. However, we found that the corpus contains similar or
even identical spams. Thus, we filtered the similar or identical ones by applying
the traditional Nilsimsa algorithm. As suggested in [17], if the Hamming distance
between 2 Nilsimsa digests is more than 24, the two messages are probably not
independently generated. Thus, we only keep the spams whose largest Nilsimsa
distance with any others are less than 24. In total 152 spams left after the fil-
tering. Figure 4(a) shows the cumulative distribution function of the maximum
Nilsimsa distance for the message with others. Then we generate SPITs from
those SMS spam messages using Festival and wav2rtp1 with default setup. Fig-
ure 4(b) shows that distribution of generated utterance audio durations for each
SMS spam, scaled mostly from 10 to 25 seconds.

1 The wav2rtp is an open source tool to convert a .wav file to a VoIP flow containing
sequence RTP packets
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Fig. 4. Collected samples for testing

5.2 Experiment and Evaluation Method

We first generate SPITs for each of the 152 SMS spams using Festival and
wav2rtp with the default setup. These SPITs simulate known SPIT samples
reported by users. We then employ the hash algorithms to generate 128-bit
digests for the samples. To evaluate efficiency of producing a hash digest by
using the two algorithms, we logged the time cost for each hashing and the CDF
of them is shown in Figure 5(a). We can observe that Nilsimsa shows a better
efficiency, but the time cost of both algorithms are mostly less than 0.5 second.
After collecting the SPIT sample digests, we repeatedly generate near-duplicate
SPITs by using the following near-duplicating options independently.

– We tune the packet loss rate (1% or 10%.) in wav2rtp.
– We tune the Gamma delay parameter in wav2rtp to simulate the delay jitter.

The Gamma delay is parameterized in terms of a shape parameter k and scale
parameter θ, with the probability density function (PDF):

f(x : k, θ) = xk−1 e−x/θ

θkΓ (k)

In the test, we fixedly set k = 500 (ms) and variably set θ from 10 to 30.
The larger θ indicates larger delay jitter.

– We only keep the first 1 − x% packets of a SPIT and drop the remaining
ones to simulate the truncation. The x is selected to 10, 50, or 90.

– Given a SMS spam with length of l, we append random words with lengths
of x% of l to the original SMS spam. The x is selected to 100, 300, or 500.

– We randomly substitute x words in the original SMS spam to simulate syn-
onym replacement. The x is selected to be 1, 2, or 3.

– We tune the TTS speech speed parameter in Festival to apply different
speech speed in SPIT, within ±0.1 or ±0.01 of the default one. We invited
4 subjects and played TTS converted audio to them by tuning speech speed
within ±0.1 of the default speed. There was no problem for subjects to
understand these audio.
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– We tune the TTS speech accent parameter in Festival, other than the default
one, like ”diphone ked”, or ”diphone don”.

Please note that every time we applied only one of the above options for one
near-duplicate SPIT. We did not apply the mixed options since we tried to
find out the detecting performance for each option. We then produce the hash
digests again and calculate the distance between them and the sample ones. If
their distance is less than a threshold, it is detected as a near-duplicate SPIT of
the sample one. Otherwise, it is not. We evaluate the performance by counting
the true positive rate and the false positive rate, and plot its Receiver Operating
Characteristic (ROC) curve. The result is provided in the next section.
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Fig. 5. Performance of hash algorithms and the ROC curves for detecting unintentional
near-duplicate SPITs

5.3 Result to Detect Unintentional Near-Duplicate SPITs

We present the resulting ROC curves for unintentional near-duplicate SPITs
detection in Figure 5(b), 5(c) and 5(d). The two algorithms show similar per-
formance to resistant packet loss. With 1% packet loss rate, both algorithms
provide an Equal Error Rate (EER) around 0.5%. Even with 10% packet loss
rate, still 18% EER is supported. Figure 5(c) shows that Nilsimsa gives better
performance than Coskun with delay jitter. The result is as we expectated, since
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Nilsimsa only takes the packet sizes as the feature, while Coskun takes not only
packet sizes, but also packet inter-arrival time. Thus, delay jitter should impact
more on Coskun algorithm. Figure 5(d) shows Nilsimsa also performs better than
Coskun to resistant truncation. The results also suggest that both of the two
algorithms are suitable candidate to detect unintentional near-duplicate SPITs.
VoIP does not work with a larger packet loss rate (e.g., usually only 1-2% packet
loss rate can be accepted for VoIP conversation). Also, 90% truncation rate for
a voice mail message record is unusual in reality. With less parameters, both
algorithms are qualified.
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Fig. 6. ROC curves for detecting intensional near-duplicate SPITs

5.4 Result to Detect Intentional Near-Duplicate SPITs

The ROC curves for intentional near-duplicate SPITs detection is shown in Fig-
ure 5. Coskun algorithm provides better performance than Nilsimsa to random
text appended of the master messages. With the adding rate 100%, the EER
of Coskun is around 3% and the one of Nilsimsa is around 18%. The two algo-
rithms show similar performance on the test for synonyms replacement of master
messages. With one word replacement on the master messages, the EERs of de-
tection are both around 20%. The EERs increase to 38% if we replace three
words as the worst case. We found that both algorithms perform terribly when
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the SPITs are near-duplicated by tuning up TTS parameters. Although the algo-
rithms perform well when the speed was tuning around ±0.01, the performance
turns worse when the speed tuning range is within ±0.1. Nilsimsa algorithm
works better than Coskun algorithm in this case, but still with 35% EER. Both
the algorithms perform terribly when the SPITs are near-duplicated by apply-
ing different accents, with around 55% EER, which means that the algorithms
totally fail to detect near-duplicated SPITs if SPITers select different speech
accent parameters in a TTS engine. In this case, a new generated SPIT will be
considered as a different one despite they are converted from the same text doc-
ument. However, the result is still acceptable for SPIT prevention if we consider
the fact that the number of supported speech accents in a TTS engine is limited:
A SPITer is unable to generate bulk SPITs, each of which is converted with a
totally different speech accent parameter.

6 Related Work

This section summarizes proposed SPIT countermeasures and near-duplicate
email spam detection. Firstly, there are several types of related work on SPIT
countermeasures:

List : It labels callers with different trust level. For instance, all calls from the
callers in a blacklist should be blocked and those from the callers in a whitelist
can be accepted. The unclassified calls from the users in a gray-list can be tem-
porarily rejected [20,21]. For instance, Skype users [14] can customize their con-
figurations to allow being called by anyone or only by the users in their buddy
lists.

Reputation: This approach prevents the calls from those callers who have low
reputation values. There are different ways to calculate reputations: For example,
Balasubramaniyan et al. [2] generate reputations for VoIP users based on the
call durations of their previous calls. It is motivated by the observation that a
legitimate user typically makes longer calls than a SPITer. Similarly, Zhang et
al. [22] use cumulative online duration to calculate the reputation value. The
less time a VoIP user is online, the less calls he/she can launch. This scheme
prevents the SPITers who register new accounts for SPITing.

Turing test : A Turing test tells whether the caller is a human or an auto-
matic SPIT generator. Markkola et al. [23] implemented a prototype of audio
CAPTCHA [14]. It says 5 random digits and requires a caller to correctly input
them for the call being processed. Soupionis et al. [24] evaluated existing audio
CAPTCHA implementations and showed most of them are vulnerable to auto-
matic analysis. To solve the problem, they proposed a new audio CAPTCHA im-
plementation including different kinds of noises (e.g., random background noise)
to prevent automatic analysis. Quittek et al. [4] proposed a hidden Turing test
based on the factor that people usually greet each other at the beginning of a
telephone conversation, which results in alternative short periods of silent and
speech. SPITers typically do not react to greeting, and then can be detected.

Decoy: SPITers need to collect a number of callee addresses as targets. Salehin
et al. [25] proposed a method to block SPITs using decoys. They first publish
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decoy VoIP addresses in the Internet in the way that a human can tell that they
are decoy addresses, but an automated harvester would not know the difference
and take them as the targets for SPITing. Ideally, a human will not hit the decoy
addresses but only SPITers. In this way, a server can identify those who hit a
decoy as SPITers.

As far as we know, there is no research on detecting near-duplicate SPIT yet.
Due to the fact that email spam bears similarities with SPIT, we introduce sev-
eral work on detecting near-duplicate email spam. Mehta et al. [26] studied a
way to detect near-duplicate image spam by using the extracted visual features
(e.g., color, texture and shape) from images. Based on the features, they build
probabilistic models of images supported by a Gaussian Mixture Model (GMM).
After all the GMMs have been learnt, they cluster similar images together by ap-
plying Jensen-Shannon divergence as the distance measure. In addition, HTML
content is available in emails and provides sufficient information about an email
layout structure. Tseng et al. [27] proposed a method to detect near-duplicate
email spam based on the similarity of HTML tag sequences. Near-duplicate
emails should have similar visual layout and thus result in similar HTML tag
sequences.

Our work, focused on near-duplicate SPIT detection in voice mailboxes, is
different with the related work above. Our approach takes the variance of packet
sizes or packet arrival times in a VoIP flow as features to generate local-sensitive
hash digest for each VoIP flow, and then compare them with known SPITs by
calculating the distance between the hash digests.

7 Conclusion

A SPITer typically launches unsolicited calling requests to a number of users and
plays a pre-recorded audio in conversations. Ideally, these SPIT flows have the
same sequence of packet sizes. In a collaborative detection framework, a server
compares a VoIP flow with a list of known SPITs: A match indicates that a
particular SPIT is probably being played at the moment. Nevertheless, various
network impairments, such as packet loss and delay jitter, accidently alter the
patterns of a SPIT flow. Moreover, a SPIT flow might be partly truncated due
to the maximum duration of a received voice mail message record. Furthermore,
an advanced SPITer may employ a text-to-speech (TTS) synthetic engine to
produce audio from a text document rather than using a pre-recorded audio.
In this way, SPITer can slightly modify the content of the document or some
configuration parameters of the TTS engine to generate near-duplicate SPITs. It
brings challenges to the SPIT detection. We investigate two local-sensitive hash
algorithms on solving the problems. The local-sensitive hash algorithms take the
packet inter-arrival time or the variation of packet size in a VoIP flow as input
and produce a binary hash digest. Different to traditional hash algorithms, they
generate hash digests within a certain distance for similar inputs. Thus we can
measure the similarity of two flows by calculating the distance between the hash
digests. The smaller of the distance, the higher probability of the incoming VoIP
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flow is a particular SPIT. Our experiments show that the two algorithms are
robust to detect the SPITs near-duplicated unintentionally, with EERs are less
than 5% if the packet loss rate, delay jitter and truncation rate are reasonable.
When a SPITer employ a TTS synthetic engine to intentionally create near-
duplicate SPITs, the detection performance is reduced. Random appending and
word replacement can increase the EER up to 18% and 40%. In addition, the
detection totally fails if SPITs are generated by applying a different speech accent
on the TTS. Nevertheless, the proposed detection method still can circumscribe
near-duplicating SPITs since the accents applied in a TTS is still limited. It is
difficult for a SPITer to apply different accent for each generated SPIT.
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Abstract. A software obfuscator transforms a program into another
executable one with the same functionality but unreadable code imple-
mentation. This paper presents an algorithm of multi-stage software ob-
fuscation method using improved virtual machine techniques. The key
idea is to iteratively obfuscate a program for many times in using differ-
ent interpretations. An improved virtual machine (VM) core is appended
to the protected program for byte-code interpretation. Adversaries will
need to crack all intermediate results in order to figure out the structure
of original code. Compared with existing obfuscators, our new obfuscator
generates the protected code which performs more efficiently, and enjoys
proven higher level security.

1 Introduction

Software obfuscation refers to transformations on the code which becomes hard
to understand while preserving all functionalities. It plays an importance role
in protecting confidential data and algorithms from reverse engineering or virus
modification [12,11,22,8]. Ideally, an adversary possessing a well-obfuscated pro-
gram should be only able to learn program input/output like a black-box access.
Due to this, software obfuscation has received many research interests for the
last ten years [3,33,28,39,21,24,2,4,10].

The challenge in software obfuscation lies in whether or not guaranteed
security and fair performance can be provided for obfuscated binary code. Specif-
ically, code security implies resistance to static analysis and even dynamic anal-
ysis, and code efficiency implies that the obfuscated code should not run much
slower than the original code. Up to now, some practical metrics for software
obfuscation have been proposed in the literature [25,21,22,27,2,9]. Meanwhile,
obfuscation on Turing machine programs with formal definitions has been re-
searched intensively as well [3,28,15,42,6,5,17,7]. Unfortunately most practical
obfuscation techniques lack a well-founded theoretical base, and thus it is un-
clear how effectively they perform. We take consideration of both practical and
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theoretical obfuscation metrics, and design our obfuscation algorithm align to
theoretical definitions in principle.

We address the challenge by presenting an algorithm of multi-stage software
obfuscation using improved virtual machine. The key idea is to obfuscate a soft-
ware for many times while each time applying different interpretations in order
to improve security. To fulfil the purpose, an improved virtual machine core
responsible for byte-code interpretation is appended to the protected software.
Under this design, an adversary must crack all intermediate results in order to
figure out the structure of original code. Compared with existing obfuscators,
our new obfuscator creates obfuscated code which performances more efficiently,
and enjoys a higher security level.

The paper is organized as follows. Section 2 introduces the related work on
software obfuscation and virtual machine. Section 3 describes our approach
in two steps: block-to-byte virtual machine and multi-stage code obfuscation.
Section 4 analyzes the security of our new software obfuscation algorithm. Sec-
tion 5 provides experimental results. Finally, Section 6 draws a conclusion.

2 Related Work

Most existing obfuscation techniques on binary code fall into three categories:

– data transformation, such as name renaming and string encryption.
– instruction transformation, which replaces binary instructions using a library

of equivalent instructions.
– control flow transformation, which transforms the graph structure of pro-

gram control flow.

Data transformation does not alter program controls. Even the encrypted data
will have to be decrypted inside the program for use. The code for decryption
again faces the attack from reverse engineering. Therefore data obfuscation is
usually applied together with other complicated obfuscation techniques to in-
crease security [26,16,35].

Control flow transformation is relatively complicated [41,18,14,30,1]. Typi-
cally a control flow flattening method puts all basic blocks into a single switch
statement which maintains whole control flow. It obfuscates the order in which
the computations are carried out, in order to stand against static analysis. How-
ever, constant propagation on the switch variable will expose the next block
to be executed. Besides, one large switch statement will generate many jumps
which decreases program performance. Opaque predicates are boolean expres-
sions whose values are known to the obfuscator but difficult for adversary to de-
duce. Junk codes are usually inserted into the dead path of an opaque predicate.
However, for the same reason as above, there still exists risk that an adversary
may figure out the value of an opaque predicate by static analysis.

Instruction transformation refers to replacement of protected binary instruc-
tion with a block of instructions which is functionally equivalent [20,19,23,29,32].
The introduced blocks representing native instruction are written as byte-codes
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into the program. Those byte-codes are often maintained by a virtual machine
integrated with the obfuscated program. In practice, instruction transformation
works well against static analysis except for runtime disassembly. However, lit-
tle theoretical work has been carried out to show guarantee on its security and
performance on obfuscated software.

Virtual machine (VM) based obfuscation recently becomes popular for soft-
ware obfuscation, and it is probably the most sophisticated in the literature
[36,34,32]. It usually integrates several obfuscation techniques including data per-
mutation, instruction institution, and control flow transformation. As a result,
VM obfuscation is fairly good against dynamic analysis in practice [40,37,31].
We observe the common way how VM obfuscator works, and summarize a gen-
eral code structure for the program before and after obfuscation as shown in
Figure 1. Generally speaking, a VM section will be appended to the original
program, and the protected binary code will be transformed to byte-code, which
is interpreted by a VM core. Finally, the entry point of the program will be
redirected into VM code. To fulfil the byte-code fetching, VM core still needs
to save all registers and flags in its own context, and to restore upon exiting
byte-code interpretation.

Classical VM obfuscators suffer two drawbacks. Firstly, they generate ob-
fuscated software which runs much slower than the original one. It is largely
because of byte-code interpretation working style [37,40]. Secondly, the security
of VM obfuscated program relies merely on an uncustomized VM core inte-
grated with program rather than each individual program. VM does not restore
byte-codes to original instructions any more. Therefore success of attacking ob-
fuscated program requires two steps: understanding VM code, and decoding
mapping between binary instructions and byte-codes. One round VM obfusca-
tion will output relatively intelligible mapping, which allows an adversary to
perform instruction level analysis, and further to reconstruct the structure of
original software [34,32].

Fig. 1. Virtual machine based obfuscation
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The existing works are promising under certain situations. However, the dan-
ger of software cracking is always changing and increasing [38,24]. Therefore we
propose a new approach on software obfuscation in next section, introducing a
more light-weighted obfuscator which generates harder understanding codes.

3 Our Approach

In this section we firstly introduce the concept of black box security, then present
new design of block-to-byte virtual machine, and describe a framework of multi-
stage code obfuscation based on improved virtual machine.

A program obfuscator is often regarded as a processor on computer programs,
which outputs a new program of the same functionality but with unreadable
code structure [28,10]. More precisely, a program obfuscator O is theoretically
defined to be a probabilistic Turing machine or Boolean circuit, which satisfies
three requirements [3]:

– (Functionality Equivalence) For every TM/circuit P and for every input
x : P (x) = O(P )(x).

– (Polynomial Slowdown) There exists a polynomial q(.) such that for every
TM/circuit P , |O(P )| ≤ q(|P |). TMs are additionally required that for every
input x, if P halts after t steps on x then O(P ) halts within q(t) steps on x.

– (Virtual Black Box) For any PPT A, there is a PPT oracle machine S and
a negligible function negl(.) such that for all TM/circuit P : |Pr[A(O(P )) =
1]− Pr[SP (1|P |) = 1]| < negl(|P |).

Although Barak et al. [3] further proved that this kind of universal black box
obfuscator does not exist, the theoretical concept is still useful in evaluating
performance of code obfuscators. In other words, a good obfuscator shall as best
as possible promise three properties: function equivalence, code efficiency, and
black box security. In light of these requirements we present our customized VM
obfuscator below.

3.1 Block-to-Byte Virtual Machine

The core of a virtual machine(VM) is a dispatcher which transforms byte-code
to an implementation of binary instructions. To adapt to the purpose of program
obfuscation, virtual machine must have byte-codes populated in and contain the
implementations of all byte-codes for the program to protect. Specifically, a
virtual machine will fetch byte-code one by one, position the target address in
its jump table, and give control to the instruction in that address. So a complete
virtual machine to be appended to the obfuscated program will be

V := {Bytecodes, Impl, Jmptable, Dispatcher}.

Classical VM obfuscator will map each binary instruction to a byte-code, to-
gether with its implementation (as described in Algorithm 1). We revise the
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design and present a block-to-byte VM obfuscation algorithm, as shown in Al-
gorithm 2. The major difference lies in that a control flow graph (CFG) of the
program is set up in prior, and then the obfuscator maps each basic block of the
graph into a byte-code based on which the obfuscation is carried out.

Input: Original program P .
Output: Obfuscated program Q.
create a virtual machine V for P ;1

V.Impl = {};2

V.Bytecodes = {};3

for binary instruction b ∈ P do4

translate b into byte-code B with implementation I(b);5

b = instruction “jump to V ”;6

I(b)’s last instruction = “jump to next to b”;7

V.Jmptable[B] = I(b);8

V.Bytecodes+ = B;9

V.Impl+ = I(b);10

end11

output P + V ;12

Algorithm 1. Classical VM based obfuscation

Input: Original program P .
Output: Obfuscated program Q.
construct control flow graph, CFG(G);1

create a virtual machine V for P ;2

V.Impl = {};3

V.Bytecodes = {};4

for block BL ∈ CFG(P ) do5

translate BL into byte-code B with I(BL) =
∑

b∈BL I(b);6

BL’s first instruction = “jump to V ”;7

I(BL)’s last instruction = “jump to last of BL”;8

V.Jmptable[B] = I(BL);9

V.Bytecodes+ = B;10

V.Impl+ = I(BL);11

end12

output P + V ;13

Algorithm 2. Block-to-byte VM based obfuscation

Figure 2 shows the format for binary instructions and VM byte-codes respec-
tively. It also gives an example how a binary instruction was transformed into
byte-code together with an implementation.

VM dispatcher works on stack based style: it saves registers for native code
and create own VM stack. The return value of last execution for each byte-code
was saved in VM registers (var RegEip and var RegDI in Figure 3) for next byte-
code execution. VM dispatcher then obtains the target address by searching a
jump table using byte-code as index. Target address is the location that current
instruction will transfer to. VM obfuscator retrieves all target addresses of the
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Fig. 2. Format of VM byte-code instruction and an example of implementation

original program in four different ways: for direct jump, target address is specified
in the original instruction; for conditional jump, there are two target addresses
with a predicate; for call instruction, one target address is set for called function,
and another one for return address; and for return instruction, target address is
stored on the stack.

3.2 Multi-staged Code Obfuscation

In this section we extend the technique of block-to-byte virtual machine to a
multi-stage obfuscation. The idea of multi-stage obfuscation algorithm is de-
scribed as follows. Given an original program P , we choose a random number n

Fig. 3. VM byte-codes are executed by a dispatcher
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to be the number of obfuscation stages, a one-way function f , and an obfuscation
function Obf . Then we calculate multiple copies {P0, P1, ..., Pn} of the program
together with the keys {K0, K1, ..., Kn} for each obfuscation stage, as shown in
Figure 4.

We iteratively obfuscate program P for n times. The obfuscation key Ki is
generated from each intermediate program Pi of the previous obfuscation stage,
and Ki is again applied to Pi to compute Pi+1.

Ki = f(Pi),
Pi+1 = Obf(Pi, Ki).

The function f maps any program into a key in binary string, satisfying that: f
must have one-way hardness, and the output key can characterize the program.
The examples of this type of function include: MD5 hash value of program where
the program is feed as data, or the number of nodes in program’s control flowgraph.

Fig. 4. The multi-stage obfuscation algorithm. Pn is output

The obfuscation of program requires to hide program’s data and/or control
flow while preserving all the functionalities. In other words, each copy Pi of
the program must be executable and function normally. Our idea is to extract
all jmp/jcc/call points of P , and transform such information into a jump ta-
ble. Then the jump table is obfuscated given a particular K and some dummy
codes. Original program P is thus modified accordingly to jump table to preserve
correct control. In other words, a separate hidden jump table will take control
over program’s running. Adversaries need to crack all intermediate obfuscated
programs in order to recover original code’s control flow.

For intra-block instructions or a single instruction, we use a revised tree struc-
ture to describe the whole process of multi-stage obfuscation. In this tree struc-
ture, each node represents a list of binary instructions (as shown in example
of Figure 5). The root node x1 refers to only one binary instruction, denoted
by a circle. It links to its three children, V1, V2, V3, which are different imple-
mentations of x1. The children are called byte-codes, drawn in rectangles. Each
byte-code, e.g. V1, contains a list of binary instructions, e.g. y1 → y2 → y3.
In Stage-1 obfuscation, x1 is assumed to be mapped into byte-code V2; further
in Stage-2, y4 and y5 of V2 are mapped into V5 and V6 respectively. The path
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Fig. 5. Tree structure used in multi-stage obfuscation

selection from an earlier stage to next stage is determined by Ki. In the example
case, a formal induction of resulted code would be

x1 = V2

= y4 → y5

= V5 → V6

= (z3 → z4 → z5) → (z6 → z7)
= z3 → z4 → z5 → z6 → z7.

4 Security Analysis

This section analyzes the security of multi-stage obfuscated program in two as-
pects: code efficiency and black box security. Specifically we strengthen the black
box security by introducing code polymorphism during multi-stage obfuscation,
and improve the code efficiency by removing unnecessary jump instructions dur-
ing block-to-byte VM obfuscation.

4.1 Multi-stage Polymorphism

Polymorphism refers to that one binary instruction could have many byte-code
interpretation with equivalent function. It is often used in code obfuscation to
improve the difficulty in reversing program to original status.

When one instruction was obfuscated over twice, the mapping relationships
from binary to byte codes become unrecognizable, due to many possible instruc-
tion combinations. Given an instruction sequence z3 → z4 → z5 → z6 → z7,
an adversary needs to separate them into byte-codes to understand the original
program structure. In other words, one cannot easily split a sequence of instruc-
tions into correct {V5, V6}, and further obtain byte code V2 which refers to x in
first stage. Generally speaking, the fan-out width W of each binary node and
the block size L of byte-code node for each stage determine the obfuscation com-
plexity. In addition, the number n of stages is randomly chosen to control the
complexity. The complexity of guessing increases exponentially with the num-
ber of stages. In this sense, multi-stage polymorphism makes the obfuscation of
software more secure than the one obfuscated by single VM obfuscation. This
claim is proved in Theorem 1.
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Theorem 1. An n-stage polymorphism tree provides C(n) possible implemen-
tations for root node given constant W and L, where C(n) = WLn−1+...+L+1.

Proof. Use mathematical induction. When n = 1, root node links to W children
which are all available choices. So C(1) = W satisfies the equation. Assume
C(k) = WLk−1+...+L+1, and consider the case when n = k + 1. Firstly we notice
that the number of choices owned by a binary component of each stage-1 node
is C(k). Since each node has L components, there will be C(k)L choices for
solution passing through this node. Secondly we notice that the root node can
choose path from its W children. So the total possible paths will be

C(k + 1) = W ∗ C(k)L

= W ∗ (WLk−1+...+L+1)L

= W ∗ (WLk+...+L2+L)

= WLk+...+L2+L+1,

which completes the proof. �

4.2 Improved Execution Efficiency

The classical VM obfuscator transforms protected code into byte-codes. The
resulted obfuscated program then interprets byte-codes sequentially, and runs
the implementation of byte-codes accordingly. However, the program control
will be unconditionally switched to VM dispatcher every time when one byte-
code interpretation is completed. The number of jmps inserted for byte-code
interpretation is proportional to the number of binary instructions. It is well
known that the jump operations block the instruction streamline for execution.

In contrast, our block-to-byte VM obfuscation chooses a “basic block” to exe-
cute before jumping back to VM dispatcher. There will be no new jmp/jcc/call
instruction inserted inside one basic block. The obfuscated program only needs
to interpret bytes representing basic blocks and follows the original control flow
of the program. So the number of jmps inserted for byte-code interpretation is
only proportional to the number of nodes in program control flow graph. By
interpreting a block of instructions into only one byte-code, our multi-stage VM
obfuscator is able to reduce those unnecessary jumps during code obfuscation.

The number of jmp instructions in the program plays a heavy part in slowing
down the program execution time. Given an average block size L of control flow
graph of the program, our block-to-byte VM obfuscator will generate only 1

L the
number of jmp instructions by the classical one.

5 Experiments

The testing experiment on our multi-stage VM obfuscation module was carried out
on WinXP 2.4GHzCPUand 1GRAM platform. Ademo of obfuscation out is given
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in Appendix A. Three parameters are take into consideration: structure of con-
trol flow graph, program size, and running time of obfuscated program. We adopt
IDApro [13], a disassembly tool to facilitate view on IA-32 executables. VMprotect
[40], a popular VM obfuscation software, was chosen for empirical comparison.

5.1 Control Flow Graph

The complexity of a program’s control flow graph reflects program intelligibility
to certain extent. We capture the number of nodes and edges in graph as an indi-
cator of graph complexity. Accordingly, the obfuscation level is hereafter defined
as the ratio of number of nodes or edges in CFG before and after obfuscation.
Table 1 presents the obfuscation level for programs using multi-stage VM obfus-
cation. It implies that the control flow graph becomes interleaved which leads to
high obfuscation level of program.

Table 1. The number of nodes and edges of control flow graph before and after
obfuscation

Program
Original Obfuscated Obfuscation Level

#nodes,N #edges,E #nodes,N2 #edges,E2 N2/N E2/E

md5 437 164 581 353 1.33 2.15
calc 458 175 746 308 1.63 1.76
draw 397 96 1439 258 3.62 2.69
crc32 151 47 354 125 2.34 2.66
aes 1908 517 3465 1392 1.82 2.70

5.2 Program Size

Program size is measured in two parameters: the number of instructions, and
the size of program sections in bytes. Table 2 shows the program size of several
programs before and after obfuscation. It tells that the number of instructions
will normally increase at least four times after obfuscation, which implies the
slowdown of obfuscated program.

5.3 Running Time

Table 3 provides the execution time of several x86 programs on average of 10000
times. It shows that our block obfuscator generates more efficient obfuscated

Table 2. Program size before and after obfuscation

Program
Original Obfuscated Increment Factor

#instr, I bytes #instr, I2 bytes I2/I

md5 675 1776 2837 9456 4.20
calc 485 825 2051 9559 4.23
draw 983 2109 8012 2935 8.15
crc32 231 583 1143 5665 4.95
aes 12302 32369 77748 314572 6.32
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Table 3. Execution time (secs) of obfuscated programs

Program
Original VMprotect BlockVM MultiBlockVM(n = 2) Slowdown

T T0 T1 T2 T2/T

md5 0.34 3.85 2.67 6.03 17.73
calc 0.12 3.40 2.34 8.73 72.75
draw 0.58 6.81 6.21 15.95 27.50
crc32 0.15 2.54 2.31 8.59 57.27
aes 0.23 4.59 5.43 11.15 48.48

code than classical VM obfuscator in one stage. However when given multi-stage
obfuscation, the execution time of obfuscated program increases quickly due to
more complicated obfuscation.

6 Conclusion

We have presented a new method to obfuscate code in multiple stages to protect
software from reverse engineering. The key idea is to implement a block-to-byte
virtual machine to interpret byte-codes, while modifying program structure itera-
tively. Block obfuscation hides the binary details into byte-codes while improving
the program execution efficiency; multi-stage obfuscation hides the control flow
of program in a more complicated level by using a polymorphism tree. Literally,
an adversary will have to decode all n variants of program to obtain the struc-
ture of original program. Meanwhile compared with classical byte-code virtual
machine obfuscation, block obfuscation makes the program run more efficiently
by removing unnecessary jump instructions.
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A Sample Output of Obfuscation

A function named modexp is to be obfuscated:

// modular exponentiation = base^exp % mod
int modexp (int base, int exp, int mod)
{

int c = 1, expNum = 0;
do
{

expNum++;
c = (base * c) % mod;

}
while (expNum < exp);
return c;

}

Fig. 6. CFG of obfuscated modexp function
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Abstract. Cryptographic algorithms are widely used inside software
for data security and integrity. The search of cryptographic data (in-
clude algorithms, input-output data and intermediated states of opera-
tion) is important to security analysis. However, various implementations
of cryptographic algorithms lead the automatic detection and analysis
to be very hard. This paper proposes a novel automatic cryptographic
data detection and analysis approach. This approach is based on execu-
tion tracing and data pattern extraction techniques, searching the data
pattern of cryptographic algorithms, and automatically extracting de-
tected Cryptographic algorithms and input-output data. We implement
and evaluate our approach, and the result shows our approach can de-
tect and extract common symmetric ciphers and hash functions in most
kinds of programs with accuracy, effectiveness and universality.
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1 Introduction

The use of cryptographic algorithms to protect private information is common in
software. Software dealing with huge amount of data such as Archive and com-
pression tools, Disk encryption tools, Instant Messengers often use symmetric
ciphers and hash functions to encrypt, decrypt and verify the data.

In practice, the complexity of binary program understanding makes analysts
hard to identify which ciphers are inside the software, even only standard algo-
rithms such as the AES, RC4 or SHA-1 are used. What’s more, many programs
achieve security through obfuscation. For instance, SkyPE uses RC4 algorithm
while obfuscating it so that analysts spent years to understand[5]. It is important
to develop automatic techniques for the analysts to detect specific cryptographic
algorithms before security analysis.

Compared to the theoretical analysis of cryptographic algorithms, the anal-
ysis of the implementation is at most a craft rather than a science [12] [8] [9].
The main difficult is that the implementations of one algorithm might be var-
ious even if the mathematical abstraction is the same. For instance, the AES
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takes different implementations on 8-bit platform and 32-bit platform. Many
cryptography libraries also use loop unwinding to optimize the algorithms and
yet change the form of implementations. Malicious program even modifies or
obfuscates the code, trying to fail the analysis. How to identify cryptographic
algorithm inside program accurately and effectively is still an open problem that
the existing tools cannot solve perfectly.

In this paper, we take the first leap toward cryptographic data detection and
analysis based on the data pattern. To the best of our knowledge, all existing
cryptographic algorithm identification techniques focus on program analysis or
memory dump analysis [11] [6]. These techniques try to recover the abstract
structure of algorithms inside programs or dumped memory and judge the exis-
tence of certain ciphers. Our approach, however, observes the data feature and
dependency of specific ciphers during runtime information. We do program trac-
ing first and conduct data analysis to extract the so called data pattern, which is
the input-output of certain instruction collection. The pattern gives the analyst
clues to quickly detect and understand the encryption process of the program.
We implement an analysis system to achieve the goal of automatic identification,
and the results show that our system can not only detect symmetric ciphers and
hash functions in most kinds of programs with high accuracy, but could also
extract cryptographic parameters such as expanded round key automatically.

The approach we proposed is able to reduce manual work significantly in
debugging, forensic analysis and reverse engineering. Furthermore, the universal
model we adopted is expected to be applied to different implementations of the
same cipher regardless of the programming language.

2 Background and Related Work

Identification of cryptographic algorithm and data is an important yet seldom
discussed topic in program analysis research. State of the art tools and tech-
niques for cryptographic algorithm identification are divided into static based
and dynamic based. In this section we summarize existing works and discuss
their inadequacy.

2.1 Static Analysis Based Approaches

Static analysis based cipher identification is the most widely used technique.
Many tools have been developed to help analyzing such as Krypto Analyzer
(KANAL) and SnD Crypto Scanner. The key step of static analysis is to parse
binary or source code of the program and try to find unique pattern of spe-
cific ciphers. Static analysis based approaches strongly rely on signatures, which
are often the constant values related to certain ciphers or specific instruction
sequence related to certain version of cryptographic libraries. The static based
approaches have many defects. First, they often rely on pre-build signature li-
braries, and detection fails when the signature changes with software updating
or code re-compile. Second, they cannot deal with packed programs because the
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normal code is compressed or encrypted before execution. Finally, static anal-
ysis based approaches only detect the existence of ciphers, but cannot analyze
particular encryption and decryption data.

2.2 Dynamic Analysis Based Approaches

Dynamic analysis of software is the hot topic of security analysis in recent years
especially using emulation technique or program instrumentation. Although
many approaches and tools have been developed to do universal analysis[2]
[4], Felix Gröbert’s work[7] is the first significant dynamic analysis focusing on
cipher identification. His work uses PIN tools[10] to dynamic trace the pro-
gram, and then mixes signature based searching with simple memory recon-
struction and searching. However, the model adopted by [7] takes advantage
of many observation. For instance, the proposed signature-based and generic
bitwise-arithmetic/loop based identification methods are all based on signatures
or unique tuples, which are not so dynamic and universal. The only general
identification method in [7] is generic memory-based identification method. The
method is focused on memory data and uses verifiers to confirm an XOR encryp-
tion or a relation- ship between the input and output of a permutation box. A set
of possible key, plaintext, and ciphertext candidates are passed to a reference im-
plementation of the particular algorithm. If the output of the algorithm matches
the output in memory, the verifier has successfully identified an instance of the
algorithm including its parameters. Although this method exploits relationship
between plaintext and ciphertext, many potential information is ignored. On
the other hand, in digital forensic research, novel methods for cryptographic key
identification in RAM are proposed[11] which relies on the property that the
keys in memory is far more structured than previously believed.

In this paper we combine the dynamic analysis with structured key data.
First we define the input-output of certain instruction collection as data pattern,
then using the concept of data pattern we can easily analyze the uniqueness of
cryptography algorithms by exploit details about the algorithms. For instance,
according to the key concept of Symmetric ciphers - pseudorandomness, we can
search and find the pseudorandom data pattern and test if the data pattern
correspond to certain Symmetric ciphers.

3 Cryptographic Data Pattern Analysis

Our goal is to automatically detect cryptographic data, which includes the exe-
cuted instructions of cryptographic primitives, encrypted data and secret keys.
The main idea is to analyze a program’s runtime data[1] rather than instructions
and generate some data patterns matching to certain cryptographic primitives.

Although the mathematical definition of cryptographic primitives are deter-
minate, the implementations of the same cryptographic algorithm can be quite
different. For example, real-world programs may use optimizations like table
lookup to speed up the cryptographic algorithms(e.g., AES fast implementa-
tion). Common cryptographic libraries such as OpenSSL and Crypto++ also
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take different approaches to implement the same algorithm. Programmers may
even have their custom implementations. What’s more, code obfuscation is often
used to protect software, which makes the obfuscated code extremely difficult
to analyze. However, we discovered that the input and output data must fulfill
certain relations for deterministic algorithms. That is, if the input is given, there
should be only one single possible output to a deterministic algorithm. By veri-
fying if the input and output data match the pattern of a certain algorithm, we
can say that a program execution contains the data characteristics of a certain
algorithm with high credibility. Even if the program is obfuscated, the input and
output data has to be present in the program execution data, which can be then
analyzed regardless how the data is processed.

Because the size of traced data is usually very large, we have to determine
the data sampling points. We found that modern computer programs are highly
structured. The control flow of a traced program tells us how a program is
executed. Although instructions are not important to data analysis, they help
to build up high-level structures of traced programs. In our analysis, we have
four levels of data representations during the analyzing process. The structure
of these high-level representations are shown in Figure 1.

Fig. 1. Data Representations

Instruction-Data Unit. An Instruction-Data Unit is the basic unit of program
tracing. It contains the instruction binary data, register values, linear address,
memory access information, etc. A traced file usually contains millions of
Instruction-Data Units.

Dynamic Basic Block. A Dynamic Basic Block(Dynamic BBL) contains a se-
quence of instructions to form a fixed group which has only one entering and
one exiting instruction. The Dynamic Basic Block Generation algorithm is a
little different than static ones, because we have to determine the control flow
according to the actual traced result.

Code Block. A Code Block(CBL) consists of a sequence of continuous Dynamic
BBLs that are executed without calling other functions. That is, a new CBL is
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generated when a call instruction is executed. Code Blocks are used to construct
the Call Hierarchy of a function.

Call Hierarchy. A Call Hierarchy of a traced program is a recursive structure of
Code Blocks, represented by a Code Block List(CBL List). A CBL List contains
a single function call, which may call other functions during its execution, thus
a CBL List may contain other CBL Lists to build up the recursive structure of
a function call.

3.1 Data Patterns

Based on the concept of Instruction-Data Flow, the analyst could extract Inter-
mediate Data State at any arbitrary time of execution. The Intermediate Data
State contains the virtual memory state after certain instructions are executed.
As mentioned earlier, we made the assumption that the parameters of crypto-
graphic primitives must appear in memory during its execution. Our goal is to
verify the existence of cryptographic algorithms by examining if the input and
output parameters which match a certain pattern are contained in memory, and
therefore we can extract the parameters.

A data pattern are defined as the mathematical relationship between the
input and output data of a particular cryptographic algorithm. We know that for
deterministic algorithms, output data is determined once the input data is given.
This pattern is the key feature that is used in our analysis. It is unnecessary to
know specifically how an algorithm is implemented in the target program; all we
have to do is to verify the relationships between input and output data using our
own implementation. Basically, the data pattern for any cryptographic algorithm
is unique and concrete, therefore it can be used as a signature of algorithms in
our analysis.

Dynamic Data Patterns. A dynamic data pattern is a group of data that
matches one or more data templates at runtime. Dynamic data patterns must
be verified at runtime, because the content of data cannot be pre-defined. Some
examples of dynamic data patterns are:

– Feistel cipher
Feistel cipher encryption takes plaintext and a group of keys as input, and
ciphertext as output. Here the plaintext, ciphertext and keys are not pre-
defined, but can be verified during runtime. We describe the Feistel cipher
encryption calculation as F (pt, k), which takes the plaintext(pt) and keys(k)
as input parameters, and outputs the ciphertext(ct). By dynamically verifing
if pt, k and ct satisfy ct = F (pt, k), we can verify the existence of the data
pattern of Feistel cipher encryption.

– Rijndael key expansion
Rijndael key expansion is used to expand a short key into a group of separate
round keys. Also, neither the input key nor the expanded keys can be pre-
defined.
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– RC4 key scheduling
Similar to Rijndael key expansion, the input and output of RC4 key schedul-
ing is unknown until runtime.

Static Data Patterns. Unlike dynamic data patterns, static data patterns
can be pre-defined. They can be simply a block of data with known content.
A good example of static data patterns is the 256-byte S-box and inverse S-
box for AES. Their content is pre-determined and usually directly appear in
memory. Another example is the constants in hash functions such as SHA-1.
In our analysis, we do not directly use constant signatures as direct evidence
of existence of cryptographic algorithms, but they can be used to locate the
cryptographic routines.

Data Element Formats. The Intermediate Data State of a program trace at
any arbitrary time consists of a group of memory chunks. A memory chunk is a
block of memory that is continuous in its linear address, demonstrated in Figure
2. Data elements are extracted from these memory chunks. There are three kinds
of data elements in our analysis:

– Fixed length. For example, a 128-bit memory chunk containing a block of
AES plaintext.

– Variable length. For example, the expanded key in RC4 can be either 256
bits(8-bit each element) or 1024 bits (32-bit each element).

– Arbitrary length. For example, the input key in Blowfish can be from 1 bit
to 448 bits.

Fig. 2. Memory Chunk

Another thing we should pay attention to is that data elements are usually
aligned. In x86 architecture, a block of memory usually has a 32-bit alignment
to get maximum performance. So we treat alignment as another property for
data elements.

4 Implementation

Our whole program analysis system consists of two parts: the front end is a
tracing engine called Fochs, and the back end is a program analyzer called Lochs.
A system architecture overview is shown in Figure 3.

To conduct an analysis, the testing programs are first executed in Fochs pro-
gram tracer. The trace is done manually, and its result is saved to trace database
for analysis. Then traced data is analyzed in Lochs program analyzer, where
possible cryptographic algorithms are examined. After the analysis, a report is
generated with the analysis results.
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Fig. 3. System Architecture Overview

4.1 Fochs: Data Tracing System

The data tracing system we use is the digital forensic analyzer called Fochs. Fochs
is based on the open-source Bochs x86 PC emulator[3]. The reason why we choose
Bochs is that Bochs performs full-system emulation, and we can conveniently
access the CPU status and memory status. We modifies Bochs so that it can trace
program execution including its context, and save the trace result for further
analysis. The structure of Fochs is shown in Figure 4.

Fig. 4. Fochs program tracer

To get a valid and usable trace result, there are three major problems we
should solve: what context data should be traced during program execution,
which instructions should be traced, and how can we pick the process we want
to trace in a multi-process environment. We analyzed our requirements and came
up with solutions to these problems.

Execution Context. To get a valid program trace result, we have to log the
register values and memory accesses for each instruction. We figured that only
the register values before each instruction execution are necessary for our anal-
ysis, so only the values of general purpose registers before each instruction ex-
ecution are traced. We also found that in common cases, each instruction has
at most one memory reading and one memory writing in the current x86 ar-
chitecture, thus one memory reading and writing is traced for each instruction.
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Another important value is the linear address of each instruction, which is the
Instruction Pointer register value. Also the instruction binary code is traced for
disassembling.

Some repeat speedup instructions may have multiple memory accesses in a
single instruction execution. In our implementation of Fochs, we trace the in-
struction whenever it has more than one memory access of the same type (read-
ing/writing), acting like a single instruction executed multiple times. We also
disabled the MMX and SSE instructions so that no more than 32-bit size of
memory can be access during one cycle of instruction execution.

Instruction Filtering. If we trace every instruction that CPU executes, the
result would be tremendous. We have to eliminate the number of instruction
traced to focus on the instructions that contain our analyzing target. We do
instruction filtering primarily based on the linear address. In Windows operating
system, user space and kernel space are separated, where user space is in low
address and kernel space is in high address. The address where an executable is
loaded into memory can be easily found using any PE analysis tool or debugger.
We limit the linear address that we trace to the bounds of the traced executables,
and in this way we are able to ignore the unnecessary OS execution code such
as process scheduling, and unnecessary user-space DLLs are also ignored. A
configuration module is used to provide different configurations to trace different
programs.

There are also times that only the instructions with memory accesses should
be traced, because our analysis is based on memory data, and those instructions
that have no memory access can be ignored. However, we still have to keep the
branch instructions to build high-level representations such as Code Blocks and
Call Hierarchy.

Process Tracking. Another critical feature that should be provided by the
tracer is that only one single process is traced in a multi-process environment.
In Windows operating systems, each process has a unique CR3 register value.
CR3 register is used to locate page directory address for the current process. We
track a process by filtering the CR3 register value: first, the entry address for
each executable is manually obtained, and then whenever CPU runs to the entry
point, the current CR3 register value is saved, which is the unique value for the
desired process. In this way, we can successfully get rid of the interference of
other unrelated processes.

By instruction filtering and process tracking, the trace can be focused on a
single process. But still, the number of traced instructions can be quite large,
usually 106 (100MB data) to 107 (1GB data). So the traced result has to be
saved to disk for further analysis.

4.2 Lochs: Data Analysis System

The back end of our program analyzing system is called Lochs. Lochs analyzes
cryptographic primitives of the traced results of Fochs automatically. There are
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three stages of data analysis. First, Lochs constructs high-level structures of
the traces, including Dynamic Basic Blocks, Code Blocks and Call Hierarchies;
and then, data reduction is performed to eliminate the unnecessary data to
be analyzed; at last, Lochs does template verifications on the selected data to
examine cryptographic algorithms and their parameters. The structure of Lochs
is shown in Figure 5.

Fig. 5. Lochs program analyzer

High-Level Representations. Before data analysis, we have to extract data
from the traces first. The points where Intermediate Data States are sampled are
critical to our analysis, because we have to select the points where cryptographic
data is most likely to appear. We may sample memory data at each instruction
trace, but this is obviously impossible to analyze for common traces that con-
tain 107 instructions. To solve this problem, we first construct high-level rep-
resentations for the traces. Three levels of data representation are constructed:
Dynamic Basic Blocks, Code Blocks and Call Hierarchies(CBL Lists). The al-
gorithms to build these high-levels are mentioned earlier. These representations
are constructed only once and then serialized to or deserialized from disk for
future uses.

In the first stage of analysis, trace results are converted from binary data
to CBL Lists. These CBL Lists are passed on to the second stage for further
processing.

Heuristic Data Reduction. A complete trace of a program often contains
huge amount of data unrelated to cryptography, even though these data is pre-
filtered in the tracing process. These unrelated data may include program ini-
tialization, GUI operations, user input handling, error handling, etc. Therefore,
a highly-optimized data reduction is performed in the second stage to reduce
analysis time. After Call Hierarchies are constructed, heuristic data reductions
are conducted on these Call Hierarchies which are represented by CBL Lists.
Currently we have mainly three kinds of data reduction methods.

– CBL List Depth
Functions that contain cryptographic primitives usually have a lower depth.
That is, these functions usually have a single purpose, and they are less
likely to call other functions because of performance issues. Therefore, cryp-
tographic functions are most likely to appear in the inner CBL Lists, which
have a low depth value.
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During the data reduction procedure, we first filter the CBL Lists accord-
ing to their depth value. A threshold of depth 6 is reasonable to most of the
analysis.

– Exclusive-OR Instructions
Through observations to cryptographic algorithms, the exclusive-or oper-
ation is heavily used. The second data reduction method is based on the
idea that cryptographic functions should contain a certain percentage of
exclusive-or instructions. This heuristic method is applicable because we
can safely judge that a function contains no cryptographic primitives if it
has no exclusive-or operations.

– Characteristic Constants
Many cryptographic algorithms and their implementations contain charac-
teristic constants. For example, in the fast implementation of AES, a 1k-size
lookup table is commonly used; in hash functions like MD5 and SHA-1, sev-
eral pre-defined constants are quite unique and must be used. These charac-
teristics are used to filter CBL Lists for a specific algorithm, and those CBL
Lists where characteristic constants appear are analyzed first.

Through data reduction, usually more than 90% of total data can be reduced.
The reduced data is then passed to algorithm detectors to test if it contains a
specific data pattern.

Data Verification. In the final stage of analysis, data is extracted from their
high-level representations, and algorithm verifiers verify the extracted data to
test if it satisfies a certain data pattern. Based on our earlier observation that
program functionalities are implemented in the unit of functions, data analysis
is conducted on Call Hierarchies. A Call Hierarchy is the representation of an
entire function call, including its data. We compute the input and output for each
function call, and verify if these data matches any data pattern of cryptographic
algorithms.

First, for each CBL List l, we compute its input data IN(l) and output data
OUT (l). Data exists in format of continuous memory chunks, which may contain
cryptographic parameters.

Then, for a specific cryptographic algorithm, its data format is pre-defined.
Possible data element combinations are extracted recursively, and passed to ver-
ifiers to test cryptographic algorithm existence and extract parameters.

At last, the verifier receives data elements, and test if they satisfy a pre-
defined pattern. Each verifier implements a reference algorithm. This algorithm
can be quite simple (testing constant existence), or rather complicated (AES
block encryption). If a group of data elements matches a pre-defined pattern,
the parameters are extracted from the data elements, and the detection pro-
cedure is successful. We can expand the usage of our system by implementing
more reference algorithms, and add them to the Reference Algorithms mod-
ule in Lochs, as shown in Figure 5. The extensibility of our analysis system is
guaranteed by its modular architecture.
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5 Evaluation

We do our experiments using real-world applications as well as custom programs.
There are five kinds of testing programs:

– Compression tools, including RAR 3.93 (AES encryption, SHA-1 hashing)
and FreeArc 0.666 (Blowfish encryption)

– File encryption tools, including AES Crypt 3.08 (AES file encryption) and
TrueCrypt 7.0a (disk formatting using AES encryption)

– Cryptography softwares, including Putty 0.60 (login sessions with AES/
Blowfish encryption) and KeePass Password Safe 1.19b (password database
saving)

– Custom programs with different implementations, including AES-OpenSSL
(AES 128-bit and 256-bit block cipher), AES-OpenSSL-CBC (AES CBC
mode cipher), MD5-OpenSSL (MD5 message digest), SHA1-OpenSSL (SHA-
1 message digest), AES-Custom-Impl (a custom implementation of AES),
RC4-OpenSSL (RC4 cipher), RC4-Custom-Impl1 (a custom implementation
of RC4) and RC4-Custom-Impl2 (another different custom implementation
of RC4).

– Custom programs obfuscated by VMProtect and Themida, including custom
programs with AES, RC4, SHA-1 OpenSSL implementations that both the
executable and OpenSSL libraries(libeay32.dll, ssleay32.dll) are obfuscated
by VMProtect, and a custom program with AES OpenSSL implementation
that only the executable is obfuscated by Themida and the OpenSSL libraries
are original.

We implemented 8 reference algorithms, which are: AES 128-bit key expan-
sion/block cipher, AES 256-bit key expansion/block cipher, Blowfish key schedul-
ing, RC4 key scheduling, MD5 message digest and SHA-1 message digest. The
block ciphers take a block of data and a group of expanded keys as input, and
a block of data as output. The key expansions and key schedulings take a short
key as input, and an expanded key as output. And the message digests take a
block of data and an input message digest as input, and an updated message
digest as output.

We run all of the reference algorithms on each of the traces of test programs.
The testing results and performance analysis are shown in the following sections.

5.1 Accuracy

We successfully discovered the existing pre-known algorithms in all of the test-
ing programs, and extracted the parameters including AES keys, plaintexts and
ciphertexts, Blowfish keys, RC4 keys, MD5 input data and SHA-1 input data.
There are some flaws that we failed to discover AES block cipher in Putty AES
encrypted login session, and the AES block cipher in our custom implementa-
tion of AES. We also found a previously unknown SHA-1 algorithm in the first
custom implementation of RC4. We also successfully discovered the underlying
algorithms as well as the plaintexts, ciphertexts and secret keys in programs
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obfuscated by VMProtect[14] and Themida[13], and the analysis results are the
same as the results without code obfuscation. The analysis results of testing
programs are shown in Table 1.

Table 1. The Test Results

algorithm(s) key expansion/key scheduling

RAR 0 SHA-1
RAR 1 AES(128-bit) encryption AES-128 Key Expansion
FreeArc - Blowfish Key Scheduling
AES Crypt AES(256-bit) encryption AES-256 Key Expansion
TrueCrypt - AES-256 Key Expansion
Putty(AES) - AES-256 Key Expansion
Putty(Blowfish) - Blowfish Key Scheduling
KeePass AES AES(256-bit) encryption AES-256 Key Expansion
AES128-OpenSSL-ECB AES(128-bit) encryption AES-128 Key Expansion
AES256-OpenSSL-ECB AES(256-bit) encryption AES-256 Key Expansion
AES128-OpenSSL-CBC AES(128-bit) encryption AES-128 Key Expansion
AES-Custom-Impl AES(128-bit) encryption AES-128 Key Expansion
RC4-OpenSSL RC4 - RC4 Key Scheduling
RC4-Custom-Impl1 - RC4 Key Scheduling
RC4-Custom-Impl2 - RC4 Key Scheduling
MD5-OpenSSL MD5 -
SHA1-OpenSSL SHA1 -
AES128-VMProtect AES(128-bit) encryption AES-128 Key Expansion
AES256-VMProtect AES(256-bit) encryption AES-256 Key Expansion
RC4-VMProtect - RC4 Key Scheduling
SHA1-VMProtect SHA1 -
AES256-Themida AES(256-bit) encryption AES-256 Key Expansion

It’s shown that our approach can successfully identify the same algorithm with
different implementations. For example, one of the two custom implemented ver-
sions of RC4 uses a 32-bit memory to store an 8-bit value, while the other uses an
8-bit memory. Another example is that we use a regular implementation of AES
as well as a fast implementation, which has optimizations such as table lookup.
Our analysis doesn’t rely on a specific implementation of a certain algorithm, so
both implementations are successfully identified.

Real-world softwares may have countermeasures against this analysis method.
For example, continuous memory chunks can be broken into smaller chunks to
avoid matching a certain data pattern. However, these countermeasures require
specific programming, and we did not find any software that uses such a counter-
measure. To cope with these countermeasures, we can use non-perfect matching
such as fuzzy matching, which gives a high possibility of the existence of certain
algorithms.

False negatives may occur if the software contain countermeasures against this
method. In our evaluation, 2 cases only identified AES key expansion process
but not the AES encryption. One of the possible reasons is that our analysis
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optimization ignored deeper function calls which contain the encryption pro-
cess. We can refine the optimization stage to resolve this issue. Because of the
uniqueness of cryptographic data, false positives can be very rare. Real-world
softwares hardly contain cryptographic data in both the input and output of a
function call, which actually has no cryptographic primitive. We found no false
positives during our analysis.

These test results demonstrated that our analysis is successful, in both real-
world applications and custom implemented programs, and can be used to ana-
lyze obfuscated code.

5.2 Performance

The tracing process is usually manually operated, and the tracing time is trivial
and can be ignored. The later analyzing process is fully automated, and the time
of each analyzing stage is recorded and listed below, where Stage 1 represents the
construction of high-level representations(Dynamic BBL, CBL, and CBL List),
and the algorithm names represent time used to analyze each algorithm.

The performance evaluation is shown in Table 2, including the total number
of instructions and file size of each trace, the analysis speed (in instructions per
second), time used for each stage and algorithm, and the total time used. The
results show that the average file size is about 500MB(5M instructions), the

Table 2. Performance

Instructions Size Speed (instrs/sec) Total Time

RAR 0 919k 77MB 19.4k 47s
RAR 1 1,359k 114MB 9.6k 2m22s
FreeArc 7,786k 653MB 34.6k 3m45s
AES Crypt 2,396k 201MB 14.1k 2m50s
TrueCrypt 12,800k 1,074MB 15.0k 14m11s
Putty (AES) 3,651k 306MB 14.5k 4m11s
Putty (Blowfish) 7,297k 612MB 18.2k 6m42s
KeePass 9,005k 755MB 22.5k 6m40s
AES-OpenSSL-128 5k 467KB 9.2k < 1s
AES-OpenSSL-256 6k 500KB 7.9k < 1s
AES-OpenSSL-CBC 6k 510KB 20.3k < 1s
AES-Custom-Impl 11,294k 947MB 17.7k 10m36s
RC4-OpenSSL 10k 840KB 14.5k < 1s
RC4-Custom-Impl1 298k 25MB 36.3k 8s
RC4-Custom-Impl2 10,078k 845MB 16.5k 10m13s
MD5-OpenSSL 4k 383KB 16.8k < 1s
SHA1-OpenSSL 5k 465KB 23.7k < 1s
AES128-VMProtect 6k 549KB 20.9k < 1s
AES256-VMProtect 7k 581KB 6.6k 1s
RC4-VMProtect 10k 869KB 21.8k < 1s
SHA1-VMProtect 7k 619KB 31.2k < 1s
AES256-Themida 20k 1MB 14.4k 1s
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average analysis speed is about 15k instructions per second, and the analysis
time is usually within or around 10 minutes.

The performance results also show that the most time consuming part is the
constructions of high-level representations, and that analysis for RC4 is most time
consuming among all these algorithms, because there is no constant heuristic data
reduction for RC4. The time spent for other algorithms is almost the same.

