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Preface

The present volume is devoted to the Fourth International Symposium on Algo-
rithmic Game Theory (SAGT), an interdisciplinary event intended to provide a
forum for researchers and practitioners to exchange innovative ideas and to be
aware of each other’s approaches and findings. The main focus of SAGT is on
the study of the algorithmic aspects of game theory; typical questions include
how scarce computational resources affect the way games between selfish agents
are played and the impact of selfishness on the quality of the outcome of a multi-
player system. This is a departure from traditional algorithmic theory in which
players are supposed to be cooperative.

The algorithmic approach to game theory has been applied primarily to prob-
lems from economics and computer science (e.g., auctions, network and routing
problems). I believe though that this approach can be used to pose new ques-
tions and to give answers to problems in other fields like physics and biology
and hope SAGT will be one of the fora that make this convergence happen.

SAGT 2011 took place in Amalfi (Italy) from October 17th to October 19th,
2011. The present volume contains all contributed papers that were presented
at SAGT 2011 together with an abstract of the distinguished invited lectures of
Bruno Codenotti (Consiglio Nazionale delle Ricerche, Pisa, Italy) and Xiaotie
Deng (University of Liverpool, Liverpool, UK). The two invited lectures are
found at the beginning of the volume and the regular papers appear in the order
of presentation at the symposium.

In response to the call for papers, the Program Committee received 65 sub-
missions of which 10 were co-authored by a Program Committee member. These
submissions were handled by a special sub-committee that proposed to accept
six. For the remaining submissions, 20 were selected for inclusion in the scientific
program of the symposium after a detailed evaluation (each submission was read
by at least three Program Committee members) and electronic discussion.

We wish to thank the creator of the EasyChair System, a free conference
management system, which was very helpful in the selection of the scientific
program.

July 2011 Giuseppe Persiano
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Giuseppe Persiano Università di Salerno, Italy (Chair)
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Computational Game Theory

Bruno Codenotti

Istituto di Informatica e Telematica,
Consiglio Nazionale delle Ricerche,

Pisa, Italy
bruno.codenotti@iit.cnr.it

Abstract. We first provide a quick background in Game and Economic
Theory, and then discuss some fundamental computational questions
arising in these areas. We will focus on the interplay between Game
Theory and Computer Science, with an emphasis on some of the most
challenging open questions.

G. Persiano (Ed.): SAGT 2011, LNCS 6982, p. 1, 2011.
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Computation and Incentives of Competitive

Equilibria in a Matching Market

Ning Chen1 and Xiaotie Deng2

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

ningc@ntu.edu.sg
2 Department of Computer Science, University of Liverpool, UK

xiaotie@liv.ac.uk

Abstract. Matching market and its many variants have been an inten-
sively studied problem in Economics and Computer Science. In many
applications centralized prices are used to determine allocations of indi-
visible items under the principles of individual optimization and market
clearance, based on public knowledge of individual preferences. Alterna-
tively, auction mechanisms have been used with a different set of princi-
ples for the determination of prices, based on individuals’ incentives to
report their preferences.

This talk considers matching markets run by a single seller with an
objective of maximizing revenue of the seller, who employs a market
equilibrium pricing for allocation. We will give a polynomial time al-
gorithm to compute such an equilibrium given budget constraints, and
show that the maximum revenue market equilibrium mechanism con-
verges, under an optimal dynamic re-bidding sequence of the buyers,
to a solution equivalent to the minimum revenue equilibrium under the
true preferences of buyers, which in turn is revenue equivalent to a VCG
solution.

We will also discuss other related issues as well as open problems.

1 Introduction

The commercial success of Google has been relied on a model for charging adver-
tisers for placing their product information to respond to the clicks by curious
surfers of the Internet. It has created a commercialization model characterized
by the classical market extensively studied in the economics literatures with
several important twists. Such scenario has been followed and emulated as well
as modified to fit into different settings of web service systems. At the center
of those commercialization models, there is a simple goal the designers trying
to achieve: match advertisers’ products and services to users, based on the sig-
nals, explicitly or implicitly expressed by the users, prioritized with respect to
commercial value or social benefit to the system.

Search engines have relied on much improved methods to create such match-
ings. Prior to the sponsored search market for online advertising, emails sending

G. Persiano (Ed.): SAGT 2011, LNCS 6982, pp. 2–6, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Computation and Incentives of Competitive Equilibria 3

advertising has been exploited as an effectively direct marketing replacement
of the traditional bulk mail campaigns. The email marketing, however, suffered
from its own success by creating a huge amount of junk mails to users with
the often indiscrimative targeted users of such systems. The sponsored search
approach of advertising is magnitude better in matching users’ needs with mer-
chants’ products. While the techniques that match an ad with a signal from a
searching user have been among the most important expertises of search engine
companies, our focus will be on the pricing models designed to prioritize the
order of advertisers presented to the users.

The advertising market can be characterized by a matching market, usually
consisting of two parties of participants, buyers and products, where each buyer
wants to purchase an item. When considering a single seller’s market, the market
maker owns all the products and sell them to the buyers by a mechanism to
determine a matching of its products to the buyers together with prices. The
seller holds all the power of choices on the selling mechanism, based on its own
principle of maximizing revenue, social welfare, or serving any other purpose.
On the other side of the game, the buyers hold the key information on their own
private values for the products, and will respond in their best interests to the
seller’s strategies.

There have been two major classes of pricing principles in theoretical eco-
nomics that could be applied for guiding the practice: auction mechanism and
competitive market equilibrium. The former is concerned with providing a simple
individual mechanism based on the revelation principle that reduces any dom-
inant strategy rendering protocol to one where every player’s optimal strategy
is to speak the truth [20,15]. The latter, on the other hand, reveres the invisible
hand [18] that balances up the supply-demand to achieve a market clearance
condition [21]. Both paradigms have had profound influence in nurturing eco-
nomic thoughts. However, they are rooted in different sets of rationalities that
may reveal different properties.

There are deviations of the reality at a single seller’s matching market from the
traditional thought, especially with those related to and evolved from the spon-
sored search market. The market is repeated, dynamic, and moreover, changing
in terms of the number of buyers and their compositions. On one hand, the seller
could learn existing buyers and create new products and their combinations. On
the other hand, buyers may also learn and coordinate based on information
gathered through interplays at the marketplaces. Today’s information and com-
munications technology tools will make such analysis possible and in turn pose
great challenges to algorithmic issues in market designs and market games.

2 First Approaches

The now well known GSP, for generalized second price auction, first deployed
by Google at sponsored search market, makes the i-th highest bidder the winner
of the i-th most profitable item (an ad displaying slot), and charges the bidder
the (i + 1)-st highest biding price. Despite of the fact that a single bidder may
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manipulate by a false bid to improve its utility, it has been shown that the desired
Nash equilibrium of the bidders will always out-perform the celebrated strategy-
proof VCG protocol in terms of the seller’s revenue and social welfare [12,19,14].
On the other hand, self-interest seeking advertisers, by the forward-looking best
response [4], can limit the power of the seller to be equivalent in revenue to the
long established VCG solution [7,6,13].

Auction based protocols have been studied and understood pretty well; we
will therefore focus on another solution principle: centralized market equilib-
rium. There has been a practical concern in the market equilibrium solutions:
budget, a major factor that has been neglected. Notwithstanding a fine and clas-
sical concept, it involves in demanding computation that may not be suitable for
situations that require instant decisions (e.g., a query of sponsored keywords).
Here an efficient computation method has become very important, which could
create a scenario for algorithmic design and analysis to make a difference. In re-
cent work [9], we develop a polynomial time algorithm to compute an equilibrium
with budget constraints; our result, as well as [1,2], places market equilibrium a
plausible solution for matching marketplaces.

A mechanism designer may still be worried about the market equilibrium so-
lution concept in the matching market, even if a polynomial time algorithm is
available. The matching market setting may allow several market equilibrium
solutions: some may bring in more revenue to the market maker than others. It
can be easily proven that, the minimum revenue equilibrium as a selling mecha-
nism will rendre bidders truthful: everyone gets its maximum utility by bidding
the truth. On the other hand, the maximum revenue equilibrium will be what
the seller wants but the buyers could lie about their utility functions to manip-
ulate the outcome of the game. In recent work [8], we show that the maximum
equilibrium mechanism, in repeated interplays with the buyers’ best responses
to a solution when every participant gets a revenue equivalent to that of the
minimum equilibrium mechanism. The maximum revenue market equilibrium
is a more sophisticated version of the first price auction, while the minimum
equilibrium is the corresponding counterpart of the second price auction. The
convergence from the maximum revenue market equilibrium toward the mini-
mum revenue equilibrium implies revenue equivalence between the two protocols
in a deterministic and dynamic setting.

3 Future Challenges

An immediate effort would be to iron out some of the imperfection left out in
this theoretical endeavor, and to answer the challenges to develop methodolog-
ical guidance for the new problems and models emerged from the Internet. A
largely ignored aspect in our discussion is competition, which always exists in
the online advertising market. While some game theoretical work regarding the
GSP auction was known [12,19,5,14], it is interesting to study the question for
other mechanisms [17]; the matching market with perishable items such as clicks
of Internet surfers makes it a unique market model to explore.
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Despite of the fact that theoretical progress in dynamics of the matching
market points to a convergence toward the VCG protocol, it still leave a lot to
study further. Clearly being the minimum in revenue among all market equi-
librium solutions, VCG is not what a seller would like to end up with [3], such
as in the FCC spectrum auction [11]. Nisan et al. [16] independently showed
a convergence result from first price auctions to VCG in the matching market.
An intriguing question is under what circumstances we will have such conver-
gence. Further buyers could consider every opportunity where they could make
a marginal improvement by manipulation. In a recent work [10], we develop a
concept of incentive ratio, measuring buyers’ willingness to manipulate. It would
be interesting to further explore the applicability of this solution concept in the
matching market setting to look into possibilities overcoming the curse of thin
revenue of the VCG protocol under certain circumstances.
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Repeated Budgeted Second Price Ad Auction�

Asaph Arnon1 and Yishay Mansour2
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Abstract. Our main goal is to abstract existing repeated sponsored
search ad auction mechanisms which includes budgets, and study their
equilibrium and dynamics. Our abstraction has multiple agents biding
repeatedly for multiple identical items (such as impressions in an ad
auction). The agents are budget limited and have a value for per item.
We abstract the repeated interaction as a one-shot game, which we call
budget auction, where agents submit a bid and a budget, and then items
are sold by a sequential second price auction. Once an agent exhausts its
budget it does not participate in the proceeding auctions.

Our main result is that if agents bid conservatively (never bid above
their value) then there always exists a pure Nash equilibrium. We also
study simple dynamics of repeated budget auctions, showing their con-
vergence to a Nash equilibrium for two agents and for multiple agents
with identical budgets.

1 Introduction

Auctions have become the main venue for selling online advertisements. This
trend started in the sponsored search advertisements (such as, Google’s Ad-
Words, Yahoo!’s Search Marketing and Microsoft’s AdCenter), and expended to
the display advertisement (such as, Double click Ad Exchange [19]). This trend
has even propagated to classical advertisement media, such as TV [20].

There are a few features that are shared by many of those auctions mecha-
nisms. First, the price is set using a second price (or a generalized second price
(GSP)) with the motivation that users should try to bid their utility rather than
search for an optimal bid value. Second, there are daily budgets that cap the
advertiser’s total payment in a single period (e.g., day). Our main goal is to ab-
stract a model for such existing auctions, and study its equilibria and dynamics.

It is worthwhile to expand on the role of budgets in auctions. The budget
allows the advertiser to cap its spending in a given period (day). This is an
important feature to the advertiser, for a few reasons. First, many advertisers
� This research was supported in part by the Google Inter-university center for Elec-

tronic Markets and Auctions, by a grant from the Israel Science Foundation, by
a grant from United States-Israel Binational Science Foundation (BSF), and by a
grant from the Israeli Ministry of Science (MoS).

G. Persiano (Ed.): SAGT 2011, LNCS 6982, pp. 7–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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are brand advertisers, whose goal is to promote their brand and they do not see
an immediate return on their advertisement investments. For such an advertiser,
a budget is the main tool to control the expense of an ad campaign. Second, even
merchants that can test their return on investment (ROI) from ads, many times
are budget limited, due to the corporate financial structure and the way budgets
are allocated throughout the corporation.

There has been an increasing research interest in the role of budgets in auc-
tions, since budgets significantly influences the strategic behavior of agents. A
very interesting line of research is constructing incentive compatible mechanism
for an auction with budgets [7,11,14]. Another line of research has been maximiz-
ing the auctioneer’s revenue [1,18,4,21,3]. In this work we have a very different
agenda. We would like to abstract the existing mechanisms and study their equi-
libria and dynamics.

In our abstraction, as with any abstraction, we made a few compromises.
The nature of the online advertisement auctions, is that there is a huge number
of daily impressions, and agents compete repeatedly for those impressions. In
some systems the advertisers input their budget limit explicitly (for example,
in the Double Click Ad Exchange [19], Google’s AdWords, TV [20], etc.), and
the system bids on their behalf until either their budget is exhausted or the day
ends. We abstract each day as a single-shot game, where the advertiser sets at
the start of the day its bid and budget. (A similar conceptual abstraction to
a one-shot game was done for studying the truthfulness of click through rates
[5,10].)

More concretely, each agent has a private value (for each item) and a private
budget (which caps its total spend in a day). Agents bid for multiple identical
divisible items.1 Each day, the agents submit a bid and a budget to the auc-
tioneer, which conceptually runs a sequence of second price auctions with some
fixed minimum price. The auction terminates when all items have been sold or
all agents have exhausted their budget. This sequential auction is a one-shot bud-
get auction. The one-shot budget auction abstracts a repeated sponsored search
auction for a single slot or a single display advertisement [19].

Our main focus is studying the properties and the existence of pure Nash
equilibrium in a budget auction. We first observe that in a budget auctions,
submitting the true budget is a dominant strategy, while bidding the true value
is not a dominant strategy. The existence of pure Nash equilibrium depends on
the assumptions regarding the bids of losing agents. For the case of two agents
or multiple agents with identical budgets we show that there exists a pure Nash
equilibria, even when the losing agents are restricted to bid their true value. For
the case of multiple agents with different budgets, if losing agents are restricted

1 While technically, advertisement impressions are clearly not divisible, due to the
large volume of impressions, this is a very reasonable abstraction. Although using a
single devisable item is equivalent, we found it less ’natural’ for modeling ad auctions.
In a discrete model our main results (PNE existence) will require an additional
assumption which is that Critical Bids (see definition in the next chapter) are epsilon-
separated. Otherwise we can only prove the existence of ε-Nash equilibrium.
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to bid their true value then there are cases where no pure Nash equilibrium
exists. Our main result is that if we relax this restriction, and assume that the
losing agents bid conservatively, i.e., any value between the minimum price and
their value, then there always exists a pure Nash equilibrium.

We also study simple dynamics of repeated budget auctions with myopic
agents. For the dynamics we use the Elementary Stepwise System [22], where
in each day one non-best-responding agent modifies his bid to a best response,
and bid values are discrete. We prove that these repeated budget auction con-
verge to a Nash equilibrium for the case of two agents and for the case of multiple
agents with identical budgets (under some restrictions).

To illustrate our results for the repeated budget auction we ran simulations.
We observed two distinct bidding patterns: either smooth convergence to an
equilibrium or a bidding war cycle. The smoothed convergence is observed for a
very wide range of parameters and suggests that the convergence is much wider
than we are able to prove.

Related Work: The existence of a pure Nash equilibrium in GSP sponsored
search auction was shown in the seminal works [13,23]. (For equilibrium in other
related models see [21].) There are many works on dynamics of bidding strategies
in Ad Acutions, including theoretical and empirical works [15,12,2,8,9,17].

Paper Outline: Section 2 presents the budget auction model and derives some
basic properties of budget auction. Section 3 studies the existence of pure Nash
equilibria in budget auctions. Section 4 analyzes the dynamics of budget auctions
when played repeatedly, and presents simulations. (The proofs are omitted due
to lack of space.)

2 The Model

The budget auction model has a set of k agents, K = {1, ..., k}, bidding to
buy N identical divisible items. Each agent i ∈ K has two private values: his
daily budget B̂i > 0, and his value for a single item vi > 0. His utility ui

depends on the amount of items he received xi and the price he paid pi, and
ui(xi, pi) = xi(vi − pi) as long as he did not exceed his budget (i.e., xipi ≤ B̂i),
and ui = −∞ if he exceeded his budget2 (i.e., xipi > B̂i).

The auction proceeds as follows. The auctioneer sets a minimum price pmin,
which is known to the agents (she ignores bids below the minimum price). Each
agent i ∈ K submits two values, his bid bi > 0 and his budget Bi > 0. There-
fore, the auction’s input is a vector of bids b = (b1, b2, ..., bk), and a vector
of budgets B = (B1, B2, ..., Bk). The output of the auction is an allocation
x = (x1, x2, ..., xk), such that

∑
i∈K xi ≤ N and prices p = (p1, p2, ..., pk), such

that pi ∈ [pmin, bi]. Agent i is charged xipi for the xi items he receives.
The allocation and prices are calculated in the following way. Initially, the

auctioneer renames the agents such that b1 ≥ b2 ≥ . . . ≥ bk ≥ pmin (when equal
2 This hard budget approach is used also in [11]. Another way to ensure agents don’t

exceed their budget is if agents deposit their budget to the auctioneer (instead of just
reporting it), and the auctioneer returns unused budget at the end of the auction.



10 A. Arnon and Y. Mansour

Table 1. An example of a budget auction with four agents, N = 100 and pmin = 0

Private Submitted Outcome

Agent B̂ v B b x p u Type

A 20 2.0 20 1.0 20 1.0 20 Winner
B 25 1.5 25 1.0 50 0.5 50 Winner
C 30 1.5 20 0.5 30 0.3 36 Border
D 20 0.5 20 0.3 0 0.0 0 Loser

bids are sorted lexicographically), we later refer to this index also as ranking.
First, agent 1 receives items at price p1 = b2 until he runs out of budget or items,
i.e., x1 = min(N, B1/p1). Then, if there are still items left for sale, agent 2 pays
a price p2 = b3, for x2 = max{0, min(N − x1, B2/p2)} items. In general, agent
i has allocation xi = max{0, min(N −

∑i−1
j=1 xj , Bi/pi)} and price pi = bi+1, for

i ∈ [1..k− 1] and pk = pmin. The auction is completed either when all items are
sold, or when all agents exhaust their budgets. Obviously, if all items are sold
to agents with higher rank than agent i, then xi = 0 and ui = 0. Note that by
this definition, the allocation of items to agents will never exceed the supply N ,
i.e.,

∑
i∈K xi ≤ N .

Given the outcome of the budget auction, we can split the agents into three
different categories: Winner Agents, Loser Agents and a Border Agent. A Border
Agent is the lowest ranked agent that gets a positive allocation, i.e., h is a Border
Agent if h = max{i : xi > 0}. Any agent j > h has xj = 0 and is called a Loser
Agent. Any agent i < h is called a Winner Agent and has xi = Bi/pi > 0, i.e.,
winner agents exhaust their budgets. (See Table 1 for an example.)

It is worth making a few remarks regarding our model. Our main goal is to
abstract a repeated GSP auction with budgets. We make few important simpli-
fying assumptions: First, that budgets and bids are set once, which simplifies
the game to be a one-shot game. This assumption is equivalent to assuming
that the agents do not modify their bids. Second, we consider only a single item
with a know quantity. Third, we assume that the items are divisible and prices
are continuous, which are both a very accurate approximation in a sponsored
search setting (where the number of impressions is usually huge, and prices are
discritized at a very fine level). Given those assumptions, our model gives the
same outcome as a repeated GSP auction.

For the most part we assume that agent i submits bids in the range [pmin, vi].
The assumption that bi ≥ pmin is with out loss of generality, since the auctioneer
ignores agents that bid below pmin. The assumption that agents do not bid above
their true value, i.e., bi ≤ vi, is a very reasonable and realistic assumption, and
was termed conservative bidding in [16,6].3

3 Theoretically, agent i might profit by over bidding his value, since it increases the
price of the agent i−1 who ranked above him and therefore, decreases his allocation
xi−1. This will leave more items for agent i and might increase his own allocation
xi. Nevertheless, such bidding might expose the agent to negative utility, since he
might pay more than his value.
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In a Pure Nash Equilibrium (PNE) no agent i ∈ K can gain by unilaterally
changing his submitted bid bi and budget Bi. Formally, for a bid vector b and a
budget vector B, let b−i and B−i be the submitted bids and budgets, respec-
tively, of all agents except agent i. The pair (b, B) is a PNE, if for each agent i,
and any deviation b′i and B′

i, we have ui((b′i, b−i), (B′
i, B−i)) ≤ ui(b, B).

Not surprisingly, bidding the true value is not a dominant strategy, and agents
can bid lower than their true value in order to maximize their utility. We observe
that submitting the true budget is a dominant strategy.

Lemma 2.1. In a budget auction, bidding the true value is not a dominant
strategy, while submitting the true budget is a dominant strategy.

It is instructive to compare the allocation and prices of the budget auction to
the Market Equilibrium Price, which is the price that equalizes the supply and
demand. Figure 1 shows the computation of the market equilibrium price, for
the example in Table 1.

Fig. 1. The Market equilibrium price of the example in Table 1 is peq = 0.75, as at
that point the aggregated demand equals the supply. Note that at the vertical drops,
the aggregated demand is an interval and not a point. This happens when the price
equals the values (vi) of the different agents (in the example this occurs at 0.5, 1.5
and 2.0)

One can impose the market equilibrium price to be the outcome of the budget
auction in two simple alternative ways. The first is that the auctioneer can set
the minimum price to be the market equilibrium price, i.e., pmin = peq. The
second is by adding a dummy agent, that bids peq with an infinite budget. In
both cases we will have a PNE when each ’original’ agent i bids bi = min{vi, peq}.
Clearly, any agent that gets an allocation would pay peq, and the property of
market equilibrium price guarantee that all items are sold. Both alternatives are
not satisfactory. First since the clearing price is unknown (intuitively, this why
the auctioneer is holding an auction in the first place). In addition, in the second
alternative the dummy agent risks negative utility due to his non-conservative
bidding (in both his bid and budget) just to enforce the market equilibrium price.
For this reason we would concentrate on conservative biding, which guarantee a
non-negative utility.
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Table 2. Two possible outcomes of the budget auction with 4 agents, N = 100 and
pmin = 0. Option I is the only ’candiadte’ for a PNE. Nevertheless, agent C can deviate
and improve his utility by underbidding the loser agent (option II). This example shows
that when loser agent bid their values, the are cases without a PNE.

Private Values I - bidding critical value II - under bidding

Agent B̂i vi ci bi pi xi ui type bi pi xi ui type

A 40 2.0 1.143 1.143 1.143 35 30 winner 1.143 1.143 35 30 winner
B 40 2.0 1.143 1.143 1.143 35 30 winner 1.143 1.0 40 40 winner
C 40 2.0 1.143 1.143 1.0 30 30 border 1.0 − ε 0.0 17 34 border
D 8 1.0 1.0 1.0 0 0 0 loser 1.0 1.0 − ε 8 0 winner

3 Pure Nash Equilibrium

In this section we study the existence of a Pure Nash Equilibrium (PNE) in
budget auctions. Our main result is that under mild conditions a PNE does
exists for every budget auction.

We start by showing properties that any PNE in a budget auction must have,
we then define the notion of critical bid, which intuitively is the bid which make
the agent indifferent between being a winner or a border agent, and we complete
by proving that PNE exist in budget auctions.

3.1 Properties of a Pure Nash Equilibrium

We show that in any PNE all winner agents pay the same price, which implies
that all winner agents and the border agent bid the same. In addition, we show
that this price is at most the Market Equilibrium price.

Lemma 3.1. In any PNE, all winner agents pay the same price p, the border
agent pays a price p′ ≤ p, and any loser agent j (if exists) has value vj ≤ p. In
addition, p is at most the market equilibrium price, i.e., p ≤ peq.

It seems that one of the critical assumptions in our model is regarding the
bids of the loser agents. As shown before, if we do not assume that agents are
conservative, we can force a PNE at the market equilibrium price. (See earlier
discussion regarding the drawbacks of such an equilibrium). A rather natural
assumption is that loser agents bid truthfully, i.e., bj = vj and Bj = B̂j (at
equilibrium, they will get a utility of at most zero with any bid). The example
in Table 2 shows a case where there is no PNE when loser agents are restricted
to report their true value and true budget, and is summarized in the following
claim.

Lemma 3.2. If the loser agents are restricted to bid their true value and budget,
then there exists a budget auction with no pure Nash equilibrium.
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3.2 Critical Bid

The critical bid plays an important role in our proof of the existence of a PNE.
Intuitively, when other agents bid low, an agent could prefer the top rank (as
it is cheap). Similarly, when other agents bid high, an agent could prefer the
bottom rank, and get the ’leftover’ items at the minimum price. The critical bid
models the transition point between these two strategies. Specifically, consider
the case when all the agents bid the same value, then critical bid is the value, for
which an agent is indifferent between being a winner agent and a border agent
(receiving the remaining items at minimum price).

Definition 3.1. Consider an auction with the set of agents K and a minimum
price of pmin. The critical bid for agent i is the bid value x = ci(K, pmin), such
that when all agents participating in the auction bid x, i.e., b = (x, ..., x), agent
i is indifferent between the top rank (being a winner agent) and the bottom rank
(being a border agent).

Obviously each agent has potentially a different critical bid. When clear from
the context we denote the critical bid of agent j by cj . A function that would be
of interest is ϕk(pmin) = min1≤i≤k{ci(K, pmin)} which is the lowest critical bid
among agents in the set K with a minimum price pmin. The following 3 lemmas
describe the critical bid properties with respect to the Market Equilibrium Price,
and how the critical bid reflects agents incentives.

Lemma 3.3. Let cj(K, pmin) be the critical bid of agent j, then: (a) cj(K, pmin)
∈ [pmin, vj ], and (b) if b = (x, ..., x) then for x < cj(K, pmin) agent j prefers the
top rank and for x > cj(K, pmin) agent j prefers the bottom rank.

