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Abstract. We study the existence of pure strategy Nash equilibria (PSNE) in
integer–splittable weighted congestion games (ISWCGs), where agents can strate-
gically assign different amounts of demand to different resources, but must dis-
tribute this demand in fixed-size parts. Such scenarios arise in a wide range of
application domains, including job scheduling and network routing, where agents
have to allocate multiple tasks and can assign a number of tasks to a particular
selected resource. Specifically, in an ISWCG, an agent has a certain total demand
(aka weight) that it needs to satisfy, and can do so by requesting one or more
integer units of each resource from an element of a given collection of feasible
subsets.1 Each resource is associated with a unit–cost function of its level of con-
gestion; as such, the cost to an agent for using a particular resource is the product
of the resource unit–cost and the number of units the agent requests.

While general ISWCGs do not admit PSNE (Rosenthal, 1973b), the restricted
subclass of these games with linear unit–cost functions has been shown to possess
a potential function (Meyers, 2006), and hence, PSNE. However, the linearity of
costs may not be necessary for the existence of equilibria in pure strategies. Thus,
in this paper we prove that PSNE always exist for a larger class of convex and
monotonically increasing unit–costs. On the other hand, our result is accompa-
nied by a limiting asumption on the structure of agents’ strategy sets: specifically,
each agent is associated with its set of accessible resources, and can distribute its
demand across any subset of these resources.

Importantly, we show that neither monotonicity nor convexity on its own
guarantees this result. Moreover, we give a counterexample with monotone and
semi–convex cost functions, thus distinguishing ISWCGs from the class of
infinitely–splittable congestion games for which the conditions of monotonicity
and semi–convexity have been shown to be sufficient for PSNE existence (Rosen,
1965). Furthermore, we demonstrate that the finite improvement path property
(FIP) does not hold for convex increasing ISWCGs. Thus, in contrast to the case
with linear costs, a potential function argument cannot be used to prove our re-
sult. Instead, we provide a procedure that converges to an equilibrium from an
arbitrary initial strategy profile, and in doing so show that ISWCGs with convex
increasing unit–cost functions are weakly acyclic.

1 Additionally, strategy sets are restricted by certain domain–specific constraints—for instance,
in network routing, an agent’s strategy must define a feasible flow between its given pair of
source and target nodes.
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1 Introduction

The study of interaction of multiple self–interested parties (“agents”) sharing
commonly–available facilities (“resources”) is central to computational game theory.
Such settings naturally arise in a wide range of typical application domains, from
traffic routing in networks (e.g. roads, air traffic or information and communica-
tion networks (Rosenthal, 1973a; Roughgarden and Tardos, 2002)), to competition
in job scheduling problems (e.g. for computational services or machine scheduling
(Koutsoupias and Papadimitriou, 1999)).

In many real–world scenarios in these domains, agents may find it beneficial to as-
sign different amounts of demand to different resources, but may have restrictions on the
size of units in which this demand is distributed. For example, consider a job schedul-
ing problem, comprised of n agents and m independent machines, where each agent has
several indivisable jobs to be executed. To each selected machine, an agent pays a usage
cost, which is equal to the number of jobs the agent allocates to that machine multiplied
by the unit–cost per job, typically depending on the total level of demand on the ma-
chine (i.e., its congestion). A similar situation arises in communication networks (e.g.
the Internet), where agents send packets (or, messages) and have to decide how many
packets to route on each path in the network to minimise possible delays. Additional
examples for a problem of this kind may include procuring factor inputs for manufac-
turing processes or purchasing transport capacity for logistics networks. Importantly, in
all these situations, the agents cannot split their demands in arbitrary ways, but must do
so in integer units.

Problems of this kind are addressed in the literature as integer–splittable weighted
congestion games (ISWCGs), where agents strategically choose from a common set
of resources, and are allowed to assign multi–unit requests to each of their selected
resources; however, they are constrained to make their allocations in fixed-size parts
(particularly, integer units). Each resource is equipped with a “unit–cost function” that
indicates the cost that each agent pays per unit of request, depending on the aggregate
level of congestion on that resource (i.e., the total number of units the users contribute
to the resource). Since the agents may have different congestion impacts, the cost each
agent has to pay for the use of a particular resource is the product of the amount of
units it requests from that resource and the corresponding unit–cost. For example, in
a computational services setting, if an agent were to purchase four units of processor
time from a particular service provider, it would pay the same unit–cost for all four
units, with the unit–cost determined by the total demand from all agents for that re-
source. The overall agent’s cost is given by the sum of its costs for each resource it
uses. In a ISWCG, each agent has a certain integer demand (or, weight) for resource
units it needs to satisfy, and its aim is to minimise the total cost of the units by distribut-
ing its weight across the available resources. Unit–cost functions are resource–specific,
but are the same for all agents (i.e., resource providers cannot discriminate between
users), while demands for resource units can vary across the agents. Note that the above
examples are captured in the ISWCG model by identifying the set of resources with
the set of machines or network links, respectively, where differences in their tech-
nical parameters and performance factors, such as efficiency, or speed, are reflected
by resource–dependent costs per unit (e.g. job, or data packet). An agent’s demand
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represents the amount of resources (job, or data traffic) each agent has, and the set of
feasible assignments (task allocations, traffic routes) corresponds to the set of feasible
strategy profiles.

1.1 Related Work

Much of related work deals with a traditional congestion game model by Rosenthal
(1973a), where agents have to choose from a given finite set of resources, and where the
possible choices of an agent are given by the subsets of resources that satisfy its goals.
The cost of a resource is determined by the total number of its users, and an agent’s
overall cost is given by the sum of resource costs over the set of the agent’s selected
resources. In a variant setting of network congestion models, agents have to choose
subsets of edges on a graph forming a path from the agent’s origin to destination, in
order to route their demand (i.e. flow) through the network, and the cost (e.g. latency)
of each edge varies with the number of agents traversing that edge.

The important property of congestion games shown by Rosenthal (1973a) is the ex-
istence of a Nash equilibrium in pure strategies (PSNE)—a profile where each agent
plays a certain (non–randomised) strategy and no one has an incentive to unilaterally
change it. Such solutions are highly desirable, since, from a system–wide perspective,
they imply that a system has a deterministic stable state. This is necessary in a range
of control problems where randomised strategies are not appropriate (e.g. in industrial
processing or transport applications). Also, unlike mixed strategy and correlated equi-
libria, PSNE do not rely on the assumption that agents have the capacity to accurately
randomise their actions according to an equilibrium prescription.