6 Conclusion

In this paper we have presented a novel approach of analysis of cryptographic
data. We use a two-stage method to trace and analyze program data. First, dy-
namic data tracing is conducted based on full system emulation. The trace results
are saved for further analysis. Then, we use an automatic analyzer to perform
cryptographic data analysis on the trace results. The target of our analysis is to
identify cryptographic algorithms and to extract their parameters. We studied
the data patterns for symmetric ciphers AES, Blowfish, stream cipher RC4, and
cryptographic hash functions MD5 and SHA-1, and implemented their reference
algorithms. In the analysis phase, the high-level representations of traces are first
constructed, including Dynamic Basic Blocks, Code Blocks and Call Hierarchies.
Then, heuristic data reductions are conducted to reduce the size of data to be
analyzed. And at last, we use the reference algorithms to verify the existence of
certain algorithms and extract their parameters.

It is possible to extend our analysis method to asymmetric cryptographic al-
gorithms. For example, it’s possible to identify RSA encryptions/decryptions
which comply with PKCS formats. However the analysis process can be much
slower, because the asymmetric algorithms usually take much longer time than
symmetric algorithms. It’s quite difficult to identify custom asymmetric algo-
rithms because of the irregularity of asymmetric cryptographic data.

We did our experiments on 22 Windows programs, including both real world
applications and custom implemented programs, and some of them are obfus-
cated using VMProtect or Themida. We successfully identified the existing cryp-
tographic algorithms in these programs, and extracted the keys or input data
of these programs. For most of the programs that contain symmetric cipher we
also extracted the plaintext and ciphertext. The programs with code obfuscation
are also successfully analyzed. The analysis result showed the universality and
effectivity of our analysis method.
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Abstract. Over the past few months we are seeing a large and ever
increasing number of Web sites encouraging users to log in with their
Facebook, Twitter, or Gmail identity, or personalize their browsing ex-
perience through a set of plug-ins that interact with the users’ social
profile. Research results suggest that more than two million Web sites
have already adopted Facebook’s social plug-ins, and the number is in-
creasing sharply. Although one might theoretically refrain from such sin-
gle sign-on platforms and cross-site interactions, usage statistics show
that more than 250 million people might not fully realize the privacy
implications of opting-in. To make matters worse, certain Web sites do
not offer even the minimum of their functionality unless the users meet
their demands for information and social interaction. At the same time,
in a large number of cases, it is unclear why these sites require all that
personal information for their purposes.

In this paper we mitigate this problem by designing and developing a
framework for minimum information disclosure across third-party sites
with single sign-on interactions. Our example case is Facebook, which
combines a very popular single sign-on platform with information-rich
social networking profiles. When a user wants to browse a Web site that
requires authentication or social interaction with his Facebook identity,
our system employs, by default, a Facebook session that reveals the min-
imum amount of information necessary. The user has the option to ex-
plicitly elevate that Facebook session in a manner that reveals more or
all of the information tied to his social identity. This enables users to
disclose the minimum possible amount of personal information during
their browsing experience on third-party Web sites.

1 Introduction

An emerging trend on the Web is “single sign-on” initiatives where users register
and log on in multiple Web sites using a single account and an OAuth-like
protocol [4]. Social networking sites, such as Facebook and Twitter, have been in
the front lines of this initiative, allowing their users to utilize their social profiles
in a plethora of third-party Web sites. This type of cross-site interaction enables,
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for instance, third-party Web sites to authenticate users based on their Facebook
(or Twitter) identity. In addition, such sites may add a social dimension to a
user’s browsing experience by encouraging him to “like,” share, or comment on
their content using his social network capacity, i.e., automatically post respective
favorable messages to his social profile and let his friends know about the site.
To enable this social dimension, third-party sites request access and control over
the user’s information and account.

In other words, these sites request users to authorize Web applications specific
to the third-party site, or API calls originating from the third-party site, to access
and control part or whole of their social profile. Unfortunately, this process may
have several disadvantages, including:

• Loss of anonymity. Even the simple act of signing on to a third-party
Web site using the Facebook identity sacrifices the anonymous browsing of
the user; his social identity usually contains his real name. In most cases it
is unclear how this loss of anonymity is necessary for the site’s purposes.

• User’s social circle revealed. Several of these third-party Web sites in-
stall Web applications in the user’s social profile or issue API calls which
request access to a user’s “friends.” Although having access to a user’s
friends may improve the user’s browsing experience, e.g., for distributed
multi-player games, in most cases it is not clear why third-party Web sites
request this information, and how based on it they are going to improve the
user’s browsing experience.

• Loss of track. Once users start to enable a torrent of third-party applica-
tions to have access to their personal contacts, they will soon lose control
of which applications and sites have access to their personal data, and thus
they will not be able to find out which of them may have leaked the data
in a case of a data breach.

• Propagation of advertising information in user’s social network.
Several of these third-party sites request permission to access and act upon
a user’s social profile (e.g., upload content to it) even when the user is not
accessing the third-party site. Such actions may frequently take the form of
explicit or implicit advertisements, not necessarily approved by the user.

• Disclosure of users’ credentials to unauthorized applications. Once
a large number of applications starts receiving credentials to access a user’s
profile, such credentials may be subject to loss or theft, or accidental leakage.
Indeed, recent reports by Symantec suggest that such Facebook applications
accidentally leaked access to third parties [7].

• Reverse Sign-on Semantics. When a service prompts a user to sign on,
he provides his credentials and gains access to data offered by that service.
However, in the cases described above, the service is the one being given
access to the data of the user, and from that data selects information that
may be used to identify or authenticate the user.

Although a user could theoretically deny this single sign-on approach, and the in-
stallation of the third-party application, many Web sites respond to this
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disapproval usually by diminishing the user’s browsing experience significantly,
cutting the user off from the largest part of their sophisticated functionality.
Although this might be less of a problem if only a handful of third-party Web
sites used this single sign on mechanism, recent results suggest that more than
two million Web sites have added Facebook social plug-ins [9]. To make mat-
ters worse, popular Web sites seem to adopt Facebook social plug-ins even more
aggressively. Indeed, as of May 2011, as many as 15% of the top 10,000 most
popular Web sites have adopted Facebook social plug-ins, a whooping 300% in-
crease compared to May 2010 [1]. If this trend continues, as it appears to be,
then it will be very difficult for users to browse a significant percentage of the
Web sites without revealing their personal information.

In this paper, we propose a new way for users to interact with single sign-on
platforms so as to protect their privacy; we propose that users surf the Web
using downgraded sessions with the single sign-on platform, i.e., stripped from
excessive or personal information, and with a limited set of privileged actions.
Thereby, by default, all interactions with third-party Web sites take place un-
der that privacy umbrella. On occasion users may explicitly elevate that ses-
sion on-the-fly to a more privileged or information-rich state to facilitate their
needs when appropriate. Our proposed concept is inspired by privilege separation
among user accounts in operating systems, and the UNIX su command which
upgrades the permissions of a user to those of the super-user, if and when the
ordinary user needs to perform a privileged instruction. In UNIX even system
administrators initially log in with their ordinary (i.e., non super-user) accounts
and upgrade to super-user status if and when they need to execute privileged
operations.

For instance, we propose that users may use two parallel and distinct sessions
with the Facebook Connect platform, tied to respective social profiles; their
primary profile, and a second “disposable” profile. Their primary session will be
associated to a social profile where they will maintain all of their social contacts,
photographs, and personal information. The primary profile will be their current
profile, if they already have one. The “disposable” session will be associated to
a profile that will be a stripped-down version of the primary one. It may contain
no personal information, social contacts, or other sensitive information that the
user is not comfortable sharing with a plethora of random third-party Web sites.
By default, the user’s browser will keep the appropriate state, i.e., active sessions
and cookies, to maintain the “disposable” session alive. As a result, when the
user employs the single sign-on mechanism just to bypass the registration step in
various Web sites, he will surrender only a small portion of his information or no
actual information at all, as the “disposable” session with Facebook will be used.
If at any point the user wishes to activate his actual profile, because he actually
wants to associate his identity with a third-party Web site or online application,
he is able to elevate his browser session with Facebook, i.e., by switching to the
primary session from above.
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In summary, the contributions of this paper are the following:

– We identify and describe an increasing threat to the users’ privacy: a threat
which masquerades under the convenience of a single sign-on mechanism and
gives third-party Web sites access to a user’s personal information stored in
social networks.

– We propose a new privacy-preserving framework for users to interact with
single sign-on and OAuth-like platforms provided by social networks in their
daily activities on the web.

– We implement a prototype of our framework as a browser extension for the
Google Chrome browser. Our prototype supports the popular single sign-on
mechanism “Facebook Connect” [2] and can be easily extended to support
others, such as “Sign in with Twitter” [6].

– We evaluate our implementation and show that (i) it allows users to preserve
their privacy when signing on with third-party Web sites and (ii) it does not
affect any open sessions they might have with other third-party Web sites
that use the same single sign-on mechanisms.

2 Background

In this section we provide some background on the OAuth protocol [4], which is
the primary method for implementing single sign-on functionality across multiple
Web sites. We also detail Facebook’s single sign-on platform [2], which at the
moment is the most popular single sing-on platform with more than 2.5 million
Web sites using it [3].

2.1 OAuth Protocol

The OAuth or Open Authentication protocol [4] provides a method for clients
to access server resources on behalf of a resource owner. In practice, it is a
secure way for end users to authorize third-party access to their server resources
without sharing their credentials.

As an example, one could consider the usual case in which third-party sites
require access to a user’s e-mail account so that they can retrieve his contacts in
order to enhance the user’s experience in their own service. Traditionally, the user
has to surrender his username and password to the third-party site so that it can
log into his account and retrieve that information. Clearly, this entails the risk
of the password being compromised. Using the OAuth protocol, the third party
registers with the user’s e-mail provider using a unique application identifier. For
each user that the third-party requires access to his e-mail account, it redirects
the user’s browser to an authorization request page located under the e-mail
provider’s own Web domain, and appends the site’s application identifier so that
the provider is able to find out which site is asking for the authorization. That
authorization request page, located in the e-mail provider’s domain, validates
the user’s identity (e.g., using his account cookies or by prompting him to log
in), and subsequently asks the user to allow or deny information access to the
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third-party site. If the user allows such access, the third-party site is able to
use the e-mail provider’s API to query for the specific user’s e-mail contacts.
At no point in this process does the user have to provide his password to the
third-party Web site.

2.2 Facebook Authentication

The Facebook authentication or Facebook Connect [2] is an extension to the
OAuth protocol that allows third-party sites to identify users by gaining access
to their Facebook identity. This is convenient for both the sites and the users;
sites do not have to maintain their own accounting system, and users are able to
skip yet another account registration and thereby avoid the associated overhead.
A “login with Facebook” button is embedded in these third-party sites that, once
clicked, directs the user’s browser to http://www.facebook.com/dialog/oauth
?client_id=THIRD_PARTY_SITE_ID where the user’s cookies or credentials are
validated by Facebook. On successful identity validation, Facebook presents a
“request for permission” dialog where the user is prompted to allow or deny the
actions of the third-party Web site, i.e., social plug-in actions or access to account
information. However, the user is not able to modify or regulate the third-party’s
request, for instance to allow access to only a part of the information the site
is requesting. If the user grants permissions to the site’s request, Facebook will
indefinitely honor API requests, originating from that third-party site ID, that
conform to what the user has just agreed upon.

2.3 Facebook Social Plug-ins

Facebook has implemented a platform of social plug-ins on top of the OAuth
protocol to allow third-party sites to integrate the functionality of Facebook’s
social experience to their own pages [2]. In addition to authenticating a user,
third-party developers are able to add “like” or “comment” Facebook buttons
and forms in their site which, once clicked, update the user’s Facebook profile
with content from that third-party Web site, or allow the user to upload content
to the site using his Facebook identity.

3 Related Work

Ardagna et al. [10] highlight the practice of Internet services requiring user
information for accessing their digital resources. They coin the concept of a user
portfolio containing personal data and propose the use of sensitivity labels that
express how much the user values different pieces of information. Furthermore,
they assume scenarios where an atypical negotiation takes place between the user
and the server, in which the server prompts the user to choose among disclosing
alternative pieces of information. The user decides on the type and amount of
information disclosed in relation to the type and amount of digital resources
being offered.

http://www.facebook.com/dialog/oauth
?client_id=THIRD_PARTY_SITE_ID
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Facecloak [14] shields a user’s personal information from a social networking
site and any third-party interaction, by providing fake information to the social
networking site and storing actual, sensitive information in an encrypted form
on a separate server. At the same time, social functions are maintained.

Felt et al. [13] studied the 150 most popular Facebook applications and found
that almost all of them required too much user information for their purposes.
They propose the use of a proxy to improve social networking APIs such that
third-party applications are prevented from accessing real user data while social
functions are not affected.

The xBook [16] framework addresses threats against the privacy of social
network users due to information leaked via the interaction with third-party
applications. It provides a trusted hosting environment where untrusted appli-
cations are split into components with a manifest to detail security permissions
in terms of user data access and communication between components or remote
locations. xBook takes up the role of enforcing that manifest at run-time.

OpenID [5] is a platform supporting a federation of single sign-on providers.
Its nature of operation has been described in section 2. An interesting feature
of OpenID is the support for multiple identities per user; upon receiving a user-
identification request from a third-party site and after authenticating with the
user, it may decide to return a different identity for the same user to different
third-party sites. PseudoID [12] is a privacy enhancement for single-sign-on sys-
tems like OpenID or Facebook Connect. As third-party sites interact with the
single sign-on provider to acquire access to a user’s identity, that provider is able
to correlate a user’s identity with the sites she logs into. In PseudoID users set
up the profiles or identities they wish to use with third-party sites and employ
the PseudoID’s blind signature service to cryptographically blindly sign such
tokens of information. When they need to identify themselves to a third-party
site, just as before, that site interacts with PseudoID to retrieve the user’s iden-
tity. Contrary to the traditional model, the user does not log in to PseudoID,
thereby allowing the service to associate her with that particular third-party site
request. The user presents to PseudoID a blindly signed identity and PseudoID,
after checking the validity of the cryptographic signature, forwards that identity
to the third-party site.

Concurrently and independently to our work, a user-friendly mechanism for
users to switch between Google Chrome profiles is being developed [8]. At the
moment, one is able to use multiple browser profiles by adding a data-directory
flag when invoking the browser. Browser profiles contain their own cookie store,
browser settings and installed extensions. By using different profiles, among other
things, one is able to switch between cookie stores and therefore between Web
site identities.

Our approach is similar to that feature of Chrome but at the same time bears
significant differences. While Google is building a profile manager for browsers,
we design a more generic privacy-preserving framework that describes informa-
tion and privilege separation in Web sessions involving cross-site interaction.
While Chrome’s profiles bundle sessions with different sites in a single browser
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profile, we operate on a more flexible basis where we populate an isolated and
distinct browser instance with the state of only those sessions that the user
has explicitly activated. Moreover, while in the Chrome feature the user is re-
sponsible for switching between the different identities and profiles, we employ
heuristics that automatically detect the need to switch to a downgraded Web
session. Therefore, we do not have to rely on the user’s alertness to protect his
information.

4 Design

The modus operandi we assume in our approach is the following:

1. The user browses the Web having opened several tabs in her browser.
2. Then, the user logs in her ordinary Facebook account so as to interact with

friends and colleagues.
3. While browsing the Web at some other tab of the same browser, the user

encounters a third-party Web site asking her to log in with her Facebook
credentials. At this point in time, our system kicks in and establishes a new
and separate downgraded session with Facebook for that cross-site interac-
tion. That session is tied to a stripped-down version of her account which
reveals little, if any at all, personal information. Now:
(a) The user may choose to follow our “advice” and log in with this down-

graded Facebook session. Let there be noted that this stripped-down
mode does not affect the browsing experience of the user in the tabs
opened at step 2 above: the user remains logged in with her normal
Facebook account in the tabs of step 2, while in the tabs of this step she
logs in with the stripped-down version of her account. Effectively, the
user maintains two sessions with Facebook:
i. One session logged in with her normal Facebook account, and
ii. One session logged in with the stripped-down version of her account.

(b) Alternatively, the user may want to override our system’s logic and log in
with her normal Facebook account revealing her personal information; in
that cases she performs a “sudo” on that particular cross-site interaction
with Facebook and elevate the by-default downgraded Web session.

In the description of our system we assume the use of a single sign-on mechanism
such as Facebook Connect [2,17]. However, our mechanisms can be extended to
cover other single sign-on mechanisms as well.

Figure 1(b) shows the architecture of our system. To understand our approach
we will first describe in Figure 1(a) how an ordinary Web browser manages
session state. We see that the browser uses a default session store (Session Store
[0] (default)) which stores all relevant state information, including cookies. Thus,
when the user logs into Facebook (or any other site for that matter) using her
ordinary Facebook account, the browser stores the relevant cookie in this default
session store. When the browser tries to access Facebook from another tab (Tab 3
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Browser 
Tab 3

Session Store [0] 
(default)

Browsing State 
(Cookies, Active 
Sessions, etc.)

Browser 
Tab 1

(a)

Browser 
Tab 3

Session Store [0] 
(default)

Session Store [1]

IMF

Browsing State 
(Cookies, Active 
Sessions, etc.)

Browser 
Tab 1

(b)

Fig. 1. Typical communication of session state to loaded pages (a), and how SudoWeb
handles the same communication using multiple session stores (b)

in the figure), the cookie is retrieved from the default session store and the page
is accessed using the same state as before.

In our design, we extend this architecture by including more than one session
stores. Indeed, in Figure 1(b) (bottom left) we have added “Session Store [1]”
which stores all relevant information, including cookies, for the stripped-down
Facebook session. This gives us the opportunity to enable users to surf the web
using two distinct and isolated sessions with Facebook at the same time: a session
tied to the “normal” account is enabled in Tab 1 while a stripped-down session is
in effect in Tab 3. To select the appropriate account, our system (IMF) intercepts
all URL accesses and checks their HTTP referrer field. If the URL points to
a single sign-on platform (such as Facebook Connect) but the HTTP referrer
field belongs to a different domain name, then our system suspects that this is
probably an attempt from a third-party Web site to authenticate the user with
her Facebook credentials.

Therefore, as it stands inline between the loading page and the browser’s state
store(s), it supplies the appropriate state (from Session Store [1] for the stripped-
down Facebook session to be employed. This is an implicit privacy suggestion
towards the user. If the user disagrees, she may choose to authenticate with her
ordinary Facebook account, in which case, Tab 3 will receive all cookies from
Session Store [0].

We consider the proposed concept as analogous to privilege separation in
operating systems, i.e., different accounts with different privileges, such as root
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Identity 
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Monitor

Session 
Manager

New Web 
Browser Page
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Web 
Browser

Establish Separate 
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Elevate / Downgrade 
Web Session with 

Single Sign-on 
Provider

Fig. 2. SudoWeb extension modules

and user accounts. Our design can scale and evolve so that it accommodates
different privacy-preserving scenarios in interaction with third-party Web sites.

Figure 2 shows the modules of our system. Initially, in the upper left corner,
the user browses ordinary web pages (Web Browser). When a new browser page
(i.e., tab or window) is created (New Web Browser Page), the Session Monitor
kicks in to find whether this is an attempt to log in a single sign-on mechanism1.
If (i) it is such an attempt (i.e., isMonitorred(domain(URI)) is TRUE) and (ii)
the attempt is from a third-party Web site (i.e., HTTP referrer != domain(URI))
then our system calls the Identity Management Function (IMF) which employs a
downgraded, stripped-down from all personal information, session for the user.
From that point onwards, the Session Manager manages all the active sessions of
the user, in some cases different sessions with different credentials for the same
single sign-on domain. Figure 3 shows the workflow of our system in more detail.

5 Implementation

We have implemented our proposed architecture as a browser extension for the
latest version of Google Chrome2 with support for the “Facebook Connect” sin-
gle sign-on mechanism. We find that, due to its popularity, our proof of concept
application covers a great part of single sign-on interactions on the Web. More-
over, we implicitly support Facebook’s social plug-ins, such as share site content
or comment on site content, described in section 2, that require the “connect”
mechanism as a first step. Our browser extension can be seamlessly configured
to support a greater variety of such cross-site single sign-on interactions.
1 SudoWeb keeps a list with all single sign-on domain mechanisms monitored. If such

a domain is monitored the isMonitorred(domain(URI)) function returns TRUE.
2 As we take advantage of generic functionality in the extension-browser communica-

tion API, we find it feasible to also port the extension to Mozilla Firefox.



206 G. Kontaxis, M. Polychronakis, and E.P. Markatos

http://example.com

cookieStore[0].[fb]
= “john high session”

Browser Tab 2

Cookie Store [0]
(default)

http://facebook.com

Perform Action on 
example.com using 

cookieStore[1].fb low 
priviledges session

cookieStore[1].[fb]
= “john low session”

Browser Tab 3

Cookie Store [1]

http://facebook.com

Perform Action on 
example.com using 

cookieStore[1].fb high 
priviledges session

cookieStore[1].[fb]
= “john high session”

Browser Tab 3

Cookie Store [1]
(sudo)

Identity
Management

Function

IMF intercepts 
Facebook Connect, 

page loads in isolated 
browser tab, using a 
downgraded session.

“sudo reload” invokes 
the IFM, signals 
session upgrade, 

supplies current tab URL

IFM populates isolated cookie store 
to form upgraded session status. 

Reloads Facebook Connect 
page with new status.

Fig. 3. Example Workflow of SudoWeb

5.1 SudoWeb Modules

Here we describe the modules that comprise our extension to the Google Chrome
browser, in support of our proposed architecture.

Identity Management Function (IMF). In the heart of the extension lies
the logic module offering the identity management function or IMF. This func-
tion is responsible for detecting the possible need for elevating or downgrading
a current session with a single sign-on provider (here: Facebook). Such need is
detected by identifying differences in the HTTP referrer domain and the URL
domain of pages to be loaded. That is, when the user navigates away from a
third-party Web site (identified by the HTTP referrer field) towards a single
sign-on Web site (we keep a configuration file with all single sign-on sites sup-
ported), IMF steps in, instantiates a new, isolated and independent session store
in the browser and instructs the session manager module to initialize it so that
the browser receives such state that establishes a downgraded or stripped-down
session with the single sign-on provider. Furthermore, it places a “sudo reload”
HTML button on that page giving the user the opportunity to reload that page
using an elevated session instead.
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Session Monitor. Supporting role to the IMF plays the session monitoring
module. If one considers our extension as a black box, the session monitor stands
at its input. It inspects new pages opening in the Web browser and looks for
cases where the page URL belongs to a monitored single-sign-on provider domain
(here: Facebook) but the page has been invoked through a different, third-party
domain. It does so by comparing that URL with the HTTP referrer. The referrer
is an HTTP parameter supplied by the browser itself based on the URL of the
parent tab or window that resulted in a child tab or window being spawned. The
session monitor notifies the IMF of such incidents and supplies the respective
page URL. We should note that recent research has revealed that the HTTP
referrer field in several cases can be empty or even spoofed [11,15] undermining
all mechanisms based on it. Although it is true at the network elements may
remove or spoof the HTTP referrer field so that it will be invalid when it reaches
the destination web server, our work with the HTTP referrer field is at the web
client side, not at the web server side. That is, the HTTP referrer field is provided
to SudoWeb by the web browser before it reaches any network elements which
may remove it or spoof it.

Session Manager. This module also plays a supporting role to the IMF. If one
considers our extension as a black box, the session manager stands at its output.
Upon the installation of our extension, the session manager prompts the user of
the Web browser to fill in his ordinary single sign-on (here: Facebook) account
username and password, as well as his stripped-down one that is to be used
for the downgraded integration with third-party Web sites. The session manager
maintains in store the necessary state, e.g., cookies, required to establish the two
distinct sessions with the single sign-on provider and is responsible for populating
the browser’s cookie store once instructed by the IMF. As a result, it stands at
the output of our extension and between the browser’s session store and the
rendered pages that reside in tabs or windows. It affects the state upon which a
resulting page rely on.

Our extension takes advantage of the incognito mode in Google Chrome to
launch a separate browser process with isolated cookie store and session state
so that when the session manager pushes the new state in the cookie store, the
user is not logged off of the existing elevated session (here: with Facebook) that
may be actively used in a different browser window.

5.2 Operation and Interaction of SudoWeb Modules

Following the use-case presented at the beginning of section 4, a user browsing
the Web will eventually come across a third-party that wishes to interact with
his Facebook identity via the cross-site single sign-on mechanism. As soon as the
user clicks on the “login with Facebook” button, our system kicks in;

1. The session monitor detects the launch of a new Facebook page from a page
under the domain of the third-party Web site. The session monitor notifies
the IMF module of our extension and so the page launch is intercepted
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Fig. 4. Example screenshot of a Facebook “Request for Permission” page that has been
invoked by fictional site third-party-web-site.com so that the Web user may autho-
rize that site to access his Facebook account information. By default, a downgraded-
status session is maintained with Facebook, using the appropriate state to be logged in
with the disposable account “John Low.” There is the option to switch to an elevated-
status session via the “sudo reload” button at the bottom of the window.

and loaded in an incognito window, i.e., an isolated browser process with a
separate and individual session store.

2. The IMF coordinates with the session manager module so that this iso-
lated environment is populated with the necessary state for a downgraded
Facebook session to exist.

The entire process happens in an instant and the user is presented with a browser
window similar to figure 4. In this figure, we have used third-party-web-site
.com as the name of the third part Web site which wants to authenticate the
user using her Facebook account. We see that in addition to authenticate the
user, the third-party Web site asks for permission to (i) send the user email, (ii)
post on the user’s wall, (iii) access the user’s data any time, and (iv) access the
user’s profile information. Although Facebook enables users to “Allow” or “Don’t
Allow” access to this information (bottom right corner), if the user chooses not
not allow this access, the entire authentication session is over and the user will
not gain access to the content of third-party-web-site.com.

third-party-web-site
.com
third-party-web-site.com
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Fig. 5. Example screenshot of the previous Facebook page, after the “sudo reload”
option has been selected by the Web user; the page has been reloaded using on-the-fly
the necessary session state to maintain an elevated-status Facebook session using the
account “John High”.

Having intercepted this third-party authentication operation, SudoWeb brings
the stripped-down account (i.e., John Low) forward, on behalf of the user. There-
fore if the user chooses at this point to allow access to his information by the
third-party site, only a small subset of his actual information will be surrendered.
Note that a “sudo reload” button has been placed at the bottom of the page,
allowing the user to elevate this session to the one tied to his actual, or a more
privileged, Facebook identity.

Figure 5 presents an example screenshot of the browser window the user will
see if he chooses to elevate his session. One may notice at the bottom of the
browser’s page that the user is no longer considered to be logged in as “John
Low” but as “John High.”

The Facebook session with which the user was surfing prior to engaging in this
cross-site Facebook interaction remains intact in the other open browser windows
since, as mentioned earlier, we take advantage of the browser’s incognito mode
to initiate an isolated session store in which we manage the escalation and de-
escalation of user sessions. All the user has to do is close this new window to
return to his previous surfing activity.
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6 Discussion

Here we discuss how social networks providing single sign-on interaction could
evolve to facilitate user needs and better protect their privacy. We also propose a
series of requirements from third-party Web applications in terms of “fair play.”

Fine-Grained Privacy Settings. Inspired by the privilege separation princi-
ples of UNIX, SudoWeb presents a step towards surfing the Web using several
distinct sessions: each session with different privileges. We have implemented
the philosophy of our system using parallel Web sessions tied to distinct Face-
book accounts; each account revealing a different amount of information. We
believe that the increasing privacy concerns of users will motivate single sign-on
providers to offer more fine grained disclosure of user information, and more con-
trol over the user’s privacy in a single account. If that happens, the concept of
our system will still be valid, but implemented closer to the mechanics of single
sign-on providers.

Fairness. Current single sign-on mechanisms in social networks are especially
unfair to people with rich social circles. For example, if a third-party Web site
wants to install an application that has access to all of a user’s friends in return
for a service, this is unfair to people who have lots of friends, compared to people
who have (or have declared) no friends. Both types of users will get the same
kind of service at a different price: The first category will reveal the names of lots
of friends, while the second will reveal none. To make matters worse, this cost
(and unfairness) seems to increase with time: as the user accumulates friends,
the installed third-party application will continue to have access to all of them.3

We believe that single sign-on mechanisms should: (i) Restrict themselves only
to authentication and refrain from asking access to more personal information,
such as friends and photos. (ii) If they do ask for more personal information,
they should make clear how they are going to use it and how this will benefit
the user. (iii) If the user denies the provision of more personal information, the
single sign-on mechanisms should continue to function and provide their services
to the users.

Terms of Use. It may seem that our approach may conflict with the terms of
use for some sites. For example, maintaining multiple accounts is a violation of
the terms of use of Facebook, while it appears not to be a violation of the terms
of use of Google. We believe that this conflict stems from the fact that some sign-
on mechanisms have not yet caught up with the changing needs of the users. For
example, several users maintain two Facebook profiles: one personal profile with
all their personal contacts, friends, and relatives, and one professional profile
where their “friends” are their colleagues and business contacts. The postings
that run on their personal profiles are quite different from the postings than
run on their professional profiles. Even the language of these postings may be
different. Forcing those users to have a single Facebook account will make their

3 Unless the user explicitly uninstalls the application.
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social interactions more difficult or will force them to move one of their profiles,
e.g., the professional one, to another social network, such as LinkedIn. We believe
that sooner or later most successful single sign-on sites will catch up with the
changing user needs and will adapt their terms of use to suit the users. Otherwise,
the users might adopt single sign-on sites which are closer to their needs.

7 Conclusion

Recent results suggest that hundreds of thousands of Web sites have already
employed single sign-on mechanisms provided by social networks such as Face-
book and Twitter. Unfortunately, this convenient authentication usually comes
bundled (i) with a request to the user’s personal information, as well as (ii) the
request to act upon a user’s social network on behalf of the user, e.g., for adver-
tisement. Unfortunately, the user can not deny these requests, if she wants to
proceed with the authentication.

In this paper, we explore this problem and propose a framework to enable
users to authenticate on third-party Web sites using single sign-on mechanisms
provided by popular social networks while protecting their privacy; we propose
that users surf the Web using downgraded sessions with the single sign-on plat-
form, i.e., stripped from excessive or personal information and with a limited set
of privileged actions. Thereby, by default, all interactions with third-party Web
sites take place under that privacy umbrella. On occasion, users may explicitly
elevate that session on-the-fly to a more privileged or information-rich state to
facilitate their needs when appropriate. We have implemented our framework in
the Chrome browser with current support for the popular single sign-on mech-
anism Facebook Connect. Our results suggest that our framework is able to
intercept attempts for third-party Web site authentication and handle them in a
way to protect the user’s privacy, while not affecting other ongoing Web sessions
that the user may concurrently have.
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Abstract. In monolithic operating systems, the kernel is the piece of
code that executes with the highest privileges and has control over all
the software running on a host. A successful attack against an operating
system’s kernel means a total and complete compromise of the running
system. These attacks usually end with the installation of a rootkit, a
stealthy piece of software running with kernel privileges. When a rootkit
is present, no guarantees can be made about the correctness, privacy or
isolation of the operating system.

In this paper we present Hello rootKitty, an invariance-enforcing frame-
work which takes advantage of current virtualization technology to pro-
tect a guest operating system against rootkits. Hello rootKitty uses the
idea of invariance to detect maliciously modified kernel data structures
and restore them to their original legitimate values. Our prototype has
negligible performance and memory overhead while effectively protecting
commodity operating systems from modern rootkits.

Keywords: rootkits, virtualization, detection, invariance.

1 Introduction

Operating systems consist of trusted software that executes directly on top of
a host’s hardware providing abstraction, arbitration, isolation and security to
the rest of the software. Due to their prominent position, operating systems
have been a common target of attackers who try to circumvent their protection
mechanisms and modify them to their advantage. In the past, a program that
allowed a user to elevate his access and become a system administrator (“root”)
was called a rootkit. Today the meaning of rootkits has changed and is used to
describe software that hides the attacker’s presence from the legitimate system’s
administrator. Kernel-mode rootkits1 target the core of an operating system
and thus they are the hardest to detect and remove. In extreme cases, a kernel-
mode rootkit may be introduced by a software bug in the kernel, triggered by a
1 Such rootkits appear very often in the form of device drivers (Microsoft Windows)

or Loadable Kernel Modules (Linux kernel).

X. Lai, J. Zhou, and H. Li (Eds.): ISC 2011, LNCS 7001, pp. 213–228, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



214 F. Gadaleta et al.

malicious or a benign but-exploitable process. Regardless of the way the rootkit is
introduced, the result is malicious code running with operating system privileges
which can add and execute additional code or modify existent kernel code. The
activities resulting from a successful attack can range from spamming and key-
logging to stealing private user-data and disabling security software running on
the host. In the past, rootkits have also been used to turn their targets into nodes
of a botnet as with Storm Worm [9] or to perform massive bank frauding [13].

Even rootkits that do not introduce new code, but rather make use of existing
fragments of code to fabricate their malicious functions, need to somehow have
these fragments executed in the order of their choosing [10]. Changing the control
flow of the kernel involves either changing specific kernel objects such as function
pointers or overwriting existing fragments of code with new code. Using the
idea of modified kernel-data structures as a sign of rootkits, security researchers
have developed several approaches to mitigate rootkits. Unfortunately, many of
these are affected by considerable overhead [8,16] or miss a fundamental security
requirement such as isolation[32].

Isolation is needed to prevent a countermeasure in the target system from
being disabled/crippled by a potential attack.

Other countermeasures have been presented in which operating system kernels
are protected against rootkits by executing only authenticated (or validated) ker-
nel code [24,22,16]. The aforementioned rootkit [10] that doesn’t introduce new
kernel code and re-uses fragments of authenticated code bypasses such counter-
measures. In [19] a countermeasure to detect changes of the kernel’s control flow
graph is presented; Anh et al. [14] uses virtualization technology and emulation
to perform malware analysis and [29] protects kernel function pointers. Another
interesting work is [23] which gives more attention to kernel rootkit profiling
and reveals key aspects of the rootkit behavior by the analysis of compromised
kernel objects. Determining which kernel objects are modied by a rootkit not
only provides an overview of the damage inflicted on the target but is also an
important step to design and implement systems to detect and prevent rootkits.

A rising trend in security research is the use of virtualization technology for
non-virtualization specific purposes [7,21,5,4]. The property that makes virtu-
alization particularly attractive, from a security perspective, is that isolation
is guaranteed by the current virtualization-enabled hardware. Using the ap-
propriate instruction primitives of such hardware, makes it straightforward to
fully separate and isolate the target from the monitor system. In this paper we
present Hello rootKitty, a lightweight invariance-enforcing framework to miti-
gate kernel-mode rootkits in common operating system kernels. We start from
the observation that many critical kernel data structures are invariant. Many
data structures used by rootkits to change the control-flow of the kernel con-
tain values that would normally stay unchanged for the lifetime of a running
kernel. Our protection system consists of a monitor that checks the contents of
data structures that need to be protected at regular times and detects whether
their contents have changed. If a change is detected, our system warns the ad-
ministrator of the exploited kernel and corrects the problem by restoring the
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modified data structures to their original contents. Our monitor runs inside a
hypervisor and protects operating systems that are being virtualized. Due to
the hardware-guarantees of isolation that virtualization provides, an attacker
has no way of disabling our monitor or tamper with the memory areas that our
system uses. Hello rootKitty imposes negligible performance overhead on the vir-
tualized system and it doesn’t require kernel-wide changes other than a trusted
module to communicate the invariant data structures from the guest operat-
ing system to the hypervisor. Hello rootKitty can be integrated with existing
invariance-inferencing engines and protect commodity operating systems run-
ning on virtualized environments. Alternatively, our system can be used directly
by kernel developers to protect their invariant structures from rootkit attacks.

The rest of the paper is structured as follows. Section 2 describes the problem
of rootkits and presents our attacker model. Section 3 presents our solution. In
Section 3.1 we present the architectural details of Hello rootKitty followed by
its implementation in Section 3.2. We evaluate our prototype implementation in
Section 4 and present its limitations in Section 5. We discuss related work on
rootkit detection in Section 6 and conclude in Section 7.

2 Problem Description

In this section we describe common rootkit technology and we also present the
model of the attacker that our system can detect and neutralize.

2.1 Rootkits

Rootkits are pieces of software that attackers deploy in order to hide their pres-
ence from a system. Rootkits can be classified according to the privilege-level
which they require to operate. The two most common rootkit classes are: a)
user-mode and b) kernel-mode.

User-mode rootkits run in the user-space of a system without the need of
tampering with the kernel. In Windows, user-mode rootkits commonly modify
the loaded copies of the Dynamic Link Libraries (DLL) that each application
loads in its address space [28]. More specifically, an attacker can modify function
pointers of specific Windows APIs and execute their own code before and/or
after the execution of the legitimate API call. In Linux, user-mode rootkits
hide themselves mainly by changing standard linux utilities, such as ps and
ls. Depending on the privileges of the executing user, the rootkit can either
modify the default executables or modify the user’s profile in a way that their
executables will be called instead of the system ones (e.g.,by changing the PATH
variable in the Bash shell).

Kernel-mode rootkits run in the kernel-space of an operating system and are
thus much stronger and much more capable. The downside, from an attacker’s
perspective, is that the user must have enough privileges to introduce new code
in the kernel-space of each operating system. In Windows, kernel-mode rootkits
are loaded as device-drivers and target locations such as the call gate for
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interrupt handling or the System Service Descriptor Table (SSDT). The rootkits
change these addresses (hooking) so that their code can execute before specific
system calls. In Linux, rootkits can be loaded either as a Loadable Kernel Module
(LKM) or written directly in the memory of the kernel through the /dev/mem
and /dev/kmem file [20]. These rootkits target kernel-data structures in the same
way that their Windows-counterparts do. Although this paper focuses on Linux
kernel-mode rootkits, the concepts introduced apply equally well to Windows
kernel-mode rootkits. An empirical observation is that kernel-mode rootkits need
to corrupt specific kernel objects, in order to execute their own code and add
malicious functionality to the victim kernel. Studies of common rootkits [17,19]
show that most dangerous and insidious rootkits change function pointers in the
system call table, interrupt descriptor table or in the file system, to point to
malicious code. The attack is triggered by calling the relative system call from
user space or by handling an exception or, in general, by calling the function
whose function pointer has been compromised. We report a list of rootkits which
compromise the target kernel in Table 1.

Table 1. Hooking methods of common linux rootkits

Rootkit Description

Adore, afhrm, Rkit, Rial, kbd, All-
root, THC, heroin, Synapsis, itf, kis

Modify system call table

SuckIT Modify interrupt handler

Adore-ng Hijack function pointers of
fork(), write(), open(),

close(), stat64(), lstat64()

and getdents64()

Knark Add hooks to /proc file system

2.2 Attacker Model

In this work we first assume that the operating system which is being attacked is
virtualized, i.e., it runs on top of a hypervisor which has more privileges than the
operating system itself. Virtualization guarantees isolation thus we assume that
the guest operating system cannot access the memory or code of the hypervisor.
Our system detects the rootkit after it has been deployed, a fact which allows
our model to include all possible ways of introducing a rootkit in a system. Thus,
a rootkit can be introduced either by:

– A privileged user loading the rootkit as a Loadable Kernel Module
– A privileged user loading the rootkit by directly overwriting memory parts

through the /dev/ memory interfaces
– An unprivileged user exploiting a vulnerability in the kernel of the running

operating system which will allow him to execute arbitrary code

Finally, our system doesn’t rely on secrecy so our model of the attacker includes
him being aware of the protection system.
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3 Hello rootKitty: Protecting Kernel Data against
Rootkits

In this section we describe our approach to detect rootkits that compromise
function pointers or data structures residing in the kernel.

3.1 Approach

By studying the most common rootkits and their hooking techniques one can
realize that they share at least one common characteristic. In order to achieve
execution of their malicious code, rootkits overwrite locations in kernel memory
which are used to dictate, at some point, the control-flow inside the kernel. Most
of these locations are very specific (see Table 1) and their values are normally
invariant, i.e. they don’t change over the normal execution of the kernel. Since
these objects are normally invariant, any sign of variance can be used to detect
the presence of rootkits. We use the terminology of “critical kernel objects” to
name objects that can be used by an attacker to change the control-flow of the
kernel. The approach of Hello rootKitty is, given a list of invariant critical kernel
objects, to periodically check them for signs of variance. When our countermea-
sure detects that the contents of an invariant critical kernel object have been
modified, it will report an ongoing attack. Invariant critical kernel objects have
been identified in several contributions, such as [29,2,3,6]. The methods to de-
tect invariance differ depending on the type of critical kernel object and are the
following:

1. Static kernel objects at addresses hardcoded and not dependent on kernel
compilation

2. Static kernel objects dependent on kernel compilation (e.g., provided by
/boot/System.map in a regular Linux kernel)

3. Dynamic kernel objects allocated on the heap by kmalloc, vmalloc and the
rest of the kernel-specific memory allocation functions

Identifying and protecting static kernel objects (type 1 and type 2) is straightfor-
ward. During the installation of the operating system to be monitored, a virtual
machine installer would know in advance whether the guest is of Windows or
Unix type. This is the minimal information required to detect kernel objects
whose addresses have been hardcoded (type 1). Moreover, the Linux operating
system provides System.map, where compilation-dependent addresses of critical
kernel objects are stored (type 2). In contrast, identifying dynamic kernel objects
(type 3) needs much more effort and depends on the invariance detection algo-
rithm in place. Part of our countermeasure is a trusted module which operates
in the guest operating system at boot time. Boot time is considered our root of
trust. We are confident this to be a realistic assumption.2 From this point on,
2 Boot time ends right before calling kernel thread which starts init, the first userspace

application of the Linux kernel. At this stage the kernel is booted, initialized and all
the required device drivers have been loaded.
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the system is considered to operate in an untrusted environment and a regular
integrity checking of the protected objects is necessary to preserve the system’s
safety. Given a list of invariant kernel objects, the trusted module communicates
this data (virtual address and size) of the kernel objects to observe after boot,
and stores them in the guest’s address space. Then it will raise a hypercall in
order to send the collected entries to the hypervisor. The hypervisor will check-
sum the contents mapped at the addresses provided by the trusted module and
will store their hashes in its address space, which is not accessible to the guest.
The trusted module is then forced to unload via a end-of-operation message sent
by the hypervisor. Hello rootKitty doesn’t accept objects after the kernel has
booted, in order to prevent a possible Denial-Of-Service attack launched by an
attacker who is aware of the presence of our system. It is important to point
out that Hello rootKitty is not a invariance-detection system for critical kernel
objects and thus it must be provided with a list of kernel objects on which it
will enforce invariance. This list can be either generated by invariance detection
systems [29,2,3,6] or manually compiled by kernel and kernel-module developers.

Although implementing countermeasures in a separated virtual machine or
within the hypervisor increases the degree of security via isolation, it often leads
to higher performance overhead than the equivalent implementation in the target
system. A challenging task is that of checking integrity outside of the target
operating system while limiting the performance overhead. We achieve this by
exploiting the regular interaction of a Virtual Machine Monitor and the guest
operating system. In a virtualized environment the guest’s software stack runs
on a logical processor in VMX non-root operation [11]. This mode differs from
the ordinary operation mode because certain instructions executed by the guest
kernel may cause a VMExit. A VMExit, is a transition from VMX non-root mode
to VMX root mode. After a VMExit the hypervisor will gain control of the
CPU and will handle the exception. When the handler terminates the hypervisor
performs a VMEntry and returns the control to the guest which will load the latest
state of the logical processor and resume execution in VMX non-root mode. Our
countermeasure performs integrity checks every time the guest kernel writes to
a control register (MOV CR* event) which in-turn causes a VMExit. Trapping
this event is strategic because when virtual addressing is enabled, the upper 20
bits of control register 3 (CR3) become the page directory base register (PDBR).
This register is fundamental to locate the page directory and the page tables for
the current task. Whenever the guest kernel schedules a new process (process
switch) the guest CR3 is modified. Performing integrity checks on the MOV CR*
events is a convenient way to keep detection time and performance overhead
to a minimum while guaranteeing a high level of security on protected objects.
Moreover, this choice allows a constraint relaxation to improve performance even
more by paying a small cost in terms of detection time. We provide more details
for our constraint relaxation in Section 3.2. Alternatively the hypervisor could
check integrity randomly during the execution of the guest operating system. But
this would not scale according to the guest system load as our current approach
does.
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Fig. 1. High level view of trusted module-hypervisor interaction

3.2 Implementation

In this section we discuss the implementation details of Hello rootKitty. We con-
sider the choice of the hypervisor of critical importance in order to limit the
overhead of the entire system. In fact, countermeasures implemented in virtu-
alized environments are usually affected by considerable overhead which often
prevents their deployment in actual production systems. We developed a pro-
totype of our countermeasure in BitVisor, a tiny Type-I hypervisor [26] which
exploits Intel VT and AMD-V instruction sets. Our target system runs a Linux
kernel with version 2.6.35 and the trusted module has been implemented as a
loadable kernel module for the Linux kernel. Our choice of BitVisor is mainly
due to its memory address translation features. In BitVisor, the guest operating
system and the Virtual Machine Monitor share the same physical address space.
Thus, the VMM does not need any complex mechanism to provide translations
from guest to host virtual addresses. The guest operating system will rely on
the guest page table to perform translations from virtual to physical addresses.
This considerably reduces the size of the hypervisor’s code and has a very low
impact on the overall performance. Unfortunately, in this specific architecture,
the VMM can not directly use the guest page table. Translations of guest virtual
addresses to host virtual addresses are thus performed by the cooperation of the
trusted module and the hypervisor, as explained later in this section.

Figure 1 presents a high-level view of Hello rootKitty. Our system detects
illegal modifications to invariant critical kernel objects in three phases which are
described below.

Communicating phase. The trusted module executes in the guest’s address
space and communicates the addresses and sizes of critical kernel objects to be
protected. In order to test and benchmark our system in a realistic way, we
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created an artificial list of critical kernel objects by allocating synthetic kernel
data. For each critical object the trusted module will retrieve its physical address
by calling pa(virtual address), a macro of the Linux kernel. If the kernel object
is stored in one physical frame the trusted module will immediately collect the
start address and the size. If the kernel object is stored on more than one physical
frames the trusted module will store the relative list of physical addresses. When
the virtual addresses of all objects have been translated, a hypercall is raised
which signals the hypervisor to start the integrity checking.

Detection phase. In order to detect changes the hypervisor needs to access
the contents at the physical addresses collected by the trusted module. This is
achieved by mapping the physical address and size of each object in its private
memory and computing the signature of its actual contents. When all objects
have been checksummed an end-of-operation flag is set in a memory area shared
with the trusted module, which in turn will be unloaded. The checksum is per-
formed by a procedure which implements MD5. This cryptographic hash function
provides the integrity guarantees needed for our purposes. While stronger hash
functions exist, we believe that the security and collision rate provided by MD5
are strong enough to adequately protect our approach from mimicry attacks.

Repairing phase. When the hypervisor detects that the signature of a pro-
tected object is different from the one computed the first time, two different
behaviors are allowed: a) the system will report an ongoing attack or b) the
system attempts to restore the contents of the compromised object if a copy has
been provided by the trusted module. Since the hypervisor and the guest share
the same physical address space, the hypervisor can restore the original content
by mapping the physical address of the compromised object in its virtual space.
The untampered value is then copied and control returns to the guest. The
restoration of modified critical data structures means that, while the rootkit’s
code is still present in the address space of the kernel, it is no longer reachable by
the kernel control-flow and thus it is neutralized. Since switching from VMX-root
to VMX-non-root causes a flush of the TLB, any code in the guest that was using
the compromised object will perform the address translation and memory load
again and will thus load the restored value. As previously mentioned, whenever
task switching, the CR3 register’s contents are changed. Hello rootKitty traps
the MOV CR* event and checks the integrity of the critical kernel objects. This
checking occurs outside of the guest operating system and thus can’t be influ-
enced by it. Since the number of kernel objects might be high, the hypervisor
will perform the integrity checking of only a subset of objects. Control is then
returned to the guest kernel and another subset of critical kernel objects will be
checked at the next MOV CR* event. While considerably improving the perfor-
mance overhead, this relaxation obviously comes at a cost in terms of security
and detection time. We do believe however, that the resulting detection ability
of Hello rootKitty remains strong, a belief which we explore further in Section 5.
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4 Evaluation

We implemented Hello rootKitty in BitVisor (Ver 1.1) and the trusted module
as a loadable kernel module of the Linux kernel. All experiments were performed
on Intel Core 2 Duo 2 Ghz processor with 4GB of RAM.

4.1 Security Evaluation

In order to evaluate whether Hello rootKitty would detect a real rootkit we
downloaded and installed a minimal rootkit [15] which hijacks a system-call
entry, specifically the setuid systemcall, from the system-call table. When the
setuid system call is invoked with the number 31337 as an argument, the rootkit
locates the kernel structure for the calling process and elevates its permissions
to “root”. The way of hijacking entries in the system-call table is very common
among rootkits (see Table 1) since it provides the rootkit a convenient and reli-
able control of sensitive system calls. The critical kernel object that the rootkit
modifies is the system-call table which normally remains invariant throughout
the lifetime of a specific kernel version. The Linux kernel developers have actu-
ally placed this table in read-only memory, however the rootkit circumvents this
by remapping the underlining physical memory to new virtual memory pages
with write permissions.

Before installing the rootkit, we gave as input to our trusted module, the ad-
dress of the invariant system-call table and its size. Since Hello rootKitty is an
invariance-enforcing framework and not an invariance-discovering system, the
invariant critical kernel-objects and their size must be provided to it from an ex-
ternal source. This source can either be automatic invariance-discovering systems
or kernel programmers who wish to protect their data structures from malicious
modifications. Once our system was booted we loaded the rootkit in the running
kernel. When the next MOV to control-registered occured, the system trapped
into the hypervisor and Hello rootKitty detected the change on the invariant
system-call table. After reporting the attack, the system repaired the system-
call table by restoring the system-call entry with the original memory address.
This means, that while the rootkit’s code is still loaded in kernel-memory it is
no longer reachable by any statement and thus inactive.

This shows, that Hello rootKitty can detect rootkits and repair the kernel
provided that a) the kernel objects used by the rootkit to achieve control are
invariant and b) the utilized kernel objects are included in the list of invariance
that is given to our system.

4.2 Performance Benchmarks

According to slabtop, a Linux utility which displays kernel slab cache infor-
mation, approximately 15,000 kernel objects are allocated during system’s life-
time, 75% of which smaller than 128 bytes. These numbers are never exceeded
in other detection systems. Thus in order to measure the overhead introduced
by our countermeasure we instrumented the trusted module to create 15,000
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kernel objects each of 128 bytes and then performed different types of bench-
marks. In order to avoid checking all 15,000 objects at each VMExit we check
each time a different subset of the object set. This parameter is configurable
and its value depends on the priorities of each installation (performance versus
detection time). We measure real (wall-clock) timings in a virtualized environ-
ment to compensate for the inaccuracy of time measurements within the virtual
machine (i.e. the guest’s timers are paused when the hypervisor is perform-
ing any other operation). We collected results from ApacheBench [1] sending
requests on a local webserver running lighttpd (Table 3) and from SPECINT
2000 as macrobenchmarks to estimate the delay perceived by the user (Table 4).
Lastly, we collected accurate timings of microbenchmarks from lmbench (Table
2). The macrobenchmarks show that our system imposes neglibible overhead on
the SPEC applications (0.005%) allowing its widespread adoption as a security
mechanism in virtualized systems.

Microbenchmarks show a consistent overhead on process forking, as expected.
In Table 2 we do not report measurements of context switching latencies because
the numbers produced by this benchmark are inaccurate [27,12]. An improve-
ment of local communication bandwidth is due to the slower context switching
which has the side effect of slightly increasing the troughtput of file or mmap
re-reading operations.

4.3 Memory Overhead

Memory overhead is proportional to the number of protected objects. The data
structure needed to store information for integrity checking is 20 bytes long (64-
bit kernel object physical address, 32-bit kernel object size, 32-bit checksum, 32-
bit support flags used by the hypervisor)3. Protecting 15,000 objects costs 193KB
when the original content is not provided and 2168 KB otherwise. Moreover,
every time a subset of the list of objects is checked the hypervisor needs to
map each object from the guest physical space to its virtual space. In our proof
of concept the hypervisor will map 100 objects of 128 bytes each every time
a MOV CR event is trapped. This has an additional cost of 13KB. Thus the
overall cost in terms of memory is approximately 206KB (2181KB if a copy of
the original content is provided). Since the regular hypervisor allocates 128MB
at system startup, the memory overhead is 1.5%. The trusted module needs the
same amount of memory. But since it will free previously allocated memory after
raising the hypercall, that memory would be regularly used by the kernel.

4.4 Detection Time

Due to the relaxation of integrity checking introduced in the earlier sections,
it is possible that the modified critical kernel object will not be in the current
subset that Hello rootKitty checks. The current prototype of our system checks

3 In order to repair the compromised object, the hypervisor needs to store the object’s
original content too. This may increase the memory overhead.
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Table 4. SPEC2000 benchmarks of Hello rootKitty in action

Benchmark no counterm.(sec) Hello rootKitty(sec) Perf. overh.

164.gzip 204 204 0%

175.vpr 138 142 2.8%

176.gcc 88.7 89.0 0.3%

181.mcf 86.4 86.7 0.34%

197.parser 206 207 0.5%

256.bzip2 179 179 0%

300.twolf 229 229 0%

Average 161.6 162.4 0.005%

a subset of 100 objects at every change of a Control Register. For the total of
15,000 objects, this means that in the worst case scenario Hello rootKitty will
detect the malicious modification 149 process switches later than the moment it
happened. We found out that in a normally loaded system, this corresponds to
approximately 6 seconds of wall-clock time. We believe that this is an acceptable
security trade-off for the performance benefits that relaxation offers.

5 Limitations

In this section we describe the limitations and possible weak points of our coun-
termeasure. Since Hello rootKitty checks the critical kernel objects for invariance
at every change of a Control Register (CR*), an attacker can possibly com-
promise the scheduler of the operating system and avoid task switching, thus
avoiding changes of the CR3. The problem with this attack is that it effectively
freezes the system, since the control can’t be returned back from the kernel to
the running applications. A rootkit’s main goal is to hide itself from adminis-
trators thus any rootkit behaving this way will a) reveal that there is something
wrong in the kernel of the running operating system and b) will never be able to
intercept system calls of running processes. These facts suggest that while the
attack is possible, it is not probable.

Another attack might occur because of the relaxation explained in Section
3.2 which improves the performance overhead but comes with a cost in terms
of detection time. Since at any MOV CR event the hypervisor will check the
integrity of a subset of objects, several malicious processes in the guest might
compromise the kernel and restore the original contents before the hypervisor
performs the checking. We consider such an attack hard to accomplish because,
although the hypervisor performs integrity checking in a deterministic fashion,
the attacker has no information about the position of the compromised object
in the hypervisor’s memory space. A possible mitigation for this kind of attack
is the randomization of the sequence in which blocks are checked.

A third possible way to compromise the guest kernel would be by corrupt-
ing critical kernel objects whose values legitimately change during the kernel’s
lifetime. Such objects are not invariant and thus can’t be included in the list
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of objects that Hello rootKitty checks since our system is unable to differen-
tiate legitimate from non-legitimate changes. The majority though of existing
kernel-mode rootkits modify invariant data structures thus our system reduces
considerably the rootkit attack surface and prevents most rootkits from perform-
ing a successful attack.

Lastly, Hello rootKitty depends on invariance inference engines to provide an
accurate list of invariant critical kernel objects. Thus, if the inference engine used
doesn’t provide all the invariant critical kernel objects (false negatives), Hello
rootKitty will be unable to detect attacks that occur in the non-reported kernel
objects.

6 Related Work

A number of efforts exist on detecting and preventing kernel malware. In this sec-
tion we explore related work that attempts to protect a kernel using specialized
hardware, virtualization, code integrity and profiling.

Hardware-based countermeasures. Copilot [18] is a kernel integrity monitor
which detects illegal modications to a hosts kernel by fetching physical memory
pages where kernel data and code is stored. Although the monitor has negligible
overhead, it needs a separate PCI-card to fetch pages of the running kernel.
Gibraltar [2] is a system to infer kernel data structure invariants by fetching
snapshots of kernel memory in a way similar to Copilot, by using a PCI-card.
The violation of the inferred invariants is reported as a potential attack. While
detecting malicious behavior, those countermeasures are limited by the usage of
special hardware. A wide deployment of such systems is harder to achieve.

Kernel code integrity. A countermeasure specifically designed to prevent the
execution of unauthorized code is described in [24]. The system comes in the form
of a tiny hypervisor which protects legacy OSes and ensures that only validated
code of the guest can execute in kernel mode. Another rootkit prevention system
is NICKLE [22], which prevents unauthorized kernel code execution via memory
shadowing. The hypervisor maintains a shadow physical memory to store au-
thenticated guest kernel code. At runtime it determines if the instruction fetch
is for kernel or user mode. After verifying the code it will route the instruction
fetch accordingly to shadow or standard memory. Kernel rootkit attacks would
be detected and prevented since invalidated code would attempt to run in kernel
mode.