Lemma 3.4. Any agent’s critical value is at most the Market Equilibrium Price.

Lemma 3.5. Consider a bid vector b = (b1, . . . , bk). Then: (a) The top ranked
agent, or any winner agent j ∈ K, cannot improve his utility by bidding higher,
i.e., b′j > bj, (b) The bottom ranked agent, or any loser agent j ∈ K, cannot
improve his utility by bidding lower, i.e., b′j < bj, and (c) If every agent i ∈ K
bids bi = cj (agent j critical bid), then agent j cannot improve his utility by
changing his bid.

3.3 PNE Existence: Special Cases

In this section we prove the existence of a PNE in a budget auction in two interest-
ing special cases: only two agents and multiple agents with identical budgets. The
proofs of these cases would be latter extended to establish the general theorem,
that a PNE exists for budget auction with any number of agents.

Two Agents: We start by characterizing the PNE for only two agents, which will
later be the base of our induction for proving PNE existence for multiple agents.
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Theorem 3.1. Assume that we have two agents with c2 ≤ c1. In the case that
B1/v2 < N then any bids b1 = b2 ∈ [c2, min{v2, c1}] are a PNE. In the case that
B1/v2 ≥ N then any bids b1 ∈ [v2, v1] and b2 ∈ [pmin, v2] are a PNE. Those
are the only PNEs where agents submit their true budget and bid at most their
value.

Agents with identical budgets: The fact that agents have identical budgets pre-
vents winner agents from underbidding loser agents. This allowed us to assume
that loser agents bid truthfully both their budget and value.

Theorem 3.2. There exists a PNE for any number of agents with identical
budgets, where agents submit their true budget (Bi = B̂i), bid bi ∈ [pmin, vi],
and loser agents bid bi = vi.

For the general case of different budgets, if we restrict loser agents to bid their
true value and budget, then there are examples where a PNE does not exists
(Table 2). The main idea for the general case would be to relax this restriction
and let the loser agents submit their true budget, and to bid conservatively, i.e.,
any bid at most their value.

3.4 PNE Existence: General Case

In this subsection we prove that every budget auction with any number of agents
has a Pure Nash Equilibrium where the agents submit their true budget and bid
at most their value.

Assume that, v1 ≥ v2 ≥ ... ≥ vk. For h ≤ k, let Sh = {1, 2, ..., h}, such that
Sk = K. The following lemma shows that if there is a critical bid which is lower
than the value of all h agents, then there is a PNE.

Lemma 3.6. If the lowest critical bid is lower than the value of any agent, i.e.,
cj = ϕh(pmin) < vh, then b = (cj , ..., cj) is a PNE for Sh, where agent j is the
border agent and other agents are winner agents.4

The following lemma shows that by modifying the minimum price we can modify
the price p that winner agents pay in a PNE.

Lemma 3.7. Let b1 be a PNE for the set Sh of h agents and minimum price
pmin, such that all winner agents pay price p < vh, the border agent pays pmin,
and there are no loser agents. Then for every p∗ ∈ [p, vh] there exists a minimum
price p∗min ∈ [pmin, vh] and an agent j ∈ Sh such that there is a PNE b2 in which
every agent i �= j is a winner agent and pays p∗, agent j is the border agent and
pays pj = p∗min, and there are no loser agents.

The following lemma is essentially our inductive step in the proof of the PNE.
It shows that we can increase the number of agents in a PNE by introducing a
new agent with a value lower than the value of any of the previous agents.

4 We assume that agent j slightly underbids cj , and we ignore this small perturbation.
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Lemma 3.8. Let b1 be a PNE with h agents and a minimum price pmin, such
that all winner agents pay price p. If there is a new agent h + 1 such that (a)
vh ≥ vh+1, and (b) For every i ∈ Sh the new critical bid ci(Sh+1, pmin) ≥ vh+1,
then we can define a b2 which is a PNE for Sh+1 with the same minimum price
pmin, where agent h + 1 is a loser agent.

The following is our main theorem, regarding the existence of a PNE in a budget
auction. It shows that when all the agents bid conservatively, there is always a
PNE.

Theorem 3.3. There exists a PNE for any number of agents, where agents
submit their true budget (Bi = B̂i) and bid at most their value (bi ≤ vi).

4 Repeated Budget Auction

In this section we analyze the dynamics of the budget auction when it is played
multiple times with myopic agents. Our goal is to exhibit simple dynamics that
converge to an equilibrium in this repeated setting. We are able to show the con-
vergence of two agents, under rather general assumptions, and the convergence
of multiple agents with identical budget, under more restrictive assumption (the
most important is that the agents start with low bids). Our dynamics assumes
that loser agent bid their value, and therefore we know that there are values for
which there is no PNE (see Table 2). In such cases, clearly, our dynamics will
not converge. assumption important is that the agents start with low bids). Our
dynamics assumes that loser agent bid their value, and therefore we know that
there are values for which there is no PNE (see Table 2). In such cases, clearly,
our dynamics will not converge.

4.1 Bidding Strategies and Dynamics

We first outline our assumption regarding the way the agents select their budget
and bids. For a one-shot budget auction reporting the true budget is a dominant
strategy (Claim 2.1), so we assume agents always report their true budget (al-
though, technically, in the repeated auction setting it is not a dominant strategy
anymore). Since even for a one-shot budget auction, bidding true value is not
a dominant strategy (Claim 2.1), we should definitely observe agents bidding
differently than their value. We assume that bids are from a discrete set, namely
bt
i = ε · � for some integer �.
Best Response: We assume that agents are myopic, and when modifying their

bid, they are performing a best response to the other agents’ bids. Since there
could be many bids which are best response, we specify a unique bid that is
selected as BRi, as follows. Let the BRSi(b−i) be the set of (discrete) bids that
maximizes agent’s i utility given the bids b−i of other agents. Let x = l · ε =
min{BRSi(b−i)}. (This implies that for every y = l′ ·ε < x, we have ui(b−i, y) <
ui(b−i, x), and for every y = l′ · ε > x, we have ui(b−i, y) ≤ ui(b−i, x).) Let

BRi(b−i) =
{

x if ui(b−i, x) > 0
vi if ui(b−i, x) = 0
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Note that an agent for which any best response yields zero utility, bids his true
value.

Dynamics: After each daily auction we compute for each agent its best response.
If all the agents are performing a best response, the dynamics terminates (in a
PNE). Otherwise, a single agent, which is not playing best response, is selected
by a centralized Scheduler, and changes his bid using the specific Best Response
we described.

We use the following notation: bt
i is the bid of agent i at day t. It is important

to note that: (i) Budget restriction is daily - meaning that agent i can spend up
to B̂i each day, (ii) Agents have full information: they know the number of items
(N) the minimum price (pmin), and after each day they observe the bids (b)
budgets (B) prices (p) and allocations (x) of the previous days. Nevertheless,
each agent i true value vi and real budget B̂i are private information.

Scheduler: We model the dynamics as an Elementary Stepwise System (ESS)
[22] with a scheduler. The scheduler, after each daily auction, selects a single
agent that changes his bid to his best response. We considered the following
schedulers: (i) Lowest First - From the set of agents that are not doing best
response, the lowest ranked agent is selected. (ii) Round Robin - Selects agents
by order of index in a cyclic fashion. (iii) Arbitrary scheduler - Selects arbitrarily
from the set of agents that are not doing best response.

4.2 Convergence

In this section we study the converges of the repeated budget auction to a PNE.
We start with two agents, and generalize it to any number of agents with identical
budgets.

Theorem 4.1. For a repeated budget auction with two agents and discrete bids
bt
i = l · ε ∈ [pmin, vi], the ESS dynamics with any scheduler and any starting bids

converges to a PNE.

Next we prove that a repeated budget auction with any number of agents, with
identical budgets and different values, converge to a PNE. However, for our proof
we need to make sure that no two critical bids are equal (which is guaranteed if
no two agents have the same value). In addition, we assume that the aggregated
demand at minimum price exceeds the supply N . (Otherwise, it is an uninter-
esting case where all critical bids equal pmin and this is a PNE.) For agents with
identical budgets, B, this implies that Bk > Npmin. We can now state the
convergence theorem for agents with identical budgets.

Theorem 4.2. A repeated budget auction with any number of agents with iden-
tical budgets and different values, with starting bids of pmin, and ESS dynamics
with Lowest First scheduler, converges to a PNE.
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(a) starting bid is pmin (b) Random starting bids (c) Bidding war cycle

Fig. 2. Simulations of repeated budget auction using a ’Round Robin’ scheduler. The
agents in (a) and (b) are described at Table 1. In (a) their starting bid is the minimum
price while in (b) they start at a random bid. In both cases the auction converged to
a PNE, in which agents A and C are winner agents, agent B is the border agent, and
agent D is a loser agent. In (c) the agent participating are described at Table 2, and
the simulation shows a Bidding War cycle pattern.

4.3 Simulations

This section shows simulations of dynamics in budget auctions, which can give
some intuition about typical bidding patterns of myopic agents. We simulated
an ESS dynamics with a Round Robin scheduler and ε = 0.01.

Our simulations show two bidding patterns: smoothed convergence to an equi-
librium and a bidding war cycle. Similar patterns where observed by Asdemir
[2] for the case of two symmetrical agents (identical budget and value).

Convergence: In our theoretical results, we only managed to prove convergence
to PNE under strict restriction. Our simulations, however, shows that in some
cases even when we relax these restriction the auction converge (See Figure 2 (a)
and (b) for examples of convergence to a PNE with different budgets, different
starting bids and a Round Robin scheduler).
Bidding War: Auctions that do not converge to an equilibrium follow a ’Bidding
War Cycle’ pattern as shown in Figure 2 (c). In this pattern some agents out
bid each other, up to a certien price at which one agent drops his bid, and the
other agents follow. Then, the agents continue to out bid each other and start a
new cycle. This pattern was also spotted in real data collected by Edelman and
Ostrovsky [12] from Overture search engine which they referred to as ’Sawtooth’
pattern. It is worth mentioning that Overture used a first price auction mecha-
nism, in which the existence of this pattern is less surprising. This bidding war
pattern matches our theoretical results that show cases where there is no PNE
if the loser agents is restricted to bid truthfully (Table 2).
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Abstract. Consider video ad placement into commercial breaks in a
television channel. The ads arrive online over time and each has an
expiration date. The commercial breaks are typically of some uniform
duration; however, the video ads may have an arbitrary size. Each ad
has a private value and should be posted into some break at most once
by its expiration date. The player who own the ad gets her value if
her ad had been broadcasted by the ad’s expiration date (obviously, af-
ter ad’s arrival date), and zero value otherwise. Arranging the ads into
the commercial breaks while maximizing the players’ profit is a classical
problem of ad placement subject to the capacity constraint that should
be solved truthfully. However, we are interested not only in truthfulness
but also in a prompt mechanism where the payment is determined for
an agent at the very moment of the broadcast. The promptness of the
mechanism is a crucial requirement for our algorithm, since it allows a
payment process without any redundant relation between an auctioneer
and players. An inability to resolve this problem could even prevent the
application of such mechanisms in a real marketing process. We design
a 6-approximation prompt mechanism for the problem. Previously Cole
et al considered a special case where all ads have the same size which
is equal to the break duration. For this particular case they achieved a
2-approximation prompt mechanism. The general case of ads with ar-
bitrary size is considerably more involved and requires designing a new
algorithm, which we call the Gravity Algorithm.

1 Introduction

Advertising has long since been ubiquitous in the world of trade activities. Re-
cently, with online technologies participating in and transforming the economics
realm, the WEB space naturally becomes an ads space. Consequently, mecha-
nisms that help to arrange ads in physical and online space draw our attention.
Consider a display ad space with fixed capacity, which contains a new set of ads
every day. The ads arrive online over time, each one has parameters of size, value,
arrival and expiration date before which it should be posted. Each day ads of a
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fixed total size can be published. It is natural to assume that the size, arrival and
expiration date are fixed parameters of the ad and cannot be reported falsely.
Therefore we regard these parameters as public information. One may think for
example of a poster advertising a concert. It has a fixed physical size and the
date of the concert event determines the ad’s expiration date. The only private
information of an ad is its value. The ads are published for the entire day. The
player gets her value if her ad had been published by the ad’s expiration date
(obviously, after the ad’s arrival date), and zero value otherwise.

We are interested in a truthful (incentive compatible) mechanism. This is
an algorithm which gets an input from selfish players who try to maximize
their profit, and motivates them to report their private information truthfully.
This goal is usually achieved by means of manipulating the payments collected
from players depending on the algorithm’s outcome. Our mechanism belongs to
the single parameter problems domain, which is a well studied and understood
class of problems. The single parameter truthful mechanisms are equivalent to
monotone algorithms, which means that the winner would still win if she reports
a higher value (keeping other players’ values fixed). The mechanism charges every
winner a critical price that is determined by a threshold, below which the player
loses and above which wins. This critical price can be computed in polynomial
time.

A classical technique to achieve truthfulness involves using VCG. Unfortu-
nately, VCG often cannot be applied to online models, since it requires the
exact optimality which rarely can be achieved in an online fashion, even with
unbounded computational power. Moreover, even when exact optimality can be
achieved, the payment cannot be determined at the time of service, since it de-
pends on future events. This suggests the design of prompt mechanisms, meaning
that a player gets to know the price at the time of publication - unlike the stan-
dard online truthful algorithm where the critical price may be determined only
in the future.

This model is general and may have numerous and various applications. The
ad space may be a physical newspaper sheet with new ads being published on it
daily. Another example is a billboard that displays a set of ads on a fixed space
with changes every specific time period.

Also, the given space may be a virtual one, and applied to online marketing.
For example, Google TV deals with TV companies that offer ad slots, and ad-
vertisers that have ads to be published. Google puts together a schedule of ads
that fills a commercial break (ads may have different length, but the breaks are
typically of the same duration), and sends this schedule to a TV company, which
broadcasts it as it is.

It is also worthwhile to mention that our problem can model a buffer man-
agement or a broadcast problem. Specifically, we consider the classical model of
packets that need to be transmitted through an output port. Each player has
a packet with value, length, arrival and expiration date. Every time step pack-
ets with bounded total size can be transmitted. The switch has to decide which
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packets would be transmitted at each time step while maintaining the size con-
straint. The goal is to design a truthful algorithm which transmits packets with
(approximate) maximum total value.

Prompt mechanisms were introduced in [11]. As discussed there, several rea-
sons for determining the payment at the time of the service exist: first, a player
does not know how much money she has after winning until she leaves, and
hence cannot participate in another auction. Second, prompt mechanisms can
help to resolve some problems of the payment verification. There are two possi-
ble ways to ensure a payment and each of them is problematic in a distinct way:
for example, if a player pays long after she had won, she may try to get out of
the payment. Otherwise, a winner can be demanded to submit an empty check,
and the real amount will be deducted later, which requires a considerable trust
from the player. In prompt algorithms these situations are avoided, allowing a
player to know the price at the moment of her win. Although the concept of
prompt models is quite new in the mechanism design field, it has already drawn
an attention as can be seen in [11,4].

The model studied in [11] is close to the particular case of ours - specifically,
they also consider ads arriving over time. In contrast to our model they consid-
ered the special case where the size of each ad is 1, and each day a single ad is
published. They have presented a prompt mechanism which yields the approx-
imation ratio of 2 and shown that this is the best possible result for prompt
mechanisms. It is natural to ask how to design an algorithm that deals with ads
of general sizes. We note that the algorithm of [11] is tailored to the unit size
case, hence extending the algorithm to deal with ads of arbitrary sizes is by no
means obvious. In addition, the problem of ads with arbitrary size is consider-
ably more complicated than the unit size case, as we would need to deal with
integrality issues. Note that the 2 lower bound for the unit size case naturally
holds for ads of arbitrary size.

Our Results. We solve the general problem with ads of different sizes.

– Our main result is a truthful, prompt algorithm for online ad placement over
time problem, which attains a 6-approximation ratio to the social welfare.

– For relatively small ads (size ≤ ε) the approximation ratio is 2 + O(ε).

We also extend the scope of our study to a more general model, the restricted
assignment model, where each ad has a finite set of time periods at which it
could be posted. Taking TV ads for example, there are some ads that should
be published in mornings or at peak hours only (each time unit is a commercial
break). Every player wants her ad to be published during one of those time
periods, otherwise she gets zero value. Our algorithm can be easily generalized
and modified to answer this case, and attain a 6-approximation ratio (and 2 +
O(ε) ratio for small ads of size at most ε ).

Typically, the approximation ratio is calculated for an integral mechanism
versus an integral optimum solution. In our case, the achieved approximation
ratio also holds for an integral mechanism versus fractional optimum (mean-
ing optimal algorithm that can accept parts of the ads and gain partial profit
respectively).
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The algorithm treats ads with size > 1
2 and size ≤ 1

2 separately. The big
size ads are treated similarly to the uniform unit size case ( [11]). Our main
contribution is designing the Gravity Algorithm which focuses on the small ads.
It has a tentative schedule of small ads for each day, and always prefers ads
with higher density (i.e., the ratio of value to size) even if ad’s value is small.
The crucial detail of the algorithm is a choice of the time step which a newly
arriving ad would be assigned to. It is determined by comparing the densities in
the available time steps at a ”depth” which depends on the size of the new ad.

Related Works. In a generalized full information setting, the problem is
similar to the Multiple Knapsack problem. Multiple Knapsack is a well known
problem with a lot of peculiar variations and useful applications ( [13]). Its basis,
the Knapsack problem, is NPC hard, therefore only approximation algorithms
exist. For the Knapsack problem a FPTAS algorithm is available [16] while for
the Multiple Knapsack problem there is a PTAS algorithm [8,14]. Our model is
intimately related to online MKP with preemption. Designing a truthful model
for MKP problem has been considered: the authors of [7] have obtained an
approximation ratio of e

e−1 ≈ 1.582 in an offline fashion with bins of the same
capacity (this case was also studied by [3]). In an online fashion a 2 + ε approx-
imation ratio is achieved in [7]. Note that the latter model is very similar to
ours; however, our algorithm is prompt while their algorithm does not seem to
be extendable to satisfy the promptness requirement.

The special case of our model with uniform unit size ads received a lot of
attention in scheduling, packet management and multiple unit auctions frame-
works. Online, truthful auction with expiring items was studied by [7], who pre-
sented a truthful 2-competitive mechanism. Non-truthful online model of unit
jobs scheduling is more widely studied with more thorough results being ob-
tained: the best known deterministic online algorithm has 1.828 competitive
ratio [12,17], the lower bound for competitive ratio of deterministic online al-
gorithm is 2√

5+1
≈ 1.618 [2,10]. Giving the randomized setting, the best known

online algorithm yields a competitive ratio of e
e−1 ≈ 1.582 [9,5], and it is known

that no online algorithm can obtain a ratio better than 1.25 [10]. Note that in
offline settings this problem can be solved optimally. If the ads are not of size
1 but of any other uniform size 1

k then [9,5] obtain an approximation ratio of
(1 − ( k

k+1 )k)−1; with k → ∞ the ratio tends to e
e−1 ≈ 1.582. The lower bound

for this case is 1.17 [15].
The ad placement problem has already been widely studied in various fash-

ions, including online algorithms and truthful mechanisms, for example [6,1,18].
One of the closest works is [1], studying an online model of ad auctions as
a single knapsack problem, and designing a truthful mechanism that maxi-
mizes the revenue for this problem. However, most of those works have some
differences from ours model. In most of them, for example, there is a factor
of frequency (the number of times a single ad should appear), or some other
distinctions.
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2 The Model

Consider an ads display space of size 1 for a period of n days. Different ads of
total size of at most 1 can be published each day. There are players arriving
online, each has an ad to be published. An ad is represent by a tuple (s, v, a, e)
where s ∈ (0, 1] refers to its size, v ∈ R

+ - the players value, and a, e - are the
arrival and expiration time. A player wants her ad to be published once before
the expiration time. If so, the benefit v is gained; otherwise, the player gets no
benefit. The ad’s value is a private information of a player, while the rest of
the information is public. The algorithm should be incentive compatible. In a
single parameter environment it is well that it is equivalent to being a monotone
algorithm. Specifically, there is a threshold value above which the player wins
and below which she loses. Also, the algorithm has to be prompt, which means
the threshold value can be calculated at the very publishing moment. The goal
of the algorithm is to maximize the social welfare which is the total value of all
published ads.

The further structure of the paper: in the section 2.2 we describe the Gravity
algorithm. In the section 3 we prove its truthfulness and promptness. In the
section 4 a proof of the approximation ratio is supplied.

2.1 The Gravity Algorithm

Definition 1. Publishing window of an ad is the time period between its arrival
and expiration time.

Definition 2. Let density of an ad be d = v/s. When comparing two distinct
ads, we call an heavier ad to the one with the higher density.

The Gravity algorithm maintains a tentative ads schedule for each day. Whenever
it handles a new ad’s arrival event, it assigns it to one of those days. After the
assignment there is a test for the ad to enters to the day schedule. If it passes the
test it is incorporated into this schedule of that day, otherwise it is rejected. The
assignment of the ad to a day is final. Once an ad is assigned to some day either
it will be published at that day or it will be rejected. Our algorithm treats big
ads (ads of size s > 1/2) and small (ads of size s ≤ 1/2) separately. Hence, for
every day it maintains two alternative schedules: one with a single big ad, and
the other one of some small ads. At the daily publishing event only one of those
daily schedules is actually published. The algorithm deals with the tentative
daily schedule as if it is a physical bins (with fixed capacity 1). Whenever an ad
is assigned to some day t, we say that it is assigned to bin b, where b is binsmall or
binbig depending on the ad’s size. When a new big ad enters a bin, the previous
ad in that bin is rejected. For the small bins, the algorithm maintains the ad of
a daily schedule sorted by density. An heavier ad sinks deeper inside the bin and
the possibly empty space in the bin is at the top. Every ad in the bin defines
an interval in [0, 1] where it is located. When a new small ad enters the bin, the
algorithm inserts the ad to the sorted by density list. Note that the interval of the
lighter ads in the bin will shift upwards. Moreover, that at this moment the total
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size of the ads may exceed 1. Hence all ads above 1 are rejected. There can be at
most one ad whose open interval contains 1 and hence it fits the bin’s capacity
only partially. We call it a partial ad and it is also rejected. Yet, the algorithm
treats it as if it remained inside, while being ”cut” at 1. Its value is reduced
so that its density remains the same. Note that although the algorithm treats
a partial ad as if it is inside the bin, it does not participate in the publishing
event.

Definition 3. Define Dx
b to be the density at the depth x in the bin b which is

the density of the ad whose interval in [0,1] contains the point 1−x. If the depth
x is between two ads, then the it is the lighter density between the two.

Definition 4. For any bin b define Vb to be the sum of values of all ads in b.

Algorithm 1. Gravity Algorithm - contains two parts: Publishing event and
Ad arrival event.

Publishing Event: Day t publishing - let b be bin(t)
if
∑

p∈bsmall
v(p) ≥ v(bbig) then

ads in bsmall are published and ad in bbig is rejected
else

ad in bbig is published and ads in bsmall are rejected
end if

Ad Arrival Event: An ad p = (s, v, a, e) just arrived
if s ≤ 1/2 then

Let bsmall be the bin for which Ds
b is minimal in publishing window of p

if Ds
bsmall

< dp then p enters the bin bsmall

(ads in this bin are reordered, and some possibly rejected or become partial)
else p is rejected
end if

else
Let bbig be the bin for which Vb is minimal in publishing window of p
if Vbbig

< v then p enters the bin bbig and the current ad in bbig is rejected
else p is rejected
end if

end if

The following observation follows from the definition of the algorithm and the
usage of partial ad.

Observation 1. The density Dx
b for any bin b and 0 ≤ x ≤ 1 is non decreasing

function throughout the execution of the algorithm.

Our main result is the following theorem:

Theorem 2. The Gravity Algorithm is truthful, prompt and 6-competitive.

The theorem is proved in sections 3 and 4. In section 3 we show truthfulness and
promptness. In section 4 we analyze the approximation ratio.
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3 Truthfulness

In this section we prove the truthfulness and the promptness of the algorithm.

Lemma 1. The Gravity Algorithm is truthful (i.e. monotone).

Proof. We will prove that the algorithm is truthful by showing it is monotone.
Suppose that a player i with an ad p = (s, v, a, e) is published as a part of the
bin b. We have to show that if she reports v′ ≥ v then her ad is still published. If
s > 1/2, then the proof is identical to the one provided in [11] and it is omitted.

Next we focus on small ads, i.e. s ≤ 1/2. We prove by induction on all ads
arriving after p, that the state of all the bins remains exactly the same (albeit
the false value report) up to the ads’ order inside b. That means that the bin b
contains the same ads at the publishing event, and p is published again. Before
the arrival of p the flow of the algorithm is exactly as before. At its arrival p is
assigned to a certain bin independently of its value. As p would be accepted with
the original value, it will also be accepted with a new higher value and density.
Now we will consider one by one all further arriving ads and prove that the state
after each arrival stays the same as in the original case.

Let c = (sc, vc, ac, ec) be an arbitrary ad arriving after p. Note that the density at
depth sc in the bin b became larger after p’s value increased. One of the following
three cases holds:

– If originally c is assigned to other bin, it will be assigned there again, and
the algorithm takes care of c in the same way.

– If originally c is assigned to the bin b, and ad p is deeper inside the bin
than sc (i.e. the interval of p ends below 1 − sc), then we know that c does
not compete with p. In the untruthful case, since p is in the same place or
perhaps deeper, the algorithm acts in the same way as before.

– If originally c is assigned to the bin b and competes with p then there can
be 2 possibilities (notice that in original case p wins, which means that c is
rejected when arrived):
• Ad c is assigned to bin b again; then it will be rejected again.
• Ad c is assigned now to some other bin h: that means that

Dsc

b ≤ Dsc

h ≤ D′sc

b . We know that originally c was rejected, which means
dc ≤ Dsc

b , then dc ≤ Dsc

h thus c is rejected from bin h as in the original
case.