Moreover, congestion games are also known to possess a stronger charateristic, called
the “finite improvement path property” (FIP), implying that any sequence of unilateral
improvement deviations (i.e., strategy changes that decrease an agent’s total cost) will
converge to a PSNE in finite time. This is implied by the existence of a “potential func-
tion” that decreases along any such improvement path (Monderer and Shapley, 1996).
Given this, the players can use a variety of simple potential–based search processes to
find a PSNE in a distributed fashion, such as fictitious play or weighted regret monitor-
ing (Leslie and Collins, 2006; Marden et al., 2007).

The traditional model has been generalised to a variety of related situations. Such
generalisations, for example, include player–specific congestion games (Milchtaich,
1996) where an agent’s payoff depends on its identity, weighted congestion
games (Milchtaich, 1996), in which agents may have different (although fixed) con-
gestion impacts (weights), local–effect games (Leyton-Brown and Tennenholtz, 2003)
with an agent’s cost for a particular resource being also affected by a congestion on
its neighbouring resources, congestion games with failures (Penn et al., 2009a) and
random-order congestion games (Penn et al., 2009b) modelling faulty or asynchronous
resources, and congestion–averse games (Byde et al., 2009; Voice et al., 2009) where
the agents’ utilities are determined by general real–valued functions of congestion vec-
tors. Note that in all these settings, agents are restricted to request only a single or a fixed
number of units from each particular chosen resource; that is, in terms of the network
congestion model, they have to unsplittably route their flow within the network.
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At the other extreme, infinitely–splittable congestion game models assume that agents
have divisible demand, which can be fractionally split acroos an arbitrary number of
resources (paths), in any proportion (Orda et al., 1993; Cominetti et al., 2009). For this
setting, a result from Rosen (1965) implies that PSNE are guaranteed to exist if resource
cost functions are semi–convex2 and monotone increasing. As an intermediate concept
between splittable and unsplittable games, the model of k–splittable network conges-
tion models was introduced by Beier et al. (2004) to capture scenarios where agents are
restricted to split their demand across at most k different paths. However, the portion of
the demand that an agent allocates to a single path can be fractional. Beier et al. (2004)
showed that it is NP–hard to decide whether a PSNE exists within such settings. In
addition, Shachnai and Tamir (2002); Krysta et al. (2003) obtained similar results for
k–splittable congestion games in the job scheduling domain.

More relevant to our work is the paper by Meyers (2006) where the k–splittable
model is modified so that agents are only allowed to allocate integer amounts of de-
mand to each chosen resource (or, path). The authors showed that the restricted sub-
class of these games where the unit–cost functions are linear, possesses a potential
function, and hence, the FIP holds and a PSNE is guaranteed to exist. For a gen-
eral case, Rosenthal (1973b) gave an example of an asymmetric weighted network
congestion game that does not have an equilibrium in pure strategies. More recently,
Dunkel and Schulz (2008) strengthened this result by showing that the problem of de-
ciding whether a weighted network congestion game with integer–splittable flows ad-
mits a PSNE is strongly NP–hard.

1.2 Our Contribution

In this paper, we extend positive results on the existence of a pure strategy equilibrium
in integer–splittable congestion games to a larger class of unit–cost functions which
are monotonically increasing and convex. From a practical point of view, this class is
important as convex increasing costs occur in a wide range of application domains. In-
deed, in many real–world systems, marginal costs typically increase as total demand
increases (e.g. energy cost in smart grids or delay in multi–server systems). Further-
more, such systems are often regarded as overloaded, if the total demand exceeds a
certain threshold. In this case, the users often have to pay extremely higher costs for
using the resources (in smart grids, for example, each power plant has a finite produc-
tion limit, and if the total demand exceeds the sum of these limits, additional expensive
peaking plant must supply the excess). We note that our result is accompanied by a lim-
iting asumption on the structure of agents’ strategy sets. Specifically, we assume that
each agent is associated with its set of accessible resources, wich is a part of a given
superset, and can distribute its demand across any subset of these resources. For sake
of brevity, in what follows we slightly abuse the notation and use the term ISWCG to
define a game with such restricted strategy set structures.

The above assumption implies that negative results by Rosenthal (1973b) and
Dunkel and Schulz (2008) do not apply to our setting. However, as we show, the exis-
tence of PSNE is still violated. Moreover, PSNE are not guaranteed to exist in games with

2 A function f(x) is semi-convex if x · f(x) is convex.
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either non–monotone or non–convex unit–costs, implying the necessity of these condi-
tions for PSNE existence. Interestingly, our examples show that even functions which are
monotone and semi–convex result in games with no pure strategy equilibria, thus distin-
guishing between the classes of ISWCGs and infinitely–splittable congestion games.

Following this, our main result proves that a pure strategy equilibrium is guaranteed
for ISWCGs with monotonically increasing and convex unit–costs. Importantly, as we
show, PSNE exist in these games despite of the non–existence of a potential function
and the FIP. Consequently, in contrast to the case with linear costs (Meyers, 2006),
potential–based methods cannot be used for proving PSNE existence and finding such
equilibria. Based on this, we provide a search algorithm that returns a PSNE of a given
game in finite time. Finally, we note that our algorithm shows convergence from an
arbitrary initial strategy profile, thus showing that convex increasing ISWCGs possess
the weak acyclicity property (Monderer and Shapley, 1996).

The remainder of the paper unfolds as follows. First, in Section 2 we formally define
the model for ISWCGs. Then, in Section 3 we show that no guarantees on PSNE ex-
istence can be made if the unit–cost functions are not convex or monotone increasing.
Following this, in Section 4 we study the case of ISWCGs with convex increasing costs.
We show that these games do not generally possess a potential function by giving an
example of an improvement cycle. Nonetheless, we prove that they are guaranteed to
possess PSNE if the cost function is convex and monotone increasing, and devise an al-
gorithm for computing them. Due to space limitations, some of the proofs are ommited
from this version of the paper.