A recent attack to bypass countermeasures against code injection attacks,
such as the Non-Executable stack countermeasure, is Return Oriented Program-
ming (ROP) [25]. In ROP, the attacker, instead of injecting malicious code in
the address space of a vulnerable process, crafts his malicious payload by com-
bining fragments of existing code. This method of attacking has been used to
create return-oriented rootkits which re-use fragments of authorized kernel code
for malicious purposes [10]. Such rootkits can bypass countermeasures like the
ones proposed by [22,24].
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Yin et al. [32] protect kernel function pointers from being compromised by rootk-
its. The approach consists of an analysis and a detection subsystems. The anal-
ysis subsystem keeps track of function pointer propagation in kernel memory
via a whole-system emulator and generates the policy for hook detection. The
detection subsystem resides on the target machine and detects violations of the
inferred policy. Although the described countermeasure is binary-centric and
can generate a hook detection policy without modifying any guest source code,
it can be disabled by a rootkit attack since the detection system resides in the
target machine. A countermeasure which protects kernel hooks dynamically allo-
cated from the heap is described in [29]. Since protection of kernel objects needs
byte-level granularity, obviously finer than the page-level granularity provided
by commodity hardware, this countermeasure relocates kernel hooks to be pro-
tected to a dedicated page and then exploits the regular page-level protection of
the MMU. Although the overhead is negligible, rootkit attacks that compromise
non-control data would not be prevented.

Analysis and profiling systems. Malware analysis can reveal important in-
formation about the way a rootkit compromises data structures or how private
data are stolen, allowing researchers to understand rootkit’s behavior and design
effective countermeasures. A virtual machine monitor designed for malware anal-
ysis as described in [14] extracts features like memory pages, system calls, disk
and network accesses from the analyzed program running in the guest. Wang et
al. [30] is an analysis tool against persistent rootkits, which compromise kernel
hooks for hiding purposes. Those kernel hooks are first identified by monitoring
the kernel-side execution path of system utility programs (e.g. ps, ls) and then
reported as potential targets. Identification of kernel hooks and extraction of
the hook implanting mechanisms via dynamic analysis is proposed in [31]. A
whole-system emulator is used rather than a virtual machine monitor. A rootkit
proler is described in [23]. A VMM is used to log the rootkit hooking behavior,
to monitor targeted kernel objects, to extract kernel rootkit code and infer the
potential impact on user-level programs.

Hello rootKitty can be easily integrated with the systems described above in
order to perform integrity checking and detect illegal changes to those kernel
objects collected by the analysis tools.

7 Conclusion

In this paper we demonstrated how the guaranteed isolation between a hy-
pervisor and a guest operating system can be used to build a non-bypassable
invariance-enforcing framework. We realized our idea by designing and imple-
menting Hello rootKitty, a lightweight countermeasure to mitigate kernel-mode
rootkits in common operating system kernels. Upon detection of a change of an
invariant kernel object, Hello rootKitty alerts the administrator of the guest op-
erating system and proceeds to repair the kernel by restoring the data structure
to its original values. Due to this change, the rootkit’s injected code is no longer
reachable by any statements in the kernel and thus can no longer affect the
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running kernel’s operations. The evaluation of our prototype showed that Hello
rootKitty can detect control-flow changes used by modern rootkits with negligi-
ble performance and memory overhead, making it a viable countermeasure for
protecting operating systems in virtualized environments.
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Abstract. Trust management systems are vulnerable to so-called pro-
bing attacks, which enable an adversary to gain knowledge about confi-
dential facts in the system. We present the first method for deciding
if an adversary can gain knowledge about confidential information in a
Datalog-based policy.

1 Introduction

In the trust management paradigm [7], authorization rules are specified in a high-
level policy language (e.g. [18,4,11,17]). Access is granted only if the user’s request
complies with the policy in conjunction with the user-submitted credentials.
There is a class of attacks on such systems, called probing attacks, that enables an
adversary to gain knowledge about confidential information in a service’s policy,
by submitting a series of probes, i.e., access requests together with conditional
credentials.

Here is an example of a simple probing attack on a policy written
in Binder [11]. The service Hospital publishes the policy rule “Hospital
says canCreateAcc(x) if AgeCert says over21(x)”. This rule stipulates that any
principal x can create a patient account if AgeCert says that x is an adult.
Hospital’s policy also contains confidential facts that are not visible to the
adversary Eve, for instance, whether Bob is a patient or not. (Our use of the
term “policy” includes not only rules, but also all authorization-relevant facts.)
Suppose Eve collaborates with AgeCert, and hence can get hold of the AgeCert-
issued credential “AgeCert says over21(Eve) if Hospital says patient(Bob)”.
She starts her probing attack by submitting this credential together with a re-
quest to create a patient account. The service evaluates the corresponding query
“Hospital says canCreateAcc(Eve)?” against its policy in union with the cre-
dential. Suppose it responds by granting access. Next, Eve submits a second
probe, with the same access request, but with no supporting credentials. This
time, access is denied.

From these two probes, Eve deduces that the submitted credential must have
been crucial in making the access query succeed. But this is only possible if
credential’s condition “Hospital says patient(Bob)” is true in Hospital’s policy.
She has therefore detected a confidential fact through probing.

Probing attacks present a serious problem to trust management systems, as
policies commonly contain confidential information, and it takes little effort to
conduct a probing attack with legitimately collected and self-issued credentials.
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At the same time, it is non-trivial to see, in more involved examples, if a piece
of information can be detected through probing or not. It is therefore critical
to have an automated method for verifying non-detectability – or, opacity – of
information in credential systems.

This paper presents several significant contributions to the problem space.
Firstly, on a foundational level, it provides the first formal framework for pro-
bing attacks that makes no assumptions on the structure of policies and of the
credential evaluation mechanism, and that is thus general enough to encompass
widely different languages such as XACML [18] and DKAL2 [14]. Based on an
abstract notion of observational equivalence, this framework specifies precisely
what it means for a piece of information to be detectable or opaque (Section 3).

Secondly, we present the first algorithm for checking opacity in policies written
in Datalog, which is the basis of many existing policy languages (Section 5). The
algorithm is not only sound, but also complete and terminating: if it fails to
prove opacity (in which case failure is reported in finite time), then the given
fact is provably detectable. This is a strong result, as the mere existence of a
complete decision procedure for opacity in this context is far from obvious.

A particularly attractive feature of the algorithm is its constructiveness. In-
tuitively, a property is opaque in a policy if there exists some policy that behaves
in the same way as the first policy with regards to the adversary’s probes, but
in which the property does not hold. If the property is opaque, the algorithm
actually constructs such a “witness” policy. In fact, it can iteratively construct
a finite sequence of such witnesses that subsumes the generally infinite set of
all witnesses. What does this feature buy us? Without it, the algorithm would
be merely possibilistic: the mere existence of a witness policy, no matter how
pathological it may be, would be sufficient for opacity. But since the algorithm
constructs the witnesses, they can be assigned probabilities, or the security ana-
lyst could interactively discard unlikely witnesses. The final result could therefore
be interpreted as a degree of likelihood of the property being opaque.

Thirdly, we identify several optimization methods for cutting the high com-
putational cost by pruning the search space, and show empirically that these
render the opacity verification problem feasible in medium-sized cases, whereas
the straightforward implementation of the algorithm is unusable for other than
very small test cases (Section 6). Full proofs and extended examples are included
in a technical report [5].

2 Related Work

Probing attacks on credential systems were first mentioned in [13]. One of the
primary design goals of their policy language, DKAL, was to provide protection
against probing attacks. However, they do not precisely define what they are
protecting against, and indeed, it has been shown that DKAL2 [14] is susceptible
to probing attacks [3].

Probing attacks were first defined in terms of opacity in [3]. However, in
contrast to our general framework (Section 3), their definitions only apply to
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simple logic-based policy languages, but not to more complex languages such
as XACML [18] or Ponder [10], in which policies have some (e.g. hierarchical)
structure, or languages such as DKAL, where incoming credentials are filtered
and transformed before being added to the policy. That paper also presents an
inference system for analyzing detectability in Datalog policies, but it is incom-
plete and non-constructive in the sense that it does not map to a terminating
algorithm, and thus cannot be used to check opacity. We present the first decision
procedure for proving opacity (Section 5).

Research on information flow has mainly focused on stateful, temporal com-
putations (see [19] for an overview). The current setting is very different as
there is no notion of state, run or trace, and, most importantly, probes may
contain credentials that are temporarily combined with the local policy during
query evaluation – this is precisely what makes the analysis so hard. In contrast,
the adversaries considered in computational information flow analysis typically
cannot inject code into the program.

A policy could be seen as a database, and the probes as queries against the da-
tabase. Detectability through probing could therefore be seen as related to the
database inference problem, which is concerned with covert channels through
which confidential information from a database can leak to a database user. A
wide variety of such channels have been studied [15,12], mainly for relational da-
tabases. Bonatti et al. have studied the database inference problem in deductive
databases [8], which are similar to the Datalog-based policies considered in the
current paper. However, the problem considered in the current paper is harder,
as it corresponds to users who can temporarily inject new rules and relations
into the database (which is not natural in the typical database context).

There has been some work on formalizing and enforcing safety in Automated
Trust Negotiaton (ATN) protocols [22,21], i.e., the property that no informa-
tion about the presence or absence of credentials is prematurely leaked during
a credential exchange [20]. This problem is quite different from the one we are
considering here; e.g., we are interested in the confidentiality of internal proper-
ties of the policy rather than that of submitted credentials, and our credentials
are not mere attributes, but may be conditional and may affect policy evaluation
results.

3 A Framework for Probing Attacks

3.1 Abstract Framework

This section establishes the fundamental concepts for reasoning about probing
attacks in credential systems.

Definition 1 (Policy language, probe). A policy language is a triple
(Pol,Prb,�), where Pol and Prb are sets called policies and probes, respecti-
vely, and � is a binary infix relation from Pol ×Prb, called decision relation.

Let A ∈ Pol, π ∈ Prb. If A � π we say that π is positive in A; otherwise
(i.e., A � π), π is negative in A.
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Although Definition 1 does not prescribe the structure of probes, it helps to think
of a probe as a pair containing a set of credentials that the adversary submits
to the service under attack, and a query corresponding to some access request.
A positive probe is one that leads to an access grant, whereas a negative leads
to an access denial.

To illustrate Definition 1, we briefly sketch how it would be instantiated to
the concrete policy languages SecPAL [4], DKAL2 [14], and XACML [18].

In SecPAL, a policy is a set of SecPAL assertions such as “Alice
says x canRead if x canWrite” or “Bob says Eve cansay x canWrite”. Ac-
cess requests are mapped to SecPAL queries, which are first-order formulas over
atoms of the form “〈Principal〉 says 〈Fact〉”. An inference system defines which
queries are deducible from a policy. A user’s access request is mapped to a query,
and is granted only if the query is deducible from the union of the local policy
and the set of credentials (which are also just assertions) submitted by the user
together with the request. Therefore, a probe π is naturally defined as a pair 〈A, ϕ〉
containing a set A of credentials and a query ϕ. Then A0 � π iff ϕ is deducible
from A0 ∪A. The definitions can be instantiated in a very similar fashion for other
related languages such as RT [17], Cassandra [6], SD3 [16], and Binder [11].

In DKAL2, a policy is a set of so-called infon terms such as
“Eve said Alice canRead” or “Bob implied Alice said Eve canWrite”. As in
SecPAL, a set of inference rules defines which other infon terms can be dedu-
ced from a policy. However, infon terms sent by the adversary (corresponding
to submitted credentials) are not simply added verbatim to the local policy,
but are converted depending on the term’s shape. For example, the infon term
“A canRead ←− B canWrite” submitted by Eve would be imported as the infon
term “B canWrite → Eve implied A canRead”. Why this is done and what this
means is beyond the scope of this paper; the important point here is that there
are credential systems where the access query is not simply evaluated against
the union of the local policy and the submitted credentials, but where the latter
are first modified according to some rules.

In XACML, a policy (as in Definition 1) would correspond to a PolicySet,
which is a hierarchical structure containing other PolicySets or items called
(XACML) Policy. The latter is a collection of Rules. XACML is thus an example
of a system where a policy is not just a flat collection of assertions. Just as in
DKAL2, incoming credentials (SOAP messages conveying Attributes [1]) may be
transformed before evaluation. For example, the client-supplied Attribute may
be written in SAML and would first be converted by an XACML Context Hand-
ler [2]. As in the case of DKAL2, the instantiation of � would have to take such
transformations into account.

We now consider the adversary, i.e., the principal who mounts the probing
attack against a service’s policy A0. Informally, the adversary has a passive and
an active capability. A passively acting adversary only reads the visible part of
A0 that is presented to her by the service.

An active adversary can additionally evaluate probes against A0 and observe
whether they are positive or negative in A0. Typically, the adversary does not
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have the power to evaluate arbitrary probes, but only the probes available to her.
In the standard case where probes are pairs containing a set of credentials and a
query, the availability of a probe is typically determined, firstly, by which creden-
tials the adversary possesses or can create, and, secondly, by which queries the
service allows her to run. For instance, SecPAL services define an Authorization
Query Table that map access requests to SecPAL queries, so only these queries
can be evaluated by clients. In DKAL2, incoming infon terms (corresponding to
credentials) are filtered by a filtering policy, so not all credentials possessed by
clients are available in probes. Our definition of available probes abstracts away
such language-dependent details.

Definition 2 (Alikeness and available probes). An adversary is defined by
an equivalence relation � ⊆ Pol × Pol, and a set Avail ⊆ Prb of available
probes. If A1 � A2 for two policies A1 and A2, we say that A1 and A2 are alike.

The alikeness relation, which specifies the adversary’s passive capability, is also
kept abstract in Definition 2. Typically, a policy can be split into a publicly
visible and a private part (relative to a particular adversary). A useful instan-
tiation in this case would be that two policies are alike iff their visible parts
are syntactically equal. Alternatively, one could adopt a more semantic instan-
tiation, such that two policies are alike iff their visible parts are semantically
equivalent.

We can now define the adversary’s active capability.

Definition 3 (Observational equivalence). Two policies A1 and A2 are ob-
servationally equivalent (A ≡ A′) iff

1. A1 � A2, and
2. ∀π ∈ Avail, A1 � π ⇐⇒ A2 � π.

Alikeness and observational equivalence induce two different notions of indis-
tinguishability of policies. A passive adversary cannot distinguish policies that
are alike. An active adversary can see the visible parts of a policy and run
probes against it. These two capabilities are represented by conditions 1. and
2. in Definition 3. Hence an active adversary cannot distinguish policies that are
observationally equivalent.

We are interested in whether the adversary can infer that some property Φ
holds about policy A, just by looking at the policy’s public parts and by running
the probes available to her. If she can, then we say that Φ is detectable in A,
otherwise Φ is opaque in A. This is formalized in the following definition, which
again is implicitly relative to a given adversary.

Definition 4 (Detectability, opacity). A predicate Φ ⊆ Pol is detectable in
A ∈ Pol iff ∀A′ ∈ Pol : A ≡ A′ ⇒ Φ(A′).

A predicate Φ ⊆ Pol is opaque in A ∈ Pol iff it is not detectable in A, or
equivalently, iff ∃A′ ∈ Pol : A ≡ A′ ∧ ¬Φ(A′).

The definitions established in this section so far provide a general framework
for reasoning about probing attacks in credential systems. For specific trust
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management frameworks, the definitions of policy language and alikeness need
to be instantiated accordingly. We do this in the remainder of this section for
Datalog. In Section 4, we discuss an example in Datalog, which will also help
illustrate the definitions above.

3.2 Datalog-Based Policies

Datalog is not used as a policy language per se, but is the semantic basis
for many existing policy languages, and many others can be translated into it
(e.g. [4,17,6,16,11]). Reasoning techniques and analysis tools for Datalog there-
fore apply to a wide range of policy languages. We only give a very brief overview
of Datalog. (For a more careful introduction, see e.g. [9].)

The central construct in Datalog is a clause. A clause a is of the form

P0 ← P1, ..., Pn,

where n ≥ 0, and the Pi are atoms of the form p(�e) (where p is a predicate
symbol, and �e a sequence of variables and constants). (We usually omit the
arrow if n = 0.) We write hd(a) to denote a’s head P0 and bd(a) to denote its
body �P = 〈P1, ..., Pn〉. Given a set of clauses A, we write hds(A) to denote the
atom set {hd(a) | a ∈ A}.

A query ϕ is either true, false or a ground (i.e., variable-free) boolean formula
(i.e., involving connectives ¬, ∧ and ∨) over atoms P . We write Qry to denote
the set of all queries. A query ϕ is evaluated with respect to a set A of assertions.
For atomic ϕ = P , we define that A � P holds iff there exists a ground (i.e.,
variable-free) instance P ← �P of some clause in A and A � Pi for all Pi ∈ �P .
The non-atomic cases are defined in the standard way, e.g. A � ¬ϕ iff A � ϕ.

Now we can instantiate the abstract Definitions 1 and 2. For evaluating probes,
we adopt the simple model where the query of a probe is evaluated against the
union of the service’s policy and the credentials (i.e., clauses) of the probe.

Definition 5 (Datalog instantiation). We instantiate Pol to the powerset
of clauses, ℘(Cls). A (Datalog) policy is hence a set A0 ⊆ Cls.

A (Datalog) probe π is a pair 〈A, ϕ〉, where A ⊆ Cls and ϕ ∈ Qry. Hence
Prb is instantiated to the set of all such probes. A probe is ground iff it does
not contain any variables. We write ¬〈A, ϕ〉 to denote the probe 〈A,¬ϕ〉.

The decision relation � ⊆ Pol×Prb is defined by A0 � 〈A, ϕ〉 ⇐⇒ A0∪A � ϕ.

Definition 6 (Adversary, Datalog alikeness). An adversary is defined by a
set Avail ⊆ Prb and a unary predicate Visible ⊆ Cls. If Visible(a) for some
a ∈ Cls, we say that a is visible. We extend Visible to policies by defining the
visible part of A, Visible(A), as {a ∈ A | Visible(a)}, for all A ⊆ Cls.

Two policies A1, A2 ⊆ Cls are alike (A1 � A2) iff Visible(A1) =
Visible(A2).

Definitions 5 and 6 induce instantiations for the Datalog definitions of obser-
vational equivalence between policies, and of opacity and detectability. Recall
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that the latter two were defined for arbitrary properties of policies. Here, we
are interested in a particular class of policy properties, namely whether a given
probe (usually one that is not in Avail) is positive or negative.

Definition 7 (Probe detectability & opacity). A probe π ∈ Prb is detec-
table in A ∈ Pol iff ∀A′ ∈ Pol : A ≡ A′ ⇒ A′ � π.

A probe π ∈ Prb is opaque in A ∈ Pol iff it is not detectable in A, or
equivalently, iff ∃A′ ∈ Pol : A ≡ A′ ∧ A′ � π.

Note that this definition is just a specialization of Definition 4, with the predicate
Φ instantiated to {A ⊆ Cls | A � π}.

4 Example

We illustrate the definitions from the previous section using an example of an
authorization policy written in Datalog. The example also serves as the basis for
the test cases in Section 6. Our example is taken from a grid computing scenario.
A compute cluster allows users to run compute jobs. The execution of a job may
require read access to data that is stored in an external data center. The cluster
has a policy that governs who can run compute jobs, and the data center has a
policy that governs who can access data. Both policies delegate authority over
certain attributes to trusted third parties. The policies consist of the following
seven clauses:

canExe(Clstr, x, j) ← mem(Clstr, x), owns(Clstr, x, j), canRd(Data, Clstr, j). (1)

owns(Clstr, x, j) ← owns(y, x, j), isTTP(Clstr, y). (2)

mem(Clstr, x, j) ← mem(y, x, j), isTTP(Clstr, y). (3)

canRd(Data, x, j) ← canRd(y, x, j), owns(Data, y, j). (4)

owns(Data, x, j) ← owns(y, x, j), isTTP(Data, y). (5)

isTTP(Clstr, CA). (6)

isTTP(Data, CA). (7)

Here, we adopt the convention that the first parameter of a predicate denotes the
principal “saying” (i.e., vouching for) the predicate, and the second parameter
denotes the subject of the predicate. For instance, canExe(Clstr, x, j) intuitively
means that Clstr says that x can execute job j.

According to Clause (1), anyone who is a member and owns a job (according to
Clstr) can execute that job (according to Clstr), if the data center Data allows
Clstr to read the data associated with that job. Clstr delegates authority over
job ownership and membership to trusted third parties (2)–(3). The next clause
implements a variant of discretionary access control: data center Data stipulates
that owners y of data associated with job j can delegate read access to this
data to other principals x (4). Just like Clstr, Data delegates authority over
ownership to third parties it trusts (5). Finally, both Clstr and Data specify
certificate authority CA as a trusted third party (6)–(7).
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Clstr has an interface that allows users to submit a job execution request.
When some user Eve requests to execute a job Job, the corresponding query

ϕEve = canExe(Clstr, Eve, Job) (8)

is evaluated against the policy consisting of the clauses (1)–(7), in union with the
(possibly empty) set of credentials submitted by Eve together with the request.

Eve, who plays the role of the adversary in our scenario, possesses four cre-
dentials:

owns(CA, Eve, Job). (9)

mem(CA, Eve). (10)

canRd(Eve, Clstr, Job). (11)

canRd(Eve, Clstr, Job) ← mem(Clstr, Bob). (12)

Credentials (9)–(10) are issued by CA, and the other two are self-issued. Eve is
interested in finding out if Bob is a member, according to Clstr’s policy. Of
course, she does not have the authority to query this fact directly, so instead she
hopes to be able to detect this fact using (12) in particular, stating that she is
willing to give Clstr read access, provided that Bob is a member of Clstr.

Let A0 be the policy consisting of clauses (1)–(7), and AEve be the set of
clauses (9)–(12). AEve and ϕEve together give rise to a set of 24 = 16 available
probes that Eve is able to run against A0: Avail = {〈A, ϕEve〉 | A ⊆ AEve}. For
simplicity, we assume that Visible = ∅, i.e., Eve is not able to passively read any
of the clauses in A0. Based on this scenario, we make the following observations.

We have A0 � 〈AEve, ϕEve〉, in other words, A0 ∪ AEve � ϕEve. The derivation
goes roughly as follows: Credential (9) proves Eve’s ownership over Job to both
Data and Clstr. Hence Data allows Eve to delegate read access to Clstr using
(11). Furthermore, (10) is sufficient for proving Eve’s membership to Clstr,
hence all body atoms of (1) are satisfied, which implies ϕEve.

We also have A0 � 〈{(9)–(11)}, ϕEve〉, since the derivation above only makes
use of the clauses (9)–(11). But A0 � 〈A, ϕEve〉, for all A ⊆ {(9),(10),(12)}. In
particular, replacing clause (11) in the probe in item 2) above by clause (12)
produces a negative probe. Note that the two clauses only differ in the body.

All policies A′
0 that are observationally equivalent to A0, i.e., that exhi-

bit the same behaviour as observed above, satisfy the property that A0 �

mem(Clstr, Bob). For suppose the contrary were the case. We observed that
ϕEve holds in A0 ∪ {(9)–(11)}. By assumption, the body of clause (12) is true in
A0, which means that replacing clause (11) by (12) in the probe cannot make
a difference. But this contradicts the observation that ϕEve does not hold in
{(9),(10),(12)}.

It follows that the probe 〈∅,¬mem(Clstr, Bob)〉, which is not in Avail, is
detectable in A0. In other words, Eve can be sure that Bob is not a member of
Clstr.
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5 Verifying Opacity

This section presents an algorithm for verifying opacity. Given a set of available
probes, the algorithm decides if a given probe is opaque (or detectable) in a
given Datalog policy. The algorithm works with arbitrary input policies, but
we restrict the input probes to ground ones, in order to simplify the problem.
This restriction is reasonable, as attribute and delegation credentials are usually
issued for one specific principal and purpose, and are thus ground anyway.

In the following, we assume as given a policy A0 ⊆ Cls, a ground probe
π0 ∈ Prb, and an adversary defined by a set Avail ⊆ Prb of ground probes
and the visibility function Visible. The algorithm should decide if π0 is opaque
in A0, relative to the adversary specified by Avail and Visible.

Overview. The algorithm is succinctly specified as the transition system in Fig. 1,
but it is actually rather involved. We first give a high-level roadmap of the
algorithm before proceeding to the details.

Recall that π0 is opaque in A0 iff there exists a policy A′
0 that is observationally

equivalent to A0 (with respect to the probes in Avail), but such that π0 is
negative in A′

0. To prove opacity, the algorithm attempts to construct such an
opacity witness A′

0. Conversely, to prove detectability, it proves that no such A′
0

exists.
A state in the transition system is a triple of the form 〈Π+, Π−, A1〉, and

the (init) rule in Fig. 1 defines the set Init of initial states. Intuitively, an
initial state is populated with sets Π+, Π− of probes that are required to be
positive (negative, respectively) in the opacity witness A′

0 to be constructed. At
each (probe) transition, the system considers and discards one positive probe
in Π+, and adds a set of clauses to the witness candidate A1 ⊆ Cls. Theorem 1
states that π0 is opaque iff the transition system reaches a state of the form
〈∅, Π−, A′

0〉, starting from some initial state. Furthermore, A′
0 will be an opacity

witness.
Our results also show that opacity checking is decidable. This is nontrivial,

as the definition of opacity is quantified over the infinite set of all policies; and
many other simple-looking quantified properties such as containment are unde-
cidable. (Note that the set of predicate symbols and constants may be infinite.)
The decidability of opacity checking essentially stems from a sort of topological
compactness property of the set of policies A′

0 that are observationally equiva-
lent to A0. More precisely, even though there may be infinitely many candidates
for A′

0, we only ever need to consider a finite number of them.

5.1 Initial States

The initial states Init, defined declaratively by (init) in Fig. 1, are produced by
transforming all available probes into equivalent disjunction- and negation-free
ones. Consider a disjunctive probe π = 〈A, ϕ1∨ϕ2〉 ∈ Avail that is positive in A0.
The algorithm attempts to find a policy A′

0 such that A′
0 � π holds, in other words,

A′
0∪A � ϕ1∨ϕ2. This is equivalent to either finding an A′

0 such that A′
0 � 〈A, ϕ1〉,
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(init)

(Π+, Π−) ∈ flattenA0(Avail) π0 = 〈A,ϕ〉 (S+, S−) ∈ dnf(¬ϕ)
∀π ∈ Π− ∪ {〈A,

∨
S−〉} : Visible(A0) � π

〈Π+ ∪ {〈A,
∧

S+〉}, Π− ∪ {〈A,
∨

S−〉}, Visible(A0)〉 ∈ Init

(probe)

Ã ⊆ A 〈a1, ..., an〉 ∈ perms(Ã) ∀i ∈ {1, ..., n} : �Pi = bd(ai) �Pn+1 = �P

A′′ =
⋃n+1

k=1

⋃
Pk∈�Pk

{Pk ← hds({a1, ..., ak−1})} ∀π ∈ Π− : A′ ∪A′′ � π

〈Π+ ∪ {〈A,
∧ �P 〉}, Π−, A′〉 〈A,

∧ �P 〉−−−−−→ 〈Π+, Π−, A′ ∪A′′〉

Fig. 1. Transition system for verifying opacity

or finding one such that A′
0 � 〈A, ϕ2〉. A disjunction in the query of a positive probe

in Avail therefore corresponds to a branch in the search for A′
0.

What about probes in Avail that are negative in A0? Since A0 � π is equi-
valent to A0 � ¬π, we can convert all negative probes in Avail into equivalent
positive ones before dealing with the disjunctions in positive probes.

The functionflattenA0 (definedbelow) applied toAvail first performs themen-
tioned conversion of negative probes into equivalent positive ones. It then splits
each probe into disjuncts of atomic and negated atomic queries. Finally, it pro-
duces a cartesian product of all these disjuncts that keeps the atomic and negated
queries apart. The result is a set of pairs of disjunction-free probe sets; each such
pair (Π+, Π−) corresponds to a disjunctive search branch. The problem of finding
a policy A′

0 that is observationally equivalent to A0 (cf. Def. 3) can then be reduced
to finding an A′

0 and picking a pair (Π+, Π−) ∈ flattenA0(Avail) such that all
probes in Π+ are positive, and all probes in Π− are negative in A′

0.
In the following, we write dnf(ϕ) to denote the disjunctive normal form of a

query ϕ, represented as a set of pairs (S+, S−) of sets of atoms. For instance, if
ϕ = (p ∧ q ∧ ¬s) ∨ (¬p ∧ ¬q ∧ s), then dnf(ϕ) = {({p, q}, {s}), ({s}, {p, q})}.

Definition 8 (Flatten). Let Π ⊆ Prb. Then flattenA0(Π) is a set of pairs
(Π+, Π−) of sets of probes defined inductively as follows:

flattenA0(∅) = {(∅, ∅)}.

flattenA0(Π ∪ {〈A, ϕ〉}) = {(Π+, Π−) |
∃ (S+, S−) ∈ dnf(ϕ̃), (Π+

0 , Π−
0 ) ∈ flattenA0(Π) :

Π+ = Π+
0 ∪ {〈A,

∧
S+〉} and Π− = Π−

0 ∪ {〈A,
∨

S−〉},
where ϕ̃ = ϕ if A0 � 〈A, ϕ〉, and ϕ̃ = ¬ϕ otherwise.

Apart from the observational equivalence A′
0 ≡ A0, opacity of π0 in A0 ad-

ditionally requires that π0 be negative in A′
0. Let π0 = 〈A, ϕ〉. This is equi-

valent to finding a pair (S+, S−) ∈ dnf(¬ϕ) such that A′
0 � 〈A,

∧
S+〉 and

A′
0 � 〈A,

∨
S−〉.

We can then reduce the problem of proving opacity of π0 in A0 to constructing
an A′

0 for some (Π+
0 , Π−

0 ) ∈ flattenA0(Avail) and (S+, S−) ∈ dnf(¬ϕ) such
that all probes in Π+ = Π+

0 ∪{〈A,
∧

S+〉} are positive, and all probes in Π− =
Π−

0 ∪ {〈A,
∨

S−〉} are negative in A′
0. If such an A′

0 exists, we say that A′
0
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is a witness (for the opacity of π0 in A0). We call Π+ a set of positive probe
requirements, and Π− a set of negative probe requirements.

Furthermore, from the alikeness condition A′
0 � A0, any witness must contain

Visible(A0). Hence (init) picks Visible(A0) as the initial witness candidate for
each initial state. The last premise in (init) filters out those witnesses candidates
that fail to make all probes in Π− negative.

These observations are formalized in Lemma 1, stating the correctness of
(init).

Lemma 1. π0 is opaque in A0 iff there exist 〈Π+, Π−,Visible(A0)〉 ∈ Init and
A′

0 ⊆ Cls such that A′
0 ⊇ Visible(A0) and ∀π ∈ Π+ : A′

0 � π and ∀π ∈ Π− :
A′

0 � π.

5.2 Finding Minimal Witnesses

Given Init, we now have to find a witness A′
0 that satisfies the requirements

from Lemma 1. Consider an initial or intermediate state 〈Π+ ∪ {π}, Π−, A′〉.
The transition rule (probe) from Fig. 1 picks the positive probe requirement
π and adds to the current witness candidate A′ a set A′′ of clauses such that
A′ ∪ A′′ � π. The monotonicity of � guarantees that adding A′′ does not make
any previously considered positive probe requirement negative. However, adding
clauses may make negative probe requirements in Π− positive, so we need to
check ∀π′ ∈ Π− : A′ ∪ A′′ � π′. If this fails, the algorithm backtracks to try out
a different A′′. Otherwise, the transition succeeds and produces the new state
〈Π+, Π−, A′ ∪A′′〉. If we reach a finite state, i.e. one where Π+ is empty, then
π0 is opaque, by Lemma 1, and moreover, the witness candidate of the final state
is a genuine witness. This informally shows that the algorithm is sound.

Minimality. To ensure completeness, we have to consider all candidate exten-
sions A′′ such that A′ ∪ A′′ � π. It turns out that we can ignore A′ and simply
consider all A′′ such that A′′ � π (which then implies A ∪ A′′ � π). However,
there may be infinitely many such A′′. At the same time, we want to ensure that
the algorithm is a decision procedure, in other words, that it is both complete
and terminating, which is necessary for proving that the goal π0 is not opaque
(i.e., detectable). We certainly do not want infinite branching. Fortunately, it
turns out that we do not need to compute all candidate extensions. Instead, we
only compute the minimal ones. This notion of minimality is based on Datalog
containment.

Definition 9 (Containment). A policy A is contained in a policy A′ (we
write: A " A′) iff for all ground atoms P and all sets S of ground atoms:
A � 〈S, P 〉 ⇒ A′ � 〈S, P 〉.

So, to be more precise, the candidate extensions actually considered by the
algorithm form a finite set S such that

– ∀A′′ ∈ S : A′′ � π, and



240 M.Y. Becker and M. Koleini

– ∀Ã′′ ⊆ Cls : Ã′′ � π ⇒ ∃A′′ ∈ S : A′′ " Ã′′.

This property has two significant ramifications. Firstly, it ensures termination,
since S is finite for each considered positive probe requirement π; furthermore,
each initial state only has finitely many positive probe requirements, and there
are only finitely many initial states in Init.

Secondly, it ensures that the algorithm is complete: consider any Ã′
0 that

makes all positive probe requirements Π+ of some initial state positive. Then
there exists A′

0 constructed by iteratively adding a minimal extension for each
π ∈ Π+, such that A′

0 also makes all probes in Π+ positive and A′
0 " Ã′

0. There-
fore, if Ã′

0 is a genuine witness (i.e., it also makes all negative probe requirements
in Π− negative) then A′

0 is also a genuine witness, by anti-monotonicity of �.
Hence if there is a genuine witness, the algorithm will find one that is at least
as small, in finite time.

It remains to explain how (probe) computes the minimal extensions A′′.

Relevant subprobes. To gain an intuition for this process, it helps to ask the
question “how could π = 〈A, ϕ〉 possibly be positive in some policy A′′?” If A
is nonempty, there are multiple explanations. Perhaps ϕ is true in A′′ anyway,
so none of the clauses in A are necessary, or relevant, for making π positive in
union with A′′. Or perhaps all clauses in A are relevant, in that removing just one
clause from A would result in a negative probe. The most general explanation
would be that there exists some subset Ã ⊆ A that is relevant, i.e., A′′ � 〈Ã, ϕ〉
but A′′ � 〈Ã′, ϕ〉 for all Ã′ � Ã.

We need to consider all of these 2|A| possible cases, since, as we shall see, each
different choice of Ã results in a different set of minimal witness extensions A′′.
This source of branching is reflected in the condition Ã ⊆ A in the transition
rule (probe) in Fig. 1.

Derivation order. Having chosen Ã ⊆ A to be relevant, there may still be mul-
tiple minimal solutions for A′′ that makes π = 〈A,

∧ �P 〉 positive. Since Ã is
relevant, every clause P0 ← P1, .., Pn ∈ Ã is actively used at least once in the
derivation A′′ ∪ Ã �

∧ �P . But this is only possible if (i) the body atoms are also
derivable, and (ii) the derivation of

∧
�P depends on all the heads of clauses in

Ã, i.e., hds(Ã). We now attempt to solve this set of constraints for the unknown
A′′.

At first sight, a plausible requirement on A′′ seems to be that (i) {P1, ..., Pn} ⊆
A′′, and (ii) {P ← hds(Ã) | P ∈ �P} ⊆ A′′. However, while this is a correct
solution for A′′, it is not the only one, and not even a minimal one. In general,
A′′ may contain the body atoms of just a subset of Ã’s clauses, and the heads
belonging to these clauses combine with clauses in A′′ to make the body atoms
of other clauses in Ã true; this oscillatory back and forth between A′′ and Ã
continues until the query

∧ �P is true. The simple solution above corresponds to
the special case where the “oscillation” only has one stage. This process is best
illustrated by an example.



Opacity Analysis in Trust Management Systems 241

Example 1. Suppose ϕ = �P = z and Ã = {p ← q., r ← s., u ← v.}. We have to
find all minimal A′′ such that A′′∪Ã � z. In the case where the number of stages
n is just 1, there is only one minimal solution for A′′, containing four clauses:

A′′
1 = {q., s., v., z ← p, r, u.}

In the case n = 2, there are six solutions, each containing four clauses; three in
which A′′ contains one of Ã’s body atoms, and three in which it contains two.
Here are two of the six solutions:

A′′
2 = {q., s ← p., v ← p., z ← p, r, u.}
A′′

5 = {q., s., v ← p, r., z ← p, r, u.}

For n = 3, there are again six solutions, one for each permutation of Ã, resulting
in 1 + 6 + 6 = 13 solutions. Again, here are two of the 13 solutions:

A′′
8 = {q., s ← p., v ← p, r., z ← p, r, u.}

A′′
13 = {v., s ← u., q ← r, u., z ← p, r, u.}

But note that A′′
8 is contained in (") A′′

1 , A′′
2 , and A′′

5 . Indeed, for each solution
from {A′′

1 ,...,A′′
7}, there exists a solution from {A′′

8 , ..., A′′
13} such that the latter is

contained in the former. Hence only the solutions for the case n = 3 are minimal.
��

It turns out that this observation holds in the general case. Given a particular
Ã ⊆ A, we can prove that we only need to consider the case n = |Ã|, which has
n! solutions. Let perms denote the function that maps a set S to the set of all
permutations of S. Each permutation of clauses 〈a1, ..., an〉 ∈ perms(Ã) gives
rise to a unique witness candidate A′′, constructed as in the example above. Let
�Pi = bd(ai), for i ∈ {1, ..., n}. Then for each P1 ∈ �P1, A′′ contains P1. For each
P2 ∈ �P2, it contains the clause P2 ← hd(a1). For each P3 ∈ �P3, it contains
the clause P3 ← hd(a1),hd(a2). In general, for each Pk ∈ �Pk, A′′ contains the
clause Pk ← hds({a1, ..., ak−1}). Finally, letting �Pn+1 = �P , we have that for
each Pn+1 ∈ �Pn+1, A′′ contains Pn+1 ← hds({a1, ..., an}).

The transition rule (probe) in Fig. 1 shows that nondeterministic branching
is not only due to picking Ã ⊆ A, but also to picking a permutation from
perms(Ã). The rule constructs A′′ as described, and then tests if the new can-
didate makes all probes in Π− negative. If it does, then the state transition
〈Π+ ∪ {π}, Π−, A′〉 π−→ 〈Π+, Π−, A′ ∪ A′′〉 is valid.

Theorem 1 (Soundness and completeness). π0 is opaque in A0 iff there
exist σ0 ∈ Init, Π− ⊆ Prb and A′

0 ⊆ Cls such that σ0 →∗ 〈∅, Π−, A′
0〉.

Theorem 2. The number of (
〈A,

∧ �P 〉−−−−−→) transitions from any state is bounded by∑n
m=0

n!
(n−m)! , where n = |A|.

Theorem 2 also implies that the transition system is finite, and hence the algo-
rithm terminates, since Init is finite, and Π+ in every initial state is finite.
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6 Implementation with Optimizations

We implemented a prototype of the state transition system in Fig. 1 in F#. It
first computes Init as a lazy enumeration, and then performs a backtracking
depth first search based on the transition rule (probe). The back end is an
implementation of Datalog’s evaluation relation �. It is not highly optimized,
and even though it is the main bottleneck, we did not spent much effort making
it more efficient, as we are more interested in algorithmic improvements of the
search procedure.

The front end includes a parser for problem specifications (A0, Visible(A0),
Avail, and π0) and a GUI that displays the witness, if a final state has been
found, or reports that no final state exists. In the former case, the user can choose
to discard the found witness and continue the search for the next witness. We
have found this to be an extremely useful feature, which helps to overcome some
of the limitations of the strict possibilistic (as opposed to probabilistic) concept
of opacity.

For example, we added the atomic clause mem(Clstr, Bob) to the policy in
Section 4, and expected the fact that Bob now is a member to be detectable
by Eve. After all, the probe containing clauses (9), (10) and (12) is positive,
whereas the one containing only (9) and (10) is negative. This suggests that
(12) is relevant, which is only possible if its body atom mem(Clstr, Bob) is
derivable.

However, the prototype (correctly) reports that 〈∅, mem(Clstr, Bob)〉
is opaque. A closer look at the produced witnesses reveals that
they all contain the rather “improbable” clause “mem(Clstr, Bob) ←
mem(CA, Eve), owns(CA, Eve, Job)”.

Indeed, we can prove this hypothesis with our prototype: the weakened input
probe 〈{(9), (10)}, mem(Clstr, Bob)〉 is detectable. Thus, the constructiveness
of the algorithm enabled us to form the informal judgement that the original
input probe was detectable with a high likelihood.

Example 2. Here is another example that shows how the tool can be used in-
teractively. Let π1 = 〈{b ← a., d ← c.}, e〉, π2 = 〈∅,¬a〉, and π1 = 〈{d},¬e〉.
Suppose that all three probes are positive in A0, and Visible(A0) = ∅. What
does this tell us about c and a in A0? This example is interesting because the
answer is not obvious on casual inspection and may be somewhat surprising.

We start with the obvious goal probes 〈∅, c〉 and 〈∅, a〉. The tool reports that
〈∅, c〉 is detectable (i.e., c must be true in A0), but that 〈∅, a〉 is opaque. For
the latter analysis, it also reports that only one minimal witness exists, which
includes the clause a ← d. And indeed, the goal probe 〈{d}, a〉 is found to be
detectable, hence we can infer that A0 ∪ {d} � a. (The example is small enough
that the interested reader may manually retrace the steps of the algorithm to
verify these results.) ��

As Theorem 2 indicates, traversing the entire transition system would be in-
feasible even for small examples. We devised and implemented a number of
optimization methods for effectively pruning the search tree. For lack of space,
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we describe them only very briefly. Full descriptions and proofs of correctness
are found in [5].

Order independence. The order in which the probes in Π+ are processed is irre-
levant, since the constructed witness extension A′′ is independent of the current
witness candidate; it only depends on the currently considered probe. Therefore,
we can fix a particular order for Π+ in an initial state, thereby reducing the
search space by a factor of |Π+|! for the search branch starting from that initial
state.

Redundant probes. The sets Π+ and Π− in an initial state often contain many
pairs of probes π1 = 〈A1, ϕ1〉, π2 = 〈A2, ϕ2〉 such that π1 ⊆ π2 (i.e., ϕ1 = ϕ2 ∧
A1 ⊆ A2). For example, we may have π1 = 〈{a.}, z〉 as well as π2 = 〈{a., b.}, z〉
in Π+. By monotonicity of � and of the query z, the larger query π2 is redundant,
since any witness candidate that makes π1 positive also makes π2 positive. A
similar argument can be made for the probes in Π−. In general, we can first
transform initial states 〈Π+

0 , Π−
0 , A〉 ∈ Init into potentially much smaller states

〈Π+
1 , Π−

1 , A〉, where

Π+
1 = {π ∈ Π+

0 | ¬∃π′ ∈ Π+
0 : π′ � π}, and Π−

1 = {π ∈ Π−
0 | ¬∃π′ ∈ Π−

0 : π � π′}.

These reduced states are then used as initial states.

Conflicting probes. Any initial state σ0 = 〈Π+, Π−, A〉 in which there exist
π1 ∈ Π+, π2 ∈ Π− such that π1 ⊆ π2 can be discarded straight away, as there
are no transitions from σ0.

Experimental results. To gain a better understanding of the scalability of the
opacity checking algorithm, with and without optimization methods, we per-
formed a number of performance tests. We only briefly summarize our findings
and refer to the technical report [5] for reproducible details on all test cases and
performance plots.

The performance tests are based on the policy from Section 4. The policy is
arguably small; however, this fact does not weaken our results, as it is easy to
see that the computation time is essentially independent of the size of the policy
A0. The significant parameter with respect to computation time is Avail.

We found that the computation time doubles with each irrelevant, trivially
positive probe 〈{pi}, pi〉 being added to Avail, which is predicted by Theorem 2.
Successively adding irrelevant, trivially negative probes 〈{pi}, z〉 only caused a
linear increase (+1.3 ms per additional probe). This is also to be expected, as
negative probes do not cause any branching.

We then explored several variations of the basic scenario from Section 4,
running each test case with different combinations of the optimization methods
enabled. (The order independence method was enabled in all runs.)

We found that enabling the optimization methods improved performance in
all cases, apart from those where Avail was manually reduced to only the re-
levant probes. Even in the latter cases, enabling optimization did not add any
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significant overhead. The automated optimization methods led to dramatic im-
provements that were particularly noticeable in the more complex test cases,
with speedup factors between 126 and 280. Furthermore, they also significantly
improved scalability; for example, increasing the size of Avail from 16 to 128
increased the computation time by a factor of 1130 in the unoptimized case, but
only by a factor 8 with the optimizations enabled.

Not surprisingly, manually picking only the relevant probes was the most
effective strategy for improving performance, with speedup factors between 150
and 19,000. This suggests that significant performance gains can be expected
from more sophisticated pruning methods.

The size of Avail varied between 16 and 128. All test cases completed in less
than one second (with all optimizations enabled, on a standard workstation),
apart from the most complex one, which took 7.2 s (vs. 15 min unoptimized)
and 150,000 (vs. 7 million) Datalog query evaluations. In the latter test case, the
probe queries contained negation, which led to more than 16,000 initial states.

Our results suggest that checking opacity using our tool is feasible in many
practical cases, given that the analysis is almost independent of the size of the
policy (which may well have millions of clauses), and that it seems reasonable to
restrict analysis to adversaries that have no more than about a hundred different
probes to their disposal.

7 Discussion

To recapitulate, we first presented a general framework of probing attacks, defi-
ning abstract notions of policy, probe, and adversary characterized by available
probes, and based on these, notions of observational equivalence, opacity and
detectability. We instantiated this framework to Datalog, a language on which
many existing policy languages are based.

It has been an open question whether the problem of opacity in Datalog
policies is decidable [3]. We answered this question in the positive by presenting
a complete decision procedure for opacity. It works by attempting to construct
opacity witnesses, i.e., policies that masquerade as the original policy, but falsify
the input probe. We also devised a number of optimization strategies for pruning
the search space. Our experimental results show that these methods are highly
effective.

Opacity is a possibilistic information flow property. The mere possibility of the
existence of an opacity witness suffices to deem an input probe opaque, no matter
how unlikely these witnesses may be. But our algorithm for deciding opacity
provides richer information, as it does not merely prove the existence of a witness,
but actually enumerates all minimal witnesses. The set of minimal witnesses is a
finite representation of the infinite set of all witnesses. Our prototype includes an
interface that lets the security analyst browse and inspect the witnesses, thereby
enabling her to informally judge the likelihood of opacity or detectability. We
believe that this is a more useful approach in practice than ascribing numerical
probabilities to the witnesses.
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Abstract. Confidentiality of information should be preserved despite
the emergence of data outsourcing. An existing approach is supposed
to achieve confidentiality by vertical fragmentation and without relying
on encryption. Although prohibiting unauthorised (direct) accesses to
confidential information, this approach has so far ignored the fact that
attackers might infer sensitive information logically by deduction. In this
article vertical fragmentation is modelled within the framework of Con-
trolled Query Evaluation (CQE) allowing for inference-proof answering
of queries. Within this modelling the inference-proofness of fragmenta-
tion is proved formally, even if an attacker has some a priori knowledge
in terms of a rather general class of semantic database constraints.
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1 Introduction

In these days information has become one of the most important resources, which
has to be protected. In order to protect information from undesired disclosures,
confidentiality requirements are declared by setting up a confidentiality policy.
According to such a confidentiality policy a system should enforce the declared
confidentiality requirements autonomously as for example surveyed in [3].

Moreover, there is an increasing need for storing data cost-efficiently in our
economy-driven society. One approach to achieve this goal is called “database
as a service” paradigm and leads to third party service providers specialized
on hosting database systems and offering the use of these database systems to
their customers via Internet in return for payment of rent [12]. These customers
may save money because they are freed from purchasing expensive hard- and
software and dealing with difficult administrative and maintenance tasks such
as upgrading hard- and software or eliminating technical malfunctions.
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Patient SSN Name DoB ZIP Illness Doctor

12345 Hellmann 03.01.1981 94142 Hypertension White
98765 Dooley 07.10.1953 94141 Obesity Warren
24689 McKinley 12.02.1952 94142 Hypertension White
13579 Ripley 03.01.1981 94139 Obesity Warren

Fig. 1. Example of a relational instance containing sensitive associations

Obviously, there is a goal conflict between the discussed “database as a service”
paradigm and confidentiality requirements because the service provider cannot
be restrained from reading all cleartext information stored in its systems. One
natural approach to cope with that conflict lies in encrypting all outsourced data
on the user side [12,13]. But, unfortunately, such an approach often makes the
efficient evaluation of queries on the server side impossible [2,9].

The benefit of encryption of data lies in making these data – and also the
information contained in these data – illegible. But often, in relational database
systems single pieces of information are not confidential per se. Due to the stor-
age of data according to some (static) relational schema, semantic associations
between different pieces of information are represented and often only these asso-
ciations are confidential [9]. For example, in a hospital the list of illnesses cured
and the list of patients are both not particularly sensitive per se. In contrast,
an association between a patient’s name and a specific illness is very sensitive
and has to be protected. An example adapted from [9] of a relational instance
containing this sensitive association among others is given in Fig. 1.

To achieve this protection, some authors suggest to break sensitive associa-
tions by splitting relational instances vertically, which is referred to as vertical
fragmentation. There are several different approaches to achieving confidentiality
based on vertical fragmentation surveyed in [13] and for each of these approaches
the corresponding authors describe how fragments of an original relational in-
stance can be outsourced so that unauthorised (direct) accesses to confidential
information are prohibited. But it is not shown that confidential information
cannot be inferred by employing inferences, which may offer the possibility to
infer confidential information based on the knowledge of non-confidential infor-
mation [11]. Moreover, it is not considered that an attacker often has some a
priori knowledge, which might enable him to infer confidential information [6].

In contrast, there are several approaches to so-called Controlled Query Eval-
uation (CQE) surveyed in [4] and for each of these approaches it is proven that
a declared confidentiality policy is enforced so that any harmful inferences are
avoided. “Inference-proofness” is achieved by limiting a user’s information gain
so that this user cannot infer protected information reliably based on his a priori
knowledge and the (possibly distorted) answers to his queries.

The main novel contribution of this article consists of a formal analysis of
a specific approach to vertical fragmentation – splitting a relational instance
into one externally stored part and one locally-held part – w.r.t. its inference-
proofness. More specifically, based on the seminal ideas proposed in [7,8], a for-
malisation of this approach to vertical fragmentation is developed in Sect. 2. Af-
ter introducing the framework of CQE briefly in Sect. 3, a logic-oriented
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Fo tid SSN Name DoB

1 12345 Hellmann 03.01.1981
2 98765 Dooley 07.10.1953
3 24689 McKinley 12.02.1952
4 13579 Ripley 03.01.1981

Fs tid ZIP Illness Doctor

1 94142 Hypertension White
2 94141 Obesity Warren
3 94142 Hypertension White
4 94139 Obesity Warren

Fig. 2. Possible fragmentation of the instance given in Fig. 1

modelling of the approach to vertical fragmentation presented in Sect. 2 within
the framework of CQE is introduced in Sect. 4 and subsequently analysed w.r.t.
its inference-proofness in Sect. 5. Thereby an attacker’s a priori knowledge in
terms of a rather general class of semantic database constraints is respected.

2 Confidentiality by Fragmentation

Now, the approach to vertical fragmentation (in the following simply referred
to as fragmentation) presented in [7,8] is extended. In this approach all data is
stored in a single relational instance r over a relational schema 〈R|AR|SCR〉 with
relational symbol R and the set AR = {a1, . . . , an} of attributes. Moreover, the
set SCR contains some semantic (database) constraints, which must be satisfied
by each relational instance constructed over this schema. Note that semantic
constraints are not considered in [7,8] (hence there SCR = ∅).

The approach considered is built on the assumption of a client-server architec-
ture, in which the server is managed by a third party service provider. This third
party service provider is not considered to be trustworthy in terms of confiden-
tiality and might actively monitor all queries processed and all data stored on
its server. But it is assumed to be guaranteed that this service provider does not
manipulate data maliciously so that all data received from the server is always
correct in terms of integrity. The client used in this architecture is assumed to be
completely trustworthy and also has the ability to store (a limited amount of)
data locally. But as this local storage is assumed to be more expensive than the
external storage, it is desirable to store as much data as possible on the server.

The idea for achieving confidentiality despite outsourcing (some) data lies
in splitting the original instance r over schema 〈R|AR|SCR〉 into two fragment
instances fo and fs stored instead of r. While fs may be outsourced to an
external server, fo can only be stored locally on the client.1 To build fo and fs,
the attribute set AR of schema 〈R|AR|SCR〉 is partitioned into two sets ĀFo

and ĀFs (items (i), (iii) of Def. 1). Then fragment instance fo (fs, respectively)
is in essence the projection of r on ĀFo (ĀFs) (item (a) of Def. 1). Obviously, in
terms of confidentiality no sensitive information or association is allowed to be
contained in fragment instance fs. Such a fragmentation of the instance given
in Fig. 1 (e.g., breaking the name-illness association) is depicted in Fig. 2.

As an authorised user having access to the client as well as to the server
should be able to query all information contained in the original instance r, the
reconstructability of r based on the fragments fo and fs must be guaranteed. For
1 Index s is for server and index o is for owner-side (local) storage.



On the Inference-Proofness 249

this purpose each tuple in fo and fs is extended by a tuple ID (item (i) of Def. 1)
so that in fo and fs exactly those two tuples (one tuple per fragment instance)
which together correspond to a tuple of r share the same tuple ID (item (c) of
Def. 1) being unique in fo as well as in fs (item (b) of Def. 1). Strategies for
processing SQL queries referring to the original instance on the corresponding
fragment instances efficiently are discussed in [7].

Based on the seminal ideas proposed in [7,8] a formalisation of this concept
of fragmentation is developed in this article as follows:

Definition 1 (Fragmentation). Given a relational schema 〈R|AR|SCR〉, a
vertical fragmentation F of 〈R|AR|SCR〉 is a set

F = {〈Fo|AFo |SCFo〉, 〈Fs|AFs |SCFs〉}

in which 〈Fo|AFo |SCFo〉 and 〈Fs|AFs |SCFs〉 are relational schemas called frag-
ments of F . Moreover, for i ∈ {o, s}, it holds that

(i) AFi := {atid} ∪ ĀFi with atid /∈ AR and ĀFi ⊆ AR,
(ii) SCFi := {atid → ĀFi} with atid → ĀFi being a functional dependency,
(iii) ĀFo ∪ ĀFs = AR and ĀFo ∩ ĀFs = ∅.

Given a relational instance r over 〈R|AR|SCR〉, the fragment instances fo and
fs over 〈Fo|AFo |SCFo〉 and 〈Fs|AFs |SCFs〉 are created by inserting both the tuple
νo into fo and the tuple νs into fs for each tuple μ ∈ r. Thereby, for i ∈ {o, s}:

(a) νi[a] = μ[a] for each attribute a ∈ ĀFi ,
(b) ν′[atid] 
= ν′′[atid] for tuples ν′, ν′′ ∈ fi with ν′ 
= ν′′,
(c) νo[atid] = νs[atid] for attribute atid ∈ AFo , AFs .

Other tuples do not exist in fo and fs.

Note that even for two different tuples of r which are equal w.r.t. all attributes
of ĀFs (ĀFo , respectively) there are also two different tuples in fs (fo) which are
equal w.r.t. all attributes of ĀFs (ĀFo) because of the existence of unique tuple
IDs. Hence, for each tuple μ of r there is exactly one tuple νs in fs as well as
one tuple νo in fo. If there were no tuple IDs, all duplicates of tuples in fs (fo)
would be removed. In terms of the example in Fig. 2 the first and the third tuple
of fs would be consolidated without the existence of tuple IDs.

As the goal is to achieve confidentiality by fragmentation, a formal declara-
tion of confidentiality requirements is indispensable. In [7,8] this is obtained by
defining a set of so-called confidentiality constraints on the schema level.

Definition 2 (Confidentiality Constraint). Let 〈R|AR|SCR〉 be a relational
schema. A confidentiality constraint c over 〈R|AR|SCR〉 is a subset c ⊆ AR.

Semantically a confidentiality constraint c claims that each combination of val-
ues allocated to the set c ⊆ AR of attributes in an instance r over schema
〈R|AR|SCR〉 should not be contained completely in fs. In fo such a combina-
tion of values may be contained completely since fo is only stored locally.
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c1 = {SSN} c3 = {Name, Illness}
c2 = {Name, DoB} c4 = {DoB, ZIP, Illness}

Fig. 3. Set C of confidentiality constraints over Patient

Definition 3 (Confidentiality of Fragmentation). Let 〈R|AR|SCR〉 be a
relational schema, F a fragmentation of 〈R|AR|SCR〉 according to Def. 1 and C
a set of confidentiality constraints over 〈R|AR|SCR〉 according to Def. 2. Frag-
mentation F is confidential w.r.t. C iff c 
⊆ AFs for each c ∈ C.

Note that in case of a singleton constraint c = {ai} a fragmentation can only
be confidential if the column of values allocated to ai in an instance r over
〈R|AR|SCR〉 is not contained in fs. So, a singleton constraint states that the
values allocated to an attribute are sensitive per se. In case of a non-singleton
constraint c at least one attribute ai ∈ c must not be contained in AFs and as a
consequence of that the corresponding column of an instance r over 〈R|AR|SCR〉
is not in fs. But in terms of Def. 3 it is irrelevant which of the attributes in c is
chosen for not being in AFs and hence only associations between values allocated
to the attributes of c in an instance r over 〈R|AR|SCR〉 are protected.

An example of a set of confidentiality constraints in terms of the running
example introduced in Fig. 1 is given in Fig. 3. The fragmentation depicted in
Fig. 2 is confidential w.r.t. this set of confidentiality constraints.

In terms of Def. 3 one trivial but feasible solution always is to store all data
locally on the client. But since as much data as possible should be stored exter-
nally, an optimization problem proven to be NP-hard in [8] has to be solved. To
achieve that, an approximation algorithm and several metrics to compare the
qualities of computed solutions are presented in [8].