This flow works for all ads that arrive after p, and then p is still published with
the increased value. The algorithm is monotone, and consequently, truthful.

3.1 Promptness

Recall that the algorithm is monotone; hence, the critical price is well defined. It
is easy to see that every ad can be published only within the bin it was assigned
to. Moreover, the publishing of this ad does not depend on the ads that would
arrive after the publishing moment. This means that the critical price can be
calculated at the very publishing moment - which makes the algorithm prompt.
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4 Approximation Ratio

In this section we compute the approximation ratio. We do it separately for big
and small ads, and show that for small ads the ratio is 4, and for big ads it is 2.
Then we show how to combine the analysis and achieve the total approximation
ratio of 6 for the entire algorithm.

4.1 Big Ads Approximation Ratio

In this subsection we assume that all ads are big (i.e. of sizes larger than 1
2 ).

For the big ads the proof is identical to proof in [11], in which they prove that
Optbig ≤ 2 · Algbig. Here the proof is omitted.

4.2 Small Ads Approximation Ratio

Within this subsection we assume that all ads are small (i.e. of sizes smaller
than or equal to 1

2 ).

Theorem 3. Optsmall ≤ 4 · Algsmall.

Proof. We fractionally match every ad that was published in Opt to some bin.
Then for every bin we prove that the total value of all ads that were matched to
that bin is at most 4 times the total value of ads in the bin of Alg .By summing
by all ads of Opt and all bins of Alg we get a ratio of at most 4 between the
total social benefit and Alg.

Definition 5. Let O be the set of all ads that were published in Opt. Specifically
O = ∪i=n

i=1 Oi where Oi is the set of ads that were assigned to bin i in Alg.

Definition 6. Given o ∈ O, define Home(o) as the bin where o was published
in Opt.

Now we will describe the fractional matching. An ad o in Oi will be matched by
one (or sometimes two) of those rules:

Rule 1. If an ad o was rejected at arrival event then it is matched to the bin
Home(o).

Rule 2. If an ad o had entered to bin i but was preempted later, then it is
fractionally matched to the Home bins (in Opt) of the ads in O that entered
the bin after o’s preemption. Let Oi = (o1, o2, ...olast) be an ordered set,
ordered by arriving timer and assume o is r’th in the order so o = or. For
every k > r we define the paying function. Let ok ∈ Oi be an ad that was
in the bin i and arrived after the ad or had been preempted; ok will pay for
or a fractional part as described below. Note that some fraction of the ad or

may remain ”unpaid” for, and it is the rule 3 that will take care of it. Pay
is a recursive function defined as follows (it is defined only for k > r):

pay(or, ok) = Min(size(ok)−
r−1∑
l=1

pay(ol, ok), size(or)−
k−1∑

l=r+1

pay(or, ol)).
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Whenever we say that the ad ok pays for a part of the ad or, the meaning is
that the part of oi is viewed as a separate ad of size pay(or, ok) and matched
to Home(ok). Several ads can pay for or, so that the sum of parts they paid
for is up to the size of or. It may happen as well that one ad pays for several
ads but the sum of these ads or ads’ parts is always up to the paying ad’s
size. If no one pays for a part of some ad, this part would be matched by the
rule 3.

Rule 3. If an ad o were not preempted, then it is matched to bin i. In addition,
the parts of ads which were not matched in rule 2 will also be matched to
the bin i.

This way, every ad in O is matched via one (or more) of those matching rules to
a bin (or fractionally to several bins). For every bin and every matching rule we
will calculate the ratio between the values of the ads that were matched to this
bin and the values of the ads published in the bin in Alg. Then we calculate the
general ratio.

Definition 7. Given a set of ads (or parts of ads) A. Then let S(A) =
∑

p∈A sp

be their total size and V (A) =
∑

p∈A vp be their total value. Let Zj be the set
of ads published at bin j by the algorithm not including the partial ad and let
Vj = V (Zj).

It is enough to show that the total value of all ads that were matched to bin j,
does not exceed 4Vj . We show it by bounding the total value of all ads that were
matched to j by every one of the rules:

Rule 1
Let G1(j) be the set of all ads that were matched by the first rule: they
were published in Opt at bin j (since we have fixed j we omit the index and
denote it as G1). These ads were assigned to some bins in Alg and rejected
immediately at their arrival event. Let dmax be the maximal density of an
ad in G1. We can conclude that dmax is at least as the average density of the
set G1. Let an ad p = (s, v, a, e) ∈ G1 be a one for which v/s = dmax}. The
ad p was assigned to some bin h. Note that p could have been assigned to
bin j, and hence Ds

h ≤ Ds
j (when p arrives). By that and by the fact that p

was rejected when arrived, we derive that dmax ≤ Ds
h ≤ Ds

j . Since s ≤ 1/2,
then at the moment of p’s arrival the bin j was filled up to a half with ads of
density at least dmax. The observation before implies that the density at any
depth the bin is non-decreasing. Hence, at j’s publishing event the bin was
full up to half with ads of density at least dmax (this half does not contain
the partial ad, so we can use Vj). Hence

Vj ≥ 1/2 · dmax → dmax ≤ 2Vj → V (G1) ≤ 2 · S(G1) · Vj .

Rule 2
Let G2(j) be the set of all ads or ads’ parts that have been matched by
the second rule: they were paid by ads or ads’ parts that were published
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at bin j in Opt (since we have fixed j we omit the index and denote it as
G2). We call the set of those paying ads or ads’ parts G′

2. For example, if
an ad of size 1/2 has paid for two other ads, each being of the size 1/6,
then the paying ad is divided into two different ads of size 1/6 and the same
density; the rest 1/6 is ignored. For each p ∈ G2, define Payers(p) = {q ∈
G′

2|q paid on p}. Notice that sp = S(Payers(p)) and S(G2) = S(G′
2). By

the monotone density observation the density of any ad in Payers(p) is at
least dp. Let dmax be the maximal density in G2 and p = (s, v, a, e) ∈ G2 for
which v/s = dmax. Ad p was assigned to a bin h. Let q ∈ Payers(p) such
that q was assigned to the bin h. Note that q could have been assigned to
the bin j and hence at the moment q’s arrival D

sq

h ≤ D
sq

j . At this moment
p has been preempted already; this means dmax ≤ D

sp

h and sq ≤ sp which
implies that dmax ≤ D

sq

h ≤ D
sq

j ≤ D
1/2
j . We conclude that at the moment

of q’s arrival, the bin j is full up to half with ads of density at least dmax.
The density inside the bin is monotone non-decreasing over time and at j’s
publishing event the bin is filled up to a half with ads of a density at least
dmax (this half does not contain the partial ad, so we can use Vj). Hence

Vj ≥ 1/2 · dmax → dmax ≤ 2Vj → V (G2) ≤ 2 · S(G2) · Vj .

Rule 3
Let G3(j) be the set of all ads (or parts of ads) that are currently matched
by third rule: they had entered bin j and were either published or preempted
but were not paid for (since we have fixed j we omit the index and denote
it as G3). Unlike G1 and G2, we view G3 as evolving over the time.

Lemma 2. At any time S(G3) ≤ 1 where S(G3) is the sum of the sizes of
the ads in G3. The proof is omitted.

Now, as we know that S(G3) ≤ 1, we will bound V (G3). We divide G3 into 2
sets: Gin∪Gout = G3 , Gin are the ads that have been finally published (may
include the partial ad), and Gout are ads that have been preempted. Let Pj be
the set of ads published at bin j including (incuding) the partial ad. Note that
Pj is Zj union with the the partial ad in j. We also divide Pj (ads that were
published in Alg at bin j), into 2 groups Pj = P 1

j ∪P 2
j such that Gin = P 1

j and
P 2

j = Pj−P 1
j . Clearly V (Gin) = V (P 1

j ) and we will show V (Gout) ≤ V (P 2
j ).

If Gout is empty we are done. Else we know that S(Pj) = 1, because if an
ad was preempted from a bin, this bin will be always filled with ads and
a partial ad. By Lemma 2, S(Gout) ≤ 1 − S(Gin) = 1 − S(P 1

j ) = S(P 2
j ).

Let dmax be the maximal density of ads in Gout, dmax ≥ V (Gout)/S(Gout).
Observe that every ad in P 2

j has at least density dmax. We obtain that
V (Gout) ≤ dmax · S(Gout) ≤ dmax · S(P 2

j ) ≤ V (P 2
j ). We put it together and

conclude:

V (G3) = V (Gin) + V (Gout) ≤ V (P 1
j ) + V (P 2

j ) = V (Pj)
= V (Zj) + vpartial ad = Vj + vpartial ad
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It remains to handle is the partial ad that was viewed as a regular ad but
eventually does not get published. The size of the partial ad is less than half
and it has the least density in the bin. Hence vpartial ad ≤ Vj which implies
that V (G3) ≤ 2 · Vj .

Summary
Now we sum these 3 results together. For all j we have
1. V (G1(j)) ≤ 2S(G1(j)) · Vj

2. V (G2(j)) ≤ 2S(G2(j)) · Vj

3. V (G3(j)) ≤ 2Vj

Notice that G1(j) and G′
2(j) both were published in Opt in bin j, meaning

that their size together is up to 1, and as we already know S(G2(j)) =
S(G′

2(j)). Then we get,

V (G1(j)) + V (G2(j)) + V (G3(j)) ≤ 2(S(G1(j)) + S(G2(j)))Vj + 2Vj

≤ 2Vj + 2Vj = 4Vj .

Now we sum over all j to obtain:

V small
OPT =

n∑
j=1

V (G1(j)) + V (G2(j)) + V (G3(j)) ≤ 4
n∑

j=1

Vj = 4V small
ALG .

Proof of Theorem 2. The Gravity Algorithm is truthful by the Lemma 1, and
also prompt. We have calculated the approximation ratio separately for big and
small ads, and shown that for small ads the ratio is 4 in Theorem 3, and for
big ads it is 2 (the proof for big ads is the same as in [11]). This implies that
the total approximation ratio of the algorithm is 6 - details are omitted.

5 Concluding Remarks

We designed a prompt mechanism for ads with arbitrary sizes that are placed
over time. Our mechanism is truthful, prompt and achieves 6-approximation. It
would be interesting to know the best approximation for prompt mechanism as
the best lower bound is 2. Moreover, for ads of relatively small sizes the lower
bound does not hold and it may be possible to get an approximation better than
2 for prompt mechanisms.
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Abstract. In recent years the online advertising industry has witnessed
a shift from the more traditional pay-per-impression model to the pay-
per-click and more recently to the pay-per-conversion model. Such mod-
els require the ad allocation engine to translate the advertiser’s value
per click/conversion to value per impression. This is often done through
simple models that assume that each impression of the ad stochastically
leads to a click/conversion independent of other impressions of the same
ad, and therefore any click/conversion can be attributed to the last im-
pression of the ad. However, this assumption is unrealistic, especially in
the context of pay-per-conversion advertising, where it is well known in
the marketing literature that the consumer often goes through a pur-
chasing funnel before they make a purchase. Decisions to buy are rarely
spontaneous, and therefore are not likely to be triggered by just the last
ad impression. In this paper, we observe how the current method of at-
tribution leads to inefficiency in the allocation mechanism. We develop
a fairly general model to capture how a sequence of impressions can
lead to a conversion, and solve the optimal ad allocation problem in this
model. We will show that this allocation can be supplemented with a
payment scheme to obtain a mechanism that is incentive compatible for
the advertiser and fair for the publishers.

1 Introduction

In 2009 Internet ad revenues totaled $22.7B, of which sponsored search and
display advertising accounted for 47% and 22%, respectively [14]. Although still
a relatively nascent industry, the mechanism for advertising on the internet has
evolved considerably over the past two decades. Initially, ads were sold on a
purely CPM (cost-per-mille) basis, and it was the number of impressions that
determined the payment made by the advertiser. As the marketplace matured,
publishers allowed advertisers to pay per click (CPC basis), and, more recently
per action [12] or conversions (CPA basis).

Auction mechanisms play a critical role in both of these formats [8] and the
celebrated Generalized Second Price (GSP) mechanism has been extensively
studied and analyzed [7,1]. A crucial assumption behind the analyses is a sim-
plistic model of user behavior, namely that the probability of the user clicking
on the ad is independent of the number of times the user has previously viewed
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the ad. This is equivalent to assuming that showing the ad does not result in
changes to future user behavior. The flaw in this reasoning is best illustrated by
the fact that an ad loses its effectiveness over time, and the click probabilities
are not going to be identical for the first and the thousandth view of the same ad
by the same user [11]. If the user has not reacted (via a click or conversion) to an
ad after the first 999 impressions, it is highly unlikely that the thousandth one is
going to change her mind. Conversely, the first few impressions may result in a
superlinear increase in conversion probability (much like having a second friend
in a group increases greatly increases the probability of the user joining [2]).

This notion is known as a purchase funnel [3], and has been at the core of the
marketing literature for almost a century [15]. In online advertising various, this
is recognized as a major issue (see, for example, [6,10,5]), and analytics tools and
ad hoc methods have been developed to reflect the consequences of this type of
user behavior. For example, the practice of frequency capping [4,9], whereby an
advertiser limits the number of exposures of his ad to any user, is a crude way
to optimize for the fact that an ad loses its effectiveness after a certain number
of views. On the other hand, to the best of our knowledge, current mechanisms
do not reward the publisher for displaying an ad that may not result in a click
until its second or third view.

As a concrete example, consider an ad that never results in a click on the
first impression, but always results in a click on the second impression. (We
go through a more elaborate example in the next Section.) In this case, even
with perfect click probability estimation the ad will never be shown, since every
publisher does a myopic optimization, and the ad in question is guaranteed to
have a zero payoff on its first view. In order to create proper incentives to the
publishers, the mechanism designer must recognize that a given click or conver-
sion is not simply result of the actions of the last publisher (as it is attributed
today), but rather a result of the aggregate actions of all of the previous publish-
ers. Therefore, to ensure maximum efficiency, one must attribute the conversion
(and the payoffs that go with it) to all of the publishers along the chain.

In this work we mathematically formulate the multiple attribution problem
and explore the proper method for transforming a bid per conversion to an
effective bid per impression to ensure maximum efficiency. We remark that the
multiple attribution problem is not only relevant to web advertising scenarios.
For example, consider the problem faced by a website designer facing an increase
in user traffic. Is that increase due to the last change made on the site, or is it
due to the continuous work and the multitude of changes done over the past
year. Similarly, suppose a brick and mortar retailer is losing clients to an online
merchant. How much of that loss should be attributed to the recent history, and
how much to an effect accumulated over a longer time horizon.

In addition to the optimal allocation problem in a multiple attribution setting,
we explore the associated pricing problem. This problem is complicated by two
constraints: a pay-per-conversion advertiser must pay only when a conversion
occurs; and different impressions might be served on different publishers, and
therefore it also matters how the payment of the advertiser is split between
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these publishers. While the first constraint can be satisfied easily, we can only
prove that we can simultaneously satisfy both constraints in a special case where
the opportunity cost is a constant. Our proof uses the max-flow min-cut theorem.

The rest of this paper is organized as follows: in the next section, we show
how attributing a conversion to the last impression can lead to inefficiencies in
the market. This motivates a model (defined in Section 3) that assumes that the
user follows a Markovian process. The optimal allocation problem for this model
is formulated in Section 4 as a Markov Decision Process. We solve the Bellman
equations for this process in Section 5, getting a closed-form solution in a special
case and a method to compute the values and the effective bid-per-impression
in general. In Section 6, we prove that the allocation mechanism admits a pay-
per-conversion payment scheme that is incentive compatible for the advertiser
and (in the case that the opportunity cost is a constant) fair for the publishers.
We conclude in Section 7 with a discussion of how our results can be generalized
and applied in practice.

2 Inefficiency of the Last- Impression Attribution Scheme

The model that attributes each conversion to the last impression of the ad is built
on the assumption that upon each impression, the user stochastically decides
whether or not to purchase the product, independent of the number of times
she has previously seen the ad. However, this is not an accurate assumption in
practice, and when this assumption is violated, the last-impression attribution
scheme can be inefficient. Here we explain this with a simple scenario: focus on
one pay-per-conversion advertiser that has a value of $1 per conversion. Assume
a user sees the ad of this advertiser four times on average. The probability of
converting after viewing the ad for the first time is 0.02, and after the second
viewing this probability increases to 0.1. The third and the fourth viewing of the
ad will not lead to any conversions. Also, assume that this ad always competes
with a pay-per-impression ad with a bid of 4 cents per impression.

First, consider a system that simply computes the average conversion rate of
the ad and allocates based on that. This method would estimate the conversion
rate of the ad at (0.02 + 0.1 + 0 + 0)/4 = 0.03. Therefore, the ad’s effective bid
per impression is 3 cents and the ad will always lose to the competitor. This is
inefficient, since showing the ad twice gives an average expected value of 6 cents
per impression, which is more than the competitor.

If we employ frequency capping and restrict the ad to be shown at most twice
to each user, the above problem would be resolved, but another problem arises.
In this case, the average conversion rate will be (0.02+0.1)/2 = 0.06, and the ad
will win both impressions. This is indeed the efficient outcome, but let us look
at this outcome from the perspective of the publishers. If the two impressions
are on different publishers, the first publisher only gets 2 cents per impression
in expectation, less than what the competitor pays. This is an unfair outcome,
and means that this publisher would have an incentive not to accept this ad,
thereby creating inefficiency.
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Finally, note that even if the conversion rate is estimated accurately for each
impression, still the usual mechanism of allocating based on expected value per
impression is inefficient, since it will estimate the expected value per impression
at 2 cents for the first impression. This will lose to the 4 cent competitor, and
never gives the ad a chance to secure the second, more valuable, impression.

3 The Model

In this section we formalize a model that captures the fact that the user goes
through a purchase funnel before buying a product, and therefore the conversion
probability of an ad depends on the number of times the ad is shown. We model
the user’s behavior from the perspective of one pay-per-conversion advertiser A.
We have T opportunities to show an ad to the user, where T is a random variable.
For simplicity, we assume that T is exponentially distributed. This means that
there is a fixed drop-out probability q ∈ (0, 1), and every time a user visits a
page on which an ad can be shown, there is a probability q that she will drop out
after that and will not come back to another such page. Every time we have an
opportunity to show an ad to this user, we must decide whether to show A’s ad
or the competitor’s ad. Assume the value per impression of the competitor’s ad is
R. In other words, R is the opportunity cost of showing A’s ad. We assume that
R is a random variable, and is independently and identically distributed each
time. We will present some of our results in the special case that R is a constant
(corresponding to the case that A always faces the same competitor with a fixed
value), since this case simplifies the math and allows for closed-form solutions.

We assume that the probability that the user converts (buys a product from
A) is an arbitrary function of the number of times she has seen A’s ad. We
denote this probability by λj , where j is the number of times the user has seen
A’s ad. Typically, λj is unimodal, i.e., it increases at the beginning to reach a
peak, and then decreases, although we will not make any such assumption.

Advertiser A’s value per conversion is denoted by v. In the next section, we will
discuss the problem of optimal allocation of ad space (to A or to the competitor).
This can be viewed as the auctioneer’s problem when trying to choose between
A and its competitor to maximize social welfare, or A’s problem when designing
a bidding agent to submit a per-impression bid on its behalf each time. As it
turns out, these views are equivalent.

The optimal allocation problem is one side of the multiple attribution problem.
The other side is the problem of distributing A’s payment among the publisher
on which A’s ad is displayed. This is an important problem when each of these
pages is owned by a possibly different publisher, which is a common case in
marketplaces like Google’s DoubleClick Ad Exchange or Yahoo!’s Right Media
Exchange [13]. We will discuss publisher fairness criteria in Section 6.

4 The Ad Allocation Problem

Given the values of the parameters of the model defined in the previous section
(i.e., q, λi’s, and the distribution of R), the goal of the ad allocation problem
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is to decide when to show A’s ad to maximize the expected social welfare. Here
the social welfare is the sum of the values that A and its competitor derive.
Another way to look at this problem is to assume that at its core, the ad space
is allocated through a second-price pay-per-impression auction1, and conversion-
seeking advertisers like A need to participate in the auction through a bidding
agent that bids a per-impression value for each auction. The objective of such a
bidding agent is the value to A minus its cost, which is equal to R if A wins. The
difference between this objective and the objective of social-welfare maximizing
auctioneer is an additive term equal to expectation of the sum of the R values.
Therefore, the two optimizations are the same. In this section and the next,
we solve this optimization problem by modeling it as a Markov Decision Process
(MDP) and solving the corresponding Bellman equations [16]. We will also derive
the value that A’s bidding agent should bid to achieve the optimal outcome.

MDP formulation. We can define an MDP as follows: for each j, where
j − 1 represents the number of ad views so far, we have three states aj , bj , and
cj . The state aj represents the probabilistic state right before the next time the
user views a page on which an ad can be displayed. This state has a transition
with probability q to the quit state (which is a terminal state), and another with
probability 1 − q to bj . At bj , the value of R is realized and we need to make
a decision between not showing the ad, which would give a reward of R and
takes us back to the state aj , or to show the ad, which would take us to the
state cj . This is a probabilistic state with probability of transition of (1−λj) to
aj+1 (corresponding to the non-conversion event) and probability of transition
of λj to a terminal convert state. The reward of this transition is v (the value of
conversion) plus the value of the infinite sequence of alternative ads starting from
this point. Since the number of page visits follows an exponential distribution,
this value is v + (1 − q)E[R]/q. The state a1 is the starting state. Figure 1
illustrates the process.

aj

quit

bj

cj

aj+1

convert

q

1 − q

¬Show

Show

1 − λj

λj

Fig. 1. Multiple Attribution MDP

1 This is the case in marketplaces such as Yahoo!’s Right Media Exchange.
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The Bellman Equation. We denote the total social welfare we obtain
from this user starting from the state bj by Vj . At this state, we need to choose
between showing the competitor’s ad or showing A’s ad. In the former case, we
immediately get a value of R and with prob. 1−q will be taken back to the state
bj. Therefore, the expected value in this case is R + (1− q)Vj. In the latter case,
with probability λj a conversion happens, which results in a value of v for the
conversion plus (1 − q)E[R]/q for the sequence of competitor ads we can show
afterward. With probability 1 − λj , we get no conversion and will be taken to
the state bj+1 with probability 1− q. Therefore, the expected value in this case
is λj(v + (1− q)r/q) + (1 − λj)(1 − q)Vj+1, where r = E[R]. To summarize:

Proposition 1. The values Vj of the expected total value starting from the state
bj satisfy the following equation:

Vj = ER[max(R + (1− q)Vj , λj(v +
(1− q)r

q
) + (1− λj)(1− q)Vj+1)], (1)

where r = E[R]. The value V1 indicates the maximum expected social welfare in
our model.

5 Computing the Values

In this section, we show how (1) can be simplified to a recurrence relation that
can be used to compute Vj ’s. This recurrence has a simple form, but involves a
function that is, in general, non-linear (depending on the distribution of R), and
therefore its solution cannot be written in closed form. However, we can do this
in the case that R is a constant. Also, we derive the values that a bidding agent
that participates in a pay-per-impression auction on behalf of A should bid for
each impression.

5.1 The General Recurrence

We start with the Bellman equation (1) and simplify it in each step, eventually
writing it in terms of a particular function that captures the effect of q and
the distribution of R. First, we rewrite the equation in terms of new variables
Wj := (1 − q)(Vj − r/q). Intuitively, Wj is the maximum value starting from
the state aj , minus the value starting from this state without the presence of
advertiser A. By replacing Vj ’s by Wj ’s in (1) we obtain

Wj

1− q
= E[max(R + Wj , λjv + (1− λj)Wj+1)]− r. (2)

Before simplifying this equation further, notice that this means that in the opti-
mal allocation, the advertiser A wins if and only if R+Wj ≤ λjv+(1−λj)Wj+1.
Thus,

Proposition 2. In the optimal allocation, at a point where the user has already
seen A’s ad j − 1 times, the next impression will be allocated to A if and only if
the cost of this impression (R) is at most λjv + (1− λj)Wj+1 −Wj .
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To write (2) in a simpler form, we define h(x) := E[max(R, x)]. Clearly, h(.) is a
function that only depends on the distribution of R. After subtracting Wj from
both sides of (2), we can write this equation as

qWj

1− q
= h(λjv + (1− λj)Wj+1 −Wj)− r. (3)

Note that h is by definition a continuous non-decreasing function. For a value
β ≥ 0, consider the following equation in terms of the variable x: qx/(1 − q) =
h(β − x) − r. At x = 0, the right-hand side of this equation is h(β) − r =
h(β) − h(0) ≥ 0 and the left-hand side is zero. At x = β, the right-hand side is
h(0) − r = 0 and the left-hand side is non-negative. Therefore, since the right-
hand side of the equation is non-increasing in x, the left-hand side is strictly
increasing, and both sides are continuous functions of x, this equation has a
unique solution in [0, β]. We denote the value of this solution by u(β).

Proposition 3. For any value of q and distribution of R, the function u(.) is
well-defined, non-decreasing, and continuous, and satisfies ∀ β : u(β) ∈ [0, β].

Note that u(.) is defined purely in terms of the distribution of R and the value
of q, and in fact, it captures all the information about these parameters that is
relevant for the allocation problem. Using this function, (3) can be rewritten as:

Wj = u(λjv + (1− λj)Wj+1). (4)

Obtaining an explicit formula for Vj is only possible if u(.) has a simple form. Un-
fortunately, this function is often complex and non-linear.2 However, the above
equation gives a straightforward way to compute Wj ’s numerically: start with
a large enough j∗ so that Wj∗ = 0, and then move backward to compute Wj

for j = j∗ − 1, . . . , 1. Such a value of j∗ exists in most realistic scenarios; for
example, any j∗ such that for all j > j∗, λjv is less than the minimum of R (say,
the value of the reserve price) suffices. To summarize,

Theorem 1. Let Wj’s be the values computed using (4). Then the optimal al-
location can be obtained by submitting a per-impression bid of bidj := λjv +(1−
λj)Wj+1 −Wj on behalf of A in a state where the user has already seen the ad
j − 1 times. The social welfare achieved by this mechanism is r/q + W1/(1− q).