2 The Model

Consider a congestion domain with a set N = {1, . . . , n} of agents, where each agent
i ∈ N has a set Ri of mi ∈ N accessible resources, which is a subset of a finite superset
R = {r1, . . . , rm}. An agent i needs to execute X i ∈ N task units, and can distribute
this demand (or, weight) arbitrarily among its resources. Note that each agent can use
more than one integer unit from a single selected resource. An agent i’s (pure) strategy
is given by xi =

(
xi

r

)
r∈R

, where xi
r ∈ N is the number of units that agent i demands

from resource r ∈ R, such that xi
r = 0 for all r /∈ Ri and
∑

r∈R

xi
r =

∑

r∈Ri

xi
r = Xi (1)

Every combination of strategies (a strategy profile) x =
(
xi

)
i∈N

corresponds to a
congestion vector h(x) = (hr(x))r∈R, where

hr (x) =
∑

i∈N

xi
r (2)

indicates the congestion—the total number of assigned tasks (or, demanded units) on
resource r ∈ R in profile x.

From the perspective of agent i, a strategy profile x can be viewed as
(
xi, x−i

)
,

where x−i stands for the joint strategy of other agents. Similarly, for r ∈ R we denote
by
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h−i
r (x) =

∑

j �=i

xj
r = hr (x)− xi

r (3)

the congestion on resource r incurred by the collective demand of the agents, excluding
agent i.

Each resource r ∈ R is associated with a unit–cost (or simply, a cost) function
cr : N → R defining the cost for a unit of demand on resource r as a function of
the total congestion on the resource. For simplicity, it is convenient to assume that cost
functions are non–negative, although our results do not rely on this assumption.

Given this, the payoff function of an agent is defined as follows. The overall cost
agent i has to pay in a strategy profile x is

Ci(x) =
∑

r∈R

xi
rcr (hr(x)) (4)

Furthermore, the total cost of the system is given by

C (x) =
∑

i∈N

Ci (x) =
∑

r∈R

hr (x) cr (hr(x)) (5)

Definition 1. An integer–splittable weighted congestion game (ISWCG) Γ =(
N, R,

(
Xi

)
i∈N

, (cr(·))r∈R

)
consists of a set N of n ∈ N agents, a set R of m ∈ N

resources, a unit–cost function cr for each resource, and for each agent i a set of ac-
cessible resources Ri ⊆ R and a total demand (aka weight) X i. The strategy set for

each agent i ∈ N is the set of m-dimensional vectors
{(

xi
r

)
r∈R

∈ N
m

}
, such that

∑
r∈R xi

r = X i, xi
r = 0 ∀r /∈ Ri, and the cost to the agent for a combination of

strategies x is Ci(x) =
∑

r∈R xi
rcr (hr(x)), where hr(x) is the vector of congestion

as determined by x.

3 Non-existence of PSNE

In this section, we show that general ISWCGs do not necessarily admit pure strategy
Nash equilibria (PSNE). We provide two examples, based on which we reason about
conditions that would guarantee PSNE existence.

Example 1. Consider a two–player ISWCG with demands X1 = 2 and X2 = 1, and
two resources with the following unit–cost functions:

cr1 (1) = 12, cr1 (2) = 5, cr1 (3) = 7

cr2 (1) = 10, cr2 (2) = 6, cr2 (3) = 10

The payoff matrix of the game is presented in Table 1. One can easily verify that there
is no PSNE in this game.

Table 1. No PSNE in ISWCGs with non-monotone unit–costs

(0, 2) (1, 1) (2, 0)

(0, 1) 10, 20 6, 18 10, 10
(1, 0) 12, 12 5, 15 7, 14
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Note that the cost functions in Example 1 are not monotone, but convex. That is, the
convexity condition on its own is not sufficient for the existence of a pure strategy
equilibrium. The next example demonstrates that neither is monotonicity sufficient.

Example 2. Consider a two–player ISWCG with demands X1 = 3 and X2 = 1, and
two identical resources with a unit–cost function cr1(·) = cr2(·) = cr(·) given by:

cr (1) = 3, cr (2) = 8, cr (3) = 10 cr (4) = 12

The payoff matrix of the game is presented in Table 2. Inspection shows that there is no
PSNE in this game.

Table 2. No PSNE in ISWCGs with non-convex cost functions

(0,3) (1,2) (2,1) (3,0)
(1,0) 3, 30 8, 24 10, 23 12, 36
(0,1) 12, 36 10, 23 8, 24 3, 30

As mentioned above, Example 1 is convex, while Example 2 is monotone–increasing,
implying that if either property of the cost functions is violated, a PSNE is not guaran-
teed. Furthermore, the cost function cr(x) in Example 2 is semi–convex (i.e., x · cr(x)
is convex). It implies that the conditions of monotonicity and semi-convexity, which
have been shown to be sufficient for PSNE existence in infinitely–splittable congestion
games, do not apply to the integer–splittable case! Based on this, in the following sec-
tion we prove that a pure strategy equilibrium always exists in the ISWCGs whose
resource unit–cost functions are monotone–increasing and convex.

4 Convex Increasing ISWCGs

In this section, we investigate the subclass of ISWCGs with convex and monotonically
increasing cost functions (henceforth, convex increasing ISWCGs). Our main result
proves that pure strategy Nash equilibria always exist in such games. Importantly, as we
show in 4.1, an arbitrary sequence of myopic improving deviations may cycle even in
this case; hence, the FIP property does not hold and a potential function argument is not
applicable. Against this background, in 4.2 we propose a special dynamic procedure,
that reaches an equilibrium from any starting point. This shows that convex increasing
integer–splittable congestion games possess the weak–acyclicity property and implies
an algorithm for finding PSNE in these games.

4.1 Violating the Finite Improvement Property

Given a pure strategy profile of a game, consider an arbitrary sequence of unilateral
moves, where at each step a deviating agent improves its payoff with respect to the
current one it gets from the game. If such a sequence of myopic improvement steps ter-
minates, the resulting strategy profile is a Nash equilibrium. Now, if every such path
leads to a PSNE, it is said that the game has the finite improvement path property
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(FIP). Importantly, the FIP is equivalent to the existence of a generalised ordinal poten-
tial (Monderer and Shapley, 1996)—a real-valued function over the set of pure strategy
profiles that strictly decreases along any improvement path. Thereby, if the FIP holds
for a particular game, then the agents only need to search for a local minimum point
of the potential, in order to find a pure strategy equilibrium. It is known that Rosen-
thal’s congestion games always possess a potential function and the FIP and, in fact,
are a central class of games with this property (see Monderer and Shapley (1996) for a
detailed discussion).