3 Controlled Query Evaluation

In the remainder of this article the inference-proofness of fragmentation is dis-
cussed based on a logic-oriented modelling of fragmentation within the frame-
work of Controlled Query Evaluation (CQE). This framework comprises several
inference-proof approaches to CQE, which are all based on the same classes of
components. These classes and the general procedures of CQE will be introduced
briefly on a fairly abstract level based on [4] now.

CQE is a framework with a server hosting a database instance. Although an-
swering queries sent by users, one of the goals of the CQE system is to limit a
user’s information gain – even by considering information that a user could pos-
sibly obtain by employing logical inferences – according to some confidentiality
policy. This is achieved by determining each piece of information a (rational)
user can possibly infer based on his knowledge before interacting with this user.

To be able to do so, the monitoring of raw data a user receives as answers to
his queries is not sufficient. The information contained in these data has to be
extracted and represented suitably so that it can be processed. For that purpose
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the information system considered is assumed to be logic-based in the sense that
its database instance is represented by a set of (closed) formulas of a well-defined
language of logic (e.g., first-order logic) and the semantics of query evaluation is
founded on the (well-defined) notions of validity and implication defined in the
context of the semantics of this language.

As inferences can be often drawn by combining several pieces of knowledge,
the computation of all inferences a user can employ (based on logical impli-
cations) presupposes that the CQE system needs to be aware of the complete
knowledge this user has. In case of dynamic CQE – which aims at controlling a
user’s information gain at runtime – this obviously means that all answers a user
receives in response to his queries have to be recorded as a set of formulas in
order to be able to decide whether this knowledge combined with the (correct)
answers to subsequent queries provides a basis for drawing harmful inferences.

Regardless of using dynamic or static CQE, a user’s a priori knowledge ex-
pressed as a set of formulas always has to be considered. This a priori knowledge
comprises knowledge a user has independently of answers given by the infor-
mation system considered (e.g., semantic constraints declared for the schema
of a relational database or knowledge about the world in general). Although
not being harmful per se, such a priori knowledge combined with (uncontrolled)
answers to his queries might enable a user to draw some harmful inferences.

To express the knowledge to be kept secret from a specific user, a confiden-
tiality policy in terms of a set of potential secrets is set up for each user. A
potential secret Ψ is a formula expressing that the pertinent user must not be
able to infer that the information embodied in Ψ is true in the database consid-
ered. So, regardless of whether Ψ is actually true in this database or not, from
the point of view of this user (established by his a priori knowledge and answers
to his queries) it must always be possible that Ψ is not true. The conservative
approach that a user is aware of the policy set up for him is usually followed.

As already hinted above, there are two general modes of inference control. The
dynamic mode controls each answer to a user’s query at runtime and therefore
the CQE system has to check whether the user’s (assumed) knowledge combined
with the (correct) answer to his query could enable him to infer some knowledge
declared as confidential (i.e., knowledge embodied in a potential secret is implied
logically). If this is the case, the system has to distort the answer suitably by
lying (i.e., giving a wrong answer) or by refusing an answer at all. The combined
usage of both techniques is possible, too.

In static mode the CQE system precomputes an alternative database instance
for each user, which is inference-proof according to the confidentiality policy set
up for the pertinent user. Although being as close as possible to the original
database instance, the alternative instance is distorted by lies or refusals (i.e.,
missing values) so that the user can query it freely without receiving knowledge
enabling him to draw harmful inferences. So, corresponding to the idea of frag-
mentation that the server knows the externally stored fragment completely, the
user’s knowledge may comprise the complete alternative instance.
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4 A Logic-Oriented View on Fragmentation

The goal of this article is to discuss the inference-proofness of the approach
to fragmentation presented in Sect. 2. As CQE is known to be inference-proof,
the main idea is to model fragmentation within the framework of CQE. As
CQE relies on a logic-oriented view on databases, the approach to fragmentation
discussed in Sect. 2 has to be modelled logic-orientedly, too.

For that purpose a language L of first-order logic with equality, which is
suitable for modelling fragmentation logic-orientedly, is presented now. As the
externally stored fragment instance fs over 〈Fs|AFs |SCFs〉, which is assumed
to be known to an attacker, must be modelled in L , the set P of predicate
symbols of L contains the predicate symbol Fs ∈ P with arity k + 1 = |AFs |
(including the additional tuple ID attribute plus k original attributes (cf. Fig. 4)).
As security should not rely on obscurity, it is assumed that an attacker is aware
of the process of fragmentation and knows both the computed fragmentation F
and the schema 〈R|AR|SCR〉 over which the original instance r – being the target
of his attacks – is built. To be able to model an attacker’s knowledge about r
based on these assumptions, language L also contains a predicate symbol R ∈ P
with arity n = |AR|. Moreover, there is a distinguished binary predicate symbol
= /∈ P for expressing equality. A predicate symbol Fo is not needed since an
attacker does not have access to the client by assumption.

The language L also comprises the set Dom of constant symbols, which will
be employed for the universe of interpretations for L as well. In compliance with
other approaches to CQE (e.g., [5]) this set is assumed to be fixed and infinite.
Further, L includes an infinite set Var = {X1, X2, . . .} of variables.

All formulas contained in L are constructed inductively in the natural fashion
using the quantifiers ∀ and ∃ and the connectives ¬, ∧, ∨ and ⇒. Thereby each
term is either a constant or a variable (functions are not allowed) and each
variable is quantified (only closed formulas are in L ).

This syntactic specification has to be complemented with an appropriate se-
mantics in which the characteristics of databases are reflected. Such a semantics
is established by a so-called DB-Interpretation according to [5]:

Definition 4 (DB-Interpretation). Given the language L of first-order logic
with a fixed infinite set of constant symbols Dom and a finite set P of predicate
symbols, an interpretation I over a universe U is a DB-Interpretation for L iff

(i) U = Dom,
(ii) I(v) = v ∈ U holds for every constant symbol v ∈ Dom,
(iii) every P ∈ P with arity m is interpreted by a finite relation I(P ) ⊂ Um,
(iv) the predicate symbol = /∈ P is interpreted by I(=) = {(v, v) | v ∈ U}.

The semantics of satisfaction of formulas in L by a DB-Interpretation is the
same as in usual first-order logic. A set S ⊂ L of formulas implies a formula
Φ ∈ L (written as S |=DB Φ) iff each DB-Interpretation I satisfying S (written
as I |=M S) also satisfies Φ (written as I |=M Φ).
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atid a1 . . . . . . . . . . . . . . . . . . ak ak+1 . . . . . . . . . . . . . . . . . . . . . an

AFs \ AR AFs ∩ AR AR \ AFs

r over 〈R|AR|SCR〉

fs over 〈Fs|AFs |SCFs〉

Fig. 4. Rearrangement of columns of r

db+
fs

= { Fs ( 1, 94142, Hypertension, White ),

Fs ( 2, 94141, Obesity, Warren ),
Fs ( 3, 94142, Hypertension, White ),
Fs ( 4, 94139, Obesity, Warren ) }

Fig. 5. Positive knowledge of fs in a logic-oriented model

From now on suppose w.l.o.g. that the columns of a relational instance r under
investigation are rearranged so that the first k columns of r correspond to the
projection of fs on AFs ∩ AR. This convention is visualised in Fig. 4.

As an attacker is supposed to know the outsourced fragment instance fs, the
knowledge contained in fs obviously has to be modelled within the logic-oriented
view representing an attacker’s knowledge. The positive knowledge in terms of
the tuples explicitly recorded in fs can be simply modelled logic-orientedly by
adding an atomic formula Fs(ν[atid], ν[a1], . . . , ν[ak]) for each tuple ν ∈ fs. Re-
garding the fragmentation of Fig. 2 such a set of formulas is given in Fig. 5

But as the original instance r – and so its fragment instance fs – is assumed
to be complete2, each piece of information not contained in r (fs, respectively)
is considered to be not valid by Closed World Assumption (CWA). Hence, an
attacker knows that each combination of values (vtid, v1, . . . , vk) ∈ Domk+1 not
contained in any tuple of fs is not true. This implicitly induces information
expressed as ¬Fs(vtid, v1, . . . , vk). But as Dom is infinite, there is also an infinite
number of such combinations not contained in the finite instance fs.

As this negative knowledge is not explicitly enumerable, it is expressed im-
plicitly by a so-called completeness sentence (cf. [5]) having a universally quan-
tified variable Xj for each attribute aj ∈ AFs . This completeness sentence is
constructed so that it is satisfied by a DB-Interpretation I iff I satisfies each
formula ¬Fs(vtid, v1, . . . , vk) with (vtid, v1, . . . , vk) ∈ Domk+1 being a constant
combination (substituting the universally quantified variables Xtid, X1, . . . Xk of
the completeness sentence) which is not contained in any tuple of fs.
2 As there are no statements about the completeness of r or fs in [7,8] this article

relies on the assumption of complete instances.



254 J. Biskup, M. Preuß, and L. Wiese

In terms of the running example the knowledge implicitly known to be not
valid by CWA can be expressed as the following completeness sentence:

(∀Xt)(∀XZ)(∀XI)(∀XD) [
(Xt = 1 ∧ XZ = 94142 ∧ XI = Hypert. ∧ XD = White) ∨
(Xt = 2 ∧ XZ = 94141 ∧ XI = Obesity ∧ XD = Warren) ∨
(Xt = 3 ∧ XZ = 94142 ∧ XI = Hypert. ∧ XD = White) ∨
(Xt = 4 ∧ XZ = 94139 ∧ XI = Obesity ∧ XD = Warren) ∨
¬Fs(Xt, XZ , XI , XD) ]

Based on this insight an attacker’s knowledge about the fragment instance fs

can be formalised logic-orientedly as follows:

Definition 5 (Logic-Oriented View on fs). Given a fragment instance fs

over 〈Fs|AFs |SCFs〉 according to Def. 1 with AFs = {atid, a1, . . . , ak}, the posi-
tive knowledge contained in fs is modelled in L by the set of formulas

db+
fs

:= {Fs(ν[atid], ν[a1], . . . , ν[ak]) | ν ∈ fs} . (1)

The implicit negative knowledge contained in fs is modelled in L by the singleton
set db−fs

containing the completeness sentence

(∀Xtid) . . . (∀Xk)

⎡
⎣ ∨

ν∈fs

⎛
⎝ ∧

aj∈AFs

(Xj = ν[aj ])

⎞
⎠ ∨ ¬Fs(Xtid, X1, . . . , Xk)

⎤
⎦ . (2)

Moreover the functional dependency atid → {a1, . . . , ak} ∈ SCFs is modelled in
L by the singleton set fdFs

containing the formula

(∀Xtid) (∀X1) . . . (∀Xk) (∀X ′
1) . . . (∀X ′

k) [ Fs(Xtid, X1, . . . , Xk) ∧
Fs(Xtid, X

′
1, . . . , X

′
k) ⇒ (X1 = X ′

1) ∧ . . . ∧ (Xk = X ′
k) ]

(3)

Overall the logic-oriented view on fs in L is dbfs := db+
fs

∪ db−fs
∪ fdFs

.

As already stated above, an attacker is assumed to know the process of frag-
mentation. This allows him to know that for each tuple ν ∈ fs there is also a
tuple μ ∈ r which is equal to ν w.r.t. the values allocated to the attributes of
AFs ∩ AR. Moreover, being aware of both 〈Fs|AFs |SCFs〉 and 〈R|AR|SCR〉, an
attacker knows that the values allocated to the attributes of AR \ AFs are kept
hidden from him in each tuple of r. Regarding the logic-oriented modelling of
an attacker’s knowledge the ignorance of these values can be stated by using an
existentially quantified variable for each term representing such a value.

Moreover – because of the completeness of r and fs – an attacker knows that
for each combination of values (vtid, v1, . . . , vk) ∈ Domk+1 not contained in any
tuple of fs, there is no tuple μ ∈ r with μ[aj ] = vj for each j ∈ {1, . . . , k}.
Otherwise there would be a tuple ν ∈ fs containing this combination of values
because of the process of fragmentation. So, equivalently, for each tuple μ ∈ r
there exists a tuple ν ∈ fs with ν[aj ] = μ[aj ] for each j ∈ {1, . . . , k}.
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As already mentioned in Sect. 2, there is exactly one tuple in fs for each
tuple of r because of the existence of unique tuple IDs in fs. So, if there are
two different tuples ν1, ν2 ∈ fs being equal w.r.t. the values allocated to the
attributes of AFs ∩ AR, an attacker can reason that there are also two tuples
μ1, μ2 ∈ r which are equal w.r.t. the values allocated to AFs ∩ AR, but differ in
at least one of the values allocated to AR \ AFs . Otherwise r would have two
equal tuples μ1 = μ2 which is not possible in relational instances.

For now neglecting semantic constraints of the schema of r (i.e., SCR = ∅), a
logic-oriented view on the (hidden) original instance r based on the knowledge
of the outsourced fragment instance fs can be modelled as follows:

Definition 6 (Logic-Oriented View on r). Let 〈Fs|AFs |SCFs〉 with AFs =
{atid, a1, . . . , ak} be the outsourced fragment of a fragmentation F of a relational
schema 〈R|AR|SCR〉 with AR = {a1, . . . , ak, . . . , an} and let fs be a fragment
instance over 〈Fs|AFs |SCFs〉 w.r.t. a relational instance r over 〈R|AR|SCR〉.
The knowledge about r received from fs is expressed by

(∀X1) . . . (∀Xk) [ (∃Xtid)Fs(Xtid, X1, . . . , Xk) ⇔
(∃Xk+1) . . . (∃Xn)R(X1, . . . , Xk, Xk+1, . . . , Xn) ]

(4)

and the knowledge received from preserving duplicates in fs is expressed by

(∀X1) . . . (∀Xk) [ (∃Xtid) (∃X ′
tid) [ Fs(Xtid, X1, . . . , Xk)∧

Fs(X ′
tid, X1, . . . , Xk) ∧ (Xtid 
= X ′

tid) ] ⇒
(∃Xk+1) . . . (∃Xn)

(
∃X ′

k+1

)
. . . (∃X ′

n) [ R(X1, . . . , Xk, Xk+1, . . . , Xn)∧

R(X1, . . . , Xk, X ′
k+1, . . . , X

′
n) ∧

n∨
j=k+1

(Xj 
= X ′
j) ] ] .

(5)

This view on r is referred to as the set of formulas dbr containing (4) and (5).

Before the inference-proofness of fragmentation can be analysed formally, the
confidentiality policy according to which a fragmentation is computed has to
be modelled logic-orientedly, too. A confidentiality constraint c ⊆ AR claims
that each combination of values allocated to the attributes of c should not be
revealed to an attacker completely. To specify this semantics more precisely, it is
assumed3 that c only protects those combinations of values which are explicitly
allocated to the attributes of c in a tuple of r. In contrast, an attacker may get
to know that a certain combination of values is not allocated to the attributes
of c in any tuple of r. This semantics complies with the semantics of potential
secrets known from the CQE framework (cf. Sect. 3).

The wish to protect a certain combination of values (vi1 , . . . , vi�
) ∈ Dom |c|

can be modelled as a potential secret (∃X)R(t1, . . . , tn) in which tj := vj holds
for each j ∈ {i1, . . . , i�}. All other terms are existentially quantified variables.
3 This assumption is needed because the semantics of confidentiality constraints on

the instance level is not defined as exactly in [7,8].
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But simply modelling each combination of values allocated to the pertinent at-
tributes in r as a potential secret is not sufficient because an attacker is supposed
to be aware of the confidentiality policy and could consequently read all sensitive
information directly from the policy. This is prevented by protecting each combi-
nation of values possible according to Dom, regardless of whether it is contained
in a tuple of r or not. But enumerating all of these combinations explicitly is
not manageable since Dom is infinite.

Equivalently to the enumeration of all combinations of values, free variables
Xi1 , . . . , Xi�

can be used in a potential secret instead of the constants vi1 , . . . , vi�
.

Then, one single potential secret per confidentiality constraint is sufficient. For
that purpose the extended language L f ⊃ L of first-order logic expanding L
by free variables is introduced.

Definition 7 (Confidentiality Policy). Let C be a set of confidentiality con-
straints over schema 〈R|AR|SCR〉 according to Def. 2. Considering a confiden-
tiality constraint ci ∈ C with ci = {ai1 , . . . , ai�

} ⊆ {a1, . . . , an} = AR and the set
AR \ ci = {ai�+1 , . . . , ain}, constraint ci can be modelled as a potential secret

Ψi(Xi) := (∃Xi�+1) . . . (∃Xin) R(X1, . . . , Xn)

in the extended language L f . Thereby Xi = (Xi1 , . . . , Xi�
) is the vector of free

variables contained in Ψi(Xi). The set containing exactly one potential secret
Ψi(Xi) constructed as above for every ci ∈ C is called pot_sec(C).

To show the inference-proofness of fragmentation, it has to be proven that none
of the potential secrets is implied by the set of formulas representing an at-
tacker’s knowledge. This proof cannot be produced (directly) for potential se-
crets containing free variables because DB-Interpretations are only defined for
the language L not containing free variables. But as free variables of L f repre-
sent constants of Dom, a so-called expansion of such formulas substituting free
variables with constants can be constructed to enable the proof.

Definition 8 (Expansion of Formulas). Let Ψ(X) ∈ L f be a formula con-
taining the vector X = (X1, . . . , X�) of free variables. Ψ(X) ∈ L f is expanded
to the set of formulas ex(Ψ(X)) ⊂ L by substituting the free variables X with
every constant combination v = (v1, . . . , v�) ∈ Dom�, thereby creating a formula
Ψ(v) ∈ L . The expansion of a set S ⊂ L f is ex(S) :=

⋃
Ψ(X)∈S ex(Ψ(X)).

5 Inference-Proofness of Fragmentation

Until now the logic-oriented model only comprises knowledge an attacker has
by knowing the outsourced fragment instance. The a priori knowledge an at-
tacker might have has been completely neglected. But as shown in the following
example, an attacker might generally employ this knowledge to draw harmful
inferences. In terms of the running example, suppose an attacker knows that
Ripley is the only patient who is treated by doctor Warren and lives in a small
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town with zip code 94139. By knowing the set of formulas db+
fs

(see Fig. 5)
and moreover knowing the relationship between fs and its original instance de-
scribed by formula (4) of Def. 6, an attacker might reason that Ripley suffers
from Obesity, thereby violating confidentiality constraint c3 of Fig. 3.

In this article an attacker is supposed to have a priori knowledge about the
original instance r in terms of the set SCR of semantic constraints declared for
schema 〈R|AR|SCR〉. Here, SCR is a set of arbitrary unirelational and typed se-
mantic constraints as long as they belong to the rather general classes of so-called
Equality Generating Dependencies (EGDs) or Tuple Generating Dependencies
(TGDs), which together comprise nearly all semantic constraints (cf. [1]).

Intuitively expressed, an EGD claims that the presence of some tuples in r
implies that certain components of these tuples are equal and a TGD claims
that the presence of some tuples in r implies the existence of certain other tu-
ples in r. Moreover, a constraint is unirelational if it refers to only one relational
schema, and it is typed if there is an assignment of variables to column positions
preventing the claim for equality of values being in different columns of r [1].
In the case of non-typed constraints, for example, an attacker might infer sen-
sitive information based on a non-typed EGD stating that in some tuple of r a
(non-hidden) value allocated to an attribute of ĀFs is equal to a (hidden) value
allocated to an attribute of ĀFo . A well known example for a unirelational and
typed EGD is a functional dependency and an example for a unirelational and
typed TGD is a join dependency.

According to [1,10] unirelational and typed EGDs and TGDs can be formalised
as follows:

Definition 9 (Unirelational Typed TGDs/EGDs). Let 〈R|AR|SCR〉 be a
relational schema. Each unirelational EGD/TGD contained in SCR can be ex-
pressed in L by a formula (∀X) [α ⇒ β], in which

(i) α is a conjunction of atomic formulas of the kind R(X1, . . . , Xn) with
X1, . . . , Xn being variables of X and every variable of X appears in α,

(ii) in case of a/an
– EGD, β is an atomic formula of the kind (X ′ = X ′′) with X ′ and X ′′

being distinct variables of X
– TGD, β is a formula (∃Y ) γ, in which γ is a conjunction of atomic

formulas of the kind R(X1, . . . , Xn) with X1, . . . , Xn being variables of
X and Y .

A unirelational EGD/TGD is typed iff the set Var of Variables of L can be
partitioned into n disjoint classes so that, for each atomic formula of the kind
R(Xi1 , . . . , Xin) of α or β, for 1 ≤ j ≤ n, the variable Xij belongs to class j,
and for each atomic formula of the kind (X ′ = X ′′) both variables X ′ and X ′′

belong to the same class.

For n = 3, for example, (∀X) [ R(X1, X2, X3) ⇒ (X1 = X3) ] is a non-typed
EGD and (∀X) [ R(X1, X2, X3) ⇒ R(X1, X3, X2) ] is a non-typed TGD. In con-
trast, (∀X) [ R(X1, X2, X3)∧R(X1, X

′
2, X

′
3) ⇒ (X3 = X ′

3) ] is a typed EGD and
replacing (X3 = X ′

3) with R(X1, X
′
2, X3) results in a typed TGD.



258 J. Biskup, M. Preuß, and L. Wiese

Now, the inference-proofness of fragmentation can be proved formally based
on the logic-oriented modelling of the view an attacker is supposed to have on
the original instance r by knowing the externally stored fragment instance fs

and employing his a priori knowledge. Intuitively expressed, it is shown that a
rational attacker always has to consider the existence of an alternative instance
r′ possible which is – from his point of view constituted by his knowledge –
indistinguishable from r and does not violate a potential secret.

Theorem 1 (Inference-Proofness). Let r be a relational instance over a rela-
tional schema 〈R|AR|SCR〉 with AR = {a1, . . . , an} and let F be a fragmentation
of 〈R|AR|SCR〉 according to Def. 1, which is – according to Def. 3 – confiden-
tial w.r.t. a set C of confidentiality constraints constructed in terms of Def. 2.
Moreover, let fs be the fragment instance over fragment 〈Fs|AFs |SCFs〉 ∈ F with
AFs = {atid, a1, . . . , ak} created w.r.t. instance r. It holds that

for all Ψ(v) ∈ ex(pot_sec(C)) : dbfs ∪ dbr ∪ priorSCR

|=DB Ψ(v) (6)

with ex(pot_sec(C)) being the expansion (Def. 8) of pot_sec(C) constructed ac-
cording to Def. 7 and dbfs and dbr being constructed according to Def. 5 and
Def. 6. Moreover, priorSCR

is a set of unirelational typed TGDs and EGDs con-
tained in SCR, which are constructed in terms of Def. 9 and satisfied by r.

Proof. To prove formula (6) of Theorem 1, it has to be shown that for an arbi-
trary Ψ̃(v) ∈ ex(pot_sec(C)) with v = (vi1 , . . . , vi�

) there is a DB-Interpretation
I∗ which satisfies dbfs , dbr and priorSCR

and does not satisfy Ψ̃(v).
As Ψ̃(v) with v = (vi1 , . . . , vi�

) is in ex(pot_sec(C)), there has to be the
potential secret Ψ̃(X) ∈ pot_sec(C) containing the vector X = (Xi1 , . . . , Xi�

)
of free variables and therefore, by construction of pot_sec(C), there also exists
a confidentiality constraint c = {ai1 , . . . , ai�

} ∈ C. Due to F being confidential
by assumption, c 
⊆ AFs holds (see Def. 3) and as a consequence of that there is
an attribute am ∈ c with am /∈ AFs . Hence, respecting the rearrangement of the
columns of r (see Fig. 4), both m /∈ {1, . . . , k} and m ∈ {k + 1, . . . , n} hold.

As a first step towards the construction of I∗, the interpretation of the pred-
icate symbol Fs – that is I∗(Fs) – is defined as

I∗(Fs) := { (ν[atid], ν[a1], . . . , ν[ak]) | ν ∈ fs } (7)

and obviously this interpretation satisfies all formulas of db+
fs

as well as the
closed world assumption contained in db−fs

. Moreover, fdFs
is satisfied because,

by assumption, fs satisfies the functional dependency contained in SCFs and
hence also (3) is satisfied by I∗(Fs). So, I∗ |=M dbfs already holds.

Continuing the construction of I∗, the set I∗(R) is defined as

I∗(R) := { (μ[a1], . . . , μ[am−1], ϕm(μ[am]), μ[am+1], . . . , μ[an]) | μ ∈ r } (8)

in which ϕm : Um → U \ {vm} is an injective function having the finite domain
Um := {μ[am] | μ ∈ r } and the infinite range U \{vm} with vm ∈ v and U being
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the universe of I∗ (cf. Def. 4). Note that ϕm can always be constructed because
of | U \ {vm}| > | Um|. Moreover, I∗ 
|=M Ψ̃(v) holds as vm ∈ (vi1 , . . . , vi�

) is
excluded from the range of ϕm and I∗ can only satisfy Ψ̃(v) if there is a tuple
(u1, . . . , um, . . . , un) ∈ I∗(R) for which uj = vj holds for each j ∈ {i1, . . . , i�}.

Next, it is shown that I∗ |=M dbr holds by proving that I∗ satisfies the for-
mulas (4) and (5) of Def. 6. To prove the if-part of the equivalence, assume that
(∃Xtid)Fs(Xtid, X1, . . . , Xk) of (4) is satisfied by I∗ under a constant substitu-
tion (X1/u1), . . . , (Xk/uk) which is feasible according to Dom . Then, according
to (7), there is a tuple (wtid, u1, . . . , uk) ∈ I∗(Fs) with wtid ∈ U implying the ex-
istence of a tuple ν ∈ fs with ν[aj ] = uj for all j ∈ {1, . . . , k}. As fs is a fragment
instance of r (see Def. 1) and the columns of r are rearranged as described above,
there is a tuple μ ∈ r with μ[aj ] = ν[aj ] for all j ∈ {1, . . . , k}. According to (8)
and because of m /∈ {1, . . . , k} there is a tuple (u1, . . . , uk, wk+1, . . . , wn) ∈ I∗(R)
satisfying the conclusion. To finally establish the equivalence, the only-if-part can
be proved by applying the argumentation presented above backwards.

To prove formula (5) of Def. 6, assume that the premise of (5) is satisfied by I∗

under a constant substitution (X1/u1), . . . , (Xk/uk) which is feasible according
to Dom. Then there are two tuples (wtid, u1, . . . , uk) and (w′

tid, u1, . . . , uk) in
I∗(Fs) and wtid 
= w′

tid holds for wtid, w
′
tid ∈ U . Because of the construction

of I∗(Fs) described in (7) there are two different tuples ν, ν′ ∈ fs with ν[aj ] =
ν′[aj ] = uj for all j ∈ {1, . . . , k}. Due to the existence of exactly one tuple in fs

for each tuple in r (cf. Sect. 2), it can be reasoned that there are also two tuples
μ, μ′ ∈ r with μ[aj ] = μ′[aj ] = uj for each j ∈ {1, . . . , k}. As relational instances
cannot contain two identical tuples, μ[ap] 
= μ′[ap] must hold for some p ∈
{k+1, . . . , n} and according to (8) there are two tuples (u1, . . . , uk, wk+1, . . . , wn)
and (u1, . . . , uk, w′

k+1, . . . , w
′
n) in I∗(R). In the case of p 
= m, obviously wp 
= w′

p

holds, and otherwise wm 
= w′
m holds because of ϕm being injective. Hence, the

conclusion of (5) is satisfied by I∗, too.
As a last step I∗ |=M priorSCR

has to be proved. This is prepared by con-
structing a temporary DB-Interpretation It for r as a set

It(R) := { (μ[a1], . . . , μ[am], . . . , μ[an]) | μ ∈ r } (9)

and as (by assumption) r satisfies all constraints of SCR, all formulas of priorSCR

are satisfied by It, too.
As there are no constants in formulas of priorSCR

since all terms of these
formulas are quantified variables (cf. Def. 9), an arbitrary DB-Interpretation I
satisfying priorSCR

does not need to contain tuples with specific combinations
of values corresponding to combinations of constants in formulas of priorSCR

.
Hence, I still satisfies priorSCR

if values in tuples of I are exchanged by other
values of U so that all equalities (to satisfy equalities between variables in for-
mulas of priorSCR

) and diversities (to prevent the creation of further equalities
resulting in more implications that need to be satisfied) between values of I are
preserved. Moreover, as formulas of priorSCR

are typed, values of I can be ex-
changed as long as all equalities and diversities between values of I are preserved
within each column of I.
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Obviously, there is a tuple (u1, . . . , um, . . . , un) ∈ It(R) iff there is a tuple
(u1, . . . , ϕm(um), . . . , un) ∈ I∗(R) and as ϕm is injective, two values u′

m and u′′
m

of U are equal iff ϕm(u′
m) = ϕm(u′′

m). Hence, I∗ |=M priorSCR
holds. ��

6 Conclusion and Future Work

Motivated by the wish to achieve confidentiality of information hosted by third
party service providers without the usage of encryption, the approach to frag-
mentation presented in Sect. 2 is developed in [7,8]. In these articles the protec-
tion of information is discussed only in terms of direct accesses to data. It is
not shown that confidential information cannot be inferred based on the knowl-
edge of non-confidential information contained in the externally stored fragment
instance fs and a priori knowledge an attacker might possibly have.

This desirable result is presented in this article under the supposition that
an attacker only has a priori knowledge in terms of Equality Generating De-
pendencies and Tuple Generating Dependencies which are all unirelational and
typed. Regarding the possibilities to express knowledge about semantic con-
straints declared for the schema of an original instance r, this supposition is not
very restrictive as most of the semantic constraints commonly used (e.g., func-
tional dependencies, join dependencies) belong to these classes of constraints [1].
Moreover, reconsidering the proof of Theorem 1, it can be seen easily that the
inference-proofness still holds if the restriction that semantic constraints have to
be typed is replaced by the weaker restriction that the set of semantic constraints
considered does not impose that any value of one of the columns k + 1, . . . , n of
r is equal to a value of one of the columns 1, . . . , k of r.

Additionally to the knowledge about semantic constraints an attacker might
also have some a priori knowledge about the world in general (e.g., a set of facts
and inference rules) which cannot be expressed as a set of formulas complying
with the restrictions stated above. But as shown in the introductory example
of Sect. 5, the inference-proofness of fragmentation cannot be guaranteed under
arbitrary a priori knowledge – even if no sensitive information can be inferred
solely based on this a priori knowledge. So, further research on (weak) syntactic
restrictions for modelling a priori knowledge without violating confidentiality
requirements might lead to even more expressive languages for that purpose.

As there are other approaches to achieving confidentiality by vertical fragmen-
tation than the one treated in this article (see e.g. [2,9]), another idea for future
work might be to analyse the inference-proofness of these approaches. As these
approaches free the client from storing data locally by resorting to encryption
if necessary, the logic-oriented modelling of an attacker’s knowledge has to be
adapted suitably to reflect these circumstances. Moreover, approaches based on
vertical fragmentation might be combined with approaches based on horizontal
fragmentation, which partition the set of tuples of an original instance r with the
help of selection criteria into several instances declared over the same set of at-
tributes as r. An approach to achieving inference-proofness based on horizontal
fragmentation is presented in [14]. This kind of “hybrid“ fragmentation promises
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a higher amount of outsourced data, but it raises several confidentiality issues
(like meta-inferences), which must be analysed with scrutiny.
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1 Cybernetica, Ülikooli 2, Tartu, Estonia
2 Institute of Computer Science, University of Tartu, Liivi 2, Tartu, Estonia

3 Software Technology and Applications Competence Center, Ülikooli 2, Tartu, Estonia

Abstract. Most of the multi-party computation frameworks can be viewed as
oblivious databases where data is stored and processed in a secret-shared form.
However, data manipulation in such databases can be slow and cumbersome with-
out dedicated protocols for certain database operations. In this paper, we provide
efficient protocols for oblivious selection, filtering and shuffle—essential tools in
privacy-preserving data analysis. As the first contribution, we present a 1-out-of-
n oblivious transfer protocol with O(log log n) rounds, which achieves optimal
communication and time complexity and works over any ring ZN . Secondly, we
show how to construct round-efficient shuffle protocols with optimal asymptotic
computation complexity and provide several optimizations.

Keywords: Secure multi-party computation, oblivious transfer, verifiable
shuffle, oblivious filtering.

1 Introduction

Privacy issues often arise when sensitive data is gathered from individuals and or-
ganizations. Such threats are commonly addressed with organizational and physical
methods; however, on some occasions cryptographic methods can provide better alter-
natives. In this paper, we will concentrate on the methods based on secret sharing and
multi-party computations. Such an approach guarantees by design that the computing
parties will have no access to the underlying data provided that the number of collab-
orating malicious parties is small enough. On the other hand, such a guarantee comes
with a price of increased computational complexity and generic secure computation
techniques [35,7,15] have a prohibitively large overhead.

However, for particular problems it is possible to design protocols that outperform
the general-purpose ones. In this paper, we will concentrate on some specific manage-
ment tasks to be applied on secret shared databases. Since the whole idea behind keep-
ing a database in secret shared form is to prevent data leaks, corresponding database
operations should not reveal anything about the underlying dataset (except for what can
be concluded from the desired output). Our target is to develop protocols for oblivi-
ous database access, filtering, text categorisation and encoding. We consider security in
the client-server setting, i.e., the client should obtain correct answer to the query and
nothing else, whereas the database holders should not learn anything besides the type
of the query. Note that in the context of secret shared databases, client privacy is only
guaranteed if the share holders collude below the tolerated threshold.
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In data analysis, one often needs to filter data according to a specific criterion.
The corresponding oblivious filtering procedure should produce a new shared database
that contains only the records which satisfy the criterion. The share holders should
learn nothing beyond the number of records. In particular, they should not learn which
database rows we included. As such, the oblivious filtering reduces the database size
and thus can remarkably reduce the overall complexity of the remaining steps.

To understand the requirements for data encoding, consider the case of privacy-
preserving questionnaire analysis. It is simple to design cryptographically secure data
aggregation mechanisms for questions with multiple choice answers, as the responses
can be encoded as integers. Questions with free text answers are much more challeng-
ing. First, secure text-processing is inherently slower than secure integer arithmetic, as
it relies on arithmetic operations. Second, the answers must often be interpreted by hu-
man operators in order to extract relevant information. As a trade-off between privacy
and efficiency, we present a protocol for oblivious database access. The protocol assures
that the human operator who reads text entries and encodes them to standard attributes,
cannot link replies to particular responders nor to non-disclosed fields.

Related work. Even though the generic methods of secure multi-party computations
have been known for decades [35,7,15], practical implementations of the respective
frameworks have emerged only recently, e.g. FairPlayMP [6], VIFF [23], SEPIA [11],
SecureSCM [3], VMcrypt [28], TASTY [25] and SHAREMIND [8]. Oblivious transfer
has been commonly studied in the two-party setting [10,4,22] where security guarantees
are inherently computational. Existing results in the multi-party setting mostly hold
for private information retrieval [17,5] where the database is replicated in several sites
and only the secrecy of the query index i is protected. Similarly, the secure shuffle
problem has been mostly studied in computational setting. Most solutions are given in
the context of e-voting with mix-nets [16,34] and onion-routing [12,29]. These solutions
propagate encrypted messages through a network of servers to achieve unlinkability at
the endpoint. In our context, we need multi-party computation protocols that shuffle
secret shared values. As there are no public key operations, such protocols are much
more efficient and naturally fit into the framework of share computing environments,
such as SHAREMIND [8] and VIFF [20]. Hence, one should view our work in the long
line of works [19,8,11,14] that uses addition and multiplication protocols in black-box
manner to build secure implementations for standard data processing operations.

Road map. The paper is organized as follows. In Section 2, we describe general frame-
works for share computing. Section 3 gives generic constructions for oblivious database
manipulation, namely selection, filtering and general read-write access. The described
generic protocols use oblivious shuffle as an important building block and three pos-
sible instantiations with several round-communication complexity trade-offs for it are
presented in Section 4. For severe space constraints, we have also omitted some proofs.
These proofs and further performance tweaks are discussed in the full version of the
paper available in the Cryptology ePrint Archive [27].
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2 Frameworks for Share Computing

General setup. A typical privacy-preserving data analysis application involves three
types of entities: data donors, computing parties (referred to as miners), and clients.
Data donors own sensitive data, miners gather the data and clients want to find an-
swers for various statistical questions. In such a setting, privacy issues can be addressed
with the client-server model formalized by Damgård and Ishai [21]. In this model, data
donors submit their data in a secret shared form to the miner nodes, which later use
share computing protocols to carry out the computations requested by the clients. Since
data is secret shared, individual records are protected as long as the miners do not form
non-tolerated coalitions, i.e., they as a group follow the restrictions of share-computing
protocols. Clients and data donors are not trusted and can arbitrarily violate protocol
specifications. Depending on the underlying primitives and protocols, the framework
can tolerate either semihonest or malicious corruption of miners.

Share computing. A typical framework for multi-party computations is based on a
secret sharing scheme and a set of protocols for manipulating the shares. A secret shar-
ing scheme is specified by randomised sharing and recovery algorithms. The sharing
algorithm splits a secret value x ∈ ZN into shares x1, . . . , xm that must be securely
transferred to the miners P1, . . . , Pm, respectively. To recover the shared value, miners
must together execute the reconstruction algorithm that takes in all shares and outputs
the corresponding secret value. For example, the additive secret sharing scheme splits a
secret x into shares such that the secret can be reconstructed by adding all the shares, i.e.
x ≡ x1 + x2 + · · ·+ xm mod N . The vector of shares (x1, x2, . . . , xm) is commonly
denoted by [[x]]. Security properties of a secret sharing scheme are defined through a list
of tolerable adversarial coalitions. Let Pi1 , . . . , Pik

form a tolerable coalition, then the
corresponding shares should leak nothing about the secret. More formally, the distribu-
tions (xi1 , . . . , xik

) and (yi1 , . . . , yik
) must coincide for any inputs x, y ∈ ZN .

Share computing protocols enable miners to obliviously compute with shares. For in-
stance, miners can obtain a valid sharing of x+y by locally adding their additive shares
of x and y. Similarly, multiplying shares of x locally by a constant α ∈ ZN gives us
shares of αx. A secret sharing scheme satisfying these two constraints is referred to as
a linear secret sharing scheme. As any function can be represented as a Boolean cir-
cuit, a share computing framework can be built on top of a linear secret sharing scheme
by specifying a protocol for multiplication. For instance, the VIFF framework [1] uses
standard solution based on Shamir secret sharing [32], whereas SHAREMIND uses a
tailor-suited multiplication protocol for additive secret sharing [8,9].

Although protocols for secure share addition and multiplication are sufficient to
achieve Turing completeness, the corresponding generic constructions are not efficient
enough for practical applications. In most cases, the effect of the network delay is sev-
eral orders of magnitudes larger than the time needed to deliver protocol messages.
Thus, protocols with minimal round complexity are the most efficient. However, the
round count is not an absolute measure, as the delivery time becomes dominant for
large messages. Hence, the optimal solution may vary. Table 1 depicts round complex-
ity of various share computing operations implemented in SHAREMIND, where 	 is the
bit length of modulus N . Precise description of the protocols together with empirical
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Table 1. Round complexity of common share-computing operations

Operation Round count Complexity Operation Round count Complexity
Multiplication τmul O(1) Coin-tossing τct O(1)
Smaller than or equal τst O(log �) Strictly less τsl O(log �)
Equality test τeq O(log �) Bit-decomposition τbd O(log �)

benchmarking can be found in [8,9]. It is worth noting that logarithmic complexity in
the bit size of the modulus N is asymptotically sub-optimal, as theoretical construction
by Damgård et al. [19] provides a constant round solution. However, the corresponding
round count is larger than log 	 for all practical residue rings ZN .

For binary operations, we will use a shorthand [[x]] � [[y]] to denote the outputs of a
share computing protocol that securely computes x � y from the shares of x and y.

Adversarial model. For clarity, we consider only the static corruption model where
adversary specifies parties to be corrupted before the protocol starts, although most
protocols can resist more advanced corruption models. Although the list of tolerated
adversarial coalitions can be arbitrary, share computing systems can achieve informa-
tion theoretical security only if the condition Q2 is satisfied in the semihonest model and
the condition Q3 is satisfied in the malicious model [26]. Recall that the condition Q2
means that any union of two tolerated adversarial coalitions is not sufficient to corrupt
all parties and the condition Q3 means that any union of three tolerated adversarial sets
is not sufficient. In the case of threshold corruption, the conditions Q2 and Q3 imply
that the number corrupted parties is strictly below m

2 and m
3 , respectively.

Universal composability. As formal security proofs are rather technical, security
proofs are often reduced to the security properties of sub-protocols. More specifically,
one can deduce security of a compound protocol without delving into details only if all
sub-protocols are universally composable. Although the formal definition of universal
composability is rather complex, the intuition behind it is simple. Let 
〈·〉 be a global
context (often named as environment) that uses the functionality of a protocol π. Let
π◦ be an idealised implementation, where all computations are done by a trusted third
party who privately gathers all inputs and distributes the resulting outputs. Then we can
compare real and ideal world protocols 
〈π〉 and 
〈π◦〉. A protocol π is universally
composable if for any real world adversary A there exist an adversary A◦ against 
〈π◦〉
with comparable complexity and success rate. That is, the joint distribution of all out-
puts in the real and ideal world must coincide for all input distributions. As a result,
a compound protocol consisting of several instances of π◦ preserves security if we re-
place π◦ by π. The latter means that we combine universally composable sub-protocols
without any usage restrictions, e.g., execute them in parallel.

We refer to the standard treatments [13,31] for further details. Achieving universal
composability in the semihonest model is rather straightforward, most share computing
protocols satisfy this including the protocols used in SHAREMIND and VIFF [8,1]. The-
oretical constructions for malicious model do exist [20], but these are not widely used
in practical systems, yet.
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Data-gathering phase
1. Data donors submit the shares of their inputs xi to the miner nodes.

Query phase
A client submits shares of i to the miner nodes.

Processing phase
1. For j ∈ {1, . . . , n}, miners evaluate in parallel: [[yi]] ← [[xj ]] · ([[i]] = j).
2. Miners compute the shares of the reply: [[z]] ← [[y1]] + · · · + [[yn]].

Reconstruction phase
Miners send the shares of z to the client who reconstructs and outputs z.

Protocol 1. Generic oblivious transfer protocol GENOT for the message domain ZN

3 Oblivious Database Manipulation

In this section, we describe various database operations that are often required in data
analysis and show how these can be implemented using protocols for oblivious transfer
and shuffle. The objective of the random shuffle protocol is to permute the elements of
the underlying database according to a uniformly chosen permutation π, which is obliv-
ious to all miners. Depending on the protocol, the client can either learn the permutation
or not. We discuss how to implement the basic protocols in Sections 3.1 and 4.

3.1 Generic Construction for Oblivious Selection

Many data-mining algorithms select and later process a particular sub-sample from the
entire data. In the simplest case, the client wants to retrieve a single data record without
revealing the index. This problem is commonly referred to as oblivious transfer. More
formally, let x = (x1, . . . , xn) be a database of 	-bit strings and let i be the desired
index. Then miner nodes should learn nothing about the client’s input and the client
should learn nothing beyond xi. Far more often, the client is not interested in the value
itself but needs shares of xi for further processing. At the end of oblivious selection
protocol, miner nodes obtain shares of xi and neither client or miners learn anything
new. Note that an oblivious selection protocol becomes an oblivious transfer protocol
if miners send the obtained shares securely to the client. Secondly, the client can con-
struct a sub-sample of the original database by executing several oblivious selection
operations. For example, assume that the database entries contain private information
about individuals, however, it is public which database row belongs to which individ-
ual. Then the client can form a group of relevant persons based on private or public
information about these individuals. With oblivious selection, the client can select only
relevant rows without leaking the selected identities.

The generic construction for oblivious selection described below works under the
assumption that both the database elements xi and indices i can be considered as ele-
ments of a ring ZN . By the definition of secret sharing, we achieve client privacy by
sharing the index i at the client side and just transferring the shares [[i]] to the miners.
Then the miners can compute the output shares as follows



Round-Efficient Oblivious Database Manipulation 267

[[xi]] =
n∑

j=1

([[i]] = j) · [[xj ]] (1)

where ([[i]] = j) denotes the output shares of a secure comparison protocol, see the
full paper for further details [27]. The result is correct as comparisons yield a zero-
one indicator vector. Protocol 1 depicts the corresponding oblivious transfer protocol,
where the output shares are sent back to the client. The GENOT protocol is as secure as
the weakest sub-protocol. In particular, as sub-protocols are universally composable, so
is the GENOT protocol. If sub-protocols are secure against active corruption, so is the
GENOT protocol. Since now this is what we mean by stating that assumptions of share
computing are fulfilled.

Theorem 1. If the assumptions of share computing protocols are fulfilled, the GENOT

protocol is secure against malicious data donors and clients. The corresponding round
complexity is τeq+τmul+1 where τmul and τeq are round complexities of multiplication
and equality test protocols. ��

Remarks. First, note that miners can use any shared value as [[i]] in the protocol. In par-
ticular, same shares can be used to select or fetch elements form different databases. As
protocols can be run in parallel, we can obliviously select database records of arbitrary
format without increase in the round complexity. Moreover, miners can also assure that
the inputs are in a certain range. In particular, miners can assure that xi ∈ {0, 1}� by
setting [[xi]] ← [[xi]] · ([[xi]] < 2�) in the data gathering stage. Second, note that the
efficiency of the protocol depends mainly on the efficiency of equality testing. Hence,
we must pay special attention to this subprotocol and it is done in the full version of the
paper [27]. Third, note that the communication complexities of data donors and clients
are optimal up to a multiplicative factor. The miners’ computational workload is lin-
ear in the database size, which is again optimal, since each database element must be
touched.

3.2 Generic Construction for Oblivious Database Filtering

In data analysis tasks, one often needs to separate a certain sub-sample form the entire
data. For instance, we might constrain our sample to female patients who are over 65
and have high blood pressure. When the data is secret shared due to privacy reasons,
the desired sub-sample must be formed obliviously. The procedure can be split into two
phases. First, we must compute shares of an indicator vector f that is set to one when
the inclusion criterion is met. Standard share computing frameworks can easily han-
dle predicates consisting of arithmetic and comparison operators, such as the constraint
([[sex]] = 1) · ([[age]] ≥ 65) · ([[hbp]] = 1). Second, we must perform the oblivious filter-
ing step. Let x be the vector of database records and let f be a zero-one indicator vector.
Then during oblivious filtering protocol miners use shares of x and f to construct a new
database of shared records y such that xi is included into y iff fi = 1. Miners learn
nothing except the size of y during the protocol. The latter is unavoidable, if we want
to reduce the workload in later processing stages – gains in efficiency unavoidably leak
information about the size of the sub-sample y.
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1. Miners apply oblivious shuffling to permute the shares of the database (x||f ).
2. Miners reconstruct the permuted vector π(f) of the resulting database (π(x)||π(f )).
3. Miners keep the shares of xπ(i) for which fπ(i) = 1 as shares of y.

Protocol 2. Generic oblivious filtering protocol GENOF

For clarity, let (x||f) denote a record-wise concatenation of databases x and f con-
sisting of pairs (xi, fi). For any permutation π, let π(z) denote a reordered database
zπ(1), . . . , zπ(n). Then Protocol 2 depicts a generic construction that reduces oblivious
filtering task to oblivious shuffling. As a consequence, efficiency of many data analysis
algorithms is determined by the efficiency of oblivious shuffling. See Section 4 for the
description of three oblivious shuffle protocols with different trade-offs between round
complexity τos and communication complexity.

Theorem 2. If assumptions of the oblivious shuffle protocol are fulfilled, the GENOF

protocol is secure. The round complexity is τos + 1 where τos is the round complexity of
oblivious shuffle.

3.3 Oblivious Read-Write Access

Oblivious database access is a powerful tool in data processing. For instance, we can
used it for post-processing secret shared free-text fields. Assume that a human operator
obtains all the text entries so that they could not be linked to the responders. Then the
operator can extract necessary information form free-text entries for better encoding
of answers. Next, the operator must be able to obliviously update the corresponding
database fields to complete. The latter can be achieved with the GENOWR protocol,
where (1) miners apply oblivious shuffling to permute the shares of the database x; (2)
the client reads and writes fields of the shuffled database π(x); (3) miners apply obliv-
ious shuffling to permute the shares of the updated database x̂. The protocol does not
provide full privacy, as the client learns some database fields and can link field updates
with accessed values. Still, such a level of privacy is sufficient for many applications.

Theorem 3. The overhead of the GENOWR protocol is 2τos where τos is the round
complexity of the oblivious shuffle protocol. If the assumptions of the oblivious shuffle
protocol are fulfilled and the client does not access the same field twice for reading
or writing, the miners learn only the number of read and write operations and which
operations were performed on the same database record. The client learns the values
of accessed database fields and can link updates of database entries with the values of
accessed database fields.

Remarks. The default implementation of GENOWR protocol produces the database
where the entries are shuffled. The original order can be restored if the second shuf-
fle implements the inverse of π, or if we add the shared row numbers to the original
database and open them after the second shuffle. As another extension, note that the
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GENOWR protocol can be used for implementing adaptive oblivious transfer, where the
client wants to retrieve several elements from a database, given that the client learns the
permutation π. After the database is shuffled, the client can use π to query the required
elements, whereas the miners will not know the correspondence. Hence, a single shuffle
is sufficient for adaptive oblivious transfer of many elements. If clients do not query the
same element more than once, miners will learn only the number of queries and nothing
else. The same construction is valid for oblivious selection.

4 Protocols for Oblivious Shuffle

In the following, we describe three oblivious shuffle protocols. The first protocol pre-
sented in Section 4.1 based on permutation matrices has constant round complexity.
However, the communication complexity is rather high (Θ(n3) or Θ(n2) depending on
the variation). The resharing-based solution presented in Sections 4.3 and 4.4 achieves
communication complexity asymptotically optimal in database size (Θ(n log n)), but
is exponential with respect to the number of miners. In many applications this is not a
major issue, since the number of miners is usually very limited (e.g. three for the cur-
rent implementation of SHAREMIND). However, for larger requirements we can pro-
pose a good sorting-based trade-off in Section 4.2, as its communication complexity is
Θ(n polylog n) and it scales well to a larger number of miners.

All three protocols are composed of consecutive shuffling phases which are designed
to hide permutations from different sets of miners. In the first and the second protocol,
only a single miner knows the permutation of each phase and thus O(m) phases are
sufficient for security. In the third protocol, the permutation is known to a large set of
miners and thus Θ(2m/

√
m) phases are needed in the worst case.

Similarly to oblivious transfer, we only consider the case where all database elements
belong to ZN . As any collection of records can be represented as a matrix where each
column is either a data field or part of it, a vector shuffle protocol is sufficient provided
that several protocol runs can share the same hidden permutation. It is easy to see that
all protocols presented in this section have this property.

4.1 Oblivious Shuffle Based on Permutation Matrices

Recall that for any n-element permutation π there exists a zero-one matrix Mπ such
that π(x) = Mπx for all vectors x of size n. Hence, if a miner Pi generates and
shares a permutation matrix Mπi , the database can be shuffled by multiplying it with
Mπi . As none of the miners should know the permutation, miners must execute several
such shuffle phases. More precisely, let t be the maximal size of a tolerated adversarial
coalition. Then it is sufficient if t+1 miners permute the database, as at least one permu-
tation remains oblivious to the adversarial coalition. Also, note that the final outcome
is indeed a shuffle, as at least one permutation is chosen uniformly. As each permuta-
tion phase can be implemented with Θ(n2) multiplications and t = Θ(m) in standard
multiparty frameworks, the resulting shuffle protocol contains O(mn2) multiplications,
which can be performed in O(mτmul) rounds. The number of rounds can be reduced
to O(log2 mτmul) with the cost of O(mn3) multiplications if miners first compute the
matrix product Mπ1 · · ·Mπt+1 in a balanced manner.
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In the malicious model, miners have to additionally verify that each Mπi is a per-
mutation matrix, i.e., all entries are either zeroes or ones and the sums of all the rows
and columns of Mπi are ones. Each such test can be expressed as a share computing
procedure yielding one if the input Mπi is correct. Moreover, these additional zero-
knowledge proofs do not change the complexity estimates. As a result, security follows
from the correctness and universal composability of share computing protocols.

4.2 Oblivious Shuffle Based on Sorting

Let y1, . . . , yn ∈ ZN be a random permutation of the set {1, . . . , n}. Then we can
implement shuffle by obliviously sorting the pairs (xi, yi) according to the second el-
ement. In such a shuffle phase, a miner Pi generates and shares values y1, . . . , yn and
then all miners use a modified sorting network consisting of compare-exchange gates

COMPEX((xi, yi), (xj , yj)) =

{
(xi, yi), (xj , yj) if yi ≤ yj ,

(xj , yj), (xi, yi) if yi > yj ,

for oblivious relocation of elements. The COMPEX-gate can be securely implemented
by combining secure multiplication and comparison operations, e.g. we can define the
first output element as ([[yi]] ≤ [[yj ]]) · [[xi]]+([[yi]] > [[yj ]]) · [[xj ]]. Hence, each COMPEX

block requires O(τst + τmul) rounds. Similarly to the first protocol, several shuffle
phases are needed to hide the permutation from potentially adversarial miners.

The efficiency of the resulting shuffle protocol depends on the complexity of
the sorting network. For instance, randomised shell sort [24] has O(log n) lay-
ers and O(n log n) COMPEX blocks. Thus, the shuffle protocol has Θ(m(τmul +
τsl) log n) rounds and communication complexity Θ(mn poly(log n)), where the term
poly(log n) captures the asymptotic growth of communication in base protocols.

In the full version of the paper [27], we discuss more round-efficient alternatives that
can be used when n ≤

√
N . This condition is commonly satisfied in practice.

4.3 Resharing Based Oblivious Shuffle for Semihonest Setting

The suffle phase can be viewed as a hide and seek game, where the aim of the hider
set C is to shuffle the database in a such way that the seeker set A learns nothing about
the permutation. Protocol 3 depicts a setting where the seekers first transfer their shares
to the hiders so that the database is secret shared only between the members of C.
Next, hiders agree on a permutation π and reorder their shares accordingly. Then the
secret sharing is extended to all miners. The protocol is secure and achieves its goal
provided that: (a) corrupted parties in the hider set C cannot recover secrets; (b) shares
are extended so that seekers learn nothing about shared values. By repeating this shuffle
phase for every maximal tolerable adversarial coalition A, we get a secure oblivious
shuffle provided that all sub-protocols remain secure.

Lemma 1. Let A be such a coalition that the complement set cannot be corrupted. If
assumptions of secret sharing are fulfilled, then the protocol VERSHF is secure in the
semihonest model.
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Inputs: A database of shares [[x1]], . . . , [[xn]] and a potential adversarial coalition A.
Output: A database of shares [[xπ(1)]], . . . , [[xπ(n)]] for a random permutation π unknown to A.
Clarifying remark: Steps starting with ⊗ should be omitted in the semihonest setting.

Mixing phase. Let C = {P1, . . . , Pm} \ A and let [[xk]]i denote the ith share of xk.

1. Each miner Pi ∈ A additively secret shares its share vector between the miners of C,
i.e., each miner Pj ∈ C gets a share ukj such that the shares (ukj)j∈C sum up to [[xk]]i.

⊗ Pi commits (uij)j∈C to all. CTP, CMP and CSP are executed to verify correctness and
consistency of the performed actions.

2. All miners in C locally compute additive shares for the database elements x1, . . . , xn, i.e.,
each Pj ∈ C holds a share vkj for element xk, s.t. shares (vkj)j∈C sum up to xk.

⊗ All miners use linearity to compute locally commitments to (vkj)j∈C .
3. All miners in C agree on a random permutation π and reorder their shares according to π.
4. Each miner Pj ∈ C uses original secret sharing to share the shuffled shares between all

miners. As a result, miners obtain a matrix of shares ([[vπ(k),j ]])j∈C,k∈{1,2,...,n}.
⊗ Zero-knowledge proofs for shuffle correctness are run to verify that all parties Pi ∈ C fol-

lowed the protocol. CSP are executed to commit shares of (vπ(k),j)j∈C,k∈{1,2,...,n}.
5. All miners locally add shares ([[vπ(k),j ]])j∈C to obtain [[xπ(1)]], . . . , [[xπ(n)]].

Protocol 3. Verifiable shuffle protocol VERSHF that is oblivious for a coalition A

Proof (Sketch). As the complement group cannot be entirely corrupted, the first step in
the mixing phase reveals no information and can be easily simulated. The second, third
and fifth step create no communication and thus are trivial to simulate. The fourth step
is simulatable due to the properties of the original secret sharing. The claim follows, as
the output is guaranteed to be correct in the semihonest model. ��

Theorem 4. If a secret sharing scheme satisfies the Q2 condition, there exists a se-
cure oblivious shuffle protocol with O(2m/

√
m) rounds and communication complexity

O(2mm3/2n logn) in the semihonest model.

Proof. Let us repeat the VERSHF protocol sequentially for each maximal adversarial
coalition A. Then each protocol instance is secure as the condition Q2 guarantees that
the complement of A cannot be corrupted. As at least one permutation remains hid-
den from an adversarial coalition, the protocol indeed implements oblivious shuffle.
The round complexity estimate follows from the consideration that maximal adversar-
ial coalitions form an antichain in the partially ordered set of all the subsets of the
m-element set of miners. According to Sperner’s classical result form 1928, there are
up to

(
m

�m/2�
)

= Θ(2m/
√

m) elements in such an antichain. The claim concerning the
communication complexity follows, since each sub-protocol requires Θ(n) resharing
operations and O(n logn) bits to generate a random permutation and each resharing
operation requires O(m2) communication for fixed N . ��

The protocol described above is asymptotically optimal if we consider only the
asymptotic dependency on the database size. Sampling a random permutation requires
Θ(n log n) bits and thus the communication cannot be decreased further. Moreover,
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for small number of parties, say m ≤ 10, the protocol is very efficient as there are no
expensive multiplication and comparison operations.