5.2 Closed-form Solution for Constant R

In the case that R is a constant r, we can significantly simplify the recurrence (4).
First, note that by definition, h(x) = max(r, x). Therefore, u(β) is the solution
of the equation qx/(1− q) = max(β−x− r, 0). It is easy to see that when β ≥ r,
the solution of the above equation is (1−q)(β−r), and when β < r, this solution
is zero. Therefore, u(β) = (1 − q)max(β − r, 0). This gives

Wj = (1− q)max(λjv − r + (1− λj)Wj+1, 0). (5)
2 For the uniform distribution, u(.) is the solution of a quadratic equation; for the

exponential distribution u(.) cannot be written in closed form.
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To solve this recurrence, we can expand Wj+1 in the above expression, and
iterative. This results in the following explicit expression, which can be easily
verified by induction using the above recurrence (5):

Wj = (1− q) max
l≥j−1

⎧⎨⎩
l∑

s=j

(λsv − r)ψs/ψj

⎫⎬⎭ , (6)

where ψi :=
∏i−1

t=1(1− q)(1− λt) is the probability that the user visits at least i
times and each time (except possibly the last time) does not convert on A’s ad.

In the above expression an empty sum is defined as zero and an empty product
is defined as one. So the final solution can be written as follows:

V1 =
r

q
+ max

l≥0

{
l∑

s=1

(λsv − r)ψs

}
. (7)

To summarize:

Theorem 2. Let l∗ be the value of l that achieves the maximum in (7). Then
in the optimal allocation, A’s ad is shown until the user converts or she sees the
ad l∗ times. After a conversion happens or this number of ad views is reached,
the competitors ad is shown.

6 Pricing and Publisher Fairness

In the last section, we showed how we can design a bidding agent that translates
the advertiser A’s values into an effective bid per impression every time there
is an advertising opportunity. If this advertiser could pay per impression (we
will call this the pay-per-impression scenario), this would have been the end of
the story: on each auction, we would use the bidding agent to bid, and if A
wins based on this bid, she will pay the value of the competitor’s bid R. This
value would be disbursed to the publisher responsible for that impression. It is
not hard to see that this scheme is equivalent to the VCG mechanism from A’s
perspective (i.e., it allocates the good optimally and charges A the externality she
imposes on others), and therefore A has incentive to truthfully report her value
per conversion v. Also, the mechanism seems intuitively “fair” for publishers.

However, some advertisers are strict pay-per-conversion advertisers. For these
advertisers the payment scheme should satisfy the following property:

Ex-Post Individual Rationality (Ex-Post IR): At any outcome where a
conversion has not happened, A does not pay anything. At an outcome where a
conversion has happened, A pays at most her value per conversion v.

In addition to the above, we require Efficiency (getting the optimal allocation
characterized in the last section) and Incentive Compatibiltiy (IC). Note that
these two properties imply that in expectation, the amount the advertiser must
be charged is the externality it imposes on the others. This is equal to the sum
of R on impressions where A’s ad is shown. In other words, in expectation,
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the mechanism should charge the same amount as in the pay-per-impression
scenario. The challenge is to implement this while respecting Ex-Post IR.

As we will show in the next subsection, this can be achieved with a simple
uniform pricing. This method is simple and works well when there is only one
publisher (so there is no issue of fairness). In Section 6.2, we define and study
a natural notion of fairness when there are multiple publishers. We will show
that there are instances where the uniform pricing method cannot result in a
fair distribution of payments to publishers. On the positive side, in the case of
constant R, we will show that the problem can be formulated as a network flow
problem, and will use the maximum-flow minimum-cut theorem to prove that a
fair, ex-post IR, and incentive compatible payment rule always exists. As this is
a special case of the max-flow min-cut problem, we will also be able to give a
simpler and faster algorithm for computing the payments.

6.1 The Uniform Pricing Method

The idea of the uniform pricing method is to charge the same amount for all
conversions, regardless of how many ad impressions A gets prior to the conver-
sion. This uniform cost is set at a level to get the advertiser to pay the right
amount in expectation. Using the optimality of the allocation, we can show that
this scheme satisfies Ex-Post IR. We first illustrate this in the ase of constant R.

First, note that W1 ≥ 0. This can be seen directly from the defintion of W1

and V1 as the optimal solution of the MDP, or from Equation (6). Let � be the
value that maximizes (7). Thus we have

∑�
s=1(λsv − r)ψs ≥ 0, or, equivalently:

v ≥ r ·
∑�

s=1 ψs∑�
s=1 λsψs

. (8)

Now consider the expected externality imposed by the advertiser on others. The
probability that the ad is shown exactly � times is ψ�. For some s < � the proba-
bility that it is shown exactly s times is ψs−ψs+1. Therefore, the total expected
externality imposed on others by the advertiser is r

∑�
s=1 sψs− r

∑�−1
s=1 sψs+1 =

r
∑�

s=1 ψs. On the other hand, the probability that the user converts after the
i-th view is λiψi. Thus the total probability of conversion is

∑�
s=1 λsψs. There-

fore if for each conversion, we charge the advertiser r ·
∑ �

s=1 ψs∑
�
s=1 λsψs

, the expected
payment of the advertiser will be equal to the externality it imposes on others
(i.e., the IC payment). Also, by Equation (8), the payment per conversion is at
most v, and hence Ex-Post IR is also satisfied.

This method can be applied in the general case (when R is not a constant):
On any conversion, independent of the history of impressions that lead to this
conversion, we charge the advertiser an amount equal to

price :=
E

Pconv
, (9)

where E is the expected total externality that A imposes on the competitors,
and Pconv is the overall probability of conversion for A. By definition, with
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this charging scheme in expectation A pays price × Pconv = E, which is the
incentive compatible payment. To show that the above price satisfies Ex-Post
IR, we compare this scenario with the pay-per-impression scenario defined at
the beginning of Section 6. It is easy to see that the outcome in both cases is
the same and A’s payment is also the same in both scenarios in expectation.
Therefore, since A’s utility in the pay-per-impression scenario is non-negative,
it is non-negative here too, implying that price ≤ v.

6.2 Publisher Fairness

There are two main motivations for studying the multiple attribution problem:
the first is to ensure the efficiency of the market outcome, and the second is to
ensure that each ad publisher who has contributed in the purchase funnel that
has lead to a conversion gets a fair share of the conversion price. So far, we have
been concerned with the first aspect: efficiency. In this section we turn to the
second aspect: fairness among publishers.

We first need to define the notion of fairness for publishers. Our definition is
motivated by the hypothetical pay-per-impression scenario defined at the begin-
ning of Section 6. In this scenario, each publisher who displays A’s ad, receives
a payment equal to the opportunity cost of this impression. We define fairness
in our setting by requiring the same payments in expectation:

Publisher Fairness. For each i, the expected value the i’th publisher receives
from A is equal to the expected opportunity cost (R) of this publisher condi-
tioned on A winning.

Note that this is a natural property to require, since it is natural for the
publisher to request to be paid an amount at least equal to the opportunity cost
of the impressions it provides (if this is not satisfied, the publisher could refuse
to accept pay-per-conversion advertisers), and since the advertiser’s payment is
the total externality it imposes on the competitors, no publisher cannot hope to
get more than its expected opportunity cost without hurting another publisher.

As we will show below, Publisher Fairness imposes a non-trivial constraint on
the payments. In fact, for some payment rules like the uniform scheme defined
in Section 6.1, it is not possible to distribute the payment among the publishers
in a way that satisfies Publisher Fairness. To illustrate this and prepare for the
result of the next section (showing that for constant R, there is a payment rule
satisfying Publisher Fairness), we focus on the case of constant R, and introduce
some notations.

We number the publishers in the order the user visits ad-bearing pages. Let
xij be the payout to publisher j if the conversion occurs after precisely i views.
This quantity is only defined for i ≥ j, since for i < j, the user will either never
visit publisher j, or visit this publisher after she is already converted. Also, we
only define the variables xij for i, j ≤ � where � is the index that maximizes the
value in Equation (7), since after this index, A’s ad will not be shown.

We can write our desired properties in terms of the xi,j variables. First, we
formulate the Publisher Fairness property. For every publisher j = 1, . . . , �,
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conditioned the user visiting j, the probability that it visits exactly i publishers
(i ≥ j) and then it converts is precisely ψiλi/ψj . Thus, the total expected pay-
ment to j, conditioned on the user visiting j can be written as

∑
i≥j xijψiλi/ψj .

Therefore the Publisher Fairness property can be written as follows:

∀j :
∑
i≥j

xijψiλi/ψj = r. (10)

This property also implies that the payments are incentive compatible: since for
each publisher the total payment of A is equal to the externality A imposes on
its competitors on this publisher, the total expected payment of A is also equal
to the total expected externality it imposes on the competitors. Therefore, all
that remains is to formulate the Ex-Post IR property. The total payment of A
in case a conversion happens after precisely i impressions is

∑
j≤i xij . Therefore,

Ex-Post IR is equivalent to the following.

∀i :
∑
j≤i

xij ≤ v. (11)

We leave the proof of the following theorem to the full version of the paper.

Theorem 3. Consider the optimal allocation with the uniform pricing rule de-
fined in the last section. There are instances in this mechanism where there is
no way to distribute the advertiser’s payment among the publishers in a way that
satisfies Publisher Fairness.

6.3 Fair Payments via Max-Flow Min-Cut

The main result of this section is the existence of a fair payment rule when R is
constant. The proof (omitted due to lack of space) is based on formulating the
constraints as flow constrains and using the max-flow min-cut theorem.

Theorem 4. When R is a constant, the optimal allocation rule can be supple-
mented with a payment scheme that satisfies Incentive Compatibility, Ex-Post
Individual Rationality, and Publisher Fairness.

7 Conclusion

In this work we showed how myopic optimization by the publishers can lead to
inefficient allocations in the case when displaying an impression for an advertiser
changes the user’s conversion probability on subsequent visits. We formulated
the optimal allocation problem in this setting as a Markov Decision Process
and derived the optimal allocation and a way to translate the advertiser’s per-
conversion value to bids for each impression. We then studied how the advertiser
should be charged in the case of a conversion, and how this charge should be split
between publishers in order to achieve incentive compatibility and individula
rationality for the advertiser and fairness for the publishers.
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Our model is fairly general, yet simple enough to be practical. Perhaps the
most important assumption in the model, which is sometimes inaccurate, is that
we assumed that the conversion probability depends only on the number of views,
and not on the identity of the publishers that display the ad to the user. One
can imagine generalizing this notion, in a manner similar to the separable click-
through rate model of sponsored search – that the probability of conversion is a
separable function of the number of user visits and the identity of the publisher.
Another way to relax this assumption is to assume each publisher has a weight,
and the conversion probability of the user at each point is a function of the total
weight of the publishers that have shown the ad to the user. When all weights
are 1, this model reduces to our identical publisher model. We leave this as an
interesting open problem.
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Abstract. A traditionally desired goal when designing auction mech-
anisms is incentive compatibility, i.e., ensuring that bidders fare best
by truthfully reporting their preferences. A complementary goal, which
has, thus far, received significantly less attention, is to preserve privacy,
i.e., to ensure that bidders reveal no more information than necessary.
We further investigate and generalize the approximate privacy model for
two-party communication recently introduced by Feigenbaum et al. [8].
We explore the privacy properties of a natural class of communication
protocols that we refer to as “dissection protocols”. Dissection protocols
include, among others, the bisection auction in [9,10] and the bisection
protocol for the millionaires problem in [8]. Informally, in a dissection
protocol the communicating parties are restricted to answering simple
questions of the form “Is your input between the values α and β (under
a pre-defined order over the possible inputs)?”.

We prove that for a large class of functions called tiling functions,
which include the 2nd-price Vickrey auction, there always exists a dis-
section protocol that provides a constant average-case privacy approxi-
mation ratio for uniform or “almost uniform” probability distributions
over inputs. To establish this result we present an interesting connection
between the approximate privacy framework and basic concepts in com-
putational geometry. We show that such a good privacy approximation
ratio for tiling functions does not, in general, exist in the worst case. We
also discuss extensions of the basic setup to more than two parties and to
non-tiling functions, and provide calculations of privacy approximation
ratios for two functions of interest.

Keywords: Approximate Privacy, Auctions, Communication Protocols.

1 Introduction

Consider the following interaction between two parties, Alice and Bob. Each of
the two parties, Alice and Bob, holds a private input, xbob and yalice respectively,
not known to the other party. The two parties aim to compute a function f of the
two private inputs. Alice and Bob alternately query each other to make available
a small amount of information about their private inputs, e.g., an answer to a
range query on their private inputs or a few bits of their private inputs. This
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process ends when each of them has seen enough information to be able to
compute the value of f(xbob, yalice). The central question that is the focus of
this paper is:

Can we design a communication protocol whose execution reveals, to both
Alice and Bob, as well as to any eavesdropper, as little information as
possible about other the other’s private input beyond what is necessary
to compute the function value?

Note that there are two conflicting constraints: Alice and Bob need to communi-
cate sufficient information for computing the function value, but would prefer not
to communicate too much information about their private inputs. This setting
can be generalized in an obvious manner to d > 1 parties party1, party2, . . . , partyd

computing a d-ary f by querying the parties in round-robin order, allowing each
party to broadcast information about its private input (via a public communi-
cation channel).

Privacy preserving computational models such as the one described above
have become an important research area due to the increasingly widespread usage
of sensitive data in networked environments, as evidenced by distributed com-
puting applications, game-theoretic settings (e.g., auctions) and more. Over the
years computer scientists have explored many quantifications of privacy in com-
putation. Much of this research focused on designing perfectly privacy-preserving
protocols, i.e., protocols whose execution reveals no information about the par-
ties’ private inputs beyond that implied by the outcome of the computation.
Unfortunately, perfect privacy is often either impossible, or infeasibly costly to
achieve. To overcome this, researchers have also investigated various notions of
approximate privacy [7,8].

In this paper, we adopt the approximate privacy framework of [8] that quanti-
fies approximate privacy via the privacy approximation ratios (Pars) of protocols
for computing a deterministic function of two private inputs. Informally, Par
captures the objective that an observer of the transcript of the entire protocol
will not be able to distinguish the real inputs of the two communicating par-
ties from as large a set as possible of other inputs. To capture this intuition, [8]
makes use of the machinery of communication-complexity theory to provide a
geometric and combinatorial interpretation of protocols. [8] formulates both the
worst-case and the average-case version of Pars and studies the tradeoff between
privacy preservation and communication complexity for several functions.

1.1 Economic Motivation

The original motivation of this line of research, as explained in [8], comes from
privacy concerns in auction theory. A traditionally desired goal when designing
an auction mechanism is to ensure that it is incentive compatible, i.e., bidders
fare best by truthfully reporting their preferences. More recently, attention has
also been given to the complementary goal of preserving the privacy of the bid-
ders (both with respect to each other and to the auctioneer/mechanism). Take,
for example, the famous 2nd-price Vickrey auction of an item. Consider the
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ascending-price English auction, i.e., the straightforward protocol in which the
price of the item is incrementally increased, bidders drop out when their value
for the item is exceeded until the identity of winner is determined, and the win-
ner is then charged the second-highest bid. Intuitively, this protocol reveals more
information than what is absolutely necessary to compute the outcome, i.e., the
identity of the winner and the second-highest bid. Specifically, observe under
the ascending-price English auction not only will the value of the second-highest
bidder be revealed, but so will the values of all other bidders but the winner.

Can we design communication protocols which implement the 2nd-price Vick-
rey auction in an (approximately) privacy-preserving manner? Can we design
such protocols that are computationally- or communication-efficient? These sort
of questions motivate our work. We consider a setting that captures applications
of the above type, and explore the privacy-preservation and communication-
complexity guarantees achievable in this setting.

2 Summary of Our Contributions

Any investigation of approximate privacy for multi-party computation starts by
defining how we quantify approximate privacy. In this paper, we use the com-
binatorial framework of [8] for quantification of approximate privacy for two
parties via Pars and present its natural extension to three or more parties. Of-
ten, parties’ inputs have a natural ordering, e.g., the private input of a party
belongs to some range of integers {L, L+1, . . . , M} (as is the case when comput-
ing, say, the maximum or minimum of two inputs). When designing protocols for
such environments, a natural restriction is to only allow the protocol to ask each
party questions of the form “Is your input between the values α and β (under
this natural order over possible inputs)?”. We refer to this type of protocols as
dissection protocols and study the privacy properties of this natural class of pro-
tocols. We note that the bisection and c-bisection protocols for the millionaires
problem and other problems in [8], as well as the bisection auction in [9,10], all
fall within this category of protocols. Our findings are summarized below.

Average- and worst-case Pars for tiling functions for two party compu-
tation. We first consider a broad class of functions, namely the tiling functions,
that encompasses several well-studied functions (e.g., Vickrey’s second-price auc-
tions). Informally, a two-variable tiling function is a function whose output space
can be viewed as a collection of disjoint combinatorial rectangles in the two-
dimensional plane, where the function has the same value within each rectangle.
A first natural question for investigation is to classify those tiling functions for
which there exists a perfectly privacy-preserving dissection protocol. We observe
that for every Boolean tiling functions (i.e., tiling functions which output binary
values) this is indeed the case. In contrast, for tiling functions with a range of just
three values, perfectly privacy-preserving computation is no longer necessarily
possible (even when not restricted to dissection protocols).

We next turn our attention to Pars. We prove that for every tiling function
there exists a dissection protocol that achieves a constant Par in the average
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case (that is, when the parties’ private values are drawn from an uniform or al-
most uniform probability distribution). To establish this result, we make use of
results on the binary space partitioning problems studied in the computational
geometry literature. We complement this positive result for dissection proto-
cols with the following negative result: there exist tiling functions for which no
dissection protocol can achieve a constant Par in the worst-case.

Extensions to non-tiling functions and three-party communication. We
discuss two extensions of the above results. We explain how our constant average-
case Par result for tiling functions can be extended to a family of “almost”
tiling functions. In addition, we consider the case of more than two parties.
We show that in this setting it is no longer true that for every tiling function
there exists a dissection protocol that achieves a constant Par in the average
case. Namely, we exhibit a three-dimensional tiling function for which every
dissection protocol exhibits exponential average- and worst-case Pars, even when
an unlimited number of communication steps is allowed.

PARs for the set covering and equality functions. [8] presents bounds on the
average-case and the worst-case Pars of the bisection protocol — a special case of
dissection protocols — for several functions. We analyze the Pars of the bisection
protocol for two well-studied Boolean functions: the set-covering and equality
functions; the equality function provides a useful testbed for evaluating privacy
preserving protocols [3] [11, Example 1.21] and set-covering type of functions are
useful for studying the differences between deterministic and non-deterministic
communication complexities [11]. We show that, for both functions, the bisection
protocol fails to achieve good Pars in both the average- and the worst-case.

3 Summary of Prior Related Works

3.1 Privacy-Preserving Computation

Privacy-preserving computation has been the subject of extensive research and
has been approached from information-theoretic [3], cryptographic [5], statisti-
cal [12], communication complexity [13,16], statistical database query [7] and
other perspectives [11]. Among these, most relevant to our work is the approxi-
mate privacy framework of Feigenbaum et al. [8] that presents a metric for quan-
tifying privacy preservation building on the work of Chor and Kushilevitz [6] on
characterizing perfectly privately computable computation and on the work of
Kushilevitz [13] on the communication complexity of perfectly private computa-
tion. The bisection, c-bisection and bounded bisection protocols of [8] fall within
our category of dissection protocol since we allow the input space of each party
to be divided into two subsets of arbitrary size. There are also some other for-
mulations of perfectly and approximately privacy-preserving computation in the
literature, but they are inapplicable in our context. For example, the differential
privacy model (see [7]) approaches privacy in a different context via adding noise
to the result of a database query in such a way as to preserve the privacy of the
individual records but still have the result convey nontrivial information,
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3.2 Binary Space Partition (Bsp)

Bsps present a way to implement a geometric divide-and-conquer strategy and
is an extremely popular approach in numerous applications such as hidden sur-
face removal, ray-tracing, visibility problems, solid geometry, motion planning
and spatial databases. However, to the best of our knowledge, a connection be-
tween Bsps bounds such as in [14,15,2,4] and approximate privacy has not been
explored before.

4 The Model and Basic Definitions

4.1 Two-Party Approximate Privacy Model of [8]

We have two parties party1 and party2, having binary strings x1 and x2 respec-
tively, which represents their private values in some set U in. The common goal
of the two parties is to compute the value f(x1, x2) of a given public-knowledge
function f . Before a communication protocol P starts, each partyi initializes its
“set of maintained inputs” U in

i to U in. In one step of communication, one party
transmits a bit indicating in which of two parts of its input space its private in-
put lies. The other party then updates its set of maintained inputs accordingly.
The very last information transmitted in the protocol P contains the value of of
f(x1, x2). The final transcript of the protocol is denoted by s(x1, x2).

Denoting the domain of outputs by U out, any function f : U in ×U in �→ U out

can be visualized as
∣∣U in

∣∣×∣∣U in
∣∣ matrix with entries from U out in which the first

dimension represents the possible values of party1, ordered by some permutation
Π1, while the second dimension represents the possible values of party2, ordered
by some permutation Π2, and each entry contains the value of f associated with
a particular set of inputs from the two parties. This matrix will be denoted
by AΠ1,Π2(f), or sometimes simply by A. We present the following definitions
from [11,8].

Definition 1 (Regions, partitions). A region of A is any subset of entries
in A. A partition of A is a collection of disjoint regions in A whose union is A.

Definition 2 (Rectangles, tilings, refinements). A rectangle in A is a sub-
matrix of A. A tiling of A is a partition of A into rectangles. A tiling T1 of A
is a refinement of another tiling T2 of A if every rectangle in T1 is contained in
some rectangle in T2.

Definition 3 (Monochromatic, maximal monochromatic and ideal mo-
nochromatic partitions). A region R of A is monochromatic if all entries in
R are of the same value. A monochromatic partition of A is a partition with only
monochromatic regions. A monochromatic region of A is a maximal monochro-
matic region if no monochromatic region in A properly contains it. The ideal
monochromatic partition of A consists of the maximal monochromatic regions.
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Definition 4 (Perfect privacy). Protocol P achieves perfect privacy if, for
every two sets of inputs (x1, x2) and (x′

1, x
′
2) such that f(x1, x2) = f(x′

1, x
′
2),

it holds that s(x1, x2) = s(x′
1, x′

2). Equivalently, a protocol P for f achieves
perfectly privacy if the monochromatic tiling induced by P is the ideal monochro-
matic partition of A(f).

Definition 5 (Worst case and average case Par of a protocol P ). Let
RP (x1, x2) be the monochromatic rectangle containing the cell A(x1, x2) induced
by P , RI(x1, x2) be the monochromatic region containing the cell A(x1, y1) in
the ideal monochromatic partition of A, and D be a probability distribution over
the space of inputs. Then P has a worst-case Par of αworst and an average case
Par of αD under distribution D provided1

αworst = max
(x1,x2)∈U in×U in

|RI(x1, x2) |
|RP (x1, x2)|

and αD =
∑

(x1,x2)∈U in×U in

Pr
D

[x1 & x2]

∣∣RI(x1, x2)
∣∣

|RP (x1, x2)|

Definition 6 (Par for a function). The worst-case (average-case) Par for a
function f is the minimum, over all protocols P for f, of the worst-case (average-
case) Par of P .

Extension to Multi-party Computation In the multi-party setup, we have d > 2
parties party1, party2, . . . , partyd computing a d-ary function f : (U in)d �→ U out.
Now, f can be visualized as

∣∣U in
∣∣ × · · · × |U in| matrix AΠ1,...,Πd

(f) (or, some-
times simply by A) with entries from U out in which the ith dimension represents
the possible values of partyi ordered by some permutation Πi, and each entry of
A contains the value of f associated with a particular set of inputs from the d
parties. Then, all the previous definitions can be naturally adjusted in the obvi-
ous manner, i.e., the input space as a d-dimensional space, each party maintains
the input partitions of all other d− 1 parties, the transcript of the protocol s is
a d-ary function, and rectangles are replaced by d-dimensional hyper-rectangles
(Cartesian product of d intervals).

4.2 Dissection Protocols and Tiling Functions for 2-Party
Computation

Often in a communication complexity settings the input of each party has a nat-
ural ordering, e.g., the set of input of a party from

{
0, 1
}k can represent the num-

bers 0, 1, 2, . . . , 2k − 1 (as is the case when computing the maximum/minimum
of two inputs, in the millionaires problem, in second-price auctions, and more).
When designing protocols for such environments, a natural restriction is to only
the allow protocols such that each party asks questions of the form “Is your
input between a and b (in this natural order over possible inputs)?”, where
a, b ∈

{
0, 1
}k. Notice that after applying an appropriate permutation to the

inputs, such a protocol divides the input space into two (not necessarily equal)
halves. Below, we formalize these types of protocols as “dissection protocols”.
1 The notation Pr

D
[E ] denotes the probability of an event E under distribution D.
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Definition 7 (contiguous subset of inputs). Given a permutation Π of
{0, 1}k, let ≺Π denote the total order over {0, 1}k that Π induces, i.e., ∀ a, b ∈
{0, 1}k, a ≺Π b provided b comes after a in Π. Then, I ⊆ {0, 1}k contiguous
with respect to Π if ∀ a, b∈I, ∀ c∈

{
0, 1
}k : a ≺Π c ≺Π b =⇒ c ∈ I.

Definition 8 (dissection protocol). Given a function f : {0, 1}k×{0, 1}k �→
{0, 1}t and permutations Π1, Π2 of {0, 1}k, a protocol for f is a dissection pro-
tocol with respect to (Π1, Π2) if, at each communication step, the maintained
subset of inputs of each partyi is contiguous with respect to Πi.

Observe that every protocol P can be regarded as a dissection protocol with
respect to some permutations over inputs by simply constructing the permu-
tation so that it is consistent with the way P updates the maintained sets of
inputs. However, not every protocol is a dissection protocol with respect to spe-
cific permutations. Consider, for example, the case that both Π1 and Π2 are the
permutation over {0, 1}k that orders the elements from lowest to highest binary
values. Observe that a protocol that is a dissection protocol with respect to these
permutations cannot ask questions of the form “Is your input odd or even?”, for
these questions partition the space of inputs into non-contiguous subsets with
respect to (Π1, Π2).