Below, we demonstrate that convex increasing ISWCGs do not fall within the frame-
work of congestion games, as these games generally violate the FIP property. Specif-
ically, we provide an example of the convex increasing ISWCG that contains an im-
provement cycle, as follows.

Example 3. Consider a convex increasing ISWCG game with 2 agents N = {1, 2}
and 5 resources R = {r1, r2, . . . , r5}, where both agents have access to all of the
resources. Agent 1 requires 14 units of resources, and agent 2’s demand is 36. The
unit–cost functions have the following particular values:

cr1 (1) = 39

cr2 (1) = 350

cr3 (35) = 5, cr3 (36) = 8, cr3 (37) = 21

cr4 (1) = 150

cr5 (13) = 16, cr5 (14) = 22, cr5 (15) = 52

Consider profile x = (x1, x2), where x1 = (1, 0, 10, 0, 3) and x2 = (0, 1, 25, 0, 10),
with a corresponding congestion vector h(x) = (1, 1, 35, 0, 13). Accordingly, the vec-
tor of unit–cost values as determined by x is (39, 350, 5, 0, 16), and the agents’ overall
costs are C1(x) = 1·39+10·5+3·16 = 137 and C2(x) = 1·350+25·5+10·16 = 635.
We construct an improvement cycle that starts at x and consists of simple improvement
steps at which an agent moves a single task unit from one resource to another. First,
agent 1 moves 1 unit from r1 to r3. The resulting cost to agent 1 is then given by
11 ·8+3 ·16 = 136, which is less by 1 than what the agent paid before. Following this,
agent 2 moves a unit from r2 to r3 and gets 26 · 21 + 10 · 16 = 706, thus reducing the
cost of 1 · 350 + 25 · 8 + 10 · 16 = 710 it paid after the first improvement step by agent
1. The whole sequence of moves and the corresponding cost reductions to deviating

Table 3. Improvement cycle in ISWCGs with convex increasing unit–cost functions

Step Deviator Move Improvement
1 Agent 1 1 unit r1 → r3 137 - 136 = 1
2 Agent 2 1 unit r2 → r3 710 - 706 = 4
3 Agent 1 1 unit r3 → r4 279 - 278 = 1
4 Agent 2 1 unit r3 → r5 368 - 367 = 1
5 Agent 1 1 unit r4 → r5 266 - 258 = 8
6 Agent 2 1 unit r5 → r2 697 - 695 = 2
7 Agent 1 1 unit r5 → r1 138 - 137 = 1
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agents is listed in Table 3. Note that after 7th step the system turns back to the initial
strategy profile, and so the improvement path cycles.

However, the non-existence of the FIP and a potential function in a class of games does
not generally contradict the existence of an equilibrium in pure strategies. Thus, in the
following section, we prove that convex increasing integer–splittable congestion games
do always possess such an equilibrium, despite of the non–existence of the FIP. Our
proof is constructive and yields a natural procedure that achieves an equilibrium point
in a finite number of steps. Importantly, the convergence is guaranteed, regardless of
the initial strategy profile, and so convex increasing congestion games with multi–unit
resource demands are weakly–acyclic.

4.2 Nash Equilibria

We start with the following Lemma 1, introducing a useful property of convex increas-
ing functions that we will employ in proving results within this section.

Lemma 1. Let c : N → R be a convex and monotonically increasing function. Then,
for any 0 ≤ x ≤ y integer and h ≥ 0, the following holds:

• yc (h + y)− xc (h + x) ≥ (y − x) [(x + 1) c (h + x + 1)− xc (h + x)]

• yc (h + y)− xc (h + x) ≤ (y − x) [yc (h + y)− (y − 1) c (h + y − 1)]

Moreover, the inequalities are strict if y > x + 1.

We now turn to prove our main result. In doing so, we first provide a useful characterisa-
tion of best response strategies in ISWCGs with convex increasing costs (Theorem 1).
We then use this characterisation to prove PSNE existence (Theorem 2) and define a
special type of improvement dynamics (Algorithm 1) that converges to a Nash equilib-
rium from an arbitrary starting point (Theorem 3).

Distances between Strategies

Definition 2. The modified Hamming distance between agent i’s strategies xi =(
xi

r

)
r∈R

and yi =
(
yi

r

)
r∈R

is defined as

H
(
xi, yi

)
=

∑

r∈R

∣
∣
∣xi

r − yi
r

∣
∣
∣ (6)

Now, since equation (1) must hold for any strategy of agent i, from Definition 2 we
easily derive the following lemma.

Lemma 2. In an integer–splittable congestion game, if xi �= yi are different strategies
of agent i, then H

(
xi, yi

) ≥ 2.

Based on this lemma, if the modified Hamming distance between two strategies xi and
yi is exactly 2, we will refer to them as neighbours. The next lemma then states that
an improving deviation from a particular strategy (if one exists) can always be found
among its neighbours.

Lemma 3. Let x =
(
xi, x−i

)
be a strategy profile of a given ISWCG with convex

increasing costs. If xi is not agent i’s best response against x−i, then there exists a
strategy yi, such that H

(
xi, yi

)
= 2 and Ci

(
yi, x−i

)
< Ci (x).
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Single Unit Moves. Given this, it will be useful to identify best improving deviations
within the set of neighbouring strategies.

Definition 3. Let Di
max (x) denote the value of maximal improvement that agent i can

achieve by deviating to a neighbouring strategy from profile x. That is,

Di
max (x) = max

yi: H(xi,yi)=2

{
C (x)− C

(
yi, x−i

)}
(7)

Obviously, if x is a Nash equilibrium profile, then for any i ∈ N we have Di
max (x) ≤

0. Otherwise, if for some agent i its strategy xi is not a best response against x−i,
then by Lemma 3, there exists a strategy yi for agent i such that H

(
xi, yi

)
= 2 and

Di
max (x) ≥ U (x) − U

(
yi, x−i

)
> 0. This implies the following theorem.