Efficiency tweaks and implementation results. The first possible optimization can
be obtained noting that it is not always necessary to consider the full complement of
an adversary set as the set of hiding miners. For example, consider the threshold adver-
sary setting, where the maximal adversary coalitions have t members with m strictly
larger than 2t + 1. In this case it is enough to select hiding sets having t + 1 elements
which would then work against several different adversary sets, allowing us to achieve
a reduced number of rounds. For example, if we have t = 2 then with m = 5 miners
we would need 10 phases of computations. At the same time, increasing the number
of miners to m = 6, six phases are sufficient, since the hider sets can be chosen to be
{P1, P2, P4}, {P2, P3, P5}, {P3, P4, P6}, {P4, P5, P1}, {P5, P6, P2}, {P6, P1, P3}. It
is easy to verify that for no adversary set of up to two elements they have access to all
of the permutations and that 6 active sets (i.e. 6 phases) is the minimum achievable for
t = 2 and m = 6. Finding optimal round and communication complexity for any t, m
remains an open combinatorial problem.

In practice, communication channels between miner nodes are commonly imple-
mented using authenticated encryption and thus information-theoretical security is un-
achievable. Hence, the security level does not decrease if the group C agrees on a short
random seed and later uses a secure pseudorandom generator to stretch locally into
O(n logn) bits needed for a random permutation. In particular, we can generate an ar-
ray fsk(1), . . . , fsk(n) by applying a pseudorandom permutation f indexed by a seed
sk. By sorting the array, we get a permutation that is computationally indistinguishable
from a random permutation. We implemented the corresponding shuffle protocol for
three miners by using 128-bit AES as f . For each mixing phase, Pa and Pb forming
the group C exchanged 128-bit random sub-keys ska and skb and set sk ← ska ⊕ skb.
The protocol was implemented into SHAREMIND framework using C++ programming
language. The computing parties and the controller node ran on servers having two In-
tel Xeon X5670 2.93GHz processors and 48GB of RAM each. The servers were using
Debian OS and were connected by gigabit Ethernet. Table 2 shows the times required
for oblivious shuffle of databases consisting of 103, . . . , 107 additively shared 32-bit
integers.

4.4 Resharing Based Oblivious Shuffle for Malicious Setting

The protocol described above can be used also in the malicious model provided that
we can force universal consistency checks: (a) all resharing steps are correct; (b) the
permutation π is indeed randomly sampled; (c) hiders permute their shares according
to the permutation. To achieve such kind of protection, we follow the standard two-level
secret sharing technique [18], where all original shares are secret shared. That is, any
share [[x]]i owned by Pi is always secret shared between all miners. Such a setup sim-
plifies zero-knowledge correctness proofs, since Pi can more easily prove that he or she
computed output shares [[v]]i from the input shares [[u]]i. The second level secret sharing
is commonly referred to as commitment, as it satisfies both perfect binding and hiding
properties. As shown in [18], security against an active adversary can be achieved with
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Table 2. Performance of oblivious shuffle in three-party setting

Number of elements 103 104 105 106 107

Time (ms) 70 102 312 2543 24535

three auxiliary protocols: commitment transfer protocol (CTP), commitment sharing
protocol (CSP) and commitment multiplication protocol (CMP). CTP allows to transfer
a commitment of a secret from one party to another, CSP allows to share a committed
secret in a verifiable way such that the parties will be committed to their shares, and
CMP allows to prove that three committed secrets a, b and c satisfy the relation c = ab.
In order to achieve security against active adversaries, share computing frameworks use
two-level secret sharing by default. Moreover, for any robust secret sharing scheme,
the second layer can be added on demand. Miners just have to commit their shares.
Although a maliciously corrupted miner Pi can provide incorrect sharings of [[x]]i, the
number of correctly shared shares is sufficient to correctly recover the original secret x.
If needed, miners can emulate recovery procedure with commitments to detect which
shares were incorrectly committed.

Correctness proofs for the resharing steps. As Pi commits values (ukj)j∈C in the
first step of Protocol 3, miners can compute [[xk]]i −

∑
j∈C [[ukj ]] and open it. If the

result is zero, the shares were correctly formed. The result leaks no information, as
the output is always zero for honest miners. By employing CTP, these commitments
can be transferred to the intended recipients who are forced to correctly recommit ukj .
Verification of the second step is straightforward, since the reconstruction coefficients
are public and all parties can locally manipulate shares of shares to get shares of the
corresponding linear combinations.

Unbiased sampling of randomness. As the condition Q3 is not satisfied for the set
C, hiders cannot agree on the random permutation without outsiders. Hence, all miners
must engage in a secure coin-tossing protocol to generate necessary random bits for the
permutation π. For instance, a random element of ZN can be generated if all parties
share random elements of ZN and the resulting shares are added together. Next, every-
body broadcasts their shares to the set of hiding participants C. To sample a random
permutation, the same protocol can be run in parallel to generate enough random bits.

Correctness proof for the local shuffle step. The correctness proof hinges on the fact
that miners have commitments to all shares of Pj . After the second step, miners obtain
commitments to additive shares v1j , . . . , vnj and during the fourth step miners receive
commitments to permuted shares vπ(1)j , . . . , vπ(n)j . Hence, if all miners Pj ∈ C prove
that the shares were indeed obtained by applying the permutation π, the CSP protocol
assures that the resulting double-level sharing of vπ(1)j , . . . , vπ(n)j is also correct.

Protocol 4 depicts a zero-knowledge protocol for a slightly abstracted setting where
Pj has to prove that she has secret shared databases x and y so that y = π(x) for a
permutation π known to the hider set C. At the end of the protocol, honest parties from
both sets learn whether the sharing was correct. The soundness error of the protocol can
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Prover: A prover is a miner Pj in the hider set knowing x1, . . . , xn and y1, . . . , yn.
Helpers: Miners in the hider set C know a permutation π such that y1 = xπ(1), . . . , yn = xπ(n).
Common inputs: Miners have shares [[x1]], . . . , [[xn]], [[y1]], . . . , [[yn]].

1. All miners engage secure coin-tossing protocol to fix a random permutation σ.
The resulting bits are revealed to all miners in the hider set so that they can learn σ.

2. The prover Pj computes z1 = yσ(1), . . . , zn = yσ(n) and shares them.
3. All parties engage in a secure coin-tossing protocol to get a public random bit b.
4. (a) If b = 0 then all miners in the hider set broadcast σ. Each miner reconstructs σ.

All miners compute shares of [[z1]]−[[yσ(1)]], . . . , [[zn]]−[[yσ(n)]] and broadcast the results.
(b) If b = 1 then all miners in the hider set broadcast π ◦ σ. Each miner reconstructs π ◦ σ.

All miners compute shares of [[z1]] − [[xπ(σ(1))]], . . . , [[zn]] − [[xπ(σ(n))]] and broadcast
the results.

5. Proof fails if any of the revealed values is non-zero, otherwise miners accept the proof.

Protocol 4. Zero-knowledge proof ZKSHF for shuffle correctness

be efficiently amplified: any soundness error ε can be achieved by running �log2 1/ε�
instances of the protocol in parallel as the protocol is universally composable.

Theorem 5. Let A be a maximal adversarial set. If a secret sharing scheme satisfies
the Q3 condition then the protocol ZKSHF is a perfect five round zero-knowledge proof
with soundness error 1

2 .

Proof (Sketch). The protocol has five rounds, since each protocol step can be imple-
mented in a single round. For correctness note that if Pj is honest then zi = yσ(i) =
xπ(σ(i)) for i ∈ {1, . . . , n}. As the set A is maximal adversarial set and the condition
Q3 holds, the condition Q2 must hold in the hiding set C. Consequently, each miner
can correctly reconstruct permutations σ or π ◦ σ in the fourth step. By the condition
Q2, honest coalition is strictly larger than any adversarial set in C. As the replies sent
by honest parties coincide, each party can detect the correct answer. As the adversarial
coalition cannot alter the reconstructed values by changing their shares, the revealed
values will always be zeroes. For the soundness claim, assume that the prover cheats
and there exists yj 
= xπ(j). Let i = σ−1(j). Then zi 
= yj or zi 
= xπ(j) cannot si-
multaneously succeed. As malicious parties cannot alter the end results, the prover is
bound to fail with probability at least 1

2 . For the simulatability, note that the adversarial
coalition cannot bias the outputs of coin-tossing protocols. Hence, the permutations σ
and π ◦ σ are random permutations in isolation. When no hider is corrupted, we can
just send a random permutation to simulate the beginning of the fourth step. Otherwise,
we have to extract π form the inputs of the corrupted hider and simulate permutation
generation according to the protocol. The public opening of the shares is trivial to sim-
ulate, as the result is known to be zero. As the simulator has access to the input shares
of the corrupted parties (i.e., the shares of x and y), it can augment them to be shares
of zero. By emulating the protocol with these dummy shares, the share distribution in
the opening phase is guaranteed to coincide with the real protocol. ��
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Final security claim. As in the semihonest setting, the final shuffle protocol can be
obtained by repeating the VERSHF protocol for every maximal tolerable adversarial
coalition A. The correctness proofs assure that honest miners detect all deviations form
the protocol and catch the corresponding culprit. After each incident, the culprit must be
excluded form the computations and the corresponding shuffle phase must be restarted.
As the number of malicious parties is limited and the exclusion does not invalidate Q3
condition, honest miners can always complete the protocol.

Theorem 6. If a secret sharing scheme satisfies the condition Q3, there exists a se-
cure oblivious shuffle protocol with O(2m/

√
m) rounds and communication complexity

O(2mm3/2n logn) in the malicious model.

5 Conclusions and Future Work

In this paper, we have proposed several round-efficient protocols for oblivious database
manipulation over secure MPC in both semihonest and malicious model, including
oblivious transfer and oblivious shuffle of secret shared databases. We also presented
an oblivious filtering protocol and selection protocols as possible applications of these
techniques.

For oblivious transfer, we have presented several versions with round complexity be-
tween O(log log n) and O(log log log n). For oblivious shuffle, we have proposed three
alternative implementations with different trade-offs between the round and communi-
cation complexity. Which one of them is the fastest for a given application and deploy-
ment scenario, is a non-trivial question requiring further research and benchmarking.
We have also provided several possible tweaks for optimization of the presented prim-
itives, but several questions are left open. For example, finding out optimal hider set
constructions for possible adversarial structures is an interesting combinatorial problem
of its own. As a useful by-product of the tweaking, we obtained an efficient protocol for
equality testing based on double recursion with bit decomposition.

In the current paper, we presented initial performance results proving that oblivious
database shuffle is efficient for relatively large databases (roughly 25 seconds for 107

elements). Further improvements can be achieved by optimizing the implementation,
however, these improvements remain the subject for future development as well.
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Abstract. Outsourced database provides a solution for data owners
who want to delegate the task of answering database queries to ser-
vice provider. Of essential concern in such framework is data privacy.
The data owner may want to keep the database hidden from service
provider. Simultaneously, potential clients may desire a mean of privacy-
preserving computations on outsourced encrypted database. We present
a solution of privacy-preserving join query with computational privacy
and low overheads. The primary goal of this paper is to provide a set
of security notion for such a system as well as a construction which is
secure under the newly introduced security notions.

Keywords: searching on encrypted data, join query, outsourced
database, data privacy.

1 Introduction

1.1 Motivation

The outsourced database model is a new computing paradigm that has emerged
recently [1, 2] which consists of the following entities:

1. Data owner: This is the side that produces data and owns it. It is assumed
to have some limited computational resources and storage capabilities but
for less than the server.

2. Server: The server stores and manages the data generated by data owners.
3. User: A user can only access data of the data owner.

To save cost, data storage and management are outsourced to database service
providers. In other words, highly sensitive data is now stored in locations that
is not under the data owner’s control, such as leased space and partners’ sites.
This can put data confidentiality at risk. Therefore, it is desirable to store data
in encrypted form to protect sensitive information.
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Consider the following real-life scenario: A hospital database is required
not only to store each patient’s general information, for instance, Pati-
entID, name, age, address, telephone, allergic drugs, but also to record
all medical histories for each patient by doctors, including the descrip-
tion of the disease and the diagnosis information. So the logical schema
of the hospital database contains at least two tables, for instance, de-
noted as patient(PatientID, name, age, address, telephone, allergicdrugs) and
diagnosis(PatientID, disease desc, diagnosis, DoctorID, date). Data confiden-
tiality alone can be achieved by encrypting the outsourced content so that even
if a database is compromised by an intruder, data remains protected even in the
event that a database is successfully attacked or stolen. However, once encrypted,
the data cannot be easily processed by the server. Suppose that the outsourced
database stores the encrypted table patient′ and diagnosis′ according to the
plaintext table patient and diagnosis. Equijoin of patient′ and diagnosis′ de-
scribes which doctor is responsible for the diagnosis of which patient. It maybe
become a powerful witness for the medical malpractice. However, once all at-
tributes are encrypted by a probabilistic encryption algorithm, the server will
have much difficulty in processing this query primitive. In addition, the server
is not allowed to execute join without the permission from users. This is usually
related to the application environment. For example, if the server is able to eval-
uate join of patient′ and diagnosis′ by itself, it might face an expensive lawsuit
from the patient because the patient’s disease information can be disclosed.

The problem of set-intersection functionality of secure two-party computation
[3] sounds very similar to our concerns. However, they are essentially different.
Securely computing set-intersection functionality consists of two parties trying to
compute their intersection but without disclosing their inputs. In our scenarios,
there are three parties participated in the protocol. The encrypted value x and
y sent by the data owner are stored in the server, which is desired to do the
comparison of x and y under the permission of the user without decryption key
and do not obtain any information after the computation.

Thus, it is important to provide mechanisms for server-side data processing
that are correctness, privacy of the storage for the data owner, controllability
and join privacy(These notions will be explained in section 3). This is particu-
larly relevant in relational settings. This paper presents a vision for how process
equijoin on outsourced database in privacy-preserving style. The main contri-
butions of this paper include:(i)a general framework of privacy-preserving join,
(ii)the definition of correctness, privacy of the storage for the data owner, con-
trollability and join privacy, (iii)a construction for equijoin, (iv)security proofs
of implementation based on security definitions, (v)comparison with the method
proposed in reference [4].

1.2 Related Work

Various methods have been proposed recently for secure database in various
settings. In particular, encryption is an important technique to protect sensitive
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data. With data stored in an encrypted form, a crucial question is how to perform
queries. There are four classes:

1. Using indices: Relational database use tables to store the information. Rows
of the table correspond to records and column to field. Often hidden field or
even complete table are added which act as an index. Instead of searching on
the encrypted data itself, the actual search is performed in an added index.
The index contains for example the hashes of the encrypted records [5, 6]
and a Bloom Filter for each encrypted record [4]. This paper focuses on
the comparison with reference [4] and analyzes their own advantages and
disadvantages.

2. Using trapdoor encryption: Trapdoor encryption makes it possible to give
user a way to perform some operations on the encrypted data without de-
cryption key. Many studies focus on the trapdoor encryption to allow user
to search for a particular keyword [7,8]. However, few studies solve the prob-
lems of comparison query on the encrypted database except order-preserving
symmetric encryption [9, 10] and hidden-vector encryption [11]. The former
one is view as a tool like a blockcipher rather than a full-fledged encryption
scheme itself due to the very large size of ciphertext-space. The latter one
is required to get the knowledge of data’s location in a finite set before the
encryption, which is not suitable for database encryption because the com-
putation of the data’s location information for each value in the domain, for
instance, char(10), is a non-trivial task. However, our construction is not
based on any prior information.

3. Using secret sharing: In cryptography, secret sharing means that a secret
is split over several parties in such a way that no single party can retrieve
the secret. After data can be stored securely by distributing it over several
servers, the data is queried by using a secure protocol between the client
and the servers. A typical usuage of secret sharing is Private Information
Retrieval(PIR) [12,13]. PIR aims at letting a user query the database without
leaking to the database which data was required. The idea behind PIR is to
replicate the data among several non-communicating servers. A client can
hid his query by asking all servers for a part of the data in such a way that
no server will learn the whole query by itself.

4. Using homomorphic encryption: Some encryption functions give the ability
to perform some simple operations directly on the encrypted data without
the need to decrypt the data first. Homomorphic encryption is a type of en-
cryption with a special property. More precisely, an encryption function E is
called homomorphic if there exists two(possibly the same) operation (⊕ and
⊗), such that E(a⊕b) = E(a)⊗E(b). Although this property makes it possi-
ble to calculate with encrypted values [6], we need the usage of homomorphic
encryption in a delicate manner. The reasons are (1)deterministic homomor-
phic encryption, for instance, RSA, can not be used in outsourced database
scenario because of its weak security. (2)general probabilistic homomorphic
encryption makes it difficult to process queries by the server. In essence, our
construction is based on a particular probabilistic homomorphic encryption.
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Compared with traditional method using homomorphic encryption, the main
difference is that we generate trapdoors for the database server to support
queries on outsourced database.

2 Preliminaries

2.1 Boneh-Goh-Nissim Encryption System

The public key encryption algorithm of Boneh, Goh and Nissim is proposed
in 2005, which resembles the Pailier and the Okamoto-Uchiyama encryption
schemes [14]. We describe it as G(s) below on input a security parameter s ∈ Z+.

1. Key generation.
(a) Choose two random s-bit primes p and q.
(b) Generate two multiplicative groups G and G1 of order n = pq and a

bilinear map e : G×G → G1 such that for all u, v ∈ G and a, b ∈ Z, we
have that e(ua, vb) = e(u, v)ab. It is also required that if g is a generator
of group G then e(g, g) is a generator of group G1.

(c) Choose two random generators g, u ∈R G.
(d) Calculate the generator h = uq of a subgroup of G of order p.
(e) Publish public key(n,G,G1, e, g, h) and keep private key p secret.

2. Encryption
(a) Choose a random r ∈R {0, . . . , n − 1}.
(b) The encryption of a message m is c = gmhr ∈ G.

3. Decryption
To decrypt the ciphertext c first compute cp = (gmhr)p = (gp)m =ĝm and
then use Pollard’s ρ-method to calculate the discrete log to retrieve m.

Boneh-Goh-Nissim encryption is clearly additively homomorphic because E(m1)·
E(m2) = gm1hr1 · gm2hr2 = gm1+m2hr1+r2 = E(m1 + m2).

Theorem 1. The public key system of Boneh-Goh-Nissim encryption is seman-
tically secure assuming G satisfies the subgroup decision assumption [14].

Note: The Boneh-Goh-Nissim encryption is limited in the size of message space
due to the need to compute discrete logarithms during decryption [14]. Since
in the database application message space is usually defined as a small domain,
this restriction does not affect the usefulness of our protocol.

2.2 Bloom Filters

Bloom Filters [15] offer a compact representation of a set of data items, allowing
for fast set inclusion tests. A Bloom Filter is an array B of m bits, initialized to
zero. It requires a set of n independent hash functions Hi that produce uniformly
distributed output in the range [0,m-1] over all possible inputs.
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To add an entry W to the filter, calculate

b1 = H1(W )
b2 = H2(W )
· · ·
bn = Hn(W )

∀i, 1 ≤ i ≤ n, set B[bi] = 1 (1)

To check if W is in the database, the same bi are calculated and bits B[bi] are
examined. If any of the bits are 0, the entry does not exists; On the other hand,
if all are 1, the record probably does exist. It means that false positives, in which
a appears to be in S but actually is not, occur because each location may have
also been set by some element other than a.

Eu-Jin Goh firstly quantifies the probability of a false positive occurring in a
Bloom Filter [16] . After using n hash functions to insert r distinct elements into
an array of size m, the probability of a false positive is (1− (1− ( 1

m ))rn)r ≈ (1−
e−

rn
m )r. For a certain number r of inserted elements, there exists a relationship

that determines the optimal number of hash functions h0 = m
r ln2 ≈ 0.7m

r which
yields a false positive probability of p = (1

2 )h0 = (1
2 )

m
r ln2 ≈ 0.62

m
r .

For a Bloom Filter BF, we denote BF.insert(v) the insertion operation and
BF.contains(v) the set inclusion test(returning true if it contains value v, false
otherwise).

2.3 Pseudo-Random Generators

Intuitively, a pseudo-random generator outputs strings that are computationally
indistinguishable from random string. More precisely, we say that a function
G : {0, 1}n → {0, 1}m where m > n is a (t, ε)-pseudo-random generator if

1. G is efficiently computable by a deterministic algorithm.
2. For all t time probabilistic algorithms A,

|Pr[A(G(s)) = 0|s R← {0, 1}n] − Pr[A(r) = 0|r R← {0, 1}m]| < ε (2)

2.4 Discrete Logarithm Assumption

Let G be a finite field of size p prime and order q and let g be a generator of G,
the Discrete Logarithm assumption(DL):

Definition 1. Given g, v ∈ G, it is intractable to find r ∈ Zq such that v = gr

mod p.

3 Definitions

We begin by defining a general frame work for a general join with preserving
privacy on outsourced database. Let X be a data owner, Y be a user, S be a server
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provider and F be a trusted party. We have described the data owner, the server
provider and the user in 1.1. Next, we will explain F . F is usually integrated
with client site to process auxiliary operations securely. In reference [5], this role
takes responsibility for query translator, meta data storage and result filter. In
this paper, F also undertakes the task of storing random numbers.

Definition 2. A public key storage with join query consists of the following
probabilistic polynomial time algorithms and protocols:

1. KeyGen(1s) takes as input a security parameter and outputs a public key PK
and a secret key SK.

2. EncryptX,S(PK, A) is a non-interactive two party protocol that allows X to send
the messages A={(ai)m

i=1}(There are m values in the column A)encrypted us-
ing the public key PK and generate a auxiliary information ΩA to be send to
the server S. Meanwhile, the random number generated during the encryption
is inserted into the list of trusted third party F. We will use ΩA to support
join query where predicate contains A.

3. TrapdoorY,F (SK, Pre, List) is executed by F to take as input a secret key
SK, the description of a join predicate Pre and a list of random numbers
List. It outputs a trapdoor TPre.

4. JoinY,S(EA, EB, TPre, ΩA) is a non-interactive two party protocol between
the user Y and server S to take a token TPre for some join predicate, the
ciphertext EA, EB and ΩA as input. It outputs true or false. Roughly speak-
ing, if the plaintext A and B satisfy the Pre then algorithm outputs true
and outputs false otherwise. The precise requirement is captured in the query
correctness property below.
Note: JoinY,S(EA, EB, TPre, ΩA) is different with JoinY,S(EA, EB , TPre, ΩB)
despite the predicate is the same because the former uses A’s auxiliary in-
formation ΩA to execute join while the latter uses B’s auxiliary information
ΩB to execute join.

We now define correctness and security for such a system.

Definition 3. Let Apublic, Aprivate ←− KeyGen(1s). Fix a finite sequence of
messages {(ai)m

i=1} for column A and {(bi)n
j=1} for column B. Suppose that the

protocol EncryptX,S(PK, A) and EncryptX,S(PK, B) are executed by X and S.
After generating TPre using TrapdoorY,S(SK, Pre, List) protocol, Y receives the
set of message denoted by RPre after the execution of JoinY,S(EA, EB, TPre, ΩA).
Then, a privacy-preserving join on outsourced database is said to be correct on
the sequence {(ai)m

i=1} and {(bi)n
j=1}:

1. If Pre(ai, bj) = true, then Join(E(A), E(B), TPre, ΩA) = true.
2. If Pre(ai, bj) = false, then Pr[Join(E(A), E(B), TPre, ΩA) = ⊥] > 1 −

ε(s) where ε(s) is negligible function, where the probability is taken over all
internal randomness used in the protocol Encrypt, Trapdoor and Join.

A privacy-preserving join on outsourced database is said to be correct if it is
correct on all finite sequences.
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For privacy, there are several parties involved, and hence there will be several
definitional components.

Definition 4. For sender-storage-privacy,consider the following game between
an adversary A and a challenger C. A will play the role of outsourced database
S and C will play the role of the message sender X. The game consists of the
following steps:

1. KeyGen(1s) is executed by C who sends the output PK to A.
2. A asks queries of the form (M) where M is a value of a column; C answers

by executing the protocol EncryptX,S(PK, M) with A.
3. A chooses two pairs(M0, M1) and sends this to C, where the messages are of

equal size.
4. C picks a random bit b ∈R {0, 1} and executes EncryptX,S(PK, Mb) with A.
5. A outputs a bit b′ ∈ {0, 1}.

We define the adversary’s advantage as AdvA(1s) = |Pr[b = b
′
]− 1

2 |. We say
that a privacy-preserving join on outsourced database is sender-storage-privacy
if, for all A ∈ PPT , we have that AdvA(1s) is a negligible function.

Next, we define the controllability, which means the server should not be able to
evaluate join predicates on the initial received data without permission from the
client. In more detail, without executing the Trapdoor protocol for the join predi-
cate the server can perform join processing by itself, which means out of the control
of the client. It may be a leakage of information. We suggest the reader to review
the previous example in section 1.1. Since the controllability is a newly concept
present in relevant work, we provide a formal description about it:

Definition 5. For controllability, consider the following game between an ad-
versary A and a challenger C. Firstly, we define a special case of Join algorithm:
JoinY,S(EA, EB , �, ΩA) where � denotes the server S does not get the trapdoor
from the receiver Y:

JoinY,S(EA, EB, �, ΩA) is a two party protocol between the user Y and server
S for some join predicate, the ciphertext EA, EB and ΩA as input. It outputs
true or false.

A will play the role of outsourced database S and C will play the role of the
receiver Y.The game consists of the following steps:

1. KeyGen(1s) is executed by C who sends the output PK to A.
2. A asks queries of the form Pre, where Pre is a predicate;
3. A chooses two pairs(Pre0, P re1) and sends this to C. We define Pre0 stands

for Pre0(ai, bj)=false and Pre1 stands for Pre1(ai, bj)=true where ai and
bj are values we choose from two columns deliberately.

4. C picks a random bit b ∈R {0, 1} for Pre.
5. EncryptX,S(PK, ai) and EncryptX,S(PK, bj) are executed by C who send the

output E(ai) and E(bj) to A.
6. C answers by executing the protocol JoinY,S(EA, EB, �, ΩA) with A for Preb.
7. A outputs a decision b′ ∈ {0, 1}.



A Privacy-Preserving Join on Outsourced Database 285

We define the adversary’s advantage as AdvA(1s) = |Pr[b = b
′
] − 1

2 |. We say
that a privacy-preserving join on outsourced database is controllability if, for all
A ∈ PPT , we have that AdvA(1s) is a negligible function.

Note: The reader may ask the question: why do not consider the results of
Pre0(ai, bj) and Pre1(ai, bj) are the same, which is either true or false. The
reason is that if we guarantee the server can not distinguish a pair of predicates
where the results of the same data item are different, the distinction of a pair of
predicates where the results of the same data item are same is a more difficult
task.

Next, we define security for a join query in the sense of semantic-security. We
need to ensure that the attacker does not distinguish between a predicate con-
taining column A0 and B0 with a predicate containing column A1 and B1 from
Join protocol even given the trapdoor TPre.

Definition 6. For join privacy, consider the following game between an adver-
sary A and a challenger C. A will play the role of outsourced database S and C
will play the role of the message receiver Y.The game consists of the following
steps:

1. KeyGen(1s) is executed by C who sends the output PK to A.
2. Suppose that Pre0 holds on the column A0 and B0; Pre1 holds on the column

A1 and B1; A0, B0, A1 and B1 are of equal size. The attacker A sends the
challenger Pre0, Pre1 on which it wishes to be challenged. The challenger
picks a random b ∈ {0, 1} and executes the protocol JoinY,S(EAb

, EBb
, TPreb

,
ΩAb

).
3. A output a bit b′ ∈ {0, 1}.

We define the adversary’s advantage as AdvA(1s) = |Pr[b = b′]− 1
2 |. We say that

a privacy-preserving join on outsourced database is an adaptive chosen predicate
attack if for all A ∈ PPT , we have that AdvA(1s) is a negligible function.

4 Main Construction

4.1 Outsourced Equijoin

We define the equijoin solution to be the following probabilistic polynomial time
algorithms:

1. Setup(s).
(a) A probabilistic algorithm that takes as input a security parameter s ∈

Z
+, run G(s) to obtain the public key PK=(n,G,G1, e, g, h) and the

private key SK=p.
(b) Choose a pseudo-random function f : {0, 1}n × {0, 1}s → {0, 1}s to gen-

erate a value rA for each column A and a value rB for each column B in
database D and to generate 	 values {r1, r2, . . . , r�} for a BF viewed as
a string of m bits. Keep all values secret.
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2. Encrypt(PK, A)
(a) For each ai ∈ A, encrypt the plaintext ai using the public key PK,

producing EPK(ai) = gaihrA ∈ G.
(b) Initiate all the bits of a Bloom Filter BF to 0. For each value ri(i ∈

(1, . . . , 	)) in {r1, r2, . . . , r�}, compute ρ(ri) = hri and insert them into
the Bloom Filter (BF.(insert(ρ(ri))))

(c) Finally, output the values EPK(ai) for each element of all columns in D
and a Bloom Filter BF for column A, which can be viewed as ΩA.

3. Trapdoor(SK, Pre)
Given the secret key SK and the description of a predicate Pre for two column
name A,B and a list of random numbers hold by F, output a trapdoor for
Pre as TPreAB = h(rB−rA+rπ) mod n(π ∈ {1, . . . , 	}).

4. Join(A, B, TPre, BF)
For each element bj ∈ B, compute

ρA(ai, bj) =
EPK(ai)
EPK(bj)

× TPreAB (3)

For each element ai ∈ A, iff BF.contains(ρA(ai, bj)) return the tuple
〈EPK(ai), EPK(bj)〉.

Theorem 2. The privacy-preserving join on outsourced database from the pre-
ceding construction is correct according to definition 3.

Proof. If Pre(ai, bj) = true, it means ai = bj . The correctness of the protocol is
easy to verify:

EPK(ai)
EPK(bj)

× TPreAB =
gaihrA

gbj hrB
× hrB−rA+rπ = gai−bj hrπ = hrπ (4)

hrπ is a member of the set for the BF, so BF.contains(hrπ ) returns true. The
client can obtain 〈EPK(ai), EPK(bj)〉 as a part of query results.

If Pre(ai, bj) = false, it means ai 	= bj . Suppose that g = uω

EPK(ai)
EPK(bj)

× TPreAB = gai−bj hrπ = (uω)ai−bj hrπ = h
ω(ai−bj)

q hrπ = h
ω(ai−bj)

q +rπ

(5)
In the case of a join, the false positive rate of query implies that a small per-
centage of the resulting joined tuples do not match the predicate the join has

been executed for. It means that h
ω(ai−bj)

q +ri is considered as a member of the
set for the BF and BF.contains(h

ω(ai−bj)
q +rπ) returns true. The occurrence can

be divided into two cases:

1. The false positive is caused by Bloom Filters. we have discussed it in 2.2,
which is (1

2 )
φ
� ln2 with respect to a optimal number of hash functions used in

the BF, denoted as neg1. For example, suppose φ = 1024 and 	 = 100, the
minimal false positive rate is 0.7%. In the case of a join, a small percentage of
the resulting joined tuples will then be pruned by the client, so the minimal
false positive rate is enough for a practical application.
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2. The false positive is caused by executing equation 3 . h
ω(ai−bj)

q +rπ mod n is
a real member of the set for the BF (� ∈ {1, . . . , 	}):

h
ω(ai−bj )

q +rπ ≡ hr� mod n (6)

ω(ai − bj)
q

≡ r� − rπ mod (p − 1)(q − 1) (7)

We firstly observe the left side of equation 7. ω and q are constant numbers
after Setup phrase. ai−bj is the difference of the two compared values. After
the database physical structure is defined, the difference of any two values is
contained in a finite domain. For example, suppose that the schema of a table
student is (ID char(6), name vchar(10), age int) and the schema of a table
transcript is (ID char(6), course vchar(20), grade int), we want to perform
natural joining between student and transcript. According to equation 7,
the difference of any two values coming from student.ID and transcript.ID
is between [-999999,999999]. Next, we observe the right side of equation 7.
r� − rπ is a random number whose domain Z is infinite. So, the probability
of equation 7 is negligible, denoted as neg2.

Therefore, we can conclude that if Pre(ai, bj) = false, Pr[Join(A, B, TPre, BF )
= ⊥] = (1 − neg1)(1 − neg2) = 1 − (neg1 + neg2 − neg1neg2). Since neg1 and
neg2 are both negligible, Pr[Join(A, B, TPre, BF ) = ⊥] > 1− ε(s) where ε(s) is
negligible function.

4.2 Proof of Security

Theorem 3. Assuming semantic-security of the underlying cryptosystem, the
privacy-preserving join on outsourced database from the above construction is
sender-storage-privacy, according to definition 4.

Proof. Suppose that there exists an adversary A ∈ PPT that can succeed in
breaking the security game, from definition 4, with some non-negligible advan-
tage. So, under those conditions, A can distinguish the distribution of EncryptX,S

(PK, M0) from the distribution of EncryptX,S(PK, M1), where the word ”distri-
bution” refers to the distribution of the transcript of the interaction between the
parties. A transcript of EncryptX,S(PK, M) essentially consists of just EPK(M)
and a Bloom Filter BFM for M . We assume that there exists an adversary
A that can distinguish these two distributions. Hence, the encrypted data or
the Bloom Filter cannot be computationally indistinguishable. So, there exists
an adversary A′ ∈ PPT that can distinguish between EPK(M), BFM or the
correlation between EPK(M) and BFM .

1. If A′ ∈ PPT distinguishes the encrypted column M0 and M1, it has distin-
guished EPK(M0) from EPK(M1) which violates our assumption of
theorem 1.
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2. If A′ ∈ PPT distinguishes the Bloom Filter, it has distinguished BFM0 from
BFM1 . We observe that the construction of BF consists of a serial of random
numbers. Although the worst case exists that the hash functions of BF are
the same for M0 and M1, the BFM0 and BFM1 are indistinguishable due to
(t, ε)-pseudo-random generator in section 2.3 .

3. If A′ ∈ PPT distinguishes the correlation between EPK(M) and BFM . Ob-
viously, there is no correlation between EPK(M) and BFM because the
construction of BFM for M only consists of random numbers without being
related to M

So we conclude that no such A exists in the first place, and hence the system is
sender-storage-privacy according to definition 4.

Theorem 4. The privacy-preserving join on outsourced database is controlla-
bility, according to definition 5.

Proof. Suppose that there exists an adversary A ∈ PPT that can succeed in
breaking the security game, from definition 5, with some non-negligible advan-
tage. So, under those conditions, A can correctly decide whether the equality
of ai and bj with non-negligible advantage without the trapdoor for the join
predicate of the column A and B. We suppose that A forges a trapdoor, denoted
as T ′

Pre, used by C. Next, there must exists an adversary A′ ∈ PPT that can
make the right decision with non-negligible advantage by executing Join protocol
using TPre′ . Suppose that T ′

PreAB
= hrx and rx is a random number.

ρ′A(ai, bj) =
EPK(ai)
EPK(bj)

× TPre′
AB

=
gaihrA

gbj hrB
× hrx = gai−bj hrA−rB+rx (8)

If the Pre(ai, bj) = true, ρ′A(ai, bj) = hrA−rB+rx . Iff BF.contains(ρ′A(ai, bj))
return the tuple 〈EPK(ai), EPK(bj)〉. It occurs owing to two cases:

1. hrA−rB+rx is a member of the set for BFA, denoted by hrπ .

hrA−rB+rx ≡ hrπ mod n (9)

rx ≡ rπ − rA + rB mod (p − 1)(q − 1) (10)

Because rπ , rA and rB are all random numbers hidden from A, AdvA′ =
Pr[rx ≡ rπ − rA + rB] is negligible.

2. BF.contains(ρ′A(ai, bj)) although ρ′A(ai, bj) is not a member of the set for
BFA. We have discussed the controllable rate of false positive for set inclusion
test. So we can choose optimal parameters to obtain a desired small false
positive. It means that BF.contains(ρ′A(ai, bj)) is negligible.

So we conclude that no such A exists in the first place, and hence the system is
controllability according to definition 5.

Theorem 5. The privacy-preserving join on outsourced database is join pri-
vacy, according to definition 6.
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Proof. Suppose a polynomial time algorithm A breaks the join security of the
system. We construct an algorithm B that breaks the discrete logarithm assump-
tion. Given (n,G,G1, e, h) as input, algorithm B works as follows:

1. B gives algorithm A the public key (n,G,G1, e, g, h).
2. Algorithm A outputs two join predicates Pre0 and Pre1 to which B responds

with the trapdoor TPre = hrBb
−rAb

+rπ for a random b
R← {0, 1} and v = hrπ

is a member of the set of BF. Suppose that Pre0 holds on the column A0

and B0; Pre1 holds on the column A1 and B1; A0, B0, A1 and B1 are of
equal size.

3. Algorithm A outputs its guess b′ ∈ {0, 1} for b. If b = b′ algorithm B outputs
1, which means to find x ∈ n such that v = hx; otherwise, B outputs 0.

Suppose algorithm B’s success probability is ε, algorithm A’s success prob-
ability is ε′. We define algorithm A’s success means A gets the knowledge of
rA and rB since rA and rB is hidden from the third party F. It is easy to see
that Pr[b = b′] = ε

n2 when Pr[r′Bb
= rBb

] = 1
n and Pr[r′Ab

= rAb
] = 1

n . On

the other hand, Pr[b = b′] = ε′ ×
l
n

1−α where α is the false positive of BF. So
we derive the following equation:

ε

n2
= ε′ ×

l
n

1 − α
(11)

ε =
	nε′

1 − α
(12)

Hence, B breaks the discrete logarithm assumption with the advantage �nε′

1−α .
Since it’s well known that the advantage of breaking discrete logarithm as-
sumption is negligible, the advantage of breaking join privacy of our system
is negligible.

So we conclude that no such A exists in the first place, and hence the system is
join privacy according to definition 6.

4.3 Discussion

We compare this construction with the method proposed by Bogdan Carbunar
et al. [4]. Both solutions have their own advantages and disadvantages.

Bogdan Carbunar et al. Bogdan Carbunar et al. encrypt each column of
a relational database. For each element ai of a column, encrypt ai with any
encryption algorithm, compute an obfuscation O(ai) of ai and generate a Bloom
Filter containing all possible values associate with ai satisfying the predicate.
Hence, element ai ∈ A is stored on the server as [EK(ai), O(ai), BF (ai)]. For
each element bj ∈ B,compute eA(bj) = r

O(bj)
AB mod p. For each element ai ∈ A,

iff BF (ai) contains eA(bj) return the tuple < EK(ai), EK(bj) >.
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1. Advantages
(a) Each element of a column can be encrypted by any encryption algorithm,

for instance, RSA, ElGamal. Essentially, join is executed through an
obfuscation version of ai and BF, which are similar as a index.

(b) The encryption method supports both equijoin and non-equijoin, for
instance, |ai − bj| < 50.

2. Disadvantages
(a) The computational complexity of join operation is modular exponenti-

ation. When the size of database is large, the execution of join is time-
consuming.

(b) The scale of valid payload is small because an obfuscation version and a
BF are produced for each elements of a column, for example, we deploy
1024-bit Bloom Filter, 1024-modular using 1024-bit RSA encryption.
The scale of valid payload is 33.3%.

(c) Because executing the same query repeatedly will generate the same
trapdoor, Bogdan Carbunar’s method may leak the user’s query infor-
mation.

Our Method

1. Advantages
(a) The computational complexity of equijoin is modular multiplication.

Compared to modular exponentiation, the performance of our method
is fast.

(b) The scale of valid payload is large. Besides encrypted data itself, the
server only stores a BF for each column but not for each elements of
each column.

(c) Since executing the same query repeatedly will generate different trap-
doors, our method provides more secure query service.

2. Disadvantages
(a) Our method only supports equijoin, which is only a special class of join

type.
(b) Our method is based on the Boneh-Goh-Nissim encryption system. So

the security is only semantically secure since Boneh-Goh-Nissim encryp-
tion system is semantically secure assuming the subgroup decision as-
sumption.

(c) The trusted front F needs to reserve some storage space for storing ran-
dom numbers.

5 Extension

In this paper, we focus on a special case of equivalent join predicate A = B since
this type of predicate is frequently used in database. Actually, our construction is
also applied to more general equivalent join, for instance, allowing the evaluation
of predicate p(A, B) : (xA = yB + z). Next, we will explain it simply to modify
the protocol of Trapdoor and Join in the previous construction.
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3. Trapdoor(SK, Pre)
Given the secret key SK and the description of a predicate Pre for two column
name A,B, output a trapdoor for Pre as TPreAB = h(yrB+rz−xrA+rπ) mod n
(π ∈ {1, . . . , 	}).

4. Join(A, B, TPre, BF) For each element bj ∈ B, compute

ρA(xai, ybj, z) =
[EPK(ai)]x

[EPK(bj)]y · EPK(z)
× TPreAB (13)

For each element ai ∈ A,iff BF.contains(ρA(xai, ybj, z)) return the tuple
〈EPK(ai), EPK(bj)〉.

If Pre(ai, bj) = true, it means that xai = ybj+z. The correctness of the modified
protocol is easy to verify:

EPK(xai)
EPK(ybj) · E(PK)(z)

× TPreAB =
[EPK(ai)]x

[EPK(bj)]y · EPK(z)
× TPreAB

=
gxaihxrA

gybj hyrB · gzhrz
× hyrB+rz−xrA+rπ

= gxai−ybj−zhrπ = hrπ (14)

hrπ is a member of the set for the BF, so BF.contains(hrπ ) returns true. The
client can obtain 〈EPK(ai), EPK(bj)〉 as a part of query results.

Note: Our protocol is ”asymmetric”. ”asymmetric” means that the evaluation
of predicate relies on the meta data of one of the two columns, for example,
the Bloom Filter for A, not for B. It’s not difficult to propose a ”symmetry”
protocol based on the above construction. However, in database realization, the
”asymmetric” style usually appears, for example, a nested loop join method
chooses one of two tables as a driving table, so our construction is easier to
apply to this application.

6 Conclusion

In this paper, we propose a simple privacy-preserving join on outsourced database.
We focus on computing equijoin including the predicate form of A = B and
xA = yB +z. The main goal is to perform privacy-preserving join on outsourced
database server with the permission of users. To the best of our knowledge, there
exists few solutions for private joins on encrypted data in this scenarios. Proposed
mechanisms for executing join on outsourced database is computational privacy
and low overhead. We provide security analysis that our method achieves privacy
for the data owner, controllability and join privacy. We also compare it with
reference [4], describing their advantages and disadvantages respectively.



292 S. Ma et al.

References

1. Lehner, W., Sattler, K.U.: Database as a Service (DBaaS). In: 2010 IEEE 26th
International Conference on Data Engineering (ICDE 2010), March 1-6, pp. 1216–
1217. IEEE, Piscataway (2010)

2. Agrawal, D., El Abbadi, A., Emekci, F., Metwally, A.: Database management as a
service: challenges and opportunities. In: IEEE 25th International Conference on
Data Engineering, ICDE 2009, USA, March 29-April 2. IEEE, Piscataway (2009)

3. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section, pp. 1–19. Springer, Heidelberg (2004)

4. Carbunar, B., Sion, R.: Joining Privately on Outsourced Data. In: Jonker, W.,
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Abstract. Most security- and privacy-preserving protocols in vehicu-
lar ad hoc networks (VANETs) heavily rely on time-consuming crypto-
graphic operations which produce a huge volume of cryptographic data.
These data are usually employed for many kinds of decisions, which poses
the challenge of processing the received cryptographic data fast enough
to avoid unaffordable reaction delay. To meet that challenge, we pro-
pose a vehicular authentication protocol referred to as APPA. It guar-
antees trustworthiness of vehicular communications and privacy of vehi-
cles, and enables vehicles to react to vehicular reports containing crypto-
graphic data within a very short delay. Moreover, using our protocol, the
seemingly random cryptographic data can be securely and substantially
compressed so that the storage space of a vehicle can be greatly saved.
Finally, our protocol does not heavily rely on roadside units (RSUs) and
it can work to some extent even if the VANET infrastructure is incom-
plete. These features distinguish our proposal from others and make it
attractive in various secure VANET scenarios.

Keywords: Traffic Security, VANETs, Privacy, Protocol Design, Data
Compression.

1 Introduction

With the fast development of mobile networks and information processing tech-
nologies, vehicular ad hoc networks (VANETs) have attracted in recent years par-
ticular attention in both industry and academia. A VANET mainly consists of
vehicles and properly distributed roadside units (RSUs), both equipped with on-
board sensory, processing, and wireless communication modules. The DSRC stan-
dard [1] is suggested to support wireless communication in VANETs. In addition
to messages routed to/from RSUs, vehicles can also broadcast safety messages
concerning accidents, dangerous road conditions, sudden braking, lane changing,
etc., in a one-hop or multi-hop fashion. With these mechanisms, VANETs are
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expected to enhance the driving experience by improving road safety and traffic
efficiency, as well as supporting value-added applications such as automatic toll
collection, infotainment, context-oriented personalized services and so on.

Despite the great potential benefits of VANETs, many challenges arise around
this technology, especially in what regards security and privacy. VANETs aim
at a safer driving environment by allowing vehicle-to-vehicle (V2V) and vehicle-
to-RSU (V2R) communications. However, selfish vehicles can also exploit this
mechanism to send fraudulent messages for their own profit. Malicious vehi-
cles may impersonate innocent ones to launch attacks without being caught.
To address the security requirements in VANETs, digital signatures are usually
employed so that the receiving vehicles can verify that these messages have been
originated by authentic sources and have not been modified during transmis-
sion. Driving privacy is another critical concern in VANETs. Although employ-
ing signatures can mitigate the security challenge in VANETs, the presence of
signatures in vehicle-generated messages might allow attackers to identify who
generated those messages. Since vehicular messages contain speed, location, di-
rection, time and other driving information, a lot of private information about
the driver can be inferred, which jeopardizes vehicle and driver privacy.

To address security and privacy concerns, a large body of proposals have
striven to secure VANETs (e.g., [5,15,17,18,23,25]). Most proposals heavily rely
on time-consuming cryptographic operations which produce a huge volume of
cryptographic data. These data are usually employed for many kinds of decisions.
Indeed, according to DSRC [1], a vehicle will broadcast a (signed) message to
nearby vehicles and/or RSUs every few hundreds of milliseconds. Hence, a vehicle
or an RSU may receive hundreds of messages in a short period of time, all of
those should be verified in real time. Otherwise, the delay caused by verification
of a bulk of signatures may radically impair transmission throughput and system
scalability. This poses the challenge of processing the received cryptographic data
fast enough to avoid an unaffordable reaction delay, which might result in traffic
jams and even accidents.

Furthermore, if some signed messages are later found to be false and have
misguided other vehicles into accidents, the message generators and endorsers
should be traceable. This implies that the signed vehicle-generated messages have
to be stored by the receiving vehicles. However, vehicular messages, especially
their appended cryptographic data (being almost random), grow linearly with
time. Hence, It’s preferable if the vehicular communication protocol can securely
compress those cryptographic data.

1.1 Our Results

We propose a security- and privacy-preserving protocol referred to as APPA.
The APPA protocol is built on our new notion of one-time identity-based ag-
gregate signature (OTIBAS). This notion incorporates the desirable properties
of identity-based cryptography, aggregate signature and one-time signature. In
an OTIBAS scheme, a user can compute a signature on a message only if the
user has obtained a secret key from a trusted authority, where the secret key is
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associated with the user’s identity. The signature can be verified by anyone who
knows the user’s identity. Since the user’s identity works as her public key, no
certificate is needed on the public key, unlike in the conventional PKI setting,
which avoids the certificate management overhead. As a one-time signature, the
signer cannot use one secret key (corresponding to one identity of the user) to
generate no more than one signature, and accordingly, the user’s identity should
change for every signature and can be viewed as a one-time pseudonym. This
feature is well matched to the anonymity requirement of vehicles in VANETs.
As an aggregate signature scheme, the signatures on n messages by n signers can
be aggregated into one signature which can be verified as if it had been gener-
ated by a single signer. This feature caters for the requirements of fast response
in VANETs and can be used to save storage space in a vehicle. By exploiting
bilinear pairings, we propose an efficient OTIBAS scheme. The security of the
proposed OTIBAS scheme is formally proven under the computational co-Diffie-
Hellman (co-CDH) assumption. With our provably secure OTIBAS scheme and
the multiplicative secret sharing technique introduced by Kiltz and Pietrzak [6],
we realize the APPA protocol which is efficient and practical to secure vehicular
communications.

The APPA protocol exhibits a number of attractive features. The proposal
preserves privacy for honest vehicles. However, if a vehicle authenticates a bogus
message, then it will be caught for penalty. This mechanism guarantees trustwor-
thiness of vehicular communications and it is a deterrent to malicious vehicles.
Furthermore, our protocol enables vehicles to react to vehicular messages within
a very short delay and the seemingly random cryptographic data can be securely
and substantially compressed: any number of signatures can be compressed into
a single group element of about 21 bytes without degrading security. Finally, our
protocol does not heavily rely on RSUs, a part of the VANET infrastructure,
and it can work to some extent even if the VANET infrastructure is incomplete,
i.e., still under construction or partially destroyed by, e.g., an earthquake. These
features facilitate deployment in various environments to secure VANETs.

1.2 Related Work

A large number of papers deal with the security and privacy challenges in
VANETs [5,15,17,18,23,25]. Among them, pseudonym-based authentication is
a popular research line. In [3,17,18], digital signatures for message integrity,
authentication and non-repudiation are combined with short-lived anonymous
certificates to guarantee the security requirements for the vehicular nodes. How-
ever, in this approach, each vehicle needs to pre-load a huge pool of anonymous
certificates to achieve privacy of vehicles, and the trusted authority also needs to
maintain all the anonymous certificates of all the vehicles, which incurs a heavy
burden of certificate management.

To relieve from the certificate management burden, several proposals [12,13]
exploit group signatures [4] and present conditional privacy-preserving vehic-
ular authentication protocols. Subsequent efforts have been made to improve
the trustworthiness of vehicle-generated messages [23] or to achieve robustness
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and scalability in VANETs [27]. However, due to the difficulty of dealing with
revoked and compromised signers in group signatures (an open question in
cryptography), these systems may degrade in performance as the number of
revoked/compromised vehicles grows with time.

Another approach to avoid certificate management is to exploit identity-based
cryptography [20]. In [25], Zhang et al. designed an efficient conditional privacy-
preserving protocol for vehicular communications using identity-based cryptog-
raphy. Their protocol requires the master secret key of the system to be stored in
an idealized tamper-proof device embedded into vehicles. This device is assumed
secure against any attempt of compromise in any circumstance and an attacker
cannot extract any data stored in the device. This assumption seems too strong
to be met in practice. For instance, without probing into the device, an attacker
might collect some side-channel information leaked by cryptographic operations
in the device. This kind of attacks are known as side-channel attacks [11,21]
and they seem attractive for organized criminals: if the tamper-proof device is
compromised, the criminals obtain full control of the system.

Compared to the intensive attention received by security and privacy issues,
few efforts have been made to aggregate vehicle-generated messages and cryp-
tographic witnesses to save response time and storage space for vehicles. Pic-
coni et al. proposed a PKI-based authentication scheme in VANETs [16]. Their
scheme focuses on aggregating messages, rather than aggregating cryptographic
witnesses; aggregating the latter is more challenging, because they are almost
random. As noted by themselves, their solution suffers from some limitations. In
[28], Zhu et al. apply short signatures in the PKI setting to aggregate emergency
messages in VANETs. More recently, Wasef et al. [22] employed aggregation
technologies to enable each vehicle to simultaneously verify signatures and their
certificates in the PKI scenario. Since these schemes are implemented in the PKI
setting, certificate management remains a problem. Furthermore, although some
general privacy ideas have been discussed in these proposals, it is unclear how
they can technically achieve reasonable vehicle privacy.

1.3 Paper Organization

The rest of the paper is organized in the following way. In Section 2, we de-
scribe the system architecture and the goals of our design. Section 3 proposes an
identity-based aggregate one-time signature scheme as the building block. Sec-
tion 4 proposes our APPA protocol. We evaluate the new protocol in Section 5.
Finally, Section 6 concludes the paper.

2 System Architecture and Design Goals

2.1 System Architecture

As shown in Figure 1, the system architecture in our proposal consists of a
trusted authority (TA), a number of RSUs and numerous vehicles.
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Fig. 1. System architecture

– TA: It generates the system parameters. When an authenticated message is
found false, TA might be asked to trace the vehicle having generated that
cheating message.

– RSUs: They are distributed along the road side as part of the infrastruc-
ture of VANETs. RSUs are equipped with on-board sensory, processing, and
wireless communication modules. In our system, they are mainly used to
collect/forward data from vehicles or distribute global broadcast from TA to
vehicles. We enforce minimum security-related operations on RSUs so that
the system can work even if the infrastructure is incomplete at the early
stage of VANETs or it is destroyed by some disaster.

– Vehicles: They are equipped with on-board sensory, processing, tamper-proof
devices and wireless communication modules. Vehicles move along the roads,
and periodically exchange messages with nearby vehicles and RSUs within
their communication range.

2.2 Design Goals

Our APPA protocol has the following design goals.

– Global security. The vehicle-generated messages should be authenticated
to guarantee that they are from real sources and have not been tampered
with during transmission. If a vehicle authenticates a bogus message, it must
be caught and it must be unable to deny authorship on the cheating message.

– Individual privacy. If a vehicle behaves honestly and follows the APPA
protocol, its privacy should be guaranteed against attackers who can eaves-
drop communication in VANETs.

– Easy deployment. The protocol should allow vehicles to quickly react to
received messages. It is preferable if there is no heavy overhead incurred
by certificate management and the storage requirement of digital signatures
is minimized. The protocol should work to some extent in case that the
infrastructure is incomplete.
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3 The Building Block: OTIBAS

3.1 Modeling OTIBAS

An OTIBAS scheme consists of the following efficient algorithms: Setup, Ex-
tract, Sign, Aggregate, and Verify. Setup takes as input a security parameter
and outputs the global system parameters including TA’s public key. Extract
takes as input TA’s master secret key and a signer’s identity, and outputs a
private key for the signer. Sign takes as input a signer’s private key and any
message, and outputs a signature on the message. The constraint here is that
a private key corresponding to a specific identity can be used to generate only
one signature. Aggregate takes as input n message-signature pairs generated in
the Sign procedure, and outputs an aggregate signature. Verify takes as input
the n messages, the aggregate signature, the n identities corresponding to the
n message-signature pairs and TA’s public key, and it outputs a bit 1 or 0 to
represent whether the original n message-signature pairs are valid or not.

An OTIBAS scheme should be correct in the sense that, if each party honestly
follows the scheme, then Verify always outputs 1. An OTIBAS scheme should be
also secure. Informally (a more formal definition can be found in Section 3.3),
an OTIBAS scheme is said to be secure if any polynomial-time attacker not re-
questing a private key corresponding to an identity ID∗ cannot forge a signature
corresponding to ID∗ that is aggregated so that Verify outputs 1.

3.2 An OTIBAS Scheme

Our OTIBAS scheme is implemented in bilinear groups [7,14]. Bilinear groups
have been widely employed to build versatile cryptosystems [8,24,26].

Let G1,G2 be two cyclic groups of prime order q and GT be a multiplicative
cyclic group of the same order. Let g1 denote a generator of G1, g2 a generator
of G2, ψ a computable isomorphism from G2 to G1, with ψ(g2) = g1. A map ê :
G1×G2 → GT is called a bilinear map if ê(g1, g2) 	= 1 and ê(gα

1 , gβ
2 ) = ê(g1, g2)αβ

for all α, β ∈ Z∗
q . By exploiting bilinear groups, what follows implements our

OTIBAS scheme.

Setup: TA runs this algorithm to generate the system parameters as follows:

1. Choose q,G1,G2,GT , g1, g2, ψ, ê.
2. Pick κ ∈ Z∗

q as its master secret key, and compute y = gκ
2 as its master

public key.
3. Select cryptographic hash functions H0(·) : {0, 1}∗→G1andH1(·) : {0, 1}∗ →

Z
∗
q .

4. Publish the system parameter Ψ = (ê, q, G1, G2, GT , g1, g2, y, H0(·), H1(·)).
Extract: Taking as input κ and a signer’s identity IDi, this algorithm outputs
the private key for the signer as follows:

1. Compute idi,0 = H0(IDi, 0), idi,1 = H0(IDi, 1).
2. Compute si,0 = idκ

i,0, si,1 = idκ
i,1.

3. Set si = (si,0, si,1) as the private key of the signer.
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Sign: To sign a message mi, a signer with identity IDi and private key si =

(si,0, si,1) computes
hi = H1(mi, IDi), σi = si,0s

hi

i,1.

The signer outputs σi as the signature on message mi. Notice that a signer needs
different temporary identities to sign multiple messages, as implied by the name
of one-time identity based aggregate signature.

Aggregate: This publicly computable algorithm aggregates n signatures into a

single signature. For a set of n users with identities {ID1, · · ·, IDn}, and cor-
responding message-signature pairs {(m1, σ1), · · ·, (mn, σn)}, this algorithm
outputs

Ω =
n∏

i=1

σi

as the resulting aggregate signature.