A special case of interest of the dissection protocol is the “bisection type”
protocols that have been investigated in the literature in many contexts [8,10].

Definition 9 (bisection, c-bisection and bounded-bisection protocols).
For a constant c ∈

[
1
2 , 1
)
, a dissection protocol with respect to the permutations

(Π1, Π2) is called a c-bisection protocol provided at each communication step
each partyi partitions its input space of size z into two halves of size c z and
(1 − c) z. A bisection protocol is simply a 1

2 -bisection protocol. For an integer
valued function g(k) such that 0 ≤ g(k) ≤ k, bounded-bisectiong(k) is the protocol
that runs a bisection protocol with g(k) bisection operations followed by a protocol
(if necessary) in which each partyi repeatedly partitions its input space into two
halves one of which is of size exactly one.

Definition 10 (tiling and non-tiling functions). A function f : {0, 1}k ×
{0, 1}k �→ {0, 1}t is called a tiling function with respect to two permutations
(Π1, Π2) of {0, 1}k if the monochromatic regions in AΠ1,Π2(f) form a tiling,
and the number of monochromatic regions in this tiling is denote by rf (Π1, Π2).
Conversely, f is a non-tiling function if f is not a tiling function with respect
to every pair of permutations (Π1, Π2) of {0, 1}k.

Note that a function f that is tiling function with respect to permutations
(Π1, Π2) may not be a tiling function with respect to a different set of per-
mutations (Π ′

1, Π
′
2). Also, a function f can be a tiling function with respect to

two distinct permutation pairs (Π1, Π2) and (Π ′
1, Π

′
2) with a different number

of monochromatic regions. Thus, indeed we need Π1 and Π2 in the definition of
tiling functions and rf .



Protocols That Compute Almost Privately 51

Extensions to Multi-party Computation. For the multi-party computation model
involving d > 2 parties, the d-ary tiling function f has a permutation Πi of
{0, 1}k for each ith argument of f (or, equivalently for each partyi). A dissection
protocol is generalized to a “round robin” dissection protocol in the following
manner. In one “mega” round of communications, parties communicate in a fixed
order, say party1, party2, . . . , partyd, and the mega round is repeated if necessary.
Any communication by any party is made available to all the other parties. Thus,
each communication of the dissection protocol partitions a d-dimensional space
by an appropriate set of (d− 1)-dimensional hyperplanes, where the missing di-
mension in the hyperplane correspond to the index of the party communicating.

5 Two-Party Dissection Protocol for Tiling Functions

5.1 Boolean Tiling Functions

Lemma 1. Any Boolean tiling function f : {0, 1}k × {0, 1}k �→ {0, 1} with re-
spect to some two permutations (Π1, Π2) can be computed in a perfectly privacy-
preserving manner by a dissection protocol with respect to (Π1, Π2).

Remark 1. The claim of Lemma 1 is false if f outputs three values.

5.2 Average and Worst Case Par for Non-Boolean Tiling Functions

Let f : {0, 1}k × {0, 1}k �→ {0, 1}t be a given tiling function with respect to
permutations (Π1, Π2). Neither the c-bisection nor the bounded-bisection pro-
tocol performs well in terms of average Par on arbitrary tiling functions. In this
section, we show that any tiling function f admits a dissection protocol that has
a small constant average case Par. Moreover, we show that this result cannot
be extended to the case of worst-case Pars.

Constant Average-case Par for Non-Boolean Functions. Let Du de-
note the uniform distribution over all input pairs. We define the notion of a
c-approximate uniform distribution D∼ c

u ; note that D∼ 0
u ≡ Du.

Definition 11 (c-approximate uniform distribution). A c-approximate uni-
form distribution D∼ c

u is a distribution in which the probabilities of the input
pairs are close to that for the uniform distribution as a linear function of c,
namely max(x,y), (x′,y′)∈{0,1}k×{0,1}k

∣∣Pr D∼ c
u

[x&y]− Pr D∼ c
u

[x′ &y′]
∣∣ ≤ c 2−2k.

Theorem 1.
(a) A tiling function f with respect to permutations (Π1, Π2) admits a dissec-
tion protocol P with respect to the same permutations (Π1, Π2) using at most
4 rf (Π1, Π2) communication steps such that αD∼ c

u
≤ 4 + 4 c.

(b) For all 0 ≤ c < 9/8, there exists a tiling function f : {0, 1}k × {0, 1}k �→
{0, 1}2 such that, for any two permutations (Π1, Π2) of {0, 1}k, every dissection
protocol with respect to (Π1, Π2) using any number of communication steps has
αD∼ c

u
≥ (11/9) + (2/81)c.
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Proof. We only provide the proof of (a); a proof of the other part can be found
in the full version of the paper. Let S = {S1, S2, . . . , Srf } be the set of rf =
rf (Π1, Π2) ideal monochromatic rectangles in the tiling of f induced by the
permutations (Π1, Π2) and consider a protocol P that is a dissection protocol
with respect to (Π1, Π2). Suppose that the ideal monochromatic rectangle Si ∈ S
has yi elements, and P partitions this rectangle into ti rectangles Si,1, . . . , Si,ti

having zi,1, . . . , zi,ti elements, respectively. Then, it follows that

αDu =
∑

(x1,x2)∈U×U
Pr
Du

[x1 & x2]

∣∣RI(x1, x2)
∣∣

|RP (x1, x2)|

=
rf∑

i=1

ti∑
j=1

∑
(x1,x2)∈Si,j

Pr
Du

[x1 & x2]
yi

zi,j
=

rf∑
i=1

ti∑
j=1

yi

22k
=

rf∑
i=1

ti yi

22k

Similarly, it follows that
αD∼ c

u
≤
∑rf

i=1

∑ti
j=1

∑
(x1,x2)∈Si,j

1+c
22k × yi

zi,j
=
∑rf

i=1

∑ti
j=1

(1+c) yi

22k =
∑rf

i=1
(1+c) ti yi

22k .

A binary space partition (Bsp) for a collection of disjoint rectangles in the
two-dimensional plane is defined as follows. The plane is divided into two parts
by cutting rectangles with a line if necessary. The two resulting parts of the
plane are divided recursively in a similar manner; the process continues until at
most one fragment of the original rectangles remains in any part of the plane.
This division process can be naturally represented as a binary tree (Bsp-tree)
where a node represents a part of the plane and stores the cut that splits the
plane into two parts that its two children represent and each leaf of the Bsp-tree
represents the final partitioning of the plane by storing at most one fragment of
an input rectangle. The size of a Bsp is the number of leaves in the Bsp-tree.

Fact 1. [4]2 Assume that we have a set S of disjoint axis-parallel rectangles in
the plane. Then, there is a Bsp of S such that every rectangle in S is partitioned
into at most 4 rectangles.

Consider the dissection protocol corresponding to the Bsp in Fact 1. Then,
using maxi{ti} ≤ 4 we get αD∼ c

u
≤
∑rf

i=1
4 (1+c) yi

22k = 4 (1 + c). The number of
communication steps in this protocol is the height of the Bsp-tree, i.e., ≤ 4rf .

Large Worst-case Par for Non-Boolean Functions. Can one extend the
results of the last section to show that every tiling function admits a dissection
protocol that achieves a good Par even in the worst case? We answer this ques-
tion in the negative by presenting a tiling function for which every dissection
protocol has large worst-case Par.

Theorem 2. Let k > 0 be an even integer. Then, there exists a tiling function
f : {0, 1}k × {0, 1}k �→ {0, 1}3 with respect to some two permutations (Π1, Π2)
2 The stronger bounds by Berman, DasGupta and Muthukrishnan [2] apply to average

number of fragments only.
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such that, for any two permutations Π ′
1 and Π ′

2 of {0, 1}k, every dissection
protocol for f with respect to (Π ′

1, Π
′
2) has αworst > 2k/2 − 1.

6 Extensions of the Basic Two-Party Setup

6.1 Non-tiling Functions

A natural extension of the class of tiling functions involves relaxing the constraint
that each monochromatic region must be a rectangle.

Definition 12 (δ-tiling function). A function f : {0, 1}k×{0, 1}k �→ {0, 1}t
is a δ-tiling function with respect to permutations (Π1, Π2) of {0, 1}k if each
maximal monochromatic region of AΠ1,Π2(f) is an union of at most δ disjoint
rectangles.

Proposition 1. For any δ-tiling function f with respect to (Π1, Π2) with r
maximal monochromatic regions, there is a dissection protocol P with respect
to (Π1, Π2) using at most 4rδ communication steps such that αD∼ c

u
≤ (4 + 4c) δ.

6.2 Multi-party Computation

How good is the average Par for a dissection protocol on a d-dimensional tiling
function? For a general d, it is non-trivial to compute precise bounds because
each partyi has her/his own permutation Πi of the input, the tiles are boxes of full
dimension and hyperplanes corresponding to each step of the dissection protocol
is of dimension exactly d− 1. Nonetheless, we show that the average Par is very
high for dissection protocols even for 3 parties and uniform distribution, thereby
suggesting that this quantification of privacy may not provide good bounds for
three or more parties.

Theorem 3. There exists a tiling function f : {0, 1}k × {0, 1}k × {0, 1}k �→
{0, 1}3k such that, for any three permutations Π1, Π2, Π3 of {0, 1}k, every dis-
section protocol with respect to (Π1, Π2, Π3) must have αDu = Ω

(
2k
)
.

Proof. In the sequel, for convenience we refer to 3-dimensional hyper-rectangles
simply by rectangles and refer to the arguments of function f via decimal equiv-
alent of the corresponding binary numbers. The tiling function for this theorem
is adopted from an example of the paper by Paterson and Yao [14,15] with ap-
propriate modifications. The three arguments of f are referred to as dimensions
1, 2 and 3, respectively. Define the volume of a rectangle R = [x1, x

′
1]× [x2, x

′
2]×

[x3, x
′
3] ⊆ {0, 1, . . . , 2k − 1}3 as Volume(R) = max{0, Π3

i=1(x
′
i − xi + 1)}, and let

[∗] denote the interval
[
0, 2k − 1

]
. We provide the tiling for the function f :

– For each dimension, we have a set of Θ
(
22k
)

rectangles; we refer to these
rectangles as non-trivial rectangles for this dimension.
• For dimension 1, these rectangles are of the form [∗]× [2y, 2y]× [2z, 2z]

for every integral value of 0 ≤ 2y, 2z < 2k.
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• For dimension 2, these rectangles are of the form [2x, 2x] × [∗] × [2z +
1, 2z + 1] for every integral value of 0 ≤ 2x, 2z + 1 < 2k.
• For dimension 3, these rectangles are of the form [2x+ 1, 2x+ 1]× [2y +

1, 2y + 1]× [∗] for every integral value of 0 ≤ 2x + 1, 2y + 1 < 2k.
– The remaining “trivial” rectangles are each of unit volume such that they

together cover the remaining input space.

Let Snon−trivial be the set of all non-trivial rectangles. Observe that:

– Rectangles in Snon−trivial are mutually disjoint since any two of them do not
intersect in at least one dimension.

– Each rectangle in Snon−trivial has a volume of 2k and thus the sum of their
volumes is Θ

(
23k
)
.

It now follows that the number of monochromatic regions is O
(
23k
)
. Suppose

that a dissection protocol partitions, for i = 1, 2, . . . , |Snon−trivial|, the ith non-
trivial rectangle Ri ∈ Snon−trivial into ti rectangles Ri,1, Ri,2, . . . , Ri,ti . Then,

αDu

def
=
∑

(x,y,z)∈
{0,1}k×{0,1}k×{0,1}k

Pr
Du

[x& y & z]

∣∣RI(x, y, z)
∣∣

|RP (x, y, z)| ≥
|Snon−trivial|∑

i=1

ti∑
j=1

∑
(x,y,z)∈Ri,j

Pr
Du

[x & y & z]
Volume (Ri)

Volume (Ri,j)

=
∑|Snon−trivial|

i=1

∑ti
j=1

2k

23k =
∑|Snon−trivial|

i=1

(
ti/2

2k
)

Thus, it suffices to show that
∑|Snon−trivial|

i=1 ti = Ω
(
23k
)
. Let Q be the set of max-

imal monochromatic rectangles produced the partitioning of the entire protocol.
Consider the two entries px,y,z = (2x + 1, 2y, 2z + 1) and p′x,y,z = (2x, 2y, 2z).
Note that px,y,z belongs to a trivial rectangle since their third, first and second
coordinate does not lie within any non-trivial rectangle of dimension 1, 2 and 3,
respectively, whereas p′x,y,z belongs to the non-trivial rectangle [∗]× [2×(8y), 2×
(8y)]× [2×(8z), 2×(8z)] of dimension 1. Thus, px,y,z and p′x,y,z cannot belong to
the same rectangle in Q. Let T =

⋃{
{p 8x,8y,8z, p′8x,8y,8z} | 64 < 16x, 16y, 16z <

2k − 64
}
. Clearly, |T | = Θ

(
23k
)
. For an entry (x1, x2, x3), let its neighborhood

be defined by the ball Nbr(x1, x2, x3) = { (x′
1, x

′
2, x

′
3) | ∀i : |xi − x′

i| ≤ 4 }. Note
that Nbr(p 8x,8y,8z) ∩ Nbr(p 8x′,8y′,8z′) = ∅ provided (x, y, z) �= (x′, y′, z′). Next,
we show that, to ensure that the two entries p 8x,8y,8z and p′8x,8y,8z are in two
different rectangles in Q, the protocol must produce an additional fragment of
one of the non-trivial rectangles in the neighborhood Nbr(p 8x,8y,8z); this would
directly imply

∑
i ti = Ω

(
23k
)
.

Consider the step of the protocol before which p 8x,8y,8z and p′8x,8y,8z were
contained inside the same rectangle, namely a rectangle Q that includes the
rectangle [16x, 16x + 1] × [16y, 16y] × [16z, 16z + 1], but after which they are
in two different rectangles Q1 = [a′

1, b
′
1] × [a′

2, b
′
2] × [a′

3, b
′
3] and Q2 = [a′′

1 , b′′1 ] ×
[a′′

2 , b′′2 ] × [a′′
3 , b′′3 ]. Remember that both Q1 and Q2 must have the same two

dimensions and these two dimensions must be the same as the corresponding
dimensions of Q. The following cases arise.
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Case 1(split via the 1st coordinate): [a′
2, b

′
2]=[a′′

2 , b′′2 ] ⊇ [16y, 16y], [a′
3, b

′
3] =

[a′′
3 , b′′3 ] ⊇ [16z, 16z+1], b′1 =16x and a′′

1 =16x+1. Then, a new fragment of a non-
trivial rectangle of dimension 2 is produced at [16x, 16y, 16z] ∈ Nbr(p 8x,8y,8z).

Case 2(split via the 2nd coordinate): [a′
1, b

′
1] = [a′′

1 , b′′1 ] ⊇ [16x, 16x + 1] and
[a′

3, b
′
3] = [a′′

3 , b′′3 ] ⊇ [16z, 16z + 1]. This case is not possible.

Case 3(split via the 3rd coordinate): [a′
1, b

′
1]=[a′′

1 , b′′1 ]⊇ [16x, 16x+1], [a′
2, b

′
2]=

[a′′
2 , b′′2 ]⊇ [16y, 16y], b′3=16z and a′′

3=16z+1. Then, a new fragment of a non-trivial
rectangle of dimension 1 is produced at [16x, 16y, 16z] ∈ Nbr(p 8x,8y,8z).

7 Analysis of the Bisection Protocol for Two Functions

Let x = (x1, x2, . . . , xn) ∈ {0, 1}k and y = (y1, y2, . . . , yn) ∈ {0, 1}k. The func-
tions that we consider are the following:

set-covering: f∧,∨(x,y) =
∧n

i=1 (xi ∨ yi). To interpret this as a set-covering func-
tion, suppose that the universe U consists of n elements e1, e2, . . . , en and
the vectors x and y encode membership of the elements in two sets Sx and
Sy, i.e., xi (respectively, yi) is 1 if and only if ei ∈ Sx (respectively, ei ∈ Sy).
Then, f∧,∨(x,y) = 1 if and only if Sx ∪ Sy = U .

equality: f=(x,y) = 1 if xi = yi for all 1 ≤ i ≤ k, and f=(x,y) = 0 otherwise.

A summary of our bounds is as follows: for f∧,∨, αworst ≥ αDu ≥
(

3
2

)2k; for f=,
αDu = 2k − 2 + 21−k, and αworst = 22k−1 − 2k−1.
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Abstract. The price of anarchy [16] is by now a standard measure for
quantifying the inefficiency introduced in games due to selfish behavior,
and is defined as the ratio between the optimal outcome and the worst
Nash equilibrium. However, this notion is well defined only for games
that always possess a Nash equilibrium (NE). We propose the dynamic
inefficiency measure, which is roughly defined as the average inefficiency
in an infinite best-response dynamic. Both the price of anarchy [16] and
the price of sinking [9] can be obtained as special cases of the dynamic
inefficiency measure. We consider three natural best-response dynamic
rules — Random Walk (RW), Round Robin (RR) and Best Improvement
(BI) — which are distinguished according to the order in which players
apply best-response moves.

In order to make the above concrete, we use the proposed measure to
study the job scheduling setting introduced in [3], and in particular the
scheduling policy introduced there. While the proposed policy achieves
the best possible price of anarchy with respect to a pure NE, the game
induced by the proposed policy may admit no pure NE, thus the dynamic
inefficiency measure reflects the worst case inefficiency better. We show
that the dynamic inefficiency may be arbitrarily higher than the price of
anarchy, in any of the three dynamic rules. As the dynamic inefficiency of
the RW dynamic coincides with the price of sinking, this result resolves
an open question raised in [3].

We further use the proposed measure to study the inefficiency of the
Hotelling game and the facility location game. We find that using differ-
ent dynamic rules may yield diverse inefficiency outcomes; moreover, it
seems that no single dynamic rule is superior to another.
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1 Introduction

Best-response dynamics are central in the theory of games. The celebrated Nash
equilibrium solution concept is implicitly based on the assumption that players
follow best-response dynamics until they reach a state from which no player
can improve her utility. Best-response dynamics give rise to many interesting
questions which have been extensively studied in the literature. Most of the focus
concerning best response dynamics has been devoted to convergence issues, such
as whether best-response dynamics converge to a Nash equilibrium and what is
the rate of convergence.

Best-response dynamics are essentially a large family of dynamics, which differ
from each other in the order in which turns are assigned to players 1. It is well
known that the order of the players’ moves is crucial to various aspects, such as
convergence rate to a Nash equilibrium [6]. Our main goal is to study the effect
of the players’ order on the obtained (in)efficiency of the outcome.

The most established measure of inefficiency of games is the Price of Anarchy
(PoA) [13,16], which is a worst-case measure, defined as the ratio between the
worst Nash equilibrium (NE) and the social optimum (with respect to a well-
defined social objective function), usually defined with respect to pure strategies.
The PoA essentially measures how much the society suffers from players who
maximize their individual welfare rather than the social good. The PoA has
been evaluated in many settings, such as selfish routing [19,18], job scheduling
[13,5,8], network formation [7,1,2], facility location [20], and more. However, this
notion is well defined only in settings that are guaranteed to admit a NE.

One approach that has been taken with respect to this challenge, in cases
where agents are assumed to use pure strategies, is the introduction of a sink
equilibrium [9]. A sink equilibrium is a strongly connected component with no
outgoing edges in the configuration graph associated with a game. The configura-
tion graph has a vertex set associated with the set of pure strategy profiles, and
its edges correspond to best-response moves. Unlike pure strategy Nash equilib-
ria, sink equilibria are guaranteed to exist. The social value associated with a
sink equilibrium is the expected social value of the stationary distribution of a
random walk on the states of the sink. The price of sinking is the equivalence of
the price of anarchy measure with respect to sink equilibria.

Indeed, the notion of best response lies at the heart of many of the proposed
solution concepts, even if just implicitly. The implicit assumption that under-
lies the notion of social value associated with a sink equilibrium is that in each
turn a player is chosen uniformly at random to perform her best response. How-
ever, there could be other natural best-response dynamics that arise in different
settings.

In this paper, we focus on the following three natural dynamic rules: (i) ran-
dom walk (RW), where a player is chosen uniformly at random; (ii) round
robin (RR), where players play in a cyclic manner according to a pre-defined

1 In fact, best-response dynamics may be asynchronous, but in this paper we restrict
attention to synchronous dynamics.
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order, and (iii) best improvement (BI), where the player with the current
highest (multiplicative) improvement factor plays. Our goal is to study the ef-
fect of the players’ order on the obtained (in)efficiency of the outcome.

To this end, we introduce the concept of dynamic inefficiency as an equivalent
measure to the price of anarchy in games that may not admit a Nash equilibrium
or in games in which best-response dynamics are not guaranteed to converge to a
Nash equilibrium. Every dynamic rule D chooses (deterministically or randomly)
a player that performs her best response in each time period. Given a dynamic
D and an initial configuration u, one can compute the expected social value
obtained by following the rules of dynamic D starting from u. The dynamic
inefficiency in a particular game is defined as the expected social welfare with
respect to the worst initial configuration. Similarly, the dynamic inefficiency of
a particular family of games is defined as the worst dynamic inefficiency over all
games in the family. Note that the above definition coincides with the original
price of anarchy measure for games in which best-response dynamics always
converge to a Nash equilibrium (e.g., in congestion [17] and potential [14] games)
for every dynamic rule. Similarly, the dynamic inefficiency of the RW dynamic
coincides with the definition of the price of sinking. Thus, we find the dynamic
inefficiency a natural generalization of well-established inefficiency measures.

1.1 Our Results

We evaluate the dynamic inefficiency with respect to the three dynamic rules
specified above, and in three different applications, namely non-preemptive job
scheduling on unrelated machines [3], the Hotelling model [10], and facility loca-
tion [15]. Our contribution is conceptual as well as technical. First, we introduce
a measure which allows us to evaluate the inefficiency of a particular dynamic
even if it does not lead to a Nash equilibrium. Second, we develop proof tech-
niques for providing lower bounds for the three dynamic rules. In what follows
we present our results in the specific models.

Job scheduling (Section 3). We consider job scheduling on unrelated machines,
where each of the n players controls a single job and selects a machine among
a set of m machines. The assignment of job i on machine j is associated with
a processing time that is denoted by pi,j . Each machine schedules its jobs se-
quentially according to some non-preemptive scheduling policy (i.e., jobs are
processed without interference, and no delay is introduced between two consec-
utive jobs), and the cost of each job in a given profile is its completion time on
its machine. The social cost of a given profile is the maximal completion time of
any job (known as the makespan objective).

Machines’ ordering policies may be local or strongly local. A local policy
considers only the parameters of the jobs assigned to it, while a strongly local
policy considers only the processing time of the jobs assigned to it on itself
(without knowing the processing time of its jobs on other machines). Azar et. al.
[3] showed that the PoA of any local policy is Ω(log m) and that the PoA of any
strongly local policy is Ω(m) (if a Nash equilibrium exists). Ibarra and Kim [11]
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showed that the shortest-first (strongly local) policy exhibits a matching O(m)
bound, and Azar et. al. [3] showed that the inefficiency-based (local) policy
(defined in Section 3) exhibits a matching O(log m) bound.

We claim that there is a fundamental difference between the last two results.
The shortest-first policy induces a potential game [12,14]; thus best-response
dynamics always converge to a pure Nash equilibrium, and the PoA is an appro-
priate measure. In contrast, the inefficiency-based policy induces a game that
does not necessarily admit a pure Nash equilibrium [3], and even if a Nash equi-
librium exists, not every best-response dynamic converges to a Nash equilibrium.
Consequently, the realized inefficiency of the last policy may be much higher than
the bound provided by the price of anarchy measure.

We study the dynamic inefficiency of the inefficiency based policy with respect
to our three dynamic rules. We show a lower bound of Ω(log logn) for the
dynamic inefficiency of the RW rule. This bound may be arbitrarily higher2

than the price of anarchy, which is bounded by O(log m). This resolves an open
question raised in [3]. For the BI and RR rules, we show in the full version even
higher lower bounds of Ω(

√
n) and Ω(n), respectively.

Hotelling model Hotelling [10] devised a model where customers are distributed
evenly along a line, and there are m strategic players, each choosing a location
on the line, with the objective of maximizing the number of customers whose
location is closer to her than to any other player. It is well known that this game
admits a pure Nash equilibrium if and only if the number of players is different
than three. This motivates the evaluation of the dynamic inefficiency measure in
settings with three players. The social objective function we consider here is the
minimal utility over all players, i.e., we wish to maximize the minimal number
of customers one attracts.

We show in the full version that the dynamic inefficiency of the BI rule is
upper bounded by a universal constant, while the dynamic inefficiency of the
RW and RR rules is lower bounded by Ω(n), where n is the number of possi-
ble locations of players. Thus, the BI dynamics and the RW and RR dynamics
exhibit the best possible and worst possible inefficiencies, respectively (up to a
constant factor). In contrast to the BI dynamics, the RW and RR dynamics are
configuration-oblivious (i.e., the next move is determined independently of the
current configuration).

Facility location. In facility location games a central designer decides where to
locate a public facility on a line, and each player has a single point representing
her ideal location. Suppose that the cost associated with each player is the
squared distance of her ideal location to the actual placement of the facility, and
that we wish to minimize the average cost of the players. Under this objective
function the optimal location is the mean of all the points. However, for any
chosen location, there will be a player who can decrease her distance from the

2 Note the parameter n; i.e., number of players, versus the parameter m; i.e., number
of machines.
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chosen location by reporting a false ideal location. Moreover, it is easy to see that
if the players know in advance that the mean point of the reported locations is
chosen, then every player who is given a turn can actually transfer the location
to be exactly at her ideal point. Thus, unless all players are located at exactly
the same point, there will be no Nash equilibrium. Our results, that appear in
the full version, indicate that the dynamic inefficiency of the RR and RW rules
is exactly 2, while that of the BI rule is Θ(n).