Theorem 1. Given a convex increasing ISWCG, a strategy xi is a best response to
agent i ∈ N against s−i if and only if Di

max (x) ≤ 0.

Thereby, a strategy profile x is a PSNE if and only if the condition in Theorem 1 holds
for each agent i ∈ N . We seek such a profile by constructing an improvement path,
where at each step an agent deviates to a best neighboring strategy. Let us now charac-
terise these improving moves.

From Lemma 2, it is easy to see that xi and yi are neighboring strategies of agent
i ∈ N if and only if there are p, q ∈ Ri such that yi

p = xi
p − 1 and yi

q = xi
q + 1. That

is, agent i deviates from xi to yi by moving exactly one task unit from resource p to
resource q. Hereafter, we refer to such deviations as single unit moves.

Let Di
p→q (x) denote agent i’s value of improvement by taking a single unit move

p → q from profile x. That is,

Di
p→q (x) = Ci (x)− Ci

(
yi, x−i

)
(8)

where yi is such that yi
p = xi

p − 1, yi
q = xi

q + 1 and yi
r = xi

r for all r ∈ R \ {p, q}.
Given this, we can rewrite Di

max (x) as follows:

Di
max (x) = max

p �=q∈Ri

Di
p→q (x) (9)

Now, let us calculate

Di
p→q (x) =

[
xi

pcp (hp (x))−
(
xi

p − 1
)

cp (hp (x)− 1)
]

+
[
xi

qcq (hq (x))−
(
xi

q + 1
)

cq (hq (x) + 1)
]

(10)

and consider

(11)pi∗ ∈ arg max
r∈Ri: xi

r>0
{xi

rcr (hr (x))−
(
xi

r − 1
)

cj (hr (x)− 1)}

That is, resource pi∗ guarantees to agent i a maximal cost reduction if it removes one
unit of demand from that resource. Similarly, resource

(12)qi∗ ∈ arg min
r∈Ri

{
(
xi

r + 1
)

cj (hr (x) + 1)− xi
rcj (hr (x))}

guarantees a minimal increase in cost when i adds one unit of demand to qi∗.
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Obviously, for any pair of resources p and q with xi
p > 0 we have that Di

p→q (x) ≤
Di

pi∗→qi∗ (x). That is, if pi∗ �= qi∗ then Di
max (x) = Di

pi∗→qi∗ (x), and if Di
max (x) >

0 then pi∗ → qi∗ is a best single unit move to agent i from x. Otherwise, if pi∗ = qi∗,
then the following lemma implies that xi is a best response strategy to agent i.

Lemma 4. Given a convex increasing ISWCG and a strategy profile x, if for agent
i ∈ N there exist pi∗ and qi∗ (as defined in equations (11) and (12), respectively) such
that pi∗ = qi∗, then Di

max (x) ≤ 0.

Best Response Dynamics. Let x be an arbitrary strategy profile of a given ISWCG with
convex increasing costs. As we concluded before from Theorem 1, if Di

max (x) ≤ 0
holds for every agent i ∈ N then x is a Nash equilibrium strategy profile. So assume
otherwise, and let i be an agent with Di

max (x) > 0. By Lemma 4, we have that pi∗ �=
qi∗, and let Bi(x) denote the number of best single unit moves of i from x. We prove
the following.

Theorem 2. Given an ISWCG with convex increasing costs, let x be a strategy profile
which is not in equilibrium. Then, there exists a profile y, such that for each agent
i ∈ N , one of the following three conditions is satisfied:

1. Di
max (x) > Di

max (y)

2. Di
max (x) = Di

max (y) and Bi(x) > Bi(y)

3. Di
max (x) = Di

max (y) and Bi(x) = Bi(y)

Moreover, for at least one agent either 1. or 2. holds.

Corollary 1. Given an ISWCG with convex increasing costs and a strategy profile x,
let

(13)P (x) = L ·
∑

i∈N

Di
max(x) +

∑

i∈N

Bi(x)

where L is a large number satisfying L ≥ nm(m−1)
minp,q,k,l |cp(k)−cq(l)| . Then, if x is not a Nash

equilibrium, then there exists a profile y, such that P (x) > P (y).

Note that function P (·) in (13) does not decrease along any improvement path, and so
the FIP does not follow. Nonetheless, Theorem 2 and Corollary 1 imply the existence of
pure strategy Nash equilibria in convex increasing integer–splittable congestion games.
To prove Theorem 2 we need the following auxiliary lemma.

Lemma 5. Given a convex increasing ISWCG, assume there is a sequence
(x1, x2, . . . xT ) of strategy profiles such that:

– x1 is not a pure strategy Nash equilibrium, and x2 is obtained from x1 by a best
single unit move of some agent i with Di

max (x1) > 0

– ∀1 < t < T, ∃r+
t , r−t ∈ R , such that h

r+
t

(xt) = h
r+

t
(x1)+1, h

r−
t

(xt) = h
r−

t
(x1)−

1. Furthermore, ∀r ∈ R \ {r+
t , r−t }we have hr (xt) = hr (x1)
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– ∀1 < t < T , ∃jt ∈ N with Djt
max (xt) > Djt

max (x1) or Djt
max (xt) = Djt

max (x1) ∧
Bjt(xt) > Bjt(x1), and ∃r ∈ Rjt , such that either Djt

max (xt) = Dj

r+
t →r

(xt) or

Djt
max (xt) = Djt

r→r−
t

(xt) . Furthermore, xt+1is obtained from xt by the correspond-

ing best single unit move by agent j, that removes a unit from r+
t (or adds one to

r−t ). Moreover, if r = r+
t or r = r−t (i.e., Dj

max (xt) = Dj

r+
t →r−

t

(xt)), then

t + 1 = T .

Then, for all 1 < t < T we have Djt
max (xt+1) < Djt

max (x1) or Djt
max (xt+1) = Djt

max (x1)∧
Bjt(xt+1) < Bjt(x1).