Verify: To verify an aggregate signature Ω on messages {m1, ..., mn} under iden-

tities {ID1, ..., IDn}, the verifier performs the following steps:

1. For 1 ≤ i ≤ n, compute hi = H1(mi, IDi) and
idi,0 = H0(IDi, 0), idi,1 = H0(IDi, 1).

2. Check

ê(Ω, g2) = ê(
n∏

i=1

idi,0id
hi

i,1, y).

Output 1 if the equation holds; else output 0.

3.3 Correctness and Security

The correctness of the OTIBAS scheme in Section 3.2 follows from a direct
verification.

In general, the security of an OTIBAS scheme is modeled via the follow-
ing EUF-OTIBAS-CMA (existential universal forgery under adaptive chosen-
message attack) game which is based on the security model of Gentry-Ramzan
[8] and takes place between a challenger C and an adversary A. The game has
the following three stages:

Initialize: C runs the Setup algorithm to obtain a master secret key and the
system parameters. C then sends the system parameters to A while keeping
secret the master secret key.

Attack : A can perform a polynomially bounded number of the following types
of queries in an adaptive manner.

– Extract queries : A can request the private key of an entity with identity IDi.
In response, C outputs the private key of the entity.
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– Sign queries : A can request an entity’s (whose identity is IDi) signature
on a message Mi. On receiving a query on (Mi, IDi), C generates a valid
signature σi on message Mi under identity IDi, and replies with σi.

Forgery: A outputs a set of n identities L∗
ID = {ID∗

1 , ..., ID∗
n}, a set of n messages

L∗
M = {M∗

1 , ..., M∗
n} and an aggregate signature σ∗.

We say that A wins the above game, iff

1. σ∗ is a valid aggregate signature on messages {M∗
1 , ..., M∗

n} under identities
{ID∗

1 , ..., ID∗
n}.

2. At least one of the identities, without loss of generality say ID∗
1 ∈ L∗

ID,
was not submitted in the Extract queries, and the signature of ID∗

1 can be
queried at most only once, and (M∗

1 , ID∗
1) was never queried during the Sign

queries.

We can now define the security of an OTIBAS scheme in terms of the above
game.

Definition 1. An OTIBAS scheme is secure, i.e., secure against existential
forgery under adaptive chosen-message attack, iff the success probability of any
polynomially bounded adversary in the above EUF-OTIBAS-CMA game is neg-
ligible.

We next recall the co-CDH assumption on which the security of the OTIBAS
scheme in Section 3.2 is based.

Definition 2 (co-CDH Assumption). The co-CDH assumption in two cyclic
groups G1 and G2 of prime order q equipped with bilinearity states that, given
(ga

1 , gb
2) for randomly chosen a, b ∈ Z∗

q , it is hard for any polynomial-time algo-
rithm to compute gab

1 .

Regarding the security of our OTIBAS scheme, we have the following claim.

Theorem 1. Assume there exists an adversary such that: i) it has an advantage
ε in forging a signature of the OTIBAS scheme of Section 3.2 in an attack
modeled by the above EUF-OTIBAS-CMA game, within a time span τ ; ii) it can
make at most qHi times Hi(·) (i = 0, 1) queries, qE times Extract queries, qS

times Sign queries. Then there exists an adversary who can solve the co-CDH
problem with probability ε′ ≥ 1

e(qE+qS+n+1)ε within time τ ′ = τ+Θ(4qH1+qS)τG1 ,

where τG1 is the time to compute a point exponentiation in G1 and n is the size
of the aggregating set.

Due to page limitation, the proof will be presented in the full version of this
paper.

4 The APPA Protocol

4.1 Intuition behind Our Protocol

Our APPA protocol is built on the above OTIBAS scheme. The OTIBAS notion
incorporates the desirable features of identity-based cryptography [20], aggregate
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signature [8] and one-time signature. In an OTIBAS scheme, any identity string
can be the public key of a signer and the signer can only generate a signature
after obtaining the private key corresponding to the identity of the signer. This
guarantees the security of the VANETs deployment and eliminates the need for
an extra certificate for each identity. Since OTIBAS allows a signer to compute
only one signature under one identity, the signer’s temporary identity changes
for each signature and anonymity is naturally achieved for vehicles/signers. How-
ever, since TA knows the secret used by the signer, TA can trace a misbehaving
vehicle with the signatures generated by the vehicle. Furthermore, OTIBAS can
aggregate n signatures on n (distinct or not) messages from n signers into a
single signature. This greatly reduces the time to verify n signatures in order
and speeds up the reaction of the verifying vehicles to received messages. Hence,
the APPA protocol meets our design goals very well.

Our protocol also requires each vehicle to be equipped with a practical tamper-
proof device. This is used to allow each vehicle to locally generate its temporary
identities (as pseudonyms), without frequently contacting TA, and also to relieve
from the reliance on RSUs. However, unlike the protocol in [25] storing the
system master secret key in the idealized tamper-proof device (assumed secure
against any attempt of compromise in any circumstance), we just require the
tamper-proof device to store a secret identity of the vehicle and some auxiliary
secret information, to enable the vehicle to generate its one-time identity (as a
pseudonym) and the private key corresponding to this one-time identity. The
secret identity is computed by TA from the real identity of the vehicle and TA’s
secret. That is, the secret identity in the tamper-proof device of each vehicle
is different. If a vehicle does not renew its secret identity, it may leave the
opportunity to an attacker to recover this secret. In our protocol, each vehicle
can update its secret identity information in its tamper-proof device to counter
possible side-channel attacks. This is very different from the protocol in [25] in
which the secret in the tamper-proof device cannot be updated.

4.2 The Concrete Protocol

The APPA protocol consists of the following five stages.

[System Setup]
At this stage, TA initializes the system-wide parameters as follows:

1. Generate q,G1,G2,GT , g1, g2, ψ, ê, where q− 1 has a large prime factor (say
q − 1 = 2q′ for a prime q′).

2. Pick κ ∈ Z∗
q as its master secret key, and compute y = gκ as its master

public key.
3. Select cryptographic hash functions H0(·) : {0, 1}∗ → G1, H1(·) : {0, 1}∗ →

Z∗
q and Hkey

2 (·) : {0, 1}∗ → {0, 1}l, where Hkey
2 (·) is a keyed hash.

4. Choose Λ as a hash key of Hkey
2 (·).

5. Pre-load the system parameters Ψ = (ê, q,G1, G2, GT , g1, g2, y, H0(·), H1(·),
Hkey

2 (·)) in each vehicle and RSU.
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The TA also maintains a member list ML which is kept secret. We will define
this list later.

[Vehicle Join]
Each vehicle is equipped with a tamper-proof device. Before a vehicle Vi joins a
VANET, its tamper-proof device should be initialized. The tamper-proof device
of Vi is preloaded with the system parameters Ψ and two secret values (αi, βi),
where αi and βi satisfy κ = αiβi. Furthermore, an internal pseudo-identity
(IPID) and a hash key λi are also preloaded to the tamper-proof device. In the
following, we show how to set IPID and λi.

Assume that each vehicle is associated with a real identity, e.g., the driving
license number. The real identity is used by TA to generate IPIDs for the vehicle.
Suppose the real identity of a vehicle Vi is IDVi . To generate an IPID for Vi,
TA concatenates the real identity and a validity period V Pi, e.g., “01.01.2011-
01.02.2011”, which is associated with and used to compute the IPID IPIDVi =
HΛ

2 (IDVi ||V Pi). TA chooses a hash key λi, and stores IPIDVi , λi in the tamper-
proof device. (IDVi , V Pi, λi) is added to the member list ML.

We notice that, if a vehicle does not update its IPID, its privacy is exposed
to potential side-channel attacks. Hence, we suggest each IPID to have a limited
life time, and we require the vehicle to periodically renew (IPIDVi , λi) before
the current IPID expires.

[Vehicle Sign]
At this stage, with the help of the embedded tamper-proof device, a vehicle Vi

computes a signature on a message. This stage has four steps: Generate public
pseudo-identity, Extract one-time signing key, Sign message and Randomize
secret values. The description of each step is as follows:
Generate public pseudo-identity: At this step, Vi uses its internal pseudo-identity
IPIDVi to generate its public pseudo-identity (PPID). It generates a PPID
PPIDi,j by computing PPIDi,j = Hλi

2 (IPIDVi , τ), where τ is a timestamp.

Extract one-time signing key: At this step, Vi generates the private signing key
corresponding to the PPID PPIDi,j . Assuming that the current secret values
of Vi are αi,j and βi,j , Vi generates the private key associated with the PPID
PPIDi,j as follows:

1. Compute pidi,j,0 = H0(PPIDi,j , 0), pidi,j,1 = H0(PPIDi,j , 1).
2. Compute si,j,0 = pid

αi,j

i,j,0pid
βi,j

i,j,0, si,j,1 = pid
αi,j

i,j,1pid
βi,j

i,j,1.
3. Set si,j = (si,j,0, si,j,1) as the one-time signing key of the vehicle.

Sign message: At this step, Vi computes and outputs the signature σi,j = si,j,0s
hi

i,j,1,
where hi = H1(mi, PPIDi,j).

Randomize secret values: To counteract potential side channel attacks, the vehi-
cle’s secret values in the tamper-proof device should be updated. The multiplica-
tive secret sharing technique introduced by Kiltz and Pietrzak [6] is employed
to achieve the goal. Assuming that the current secret values of the tamper-proof
device are αi,j , βi,j , the device generates the new secret values as follows:
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1. Choose a random r ∈ Z∗
q .

2. Compute αi,j+1 = rαi,j and βi,j+1 = r−1βi,j .
3. Set (αi,j+1, βi,j+1) as the new secret values.

[Message Verification and Signature Storage]

Suppose that a vehicle or an RSU receive n message-signature pairs {(m1,
σ1), · · · , (mn, σn)} from n vehicles with public pseudo identities {PPID1,j1 ,
..., PPIDn,jn}, respectively. The verifier computes the aggregate signature Ω =∏n

i=1 σi. To verify the aggregate signature Ω, the verifier performs the following
steps:

1. For 1 ≤ i ≤ n, compute hi = H1(mi, PPIDi,ji), pidi,ji,0 = H0(PPIDi,ji , 0),
pidi,ji,1 = H0(PPIDi,ji , 1).

2. Output 1 if ê(Ω, g2) = ê(
∏n

i=1 pidi,ji,0pidhi

i,ji,1
, y). Else output 0.

After verifying the aggregate signature, a vehicle or an RSU may store

(m1||...||mn; PPID1,j1 ||...||PPIDn,jn ; Ω)

in its local database. One may notice that the last field is of constant size, (the
length of one group element, which is argued to be 21 bytes in Section 5.2).

[Trace]
If a message has passed the verification procedure but is found false, TA should
be able to trace the real identity of the message originator. Assume the false
message is m and the corresponding public pseudo-identity is PPIDV?,? . To
recover the real identity corresponding to PPIDV?,? , TA extracts the times-
tamp τ from m. According to τ , TA may know the valid period of the internal
pseudo-identity of the message sender. To find who is the real sender, TA tests
Hλi

2 (HΛ
2 (IDVi ||V Pi), τ) ?= PPIDV?,? , where (IDVi , V Pi, λi) is on the member

list ML. If the equation holds, TA outputs IDVi .

5 Evaluation

5.1 Security and Privacy

It is easy to see that our protocol satisfies the global security requirement of
Section 2.2, by noting that: i) the employed IDAOTS scheme is shown to be
secure; ii) the real identity of a vehicle can be traced as in the Trace stage. Below
we analyze whether our protocol satisfies the individual privacy requirement.
In our protocol, the only information that can be used by an eavesdropper to
trace a vehicle is the public pseudo-identities. However, it is hard for anyone
(except TA and the vehicle itself) to know the vehicle’s internal pseudo-identity
IPID: computing IPID implies finding the inverse of PPID (i.e., the keyed hash
output), which is impossible since the keyed hash is one-way. Furthermore, since
the keyed hash outputs are computationally indistinguishable, that is, it is hard
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for an attacker to determine whether two different public pseudo-identities (i.e.,
two outputs of the keyed hash) are computed from the inputs of the same internal
pseudo-identity, different time stamps and a secret key or the inputs of different
internal pseudo-identities, different time stamps and a secret key. This implies
that our protocol is unlinkable in the sense that an attacker cannot know whether
two pseudonyms are linked with the same vehicle or not. Therefore, the privacy
goal is achieved.

It is also worth noticing that our protocol is resistant to side-channel attacks.
In our protocol, there are two kinds of secrets stored in the tamper-proof device.
The first one is (IPIDVi , λi) which is related to a vehicle Vi’s privacy. If Vi does
not renew (IPIDVi , λi), it may leave the opportunity to an attacker to recover
this secret, so that the attacker can trace Vi. However, one may notice that, in
practice, the attacker can only launch a side-channel attack occasionally. There-
fore, in most cases, before the attacker collects enough side-channel information
to recover the current secret (IPIDVi , λi), the vehicle has already updated it,
noting that APPA suggests a vehicle to renew (IPIDVi , λi) periodically. Further-
more, in the worst case, even if the attacker recovers (IPIDVi , λi), the attacker
can only track the vehicle for a short period of time, i.e., before (IPIDVi , λi)
is renewed. The second kind of secrets are the secret values (αi,j , βi,j). In our
protocol, these secret values are used once and then a random value is chosen
to blind them (the multiplicative secret sharing technique). This technique is
introduced by Kiltz and Pietrzak [6], and, can be used to convert a scheme to
be leakage resilient one. With this technique, the attacker cannot collect enough
information about these secret values. Because the precondition of side-channel
attacks is that the same secret value be involved in a large number of cryp-
tographic operations so that enough side-channel information about the secret
value can be collected to perform a statistical analysis.

5.2 Transmission and Storage Overhead

Table 1 compares the transmission and storage overhead incurred by the security
and privacy mechanisms with up-to-date protocols in the literature. For fairness,
we consider protocols which, as our APPA protocol, do not require pre-storing
a large number of anonymous certificates/pseudo identities.

According to [2], the length of a point in group G1 is 171 bits (about 21
bytes). In addition, the length of an identity is 20 bytes. For our protocol, it is
easy to see that the length of a signature and an IPID is about 21 + 20 bytes.
However, the signatures in our protocol can be aggregated into a single point
in G1. Hence, the length of the aggregate signature will not increase with the
number of messages received and the total overhead is 21 + 20n bytes. This
length is about 1/2 of that in [25]. Furthermore, the transmission and storage
overhead of our protocol is much lower than that in [12] and [27].

5.3 Impact of Signature Verification on Response Time

Table 2 compares the computational overhead of signature verification with the
same protocols considered in Table 1. It is sufficient to only consider the most
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Table 1. Comparison of protocols in terms of Transmission and Storage Overhead

Send/Store a single message Store n messages

Protocol 1 [12]‡ 192 bytes 192n bytes

Protocol 2 [25]† 21 + 41 bytes 21 + 41n bytes

Protocol 3 [27]‡ 368 bytes 368n bytes

Our Protocol† 21 + 20 bytes 21 + 20n bytes

†: Identity-based signature based
‡: Group signature based

Table 2. Comparison of protocols in terms of Computational Overhead

Verify a single signature Verify n signatures

Protocol 1 [12] 5τbp + 12τpe 5nτbp + 12nτpe

Protocol 2 [25] 3τbp + τpe + τmh 3τbp + nτpe + nτmh

Protocol 3 [27] 2τbp + 14τpe 2τbp + 14n
4.8

τpe

Our Protocol 2τbp + τpe + 2τmh 2τbp + nτpe + 2nτmh

costly operations, i.e., pairing, point exponentiation and map-to-point hash (e.g.,
H0(·)) operations.

The processing time for one bilinear pairing operation is about τbp = 1.87
ms, the time for one point exponentiation operation is about τpe = 0.49 ms
and the computational cost of one map-to-point hash is about 0.22 ms [9,10].
In Figure 2, one may notice that the signature verification cost in our protocol
is much more efficient than that in [12] and slightly more efficient than that in
[27]. Further, when the number of signatures to be verified is small, our protocol
is more efficient than that in [25]. When the number of signatures to be verified
grows, our protocol has comparable efficiency with that in [25]. However, the
signature length in our protocol is about 1/2 of that in [25]. Furthermore, unlike
the protocol in [25], our protocol is resistant to side-channel attacks.

5.4 Tracing Efficiency

As shown in Section 4, to find the real identity of a message sender, TA tests

Hλi
2 (HΛ

2 (IDVi ||V Pi), τ) ?= PPIDV?,? ,

where (IDVi , V Pi, λi) is on the list ML. If the equation holds, TA outputs IDVi .
The cost of recovering the real identity of a sender may seem very high, because
there may be millions of tuples in ML. However, we notice that TA does not
need to test all the tuples on ML. Instead, TA only needs to test the tuples that
contain VPs that match τ . Therefore, for a VANET with 1 million vehicles, TA
only needs to test 0.5 million times in average. We use the popular keyed SHA-
1 to estimate the tracing efficiency of our protocol. It only takes 0.001 ms on
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average for TA to perform a SHA-1 hash operation [19]. Therefore, for a VANET
with 1 million vehicles, our protocol only needs about one second to find the real
identity of the message originator.

6 Conclusion

In this paper, we proposed the APPA protocol to secure VANETs. The proto-
col allows aggregate privacy-preserving authenticated vehicular communications.
The protocol guarantees trustworthiness of vehicle-generated messages and pri-
vacy of vehicles. With APPA, vehicles can react to received messages within a
very short delay. The digital signatures for the authentication purpose are se-
curely and substantially compressed. The APPA protocol does not heavily rely
on roadside units, which implies that the protocol can work even if the VANET
infrastructure is incomplete. These features seem desirable and allow our proto-
col to be deployed in various secure VANET scenarios.
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APPA: Aggregate Privacy-Preserving Authentication 307

researcher by the Catalan Government. The views of the author with the UN-
ESCO Chair in Data Privacy do not necessarily reflect the position of UNESCO
nor commit that organization.

References

1. Dedicated Short Range Communications (DRSC) home,
http://www.leearmstrong.com/Dsrc/DSRCHomeset.htm

2. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

3. Calandriello, G., Papadimitratos, P., Hubaux, J.-P., Lioy, A.: Efficient and robust
pseudonymous authentication in vanet. In: ACM VANET 2007, pp. 19–28. ACM
Press, New York (2007)

4. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)
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Abstract. In this paper we analyze a class of location disclosure in
which location information from individuals is generated in an auto-
mated way, i.e. is observed by a ubiquitous infrastructure. Since such
information is valuable for both scientific research and commercial use,
location information might be passed on to third parties. Users are usu-
ally aware neither of the extent of the information disclosure (e.g. by
carrying a mobile phone), nor how the collected data is used and by
whom.

In order to assess the expected privacy risk in terms of the possible
extent of exposure, we propose an adversary model and a privacy met-
ric that allow an evaluation of the possible privacy loss by using mobile
communication infrastructure. Furthermore, a case study on the privacy
effects of using GSM infrastructure was conducted with the goal of ana-
lyzing the side effects of using a mobile handset. Based on these results
requirements for a privacy-aware mobile handheld device were derived.

1 Introduction

Mobile communication systems as well as location-based services are now both
well established and well accepted by users. The combination of location de-
termination, powerful mobile devices (so-called Smartphones) and ubiquitous
network communication options provide a lot of useful new applications but also
bring new challenges to the users’ privacy especially when it comes to location
disclosure.

There are various occasions and motives for location disclosure. In general, one
can classify location disclosure types into two different categories based on trust
relationship between involved communication peers (cf. Fig. 1). A very common
situation today is when users exchange their whereabouts with location-based
service providers for tailored and context-sensitive information. Exchanging po-
sition information within groups through social network services (SNS) is also
gaining in popularity. These services usually involve informed users who are
aware that they are disclosing their location data. Service providers as well as
social peers are considered as partially trusted, at least for the specific commu-
nication context, as communication is voluntary and communication peers are
known.
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User Mobility Profiles
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infrastructure
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Location Processing
and
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Fig. 1. Transfer of location information from (partially-)trusted peers to untrusted
peers

Nowadays there is typically mobile communication involved. The communi-
cation infrastructure is usually also considered as partly trusted, i.e., there is a
service agreement between the user and provider. Due to the specific nature of
mobile communication networks, the location of mobile subscribers is known to
the underlying infrastructure.

Hence, there is a second class of location disclosure, where location information
from individuals is generated automatically or is observed by the infrastructure.
Such information is valuable for scientific research [1] but also for commercial
use (e.g. traffic monitoring 1 or location-aware advertising [2]). Therefore, loca-
tion information might be passed on to third parties in an anonymized and/ or
aggregated way. In this case users are usually aware neither of the extent of their
information disclosure (e.g. by carrying a mobile phone), nor how the collected
data is used and by whom.

A lot of research has been done (e.g. [3]) on protecting a user’s anonymity.
However, when using mobile infrastructure users face two difficulties. First, due
to regulations, the quality of service, but also technical conditions, location pri-
vacy protection measures like anonymity and obfuscation techniques seem inad-
equate or difficult to employ. Second, users suffer from limited and asymmetric
knowledge. They have no knowledge on the nature, accuracy and amount of lo-
cation data they have generated by using mobile communication infrastructure
so far. As well, they cannot make a judgment about the level and quality of
anonymization if the location data is exploited for various services. Since the
data might be de-anonymized (e.g. [4]) or, even worse, if raw data leaks for
whatever reason, users bear a latent privacy risk.

Thus, disclosing location data always conflicts with the user’s privacy, since
position information or movement history might lead to the user’s identity. Col-
1 For instance A1 Traffic (http://www.a1.net/business/a1traffictechnologie

[12/1/2010]) or Vodafone HD Traffic (http://www.vodafone.de/business/
firmenkunden/verkehrsinfo-hd-traffic.html [5/1/2011]).

http://www.a1.net/business/a1traffictechnologie
http://www.vodafone.de/business/
firmenkunden/verkehrsinfo-hd-traffic.html


Assessing Location Privacy in Mobile Communication Networks 311

lected location data can become a quasi-identifier, similar to a fingerprint [5].
Hence, by using external knowledge the identity of a specific user can be deter-
mined (e.g. [6]). Furthermore, through observing and evaluating a user’s move-
ments, his preferences and other possible sensitive information might be revealed.
Such sensitive location-related data contains places a user visits frequently or at
certain times and thus has special interest in. With the location data of other
individuals his social relations become visible.

In order to assess the expected privacy risk in terms of the possible extent
of exposure, first an adversary model has to be defined. Based on this model a
simple privacy metric is proposed in order to assess the privacy loss in mobile
communication networks and provide the groundwork for developing require-
ments for a privacy-aware communication device. As an example, we analyzed
the impact on the user’s privacy of different network configurations found at four
GSM telephony infrastructure providers.

2 Related Work

Recent analysis of mobile phone call data records (CDR) showed that even spo-
radic anonymous location data with coarse spatial resolution contain sensitive
information and could lead to possible identification. Humans tend to move in
very regular patterns. A study using six months of call data records showed that
humans stay more than 40% of the time at the same two places [1,7]. In another
study on anonymized aggregated call data records, the movement patterns of
commuters in two cities were compared [8]. Similar studies were conducted on
tourist movement patterns in New York and Rome [9,10].

Sohn et al. analyzed GSM data to determine a user’s movement mode based
on radio signal fingerprints. The authors were able to distinguish between walk-
ing, driving and stationary profiles with a success rate of about 85% [11]. De
Mulder et al. conducted a study on the possibilities of re-identification of indi-
vidual mobile phone subscribers based on available cell data. In their study they
evaluated a Markovian model and a model based on the sequence of cell-IDs.
They report a success rate of about 80% for the latter method [12].

From the aforementioned studies one could conclude that using a mobile com-
munication network (e.g. GSM) is a threat to a user’s privacy. However, from a
user’s perspective the question remains how much knowledge a network provider
has on his movement patterns and which of the available networks pose the least
threat for his privacy. Lee et al. dealt with location privacy in GSM networks only
on the protocol layer in the relation between mobile station, VLR and HLR. How-
ever, location data as a possible quasi-identifier was not discussed [13]. Ardagna
et al. introduce a scenario with a semi-trusted (mobile) network provider and
propose a multi-path communication approach to achieve k-anonymity for the
initiating sender of a message [14]. Their approach relies on a hybrid network in-
frastructure where subscribers are able to form ad-hoc networks. However, such
an approach protects only the relation between sender and final recipient (e.g.
LBS-provider).
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In order to evaluate a privacy metric an adversary model is required. A popular
model is an adversary that observes in some way generalized location data and
tries to reconstruct this data to connected traces of a single individual. In a
second step the adversary may re-identify the traced individual through his
workplace or home by incorporating external knowledge (e.g. [15]) For instance,
Shorki et al. defined a location privacy metric that measures the (in)ability of
an adversary to accurately track a mobile user over space and time [16].

A different method for measuring location privacy is to make use of the uncer-
tainty of an adversary in order to assign a new observation to a trace of a specific
individual, e.g. by assigning probabilities to movement patterns and thus compen-
sating changed pseudonyms [17]. A similar measurement was proposed as time-
to-confusion metric, the tracking time of an individual until the adversary cannot
determine the next position with sufficient certainty [15]. The (un)certainty mea-
sure is based on the entropy of the observed position and the probability of the
expected or calculated next location. Sending a variety of locations for each query
also increases the ambiguity and thus the level of privacy [18].

However, in most mobile communication relations the anonymity assumption
seems inadequate. Furthermore, the aforementioned privacy metrics usually re-
quire full insight into the set of all users to determine the level of privacy for a
single user within this set.

3 Location Privacy in Mobile Telephony Networks

When using mobile communication, location data is generated, accumulated and
stored, as a technical and possibly legal2 necessity. As an example we discuss the
GSM infrastructure, because it is widely deployed and recently software and anal-
ysis tools have become available 3,4. Its successors UMTS (3G) and LTE (4G) still
share most of its principal characteristics. The goal is to uncover hidden privacy
risks posed by the network’s background communication and the effects of differ-
ent network configurations on the user’s privacy. In contrast to active usage (e.g.
phone calls, texting), location data is not always provided voluntarily.

A typical GSM network is structured into cells, served by a single base sta-
tion (BTS) and larger cell-compounds called location area (LA). In idle state no
dedicated channel is assigned to the mobile station (MS). It only listens to the
common control channel (CCCH) and to the broadcast control channel (BCCH)
[19,20] and is otherwise in standby mode to save energy. Through System Infor-
mation Messages on the BCCH the MS receives periodically a list of neighboring
cells from the serving BTS and performs signal strength measurements on these
base stations. This way the MS can always select the BTS with good received
2 For instance EU Directive 2006/24/EC (Data retention),
http://eur-lex.europa.eu/LexUriServ/

LexUriServ.do?uri=CELEX:32006L0024:en:NOT, [5/21/2011]
3 Open Source GSM Baseband implementation, http://bb.osmocom.org [05/19/2011]
4 Open Base Station Controller OpenBSC, http://openbsc.osmocom.org

[05/19/2011]

http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=CELEX:32006L0024:en:NOT
http://bb.osmocom.org
http://openbsc.osmocom.org
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signal strength in order to maintain network attachment. To establish a connec-
tion to the MS in case of an incoming connection, the network has to know if
the MS is still connected to the network and in which LA the MS is currently
located. To accomplish that, the location update procedure was introduced. Ei-
ther periodically or when changing the LA, a location update (LU) procedure
is performed. Within this procedure the phone starts an active communication
with the network infrastructure, sending a so-called measurement report to the
base station. This report consists of the received signal strength of up to six of
the strongest neighboring cells and the received signal strength of the serving
base station. The range between the periodic location updates may vary among
the infrastructure providers.

3.1 Locating Mobile Phones

Due to regulatory requirements 5 but also driven by commercial opportunities
locating mobile phones gained the attention of research and industry. There is a
variety of possibilities for determining a mobile station’s location from the view
point of the infrastructure, e.g., by Cell Origin with timing advance (TA) and
Uplink Time Difference of Arrival (U-TDOA) for GSM [21] 6. While the latter
method requires sophisticated network infrastructure, Cell Origin and TA are
available in any network setup. However, all these methods work without special
requirements for the mobile station and achieve a positioning accuracy of up to
50m in urban areas (TDOA) [23].

Another (nonstandard) method to determine a MS’s location makes use of
measurement results. Usually based on databases built from signal propagation
models used during the planning phase of the infrastructure, this data can be
used to create a look-up table for signal measurements to determine the MS’s
location. Based on the cell, TA and received signal strength of the serving cell
as well as the six neighboring cells, Zimmermann et al. achieved positioning
accuracy of below 80m in 67% and 200m in 95% in an urban scenario [24].
With a similar method but more generic setup, Peschke et al. report a positioning
accuracy of 124m in 67% [25]. While the mobile phone is in idle mode, network-
assisted positioning is not possible. The network either has to wait for the next
active period of the MS (e.g. phone call, location update) or has to initiate MS
activity. This can be done by transmitting a silent text message to the MS in
order to force an active communication, but without raising the user’s awareness.
The procedure is used for instance by law enforcement authorities or by location-
based services based on GSM positioning.

3.2 Privacy Threats

Providing a proper (especially technical) definition of location privacy has proven
to be a difficult task. Many different definitions were published, all covering
5 e.g. FCC Enhanced 911 Wireless Service,
http://www.fcc.gov/pshs/services/911-services/enhanced911 [5/15/2011]

6 Location determination options for UTRAN [22]

http://www.fcc.gov/pshs/services/911-services/enhanced911
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specific aspects. One abstract definition, first formulated by Westin [26] and
modified by Duckham & Kulik [27], describes location privacy as:

”[...] a special type of information privacy which concerns the claim of
individuals to determine for themselves when, how, and to what extent
location information about them is communicated to others.”

According to this definition the user should be in control of the dissemination
of his location information. Thus, the user’s privacy is threatened (according
to the aforementioned definition) because of technical necessities frequent loca-
tion information is generated and possibly stored for different reasons (e.g., for
technical network monitoring and improvement, regulation and law enforcement
requirements). The user’s mobile station collects and transmits location data
without notification or consent. Furthermore, besides using the mobile device
for active communication the user is unaware when location data is generated
and transmitted (e.g. location updates, silent text messages, etc.). Furthermore,
the user’s privacy is threatened because of monetization of available location in-
formation. Even though this data is usually aggregated or anonymized, users are
not aware of the technique used and thus bear a risk of re-identification (which
they can’t assess) (cf. [4]). Neither the final data consumer nor the intended
use of the location data is known. Finally, users are not aware of the extent
of the information they share. Usually one can assume that a single location
datum does not reveal much information to a ubiquitous observer. In contrast
to trusted communication peers such generic observers do not have appropriate
background knowledge on a single individual and thus have difficulties deriving
the user’s real life context or current activity, especially for service providers
with a subscriber base. However, by the accumulation of location observations
knowledge about a user can be easily created. In order to improve the privacy
situation in mobile communication networks, any location disclosure has to be
made transparent and a privacy metric is required in order to evaluate the extent
of location disclosures.

3.3 Adversary Model

In order to measure the extent of location disclosure in mobile communication
networks and to assess the effects on the user’s privacy the adversary has to be
modeled. From a user’s perspective, there is no assured knowledge on the capa-
bilities of the observing / listening adversary, especially how disclosed or observed
location data is used and what kind of conclusion the adversary is able to make
based on the information gained. In general, the user’s knowledge is limited to
common knowledge about the technical and architectural characteristics of the
mobile communication technology he or she uses (e.g. communication infrastruc-
ture service, etc.) as well as to a general estimation of the location determination
abilities, limited by technical or physical factors. Furthermore, the user is able
to monitor her own usage patterns by logging her exposure to the network, and
has knowledge about the surrounding landscape, i.e., map knowledge.
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Hence, the adversary model is limited to information an adversary may have
gained during a defined observation period. We assume that an adversary A has a
memory O = {o1, . . . , om} of observations on the user’s movement history based
on time-stamped location observations ot = (c, ε)t ∈ O, which are tuples of a
geographic coordinate c ∈ C and a spatiotemporal error estimate ε ∈ E of this
coordinate. The index t is a timestamp describing when the location observation
was made, with om being the latest observation. The function loc : O → C

extracts the location information from the tuple and err : O → E returns the
error estimate.

In our scenario we assume that the adversary’s utility (denoted as UA) is
negatively correlated with the user’s privacy level in a communication relation
with adversary A denoted as PA ∈ [0,−∞), with PA = 0 as the maximal
achievable privacy level:

UA(O) � −PA(O). (1)

For instance if the user does not disclose any location information, her privacy is
maximal but also the adversary’s utility is zero. Henceforward, there is a utility
gain if the adversary extends his knowledge either on the user’s preferences or on
his (periodic) behavior. This utility gain might be due to technical reasons (e.g.
efficient network planning) or to the reuse of the data for commercial purposes.
We can also assume that the adversary’s utility is not decreased through any
location data as long as the data is accurate, i.e., the user is not lying. Accord-
ingly, UA(O′) ≥ UA(O), with O′ := O ∪ o′, iff. o′ reveals previously unknown
information to the adversary A. Hence the user’s privacy w.r.t. adversary A can
only decrease by disclosing additional information: PA(O′) ≤ PA(O).

Furthermore, the adversary’s utility as well as the user’s privacy depends on
the nature and magnitude of the error estimate ε. First, with more accurate
information possibly more information might be disclosed and thus, err(o′) <
err(o) ⇒ UA(o′) ≥ UA(o) whereas the actual information gain is dependent, e.g.,
on landscape characteristics or additional knowledge on the user’s context. Sec-
ond, depending on the adversary and the kind of observation, the error value ε for
a given location sample is evaluated differently. If the adversary determines the
location by direct observation (oadv), e.g., through WiFi/GSM/3G infrastruc-
ture, the adversary knows the size and distribution of the expected spatial error
for the observed location sample. Furthermore, the temporal error component
can be ignored. In contrast, if location information is given by the user (ousr), the
adversary has no information about the quality and thus the magnitude of the
error ε of the observed sample. The user might have altered the spatial and/or
temporal accuracy of the location information before submission. In general we
can assume that err(oadv) ≤ err(ousr) and therefore UA(oadv) ≥ UA(ousr), since
a robust error estimation reduces the adversary’s uncertainty and thus increases
the potential information gain. But more importantly the adversary chooses time
and frequency of location observations.
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3.4 Determining an Adversary’s Knowledge Level

In order to reflect the duration, density, and quality of observation, a model
of all past disclosures (i.e. history or knowledge (K)) w.r.t. a given adversary
is required. The user’s privacy is threatened by the discovery of his regular
behavior and preferences (i.e. movement pattern). Since a user cannot change
the knowledge an adversary already has, the user may evaluate the level of
completeness of an adversary’s information and the information gain or privacy
loss involved in disclosing a further location sample.

Based on the adversary’s utility function, we require that the knowledge gain
ΔKA(O, o′) = KA(O, o′)−KA(O \ {om}, om) ≥ 0 for any o′. If no new informa-
tion is released, ΔKA = 0, and thus no privacy loss is experienced by the user.
For a user it is important to know what extra information the disclosure of a
single location sample o′ gives to each listening or observing adversary A w.r.t.
his history.

In a study on movement patterns of mobile phone users, Gonzalez et al. found
a characteristic strong tendency of humans to return to places they visited before.
Furthermore, the probability of returning to a location depends on the number
of location samples for that location. A rough estimation can be denoted as
Pr(lk) ∼ k−1 where k is the rank of the location l based on the number of
observations [1]. In a similar study it was shown that the range in the number of
significant places is limited (≈ 8-15). At these places a user spends about 85%
of the time. However, there is a long tail area with several hundred places which
were visited less than 1% but covered about 15% of the user’s total observation
time [7]. For the proposed privacy model we concentrate on the top L popular
places (with L being in the range of about 8-15), as these places are likely to be
revisited and therefore are considered as significant places in a user’s routine.

If we assume that the attacker’s a-priori knowledge on the observed location
sample o′ is limited to the generic probability distribution describing human
mobility patterns and the accumulated knowledge so far, then we can model
the adversary’s knowledge as the uncertainty assigning the observed location
information to a top L place. Entropy can be used to express the uncertainty of
the adversary and therefore the user’s privacy. Using entropy to quantify privacy
was already used in different settings (e.g [28]). In the following we consider a
location l ∈ C∗ to be an arbitrarily shaped area in C and denote the spatial
inclusion of a precise coordinate c ∈ C in the area l by writing c ∼= l. To
comply with the characteristics of human mobility patterns as described above,
we define the probability of an observed location sample o′ belonging to one of
the top L locations (li, i ∈ {1, . . . , L}) as pli := Pr(loc(o′) ∼= li) = τ

i where
τ ∈ (0, 1] is chosen in a way such that

( ∑L
i=1 pli

)
+ γ = 1 with γ ∈ [0, 1)

representing the summed probability of o′ belonging to one of the many seldom
visited places in the long tail distribution observed by Bayir et al. [7]. Assuming
that the adversary A has already discovered the top k locations of the user (by
making use of the previously observed user locations in O), we make a distinction
between two cases: (A) o′ belongs to a frequently visited location already known
to the adversary (∃i ∈ {1, . . . , k} : loc(o′) ∼= li), or (B) the adversary is not able
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to unambiguously connect the location observation to an already detected top
L location.

In case (A) no information about new frequently visited places is revealed
(which we denote by K

L(A)
A (O, o′) = 0). For case (B) we measure privacy as

the uncertainty (i.e. entropy) of assigning o′ to one of the remaining unknown
top L locations. We denote with psk :=

∑k
i=1 pli the summed probability for

the k top locations known to the adversary and accordingly psu :=
∑L

i=k+1 pli

the summed probability for the unknown top locations. Given that o′ does not
belong to one of the k known places, the probability for the remaining places
lk+1 . . . lL changes to pk

li
= pli · (1 + psk

psu
), which yields the following entropy

calculation:

K
L(B)
A (O, o′) = −(

L∑
i=k+1

pk
li log pk

li) − γ log γ, (2)

where γ denotes the summed probability of location samples which do not belong
to the top L locations. The overall uncertainty level of the adversary is the
weighted sum of the two cases (A) and (B) described above:

KL
A(O, o′) = p(A) · KL(A)

A (O, o′) + p(B) · KL(B)
A (O, o′), (3)

where p(A) = psk is the probability of case (A) and p(B) = 1−p(A) the probability
of case (B). By merging the equations of the two cases, the overall uncertainty
of an adversary in assigning o′ to a yet unknown top location can be expressed
as:

KL
A(O, o′) = (1 − psk) ·

(
−(

L∑
i=k+1

pk
li log pk

li) − γ log γ

)
. (4)

Until now, we assumed a simple binary decision as to whether a location sam-
ple belongs to a regular visited place (i.e. cluster) or not, hence ε � 0 and a
function CO(l) = |{o ∈ O | loc(o) ∼= l}| counting the number of times a user was
observed at a given location l ∈ C∗ (cf. section 3.4 above), making it possible to
rank the places by their popularity (l1, l2, . . . where CO(li) ≥ CO(li+1) – which
means that l1 is the most frequently visited location). Location information ob-
served by mobile communication infrastructure is error prone. Depending on the
communication infrastructure used, users can make assumptions on the physical
limitations of the involved technology and thus can estimate a best case value for
ε. In order to model the adversary’s uncertainty we introduce pc as the probabil-
ity of function CE assigning o′ correctly to a location l ∈ C

∗, taking ε = err(o′)
into account (and pc := 1 − pc). As the precise definition of pc depends on the
implementation of CE we only assume a correlation between the error and this
probability: pc ∼ ε−1.

However, modeling the adversary’s uncertainty based on ε is in practice both
difficult and possibly harmful to the user, since the adversary’s capabilities might
be underestimated, which may result in a higher and misleading privacy level.
Hence, in order to get a robust reflection on a user’s frequently visited places,
using a clustering approach leads to an efficient but also abstract representation



318 K. Rechert et al.

of the user’s regular behavior. Several studies (e.g. [15,29]) demonstrate that
clustering is an effective tool for identification of a user’s significant places.

Thus, instead of modeling the uncertainty of an adversary in assigning an
observation to a certain location li, the spatial size of a possible location cluster is
increased by the estimated spatial error. Thus, the adversary’s uncertainty can be
translated into the problem of choosing a single location out of all possible (and
plausible) locations within the clustered spatial area. This uncertainty can be
calculated using map data. Fig. 2 shows the resulting clusters for GPS data (left)
and GSM data (right) from a 17-day trace with hourly location observations
(GSM) and an estimated error of 250m (GSM).

(a) (b)

Fig. 2. Clusters generated by a 17-day GPS trace (a) and (b) 17 days of hourly location
updates (GSM) with an estimated spatial error of 250 m. The radius of each cluster
denotes its significance for the user.

3.5 Determining an Adversary’s Knowledge Gain

With the uncertainty value before and after disclosure of o′, an adversary only
gains new information if a new frequently visited location is uncovered and can
be calculated as ΔKL

A(O, o′) = KL
A(O, o′) − KL

A(O \ {om}, om) where om is the
latest location observation in O (and therefore the direct predecessor of o′).

If o′ can be assigned to a known location li ∈ L, then ΔKL
A = 0, as by defi-

nition no information about new frequently visited places is revealed. However,
the weight of already determined frequently visited places may change due to
such an observation. Furthermore, people’s preferences are not static and hence
neither are their preferences as to frequently visited places. For instance, people
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change employer and/or move from time to time. Such changes in regular be-
havior disclose private information and thus compromise the user’s privacy. To
model these changes, the observation horizon can be limited and any information
older than a certain amount of time could be discarded.

To model changes in the frequency of the user’s top locations and a user’s reg-
ular behavior, we measure the change in the distribution made by a new obser-
vation. The adversary’s a-priori knowledge is the distribution of the time spent
in all known locations and hence their relative importance to the user. Thus,
an adversary gains extra knowledge if the distribution of time spent changes,
i.e., the user’s preferences change. For every detected location we assume that
the true probability q(O, o′, li) := PrO(loc(o′) ∼= li) is the relative observed
importance of location li derived from the previous observations in O (e.g.
PrO(loc(o′) ∼= li) ∼ CO(l)). We define the information gain as the difference
between the observed distribution before and after a disclosure of additional
data. One simple method for measuring the information gain is the relative en-
tropy using KL-divergence [30]

KC
A (O, o′) = −

k∑
i=1

q(O, o′, li) log
q(O, o′, li)

q((O ∪ o′), o′, li)
, (5)

where q(O, o′, li) denotes the probability of returning to li before and q((O ∪
o′), o′, li) the new probability after the new observation o′.

Finally, we express the privacy loss as

ΔKA(O, o′) = ΔKL
A(O, o′) + KC

A (O, o′). (6)

4 Case Study GSM Network

In contrast to previous work with focus on analyzing call data records, our focus
was on uncovering the side effects of using a mobile handset, since these are
currently the most personal devices we know. The mobile handset is a highly
sensitive device not only due to the huge subscriber count, but especially because
people hardly do any activity without keeping their mobile phones nearby. The
aforementioned studies showed the expressiveness of call data records. However,
we are focusing especially on location updates, since these are scheduled period-
ically and configuration among network providers differs significantly. While one
mobile telephony provider requires a client to initiate a LU every 60 minutes,
another one only requires updates every 12 hours. The remaining two telephony
providers configured their networks requiring four and six hour intervals respec-
tively. From a user’s privacy perspective, location updates are especially threat-
ening because of their regularity but also because these events happen without
the user noticing.

The information on the network infrastructure and its configuration a user
gets through the handset’s UI is usually limited to the mobile operator name,
signal strength of the serving cell and type of network connection (e.g. GSM
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or 3G). In order to analyze the user’s exposure, we developed a logger device
to record any communication between the GSM infrastructure and a mobile
phone. This device was carried by test persons; however, the phone was kept in
a passive / idle mode, i.e., no phone calls were made or received. The logger device
is based on a Nokia 3310 phone. These phones are able to provide raw network
data through a specific debug interface 7. This data can be recorded, decoded
and analyzed in a second step. To make this setup mobile, a micro controller
writing the data to an SD-Card was attached. Furthermore, a GPS device was
added to tag the network data with a time stamp and to record the user’s
movements. With this method we could not directly determine the knowledge
the network infrastructure has. However, we could record each time the user was
exposed to the infrastructure, and a network-based determination of his location
was possible or location data was generated by the network infrastructure (e.g.
measurement of the timing advance). In order to simulate the larger error of
GSM positioning, a random radial error of ε was added to the GPS position. For
our experiments we implemented a cluster algorithm based on a radius filter.
For periodic and gap-based location data (e.g. GSM) such a filter simply reflects
the frequency a user was observed at a specific place. Additionally, for GPS data
a gap filter was used. With this method we were able to detect the places a
user revisited frequently. Throughout the experiments a value of τ = 0.3 was
used, which roughly represents the results from the aforementioned studies on
human mobility patterns. Furthermore, 12 clusters were expected. We assumed
ε = 250m as the average positioning accuracy of the GSM network.

4.1 Data Analysis

The first analyzed data set was created by a test person carrying the logger de-
vice for about 17 days equipped with a SIM-card from a German provider which
requires location updates hourly. 17744 GPS points and 312 location updates
were recorded. The reason that the number of location updates is lower than
anticipated is twofold: the first and the last day were not complete, but there
were also signal losses and user operation errors like empty batteries. However,
these results should correspond with real life mobile phone usage. During that
time a total of 10 clusters could be identified through the GPS data, 8 based
on GSM data. The remaining clusters found by the GPS method were not de-
tected. This is due not only to the short evaluation period and lower spatial
resolution of the GSM positioning but also to the short length of stay at the
remaining two places (i.e. less than one hour). In a test trial with 6 hourly lo-
cation updates and an equal test period, only three clusters could be detected.
Fig. 3a shows the temporal development of the discovery of frequently visited
places using different methods and location sample frequency. Fig. 3b shows the
adversary’s knowledge on the remaining, yet uncovered, places. In a further trial
with 12-hour location update intervals, within 8 days only a single cluster could

7 GSM decoding with a Nokia 3310 phone,
https://svn.berlin.ccc.de/projects/airprobe/wiki/tracelog, [5/15/2011]

https://svn.berlin.ccc.de/projects/airprobe/wiki/tracelog
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Fig. 3. Modeling an adversary’s knowledge gain using GSM and GPS data sources. (a)
shows the temporal development of detecting frequently visited places, (b) shows the
uncertainty assigning a new observation to a yet unknown frequently visited place and
(c) shows the adversary’s knowledge gain (ΔK) by disclosing a daily data set.

be determined. One reason was the disadvantageous time points at 7:30 AM
and 7:30 PM. However, the time points were chosen by the network. For this
configuration a long term trial is pending. Due to long distance traveling, offline
phases, and time periods without reception, we expect random shifts for the
time point of location updates. Therefore, for a long term observation it seems
likely that some (2-3) additional clusters should be detected. The probability
of detecting a cluster where a user spends large amounts of time is more likely
and thus is likely to be uncovered first. The privacy measurement also implicitly
captures the distribution of the observed location samples. If the distribution of
location samples is concentrated within certain time spans, fewer clusters will
be discovered. The same applies for evenly distributed but sparse samples (e.g.
every 12 hours).

4.2 Privacy Improvements

Based on the aforementioned analysis, several enhancements could improve the
user’s privacy in mobile communication networks. First, one can observe that a
simple quantitative privacy policy as offered by network providers, stating only
the length of possible data storage is neither meaningful nor helpful for a sub-
scriber w.r.t. location privacy. Especially the density of periodic location samples
makes a significant difference as to the provider’s possible knowledge base and
thus the user’s present and future privacy risks. Therefore, subscribers also need
to know when, how and to what extent location information is generated. With
such knowledge the user’s awareness as to his privacy loss is raised. In a sec-
ond step the user should be able to control location dissemination by making
informed decisions.

A privacy aware mobile phone requires software interfaces to the mobile phone
stack controlling and exposing signaling attempts (e.g. detecting silent text mes-
sages), measurement reports and the occurrence of location updates. With the
help of osmoconbb GSM baseband implementations, first steps toward a privacy
aware phone were made. The mobile station is able to log location data and
expose it to the user, which is sent to the service provider The measurement
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results sent by the MS during location updates include signal strength mea-
surements from surrounding BTS. The measurement information is used for the
handover decision during the connection. Since a LU requires only a very brief
communication with the network, a handover between different cells is very un-
likely or even impossible. Thus, sending measurements of neighboring stations
is technically not always required. If the number of transmitted measurements
is reduced or completely omitted, the accuracy of the network’s position estima-
tion is significantly decreased. In the best case (no measurements transmitted),
the accuracy is decreased to cell origin with timing advance. A further step to
decrease the accuracy of the position determination is transmitting modified or
false measurement information. To decrease the accuracy of the position estima-
tion further, a MS could send with a slight timing offset. Such offsets have direct
impact on the timing advance calculation of the BTS. Consequently, this leads
to an incorrect distance estimation between MS and BTS. The combination of
manipulating measurement results and timing advance gives the possibility to
conceal the actual position of the MS. The rough position of the MS is still given
by the BTS used and its covered area.

5 Conclusion

We fully acknowledge that the evaluation is based on too little data to be statis-
tically significant. However, the data clearly indicates that network configuration
has an impact on the user’s location privacy. Furthermore, the proposed metric
gives the user a tool to understand the impact of mobile communication on his
privacy without knowing the adversary’s capabilities or behavior.

In contrast to other personal digital devices, mobile phones are hardly ever
switched off, thus offering unique options for (unobserved) user tracking. The
disclosure or detection of any significant place decreases the user’s privacy by
roughly the same level, independent of the relative importance or rank of the
place. The proposed user model and accordingly the privacy metric showed that
the user’s privacy loss is roughly the same for all detected clusters. Especially
for a setting with semi-trusted adversaries, this result reflects the (commercial)
importance of lower ranked clusters w.r.t. the completeness of a user’s profile.
Since lower ranked clusters are harder to detect, the ability to uncover such a
place reflects the density and/or the length of observation by an adversary and
thus on the user’s exposure. Therefore, network configuration is crucial for the
individual’s privacy. In our tests we saw time ranges for location updates range
from 60 minutes to 12 hours with different results for detecting frequently visited
places. These different network configurations have a significant impact on the
user’s location privacy especially if privacy policies only specify the duration
of data storage. Finally, countermeasures to improve the user’s privacy were
proposed. The evaluation of the effectiveness of the proposed actions remains
for future work.
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Abstract. Differential privacy is a recent notion, and while it is nice
conceptually it has been difficult to apply in practice. The parameters of
differential privacy have an intuitive theoretical interpretation, but the
implications and impacts on the risk of disclosure in practice have not yet
been studied, and choosing appropriate values for them is non-trivial. Al-
though the privacy parameter ε in differential privacy is used to quantify
the privacy risk posed by releasing statistics computed on sensitive data,
ε is not an absolute measure of privacy but rather a relative measure. In
effect, even for the same value of ε, the privacy guarantees enforced by
differential privacy are different based on the domain of attribute in ques-
tion and the query supported. We consider the probability of identifying
any particular individual as being in the database, and demonstrate the
challenge of setting the proper value of ε given the goal of protecting
individuals in the database with some fixed probability.

Keywords: Differential Privacy, Privacy Parameter, ε.

1 Introduction

As volumes of personal data collected by many organizations increase, the prob-
lem of preserving privacy is increasingly important. The potential social benefits
of analyzing such datasets drive many organizations to be interested in releas-
ing statistical information about the data. In the field of privacy preserving
data analysis, the main goal is to release statistical information about sample
databases safely without compromising the privacy of any individuals who’s
records contribute to the database. These two conflicting objectives pose chal-
lenging trade-off between providing useful information about the population and
protecting the privacy of any individuals.

Privacy laws typically protect individually identifiable data; data that cannot
be linked to an individual is not considered a privacy risk. Unfortunately, what
it means for data to be individually identifiable is not simple to define. Statis-
tical summaries can reveal information about a single individual, particularly if
an adversary knows information about other individuals. Differential Privacy [6]
provides a strong guarantee of privacy even when the adversary has arbitrary
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external knowledge. Basically, differential privacy hides the presence of an indi-
vidual in the database from data users by making two output distributions, one
with and the other without an individual, be computationally indistinguishable
(for all individuals). To achieve this, differential privacy uses an output pertur-
bation technique which adds random noise to the outputs. The magnitude of
noise to add, which determines the degree of privacy, depends on the type of
computation and it must be large enough to conceal the largest contribution
that can be made to the output by one single individual. To be specific, let X be
a database to release statistics about and f be a query function. ε-differentially
private mechanism gives perturbed response f(X)+Y instead of the true answer
f(X), where Y is the random noise.

While this seems a perfect solution, the amount of noise needed to achieve
indistinguishability between two datasets generally eliminates any useful infor-
mation. The actual definition is for ε-differential privacy (see Definition 1), where
the ε factor is a difference between the probabilities of receiving the same out-
come on two different databases. ε becomes a parameter on the degree of privacy
provided. ε is a relative measure since it bounds the data user’s information gain,
instead of the absolute amount. Even for the same value of ε, the probability of
identifying an individual enforced by differential privacy is different depending
on the universe.

Unfortunately, ε does not easily relate to practically relevant measures of
privacy. For example, assume a very simple problem where an adversary wants
to determine the value of a binary attribute about an individual - simply “is the
individual in the dataset” (such as a research dataset for diabetes, where simply
revealing presence in the dataset places an individual at risk of discrimination.)
What we would really like is a measure of the risk to an individual – what is
the probability that an individual is in the dataset given release of statistical
information about the data? If disclosure allows an adversary to calculate too
high a probability that the individual is in the dataset, then that individual’s
privacy (in legal terms, which typically protect “individually identifiable data”)
is at risk. This is addressed for anonymization in [14], and the problem would
seem a perfect match for differentially privacy. The challenge is that choosing
an appropriate value of ε turns out to be quite challenging.

The problem is that protecting privacy requires knowing not only the data to
be protected, but also the entire universe of individuals from which that data
might be drawn. This is a known challenge with differential privacy, as calculat-
ing the sensitivity of a query is based on all possible databases differing by a single
value. This may be an inherent problem with protecting privacy; δ-presence [14]
faces the same issue (although an approximation based on univariate statistics
is given in [13].) What makes this a particular problem for differential privacy
is that not only do we need to know the entire universe to use a differentially
private mechanism, it is also needed to determine an appropriate value of ε. In
this paper, we will show that given a goal of controlling probabilistic disclosure
of the presence of an individual, the proper of ε varies depending on individual
values, even for individuals not in the dataset.
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To see this, imagine the following (hypothetical) scenario. Purdue University
has put together a “short list” of alumni as possible commencement speakers.
A local newspaper is writing a story on the value Indiana taxpayers get from
Purdue, and would like to know if these distinguished alumni are locals or world
travelers. Purdue does not want to reveal the list (to avoid embarrassing those
that are not selected, for example), but is willing to reveal the average distance
people on the list have traveled from Purdue in their lifetimes. Using a differ-
entially private mechanism to add noise to the resulting average will protect
individuals - but how much noise is needed? Outliers in the data, such as Pur-
due’s Apollo astronaut alumni (who have been nearly 400,000km from campus),
result in a requirement for a significant amount of noise. More critically, we show
that such outliers also change the appropriate value for ε. As a result, simply
setting parameters to be used for differential privacy is an unsolved problem.

Although differential privacy has been extensively studied in many papers,
to our best knowledge, no studies have been conducted toward the issues on
the application of differential privacy in practice. In many papers, the value of
privacy parameter ε is chosen arbitrarily or assumed to be given. This leaves
an impression that ε can be freely chosen as needed but, in reality, decision on
the value of ε should be made carefully with considerations of the domain and
the acceptable ranges of risk of disclosure. In this paper, we illustrate why the
choice of ε is important using the perspective of the risk of revealing presence
and how an inappropriate value of ε can cause a privacy breach. We also show
that a value of ε that is appropriate for a particular universe of values may lead
to a breach with a different set of values.

2 Related Work

The concept of differential privacy was motivated by the impossibility of abso-
lute protection [4] against adversaries with arbitrary external information [5]. In
a differentially private mechanism, what a potential adversary can learn from
interactions with the mechanism is limited (within a multiplicative factor) no
matter what external information the adversary has. Essentially, what can be
learned from a dataset with a particular individual also can be learned from a
dataset without that individual [9, 11]. This definition enables a privacy model
that does not need to make assumptions on an adversary’s external informa-
tion, a key limitation of prior work on protecting privacy. A line of research on
indistinguishability between two neighboring databases leads to emergence of
differential privacy. [2, 9, 10]

The notion of differential privacy has received much theoretical attention in
the privacy community and has been extensively studied in the literature [2, 3,
10,8,1]; a recent survey on differential privacy is provided in [7]. However, most
research on differential privacy has focused on exploring theoretical properties
of the model. The main focus of study has been how to safely release database
while preserving privacy for a particular function f . For example, [5] studies how
to release count queries and [9] touches on more general query functions such
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as histograms and linear algebraic functions. The concept of global sensitivity
was introduced in [6] and it has been shown that releasing a database with noise
proportional to the global sensitivity of the query functions achieves differential
privacy. Nissim et al. [15] expanded the framework of differential privacy by
introducing smooth sensitivity, which reduces the amount of noise added. It is
motivated from the observation that, for many types of query functions, the
local sensitivity is small while global (worst-case) sensitivity is extremely large.
To decide the magnitude of noise, they use a smooth upper bound function S,
which is an upper bound on local sensitivity.