2 Preliminaries

In our analysis it will be convenient to use the following graph-theoretic notation:
we think of the configuration set (i.e., pure strategy profiles) as the vertex set of
a configuration graph G = (V, E). The configuration graph is a directed graph
in which there is a directed edge e = (u, v) ∈ E if and only if there is a player
whose best response given the configuration u leads to the configuration v. We
assume that each player has a unique best response for each vertex. A sink is a
vertex with no outgoing edges. A Nash Equilibrium (NE) is a configuration in
which each player is best responding to the actions of the other players. Thus,
a NE is a sink in the configuration graph.

A social value of S(v) is associated with each vertex v ∈ V . Two examples of
social value functions are the social welfare function, defined as the sum of the
players’ utilities, and the max-min function, defined as the minimum utility of
any player.

A best-response dynamic rule is a function D : V × N → [n], mapping each
point in time, possibly depending on the current configuration, to a player i ∈ [n]
who is the next player to apply her best-response strategy. The function D may
be deterministic or non-deterministic.

Let P = 〈u1, . . . , uT 〉 denote a finite path in the configuration graph (where
ui may equal uj for some i �= j). The average social value associated with a path
P is defined as S(P ) = 1

T

∑T
t=1 S(ut). Given a tuple 〈u, D〉 of a vertex u ∈ V

and a dynamic rule D, let PT (u, D) denote the distribution over the paths of
length T initiated at vertex u under the dynamic rule D. The social value of the
dynamic rule D initiated at vertex u is defined as

S(u, D) = lim
T→∞

EP∼PT (u,D)[S(P )]. (1)

While the expression above is not always well defined, in the full version of
the paper we demonstrate that it is always well defined for the dynamic rules
considered in this paper.

With this, we are ready to define the notion of dynamic inefficiency. Given
a finite configuration graph G = (V, E) and a dynamic rule D, the dynamic
inefficiency (DI) of G with respect to D is defined as

DI(D, G) = max
u∈V

OPT
S(u, D)

,
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where OPT = maxu∈V S(u). That is, DI measures the ratio between the optimal
outcome and the social value obtained by a dynamic rule D under the worst
possible initial vertex. Finally, for a family of games G, we define the dynamic
inefficiency of a dynamic rule D as the dynamic inefficiency of the worst possible
G ∈ G. This is given by

DI(D) = sup
G∈G
{DI(D, G)} .

In some of the settings, social costs are considered rather than social value.
In these cases, the necessary obvious adjustments should be made. In particu-
lar, S(u, D) will denote the social cost, OPT will be defined as minu∈V S(u),
and the dynamic inefficiency of some dynamic D will be defined as DI(D) =
maxu∈V

S(u,D)
OPT . We consider both cases in the sequel.

An important observation is that both the price of anarchy and the price
of sinking are obtained as special cases of the dynamic inefficiency. In games
for which every best-response dynamic converges to a Nash equilibrium (e.g.,
potential games [14]), the dynamic inefficiency is independent of the dynamic
and is equivalent to the price of anarchy. The price of sinking [9] is equivalent
to the dynamic inefficiency with respect to the RW dynamic rule.

3 Dynamic Inefficiency in Job Scheduling

Consider a non-preemptive job scheduling setting on unrelated machines, as
described in the Introduction. Define the efficiency of a job i on machine j as

eff(i, j) =
pij

mink∈[m] pik
.

The efficiency-based policy of a machine (proposed by [3]) orders its jobs ac-
cording to their efficiency, from low to high efficiency, where ties are broken
arbitrarily in a pre-defined way.

A configuration of a job scheduling game is a mapping u : [n] → [m] that
maps each job to a machine. The processing time of machine j in configuration
u is timeu(j) =

∑
i∈u−1(j) pij , and the social value function we are interested

in is the makespan — the longest processing time on any machine, i.e., S(u) =
maxj∈[m] timeu(j).

The players are the jobs to be processed, their actions are the machines they
choose to run on, and the cost of a job is its own completion time.

3.1 Random Walk Dynamic

In this section we consider the RW dynamic, where in each turn a player is chosen
uniformly at random to play. The main result of this section is the establishment
of a lower bound of Ω(log log n) for the dynamic inefficiency of job scheduling
under the efficiency-based policy. This means that the inefficiency may tend to
infinity with the number of jobs, even though the number of machines is constant.
This result should be contrasted with the O(log m) upper bound on the price of
anarchy, established by [3]. The main result is cast in the following theorem.
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Theorem 1. There exists a family of instances Gn of machine scheduling on a
constant number of machines, such that

DI(RW, Gn) ≥ Ω(log log n) ,

where n is the number of jobs. In particular the dynamic inefficiency is not
bounded with respect to the number of machines.

Remark: The definition of the dynamic inefficiency with respect to the RW
dynamic rule coincides with the definition of the price of sinking. Thus, the last
result can be interpreted as a lower bound on the price of sinking.

The assertion of Theorem 1 is established in the following sections.

The Construction. Let us begin with an informal description of the example.
As the base for our construction we use an instance, given in [3], with a constant
number of machines and jobs, that admits no Nash equilibrium. Then we add to
it n jobs indexed by 1, . . . , n and one machine, such that the n additional jobs
have an incentive to run on two machines. On the first machine, denoted by W ,
the total processing time of all the n jobs is smaller than 2, while on the second
machine T the processing time of any job is ≈ 1. Each of these jobs has an
incentive to move from machine W to machine T if it has the minimal index on
T , thus increasing the processing time on T . We show that the expected number
of jobs on T , and hence also the expected makespan, is at least Ω(log log n),
while the optimum is some universal constant.

Formally, there will be 5 machines, denoted by A, B, C, T, W , and n + 5 jobs
denoted by 0, 1, 2, . . . , n and α, β, γ, δ. The following table shows the processing
time for the jobs on the machines:

A B C T W
0 4 24 3.95 25 ∞
α 2 12 1.98 ∞ ∞
β 5 28 4.9 ∞ ∞
γ 20∞ ∞ ∞ ∞
δ ∞∞ 50 ∞ ∞
i ∞∞ 1

50i3

∑i
j=1

1
j2 − ε 1

i2

In the last row, i stands for any job 1, 2, . . . , n, and ε = 1
10·2n .

Useful Properties

Proposition 1. The inefficiency policy induces the following order on the ma-
chines:

– On machine A the order is (γ, α, 0, β).
– On machine B the order is (β, α, 0).
– On machine C the order is (δ, α, β, 0, 1, 2, . . . , n).
– On machine T the order is (0, 1, 2, . . . , n).
– On machine W the order is (1, 2, . . . , n).
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Proof. On machine C every job has efficiency 1; hence given any tie-breaking
rule between jobs of equal efficiency we let δ be the one that runs first3 (the
rest of the ordering is arbitrary). On the other machines, the order follows from
straightforward calculations.

Note that no job except δ has an incentive to move to machine C, and job γ will
always be in machine A. The possible configurations for jobs 0, α, β are denoted
by XY Z; for instance, ABB means that job 0 is on machine A and jobs α, β are
on machine B. We shall only consider configurations in G that have incoming
edges, and in this example there are 8 such configurations among the possible
configurations for jobs 0, α, β. The transitions are

BAA→ BBA→ ABA→ ABB → AAB → TAB → TAA

From state TAA we can go either to TBA or back to BAA. From TBA the
only possible transition will take us back to the state ABA. These are all the
possible transitions; hence there is no stable state. At any time a job i for i > 0
has an incentive to be in machine T only if it has the minimal index from
all the jobs in T . We want to show that in the single (non-trivial) strongly
connected component of G, the expected number of jobs in machine T is at least
Ω(log log n).

Dynamic Inefficiency - Lower Bound. It can be checked that any configu-
ration for jobs 1, 2, . . . , n is possible among machines T, W . Consider the station-
ary distribution π over this strongly connected component in G. Let T (i) ⊆ V
be the set of configurations in which job i is scheduled on machine T , and let
pn(i) =

∑
v∈T (i) π(v) denote the probability that job i is on machine T . Let

pn(∅) be the probability that no job is on machine T .

Proposition 2. For any n > m ≥ i, pn(i) = pm(i). This is because the incen-
tives for jobs α, β, γ, δ, 0, 1, . . . , i are not affected by the presence of any job j for
j > i.

Using this proposition we shall omit the subscript and write only p(i). The
following claim suggests we should focus our attention on how often machine T
is empty.

Claim. For any n ≥ 1, pn(∅) ≤ p(n).

Proof. Job n has an incentive to move to T if and only if the configuration is
such that T is empty. The probability of job n to get a turn to move is 1/(n+5).
Hence the probability that job n is in T at some time t is equal to the probability
that for some i ≥ 0 job n entered T at time t− i (i.e., machine T was empty and

3 We can also handle tie-breaking rules that consider the length of the job. For in-
stance, if shorter jobs were scheduled first in case of a tie, we would split job δ into
many small jobs.
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n got a turn to play) and stayed there for i rounds. The probability that job n

stayed in machine T for i rounds is at least pi =
(
1− 1

n+5

)i

. We conclude that

p(n) ≥ pn(∅)
n + 5

∞∑
i=0

pi = pn(∅).

The main technical lemma is the following:

Lemma 1. There exists a universal constant c such that for any n > 1, pn(∅) ≥
c

n log n .

Let us first show that given this lemma we can easily prove the main theorem:

Proof (Proof of Theorem 1). In the single (non-trivial) strongly connected com-
ponent of G, the expected number of jobs in machine T (with respect to a RW)
is at least

n∑
i=1

p(i) ≥ c

n∑
i=2

1
i log i

≥ (c/2) log log n .

However, there is a configuration in which every job completes execution in time
at most 50;4 hence OPT(G) ≤ 50. We conclude that the dynamic inefficiency
for G is at least Ω(log log n).

In what follows, we establish the assertion of Lemma 1.

Proof (Proof of Lemma 1). Let Y ⊆ V be the set of configurations in which T is
empty, and let t be the expected number of steps between visits to configurations
in Y . We have that pn(∅) = 1

t , and need to prove that t ≤ O(n log n). We start
with a claim on rapidly decreasing integer random variables.

Claim. Fix some n ∈ N, n > 1. Let x1, x2, . . . be random variables getting non-
increasing values in N, such that E[x1] ≤ n/2 and for every i > 0, E[xi+1 | xi =
k] ≤ k/2; then if we let s be a random variable which is the minimal index such
that xs = 0, then E[s] ≤ log n + 2.

Proof. First we prove by induction on i that E[xi] ≤ n
2i . This holds for i = 1;

assume it is true for i and then prove for i + 1. By the rule of conditional
probability,

E[xi+1] =
∑
j≥0

Pr[xi = j] · E[xi+1 | xi = j]

≤
∑
j≥0

Pr[xi = j] · (j/2) = E[xi]/2 ≤ n

2i+1
.

4 For instance, if all jobs 1, 2, . . . , n are on machine W , then job i will finish in time∑i
j=1

1
j2

< 2
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Note that if xi = 0 for some i, then it must be that xj = 0 for all j > i. Now for
any integer i > 0,

Pr[s = log n + i] ≤ Pr[s > log n + i− 1]
= Pr[xlog n+i−1 ≥ 1]
≤ E[xlog n+i−1] ≤ 1/2i−1

the second inequality is a Markov inequality. We conclude that

E[s] =
log n∑
i=1

i · Pr[s = i] +
∞∑

i=log n+1

i · Pr[s = i]

≤ log n +
∞∑

i=log n+1

i/2i−1 ≤ log n + 2 .

Claim. Assume that we are in a configuration u in which job i ∈ {0, 1, . . . , n} is
in machine T . The expected time until we reach a configuration in which job i
is not in machine T is at most O(n).

Proof. First note that p(0) = c′ for some constant 0 < c′ < 1, this is because
jobs 0, α, β, γ, δ are not affected at all by the location of any job from 1, 2, . . . , n,
and hence when they get to play they will follow one of the two cycles shown
earlier, which implies that in a constant fraction c′ of the time job 0 will be in
machine T , and in the other 1− c′ fraction it will be on another machine.

Note that job i will have incentive to leave T if job 0 is in machine T when i
gets its turn to play. Let q(i) be the event that i gets a turn to play (which is
independent of the current configuration), T (i) denotes the event that job i is
in machine T , then we have that the probability that job i will leave machine T
is at least

Pr[q(i) ∧ T (0) | T (i)] = Pr[q(i) | T (0) ∧ T (i)] · Pr[T (0) | T (i)]

= Pr[q(i)] · Pr[T (0)] =
c′

n + 5

Now the expected time until job i will leave is at most 1
Pr[q(i)∧T (0)|T (i)] ≤ O(n).

Claim. Let � = �(t) be a random variable that is the minimal job in T at time
t, and let x be the random variable that is the next job that enters T . Then
E[x | � = m] ≤ m/2.

Proof. The jobs that have an incentive to enter machine T are 0, 1, . . . , m−1. It
is easy to see that for any job i ∈ {1, . . . , m− 1}, Pr[x = i | � = m] ≤ 1

m−1 (note
that job 0 has also some small probability to enter T , but it does not contribute
to the expectation). Now

E[x | � = m] =
m−1∑
i=1

i · Pr[x = i | � = m] ≤ m/2 .



Dynamic Inefficiency: Anarchy without Stability 67

Let y ∈ Y be any configuration in which T is empty. We define a series of random
variables x1, x2, . . . as follows. Let x1 be the index of the first job to enter T ,
and let xi be the maximal index of a job in T when xi−1 leaves T (and 0 if T is
empty). Note that when xi−1 = k is the maximal index of a job in T , no job with
index larger than k has an incentive to move to T ; hence given that xi−1 = k it
must be that xi ≤ k. Let s be the minimal index such that xs = 0; then either
machine T is empty or by Claim 3.1 is expected to become empty in O(n) steps.
It is easy to see that E[x1] ≤ n/2, and the tricky part is to bound the expected
value of xi.

Claim. E[xi|xi−1 = k] ≤ k/2 .

Proof. Fix some k such that xi−1 = k. Consider the time t̄ in which job k
became the maximal job in T , and consider the time t′ < t̄ in which job k moved
to machine T and did not leave until time t̄. In time t′ it must be that no job
i, for i < k, was in machine T , since job k had an incentive to move to T . In
particular, xi is not in T at time t′.

Consider the time t′′ > t′ in which xi enters T , and stays until job k leaves.
In time t′′ the minimal job in T is at most k; hence by Claim 3.1 we have that
E[xi | xi−1 = k] ≤ k/2.

Consider the random variables x1, x2, . . . , xs. By Claim 3.1 they satisfy the con-
ditions of Claim 3.1; hence E[s] ≤ log n + 2. By Claim 3.1 we have that the
expected time until the maximal job leaves T is at most O(n). We conclude that
in expectation after O(n log n) steps the maximal job in T will be 0, and within
additional O(n) steps machine T is expected to become empty. This concludes
the proof.

4 Conclusion

We study the notion of dynamic inefficiency, which generalizes well-studied no-
tions of inefficiency such as the price of anarchy and the price of sinking, and
quantify it in three different applications. In games where best-response dy-
namics are not guaranteed to converge to an equilibrium, dynamic inefficiency
reflects better the inefficiency that may arise. It would be of interest to quantify
the dynamic inefficiency in additional applications. It is of a particular interest
to study whether there exist families of games for which one dynamic rule is
always superior to another.

In the job scheduling realm, our work demonstrates that the inefficiency based
policy suggested by [3] suffers from an extremely high price of sinking. A natural
open question arises: is there a local policy that always admits a Nash equilib-
rium and exhibits a PoA of o(m)? (recall that m is the number of machines).
Alternatively, is there a local policy that exhibits a dynamic inefficiency of o(m)
for some best response dynamic rule? Recently, Caragiannis [4] found a pre-
emptive local policy that always admits a Nash equilibrium and has a PoA of
O(log m). However, we are primarily interested in non-preemptive policies.
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Throw One’s Cake — and Eat It Too
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“Envy, desire, and the pursuit of honor drive a person from the world.”

Chapters of Our Fathers 4:27

Abstract. We consider the problem of fairly dividing a heterogeneous
cake between a number of players with different tastes. In this setting, it
is known that fairness requirements may result in a suboptimal division
from the social welfare standpoint. Here, we show that in some cases,
discarding some of the cake and fairly dividing only the remainder may
be socially preferable to any fair division of the entire cake. We study
this phenomenon, providing asymptotically-tight bounds on the social
improvement achievable by such discarding.

1 Introduction

Cake cutting is a standard metaphor used for modeling the problem of fair di-
vision of goods among multiple players. “Fairness” can be defined in several
different ways, with envy-freeness being one of the more prominent ones. A di-
vision is envy-free if no player prefers getting a piece given to someone else.
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(a) dividing the entire cake
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50% − ε for Alice 100% for Bob

(b) discarding of some cake

Fig. 1. Discarding of part of the cake allows for a socially-preferable envy-free division

Consider the rectangular cake depicted in Figure 1(a). It is a chocolate cake
sprinkled with candies right along the middle. Suppose you have two kids: Alice
and Bob. Alice likes the base of the cake, but is indifferent to the candies; Bob
is the opposite: he cares only for the candies. It is easy to see that if each of
the children must get one consecutive piece of the cake, then splitting the cake
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along the middle is the only possible envy-free division. Any other split would
result in one child getting less than 50% (by his or her valuation) and envying
the other. But this division is rather wasteful: if Bob could only get a small
additional fraction from Alice (small in her view), he would be doubly as happy.
Is there any possible way to make this happen — without introducing envy?

Interestingly, the answer is in the affirmative. By discarding a small piece
from the right-end of the cake, we can now place the cut to the left of candies,
giving the right piece to Bob and the left to Alice (see Figure 1(b)). Alice would
no longer envy Bob, as he gets the same amount of the cake as she does. The
overall happiness level would substantially increase: Bob is doubly happy, and
Alice is only ε less happy.

The above is a particular example of what we call the dumping effect — the
phenomenon in which one can increase the social welfare of envy-free divisions
by discarding (=dumping) some of the cake. The above provides an example of a
utilitarian 1.5− ε dumping effect (i.e. the utilitarian welfare, defined as the sum
of individual utilities, increases by a factor of 1.5− ε). In this paper we analyze
the dumping effect: under what circumstances may it arise? what social welfare
can it improve? and by how much? Interestingly, we show that at times much
can be gained by such discarding of some of the cake. We show:

– With regards to utilitarian welfare, the dumping effect with n players can
be as high as Θ(

√
n); i.e. there are cases where discarding some of the cake

allows for an envy-free division that is Θ(
√

n) better (from the utilitarian
standpoint) than any envy-free division of the entire cake. This bound is
asymptotically tight.

– With regards to egalitarian welfare, the dumping effect with n players can
be as high as n

3 . Egalitarian welfare is defined as the utility obtained by the
least-happy player. In particular, we show a case where discarding some cake
allows us to improve from an allocation in which at least one player gets no
more than 1/n to an allocation in which everybody gets at least ≈ 1/3 (!).
Our construction almost matches the upper bound of n

2 following from [1];
for n ≤ 4 we show that the bound of n

2 can actually be obtained.
– With regards to Pareto efficiency, there are instances in which discarding

some cake allows for an envy-free division that Pareto dominates every envy-
free division of the entire cake. We show that by discarding even one piece
of the cake it may be possible to double the utility of all but two players
without harming these remaining two players.

All of our results are for divisions that require that each player get one consec-
utive piece of the cake. For divisions that allow players to get arbitrarily many
pieces of the cake we show that no dumping effect is possible.

Related work. The problem of fair division has been studied in many different
fields and settings. Modern mathematical treatment of fair division via the cake
cutting abstraction started in the 1940s [15]. Since then, many works presented
algorithms or protocols for fair division [16,9,2,6], as well as theorems establish-
ing the existence of fair divisions (under different interpretations of fairness) in
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different settings [7,16]. Starting from the mid 1990s, several books appeared on
the subject [3,13,11], and much attention was given to the question of finding
bounds on the number of steps required for dividing a cake fairly [10,14,8,12].

A more recent work by Caragiannis et al. [4] added the issue of social welfare
into the framework of cake cutting. In particular, Caragiannis et al. aimed at
showing bounds on the loss of social welfare caused by fairness requirements,
by defining and analyzing the Price of Fairness (defined for different fairness
criteria). The work in [4] considered fair division of divisible and indivisible
goods, as well as divisible and indivisible chores; for each of these settings, it has
provided bounds on the highest possible degradation in utilitarian welfare caused
by three prominent fairness requirements — proportionality, envy-freeness, and
equitability. Following this line of work, a recent work by a subset of the authors
here [1] analyzed the utilitarian and egalitarian Price of Fairness in the setting
of cake cutting where each piece is required to be a single connected interval.
(This is in contrast to the work of [4] that allowed a piece in the division to be
comprised of any union of intervals.)

Finally, the concept of partial divisions of a cake (in which not all the cake
is allotted to the players) has also been considered in [6] and very recently
in [5]. Interestingly, in each of these works, discarding of some of the cake serves
a different purpose. In [6], the authors present a proportional, envy-free and
truthful cake cutting algorithm for players with valuation functions of a restricted
form. In that work, disposing of some of the cake is what ensures that the players
have no incentive to lie to the protocol. In [5], a restricted case of non-additive
valuation functions is considered, with one of the results being an approximately-
proportional, envy-free protocol for two players. In that protocol, some cake is
discarded in order to guarantee envy-freeness. Here, we show that leaving some
cake unallocated can also increase social welfare.

2 Definitions and Preliminaries

As customary, we assume a 1-dimensional cake that is represented by the interval
[0, 1]. We denote the set of players by [n] (where [n] = {1, . . . , n}), and assume
that each player i has a nonatomic (additive) measure vi mapping each interval
of the cake to its value for player i, and having vi([0, 1]) = 1. Let x be some
division of the cake between the players; we denote the value player i assigns to
player j’s piece in x by ui(x, j). We say that a division x is complete if it leaves
no cake unallocated; otherwise, we say that the division is partial.

Definition 1. We say that a cake instance with n players exhibits an α-dumping
effect (with α > 1 and with respect to some social welfare function w(·)) if there
exists a partial division y such that

1. y is envy-free; i.e. ui(y, i) ≥ ui(y, j) for all i, j ∈ [n], and
2. for every envy-free complete division x, w(y) ≥ α · w(x).

In this work, we consider two prominent social welfare functions: utilitarian and
egalitarian. The utilitarian welfare of a division x is the sum of the players’
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utilities; formally, we write u(x) =
∑

i∈[n] ui(x, i). The egalitarian welfare of a
division x is the utility of the worst-off player, i.e. eg(x) = mini∈[n] ui(x, i).

From this point forward, we restrict the discussion to divisions in which every
player gets a single connected interval of the cake. The first reason for this
restriction is that giving the players such connected pieces seem more “natural”,
and is in many scenarios more desirable than giving pieces composed of unions
of intervals. The second reason is captured by the following simple result:

Proposition 1. If players are allowed to get non-connected pieces (that are
composed of unions of intervals), there can be no utilitarian or egalitarian dump-
ing effect. In addition, in this setting no envy-free partial division can Pareto
dominate all envy-free complete divisions.

Proof. We prove for utilitarian welfare; the proof for egalitarian welfare and
Pareto domination is analogous. Suppose that we allow such non-connected di-
visions, and assume that there is a utilitarian α-dumping effect, with α > 1.
Then there exists an envy-free partial division y such that for every envy-free
complete division x,

∑
i∈[n] ui(y, i) ≥ α ·

∑
i∈[n] ui(x, i). Let U ⊆ [0, 1] be the

part of the cake that was not allocated to the players in y; it is known (e.g. [7])
that U itself has a complete envy-free division y′. Note that giving each player
i her part from y′ in addition to her original piece from y yields again an envy-
free division; call this division z. Clearly, z is a complete division of [0, 1] having
ui(z, i) ≥ ui(y, i) for all i ∈ [n]. It follows that for every envy-free division x∑

i∈[n]

ui(z, i) ≥
∑
i∈[n]

ui(y, i) ≥ α ·
∑
i∈[n]

ui(x, i) >
∑
i∈[n]

ui(x, i) ;

a contradiction.

We thus formally define a connected division of a cake to n players simply as a
sequence of n non-intersecting open intervals1; the first interval is given to the
first player, the second to the second player, etc. We will say that such a division
is complete if the union of these intervals (including their endpoints) equals the
entire cake; otherwise, we will say that the division is partial. Note that a partial
division may leave several disjoint intervals unallocated.

Finally, we give the definition of the Price of Envy-Freeness, first defined in [4],
which aims to measure the highest degradation in social welfare that may be
necessary to achieve envy-freeness. As we show next, the Price of Envy-Freeness
for a cake instance gives an upper bound on the dumping effect for the same
instance and welfare function.

Definition 2. Let I be a cake instance, X the set of all complete divisions of
I, and XEF the set of all complete envy-free divisions of I. The Price of Envy-
Freeness of the cake instance I, with respect to a social welfare function w(·), is
defined as the ratio
1 Since we assume that the valuation functions of all players are nonatomic, open and

closed intervals always have the same value.
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maxx∈X w(x)
maxy∈XEF w(y)

.

Proposition 2. The utilitarian (resp. egalitarian) dumping effect is bounded
from above by the utilitarian (resp. egalitarian) Price of Envy-Freeness.

Proof. We again prove only for utilitarian welfare. Assume, by contradiction,
that there exists a cake cutting instance with n players and with utilitarian
dumping effect of β, while the utilitarian Price of Envy-Freeness for these n
players is α < β. Then there exists a partial division y such that for every envy-
free complete division x,

∑
i∈[n] ui(y, i) ≥ β ·

∑
i∈[n] ui(x, i). Note that every

inclusion-maximal unalloted interval is adjacent to at least one interval that is
given to a player. Therefore, consider the complete division z which allocates
each player her interval as in y, and in addition adds the previously-unalloted
intervals to the piece of one of the adjacent players (chosen arbitrarily). This is
clearly a (not necessarily envy-free) complete division in which ui(z, i) ≥ ui(y, i)
for every i ∈ [n]. We get that for every envy-free division x∑

i∈[n]

ui(z, i) ≥
∑
i∈[n]

ui(y, i) ≥ β ·
∑
i∈[n]

ui(x, i) > α ·
∑
i∈[n]

ui(x, i) ,

contradicting our bound on the utilitarian Price of Envy-Freeness.