That is, at each step t in the sequence, we have an agent jt, whose current maximal
improvement is higher than the value it had in the initial strategy profile x1 (or the
number of best single unit moves available to i at step t is greater than that it had at the
first step). Furthermore, the congestion levels in xt differ from congestion levels in the
initial profile x1 for only two resources r+

t and r−t , plus/minus one unit each. A best
move of agent jt is to either move a unit from r+

t to some resource r (and so r = r+
t+1,

unless r = r−t ), or to take one from some r and add to r−t (in which case, r = r−t+1,
unless r = r+

t ). This best move by jt then results in the subsequent strategy profile
xt+1, and if r = r−t or r = r+

t (i.e., agent jt’s best move is from r+
t to r−t ), then this

is the last move in the sequence. Now, if such a sequence exists in a given game, then
at each iteration, the value of maximal improvement for the corresponding deviator (or
the number of its available best single unit moves) decreases comparing to what it had
in the initial point of the sequence x1.

Proof (of Theorem 2). We construct a finite sequence of best single unit moves that re-
sults in a strategy profile y for which the theorem holds. In particular, we first prove that
during the sequence, if we reach a certain congestion level profile twice, then we can
leave out the in between steps. Using this result, we then show that we cannot infinitely
continue the sequence without reaching a strategy profile for which the theorem holds.

In doing so, we define a particular order of moves, as follows. Let {x1, x2, . . .}
denote the sequence of strategy profiles resulted from a sequence of best single unit
moves xt → xt+1, t ≥ 1, as defined in Lemma 5. We refer to the moves r+

t → r
and r−t → r as forward and backward moves, respectively (moves r+

t → r−t can be
both, but we will make it clear in the context). Note that by Lemma 5, if at step t some
agent i violates the conditions of the theorem, then there is always either a forward or
a backward move that it can apply. Given this, we start the sequence with a series of
forward moves, and when no such move is available, we switch to backward moves if
any exist. We prove that this construction leads to a desired strategy profile in any case.
The steps involved within the proof are described below.

Step 1: By definition, we move from x1 to x2 with some agent i who applies its best
single unit move. From x2, we only allow agents to make forward moves (if exist); that
is, for now, backward moves are out of consideration. Let {rf1 , rf2 , rf3 , . . .} denote the
sequence of such forward moves, where rft → rft+1 denotes a forward move from
resource rft to rft+1 at step t. For the sake of simplicity, we assume that the first move,
that deviates x1 to x2, is also a forward move (i.e., that move is rf1 → rf2 , and we start
the sequence from the initial strategy profile).
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Now, consider the case where ∃u, v, u < v, such that rfu = rfv , and none of them is
equal to rf1 ; that is, the sequence of forward moves creates a loop by turning back to a
previously visited resource, which is not the first resource. We show that if the sequence
is {rf1 , rf2 , . . . , rfu , . . . , rfv , rfv+1 , . . .}, then if agent i is the one who makes the move
rfv → rfv+1 , then it can make the move rfu → rfv+1 as well; and thus, the sequence
{rf1 , rf2 , . . . , rfu , rfv+1 , . . .} is also a feasible sequence of forward moves. That is, we
can leave out the loop {rfu+1 , . . . , rfv}, without violating the conditions of Lemma 5.

Let xfu and xfv denote the profiles that result from subsequences {rf1 , rf2 , . . . , rfu}
and {rf1 , rf2 , . . . , rfu , . . . , rfv}, respectively. Now, suppose that agent i makes the
move rfv → rfv+1 from xfv . We show that this move is available to i at xfu as well.
Indeed, consider the congestion level and the demand of agent i on resource rfu in xfu

and xfv . Since all the moves are forward moves, it is easy to see that the congestion
level in both profiles is given by hrfu

(x1) + 1 (this is since rfu = r+
fu

= r+
fv

). Fur-
thermore, it can be shown that the demand of agent i on rfu in xfv is at most as high
as it was in xfu . One exceptional case is when agent i is the one who makes the move
rfv−1 → rfv , and thus its demand on rfu may be increased by one. However, Lemma 5
implies that whenever an agent makes a best unit move (either forward or backward),
at next step of the sequence it satisfies the conditions of the theorem. Hence, it cannot
be the one who makes the subsequent move. Given this, if agent i is the one who makes
the move rfv−1 → rfv , then it cannot make the move rfv → rfv+1 , which is a contra-
diction. This implies that the demand of agent i on rfu cannot be greater in xfv than
that it has in xfu .

Now, if the demand of agent i on resource rfv+1 in xfv is smaller than its demand on
the same resource in xfu , then we show that this results in a contradiction. We prove this
by indirection; that is, suppose that it is true. This implies that there exists u < z < v,
such that rfz = rfv+1 , and agent i moved a unit from rfz to rfz+1 within the sequence.
Furthermore, the demand of agent i on rfz = rfv+1 after the move is decreased by 1,
compared to its demand in xfu . That is, since the demand of agent i on rfv+1 in xfv

is smaller than in xfu , agent i must move some units from that resource in between.
Thus, we focus on the first move among these, which decreases agent i’s demand by 1.
Note that, by definition of the sequence, rfv+1 → rfz+1 is a best single unit move of
agent i in xfz . Now, let a denote the amount of agent i’s decreased cost by removing
one unit from rfv+1 in xfz , and b denote the agent’s increased cost by adding one unit
to rfz+1 , also in xfz . Thus, the improvement that agent i gets by making rfv+1 → rfz+1

is a− b > 0. Similarly, let c denote the amount of agent i’s decreased cost by removing
one unit from rfv in xfv , and d denote the agent’s increased cost by adding one unit to
rfv+1 (i.e. rfz ), also in xfv . Since rfv → rfv+1 is also a best single move, c−d > 0. It is
easy to see that both the congestion level and the demand of agent i on rfv+1 remain the
same after the move rfv → rfv+1 , and before the move rfv+1 → rfz+1 . Thus, we have
d = a; and thus, c− b > a− b > 0. This implies that in xfz , the best single move is not
moving from rfv+1 to rfz+1 , but from rfv (since both the congestion level and agent i’s
demand on rfu is not modified between xfu and xfv ; that is, it stays unchanged within
the loop). This, however, is a contradiction, since rfv+1 → rfz+1 is supposed to be the
best single move in xfz .
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Given this, the demand of agent i on resource rfv+1 in xfv is at least as its de-
mand on the same resource in xfu . In this case, rfu → rfv+1 is feasible for agent i
from xfu as well. Indeed, since rfu → rfv+1 is feasible for agent i in xfv , such that
the demand of agent i on rfu in xfv is not higher than in xfu , and its demand on
rfv+1 in xfv is not smaller than in xfu . That is, by choosing rfw = rfv+1 , we get that
{rf1 , rf2 , . . . , rfu , rfw , . . .} is also a feasible sequence, without the {rfu+1 , . . . , rfv}
loop.