There are a few implementations supporting differential privacy. PINQ [12] is
an implementation of differential privacy that provides answers to SQL queries
in a differentially private way. AIRAVAT [16] is another system that applies
differential privacy mechanism for MapReduce computation in a cloud comput-
ing environment. Although their system has been built upon differential privacy
framework, this doesn’t mean that privacy is actually enforced by the system.
It is still the responsibility of users who use the system to select the value of ε
that prohibits any inferences on the dataset beyond what is allowed.

3 Differential Privacy

A database D is a collection of data elements drawn from the universe U . A row
in a database corresponds to an individual whose privacy needs to be protected.
Each data row consists of a set of attributes A = A1, A2, ..., Am. The set of
values each attribute can take, attribute domain, is denoted by dom(Ai) where
1 ≤ i ≤ m. A mechanism M : D → Rd is a randomized function that maps
database D to a probability distribution over some range and returns a vector
of randomly chosen real numbers within the range. A mechanism M is said to
be ε-differentially private if adding or removing a single data item in a database
only affects the probability of any outcome within a small multiplicative factor.
The formal definition of an ε-differentially private mechanism is:

Definition 1 (ε-differentially private mechanism). A randomized mecha-
nism M is ε-differentially private if for all data sets D1 and D2 differing on at
most one element, and all S ⊆ Range(M)

Pr[M(D1) ∈ S] ≤ exp(ε) × Pr[M(D2) ∈ S]

This paper considers an interactive privacy mechanism and the same assump-
tions as in [6]. In an interactive model, users issue queries to the database and
receive a noisy response where the magnitude of noise added to the response
is determined based on the query function f . Sensitivity of a query function f
represents the largest change in the output to the query function which can be
made by a single data item.
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Table 1. Example database X

Name School year Absence days

Chris 1 1
Kelly 2 2
Pat 3 3

Terry 4 10

Definition 2 (Global Sensitivity). For the given query function f : D → Rd,
the global sensitivity of f is

Δf = max
x,y

|f(x) − f(y)|

for ∀x, y differing in at most one element.

Let Lap(λ) be the Laplace distribution whose density function is h(x) =
1
2λ exp(− |X−μ|

λ ) where μ is a mean and λ(> 0) is a scale factor. Dwork et al.
proved that, for the given query function f and a database X , a randomized
mechanism Mf that returns f(X)+Y as an answer where Y is drawn i.i.d from
Lap(Δf

ε ), gives ε-differential privacy [9].

4 Example: Mean

In this section, we illustrate how the value of ε should be adjusted according to
the change of domain (or universe) of the attribute in question to enforce the
same level of protection. While essentially the same as the problem described in
Section 1, we switch to a different motivation both to show the generality of this
problem and to give realistic numbers that are easy to demonstrate.

Consider a database consisting of 4 students registered for a course, which
includes each student’s name, school year, and number of absence days in the
previous semester. Let X denotes the database. In X , there is one student, Terry,
who was placed on academic probation in the previous semester. Table 1 shows
the example database. Note that Terry’s number of absence days is relatively
large compared to those of other students. Assume that the school wants to
release data on students who have not been on academic probation to support
academic success research. Let X ′ denote the database to be published, i.e.,
X ′ = X − {Terry}. Since knowing if a student has been on academic probation
is clearly a privacy breach, the school allows faculty and staff (who may know
the year in school and absence days of individual students, but not who has been
placed on probation) to query X ′ only via an ε-differentially private mechanism.
For the purpose of illustration, let us assume that the goal of the data provider is
to hide the presence of data contributors (or, in this case, non-contributors) by
keeping the adversary’s probability of identifying their presence in the database
less than 1/3. Throughout the example, we show that what values of ε needed
to achieve that goal for queries on mean year and mean absence days, and
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demonstrate that in spite of the similarity between the data columns (in fact
identical for the data in X ′), a different value of ε is needed depending on which
column is queried.

4.1 Achieving Differential Privacy

We now describe an ε-differentially private mechanism κ for releasing the mean
school year and absence days of students in X ′. Informally, the goal of κ is to
make the query responses from any databases that differ in only one element
be indistinguishable within a factor of eε, so that the absence of Terry in X ′

(and thus probation status) isn’t revealed. At the same time, the privacy of
individuals who participated in the database X ′ needs to be protected as well.
The sensitivity of the mean query function Δf is computed by measuring the
maximum change in the query output caused by a single individual. Notice that
calculating the sensitivity requires global knowledge on that domain since every
possible attribute value that not only presently exists in X ′ but also could exist
needs to be considered. For any possible data instance Y of size 3 and a tuple t
of Y , Δf is determined as the maximum value among the results of the following
computation:

Δf(X ′) = max
Y ⊂X

|f(Y ) − f(Y − t)|where |Y | = 3

From our example, it is calculated as follows:

Δf =
∣∣∣∣1 + 2 + 10

3
− 1 + 2

2

∣∣∣∣ =
17
6

For now, let’s assume ε=2; we later show how this choice of ε discloses the
information. The random noise drawn from the Laplace distribution with mean
0 and scale factor λ = Δf

ε is 1.1677. The query response γ is produced as
γ = κf (X ′) = f(X ′) + Lap(Δf

ε ) = 2 + 1.1677 = 3.1677. Consider the following
probabilities:

Pr[κf (X) > 3.1677]
Pr[κf (X ′) > 3.1677]

= 3.2933 ≤ e2

Note that the above value computed from the cumulative density function of the
Laplace distribution. The adversary cannot distinguish the response from queries
against X and X ′ within the factor of e2, so differential privacy is achieved.
However, does this also mean that Terry’s privacy is protected?

4.2 Adversary Model

In this example (as is the goal of differential privacy), we assume a very strong ad-
versary who has complete knowledge on the universe, i.e., full access to all records
in the universe U ; thus each attribute value of all records in X is known to the ad-
versary. In other words, the adversary can potentially access the records of every
student in this school. The adversary knows everything about the universe ex-
cept that which individual is missing in the database X ′ (i.e., who is on academic
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probation). In addition to the complete knowledge about X , the adversary knows
the fact that X ′ consists of students who have never been on academic probation.
Assuming an adversary having complete knowledge about each individual in the
database is not unrealistic because differential privacy is supposed to provide pri-
vacy given adversaries with arbitrary background knowledge.

In our model, the adversary has a database X consisting of n records, i.e.,
knowledge of the exact attribute values of each individual in X , and has an infi-
nite computational power. Given a database X ′ with n−1 records sampled from
X (i.e., X ′ ⊂ X and |X ′| = |X |−1), the adversary’s goal is to figure out absence
of a victim individual in X ′ by using knowledge of X . This is identical to find
out other individuals’ presences in X ′. With respect to our example, a privacy
breach is to allow the adversary to guess absence/presence of an individual in
X ′ correctly with high probability.

4.3 Attack Model

To determine membership in X ′, the adversary maintains a set of tuples 〈ω, α, β〉
for each possible combination ω of X ′, where α and β are the adversary’s prior
belief and posterior belief on X ′ = ω given a query response. Let Ψ denote the
set of all possible combinations of X ′. For simplicity, we assume α is a uniform
prior, i.e., ∀ω ∈ Ψ, α(ω) =

(
n

n−1

)
= 1

n . We refer to each possible combination ω
in Ψ as a possible world. The posterior belief β is defined in Definition 3.

Definition 3 (Posterior belief on X ′ = ω). Given the query function f and
the query response γ = κf (X ′), for each possible world ω, the adversary’s poste-
rior belief on ω is defined as:

β(ω) = P (X ′ = ω|γ) =
P (κf (ω) = γ)

P (γ)
=

P (κf (ω) = γ)∑
ψ∈Ψ P (κf (ψ) = γ)

where κf is an ε-differentially private mechanism for the query function f .

The posterior belief β(ω) represents the adversary’s changed belief on each pos-
sible world that the underlying database being queried against is ω. To figure
out which individuals are in the database, the adversary issues a query against
X ′ and gets a noisy answer. After seeing the query response, the adversary com-
putes the posterior belief for each possible world. Finally, the adversary selects
one with the highest posterior belief as a “best guess”. The confidence of the
adversary’s guess is calculated using Definition 4.

Definition 4 (Confidence level). Given the best guess ω′, the adversary’s
confidence in guessing the missing element is defined as

conf(ω′) = β(ω′) − α(ω′)

As the adversary’s posterior belief on each possible world becomes large, the
chances of disclosing any individual’s presence in the database also become high,
which makes disclosure of the statistics. This has an implication that the adver-
sary’s posterior belief on each possible world can be thought of as the risk of
disclosure.
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Fig. 1. Query response distributions

Definition 5 (Risk of disclosure Γ ). Given the set of possible worlds Ψ , the
risk of disclosing presence/absence of any individual in the database Γ is defined
as the adversary’s maximum posterior belief.

Γ = max
ω∈Ψ

β(ω)

4.4 Limitation of Differential Privacy

Basically, the underlying assumption that differential privacy is relying on is that,
if two extreme query answers that can be produced from any dataset possible in
the universe are indistinguishable, the presence or absence of any individual can
be hidden. The difference between those two extreme answers is masked by ran-
dom noise. However, there is a problem with this approach. Although differential
privacy ensures that every possible database of the same size is indistinguishable
within some factor ε, there always exists a distribution that is more likely than
others given the query response. For example, in Figure 1, ω1 is the most likely
to be the true distribution among 4 possible worlds given the response γ=1. This
allows the adversary to improve the belief of each possible world after seeing the
response.

In our example, for illustration we assume U = X and, without loss of gen-
erality, the response is 2.2013. Recall that the sensitivity Δf of mean query
function for the domain of absence days is 17

6 . The adversary’s posterior belief
of ω1 when ε = 2 is:
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Table 2. Posterior belief β(ω)

Possible world(ω) ε = 5 ε = 2 ε = 1 ε = 0.5 ε = 0.1 ε = 0.01

{1, 2, 3} 0.9705 0.5519 0.4596 0.3477 0.2328 0.2482
{1, 2, 10} 0.0159 0.1859 0.2019 0.2305 0.2527 0.2503
{1, 3, 10} 0.0087 0.1463 0.1791 0.2171 0.2558 0.2506
{2, 3, 10} 0.0049 0.1159 0.1594 0.2048 0.2588 0.2509

Table 3. Posterior belief β(ω)

Possible world(ω) ε = 5 ε = 2 ε = 1 ε = 0.5 ε = 0.1 ε = 0.01

{1, 2, 3} 0.9705 0.6825 0.4596 0.3477 0.2680 0.2518
{1, 2, 10} 0.0158 0.1315 0.2017 0.2303 0.2469 0.2497
{1, 3, 10} 0.0088 0.1039 0.1793 0.2172 0.2440 0.2494
{2, 3, 10} 0.0049 0.0821 0.1594 0.2048 0.2411 0.2491

β(ω1) =
P (κf (ω) = 2.2013)∑4

i=1 P (κf (ωi) = 2.2013)

=
0.3602

0.3062 + 0.0784 + 0.0619 + 0.0489
= 0.6180

The adversary will come to the conclusion that X ′ = ω1. Even though the output,
mean of absence days, is released via a differentially private mechanism, the
adversary can still make a correct guess on who is absent from the list with high
probability and confidence. Consider the probability when the attribute queried
is school year. The sensitivity of mean query function for the school year domain
is 5

6 . The adversary’s posterior belief on ω1 for this case is 0.3390. Although
the same parameter and response values are used for both cases, the resulting
adversary’s probabilities are significantly different. Notice that the adversary’s
posterior belief, β(ω), is a random variable and Table 2 and Table 3 show two
different instances of it. As shown in Table 2, an adversary’s best guess would be
X ′ = {Chris, Kelly, Pat}, which is correct, with the confidence of 0.7705=0.9705-
0.25 when ε=5. When ε=0.5, the adversary still get it right but the confidence is
only 0.0977(0.3477-0.25). When ε=0.01, the adversary fails to make the correct
guess given the set of query responses.

5 Choice of ε

The previous section demonstrated that given sufficiently low ε, ε-differential
privacy does limit an adversary’s ability to identify an individual. However, as
lowering ε reduces the utility of the answer, the question of the proper value of ε is
still open. We now demonstrate how to choose ε to control the adversary’s success
at identification of an individual in this particular scenario, and demonstrate the
difficulties that arise.
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5.1 Upper Bound on Adversary’s Posterior Belief

Let X = {x1, x2, . . . , xn−1, v} and X ′ = {x1, x2, . . . , xn−1}. Without loss of gen-
erality, assume that elements are sorted in ascending order (i.e., x1 < x2 <
. . . < xn−1 < v). Two databases X and X ′ are identical except that only
one element, v, is missing in X ′. For illustration, we impose an ordering to
the enumeration of possible worlds. Let ωi denote the ith possible world main-
tained by an adversary and xk

i be the kth smallest element of ωi. For any
ωi, ωj ∈ Ψ, ωi is lower than ωi if ∀ks.t.1 ≤ k ≤ n, xk

i ≤ xk
j . For example, ωi =

{x1, x2, . . . , xn−1}, ω2 = {x1, x2, . . . , xn−2, v}, ω3 = {x1, x2, . . . , xn−3, xn−1, v},
etc. To get an upper bound on the adversary’s probability of a correct guess,
we have to assume the worst case in which the correct answer seems to be most
likely (i.e., γ = f(ωi)).1 Given the query response γ, the adversary’s posterior
probability on X ′ = ωi is β(ωi) = P (κf (ωi)=γ)∑

n
k=1 P (κf (ωk)=γ) . If we divide numerator and

denominator of β(ωi) by P (κf (ωi) = γ),

β(ωi) =
1

1 +
∑n

k=1,k 	=i
P (κf (ωk)=γ)
P (κf (ωi)=γ)

(1)

=
1

1 +
∑n

k=1,k 	=i
e− |γ−f(ωk)|

λ

e− |γ−f(ωi)|
λ

(2)

≤ 1

1 +
∑n

k=1,k 	=i e−
|f(ωi)−f(ωk)|

λ

(3)

≤ 1

1 +
∑n

k=1,k 	=i e−
Δv
λ

(4)

=
1

1 + (n − 1)e−
εΔv
Δf

(5)

where Δv = max1�i,j�n |f(ωi) − f(ωj)| and i 	= j.
In (4), the distance between f(ωi) and f(ωk) is approximated with Δv, the

longest distance between f(ωi) and f(ωj) where 1 ≤ i, j ≤ n. Recall that in our
example, the missing value is the largest in the database, which means ω1 is a
true distribution. Under this condition, the distance between f(ωi)(1 ≤ i ≤ n)
and f(ω1) has little difference, which makes (3) and (4) approximately the same.
Therefore, the upper bound becomes tight. In order to make every possible world
look equally likely, the following equation needs to be satisfied:

1

1 + (n − 1)e−
εΔv
Δf

=
1
n

1 This “all possible worlds” knowledge is the same information needed to calculate
global sensitivity for differential privacy; extending differential privacy to work with
more limited information is beyond the scope of this paper, and would face similar
challenges to those addressed for generalization-based anonymization in moving from
[14] to [13].
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The value of ε which satisfies the equation is 0. Therefore, to make every possible
dataset in the universe to look equally likely, the query results would be pure
random noise, providing no utility.

5.2 Determining the Right Value of ε

We now show how the proper value of ε can be chosen given the goal of hiding
any individual’s presence (or absence) in the database. Assume that the privacy
requirement for our example dataset is to limit the any individual’s probability of
being identified as present in the database to be no greater than 1

3 . We show two
ways of selecting a good choice of ε that guarantees the probability of identifying
any individual’s presence is no greater than the maximum tolerable value δ.
One is to use the upper bound presented in Section 5.1; the other is to search
for the right value. We first consider how the upper bound on the adversary’s
probability can be utilized to enforce the requirement. Let ρ be the probability
of being identified as present in the database. We need to find ε that satisfies
the following inequality.

1

1 + (n − 1)e−
εΔv
Δf

≤ ρ (6)

Rearranging yields

ε ≤ Δf

Δv
ln

(n − 1)ρ
1 − ρ

(7)

Note that the greater n and ρ are, the greater the minimum ε needed. Therefore,
as the size of database to publish and the probability to bound get larger, less
noise need be added.

In our example, the maximum distance between function values of every pos-
sible world, Δv, is f(ω4) − f(ω1) = 5 − 2 = 3. Thus, in order to enforce the
adversary’s probability to be no greater 1

3 ,

1

1 + (n − 1)e−
εΔv
Δf

≤ 1
3

(8)

ε ≤ 17
18

ln(
3
2
) ≈ 0.3829 (9)

Let’s consider how this value changes when the attribute to release is the school
year rather than absence days. In this case, the sensitivity Δf and the maxi-
mum distance between possible answers Δv need to be recalculated since those
are the parameter values that are completely dependent on the universe. The
recomputed values of Δf and Δv are 5

6 and 1, respectively. Note that the mean
value of school year information is less sensitive than that of absence days, which
results in smaller values of both Δf and Δv. The right value of ε for the school
year domain using the upper bound is ε ≤ 5

6 ln 3
2 ≈ 0.3379. However, even when

ε = 0.5(> 0.3379), the risk of disclosure is
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Fig. 2. Upper bound on the risk of disclosure by varying domains

max
i

β(ωi) = β(ω1) (10)

=
1

1 + e−
1
5 + e−

2
5 + e−

3
5

(11)

≈ 0.3292 <
1
3
, (12)

which is still lower than the maximum acceptable level of risk. This means that a
more precise value of ε can be found. As shown in Figure 2, our upper bound on
the risk of disclosure is not tight when the domain does not include outliers. In
other words, when the domain of the attribute to be released has low sensitivity,
the upper bound of Section 5.1 gives a value of ε that may be significantly
greater than the actual value of ε needed to satisfy the privacy constraint (the
actual impact on the amount of noise added follows from the differential privacy
literature.) Although the value obtained using the upper bound ensures that any
individual’s risk of being identified as present in the database is no greater than δ,
this might be overkill, especially when there is no value that significantly deviates
from the mean of that distribution. In such case, we can perform binary search
to determine the maximum ε that meets the requirement. Before performing
the search, the range within which the value of ε will be searched needs to
be determined. The minimum would be 0 which means no information can be
learned while the maximum can be calculated using the upper bound above.
Let εs and εf denote the beginning and end of the range to search, respectively.
Firstly, compute the risk of disclosure when ε = εs+εf

2 . Next, if it is greater than
δ, set εf to the current value of ε. Otherwise, set εs to ε. Repeat this search
process until the maximum value of ε that satisfies the constraint is found.

6 Example: Median

We now show that the appropriate value of ε is dependent not only on the
data and universe of values, but also on the query to be computed. This section
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Table 4. Senstivity of median for the database X

Possible world(ω) LSf (ω)

{1, 2, 3} 0.5
{1, 2, 10} 4
{1, 3, 10} 3.5
{2, 3, 10} 3.5

repeats the previous analysis on the example student database shown in Table
1, but where the query is instead median.

Let f(X) = median(x1, x2, ..., xn) where xi are real numbers. The median of
a finite list of numbers is defined to be the middle one when all the observations
are arranged from lowest value to highest value. If a dataset has an even number
of observations, there may be no single middle value; in this case we define the
median to be the mean of the two middle numbers. Without loss of generality,
assume x1 ≤ · · · ≤ xn; this gives the following definition for median:

f(X) =

⎧⎨
⎩

xk for n = 2k − 1 (13)
xk + xk+1

2
for n = 2k (14)

where k is a positive integer. To calculate sensitivity, let X ′ be a database
obtained by removing one element from X. If X has an odd number of ele-
ments (i.e., n = 2k − 1), f(X) = xk and f(X ′) could be xk+xk+1

2 , xk−1+xk

2 or
xk−1+xk+1

2 . On the other hand, if X has an even number of elements (i.e., n = 2k),
f(X) = xk+xk+1

2 and f(X ′) is either xk or xk+1. Thus, the local sensitivity of
median for X is

LSf (X) =

{
max

(
xk+1−xk

2 ,
xk−xk−1

2 ,
∣∣∣xk+1+xk−1

2 − xk

∣∣∣) for n = 2k − 1
xk+1−xk

2 for n = 2k
(15)

and the global sensitivity of median is

Δf(X) = max
ω∈Ψ

LSf(ω)

Table 4 shows the sensitivity of median for the absence days attribute of our
example database. As with Section 5.2, our target is that the adversary’s prob-
ability estimate for the value of this attribute should be no greater than 1

3 . In
our example, the maximum difference between medians of each possible world is
1 (i.e., Δv = max1�i,j�4 |f(ωi) − f(ωj)| = 1). Applying the upper bound gives

1

1 + (n − 1)e−
εΔv
Δf

≤ 1
3

(16)

1
1 + 3e−

ε
4
≤ 1

3
(17)

ε ≤ 4 ln(
3
2
) ≈ 1.6219 (18)
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Fig. 3. Distributions of each possible world for different type of queries

A more precise upper bound can be found by replacing Δv with exact values as
follows:

β(ωi) =
1

1 +
∑n

k=1,k 	=i e−
|f(ωi)−f(ωk)|

λ

(19)

=
1

1 + e0 + e−
1
λ + e−

1
λ

(20)

=
1

2 + 2e−
1
λ

(21)

The inequality 1

2+2e
− ε

Δf
≤ 1

3 leads to ε ≤ 4 ln 2 ≈ 2.776.

Recall that the sensitivity of the mean function for the database X ′ is 17
6 ≈

2.83 and ε ≤ 0.3829 to limit the adversary’s probability no greater than 1
3 . With

the same universe, we can allow larger epsilon (ε ≤ 2.776) to enforce the same
degree of privacy for the median whose sensitivity is larger than that of the mean.
This is because the type of query affects the distributions of possible world. In
Figure 3(a), given the response γ < 3.16, ω1 is significantly more likely than
others. On the other hand, in Figure 3(b), given any response value of γ, both
ω1 and ω2 are always equally likely and difference of likelihood between each
possible world is relatively small.

7 Conclusion

While the concept of differential privacy has received considerable attention in
the literature, there has been little discussion of how to apply it in practice.
Although ε is the privacy parameter for differential privacy, it does not directly
correlate to a practical privacy standard. We have shown that given a practical
standard, namely the risk of identifying an individual, it is possible to deter-
mine an appropriate value of ε. However, this requires knowing the queries to be
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computed, the universe of data, and the subset of that universe to be queried.
While this is not a disabling issue, as such knowledge (except the subset to be
queried, presumably known to the data holder) is typically required to construct
a differentially private mechanism anyway, it does raise additional research chal-
lenges. Succinctly, any discussion of a differentially private mechanism requires
a discussion of how to set an appropriate ε for that mechanism, a challenge that
may be as or more difficult than developing the mechanism itself.
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Abstract. A multisignature scheme allows an ad hoc set of users to sign
a message so that the resulting single signature certifies that the users en-
dorsed the message. However, all known multisignatures are either at the
price of complexity and additional trust of Certificate Authority (CA),
or sacrificing efficiency of computation and communication (including
both bandwidth and round). This paper proposes a new multisignature
scheme with efficient verification in the plain public key model. Our mul-
tisignatures enjoys the most desired features: (1) Our plain public key
model-based multisignatures do not impose any impractical key setup
or PKI requirements; (2) Our multisignature scheme is non-interactive,
which saves computation and communication in signature generation;
(3) Through pre-computation, our scheme achieves O(1) verification in
the plain public key model; (4) Provable tighter security under the stan-
dard CDH assumption ensures high level of security in both practice
and theory. Hence, our non-interactive multisignatures are of great use
in authentication of routes in networks.

1 Introduction

Multisignatures extend standard digital signatures to allow an ad hoc set of
	 users to jointly sign a message which are very useful in applications such
as contract signing, authentication of routes in mobile networks, distribution
of a certificate authority (CA), aggregation of acknowledgements in multicast
and secure vehicular communications (refer to [1,2,3,4,5,6,7,8,9,10] for detailed
application scenarios).

Due to many practical reasons for applications, we desire that a multisignature
scheme might have the following features: (1) the resulting signature is shorter
than 	 separate signatures, even constant for 	; (2) Multisignature generation
and verification (even key generation) are very fast; (3) The communication
overhead including rounds and messages transmitted in multisignature genera-
tion should be as fewer as possible (even reduced to a minimum); (4) Trust on
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the trusted third party (e.g., Certificate Authority) should be reduced as less as
possible. All these specific aspects are important in the real life applications of
multisignatures.

1.1 Rogue Key Attacks

In order to generate multisignatures of constant size, the homomorphic prop-
erties of arithmetic operations involved in standard signatures are often used.
However, these homomorphic properties that enable aggregation of signatures
into multisignatures often incurs rogue key attacks for multisignature schemes.
In this attack, the adversary chooses its public key as a function of those of
honest signers in such a way that it can forge multi-signatures easily[2,5]. For
example, rogue key attack succeeds if the verification key (combination of public
keys of signers) for multisignature has a fixed formula as PK =

∏�
i pki where

the adversary can choose pka = gs · (
∏�−1

i pki)−1 and know the corresponding
private key s for PK = pka

∏�−1
i pki = gs (e.g., [11,12,3,13,14] are vulnerable

to such attacks in the plain setting). Actually rogue-key attack is considered as
a main menace for discrete logarithm based multi-signature schemes.

Early approaches prevent rogue-key attacks for multisignatures at the cost of
complexity and expense in the scheme, or using unrealistic and complicate key
setup assumptions on the public-key infrastructure (PKI)[1]. These key setup
operation assumptions include dedicated key generation (DKG), knowledge of
Secret Key (KOSK), proof of possesion of private key (POP) and the plain public
key model (PPK).

The first effort to prevent rogue key attacks (called DKG) is due to Micali et
al. [1]. However, the DKG is impractical because of expensive interactions of key
generation, complex and large public keys, and static group of signers. The sec-
ond approach, KOSK assumption needs a party to prove knowledge of its secret
key, during public key registration with a certificate authority (CA). The require-
ment of handing over the secret keys leads to obtaining simple constructions and
proofs of security [3,13]. However, the existing public key infrastructures (PKIs)
do not require proofs of knowledge of secret keys [15].

The third one is contributed by [14] and [5,6] where users are required to
provide proofs of procession of secret keys (during key registrations) in order to
prevent rogue key attacks. Ristenpart and Yilek in [14] showed that the schemes
in [3,13] by using the Key Registration (KR) model can be improved more secure
without reducing efficiency. A similar idea named the Key Verification (KV)
model was later proposed in [5,6], but having the multisignature receiver verify
the POP message (together with verification of PKI certificates)[16], instead of
the CAs during the key registration.

We note that either the KR model or the KOSK assumption needs non-
standard trust on the CAs because it requires the CAs must perform specific
verifications. If a CA is corrupted then the adversary can easily forge multisigna-
ture through rogue key attacks. On the other hand, the interaction and verifica-
tion during key registration also causes additional computational burden for the
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CAs. While the KV model causes additional computational cost of the verifier
(linear to the number of signers) during the verification of a multisignature.

Obviously, it is highly interesting and desirable to provide multisignature
schemes which are secure in the plain setting where no special registration pro-
cess is assumed for public keys registration. Bellare and Neven provided such a
scheme in the plain (public-key) model [2], the others are shown in [5,17,18]. In
the plain (public-key) model, there is no dedicated key generation (DKG) pro-
cedures, or well-formedness proofs accompanied to the public keys and a party
can obtain a certificate on any arbitrary key without any proof.

1.2 Multisignatures in the PPK Model

So far as we know, there are only very few multisignature schemes with provable
security in the plain public key model and all these multisignatures are proved
secure in the random oracle model [19].

The first multisignature in such a model was proposed by Boneh et al [18]
(for brevity BGLS), which is implied by the construction so-called aggregate
signature [20]. The main drawback of the BGLS scheme is the high cost of
verification. In fact verification of a single multisignature of the BGLS scheme
requires O(	) pairings where 	 is the number of signers participating in signing,
making it extremely impractical.

Under the DL assumption Bellare and Neven [2], provided a concrete mul-
tisignature scheme (denoted BN) with rather an efficient verification in the PPK
model. Followed the idea of [2], a lot of interactive multisignature schemes are
proposed [5,17] in the PPK model. However, the interaction is quite expensive
in many important application because communicating even one bit of data may
use significantly more power than executing one 32-bit instruction [21] and also
in many settings, communication is not reliable, and so the fewer interactions,
the better.

The only known non-interactive multisignature scheme with efficient verifi-
cation in the PPK model (the QX scheme) is proposed by Qian and Xu quite
recently in [22]. Comparing with the BGLS scheme, the QX scheme improves
verification efficiency by reducing pairing computation complexity O(	) to O(1).
However, security reduction of the QX scheme is even looser than that of the BN
scheme[2]. Intuitively, a tight security (proof) means that the scheme is almost
as hard to break as the underlying cryptographic problem to solve. Therefore, it
is always welcome to find a non-interactive multisignature scheme in the PPK
model with more tighter security reduction.

1.3 Our Contributions

We present a non-interactive multisignature scheme, which operates in the plain
public-key model and is proven secure based on the standard CDH assumption
in the random oracle model. Compared with the BGLS scheme, our scheme min-
imize the verification cost, by reducing (	 + 1) pairings to two pairings through
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Table 1. Multisignature Comparison

Scheme Assump. Rounds Sign Comm. Cost Verify σ Size

BN [2] < DL 3 1 exp |G′| + |q| + l0 1 mexp(�+1) |G′| + |q|
BGLS [18,20] ≈ CDH 1 1 exp |G| (
 + 1) pr |G|

QX[22] << CDH 1 1 exp |G| 2pr + mexp(�+1) |G|
Ours ≈ CDH 1 2 exp 2 |G| 2 pr 2 |G|

Remark 1. For each scheme, we summarize the underlying cryptographic assumption;
number of rounds of the signing protocol (“1” means non-interactive); the compu-
tational complexity for each signer (Sign); the communication cost required for the
signing (Comm. Cost) ; the computational complexity for verifying a multisignature
(Verify); the size of multisignature (σ Size). For CDH-based schemes we assume the
symmetric pairing e : G×G → GT for convenient comparison. For DL-based schemes,
we assume we work over a 160-bit elliptic-curve (EC) group G

′. We assume the order
of G, GT and G

′ are equal (i.e., p = q). We denote by exp an exponentiation in group
G (or G

′ and GT ) whose order is q (or p), and by mexp(t) a multi-exponentiation with
t exponentiation coefficients (e.g., mexp(2) corresponds to gk1hk2 for some g, h, k1, k2),
by 
 the number of signers, by l0 the length of hash value, by pr a bilinear pairing, by
|G| the bit length of the representation for elements in group G, and by |p| the bits
length of p. DL stands for Discrete Logarithm, CDH stands for Computational Diffie-
Hellman. “ << ” and “ < ” means very loose security and loose security, respectively.
“ ≈ ” means close security.

pre-computation (cf. Table 1)1. The improvement in verification time is substan-
tial because one pairing costs about 6-20 exponentiations [2]. Given 	 signers,
the verification key is fixed (consisting of 	 partial verification keys that can be
derived from the public keys independently), which means that we can compute
once and for all, the verification key before signing or verification.

On the other hand, our scheme also enjoys a tighter security proof, compared
with both the BN scheme and the QX scheme. Then security parameters of our
scheme could be smaller than those of both the BN scheme and the QX scheme,
while preserving the same security level. Actually, our security proof shows that
an adversary can at most with probability roughly qs ·ε break our multisignature
scheme where ε is the upper bound of probability for breaking the underlying
cryptographic problem. While in the BN scheme the corresponding upper bound
is roughly

√
qh · ε. Let qh = 260, qs = 230, ε = 2−80, our scheme ensures 50 bits

of security level, while the BN scheme (or the QX scheme) ensures at most 10
bits of security level in practice. Compared with the QX scheme, our scheme
also saves the mult-exponentiation in verification of a multisignature. Detailed
comparisons amongst our scheme, the BN scheme, the BGLS scheme and the
QX scheme are depicted in Table 1.

1 Since the signers’ public keys are used as prefixes to the corresponding message in
the BGLS scheme, verification of the BGLS multisignature needs (
 + 1) pairings
necessarily.
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Our technique for dealing with the rogue key attack in the plain public-key
model is quite different from those of [2]. Instead of using a dynamic key with
respective to messages [2] as the verification key for the multisignatures, we use
a combined key derived from the public keys of signers, irrelevant to messages.
Therefore, we can pre-compute the verification key for any group of signers
before knowing the signed messages. Such pre-computation could be done when
the certificates of public keys are verified.

The structure of our multisignatures are similar to that of the WMS scheme
[13] and its variant [14] which enables us to reduces the communication rounds of
multisignatures to optimal (non-interactive). The computational cost and com-
munication cost (the amount of data transmit in generating a single multisig-
nature) are the same as the WMS scheme [13] whose security holds under the
KOSK assumption, but not secure in the PPK model. Moreover, our multisig-
nature reaches high level of security, in fact our scheme is almost as secure as
the Computational Diffie-Hellman (CDH) problem.

2 Preliminaries

We recall the basic definitions for multisignatures, then review the cryptographic
complexity assumption in this section. We the notations of [22] in the following.

2.1 Definitions of Multisignatures

The definition of interactive multisignatures in the plain public-key model was
first formalized in [2] with 	 signers, each having as input its own public and
private keys as well as the public keys of the other signers. The signers interact
via a protocol to generate a multisignature.

In this paper, we consider the following non-interactive variant: Given the
same inputs as in an interactive scheme, each signer contributes a partial sig-
nature without interacting with each other, and the partial signatures can be
“assembled” into a multisignature by any one.

A non-interactive multisignature scheme MS = (Setup, Gen, MSign, MVf) con-
sists of three algorithms and one protocol (adapted from [2]):

– Setup(1λ): This is a randomized algorithm that takes as input a security pa-
rameter λ and produces a set of global public parameters pp. (This algorithm
should be run by a trusted party and pp can also be viewed as a common
reference string.)

– Gen(pp): This is a randomized algorithm that, on input of public parameters
pp, outputs (an honest) signer i’s private/public key pair (ski, pki).

– MSign(pp, {ski}, M, L): Given public parameters pp, a message M and a
(multi)set L = (pk1, . . . , pk�) of purported signers (note that pki = pkj

for some i 	= j is allowed in the plain public-key model because one can
simply claim another’s public key as its own), signer i uses its private key
ski to compute a partial signature σi and then broadcasts σi. Given σj for
j = 1, . . . , 	, any one can obtain a multisignature σ with respect to the public
keys on L.
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– MVf(pp, M, σ, L): Given L = (pk1, . . . , pk�), pp, a message M , a multisigna-
ture σ, this deterministic algorithm outputs 0 (reject) or 1 (accept).

We require a multisignature scheme to be correct, meaning that every multisig-
nature σ obtained from the partial signatures of legitimate signers (according to
MSign) is always accepted as valid.

Experiment ExpMS
uu.cma(A):

1. pp ← Setup(1λ); (pk�, sk�) ← Gen(pp); M ← φ where M is the set of
pairs (M, L) previously queried for signatures.

2. Run A(pp, pk�) as follows:
– A can choose arbitrary public key for any user, possibly as a function

of the honest user’s public key pk�.
– To obtain a multisignature, A can invoke the execution of

MSign(·, ·, ·, ·) (concurrently) by presenting a message M and a
(multi)set L = (pk1, . . . , pkn) for any n, as long as pk� appears at
least once in L.

– If the multisignature scheme uses hash functions that are treated as
random oracles, A can submit strings and obtain their corresponding
hash values.

3. Eventually, A outputs an alleged multisignature σ� on a message M� with
respect to L� = (pk1, . . . , pk�). If

MVf(pp, M�, σ�, L�) = 1

and
(pk� ∈ L�) ∧ (M�, L�) /∈ M = 1

then return 1, otherwise 0.

Fig. 1. Experiment for security definition

Intuitively, security of multisignature scheme requires that it is infeasible for
adversary A to forge a multisignature with respect to a new message which
extends the classical security notion of digital signature scheme known as ex-
istential unforgeability under adaptively chosen-message attacks [23]. Following
[2,5], we can assume there is a single honest signer. Then, unforgeability must
hold despite that in the plain public-key model, the adversary can corrupt all
other signers and choose their public keys arbitrarily (even registering the pub-
lic key of the honest user as their own public keys), and can interact with the
honest signer in any number of concurrent signing instances before outputting
its forgery.

Formally, we define the advantage of A against multisignature scheme MS as
the probability that the experiment ExpMS

uu.cma(A) in Figure 1 outputs 1.
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We say the adversary (t, qs, qh, 	, ε)-breaks multisignature scheme MS, if it in
time t, after qs signature queries or qs invocations of MSign(·, ·, ·, ·), and option-
ally qh queries to the hash functions (if any) that are treated as random oracles,
has an advantage at least ε in forging a multisignature co-signed by 	 signers,
namely

Pr[ExpMS
uu.cma(A) = 1] ≥ ε.

If there is no such adversary, we say the multisignature scheme is (t, qs, qh, 	, ε)-
secure.

2.2 Cryptographic Complexity Assumption

Let G and GT be two (multiplicative) cyclic groups of prime order p where the
group action on G and GT can be computed efficiently, g be a generator of
G, e : G × G → GT be an efficiently computable map (i.e., pairing) with the
following properties:

• Bilinear: for all (u, v) ∈ G×G and a, b ∈ Zp, e(ua, vb) = e(u, v)ab;
• Non-degenerate: e(g, g) 	= 1.

For specific applications, we recommend the asymmetric setting, namely G1 	=
G2 for bilinear maps (i.e., e : G1 × G2 → GT ), that allows for short signatures
without side-effect. Our scheme is also adaptable for such a setting. For more
details, refer to [24,25].

We define the computational Diffie-Hellman problem (with pairings) as follow.

Definition 1 (CDH). Given (g, ga, h) ∈ G × G × G for some a
R← Zp and

h
R← G, find ha ∈ G.

Define the success probability of an algorithm A solving the CDH problem as

Advcdh
A

def
= Pr

[
ha ← A(g, ga, h) : g

R←G, a
R←Zp, h

R←G

]
.

The probability is taken over the uniform random choice of g from G, of a from
Zp, of h from G, and the coin tosses of A. We say the algorithm A (t, ε)-solves
the CDH problem if A runs in time at most t and Advcdh

A ≥ ε. We say the CDH
problem is (t, ε)-intractable if there is no algorithm A that can (t, ε)-solve it.

3 Our Construction

Our scheme uses the Waters-like signature (e.g., σ = (sk · H(m)r, gr)) to con-
struct multisignatures, however this scheme is different from the WMS multisig-
nature scheme in [13] since security of our scheme is proved in the plain public
key model (with random oracles) while the WMS multisignature (whose security
is proved in the KOSK model) must impose additional requirement on the tra-
ditional PKIs to ensure security (e.g., it requires the CAs and users to perform
additional protocols to get public key certificated).
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Our scheme does not require the signers to share a common random or commit
[2,17] during multisignature generation as well, otherwise it seems impossible to
reduce the round of signing to minimum. Although our construction is similar to
the WMS scheme [13], security of multisignatures in the plain public key model
does not rely on the trust of the CAs because of the plain public key model.
While security of the WMS scheme are proved in the KOSK model that means
security also relies on the trust of the CAs. Therefore, our scheme reduces the
trust of the third party (e.g., CA) because even a malicious CA can’t do any
harm to the honest users in our system.

Our scheme consists of the following algorithms (or protocols):

Setup(1λ): On input a security parameter λ, select global public parameters
pp = (G,GT , p, g, e, H, Hm), where Hm : {0, 1}∗ → G and H : G → G are
secure hash functions (viewed as random oracles here). This algorithm may
be run by a trust party.

Gen(pp): On input pp, an honest user i selects xi
R← Zp and its private/public

key pair is (ski, pki) where

ski = H(pki)xi , pki = gxi .

MSign(pp, {ski}, M, L): On input pp, message M and L = (pk1, . . . , pk�), user i
(1 ≤ i ≤ 	) executes the following:

1. Pick a random ri
R←Zp and compute

si ← ski · Hm(M ||L)ri and ti ← gri.

2. Broadcast σi = (si, ti) as the partial signature for message M (which is
a standard signature already).

Given partial signatures σ1, . . . , σ�, any one can compute the multisignature
for group L as follows:

σ =
⊗

1≤j≤�

σj = (
∏

1≤j≤�

si,
∏

1≤j≤�

ti).

MVf(pp, M, σ, L): Given pp, L = (pk1, . . . , pk�), message M , and an alleged
multisignature σ = (s, t), a verifier accepts the multisignature if

e(s, g) = e(Hm(M ||L), t) ·
∏

pki∈L

Ai,

where Ai = e(H(pki), pki) and rejects otherwise.

Theorem 1. Our multisignature scheme is correct. Namely any multisignature
generated by legal signers can be verified.
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Proof. The scheme is correct because

e(s, g) = e

((
�∏

i=1

H(pki)xi

)
· Hm(M ||L)r, g

)

= e(Hm(M ||L)r, g) ·
�∏

i=1

e(H(pki), gxi)

= e(Hm(M ||L), t) ·
�∏

i=1

e(H(pki), pki)

= e(Hm(M ||L), t) ·
∏

pki∈L

Ai,

where

r =
�∑

i=1

ri and t = gr.

Remark 2. In our scheme, each signer generates its own randomness. Without
any shared common random generator, we reduce the round of communication
to minimum. On the other hand, our multisignature generation is also quite
simple and straightforward: each signer produces its Waters-like signature σ =
(sk ·H(m)r, gr) on the message, then the multisignature is just the component-
wise product of these signatures.

Remark 3. To compute Ai = e(H(pki), pki) needs one pairing computation,
while this computation is once for all and can be finished when checking the
validity of the public key certificates of signers. Therefore this computation of
pairing can be saved through pre-computation before multisignature verification
since Ai is independent from messages. Comparing with those in the plain pub-
lic key model, our multisignature scheme is the most efficient one in verification
since our scheme achieves O(1)-verification (respective to pairing computations).

Remark 4. As in many applications, signers might not know who (included L)
are going to sign the message M , it is also interesting to find a proper mul-
tisignature scheme that can be applied to this situation. Indeed, we only need
replace “M ||L” by “M” in our signing protocol to yield such a scheme. How-
ever, it security only prevents forgery on a new message [13,14], not a pair of
message/signers.

4 Security Analysis

We state the result of security for our multisignature scheme in the following
theorem.
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Theorem 2. If there is an algorithm A in the random oracle model that (t, qs,
qh, 	, ε)-breaks our scheme, then there is an algorithm B that (t′, ε′)-solves the
CDH problem, where

t′ = t + O(qh + 3qs + 	 + 2)Te and ε′ =
ε

e(qs + 1)
,

Te is the running-time of exponentiation in G, qh and qs are the bound of two
hash queries to Hm, H and signature queries, respectively, and the mathematical
constant e is the base of the natural logarithm.

Proof. The strategy is to construct algorithm B that solves the computational
Diffie-Hellman problem, by utilizing algorithm A which (t, qs, qh, 	, ε)-breaks our
multisignature scheme where qh = qH +qHm is the total number of hash queries.

Suppose B is given (g, ga, h) ∈ G×G×G for a
R← Zp, h

R← G, and asked to find
ha. Without loss of generality, assume user 1 is the honest signer. B simulates
the random oracles Hm(·) and H(·), the signature oracle OMSign(pp, pk�, M, L)

for providing user 1’s partial signatures valid under the public key pk� def
= pk1 =

gx1
def
= ga with x1

def
= a unknown to B.

Setup. B gives A the public key pk� = ga and other public parameters (G,GT ,
e, Hm(·), g, H(·)).

Hm(M ||L)-Queries. B responds to queries to random oracle Hm(·) as follows:

1. If there is a tuple (M ||L, b, r, Hm(M ||L)) in the Hm-list which is initially
empty, return Hm(M ||L); otherwise, execute the following.

2. Choose r
R←− Zp, a bit b

δ←− {0, 1} such that b takes 1 with probabil-
ity δ that will be specified later, return Hm(M ||L) = hb · gr and add
(M ||L, b, r, Hm(M ||L)) to the Hm-list.

H(X)-Queries. B initializes an H-list which only has (pk�, h · gk, k) for k
R←−

Zp, by setting H(pk�) = h · gk and then executes as follows:

1. If (X, H(X), k) has been defined, return H(X); otherwise do the follow-
ing.

2. Choose k
R←− Zp, return H(X) = gk and add (X, H(X), k) to the H-list.

Note that if the argument of the query cannot be parsed as X ∈ G, B simply
returns a random element of G, while preserving consistency if the same
query has been asked before.

OMSign(pp, pk�, M, L)-Queries. B proceeds as follows:

1. If pk� /∈ L, return ⊥ and abort; otherwise find (M ||L, b, r, Hm(M ||L))
(where Hm(M ||L) = hb ·gr) in the Hm-list. (We assume that A has asked
the corresponding hash values; otherwise B just acts as if it is responding
to the hash queries to Hm(·).)
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2. If b = 0, abort; otherwise randomly choose α from Zp and compute

s1 = (ga)k−r(hgr)α

= (hgk)x1(hgr)α−x1

= H(pk1)x1Hm(M ||L)α−x1 ,

t1 = gα−x1 = gα(gx1)−1 = gα(ga)−1.

3. Output σ1 = (s1, t1).
Note that σ1 = (s1, t1) is valid when we set randomness r′ = α − a.

Output ha. Eventually A outputs a multisignature forgery σ = (s, t) on mes-
sage M� with respect to L = (pk� = pk1, pk2, . . . , pk�), where (M�, L) /∈ M
(the set of previously queried messages and the signing group for partial
signatures from user 1). Since σ is valid, we know that for some d ∈ Zp,

s =

(
�∏

i=1

H(pki)xi

)
· Hm(M�||L)d, t = gd.

Then, B executes the following to compute ha:
1. Perform additional queries H(pki) for 1 ≤ i ≤ 	, making sure that H(pki)

for 2 ≤ i ≤ 	 is defined.
2. Let J be the index such that pki = pk1 and Δ be the number of such

keys for 1 ≤ i ≤ 	.
3. Find (M�||L, b�, r�, Hm(M�||L)) in the Hm-list.
4. If b� = 1, abort; otherwise b� = 0 compute and output

ha =

⎛
⎝s · t−r�

·
∏

pki 	=pk1

pk−ki

i · (ga)−k1Δ

⎞
⎠

Δ−1

(4.1)

because

s · t−r� ·

⎛
⎝ ∏

pki 	=pk1

pkki

i

⎞
⎠

−1

· (ga)−k1Δ

= s ·
(
g−r�

)d

·

⎛
⎝ ∏

pki 	=pk1

(gki)xi

⎞
⎠

−1

· (ga)−k1Δ

= s · Hm(M�||L)−d

⎛
⎝ ∏

pki 	=pk1

H(pki)xi

⎞
⎠

−1

· (ga)−k1Δ

=
∏

pki=pk1

H(pki)xi · (ga)−k1Δ

=
(
(hgk1)x1

)Δ · (gx1)−k1Δ

= haΔ.

where H(pki) = gki for pki 	= pk1 and x1 = a.
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Although B perfectly simulates the random oracle Hm(·), in the simulation of
OMSign(·, ·, ·, ·) B succeeds with probability δ, namely the probability that bi = 1
for each i = 1, . . . , qs. Thus B doesn’t abort in the simulation of the signature
oracle with probability

Pr

[
qs∧

i=1

(bi = 1)

]
=

qs∏
i=1

Pr [bi = 1] = δqs .

When A outputs a valid forgery, B will abort if b� = 1. Therefore, B succeeds
with probability that b� = 0 at that time (i.e., 1 − δ). Let E denote the event
that A outputs a valid forgery, and Esuc|E denote the event B succeeds in solving
the CDH problem (i.e., outputting ha) under the condition that E happens. We
have Pr[Esuc|E ] = (1 − δ)δqs . Then,

εB = Pr[E
∧

Esuc]

= Pr[E ] · Pr[Esuc|E ]
= ε · (1 − δ)δqs

Let f(δ) = (1 − δ)δqs . Since f is maximal at δ0 = qs

qs+1 , we know f(δ0) ≥
1

e·(qs+1) , where the mathematical constant e is the base of the natural logarithm.
Therefore,

εB ≥ ε′

e · (qs + 1)
.

Finally, for the running-time of B, we take into account the running-time t
of A, the exponentiations on hash queries A made, and the linear number of
exponentiations in each signing query and 	 + 2 exponentiation on extracting
ha. This takes time at most t +O(qh + qs + 	 + 2) · Te, where Te is running-time
of exponentiation and qh, qs are the number of hash queries to Hm and signature
queries OMSign(·, ·, ·, ·), respectively.

5 Additional Related Work

The BGLS scheme was originally proposed for the purpose of aggregate signa-
tures [18], and was later shown (through a new analysis [20]) to be a secure
multisignature scheme as well. However, the BGLS scheme is extremely ineffi-
cient in multisignature verification. While in principle sequential aggregate sig-
natures (e.g., [26,27]) can be used to construct multisignatures, this approach
has drawbacks such as interactive signing (signers cannot contribute their partial
signatures independently) and expensive verification time. Other aggregate sig-
natures impose special strong assumption on time synchronization [28,29] which
also will impose additional operational assumption for multisignatures.
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6 Conclusion

We presented an efficient non-interactive multisignature scheme in the plain pub-
lic key model. Our scheme not only reduces the trust assumption on the third
party and but also achieves optimal rounds of communication. This scheme,
to our best knowledge enjoys a tighter security proof, comparing with non-
interactive construction in the plain public key model. Furthermore, our scheme
only needs O(1) (pairings) in verification through pre-computation. We believe
it is amongst the most practical schemes currently available in many realistic
application scenarios.

Acknowledgements. This work has been supported by the National Natural
Science Foundation of China, Grant No. 60873217, 61172085, 11061130539 and
61021004.
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Abstract. A time-selective convertible undeniable signature scheme
allows a signer to release a time-selective converter which converts unde-
niable signatures pertaining to or up to a specific time period to publicly
verifiable ones but not those in any other time periods. The security of
existing schemes relies on a strong and interactive assumption called xyz-
DCAA in random oracle model or several relatively new hash function
assumptions in the generic group model. For some of them, the converter
size for each time period also grows linearly or logarithmically with the
number of previous time periods. In this paper, we propose a new con-
struction in which all the converters (i.e. time-selective, selective and
universal) are of constant size. In particular, the time-selective converter
for each time period is only one group element, no matter how many
previous time periods there are already. The security of this new con-
struction is proved in the random oracle model based on non-interactive
and falsifiable assumptions.

Keywords: convertible undeniable signature, anonymity, time-selective
conversion, random oracle.

1 Introduction

Undeniable signature [6], introduced by Chaum and van Antwerpen, allows a
signer to generate a signature such that its validity or invalidity can only be
verified by running a confirmation or disavowal protocol, respectively, with the
signer. Convertible Undeniable Signature (CUS) [4], further allows the signer
to convert an undeniable signature to a publicly verifiable one by releasing an
additional information called converter. There are two types of converters: (1) a
selective converter makes a specific undeniable signature publicly verifiable; and
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(2) a universal converter makes all the undeniable signatures of a signer pub-
licly verifiable. Once the universal converter is released, not only the undeniable
signatures that have been generated become publicly verifiable, but also will the
signatures to be generated become publicly verifiable. The universal conversion
makes all signatures, both past and future, be publicly verifiable. This property
may not be desirable in some context and furthermore, in order to continue gen-
erating undeniable signatures, the signer needs to re-register a new public/secret
key pair (in the PKI setting).

In CT-RSA 2005, Laguillaumie and Vergnaud [13] introduced the notion of
Time-Selective Convertible Undeniable Signature (TSCUS). In a TSCUS scheme,
there is a new type of converters called time-selective converter. First, the time
is divided into time periods, then each signature is generated with respect to a
particular time period. The time-selective converter of the particular time period
enables a verifier to check the validity of all signatures corresponding to that
particular time period only. Undeniable signatures corresponding to other time
periods remain unverifiable and the confirmation or disavowal protocol has to be
carried out with the signer for checking their validity. In [13], a concrete TSCUS
scheme was also proposed. Time-selective converters and selective converters are
of size linear with the number of time periods, which were recently reduced to
logarithmic size in [14]. The security of it, specifically, the anonymity relies on
the intractability of a strong decisional problem called xyz-Decisional Collusion
Attack Algorithm (xyz-DCAA)1 in random oracle model [2]. In both schemes
[13,14], the converter for time period t validates not only undeniable signatures
with respect to t, but also those with respect to previous periods. El Aimani
and Vergnaud [1] proposed a variant of the TSCUS mentioned above, where
the converter for a time period converts undeniable signatures with respect to
that particular period only. The converter is also constant in size. However, the
security of the scheme is only proven in the generic group model [23] and in
particular, relies on new assumptions on hash functions.

In this paper we propose a new TSCUS scheme. All the converters in the
scheme are constant in size. Specifically, the time-selective converter for each
time period contains only one element of a bilinear group, no matter how many
previous time periods there are already. The security of this new scheme does not
rely on any new hash function assumption but on the conventional random oracle
abstraction [2], and on some non-interactive and falsifiable number-theoretic as-
sumptions, namely Strong Diffie-Hellman (CDH) assumption [3] and Decisional
Double Strong Diffie-Hellman (DDSDH) assumption (see Sec. 3). The scheme
is also efficient. The signature generation involves two exponentiations in a bi-
linear group, which are implemented as two elliptic curve scalar multiplications
(ECSM) in an elliptic curve group. Different from [13,14] but similar to [1], a
time-selective converter in this new TSCUS scheme is specific to a particular
time period only, and time periods are treated as ordinary bit strings, rather

1 The assumption is strong in the sense that after seeing part of the problem instance,
the adversary submits a target number to an oracle, and gets back the rest of the
instance constructed based on the target number. (See [13] for details.)
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Table 1. A brief comparison with [13,14,1]

SCvt TSCvt Assumptions

[13] O(t) O(t) CDH + xyz-DCAA
[14] O(log t) O(log t) CDH + xyz-DCAA
[1] O(1) O(1) raPre + rlColl + Pre + Prf

Ours O(1) O(1) SDH + DDSDH

than integers as in [13,14]. Table 1 shows a comparison between this new scheme
and those existing ones [13,14,1]. In the table, we use t to denote the number of
time periods. More details will be given in Sec. 4.5.

1.1 Related Work

Since the introduction of (convertible) undeniable signature, a couple of schemes
[16,9,8,12,19] with provable security in the random oracle model and others
[7,12,19,20,11,22] with security proven in the standard model have been pro-
posed. There are also several related notions to undeniable signature available
in the literature. For example, Chaum [5] proposed the notion of designated con-
firmer signature (DCS), in which there is a third party called confirmer, who
can confirm/disavow signatures on behalf of the signer. Related work of DCS
include [18,10,21]. In [13], Laguillaumie and Vergnaud introduced the notion of
Time-Selective Convertible Undeniable Signature (TSCUS) and proposed the
first concrete one. The signature is short and consists of one group element and
one short binary string. The selective converter of a signature and the time-
selective converter of a specific time period, however, grows linearly in size with
the number of time periods. The time-selective converter for a time period t
allows a verifier to check the validity of all the undeniable signatures with re-
spect to time periods t and earlier. Very recently, Laguillaumie and Vergnaud
[14] proposed another scheme which reduces the converter size so that it grows
logarithmically with the number of time periods. On the security, the unforge-
ability of both schemes are based on the CDH assumption while the anonymity
relies on the intractability of a strong and interactive decisional problem called
xyz-DCAA. Both of them were proven in the random oracle model.

In 2007, El Aimani and Vergnaud [1] refined the notion of time-selective con-
version in TSCUS. They proposed to time-selectively convert signatures gradu-
ally. That is, a time-selective converter for time period t only converts signatures
pertaining to time period t but not signatures pertaining to any other time peri-
ods. They proposed a TSCUS scheme which is based on Michels-Petersen-Horster
CUS [15]. The security of the scheme is proven in the generic group model [23]
assuming some new properties on the underlying hash functions.

Outline. In the following we describe the definition of TSCUS and security
models. This is followed by the definitions of number-theoretic assumptions in
Sec. 3. In Sec. 4, we propose a new TSCUS scheme and evaluate its performance



358 Q. Huang et al.

as well as a batch verification technique. Security analysis is also given in this
section. Finally, we conclude the paper in Sec. 5.

2 Time-Selective Convertible Undeniable Signature

2.1 Definition

Definition 1. Atime-selective convertible undeniable signature (TSCUS) scheme
consists of the following probabilistic polynomial-time (PPT) algorithms, and in-
teractive protocols:

Setup takes as input 1k where k is a security parameter, and outputs the public
parameters Params.

Kg takes as input Params, and outputs a key pair (pk, sk) for a signer.
Sign takes as input Params, sk, a message m and a time period t ∈ T where

T is the space of time periods, and outputs a signature σ.
Control takes as input Params, sk, m, t and σ, and outputs 1 if σ is a valid

signature on m under pk with respect to t, and 0 otherwise.
SConv takes as input Params, sk, m, t and σ, and outputs a converter scvt if

Control(Params, sk, m, t, σ) = 1, and ⊥ otherwise.
TSConv takes as input Params, sk and t, and outputs a time-selective con-

verter tscvtt.
UConv takes as input Params and sk, and outputs a universal converter ucvt.
SVer takes as input Params, m, t, σ, scvt and pk, and outputs 1 for acceptance,

or 0 for rejection.
TSVer takes as input Params, m, t, σ, tscvtt for time period t and pk, and

outputs 1 for acceptance, or 0 for rejection.
UVer takes as input Params, m, t, σ, ucvt and pk, and outputs 1 for acceptance,

or 0 for rejection.
Confirm, Disavow are interactive protocols, in which the signer is the prover.