3 Utilitarian Welfare

Theorem 1. The utilitarian dumping effect with n players may be as high as
Θ(
√

n), and this bound is asymptotically tight.

We show that for every k, t ∈ N, there exists a cake cutting instance with n =
2k(3t − 2) players in which throwing away (t − 1)k intervals can improve the
utilitarian welfare of the best envy-free division by a factor exceeding kt+2t

k+3t . In
particular, choosing t = Θ(k) yields an improvement of Θ(

√
n). The matching

upper bound follows from Proposition 2, combined with Theorem 1 of [1], which
shows an upper bound of

√
n

2 +1−o(1) on the utilitarian Price of Envy-Freeness.
For the lower bound, we construct a cake with three parts: a “common”

part, a “high-values” part, and a “compensation” part. Furthermore, each of the
latter two parts is itself divided into k identical subparts. However, due to space
constrains, we are unable to provide here the full details of the construction
(which can be found in the full version of the paper). Instead, we illustrate a
key structure used in the construction, reason about its properties, and explain
in general lines how it is used in the construction of the entire cake.

Let us consider a subset of 3t−2 players, comprised of 2t−2 “Type A” players,
t − 1 “Type B” players, and one “chosen” player C. For 0 ≤ i ≤ t − 2 we will
have the players 3i+1 and 3i+2 be of Type A, and the player 3i+3 be of Type
B; we will say that players 3i+1 and 3i+2 are “neighbors”. In the “high values”
part of the cake, the chosen player C has t intervals she desires, each of them
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being of value 1
t to her. Between every two consecutive pieces desired by C there

are two more pieces, desired by a pair of neighbors of Type A. Each neighbor
desires one of these pieces, and considers that piece to be worth 4

n (as can be
seen on the top part of Figure 2). In addition, each pair of neighbors desires two
more pieces, located in the “compensation” part of the cake. Namely, for every
two neighbors 3i+1 and 3i+2, we have two pieces desired by 3i+1 followed by
two pieces desired by 3i+2; each of these pieces is worth 2

n to the corresponding
player. In between these four pieces, there are three pieces desired by the player
3i+3 of Type B: the first and third pieces have each a value of 3

2n to that player,
and the second has value of 1

n . The reader is again referred to Figure 2 for a
graphical representation; note that while the preferences of the chosen player C
are completely described, this is not so for the other players, as the pieces we
have described do not add up to a value of 1 for these players.
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Fig. 2. The (incomplete) preferences of one set of players. The number above each
column denotes which player has that valuation.

Lemma 1. Assume a cake and a set of players with preferences as above for the
“high-values” and “compensation” parts (in addition to some preferences on the
remainder of the cake). Assume, in addition, that the following properties hold:

(P1) If an envy-free division gives some Type A player a piece of value ≥ 4
n , this

piece must either intersect that player’s desired piece from the “high values”
part, or contain both of her desired pieces from the “compensation” part.

(P2) If an envy-free division gives some Type B player a piece of value ≥ 2
n ,

this piece must be completely contained in the “compensation” part.

Then no envy free division gives the chosen player C a piece of value > 1
t .
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Proof. Suppose that C does get such a piece in some envy-free division. It must
be that this piece intersects at least two of C’s desired pieces; in particular, there
are two neighbors of Type A such that C completely devours a desired piece of
each of them. Let these players be 3i + 1 and 3i + 2; these players consider C’s
piece as worth at least 4

n and thus must each get a piece of at least this value
to avoid envy. By the property (P1), the only way to do that is to give each of
them their two desired pieces from the compensation part of the cake. Recall
that each of the two players has two desired pieces in the compensation part:
denote them (from left to right) A1, A2, A3 and A4. In between those pieces,
there are three pieces which we will denote by B1, B2 and B3, desired by the
Type B player 3i + 3. In order to give each of these Type A players a piece of
value 4

n , we must give player 3i + 1 an interval containing A1, B1 and A2, and
player 3i + 2 an interval containing A3, B3 and A4. Each of these intervals is
worth at least 3

2n to player 3i + 3 who thus cannot be satisfied with the piece
B2 (worth to her only 1

n ), and must therefore get her share from another part
of the cake. Since no other players have any value for the piece B2, it must be
shared between players 3i + 1 and 3i + 2 whose pieces are the closest to it. At
least one of these players will get at least half of B2, and the piece of this player
will be worth at least 2

n to player 3i + 3; by (P2), this must cause envy.

In the full construction we have k sets of players, each identical to the set de-
scribed above. This sums up to k chosen players, k(2t− 2) Type A players, and
k(t−1) Type B players, totaling in k(3t−2) = n

2 players. The remaining players
are all “common players”, who are all just interested in the “common part” of
the cake (which for all other players has the missing value needed for the entire
value of the cake to sum up to 1). The cake is composed of this “common part”,
k copies of the “high-values” part, and k copies of the “compensation part” (one
copy of each part for each set of players). We then show that, as in Lemma 1, a
complete division cannot give any chosen player more than 1

t . However, throwing
away the pieces alluded to as B2 in the proof of the lemma allows us to obtain
an envy-free division giving each chosen player a value of 1, with only a minor
decrease in the value we give to the other players compared to any complete
envy-free division.

4 Egalitarian Welfare

Theorem 2. The egalitarian dumping effect with n players may get arbitrarily
close to n

3 , and this bound is asymptotically tight.

We show that for every k ∈ N there is a cake cutting instance with n = 3k + 1
players in which throwing away k intervals can improve the egalitarian welfare
of the best envy-free division by a factor arbitrarily close to n

3 . The matching
upper bound follows from Proposition 2, combined with Theorem 5 of [1], which
shows an upper bound of n

2 on the egalitarian Price of Envy-Freeness.
To illustrate the main ideas of the lower bound (whose full proof is also de-

ferred to the full version of the paper), we consider the simple case of k = 1
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(i.e. n = 4). Fix some small ε > 0. We create a cake with two parts: the “main
part” and the “last player” part. In the main part, we have two “blocks” of
four intervals: in both blocks, the first interval is of value 1

4 to player 4 and the
third interval is of value 1−ε

3 to player 3. The remaining intervals (second and
fourth) of the first block are each of value 1+ε

4 to player 1, while those of the
second block are each of value 1+ε

4 to player 2. The first block is followed by an
interval of value ε to player 3; we denote this interval by I. The second block is
followed by an interval of value 1−ε

3 to player 3. In the “last player” part we have
two intervals of value 1

4 to player 4; between these intervals there are two more
intervals, one considered by player 1 as worth 1−ε

2 , and the other considered by
player 2 as worth 1−ε

2 . Figure 3 illustrates these preferences graphically.
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Fig. 3. Preferences of all players for the case of n = 4

Lemma 2. In any complete envy-free division of the above cake, player 4 has
utility ≤ 1

4 . In particular, this is also a bound on the egalitarian welfare of such
divisions.

Proof. Suppose otherwise, then it has to be that the piece of player 4 intersects
at least two of her four desired intervals. If it intersects two of her first three
desired pieces, she will completely devour at least one block; however, each block
is worth strictly more than 1

2 to some player, who will then envy player 4.
Thus, player 4’s interval must be contained in the “last player” section, and

intersect player 4’s third and fourth desired intervals. However, in this case,
player 4’s piece is worth 1−ε

2 to both players 1 and 2; to ensure envy-freeness,
they both must also get a piece of at least that value. If ε is small enough, player
1 must get a piece containing the third interval of the first block, and player 2
must get a piece containing the third interval of the second block. Each of these
pieces are worth 1−ε

3 to player 3; this forces player 3 to get the rightmost of her
desired intervals in order to avoid envy. The interval I must therefore be split
between players 1 and 2, making at least one of them end up with a piece worth
more than 1

3 to player 3, which will then be envious; a contradiction.

Lemma 3. In the above cake, discarding the interval I allows for an envy-free
division with egalitarian welfare of 1−ε

3 .
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Proof. Suppose we discard the piece I. We can now allocate the entire “last
player” part to player 4, giving her utility 1

2 . In the main part, we give player 1
the entire first block, and player 2 the entire second block. Finally we give player
3 the interval following the second block. It is easy to verify that this division is
indeed envy-free, and that its egalitarian welfare is 1−ε

3 .

We have shown a dumping effect of 4(1−ε)
3 for the case of n = 4 players. The

proof of Theorem 2 uses a generalization of this construction, with 3k players
taking the role of players 1-3, and a single player taking the role of player 4.
However, due to space constraints, we omit the full details and proof of this
generalization from this extended abstract.

Finally, we state the following theorem, whose proof is also deferred to the
full version of the paper, showing that the bound of n

2 is indeed tight for n ≤ 4.

Theorem 3. For n ≤ 4 players, there are examples in which the egalitarian
dumping effect is arbitrarily close to n

2 .

5 Pareto-Dominant Partial Divisions

A division x is said to Pareto dominate another division y if for all i, ui(x, i) ≥
ui(y, i), and at least one of these inequalities is strict; in other words, if at least
one player does better in x than in y, and no one does worse. x strictly Pareto
dominates y if for all i, ui(x, i) > ui(y, i), i.e. if everyone is doing better in x.

We first show that starting from any envy-free complete division it is impos-
sible to strictly improve the utility of all players simultaneously.

Theorem 4. Let x be an envy-free complete division. Then there is no other
division, partial or complete, that strictly Pareto dominates x.

Proof. Our proof hinges on the following observation, due to [1]:

Let y be a division such that ui(y, i) > ui(x, i) for some i ∈ [n]. Since
i values any other piece in the division x at most as much as her own,
it has to be that in y, i gets an interval that intersects pieces that were
given to at least two different players in x (possibly including i herself).

In other words, in order for a player i to get a piece worth more than her piece in
x, she must get at least one “boundary” (between two consecutive pieces) from
x. Thus, a (partial or complete) division that strictly Pareto dominates x must
give (at least) one such boundary to each player. However, since x is a connected
division it contains only n− 1 boundaries, one less than the number of players.

It it thus interesting that there do exist instances in which an envy-free par-
tial division (non-strictly) Pareto dominates every envy-free complete division.
Moreover, in some cases the partial division improves the utility of almost all
the players, and by a significant (constant) factor.
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Theorem 5. For every n > 2, there exists a cake cutting instance with n players
and an envy-free partial division giving n− 2 players twice the value they would
get in any envy-free complete division, while giving the remaining two players at
least as much as they would get in any envy-free complete division.

Proof. Let n > 2, and fix some 0 < ε < 1
n(n+1) . Consider the following valuations:

– Each player 1 ≤ i ≤ n − 1 (“focused players”) desires only the interval
( i

n − ε, i
n + ε), and considers it to be of value 1.

– Player n assigns a uniform valuation to the entire cake.

Now, for envy-free complete division of the above cake, it must be that:

1. Player n gets a piece of physical size ≥ 1
n .

Since we give away all the cake, some player must get a piece of physical size
at least 1

n ; if player n does not get such a piece, she will envy that player.
2. Player n cannot get any piece containing some neighborhood of a point i

n for
i ∈ [n− 1].
Because of the previous observation, if player n gets such a piece then her
piece contains the interval ( i

n − δ, i+1
n − δ) for some 0 < δ < 1. Such a piece

is always worth strictly more than 1
2 to player i, and will make her envious.

Therefore, player n must get a piece of the form ( i−1
n , i

n ) for some i ∈ [n].
3. Every “focused player” has to get a piece of physical size exactly 1

n .
First, it is clear that if some player i ∈ [n−1] gets a piece of size > 1

n , player
n will envy that player. On the other hand, we have that the players [n− 1]
have to share cake of total physical size n−1

n ; since none of them can get a
piece of size larger than 1

n , each of them must get a piece of size exactly 1
n .

From these observations we obtain that in any envy-free division, all the cuts
are at points i

n with i ∈ [n − 1]; in such a division, player n always has utility
1
n , and every other player has utility 1

2 .
Now consider the following partial division of the cake. First, give player n the

piece (0, 1
n ), and player 1 the piece ( 1

n , 2
n−2ε). Then give each player 2 ≤ i ≤ n−1

the next piece of size 1
n − ε, which is the interval

(
i · ( 1

n − ε), (i + 1) · ( 1
n − ε)

)
.

Finally, we throw away the (non-allocated) remainder.
In this division, player n has value 1

n , which is just as good as in any complete
division. Similarly, player 1 has value 1

2 , which again is as good as she can get in
any complete division. Players 2 through n− 1, on the other hand, get each her
entire desired interval; otherwise, the position of the right boundary of player
(n− 1)’s piece must be to the left of the point n−1

n + ε. However, since we took
ε < 1

n(n+1) , we have that the right boundary of player (n− 1)’s piece is at(
1
n
− ε

)
·n >

(
1
n
− 1

n(n + 1)

)
·n =

n

n + 1
=

n2 − 1
n(n + 1)

+
1

n(n + 1)
>

n− 1
n

+ε .

Therefore, each of these players gets a piece of value 1, which is twice what they
could get in any complete division.
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Finally, it is clear that none of the players feel envy: Players 2 through n− 1
feel no envy (having gotten all they desire in the cake). Player n feels no envy
since she receives the physically-largest piece in the division. Player 1 also feels
no envy as her piece has value 1

2 , and so no other player could have gotten a
piece with a larger value for her.

We note that the construction above can be also used to show a utilitarian
dumping effect arbitrarily close to 2(n−1)+ 2

n

(n−1)+ 2
n

(one need only move the leftmost

boundary in the partial division to 1
n − ε). While this is asymptotically inferior

to the bound shown in Theorem 1, this construction is much simpler, and works
for as few as two players. In fact, for n = 2 this construction coincides with the
example given in the introduction, and moreover gives a provably tight lower
bound: the dumping effect of 3

2 − ε we obtain in this case matches the n − 1
2

upper bound on the utilitarian Price of Envy-Freeness given in [4].

6 Discussion and Open Problems

In this work, we have studied the dumping effect and its possible magnitude. We
have shown that the increase in welfare when discarding some of the cake can
be substantial, moving from 1/n to Θ(1) for egalitarian welfare and from Θ(1)
to Θ(

√
n) for utilitarian welfare, and have shown a Pareto improvement that

improves by a factor of two all but two players. In fact, in some cases discarding
some of the cake can essentially eliminate the social cost associated with fair
division. It is interesting to note that all of our lower bound constructions have
an additional nice property — no player desires any discarded piece more than
her own piece. Thus, not only do players not envy each other, but they also do
not feel much loss with any discarded piece.

Several problems remain open. First, we note that while our bounds for the
utilitarian and egalitarian welfare functions are asymptotically tight, there are
still constant gaps which await closure. With regards to Pareto improvement,
we provided a construction where all but two players improve their utility by a
factor of two. An interesting open problem is to see whether a stronger Pareto
effect can be obtained. Before we do so, however, we must first define the exact
criteria by which we evaluate Pareto improvements. Possible criteria include: the
number of players that increase their utility, the largest utility increase by any
player, and the total utility increase of the players (= utilitarian welfare).

More important, perhaps, is that all of our results are existential in nature,
but do not provide guidance on what to do in specific cases. It is thus of interest
to develop algorithms to determine what, if any, parts of the cake it is best to
discard in order to gain the most social welfare, for the different welfare functions.

Finally, our work joins other recent works [6,5] that imply that leaving some
cake unallocated may be a useful technique in fair division algorithms. Following
this direction, it may be interesting to see if discarding of some cake may also help
in finding socially-efficient envy-free connected divisions. Generalizing beyond
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fair division, it would be be interesting to see if such an approach, of intentionally
forgoing or discarding some of the available goods, can also benefit other social
interaction settings.
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Abstract. Due to the lack of coordination, it is unlikely that the selfish
players of a strategic game reach a socially good state. Using Stackel-
berg strategies is a popular way to improve the system’s performance.
Stackelberg strategies consist of controlling the action of a fraction α
of the players. However compelling an agent can be costly, unpopular
or just hard to implement. It is then natural to ask for the least costly
way to reach a desired state. This paper deals with a simple strategic
game which has a high price of anarchy: the nodes of a simple graph
are independent agents who try to form pairs. We analyse the optimiza-
tion problem where the action of a minimum number of players shall be
fixed and any possible equilibrium of the modified game must be a social
optimum (a maximum matching).

For this problem, deciding whether a solution is feasible or not is not
straitforward, but we prove that it can be done in polynomial time. In
addition the problem is shown to be APX-hard, since its restriction to
graphs admitting a vertex cover is equivalent, from the approximability
point of view, to vertex cover in general graphs.

1 Introduction

We propose analyzing the following non cooperative game. The input is a simple
graph G = (V, E) where every vertex is controlled by a player whose strategy
set is his neighborhood in G. If a vertex v selects a neighbor u while u selects
v then the two nodes are matched and they both have utility 1. If a vertex v
selects a neighbor u but u does not select v then v is unmatched and its utility
is 0. Each player aims at maximizing its own utility.

Matchings in graphs are a model for many practical situations where nodes
may represent autonomous entities (e.g. the stable marriage problem [1] and the
assignment game [2]). For instance, suppose that each node is a tennis player
searching for a partner. An edge between two players means that they are avail-
able at the same time, or just that they know each other. As another example,
consider a set of companies on one side, each offering a job, and on the other side
a set of applicants. There is an edge if the worker is qualified for and interested
in the job.

Taking the number of matched nodes as the social welfare associated with
a strategy profile (a maximum cardinality matching is then a social optimum),
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we can rapidly observe that the game has a high price of anarchy. The system
needs regulation because the uncoordinated and selfish behavior of the players
deteriorates its performance. How can we do this regulation? One can enforce a
maximum matching but forcing some nodes’ strategy may be costly, unpopular
or simply hard to implement. When both cases (complete freedom and total
regulation) are not satisfactory, it is necessary to make a tradeoff. In this paper
we propose to fix the strategy of some nodes; the other players are free to make
their choice. The only requirement is that every equilibrium of the modified game
is a social optimum (a maximum matching). Because it is unpopular/costly, the
number of forced players should be minimum. We call the optimization problem
mfv for minimum forced vertices. The challenging task is to identify the nodes
which play a central role in the graph. As we will see, the problematic is known
as the price of optimum [3,4] in the well established framework of Stackelberg
games.

1.1 Related Work

There is a great interest in how uncoordinated and selfish agents make use of
a common resource [5,6]. A popular way of modeling the problem is by means
of a noncooperative game and by viewing its Nash equilibria as outcomes of
selfish behavior. In this context, the price of anarchy (PoA) [6,7], defined as the
value of the worst Nash equilibrium relative to the social optimum, is a well
established measure of the performance deterioration. A game with a high PoA
needs regulation and several ways to improve the system performance exist in
the literature, including coordination mechanisms [8] and Stackelberg strategies
[3,4,9,10,11,12,13,14]. This paper deals with the latter.

In [9] Roughgarden studies a nonatomic scheduling problem where a rate of
flow r should be to assigned to a set of parallel machines with load dependent
latencies. There are two kinds of players: a leader controlling a fraction α of
r and a set of followers, with everyone of them handling an infinitesimal part
of (1 − α)r. The leader, interested in optimizing the total latency, plays first
(i.e. assigns αr to the machines) and keeps his strategy fixed. The followers
react independently and selfishly to the leaders strategy, optimizing their own
latency. The author gives helpful properties of the game: (i) Nash assignments
exist and are essentially unique, (ii) there exists an assignment induced by a
Stackelberg strategy and any two such assignments have equal cost. He provides
an algorithm for computing a leader strategy that induces an equilibrium with
total latency no more than 1/α times that of the optimal assignment of jobs
to machines. This is the best possible approximation ratio but the algorithm
does not always use at best the amount of players that it can compel. Indeed
Roughgarden shows that it is NP-hard to compute such an optimal Stackelberg
strategy.

Further extensions and improvements on the nonatomic scheduling problem
can be found in [10,11,14].
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In [13] Sharma and Williamson introduce the Stackelberg threshold (also
called the value of altruism) which is the minimum amount of centrally con-
trolled flow such that the cost of the resulting equilibrium solution is strictly
less than the cost of the Nash equilibrium (where no fraction of the flow is
controlled). The approach is considered for the nonatomic scheduling game.

In [3] Kaporis and Spirakis study the nonatomic scheduling game with the
aim of computing the least portion of flow α∗ that the leader must control in
order to enforce the overall optimum cost. α∗ is then called the price of optimum.
They provide an optimal algorithm which works for single-commodity instances
– instances which are more general than parallel instances discussed in [9]. As
mentioned in [3] the concept of price of optimum dates back to the work of
Korilis, Lazar and Orda [4] who study a different system environment.

Finally one can mention the work of Fotakis [12] who proposed an atomic
(discrete) version of Roughgarden’s approach.

1.2 Motivation, Organization and Results

The matching game studied in this article captures practical situations where
uncoordinated agents try to form pairs. We focus on the Nash equilibria because
this solution concept is arguably the most important concept in game theory in
order to capture possible outcomes of strategic games. As stated in Theorem 1
(next section), the game has a high price of anarchy so it is relevant to study
Stackelberg strategies, the Stackelberg threshold and the price of optimum. This
paper is devoted to the last approach because mfv is exactly the price of opti-
mum of the matching game. Recall that in mfv, a leader interested in the social
welfare fixes the strategy of a minimum number of nodes so that any equilibrium
reached by the unforced nodes creates a maximum number of pairs.

At this point one can stress important differences between the nonatomic
scheduling game [9,3] and the matching game: the matching game is atomic,
there may be several completely different optima, and two equilibra induced by
a common Stackelberg strategy may have significantly differing social utility.
Due to the last observation, it is not trivial to decide whether a Stackelberg
strategy induces a social optimum or not. In other words, separating feasible
and infeasible solutions to the mfv problem is not direct.

We first give a formal definition of the noncooperative game and show that
it has a high price of anarchy (Section 2). The mfv problem is then introduced.
In Section 3 we show that we can decide in polynomial time whether a solution
is feasible or not. In particular one can detect graphs for which any pure Nash
equilibrium corresponds to a maximum matching though no vertex is forced.

Next we investigate the complexity and the approximability of mfv. Our result
is that mfv in graphs admitting a perfect matching is, from the approximability
point of view, equivalent to vertex cover. Hence mfv is APX-hard in general
graphs and there exists a 2-approximation algorithm in graphs admitting a per-
fect matching. Concluding remarks and future works are given in Section 5. Due
to space limitations, some proofs are omitted.
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2 The Strategic Game and the Optimization Problem

We are given a simple connected graph G = (V, E). Every vertex is controlled by
a player so we interchangeably mention a vertex and the player who controls it.
The strategy set of every player i is his neighborhood in G, denoted by NG(i).
Then the strategy set of a leaf in G is a singleton. Throughout the article Si

designates the action/strategy of player i. A player is matched if the neighbor
that he selects also selects him. Then i is matched under S if SSi = i. A player
has utility 1 when he is matched, otherwise his utility is 0. The utility of player
i under state S is denoted by ui(S).

The social welfare is defined as the number of matched nodes. We focus on
the pure strategy Nash equilibria, considering them as the possible outcomes
of the game. It is not difficult to see that every instance admits a pure Nash
equilibrium. In addition, the players converge to a Nash equilibrium after at
most |V |/2 rounds.

Interestingly there are some graphs for which the players always reach a social
optimum: paths of length 1, 2 and 4; cycles of length 3 and 5; stars, etc. However
the social welfare can be very far from the social optimum in many instances as
the following result states.

Theorem 1. The PoA is max{2/|V |, 1/Δ} where Δ denotes the maximum de-
gree of a node.

Theorem 1 indicates that the system needs regulation to achieve an acceptable
state where a maximum number of players are matched. That is why we intro-
duce a related optimization problem, called mfv for minimum forced vertices.

For a graph G = (V, E), instance of the mfv problem, a solution is a pair
〈T, Q〉 where Q is a subset of players and every player i in Q is forced to select
node Ti ∈ NG(i) (i.e. T = (Ti)i∈Q). In the following 〈T, Q〉 is called a Stackelberg
strategy or simply a solution. A state S is a Stackelberg equilibrium resulting
from the Stackelberg strategy 〈T, Q〉 if Si = Ti for every i ∈ Q, and ∀i ∈ V \Q,
∀j ∈ NG(i), ui(S) ≥ ui(S−i, j). Here (S−i, j) denotes S where Si is set to j.

A solution 〈T, Q〉 to the mfv problem is said feasible if every Stackelberg
equilibrium is a social optimum. The value of 〈T, Q〉 is |Q|. This value is to be
minimized.

Now let us introduce some notions that we use throughout the article. The
matching induced by a strategy profile S is denoted by MS and defined as
{(u, v) ∈ E : Su = v and Sv = u}. We also define three useful notions of
compatibility:

– A matching M and a state S are compatible if M =MS ;
– A state S and a solution 〈T, Q〉 are compatible if Ti = Si for all i ∈ Q;
– A matching M and a solution 〈T, Q〉 are compatible if there exists a state S

compatible with both M and 〈T, Q〉.

We sometimes write that a matching is induced by a solution if they are com-
patible.
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u
v

Fig. 1. Example with a non optimum matching M (bold edges)

Let us consider the example depicted in Figure 1. If no node is forced, then
one can easily find an equilibrium inducing the non optimum matching M (bold
edges). On the other hand, if we force u to play v, then any Stackelberg equi-
librium induces a maximum matching. Hence, forcing this node is an optimal
solution to the mfv problem.

3 Feasible Solutions

It is easy to produce a feasible solution to any instance of the mfv problem:
simply compute a maximum matching and force each matched node toward its
mate in the matching. However, deciding whether a given solution, even the
empty one, is feasible or not is not straightforward. This is due to the fact that
the social welfares of two Stackelberg equilibria compatible with a solution 〈T, Q〉
may significantly differ.