Thus, in summary, we can say that if there’s a loop within the sequence, that does
not return to rf1 , then we can leave that loop out of the sequence.

Step 2: Now, we will show that if the sequence does not return to rf1 , then it has
to be finite. We prove this by contradiction as follows: Suppose that the sequence is
infinite and never returns to rf1 . Given this, there is an infinite subsequence of moves
rfu(t) → rfu(t)+1 applied by a particular agent i, such that rfu(1) = rfu(2) = . . . and
rfu(1)+1 = rfu(2)+1 = . . .. That is, agent i makes the same move rfu(t) → rfu(t)+1

infinitely many times within the sequence. Furthermore, the demand of i on resources
rfu(t) and rfu(t)+1 are the same for every t. That is, if agent i’s demands on rfu(1) and
rfu(1)+1 are a and b, respectively, then they are a and b for any t.

Now, consider the move rfu(1) → rfu(1)+1 of agent i. After this move, agent i’s
demand on rfu(1) and rfu(1)+1 becomes a−1 and b+1, respectively. However we know
that when agent i makes the move rfu(2) → rfu(2)+1 , these values return to a and b again.
That is, before applying rfu(2) → rfu(2)+1 , agent i had to make a move rfv → rfv+1 ,
where rfv+1 = rfu(1) = rfu(2) , to increase its demand on rfu(2) back to a. Now, note
that u (1) < v < u (2)−1. This implies that the subsequence {rfv+2 , . . . , rfu(2)} forms
a loop, and thus, according to the claim we stated in Step 1, we can leave this loop
out from the sequence. That is, the moves rfv → rfv+1 and rfu(2) → rfu(2)+1 become
subsequent moves within the sequence. However, as Lemma 5 implies, none of the
agents can subsequently make more than one move within the sequence, and thus, this
situation is not possible. This contradicts the initial assumption, and hence, sequence
{rf1 , rf2 , . . .} either returns to rf1 , or it is finite.

Step 3: Based on the results described in Step 2, if {rf1 , rf2 , . . .} (i.e. the sequence
of forward moves) is not finite, then it has to return to rf1 . That is, ∃v such that in
{rf1 , rf2 , . . . , rfv}, rfv = rf1 . If there is an inner loop within this sequence, then we
can remove that loop (as proved in Step 1). Thus, we can assume that the sequence
does not contain any inner loops (note that the sequence itself is also a loop). Let xfv

denote the resulting strategy profile by making this sequence of forward moves. We
show below that xfv satisfies the conditions of the theorem; that is, it is the strategy
profile we are looking for.

Note that by returning to rf1 , the congestion level on all the resources in xfv is the
same as it is in x1. Since the sequence does not contain any inner loops, it is easy to see
that for any agent i, there is a set of disjoint pairs of resources rfu(k) , rfu(k)+1 such that
agent i makes the move rfu(k) → rfu(k)+1 within the sequence. This indicates that in xfv ,
agent i’s demand on rfu(k) is decreased by 1, compared to that it has on that resource
in x1 (since agent i removes one unit from that resource). On the other hand, agent i’s
demand on rfu(k)+1 is increased by 1, compared to that it has on that resource in x1.
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In order to prove the claim above, we show that the value of a best unit move of
agent i in xfv is decreased, compared to that it has in x1 (or the number of such moves
is decreased). Since the congestion level is the same on all the resources in the two
strategy profiles, we just need to consider the cases where agent i makes a move from
rfu(k)+1 (where the demand is increased) to rfu(l) (where the demand is decreased) for
a particular pair of k, l.

If k = l, then rfu(k) → rfu(k)+1 is a forward move of agent i. Let xfu(k) and xfu(k)+1

denote the strategy profiles before and after the move. If rfu(k) → rfu(k)+1 is not the
first move in the sequence, then the congestion levels on resources rfu(k) and rfu(k)+1

in xfu(k) and xfu(k)+1 are: hrfu(k)

(
xfu(k)

)
= hrfu(k)

(x1) + 1 , hrfu(k)+1

(
xfu(k)

)
=

hrfu(k)
(x1), and hrfu(k)

(
xfu(k)+1

)
= hrfu(k)

(x1) , hrfu(k)+1

(
xfu(k)+1

)
= hrfu(k)

(x1)+

1, respectively. Thus, after the move, the congestion level on rfu(k) in xfu(k)+1 is the
same as in xfv , while the congestion on rfu(k)+1 is greater by 1 than in xfv . Since
rfu(k) → rfu(k)+1 is a best unit move at xfu(k) , reversing this move (i.e., moving back
from xfu(k)+1 to rfu(k) ) in xfu(k)+1) is not possible. Given this, since the congestion on
rfu(k)+1 in xfv is decreased, compared to that in xfu(k)+1 , the move xfu(k)+1 → rfu(k)

is also not feasible. Note that the proof above also works for the case where rfu(k) →
rfu(k)+1 is the first move of the sequence (although the values of congestion levels are
slightly different).

Now let k �= l. Again, we first consider the case where none of the moves rfu(k) →
rfu(k)+1 and rfu(l) → rfu(l)+1 is the first move of the sequence. If k < l (i.e. the agent
makes rfu(k) → rfu(k)+1 earlier), then consider the move rfu(l) → rfu(l)+1 , and let
xfu(l) and xfu(l)+1 denote the strategy profiles before and after this move, respectively.
Since agent i makes this move later, in xfu(l)+1 , the congestion level of rfu(k)+1 and
rfu(l) is the same as they have in xfv . Given this, the improvement value of move
xfu(k)+1 → rfu(l) is exactly the same as it is in xfu(l)+1 . Since rfu(l) → rfu(l)+1 is a
best unit move in xfu(l) , resource rfu(l) belongs to the set defined in (11) (i.e. set of
p∗); that is, reducing a unit from rfu(l) guarantees a maximal cost reduction to agent i
in strategy profile xfu(l) . This implies that the cost reduction by reducing a unit from
rfu(k)+1 is not greater than the cost reduction by reducing a unit from rfu(l) . Given this,
it is easy to see that the reverse move xfu(k)+1 → rfu(l) in strategy profile xfu(l)+1

cannot be positive (i.e., it is not a feasible move). The proof for k > l works in a similar
way.