The common input to both the prover and the verifier consists of Params, m,
t, σ and pk. The secret input to the prover is sk. At the end of a confirmation
(resp. disavowal) protocol run, the verifier outputs 1 for accepting σ as a valid
(resp. invalid) signature on m under pk with respect to t, and 0 otherwise.

The definition above differs from that in [13,14] slightly. We consider three types
of converters explicitly, i.e. selective converter, time-selective converter and uni-
versal converter, while in [13,14], only the first two types are considered. For
simplicity, we omit Params when describing the algorithms and schemes from
now on.

Correctness. For all (pk, sk) ← Kg(1k), m ∈ {0, 1}∗, t ∈ T , σ ← Sign(sk, m, t),
tscvtt ← TSConv(sk, t) and scvt ← SConv(sk, m, t, σ), the following equations
should hold:

Control(sk, m, t, σ)=1, SVer(m, t, σ, scvt, pk)=1 and TSVer(m, t, σ, tscvtt, pk)=1.

Let σ′ be a signature such that Control(sk, m, t, σ′) = 0. The confirmation and
disavowal protocols should satisfy the following conditions:
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Completeness. If signer S and verifier V honestly follow the protocol, then

Pr[ConfirmS(sk),V (m, t, σ, pk) = 1] = 1, and
Pr[DisavowS(sk),V (m, t, σ′, pk) = 1] = 1.

Soundness. For any PPT algorithm S′, it holds that

Pr[ConfirmS′(sk),V (m, t, σ′, pk) = 1] ≤ ε(k), and
Pr[DisavowS′(sk),V (m, t, σ, pk) = 1] ≤ ε(k),

where ε(·) is a negligible function in k.
Non-transferability. We require that the confirmation and disavowal proto-

cols are zero-knowledge so that no PPT verifier can transfer its conviction
of the validity (resp. invalidity) of a signature to others.

2.2 Security Models

Unforgeability. This requires that no efficient adversary can forge a new sig-
nature with non-negligible probability. We consider the following game:

1. Challenger C generates Params and (pk, sk), computes ucvt ← UConv(sk),
and invokes adversary A on input (Params, pk, ucvt).

2. A issues queries to the following oracle adaptively:
OSign takes as input a message m and a time period t, and outputs a

signature σ.
3. A outputs a triple (m∗, t∗, σ∗), and wins the game if

(a) UVer(m∗, t∗, σ∗, ucvt, pk) = 1, and
(b) σ∗ was not returned by OSign on input (m∗, t∗).

Definition 2 (Unforgeability). A TSCUS scheme is (t, qs, ε)-unforgeable, if
there is no A which runs in time t, issues at most qs queries to OSign, and
wins the game with probability at least ε.

In the definition above, the adversary is given the universal converter, while in
[13,14] the adversary is given all the time-selective converters. As the universal
converter enables verification of all the signatures regardless of which time peri-
ods that the signatures are corresponding to, the unforgeability definition above
is at least as strong as that in [13,14]. The definition above also captures strong
unforgeability, i.e. A is not able to come up with a new signature on m∗ with
respect to time period t∗ even if OSign has been queried with (m∗, t∗).

Invisibility. Given an undeniable signature, the invisibility requires that no
verifier can tell if it is valid.

1. Challenger C generates Params and a key pair (pk, sk), and gives (Params, pk)
to adversary A.

2. A issues queries to the following oracles:
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OSign takes as input (m, t) where m is a message and t a time period, and
outputs a signature σ generated using sk.

OSConv takes as input (m, t, σ) and outputs selective converter scvt if
SVer(m, t, σ, scvt, pk) = 1, and ⊥ otherwise.

OTSConv takes as input t and outputs time-selective converter tscvtt gen-
erated using sk.

OConfirm takes as input (m, t, σ) and uses sk to carry out the confirmation
protocol with A if Control(sk, m, t, σ) = 1, and does nothing otherwise.

ODisavow takes as input (m, t, σ), and uses sk to carry out the disavowal
protocol with A if Control(sk, m, t, σ) = 0, and does nothing otherwise.

3. A submits a message m∗ and a time period t∗. C then tosses a coin b. If
b = 0, C computes σ∗ ← Sign(sk, m∗, t∗); otherwise, it randomly selects σ∗

from the space of the signer’s signatures. C returns σ∗ to A.
4. A continues to query as in Step 2. Finally, it outputs a bit b′, and wins the

game if b′ = b and
(a) A did not query OTSConv on input t∗;
(b) A did not query OSConv on input m∗, t∗ and σ∗; and
(c) A did not query OConfirm or ODisavow on input (m∗, t∗, σ∗).

The advantage of A is defined as the absolute difference between the probability
that A wins the game and 1/2.

Definition 3 (Invisibility). A TSCUS scheme is (t, qs, qsc, qt, qc, qd, ε)-
invisible, if there is no A which runs in time t, issues at most qs queries to
OSign, qsc queries to OSConv, qt queries to OTSConv, qc queries to
OConfirm and qd queries to ODisavow, wins the game above with advantage
at least ε.

Anonymity. Another security property related to the undecidability of unde-
niable signatures is anonymity, introduced by Galbraith and Mao [8]. Given an
undeniable signature, anonymity requires that no verifier is able to find out the
signer of the signature. It captures the non-self-authenticating property and is
formalized in the indistinguishability-based game below.

1. Challenger C generates Params, and two key pairs (pk0, sk0), (pk1, sk1) using
Kg, and gives (Params, pk0, pk1) to adversary A.

2. A issues queries as in Def. 3, except that now all the oracles take as input
an additional bit d, and use skd to compute the answer.

3. A submits a message m∗ and a time period t∗. C then tosses a coin b, and
computes σ∗ ← Sign(skb, m

∗, t∗). It returns σ∗ to A.
4. A continues to query as in Step 2. Finally, it outputs a bit b′, and wins the

game if b′ = b and
(a) A did not query OTSConv on input t∗ and any d ∈ {0, 1};
(b) A did not query OSConv on input m∗, t∗, σ∗ and any d ∈ {0, 1}; and
(c) A did not query OConfirm nor ODisavow on input (m∗, t∗, σ∗, d) for

any d ∈ {0, 1}.
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The advantage of A is defined as the absolute difference between the probability
that A wins the game and 1/2.

Definition 4 (Anonymity). A TSCUS scheme is (t, qs, qsc, qt, qc, qd, ε)-
anonymous, if there is no A which runs in time t, issues at most qs queries
to OSign, qsc queries to OSConv, qt queries to OTSConv, qc queries to
OConfirm and qd queries to ODisavow, wins the game above with advantage
at least ε.

Access to random oracles will also be given to A if a scheme’s security is proven
in the random oracle model.

3 Number-Theoretic Assumptions

Admissible Pairings. Let G and GT be two cyclic groups of large prime order
p. The mapping ê : G × G → GT is said to be an admissible pairing, if (1.
bilinearlity) ∀u, v ∈ G and ∀a, b ∈ Z, ê(ua, vb) = ê(u, v)ab; (2. non-degeneracy)
∃u, v ∈ G such that ê(u, v) 	= 1T , where 1T is the identity element of GT ; and (3.
computability) there exists an efficient algorithm for computing ê(u, v) for any
u, v ∈ G. Let IG(1k) be a PPT which on input 1k outputs (G,GT , p, g, ê) which
are defined as above.

Strong Diffie-Hellman (SDH) Assumption [3]. The SDH assumption (t, q,
ε)-holds in the context of (G,GT , p, g, ê), if there is no adversary A which runs
in time at most t, and

AdvSDH
A (k) def= Pr[g ← G, x ← Zp, (c, g

1
x+c ) ← A(g, gx, gx2

, · · · , gxq

)] > ε,

where the probability is taken over the random choices of x ∈ Zp and the random
coins used by A.

Decisional Double Strong Diffie-Hellman (DDSDH) Assumption. The
DDSDH assumption (t, q1, q2, ε)-holds in the context of (G,GT , p, g, ê), if there
is no adversary A which runs in time at most t, and

AdvDDSDH
A (k) def=

∣∣∣∣Pr
[

Z1 ← G, x, y ← Zp, Z0 ← g
1
x

+ 1
y , b ← {0, 1},

b′ ← A(g, gx, · · · , gxq1
, gy, · · · , gyq2

, Zb)
: b′=b

]
− 1

2

∣∣∣∣>ε,

where the probability is taken over the random choices of Z1 ∈ G, x, y ∈ Zp,
b ∈ {0, 1} and the random coins used by A.

This assumption, although being q-type, is still non-interactive and falsifiable
[17]. If an algorithm A solves the (q1, q2)-DDSDH problem with advantage ε
where q1, q2 < o( 3

√
p), it has to perform at least Ω(

√
εp/(q1 + q2)) generic group

operations. Due to the page limit, we defer the intractability analysis of DDSDH
problem in the generic group model [23,3] to the full version of this paper.

4 Our TSCUS Scheme

Before proposing the new TSCUS scheme, we briefly review the Zhang-Safavi-
Naini-Susilo (ZSS) signature scheme [24] which is existentially unforgeable under
chosen message attacks in the random oracle model.
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4.1 Zhang-Safavi-Naini-Susilo (ZSS) Signature

Let (G,GT , p, g, ê) be a random output of algorithm IG(1k). Zhang-Safavi-Naini-
Susilo signature [24] works as below:

Kg. The signer selects at random x ← Zp and computes X := gx. Its pub-
lic/private key pair is (pk, sk) := (X, x).

Sign. Given a message m ∈ {0, 1}∗, the signer computes σ := g
1

x+H(m) , where
H : {0, 1}∗ → Zp is a collision-resistant hash function. The signer then returns
σ as its signature on the message.

Ver. Given a message m, a purported signature σ and a public key pk, the
verifier checks if ê(σ, XgH(m)) = ê(g, g). It accepts if the equation holds, and
rejects otherwise.

4.2 A New TSCUS Scheme

To support unbounded number of time periods and furthermore, to allow the
adversary to obtain time-selective converters for time periods of its choices, we
treat the time-selective converters as “signatures” on the time periods and gen-
erate them using a fully secure signature scheme. Since the verifier is unable
to compute the time-selective converters by itself, if we hide the signer’s (stan-
dard) signature by the corresponding time-selective converter, the verifier could
not verify the resulting signature. On the other side, in order to allow a verifier
to verify all signatures with respect to a time period using the corresponding
time-selective converter, we employ a deterministic signature scheme (e.g. ZSS
signature) to generate time-selective converters. With a time-selective converter,
anyone can recover the signer’s standard signature on the message from the given
undeniable signature. Below are the details of our scheme.

Let G,G be cyclic multiplicative groups of prime order p, ê : G × G → GT

be an admissible pairing, and g, h be random generators of G. Let λ(k) be a
polynomial in the security parameter k. We write it as λ for simplicity. Let
T ⊆ {0, 1}λ be a polynomial-size set of time periods2. Let H1 : {0, 1}λ → G,
H2 : {0, 1}∗ × {0, 1}λ → Zp and H3 : {0, 1}∗ × {0, 1}λ × G4 × GT → Zp be
hash functions which will be modeled as random oracles in security proofs. The
TSCUS scheme is described as follows:

Kg. The signer selects at random x, y ← Zp, computes X := gx and Y := hy,
and sets the public/private key pair to (pk, sk) := ((X, Y ), (x, y)).

Sign. Given a message m and a time period t, the signer computes

σ := g
1

x+H1(t) h
1

y+H2(m,t) . (1)

The signature on m with respect to time period t is σ.
2 This requirement is actually not necessary for our scheme, as our scheme sup-

ports exponentially large sets of time periods. Here we just follow Laguillaumie
and Vergnaud’s definition [13,14]. Different from [13,14] where they treat the time
period as an integer, in this paper, we treat it as a binary string.
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Control. Given a message m, a time period t and a signature σ, the signer
checks if Eq. (1) holds. It rejects if the check fails, and accepts otherwise.

Confirm. To confirm the validity of an alleged signature σ on a message m
with respect to a time period t, if Control(sk, m, t, σ) = 0, the signer does
nothing. The validity of σ tells that

ê(σ, Xgu1) = ê(g, g)ê(h, Xgu1)1/(y+u2),

where u1 = H1(t) and u2 = H2(m, t). Denote

W1 = ê(σ, Xgu1)/ê(g, g) and W2 = ê(h, Xgu1).

The signer carries out the following proof of knowledge of y with the verifier:

PK {y : hy = Y ∧ W y
1 = W2/Wu2

1 } , (2)

which is the equality proof of two discrete logarithms. There are standard
protocols for fulfilling this task.

Disavow. To disavow σ with respect to (m, t), if Control(sk, m, t, σ) = 1, the
signer does nothing; otherwise, it uses the knowledge of y to carry out the
following proof of knowledge with the verifier:

PK {y : hy = Y ∧ W y
1 	= W2/Wu2

1 .} (3)

This is the inequality proof of two discrete logarithms, and again there are
standard protocols for fulfilling the task.

SConv. To generate a selective converter for σ with respect to (m, t), the signer
checks if Control(sk, m, t, σ) = 1. If not, it returns ⊥; otherwise, it generates
the selective converter scvt := (c, z) ∈ Z2

p by applying Fiat-Shamir heuristic
to the confirmation protocol. Specifically, it computes scvt as below:
1. select at random r ∈ Zp, and set R1 = hr and R2 = W r

1 ;
2. set c := H3(m, t, σ, pk, R1, R2), and z = r + cy.

TSConv. To time-selectively convert undeniable signatures with respect to a
time period t, the signer computes

tscvtt := g
1

x+H1(t) ,

and releases the time-selective converter tscvtt.
UConv. To universally convert undeniable signatures, the signer releases ucvt :=

x, with which anyone can compute the time-selective converter for any time
period by following the TSConv algorithm.

SVer. Given m, t, σ, a selective converter scvt = (c, z) and pk, the verifier V
checks if the following equations hold:

hz = R1Y
c and W z

1 = R2(W2W
−u2
1 )c.

Output 1 if they hold, and 0 otherwise.
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TSVer. Given (m, t, σ, tscvtt, pk), the verifier computes u1 = H1(t) and u2 =
H2(m, t), and checks if

ê(tscvtt, Xgu1) = ê(g, g) and ê(σ · tscvt−1
t , Y hu2) = ê(h, h)

Output 1 if both equations hold, and 0 otherwise.
UVer. Given (m, t, σ, ucvt = x, pk), the verifier computes u1 = H1(t), u2 =

H2(m, t) and checks if

gx = X and ê(σ · g−1/(x+u1), Y hu2) = ê(h, h).

Output 1 if both equations hold, and 0 otherwise.

4.3 Security Analysis

Theorem 1. The time-selective convertible undeniable signature is strongly un-
forgeable in the random oracle model, provided that SDH assumption holds.

Proof. Let A be a PPT forger against the time selective convertible undeniable
signature scheme. Suppose it issues at most q1 queries to H1, q2 queries to H2,
q3 queries to H3 and qs signing queries, and wins the unforgeability game with
advantage ε. We make use of A to build an algorithm B which breaks the (Q+1)-
SDH assumption, where Q := q2 + qs.

The input of B is (g̃, g̃β, g̃β2
, · · · , g̃βQ+1

), and B is to find a pair (c, g̃1/(β+c)). It
chooses at random a Q-vector w = (w1, · · · , wQ) ∈ ZQ

p . Let G(·) be the function

G(β) :=
Q∏

j=1

(β + wj).

It selects at random g ∈ G and x ∈ Zp, and computes

h := g̃G(β), X := gx and Y := hβ .

Note that the second component y of the secret key is implicitly set to y := β,
which is unknown to B. Let pk = (X, Y ) and ucvt = x. B then chooses at random
j∗ ∈ [q2], invokes the adversary A on input (G,GT , ê, p, g, h, pk, ucvt), and starts
to simulate oracles for A as below.

H1. Given a distinct query t to oracle H1, B chooses at random string s ∈ Zp,
returns s to the adversary, and stores (t, s) into a hash table HT1.

H2. Given the j-th distinct query (mj , tj) to oracle H2, if j 	= j∗, B retrieves
wj from its memory; otherwise, it selects at random a string wj ∈ Zp. In
either case, B returns wj to the adversary, and stores ((mj , tj), wj) into a
hash table HT2.

H3. Given a distinct query R, B selects at random a string u ∈ Zp, returns u to
the adversary, and stores (R, u) in a hash table HT3.
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Sign. Given a distinct signing query (m, t), B first retrieves s = H1(t) and
w = H2(m, t) from tables HT1 and HT2, respectively. If there is no such
entry in the table, B creates one as above. It then computes

σ := g
1

x+s h
1

y+w .

Since x was chosen by B and w ∈ {w1, · · · , wQ}, σ could be efficiently
computed by B.

Finally, A outputs its forgery (m∗, t∗, σ∗). If (m∗, t∗) 	= (mj∗ , tj∗), B aborts;
otherwise, B retrieves the answer w∗ to query (m∗, t∗) from table HT2. Suppose
that A wins its unforgeability game. We have that A did not issue a signing
query on input (m∗, t∗) and therefore, B did not compute h1/(y+w∗) itself. The
validity of σ∗ shows that

ê(σ∗/g1/(x+H1(t
∗)), Y hw∗

) = ê(g, g),

which guarantees that T := σ∗/g1/(x+H1(t
∗)) is of the form T = h1/(y+w∗). Then

we obtain that
T = h

1
y+w∗ = g̃

G(β)
β+w∗ = g̃G′(β)g̃

d
β+w∗ ,

where G′(β) is a polynomial of degree Q− 1, and d is the constant number such
that G′(β)(β + w∗) + d = G(β). B then computes

Z =
(

T

g̃G′(β)

)1/d

,

and outputs (w∗, Z), which is a valid solution to the given SDH problem instance.

Probability Analysis. The simulation of the random oracles and the signing
oracle is perfect, and brings no difference to the adversary’s view. According to
the simulation above, B aborts if B’s guess of which query (m, t) to oracle H2

would be the pair in A’s forgery, is not correct. Denote by good the event that
B’s guess is correct. Since B chooses j∗ randomly and uniformly from the set
[q2], the probability that the event good happens is 1/q2. Conditioned on that it
does not abort, B succeeds in breaking the SDH assumption if A wins the game.
Therefore, the advantage of B in solving the SDH problem is lower bounded by

AdvSDH
B (k) ≥ Pr[good]ε =

1
q2

ε.

If ε is non-negligible, so is AdvSDH
B (k). ��

Theorem 2. The time-selective convertible undeniable signature is invisible in
the random oracle model, provided that DDSDH assumption holds.

Proof. Suppose the adversary A issues at most q1 queries to H1, q2 queries to
H2, q3 queries to H3, qs signing queries, qsc queries for time-selective converters,
and qc (qd, respectively) confirmation (disavowal, respectively) queries, and wins
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the invisibility game with advantage ε. We use A to construct another algorithm
B for solving the Decisional Double Strong Diffie-Hellman problem, namely the
(Q1+1, Q2+2)-DDSDH problem where Q1 := q1 + qs and Q2 := q2 + qs.

Let (g̃, g̃α, · · · , g̃αQ1+1
, g̃β , · · · , g̃βQ2+2

, Z) be a random instance of (Q1+1, Q2+
2)-DDSDH problem. B selects at random a (Q1+1)-vector s := (s∗, s1, · · · , sQ1)∈
ZQ1+1

p and a (Q2 + 2)-vector w := (w∗, w1, · · · , wQ2+1) ∈ ZQ2+2
p subject to

Q1∏
i=1

(si − s∗) =
Q2+1∏
j=1

(wj − w∗), (4)

and computes the following two functions

F (α) =
Q1∏
i=1

((α − s∗) + si) and G(β) =
Q2+1∏
j=1

((β − w∗) + wj).

It sets g := g̃F (α), X := gα−s∗
, h := g̃G(β) and Y := hβ−w∗

. The public
key of the signer is pk := (X, Y ), and the corresponding secret key is sk :=
(x, y) = (α − s∗, β − w∗) which is unknown to B. Observe that conditioned on
the choice of s and the relation (4), polynomial G(β) is still of dimension Q2,
which guarantees the independence of h from g and the signatures (to be gen-
erated later). Hence, pk is well distributed. B then invokes the adversary A on
input (G,GT , ê, p, g, h, pk), and begins to simulate oracles for A as below.

H1. Given the i-th distinct query ti to oracle H1, B returns si to the adversary,
and stores (ti, si) into a hash table HT1.

H2. Given the j-th distinct query (mj , tj) to oracle H2, B returns wj to the
adversary, and stores ((mj , tj), wj) into a hash table HT2.

H3. Given a distinct query (m, t, σ, pk, R1, R2), B selects at random a string
c ∈ Zp, returns c to the adversary, and stores ((m, t, σ, pk, R1, R2), c) in a
hash table HT3.

Sign. Given a distinct signing query (m, t), B first retrieves s = H1(t) and
w = H2(m, t) from tables HT1 and HT2, respectively. If there is no such
entry in the table, B creates one as above. It then computes

σ := g
1

x+s h
1

y+w .

Since s ∈ {s1, · · · , sQ1} and w ∈ {w1, · · · , wQ2+1}, σ could be efficiently
computed by B.

Confirm/Disavow. Given a confirmation/disavowal query (m, t, σ), B runs the
simulator of the confirmation/disavowal protocol to produce the correspond-
ing proof.

SConv. Given (m, t, σ), B calls the simulator of the non-interactive version of
the confirmation protocol to produce a proof π = (c, z), and returns it to
the adversary. In particular, B picks at random (c, z) ∈ Z2

p, and patches the

oracle H3 with H3(m, t, σ, pk, hz/Y c, W z
1 /(W2W

−H2(m,t)
1 )c) = c. If a collision

occurs, B aborts with outputting a random bit.
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TSConv. Given a time period t, B retrieves s = H1(t) from table HT1, computes
and returns tscvt := g1/(x+s).

When the adversary is ready, it submits a message m∗ and a time period t∗ such
that (m∗, t∗) is distinct from all the pairs it submitted to the signing oracle and
t∗ was not submitted as a TSConv query. An honestly generated signature on
(m∗, t∗) should be of the form:

σ∗ = g
1

x+s∗ h
1

y+w∗ = g
1

α−s∗+s∗ h
1

β−w∗+w∗

= g
1
α h

1
β = g̃

F (α)
α g̃

G(β)
β

= g̃

∏Q1
i=1(α−s∗+si)

α g̃

∏Q2+1
j=1 (β−w∗+wj)

β

= g̃F ′(α)g̃G′(β)g̃

∏Q1
i=1(si−s∗)

α +

∏Q2+1
j=1 (wj−w∗)

β ,

where F ′(α) is a polynomial of degree Q1−1 and G′(β) is a polynomial of degree
Q2. Note that the two polynomials could be efficiently computed by B from the
given input. By Eq. (4) we know that

∏Q1
i=1(si − s∗) =

∏Q2+1
j=1 (wj −w∗). Denote

it by d. Then we have

σ∗ = g̃F ′(α)g̃G′(β)(g̃
1
α + 1

β )d.

Hence, B prepares the challenge signature σ∗ by computing

σ∗ := g̃F ′(α)g̃G′(β)Zd.

If Z = g̃
1
α + 1

β , σ∗ is a valid signature; if Z is randomly chosen from G, σ∗ is
also random. Let b be the bit such that b = 1 if Z is a random element of G,
and b = 0 otherwise. B returns σ∗ and continues to simulate the oracles for A.
Finally, A outputs a bit b′. B outputs b′ as well. If A wins its game, so does B.

Probability Analysis. The simulation of oracles H1, H2, TSConv and Sign
are perfect, as long as the numbers of queries A issued do not exceed the pre-
sumed bounds. In the simulation of oracle H3, B patches the output of the oracle,
and collisions might occur. Denote by col the event that a collision occurs. The
probability that col happens is at most q3qsc/p, which is negligible.

In addition, B answers the adversary’s confirmation and disavowal queries by
running the corresponding simulator, which would also bring difference to the
adversary’s view. However, since the protocols are zero-knowledge, the simulated
proofs look almost the same as real ones, up to a negligible difference δ. According
to the simulation above, B succeeds in telling how Z was chosen if A succeeds
in its invisibility game. Therefore, we have that

AdvDDSDH
B (k) ≥

∣∣∣∣Pr[col]
1
2

+ Pr[¬col](1 − δ)(
1
2

+ ε) − 1
2

∣∣∣∣
≥

∣∣∣∣12 q3qsc

p
+ (1 − q3qsc

p
)(1 − δ)(

1
2

+ ε) − 1
2

∣∣∣∣
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=
∣∣∣∣(1 − q3qsc

p
)(ε − δ(

1
2

+ ε))
∣∣∣∣ ≥

∣∣∣∣(1 − q3qsc

p
)(ε − δ)

∣∣∣∣ .

The last inequality holds because ε ≤ 1/2. Since the terms q3qsc/p and δ are
negligible in the security parameter, it turns out that AdvDDSDH

B (k) is negligibly
close to ε. ��

It is known that invisibility and anonymity of undeniable signature are equiva-
lent to each other if the signer’s signature space is indistinguishable from uniform
[8]. This is the case in our scheme, i.e. the range of each signer’s signature space
is G. We have the following corollary:

Corollary 1. Our time-selective convertible undeniable signature scheme is
anonymous in the random oracle model if DDSDH assumption holds.

4.4 Randomized Signature Generation

In our TSCUS scheme each message has a unique signature per time period. To
allow the generation of multiple signatures on a message m w.r.t. a time period t,
we may modify the signature generation algorithm as follows. The signer chooses
at random r ← Zp, and computes U = g1/(x+H1(t))h1/(y+H2(m,t,r)). The signature
on m w.r.t. t is σ := (U, r). The other part of the scheme can then be modified
accordingly.

4.5 Efficiency and Comparison

In Table 2, the key size (both public and private keys), the signature size and
converter size (both selective and time-selective) of our scheme are compared
with that of existing ones [13,14,1]. The table also shows the differences in secu-
rity assumptions. In the table, t is the time period. Note that we do not consider
the size of Params, while we should note that besides group description, Params
of the scheme in [1] also contains the description of two pseudorandom functions.
Hence the size of their Params is larger than that of [13,14] and ours. Regarding
security, the anonymity of schemes in [13,14] relies on a strong and interactive
assumption, xyz-DCAA, and the security of the scheme in [1] relies on some spe-
cial properties of hash functions, and the pseudorandomness of pseudorandom
functions, while the scheme proposed in this paper relies on SDH and DDSDH
assumptions.

Table 3 shows the comparison of these schemes in terms of the computational
cost. In the table, ‘E’ and ‘ET ’ represent the exponentiation operation in G

and GT , respectively, ‘P’ represents the bilinear pairing, and ‘PRF’ refers to the
evaluation of a pseudorandom function.

Note that in Laguillaumie and Vergnaud’s schemes [13,14], the size of a time-
selective converter grows linearly/logarithmcally with the number of time peri-
ods. If the converter for the t-th period has already been published, the signer
only needs to release one extra group element in the (t + 1)-th time period.
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Table 2. Comparison with [13,14,1] in size and assumption

PK SK Sig SCvt TSCvt Assumptions

[13] 2G 2Zp 
 + 1G tG tG CDH + xyz-DCAA
[14] 2G 2Zp 
 + 1G 	log t
G 	log t
G CDH + xyz-DCAA
[1] 2G 2Zp 2G + 1Zp 1Zp k raPre + rlColl + Pre + Prf

Ours 2G 2Zp 1G 2Zp 1G SDH + DDSDH

Table 3. Comparison with [13,14,1] in computational cost

Sign SConv SVer TSConv TSVer

[13] 1E t E 1E+(2t + 2) P t E 1E+(2t + 2) P
[14] 1E 1.5	log t
 E 1E+(3	log t
 + 2) P 1.5	log t
E 1E+(3	log t
 + 2) P
[1] 2E+2PRF 1PRF 1PRF+4E 2PRF 4E

Ours 2E 2E+1ET +3P 3E+3ET +3P 1E 2E+4P

The computation of our scheme can be optimized. If we pre-compute ê(g, g)
and ê(h, h) and put them into the system parameter, the number of pairing
evaluations in SConv, SVer and UVer can be reduced by 1 each, and that in
TSVer can be reduced by 2. In practice, the verifier only needs to check the
validity of the time-selective converter (i.e. the first equation in TSVer) once
for each time period. Then for each subsequent signature corresponding to the
same time period, the number of pairing evaluations in TSVer can be further
reduced to just one.

5 Conclusion

In this paper we proposed a new TSCUS scheme, which has short and constant-
size converters (i.e. universal, selective and time-selective). The scheme has low
computational complexity and low communication complexity. The security of
the scheme is based on SDH assumption and DDSDH assumption.

The security of the concrete TSCUS scheme relies on the random oracle model.
One of the future work is to construct a TSCUS scheme which can be proven se-
cure in the standard model, while having comparable computational complexity
and size on keys, signatures and converters.
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Abstract. In this paper, we revisit the construction of fail-stop signa-
tures from the factoring assumption. These signatures were originally
proposed to provide information-theoretic-based security against forg-
eries. In contrast to classical signature schemes, in which signers are pro-
tected through a computational conjecture, fail-stop signature schemes
protect the signers in an information theoretic sense, i.e., they guaran-
tee that no one, regardless of its computational power, is able to forge
a signature that cannot be detected and proven to be a forgery. Such a
feature inherently introduced another threat: malicious signers who want
to deny a legitimate signature.

Many construction of fail-stop signatures were proposed in the litera-
ture, based on the discrete logarithm, the RSA, or the factoring assump-
tions. Several variants of this latter assumption were used to construct
fail-sop signature schemes. Bleumer et al. (EuroCrypt ’90) proposed a fail-
stop signature scheme based on the difficulty of factoring large integers
and Susilo et al. (The Computer Journal, 2000) showed how to construct
a fail-stop signature scheme from the so-called “strong factorization” as-
sumption. A later attempt by Schmidt-Samoa (ICICS ’04) was to propose
a fail-stop signature scheme from the p2q factoring assumption.

Compared to those proposals, we take a more traditional approach
by considering the Rabin function as our starting point. We general-
ize this function to a new bundling homomorphism while retaining Ra-
bin’s efficient reduction to factoring the modulus of the multiplicative
group. Moreover, we preserve the efficiency of the Rabin function as our
scheme only requires two, very optimized, modular exponentiations for
key generation and verification. This improves on older constructions
from factoring assumptions which required either two unoptimized or
four exponentiations for key generation and either two unoptimized or
three modular exponentiations for verifying.

Keywords: Fail-stop signature schemes, Digital signatures, Rabin
function, Factoring.

1 Introduction

Digital signatures are one of the main achievements of public key cryptogra-
phy: they are the main primitive that ensures authenticity of data transmitted
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through an insecure channel. In being so, digital signatures were originally de-
signed to be the “digital” equivalent to handwritten signatures. Their underlying
mechanism is simple and elegant: to each person is associated a “public” key that
can be used to verify any signature this person has produced for a document
or certificate. To each such key, that is publicly known, is associated a so-called
“private” key that is known to the signer only and is used to sign electronic
messages or documents. Naturally, this private key should not be computable
from the public key. A computational assumption believed to be “impossible”
to solve is usually used to prevent this scenario.

However, when coming to the practical world, the question of forgeries was
quickly raised by lawyers and judges. This case was even more critical in countries
like Germany in which digital signatures have a legal value. However, cryptogra-
phers initially ignored the problem of forgery and repudiation, that is because the
whole security of a digital signature scheme stands on the shoulders of a problem
that we trust to be “hard” to solve. So, as long as the computational assumption
holds, forgeries do not happen, except with very small probability that we also
hope to never occur. Nevertheless, from a legal point of view, forgeries do exist
and signers have to be given the ability to defend themselves against them.

Fail-stop signatures were designed to address this problem: they provide the
signer with a mean to prove that a signature is a forgery and that the crypto-
graphic assumption holding the security of the scheme has been broken. So, in the
case of a dispute, the signer can exhibit the evidence and deny any responsibility
on it. Furthermore, such a forgery shows that the scheme has become insecure,
and thus has to be stopped, hence the denomination “fail-stop”. Since they con-
sider the extreme eventuality of the break of a hard cryptographic problem,
fail-stop signature schemes should protect the signers against computationally
unlimited adversaries. However, granting to signers the ability to prove forgeries
is not without risk. Indeed, a malicious signer may try to prove that a signature
he has produced is a forgery. This way, he can free himself from any commitment
the signed document may induce. Unfortunately, it is theoretically impossible to
ensure security against computationally unlimited malicious signers if we assume
that the forgers are so. Instead, the security against a malicious signer is only
computational, i.e., it assumes that solving the hard problem for this party is
infeasible.

1.1 Previous Work

While the most popular and efficient scheme is based on the discrete logarithm
problem [19], few convincing schemes from the factoring assumption were pro-
posed in the literature. Surprisingly, the first fail-stop signature scheme was
based on the factorization assumption [3]. More precisely, it was originally re-
lated to the notion of claw-free pairs of permutations in [3] but then reformulated
in [11] to explicitly relate the security of the scheme to the factoring assumption.
This scheme, to which we refer as the QR scheme, is based on the hardness of
factoring an RSA modulus n = pq with factors being such that p ≡ 3 mod 8 and
q ≡ 7 mod 8. Up to date, it is unclear how to compare the difficulty of factoring
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such moduli compared to the classical RSA ones. Moreover, the scheme seems
to be made so that it works so its structure is not very “natural”.

Later, Susilo et al. proposed another scheme [17], that, following [15], we refer
to as the order scheme, based on the difficulty of factoring an RSA modulus
n = pq when the algorithm is also given an element from a superset Z�

P of Z�
n

(such that P is prime and a that P −1 is a multiple of n) of order q. This scheme
has been shown to be insecure by Schmidt-Samoa [15] but was also repaired in
the same paper by reducing the message space form Z�

n to Zp. This fix affected
the efficiency of the scheme as it made signatures around three times larger than
their corresponding messages.

In parallel, Schmidt-Samoa proposed a scheme based on the hardness of fac-
toring RSA moduli of the form n = p2q [15] (we refer to this one as the p2q
scheme). Although it is probably the most elegant scheme of those mentioned
before, this scheme inherently requires larger sizes for the modulus compared to
the other two. Recently, Susilo proposed a fail-signature scheme from the factor-
ing and discrete logarithm assumption [16]. However, we note that its security
proof does not make any reduction to the factoring problem but rather to the
discrete logarithm problem in an RSA group. Therefore, we do not consider it
based on a factoring assumption.

1.2 Our Contribution

We revisit the design of fail-stop signatures from the factoring assumption. Our
starting point is the Rabin function, f(x) = x2 mod n, whose invertibility is
known to be equivalent to the problem of factoring the integer n. As a con-
sequence of the Chinese Remainder theorem, when n = pq, a classical RSA
modulus, this function maps four integers to a single one. In this work, we use a
generalization of the Rabin function, f(x) = xa mod n, for a a that divides the
order of the group Z�

n. In practice, we will construct such moduli by choosing a p
that satisfies p−1 ≡ 0 mod a. We remark that this type of RSA moduli, with a
publicly known, was already used by Benaloh to define a public key encryption
scheme [4].

As we show later, the function f(x) = xa mod n enjoys a number of nice
properties. At first, using a result from number theory due to Frobenius [6], we
prove that this function actually maps a elements of Z�

n to a single a-th residue
of the same group. The second property, inherited from the Rabin function is
that finding collisions is provably as hard as factoring the modulus with the
knowledge of a. The last observation is that both proofs for the results above do
not take into consideration the structure of a, but only on its size. Consequently,
numbers of the form 2s + 1 will be used for a as it allows fast computation of
the modular exponentiation in s multiplications using the square-and-multiply
method, resulting in a quadratic complexity for computing the function f . All
these properties allow us to use this function as a bundling homomorphism and
then instantiate Pfitzmann’s general construction [12] of fail-stop signatures to
yield the most efficient scheme based on a factoring assumption.
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The rest of the paper is structured as follows. Section 2 provides the nec-
essary background, definitions of fail-stop signature schemes and the factoring
intractability assumption. We then dedicate Section 3 to our instantiation of the
fail-stop signature scheme and prove its security. Efficiency analysis is discussed
in Section 4.

2 Preliminaries

2.1 Notations and Negligible Probabilities

Throughout this paper, we use the expression y ← A(x) to mean that y is
assigned the output of algorithm A running on input x. An algorithm is said to
be polynomial if its running time can be expressed as a polynomial in the size
of its inputs.

If X denotes a set, |X | denotes its cardinality and x ∈R X expresses that x is
chosen from X according to the uniform distribution. If X and Y are sets, then
the relative complement of X in Y , denoted X \ Y , is the set of elements in X ,
but not in Y .

We also recall the classical notions of negligible function and one-way function.

Definition 1 (Negligible Function). A function f : N → R is negligible in k
if for any positive polynomial function p(·) there exists k0 such that:

k ≥ k0 ⇒ f(k) <
1

p(k)
.

Negligible functions in k are denoted negl(k).

2.2 Number Theoretic and Factoring Background

We call a prime number p to be a-strong, if p = 2ap′ + 1 for a prime p′ > 2a.
Note that such prime numbers are called strong by Rivest and Silverman [14]
and that for a = 1 we get the usual definition of strong primes.

In the following, we consider a probabilistic polynomial-time algorithm Gen
that, on input a security parameter 1k, that picks an integer a and generates a
random a-strong prime p = 2ap′ + 1 and a regular, not a-strong, prime number
q, such that �log2 p� = �log2 q� = �F(k), where �F(k) denotes a function that
represents, for any given security parameter k, the recommended (bit-)size of
the RSA modulus n = pq. In the end, Gen outputs n = pq and a along with p
and q. The following definition formalizes the main assumption that will be used
throughout this work.

Definition 2 (The Factorization Assumption with a-strong primes).
Let us consider a probabilistic polynomial-time algorithm AFACT who takes as
input an RSA modulus n = pq and an odd integer a, such that p, q, and p− 1/2a
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are all prime numbers, and outputs p and q . The factoring assumption states
that for any such AFACT, we have

Pr
[
(p, q) ← AFACT(1

k, n, a)
∣
∣(n, a, p, q) ← Gen(1k, a)

]
= negl(k).

The probability is taken over the random tapes of Gen and AFACT.

While this type of prime numbers has already been used before by Benaloh to
construct a public encryption scheme [4], we refer the reader to the work of
Groth [8] which makes a more detailed treatment of the factorization of such
numbers by Pollard’s rho method [13] and other factoring algorithms such as
the general number field sieve.

In the rest of this section, we concentrate on exponentiation to a and a-th
residuosity. It is well known that every x ∈ Z�

n has a unique a-th root if and only
if gcd(a, ϕ(n)) = 1, where ϕ(·) denotes the Euler totient function. In fact, this
ensures the correctness of the RSA cryptosystem. However, when a and ϕ(n)
are not coprime, an element of Z�

n may admit multiple a-th roots as stated by
the following theorem.

Theorem 1 (Frobenius [6]). If a divides the order of a group, then the number
of elements in the group whose order divides a is a multiple of a. If the group is
cyclic, then this number is exactly a.

Note that Z�
n is not cyclic when n is an RSA modulus. However, the next theorem

proves that the number of a-th roots of any element in Z�
n is exactly equal to a

in the class of RSA moduli we consider in this paper.

Theorem 2. Let a be an odd number and n = pq be an RSA modulus such that p
is an a-strong prime, and q is a regular prime number that satisfies gcd(a, q−1) =
1. If y is an a-th residue in Z�

n, then the equation ga = y mod n admits exactly
a solutions.

Proof. Let CRT : Z�
n → Z�

p ×Z�
q denote the isomorphism induced by the chinese

remainder theorem. By applying CRT, if g is a solution to the equation ga = y
mod n, then (gp, gq) = (g mod p, g mod q) is a solution to the two equations

(gp)
a = y mod p, (1)

(gq)
a = y mod q. (2)

On one hand, Recalling that Z�
p is cyclic when p is prime, we can apply Thm. 1 to

deduce that Eq. (1) has exactly a solutions (remember that a divides ϕ(p) = ap′).
On another hand, since gcd(a, ϕ(q)) = 1, there must exist a′q such that a ·a′q = 1

(mod q − 1) and Eq. (2) can be rewritten as gq = ya
′
q mod q. Hence, Eq. (2)

admits one unique solution.
As there exist a tuples of the form (gp, gq) that satisfy equations (1) and (2),

by applying CRT−1, we deduce that the number of a-th roots of y in Z�
n is exactly

a. ��
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2.3 Fail-Stop Signatures

We briefly review the basic definition of fail-stop signature schemes and their
security properties. A complete and more formal definition can be found in [5].

The idea of fail-stop signatures is to associate, to each possible message m, a
number of signatures s that passes the verification test with the public key. These
signatures are called acceptable signatures. However, the signer should not be
able to construct more than one signature from the secret key. This one signature
is called the valid signature. Of course, the set of acceptable signatures must be
small in comparison with the signature space, so that it should be difficult for
a computationally bounded signer to find an acceptable signature different from
his own.

In all cases, an adversary with unlimited computational power can always
compute the set of acceptable signatures (one way is to try the verification
algorithm with every element of the signature space). So, in order to achieve
security against such an adversary, we have to consider an information-theoretic
security determined by a security parameter σ ∈ N: an adversary with unlimited
computational power should not have enough information to distinguish the valid
signature in the set of acceptable ones except with a probability upper-bounded
by 2−σ (the probability to guess it successfully). This property is called the
signer’s security.

In parallel, verifiers must be secure against signers who, by computing a valid
proof of forgery, manage to disavow one of their own legitimate signatures. The
security against these signers can only be computational which means that the
probability of a signer disavowing his own signature is negligible in k. This
property is known as the verifier’s security.

Definition 3 (Fail-Stop Signature Schemes). A fail-stop signature scheme
is defined by the following five polynomial-time algorithms:

– KeyGen(1k, 1σ, 1N) −→ (sk, pk). This is a probabilistic polynomial-time, pos-
sibly interactive, protocol run by the signer and the verifier (or a trusted
center) runs on security parameters k, σ and an integer N representing the
number of signatures the signer can release. At the end of the protocol, he
signer obtains a private key sk which can be used to sign at most N mes-
sages (This type of signature schemes are said to be N -times). The other
party obtains the corresponding public key pk. For the sake of simplicity, the
input 1N is omitted when the scheme is meant to be used to sign one message
only.

– Sign(sk, i,m) −→ s. Given a message m, a counter i ∈ {1 . . .N}, incre-
mented at each invocation of this algorithm, and the private key sk, this
(probabilistic) polynomial-time algorithm creates a valid signature s for the
message m. When the scheme is a one-time signature scheme, i.e., N = 1,
the input i is omitted.

– Verify(pk,m; s) −→ {0, 1}. Given a signature s for m and a public key pk,
Verify is a deterministic polynomial-time algorithm that outputs 1 if the sig-
nature is acceptable, otherwise it outputs 0.
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– ProveForgery(sk,m, s) −→ {pr,⊥}. On input an acceptable signature s on
m, and private key sk, this algorithm outputs a bit-string pr or ⊥ in case of
failure.

– VerifyProof(pk,m, s, pr) −→ {0, 1}. A polynomial-time algorithm that takes
on input pk, an acceptable signature s of a message m and a proof of forgery
pr and outputs either 1, meaning that the proof is valid, or 0, meaning that
the proof is invalid.

Additionally, any fail-stop signature scheme should also satisfy two correctness
properties: every signature honestly produced using Sign is acceptable and every
proof computed using ProveForgery passes the verification. This is more formally
defined hereafter.

Definition 4 (Correctness of a Fail-Stop Signature Scheme). We say
that a fail-stop signature scheme is correct if the two conditions hold:

1. Every honestly generated signature is valid, i.e.,

∀λ,N,m ∈ M : Pr

[
1 ← Verify(pk,m, s)

∣
∣∣
∣
(pk, sk) ← Keygen(1λ, 1N ),

s ← Sign(sk,m)

]
= 1.

2. Every honestly generated proof is valid, i.e.,

∀λ,N,m ∈ M, s ∈ S :

Pr

⎡

⎣1 ← VerifyProof(pk,m, s, pr)

∣
∣
∣∣
∣
∣

(pk, sk) ← Keygen(1λ, 1N),
pr ← ProveForgery(sk,m, s),

pr �=⊥

⎤

⎦ = 1.

Security against malicious signers and powerful forgers is formalized as follow.

Definition 5 (Security of a Fail-Stop Signature Scheme). A fail-stop sig-
nature scheme with security parameters k and σ is said to be secure if the two
properties hold

1. Signer’s security. The probability that a computationally unlimited ad-
versary knowing pk and the signature of N adaptively chosen messages
(m1, s1), . . . , (mN , sN ) outputs a pair (m, s) such that (m, s) �= (mi, si), ∀i =
1 . . .N , and ProveForgery(sk,m, s) =⊥ must be smaller than 2−σ.

2. Verifier’s security. The probability that a polynomially bounded malicious
signer generates a public key pk and then outputs a pair (m, s) and a proof
of forgery pr such that VerifyProof(pk,m, s, pr) = 1 must be negligible in k.

A constraining result for fail-stop signatures is that, in order to be able to sign
N messages, the signer has to generate at least (N + 1)(k − 1) secret random
bits. We stress that these bits do not necessarily need to generated during the
key generation as the signature algorithm may be probabilistic and update the
internal state according to some random bits. Although this result seems a sever
limitation against the practical implementation of fail-stop signature schemes,
it has been proved in [18] that it is unavoidable if one hopes to achieve security
against unbounded adversaries.
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2.4 The General Construction Using Bundling Homomorphisms

A general framework for constructing a fail-stop signature scheme secure for sign-
ing one message, on which are built all known secure fail-stop signature schemes,
has been proposed by Pfitzmann [12]. It is based on the notion of bundling
homomorphism. We note that classical techniques such as Merkle trees [9,10],
top-down authentication trees [7], and one-way accumulators [1,2], can be used
to extend a one-time fail-stop signature scheme to many messages.

Definition 6 (Family of Bundling Homomorphisms). Let ı ∈ I be an in-
dexing for a family of triples (hı, Gı, Hı) such that for all possible ı ∈ I, (Gı,+, 0)
(Hı,×, 1) are Abelian groups and hı : Gı → Hı. (hı, Gı, Hı) is called a family of
bundling homomorphisms with degree level 2τ and collision-resistance security
of level k if it satisfies:

1. For every ı ∈ I, hı is an homomorphism.
2. There exist polynomial-time algorithms for sampling from I, computing hı

and the group operations in Gı and Hı, for every ı ∈ I
3. For every ı ∈ I, every image y ∈ Im(hı) has at least 2

τ preimages in Gı. We
call 2τ the bundling degree of the homomorphism.

4. It is computationally infeasible to find collisions, i.e. for any probabilistic
polynomial-time algorithm Ã, we have

Pr

[
hı(x1 − x2) = 1, x1 �= x2

∣∣
∣
∣

ı ∈R I,

(x1, x2) ← Ã(ı)

]
= negl(k)

where the probability is taken among the random choice of ı and the random
coins of Ã.

The basic idea behind Pfitzmann’s construction is to use the high bundling
degree of a bundling homomorphism to “hide” the signer’s secret key, which lies
in the space of the G’s, even against powerful adversaries who can invert the
homomorphism (note that the collision resistance of bundling homomorphisms
stated in point 4 of the definition implies resistance against preimage attacks).

The complete description of the construction is described below. For the sake
of simplicity, we assume the case in which the key generation is run by the signer
in conjonction with a center trusted by the verifiers (and not necessarily by the
signer). This easily generalizes to the case of many verifiers [11].

– KeyGen(1k, 1σ). As a prekey, the center picks a random index K for the
family of bundling homomorphisms Hı. It sets h = hK , G = GK , H = HK

and also defines the finite message space M ⊂ Z.
For prekey verification, the signer has to be convinced that h is a group
homomorphism with bundling degree 2τ for an appropriate τ to be later
discussed. Once he is convinced, the signer chooses randomly his private key

sk = (sk1, sk2) ∈R G2,

and computes the public key

pk = (pk1, pk2) = (hK(sk1), hK(sk2)) ∈ H2.
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– Sign(sk,m). For signing a message m ∈ M , compute

s = sk1 +m · sk2,

where m · sk2 denotes the operation of performing m additions of sk2 in G.
– Verify(pk,m, s). Check whether:

h(s) = pk1 × pkm2 .

– ProveForgery(sk,m, s′). Given s′ a forgery for m that passes the verification,
the signer computes s = Sign(sk,m) and exhibits

(m, s, s′).

– VerifyProof(pk,m, s, pr). Given m and (s, s′) ∈ G2, verify that

s �= s′ ∧ h(s) = h(s′)

For the security analysis of this construction, we will denote SKpk the set of
secret keys that correspond to the public key pk, i.e,

SKpk = {sk ∈ SK : h(sk) = pk}.
Since h has a bundling degree of 2τ , we must have |SKpk| ≥ 2τ . In consequence,
given a public key (pk1, pk2) there are at least 22τ private keys that match the
signer’s public key. Each of these private keys produces a signature that passes
the verification. These keys can be computed by an adversary with unlimited
computational power, but he cannot know which of these 22

τ

keys is the signer’s
key that he used to sign the message. However, because of the equation sk1 +
m × sk2 = s, it is sufficient to find one key to determine the other, thus the
number of possible private keys is reduced to 2τ .

A signer is able to prove a forgery on a message m′ only if his signature
differs from the forged signature. To measure the probability that an adversary
outputs the signer’s signature we must analyze the number of pairwise different
signatures that can be produced using the 2τ private keys. This number is related
to the number of possible secret keys that produce a valid signature. Some easy
implications show that this number is upper-bounded by the size of the set

T = {d ∈ G : h(d) = 1 ∧ (m′ −m)d = 0}.

In order to prove security, we have to consider the worst case with respect to
the choice of the message, i.e., we consider the signature that can be produced
by the maximum number of candidate secret keys,

Tmax = max
m′∈M\{0}

|{d ∈ G : h(d) = 1 ∧m′d = 0}| .

A more detailled proof and analysis of this construction can be found in [11,12].
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Theorem 3 (Security of the General Construction [11,12]). Let a fail-
stop signature scheme following the general construction above with security pa-
rameters k, τ . We do have

1. The scheme provides a level of security k for the verifiers.
2. If 2τ is chosen such that Tmax ≤ 2τ−σ, then this scheme provides a level of

security of σ for the signer.

3 New Fail-Stop Signatures from Factoring

3.1 The Construction

Let us consider the set of RSA moduli n = pq for which p is an a-strong prime
number and p− 1 is co-prime with q. We define the following group homomor-
phism

Ha : Z�
n −→ Z

�
n

x �−→ xa mod n.

And using Pfitzmann’s general construction, the following fail-stop signature
scheme comes naturally:

KeyGen. On input σ, k the center chooses a σ-bit odd integer a and two equally
sized primes p, q such that p− 1/2a is also a prime number and that gcd(q−1, a) =
1. The prekey of the scheme then consists of n = pq and a.

To verify that the prekey is correctly generated, the signer has to be pro-
vided with a zero-knowledge proof that a indeed divides ϕ(n) (such a proof can
easily be constructed from general zero-knowledge proofs). From that point, he
generates the key material as follow

(sk1, sk2) ∈R Z
�2
n , (pk1, pk2) = (ska1 mod n, ska2 mod n).

Sign. The message space is defined to be M = {1, . . . , ϕ(n) − 1} \ {x >
1| gcd(a, x) �= 1}. To sign a message m ∈ M , the signer computes

s = sk1 × skm2 mod n

Verify. An element s ∈ Z�
n is an acceptable signature on m ∈ M if and only if

the following equality holds

sa = pk1 × pkm2 mod n.

ProveForgery. On the happening of a forgery (m, s�), the proof consists of, as
states the general construction, the signer’s signature s on the message m using
his secret key (sk1, sk2).
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VerifyProof. Given two signatures s and s� on the same message m, the proof
of forgery is valid if both signatures are different and sa = s�a mod n (It will
be shown in the next section that this equation leads to the factorization of n).

3.2 Security Analysis

To prove that hn, described above, is a family of bundling homomorphisms, we
first need to prove this lemma.

Lemma 1. Let n = pq and a be an odd number such that p, q are prime number
and a divides p− 1/2, p− 1/2a is prime and gcd(q − 1, a) = 1. If there exists a
successful polynomial-time algorithm Ã who succeeds in finding x1 and x2 such
that hn(x1) = hn(x2) and x1 �= x2, then there exists a successful polynomial-time
algorithm against the factorization problem of Def. 2.

Proof. We construct the algorithm against factoring as follows. First, it calls
upon Ã and gets x1 and x2 such that

xa
1 = xa

2 (mod n).

Since p and q are of the same size, it must be that q > a. Hence, a mod q−1 = a.
So,

xa
1 = xa

2 (mod q).

Since gcd(a, q − 1) = 1, a is invertible modulo q − 1 and it results that

x1 = x2 + k · q, for 1 ≤ k < p

Hence, we conclude that gcd(x1 − x2, q) = q.
So it is sufficient for AFACT to compute q = gcd(x1 − x2, n) and then deduce

p = n/q. Note that AFACT runs in polynomial-time if Ã does so. Moreover, it has
the same success probability of Ã. ��
The following theorem proves that hn, described above, is a family of bundling
homomorphisms of degree 2σ:

Theorem 4. Under the Factorization Assumption of Def. 2, the construction
above is a family of bundling homomorphisms with bundling degree 2σ.

Proof. It is trivial to see that h is an homomorphism.
Regarding its bundling degree, we recall Thm. 2 which states that the number

of solutions of the equation xa = y mod n is a when y is an a-th residue of Z�
n.

Setting y = 1 trivially leads the kernel of the homomorphism. The kernel is thus
of size a which is lower-bounded by 2σ. ��
At this point, we state the following theorem, which asserts the security of our
construction.

Theorem 5. The fail-stop signature scheme defined in Sec. 3.1 is secure under
the assumption that factoring integers n = pq with the knowledge of a divisor of
ϕ(n) is hard.
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Proof. As it has already been show in Thm. 4 that hn is a family of bundling
homomorphisms, we only need to prove security for the signer. For that sake, and
according to Thm. 3, we analyse the size of the following set (Here the neutral
element is 1):

Tmax = max
m′∈M\{1}

∣
∣
∣{d ∈ Z

�
n : hn(d) = 1 ∧ dm

′
= 1}

∣
∣
∣

= max
m′∈M\{1}

∣
∣
∣{d ∈ Z

�
n : da = 1 ∧ dm

′
= 1}

∣
∣
∣

= max
m′∈M\{1}

∣
∣{d ∈ Z

�
n : ordZ�

n
(d)|a ∧ ordZ�

n
(d)|m′}∣∣

= max
m′∈M\{1}

∣
∣{d ∈ Z

�
n : ordZ�

n
(d)|gcd(a,m′)}∣∣

= 1

since gcd(m′, a) = 1 by definition of M .
Hence we conclude that taking a bundling homomorphism with degree 2σ is

sufficient to achieve security against powerful adversaries. ��

4 Efficiency Analysis

Among the five algorithms of the scheme, the key generation is certainly the
most expensive operation to perform. Generating strong primes of our specified
form is done in time O

(
�4F(λ) + (1 + σ + �F(λ))

4
)
. However, this is not a critical

issue as it is run only once. Note that this complexity is in fact very close to the
key generation of RSA with strong primes [14].

Using some simple optimization techniques, we can drastically reduce the
complexity of modular exponentiations to the power of a by choosing values for
a with very low (or very high) Hamming weight. Indeed, the security proof of
our scheme is based the size of a and not its Hamming weight. According to
the state of the art of factoring algorithms such that ECM and NFS, assuming
low Hamming weight for a does not help the adversary factoring. This way,
one can use the classical square-and-multiply technique and set a = 2α ± 1, for
some α ≥ σ. This trick allows us to reduce the complexity of all exponentiations
to a from O(�3F(λ)) to O(σ�2F(λ)). For practical applications in which the one-
time key has to be regenerated at each signature, such a feature is clearly a
benefit. Verification also benefit from this optimisations as only one modular
exponentiation (to m) remains to be done.

For typical values k = σ = 80, we need to generate a 80-bit odd a, e.g.,
a = 280 + 1, and a 1024-bit RSA modulus composed of one a-strong prime
number. Key generation is then performed using 40 + 1 = 41 modular multipli-
cations. Verification is also performed using 41 modular multiplications and one
exponentiation.

As our scheme has its operations performed in a smaller group with optimized
exponents, it clearly outperforms the p2q scheme in terms of efficiency and signa-
ture length. Since this latter is more efficient than the order scheme [15], we omit
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Table 1. Comparaison of efficiency parameters of the most efficient factorization-based
fail-stop signature schemes. For better readability and easier notations, we let k denote
the length of the RSA moduli and define ρ = τ −σ. Note that we set a = 2σ +1 in our
scheme so that it does not need to be explicitly included in the public-key.

Size of sk Size of pk Size of m Size of s Sign Verify
(# mult.) (# mult.)

QR Scheme 2(ρ+ σ + k) 2k ρ ρ+ σ + k ρ < 2ρ+ σ

Our scheme 2k 2k σ 2k σ < 2σ

the order scheme from the comparison. Regarding the QR scheme, we provide
Table 1 to put a clear comparison with our scheme. It turns out that in term
of size of the keys and the signatures, our scheme behaves better than the QR
scheme. Regarding the efficiency of the other parameters and algorithms, hav-
ing a direct comparison is more difficult as the parameter ρ of the QR scheme
can be arbitrarily chosen whereas setting σ to a too large value in our scheme
would require to increase the modulus size to guard against p−1 factoring meth-
ods. However, for practical values of comparison ρ = σ = 160, we can still use
1024-bit moduli. In such a scenario, our scheme still outperforms the QR one.

References
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