This implies that none of xfu(k)+1 → rfu(l) is feasible in xfv . Thus, xfv satisfies the
conditions of the theorem, where x1 replaces x and xfv replaces y.

Step 4: Next, consider the case where the sequence of forward moves,{rf1, rf2 , . . . rfK},
is finite (i.e. K < ∞). At this point, we allow agents to make backward moves (i.e., moves
that add a unit to r−t at each step t). Let {rb1 , rb2 , . . .} denote the sequence of backward
moves, where ∀t, rbt+1 → rbt is the backward move made by some agent i. Note that
here rb1 = rf1 . Similarly to the case of forward moves, one can show that if there is a loop
within {rb1 , rb2 , . . .}, then we can leave that loop out from the sequence. Furthermore,
one of the following must hold for {rb1 , rb2 , . . .}: (i) apart from rb1 , {rb1 , rb2 , . . .} also
contains a resource rfu from the sequence of {rf1 , rf2 , . . . rfK }; that is, ∃v > 1, u >
0 such that rbv = rfu ; or (ii) it does not contain such resource, but then it must be
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finite. The proof is also based on contradiction, and is similar to the proof described
in Step 2.

Now, if {rb1 , rb2 , . . .} contains a resource from the sequence of forward moves,
then consider the following sequence of moves: {rf1 , rf2 , . . . rfu , rb1 , rb2 , rbv}. That
is, we leave out all the moves after rbv in the sequence of backward moves, and all
the moves after rfu in the sequence of forward moves. It is easy to see that this se-
quence is also feasible, that is, all of the moves are best unit moves of some agent i
who violates the conditions of the theorem. Now, if the sequence contains inner loops
from the backward moves side (the subsequence of forward moves is loopless), we
leave these loops out. This way, we obtain a loop similar to the loop described in
Step 3. Let xbv denote the strategy profile resulted by the sequence of moves within
{rf1 , rf2 , . . . rfv , rb1 , rb2 , rbv}. We show that xbv satisfies the conditions of the theo-
rem (the proof is similar to the one described in Step 3).

Finally, in the case where {rb1 , rb2 , . . . , rbL} is also finite (i.e. L < ∞), let xT

denote the resulting strategy profile by making the moves of the combined sequence
{rf1 , rf2 , . . . rfK} and {rb1 , rb2 , . . . , rbL}. One can easily see that the conditions of the
theorem hold for xT . This completes the proof. �

ISWCG Algorithm. The proof of Theorem 2 suggests a particular dynamic procedure
that consists of best single unit moves (Algorithm 1) and arrives at a pure strategy Nash
equilibrium from any starting point in finite time. This implies that convex increasing
congestion games ISWCG are weakly–acyclic (Monderer and Shapley, 1996)—that is,
possess an improvement dynamics whose convergence is guaranteed from an arbitrary
initial strategy profile.

Theorem 3. Algorithm 1 finds a pure strategy Nash equilibrium in a given convex in-
creasing ISWCG.

Proof. The algorithm constructs a sequence of strategy profiles, {x1, x2, . . .}, such that
∀t, xt+1 satisfies Theorem 2 with respect to profile xt (steps 4− 19). Then, Corollary 1
implies that ∀t, P (xt) > P (xt+1), where P (x) is defined in equation (13). That is,
sequence {P (x1) , P (x2) , . . .} is strictly decreasing. Hence, since the game is finite,
the algorithm terminates in a PSNE after a finite number of steps. �

5 Conclusions

In this paper, we explore the conditions for PSNE existence in integer–splittalbe con-
gestion games. Although these games do not necessarily admit such an equilibrium, we
prove that it is guaranteed to exist in an important subclass of ISWCGs with convex
increasing unit–cost functions. Furthermore, we demonstrate that although convex in-
creasing ISWCGs do not have the FIP property, they do possess weak acyclicity, and
we provide a natural procedure that achieves an equilibrium from an arbitrary initial
strategy profile.

Our results suggest several directions for future research. Specifically, given PSNE
existence and convergence, it is important to address further properties of integer–
splittable congestion games, such as completeness of the model, quality of solutions



252 L. Tran-Thanh et al.

Algorithm 1. ISWCG Algorithm.
1: Initialisation: Let t = 1, xt = x
2: If 	∃ i : Di

max > 0→ STOP
3: while PSNE not found do
4: xt ← starting position
5: {rf} ← sequence of forward moves, k = 1
6: while forward move is feasible do
7: make a forward move: rfk

→ rfk+1 , k := k + 1
8: if there is an inner loop then leave out the loop
9: if rfk

= rf1 then xt+1 ← resulting resource profile of {rf1 , rf2 , . . . rfk
} from xt,

GOTO STEP 20
10: end while
11: {rf1 , rf2 , . . . rfK} ← resulting sequence of forward moves
12: {rb} ← sequence of backward moves, l = 1
13: while backward move is feasible do
14: make a backward move: rbl+1 → rbl

, l := l + 1
15: if there is an inner loop then leave out the loop
16: if ∃rfv ∈ {rf} such that rbl

= rfv then xt+1 ← resulting resource profile of
{rf1 , rf2 , . . . rfu , rb1 , rb2 , rbv} from xt, GOTO STEP 20

17: end while
18: {rb1 , rb2 , . . . , rbL} ← resulting sequence of backward moves
19: xt+1 ← resulting resource profile of {rf1 , rf2 , . . . rfK} and {rb1 , rb2 , . . . , rbL} from xt

20: if xt+1 = PSNE then STOP
21: t := t + 1

22: end while

and computational complexity. To this end, we aim to (i) investigate how far the as-
sumptions on the agents’ strategy sets and payoff functions can be relaxed while still
guaranteeing the existence of pure strategy equilibria, (ii) characterise the efficiency of
PSNE in terms of prices of anarchy and stability, and (iii) provide a complexity anal-
ysis of the problem of finding equilibria and develop efficient algorithmic solutions, if
applicable.
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