Let M∗ be a maximum matching compatible with a solution 〈T, Q〉. Then
it is easy to see that there exists a Stackelberg equilibrium S∗ compatible with
bothM∗ and 〈T, Q〉 (if v is forced then it plays Tv, if it is matched inM∗ then it
plays its mate, otherwise it plays any vertex in his neighborhood). By definition,
ifM∗ is not maximum in G, then 〈T, Q〉 is not feasible. However, the reverse is
not true: another Stackelberg equilibrium compatible with 〈T, Q〉 may induce a
matching which is not maximum in G. In this section we show how to determine
in polynomial time if a solution 〈T, Q〉 is feasible or not.

In the sequel,M∗ denotes a matching compatible with 〈T, Q〉 and we assume
that M∗ is maximum in G. In addition S∗ denotes a Stackelberg equilibrium
compatible with 〈T, Q〉 and M∗. Note that a maximum matching compatible
with a solution 〈T, Q〉 can be computed in polynomial time: start from G, remove
every edge (u, v) such that u is forced to play a node w different from v, and
compute a maximum matching in the resulting graph.

We will resort to patterns called diminishing configurations. As we will prove,
a solution is not feasible if and only if it contains a diminishing configuration
with respect to any compatible maximum matching. In fact the presence of a
diminishing configuration is an opportunity for the players to reach a stable,
but non optimal, state. The next key point is that one can detect diminishing
configurations in polynomial time. It is trivial for all but one diminishing con-
figuration; the difficult case is reduced to a known result due to Jack Edmonds
and quoted in [15]. The diminishing configurations are of three kinds: long, short
and average.
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Definition 1. – M∗ and 〈T, Q〉 possess a long diminishing configuration if
there are 2r vertices v1, . . . , v2r arranged in a path as on Figure 2 (a) (r is
an integer such that r ≥ 2) and a strategy profile S∗ satisfying
• S∗ is a Stackelberg equilibrium compatible with 〈T, Q〉 and M∗

• if v1 /∈ Q then there is no v ∈ V \ {v1, . . . , v2r} such that S∗
v = v1

• if v2r /∈ Q then there is no v ∈ V \ {v1, . . . , v2r} such that S∗
v = v2r

– M∗ and 〈T, Q〉 possess a short diminishing configuration if there exists one
pattern among those depicted on Figure 2 (b) to (g) and a strategy profile S∗

satisfying
• S∗ is a Stackelberg equilibrium compatible with 〈T, Q〉 and M∗

• there is no node v ∈ V \ {v1, v2} such that S∗
v ∈ {v1, v2}

– M∗ and 〈T, Q〉 possess an average diminishing configuration if there exists
one pattern among those depicted on Figure 2 (h) to (j) and a strategy profile
S∗ satisfying
• S∗ is a Stackelberg equilibrium compatible with 〈T, Q〉 and M∗

• there is no v ∈ V \ {v1, v2, y} such that S∗
v ∈ {v1, v2, z}

v1v1

v1v1

v1

v1 v1

v1

v1

v1

v2v2

v2v2

v2

v2

v2

v2

v2

v2

v3 v2r−1 v2r

x

x

x

x

x
y

y

y

y

z

z

z

z
forced node

either forced or unforced node

unforced node

(a)

(b)
(c)

(d)

(e) (f) (g)

(h)

(i)

(j)
It can be x = y or x = z

Fig. 2. The ten diminishing configurations. Every bold edge belongs to M∗, every thin
edge belongs to E \M∗. A white node is not in Q while crossed node must belong to
Q. Grey nodes can be in Q or not. For the case (e), nodes x and y (resp. z) can be the
same.

In the following Lemma, we assume that M∗, the maximum matching com-
patible with 〈T, Q〉, is also maximum in G.
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Lemma 1. 〈T, Q〉 is not feasible if and only if M∗ and 〈T, Q〉 possess a dimin-
ishing configuration.

Proof. (sketch)
(⇐) Suppose that M∗ and 〈T, Q〉 possess a diminishing configuration. One

can slightly modify S∗, as done on Figure 3 for each case, such that the strategy
profile remains a Stackelberg equilibrium and the corresponding matching has
decreased by one unit. Therefore 〈T, Q〉 is not feasible.

v1

v1

v1

v1

v1

v1v1

v1
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v2

v2
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v2
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v3 v2r−1 v2r
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x

x xxy
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z
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(a)

(b)
(c)

(d)

(e) (f) (g)

(h) (i) (j)

It can be x = y or x = z

Fig. 3. For each configuration of Figure 2 there is a way to decrease the matching by one
unit. The corresponding strategy profile remains a Stackelberg equilibrium compatible
with 〈T, Q〉.

(⇒) Let S′ be a Stackelberg equilibrium compatible with 〈T, Q〉 such that its
associated matchingM′ is not maximum in G. Consider the symmetric difference
M′ΔM∗. Its connected components are of four kinds:

– a path which starts with an edge of M′, alternates edges of M∗ and M′,
and ends with an edge ofM′ (see case 1 in Figure 4)

– a path which starts with an edge of M′, alternates edges of M∗ and M′,
and ends with an edge ofM∗ (see case 2 in Figure 4)
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– a path which starts with an edge of M∗, alternates edges of M∗ and M′,
and ends with an edge ofM∗ (see case 3 in Figure 4)

– an even cycle which alternates edges ofM∗ andM′ (see case 4 in Figure 4)

4
2

1

3

Fig. 4. The four cases for the connected components of M′ΔM∗. Edges of M∗ and
M′ are respectively solid and dashed.

Since |M∗| > |M′| there must be one component of the third kind because
this is the only case which contains more edges ofM∗ than edges ofM′. Notice
that the two nodes on the extremities of this component are unmatched in M′.
We consider two cases, whether this component contains at least two edges of
M∗ (Case A), or just one (Case B).
Due to space limitation, the proof of Case B is omitted.

Case A: Let us denote by v1, . . . , v2r the nodes of the component. Since S′
v �= S∗

v

holds for every v ∈ {v2, · · · , v2r−1}, we deduce that no node of {v2, · · · , v2r−1}
is forced. If v1 and v2r belong to Q then a long diminishing configuration is
found. Suppose that neither v1 nor v2r belong to Q. If there is no vertex v ∈
V \ {v1, . . . , v2r} such that S∗

v ∈ {v1, v2r} then a long diminishing configuration
is found. If there is a node v ∈ Q such that Tv ∈ {v1, v2r} then S′ is not a
Stackelberg equilibrium (v1 and v2r are unforced and unmatched in M′ so one
of them can play v and be matched), contradiction. If there is a leaf v adjacent
to v1 or v2r then S′ is not a Stackelberg equilibrium (v1 and v2r are unforced and
unmatched inM′ so one of them can play v and be matched), contradiction.

If there is a node v /∈ Q ∪ {v2, v2r−1} such that S∗
v ∈ {v1, v2r} then v is

unmatched inM∗, all its neighbors are matched becauseM∗ is maximum, and
S′

v /∈ {v1, v2r} because S′ is a Stackelberg equilibrium. One can set S∗
v ← S′

v

every time this case happens and deduce that a long diminishing configuration
exists. Indeed S∗ though modified remains a Stackelberg equilibrium compatible
with M∗ and 〈T, Q〉.

The last case is when v1 /∈ Q while v2r ∈ Q (the case v2r /∈ Q while v1 ∈ Q
is completely symmetric). If there is no node v ∈ V \ {v1, · · · , v2r} such that
S∗

v = v1 then a long diminishing configuration exists. If there is a node v ∈ Q
such that Tv = v1 then S′ is not a Stackelberg equilibrium, contradiction. If there
is a node v /∈ Q such that S∗

v = v1 then S′
v �= v1 because S′ is a Stackelberg

equilibrium. One can set S∗
v ← S′

v every time this case happens and deduce that
a long diminishing configuration exists. ��

Notice that Lemma 1 is obtained with any maximum matchingM∗ compatible
with 〈T, Q〉.
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Theorem 2. One can decide in polynomial time whether a solution 〈T, Q〉 is
feasible.

Proof. Compute a maximum matching M∗ compatible with 〈T, Q〉. If M∗ is
not optimum in G then 〈T, Q〉 is not feasible. From now on suppose that M∗

is optimum. Let S∗ be any Stackelberg equilibrium compatible with both M∗

and 〈T, Q〉. Using Lemma 1, 〈T, Q〉 is not feasible iff M∗ and 〈T, Q〉 possess a
diminishing configuration. Short and average diminishing configurations contain
a constant number of nodes so we can easily check their existence in polynomial
time.

For every pair of distinct nodes {a, b} such that a and b are matched inM∗ but
not together, we check whether a long diminishing configuration with extremities
a and b exists. Suppose that a (resp. b) is matched with a′ (resp. b′). If there is
a node v ∈ V \ {a′, b′} such that S∗

v ∈ {a, b} in every Stackelberg equilibrium S∗

compatible with 〈T, Q〉 then the answer is no (it happens when v ∈ Q and Tv ∈
{a, b}, or v ∈ Q and NG(v) ⊆ {a, b}). Otherwise every unmatched neighbor v of
a or b can play a strategy S∗

v /∈ {a, b} and S∗ remains a Stackelberg equilibrium
compatible with 〈T, Q〉. If {a′, b′} ∩ Q �= ∅ then the answer is also no. Now
consider the graph G′ = G[V \ (Q ∪ {a, b})] to which we add the edges (a, a′)
and (b, b′). Deciding whether there exists an a − b path in G′ which alternates
edges of M∗ and edges not in M∗, and such that the first and last edge of this
path are respectively (a, a′) and (b, b′), can be done in O(n2.5) steps. This result
is due to J. Edmonds and a sketch of proof can be found in [15] (Lemma 1.1).
This problem is equivalent to checking whether a long diminishing configuration
with extremities a and b exists in G. ��

We have mentioned in the previous section that for some graphs, forcing no node
is the optimal Stackelberg strategy, leading to an optimal solution with value 0.
Such a particular case can be detected in polynomial time by Theorem 2. In the
next section, we focus on instances for which the strategy of at least one node
must be fixed.

4 Complexity and Approximation

Let G be the class of graphs admitting a perfect matching. We focus on this
important class of graphs to show that mfv is APX-hard.

Theorem 3. For any ρ ≥ 1, mfv restricted to graphs in G is ρ-approximable in
polynomial time if and only if the minimum vertex cover problem (in general
graphs) is ρ-approximable in polynomial time.

Proof. The proof will be done in two steps. In the first step, we will give a poly-
nomial time reduction preserving approximation from the minimum vertex
cover problem to mfv restricted to graphs in G, while in the second step we
will produce a polynomial time reduction preserving approximation from mfv
restricted to graphs in G to the minimum vertex cover problem.
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• First step. Let G be a simple graph, instance of the minimum vertex cover
problem. We suppose that V (G) = {v1, · · · , vn} and E(G) = {e1, · · · , em}. Let
us build a simple graph G′, instance of mfv, as follows: take G, add a copy of
every vertex and link every vertex to its copy. More formally we set V (G′) =
{v1, · · · , vn}∪{v′1, · · · , v′n} and E(G′) = {e1, · · · , em}∪{(vi, v

′
i) : i ∈ {1, . . . , n}}.

Remark that G′ admits a unique perfect matching made of all edges (vi, v
′
i).

Then G ∈ G. We claim that G admits a vertex cover C of size at most k iff G′

admits a feasible solution of size at most k.

(⇒) Consider the solution 〈T, Q〉 where Q = C and for every vi ∈ C, set Tvi =
v′i. Since C is a vertex cover, there is no pair of nodes vi, vj ∈ V (G) \ C
such that (vi, vj) ∈ E(G). Hence vi (resp. vj) can only be matched with v′i
(resp. v′j), and 〈T, Q〉 is a feasible solution of value |Q| = |C|.

(⇐) Suppose that there are two nodes vi, vj ∈ V (G) \ Q such that (vi, vj) ∈
E(G). These nodes can match together because they are not forced, con-
tradicting that 〈T, Q〉 is a feasible solution (vi and vj must be matched
with v′i and v′j respectively). Therefore Q∩ V (G) is a vertex cover of G, of
size at most |Q|.

• Second step. Let G = (V, E) be a graph admitting a perfect matching, i.e.,
G ∈ G. Let G′ be a graph defined as V (G′) = {v ∈ V (G) : dG(v) > 1} and
E(G′) = {(x, y) ∈ E(G) : x, y ∈ V (G′)}. We claim that there is a vertex cover
of size at most k in G′ iff mfv has a solution of value at most k in G.

(⇒) Let C be a vertex cover of size k in G′. Compute a maximum matchingM
of G. Build a solution 〈T, Q〉 to the mfv problem as follows: force every
node of C to follow the matching M. The matching being perfect, this is
always possible. It is clear that k nodes are forced.

Let us prove that every Stackelberg equilibrium S compatible with 〈T, Q〉
induces the optimal matching M. Take an edge (u, v) ∈M. If both u and
v are forced then Tu = v and Tv = u, by construction. Suppose that
only u is forced. We have Tu = v and there is no node w �= u such that
Tw = v, by construction. If there is an unforced node w ∈ NG(v) then either
w ∈ V (G′), which contradicts the fact that C is a valid vertex cover of G′,
or v ∈ V (G) \ V (G′), contradicts the fact thatM is a perfect matching of
G. Now suppose that neither u nor v is forced. At least one of them, say u,
has degree 1 since otherwise C is not a valid vertex cover. As previously an
unforced node w ∈ NG(v) would contradict that C is a valid vertex cover.
Then u can only play v and v’s rational behavior is to play u.

(⇐) Take a solution 〈T, Q〉with |Q| = k and build a vertex cover C := V (G′)∩Q.
It is clear that C has size at most k. We can observe that C is not a ver-
tex cover in G′ iff there exists an edge (u, v) with dG(u) > 1, dG(v) > 1
and {u, v} ∩ Q = ∅. Let M be an optimal (and perfect) matching in-
duced by a Stackelberg equilibrium compatible with 〈T, Q〉. If u and v are
matched together in M then u (resp. v) has a matched neighbor u′ �= v
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(resp. v′ �= u). If u (resp. v) plays u′ (resp. v′) then we get an equilibrium
which contradicts the fact that 〈T, Q〉 is a feasible solution. If u and v are
not matched together in M then suppose that u is matched with u′ while
v is matched with v′ (the matching is perfect). If we remove (u, u′), (v, v′)
and add (u, v) then the state is an equilibrium (neither u′ nor v′ can deviate
and be matched with a node sinceM is perfect) but the resulting matching
is not optimal. ��

Based on known results for vertex cover [16,17] we deduce that mfv is APX-
hard and even NP-hard to approximate within ratio 1.36 (in general), but it is
2-approximable in polynomial time in G.

5 Conclusion

To summarize, one can decide in polynomial time whether a solution is fea-
sible or infeasible for any instance of mfv. mfv is APX-hard in general and
a 2-approximation algorithm exists for the case of graphs admitting a perfect
matching (G). The approximability of this problem in general graphs is worth
being considered. In particular, is there a way to generalize the 2-approximation
algorithm to general graphs? In a preliminary version of this article [18] we
achieved an approximation ratio of 6 thanks to a long and tedious analysis.

The model studied for the mvf problem can be extended in many directions.
First, forcing a node v may cost c(v) instead of a unit cost as it is supposed
in the present article. Another possible extension would be to require a feasible
Stackelberg strategy to reach only an approximation of the social optimum.

Finally, our study focuses on Nash equilibria, i.e. states resilient to deviations by
any single player. An interesting extension is to deal with simultaneous deviations
by several players. In particular, simultaneous deviations by two players is consid-
ered in the stable marriage problem [1]. In our setting, a state is called a k-strong
equilibrium if it is resilient to deviations by at most k players (a strong equilibrium
is resilient to deviations by any number of players). Then the k-strong price of an-
archy is defined as the price of anarchy but for k-strong equilibria [19].

Dealing with this last issue, we can show that the notions of 2-strong, k-strong
and strong equilibria coincide for the matching game (proof omitted), and that
states resilient to deviations by several players are much better in term of social
welfare than Nash equilibria.

Proposition 1. The strong price of anarchy is 1/2.

Proof. Let S be a 2-strong equilibrium whereas S∗ is an optimum state. For
every edge (i, j) ∈ E, we have max{ui(S), uj(S)} ≥ 1. Take a maximum car-
dinality matching M∗ and use the previous inequality to get that SW(S) =∑

i∈V ui(S) ≥
∑

{i,j}∈M∗ ui(S) + uj(S) ≥
∑

{i,j}∈M∗ max{ui(S), uj(S)}. It fol-
lows that SW(S) ≥ |M∗| = SW(S∗)/2. Take a path of length 3 as a tight
example. ��
Considering the mfv problem for strong equilibria is an interesting topic that is
worth being considered in some future works.
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Abstract. A minimal requirement on allocative eÆciency in the social sciences
is Pareto optimality. In this paper, we identify a far-reaching structural connection
between Pareto optimal and perfect partitions that has various algorithmic conse-
quences for coalition formation. In particular, we show that computing and veri-
fying Pareto optimal partitions in general hedonic games and B-hedonic games is
intractable while both problems are tractable for roommate games and W-hedonic
games. The latter two positive results are obtained by reductions to maximum
weight matching and clique packing, respectively.

1 Introduction

Topics concerning coalitions and coalition formation have come under increasing
scrutiny of computer scientists. The reason for this may be obvious. For the proper
operation of distributed and multiagent systems, cooperation may be required. At the
same time, collaboration in very large groups may also lead to unnecessary overhead,
which may even exceed the positive e�ects of cooperation. To model such situations
formally, concepts from the social and economic sciences have proved to be very help-
ful and thus provide the mathematical basis for a better understanding of the issues
involved.

Coalition formation games, which were first formalized by Drèze and Greenberg [9],
model coalition formation in settings in which utility is non-transferable. In many such
situations it is natural to assume that a player’s appreciation of a coalition structure only
depends on the coalition he is a member of and not on how the remaining players are
grouped. Initiated by Banerjee et al. [3] and Bogomolnaia and Jackson [4], much of
the work on coalition formation now concentrates on these so-called hedonic games. In
this paper, we focus on Pareto optimality and individual rationality in this rich class of
coalition formation games.

The main question in coalition formation games is which coalitions one may reason-
ably expect to form. To get a proper formal grasp of this issue, a number of stability
concepts have been proposed for hedonic games—such as the core or Nash stability—
and much research concentrates on conditions for existence, the structure, and compu-
tation of stable and eÆcient partitions. Pareto optimality—which holds if no coalition
structure is strictly better for some player without being strictly worse for another—
and individual rationality—which holds if every player is satisfied in the sense that no
player would rather be on his own—are commonly considered minimal requirements
for any reasonable partition.

G. Persiano (Ed.): SAGT 2011, LNCS 6982, pp. 93–104, 2011.
c� Springer-Verlag Berlin Heidelberg 2011
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Another reason to investigate Pareto optimal partitions algorithmically is that, in
contrast to other stability concepts like the core, they are guaranteed to exist. This
even holds if we additionally require individual rationality. Moreover, even though the
Gale-Shapley algorithm returns a core stable matching for marriage games, it is already
NP-hard to check whether the core is empty in various classes and representations of
hedonic games, such as roommate games [12], general hedonic games [2], and games
with B- and W -preferences [7, 6]. Interestingly, when the status-quo partition cannot
be changed without the mutual consent of all players, Pareto optimality can be seen as
a stability notion [11].

We investigate both the problem of finding a Pareto optimal and individually rational
partition and the problem of deciding whether a partition is Pareto optimal. In particu-
lar, our results concern general hedonic games, B-hedonic and W-hedonic games (two
classes of games in which each player’s preferences over coalitions are based on his
most preferred and least preferred player in his coalition, respectively), and roommate
games.

Many of our results, both positive and negative, rely on the concept of perfection
and how it relates to Pareto optimality. A perfect partition is one that is most desir-
able for every player. We find (a) that under extremely mild conditions, NP-hardness
of finding a perfect partition implies NP-hardness of finding a Pareto optimal parti-
tion (Lemma 1), and (b) that under stronger but equally well-specified circumstances,
feasibility of finding a perfect partition implies feasibility of finding a Pareto optimal
partition (Lemma 2). The latter we show via a Turing reduction to the problem of com-
puting a perfect partition. At the heart of this algorithm, which we refer to as the Pref-
erence Refinement Algorithm (PRA), lies a fundamental insight of how perfection and
Pareto optimality are related. It turns out that a partition is Pareto optimal for a particu-
lar preference profile if and only if the partition is perfect for another but related profile
(Theorem 1). In this way PRA is also applicable to any other discrete allocation setting.

For general allocation problems, serial dictatorship—which chooses subsequently
the most preferred allocation for a player given a fixed ranking of all players—is well-
established as a procedure for finding Pareto optimal solutions (see, e.g., [1]). However,
it is only guaranteed to do so, if the players’ preferences over outcomes are strict, which
is not feasible in many compact representations. Moreover, when applied to coali-
tion formation games, there may be Pareto optimal partitions that serial dictatorship
is unable to find, which may have serious repercussions if also other considerations,
like fairness, are taken into account. By contrast, PRA handles weak preferences well
and is complete in the sense that it may return any Pareto optimal partition, provided
that the subroutine that calculates perfect partitions can compute any perfect partition
(Theorem 2).

2 Preliminaries

In this section, we review the terminology and notation used in this paper.

Hedonic games. Let N be a set of n players. A coalition is any non-empty subset of N.
By Ni we denote the set of coalitions player i belongs to, i.e., Ni � �S � N : i � S �. A
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coalition structure, or simply a partition, is a partition � of the players N into coalitions,
where �(i) is the coalition player i belongs to.

A hedonic game is a pair (N� R), where R � (R1� � � � � Rn) is a preference profile
specifying the preferences of each player i as a binary, complete, reflexive, and transitive
preference relation Ri over Ni. If Ri is also anti-symmetric we say that i’s preferences
are strict. We adopt the conventions of social choice theory by writing S Pi T if S Ri T
but not T Ri S —i.e., if i strictly prefers S to T—and S Ii T if both S Ri T and T Ri S —
i.e., if i is indi�erent between S and T .

For a player i, a coalition S in Ni is acceptable if for i being in S is at least preferable
as being alone—i.e., if S Ri �i�—and unacceptable otherwise.

In a similar fashion, for X a subset of Ni, a coalition S in X is said to be most
preferred in X by i if S Ri T for all T � X and least preferred in X by i if T Ri S for all
T � X. In case X � Ni we generally omit the reference to X. The sets of most and least
preferred coalitions in X by i, we denote by maxRi(X) and minRi (X), respectively.

In hedonic games, players are only interested in the coalition they are in. Accord-
ingly, preferences over coalitions naturally extend to preferences over partitions and we
write � Ri �

� if �(i) Ri �
�(i). We also say that partition � is acceptable or unacceptable

to a player i according to whether �(i) is acceptable or unacceptable to i, respectively.
Moreover, � is individually rational if � is acceptable to all players. A partition � is
Pareto optimal for R if there is no partition �

� with �
� R j � for all players j and �

� Pi �

for at least one player i. Partition � is, moreover, said to be weakly Pareto optimal for Ri

if there is no �
� with �

� Pi � for all players i.

Classes of hedonic games. The number of potential coalitions grows exponentially in
the number of players. In this sense, hedonic games are relatively large objects and for
algorithmic purposes it is often useful to look at classes of games that allow for concise
representations.

For general hedonic games, we will assume that each player expresses his prefer-
ences only over his acceptable coalitions. This representation is also known as Repre-
sentation by Individually Rational Lists of Coalitions [2].

We now describe classes of hedonic games in which the players’ preferences over
coalitions are induced by their preferences over the other players. For Ri such prefer-
ences of player i over players, we say that a player j is acceptable to i if j Ri i and
unacceptable otherwise. Any coalition containing an unacceptable player is unaccept-
able to player i.

Roommate games. The class of roommate games, which are well-known from the litera-
ture on matching theory, can be defined as those hedonic games in which only coalitions
of size one or two are acceptable and preferences Ri over other players are extended nat-
urally over preferences over coalitions in the following way: �i� j�Ri�i� k� if and only if
j Ri k for all j� k � N.

B-hedonic and W-hedonic games. For a subset J of players, we denote by maxRi (J)
and minRi (J) the sets of the most and least preferred players in J by i, respectively. We
will assume that maxRi (�) � minRi (�) � �i�. In a B-hedonic game the preferences Ri

of a player i over players extend to preferences over coalitions in such a way that, for all
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coalitions S and T in Ni, we have S Ri T if and only if j Ri k for all j � maxRi (S ��i�) and
k � maxRi(T ��i�) or some j in T is unacceptable to i. Analogously, in a W-hedonic game
(N� R), we have S Ri T if and only if j Ri k for all j � minRi(S � �i�) and k � minRi(T � �i�)
or some j in T is unacceptable to i.1

3 Perfection and Pareto Optimality

Pareto optimality constitutes rather a minimal eÆciency requirement on partitions. A
much stronger condition is that of perfection. We say that a partition � is perfect if �(i)
is a most preferred coalition for all players i. Thus, every perfect partition is Pareto
optimal but not necessarily the other way round. Perfect partitions are obviously very
desirable, but, in contrast to Pareto optimal ones, they are unfortunately not guaran-
teed to exist. Nevertheless, there exists a strong structural connection between the two
concepts, which we exploit in our algorithm for finding Pareto optimal partitions in
Section 4.

The problem of finding a perfect partition (PerfectPartition) we formally
specify as follows.

PerfectPartition
Instance: A preference profile R
Question: Find a perfect partition for R.

If no perfect partition exists, output �.

We will later see that the complexity of PerfectPartition depends on the specific
class of hedonic games that is being considered. By contrast, the related problem of
checking whether a partition is perfect is an almost trivial problem for virtually all
reasonable classes of games. If perfect partitions exist, they clearly coincide with the
Pareto optimal ones. Hence, an oracle to compute a Pareto optimal partition can be used
to solve PerfectPartition. If this Pareto optimal partition is perfect we are done,
if it is not, no perfect partitions exist. Thus, we obtain the following simple lemma,
which we will invoke in our hardness proofs for computing Pareto optimal partitions.

Lemma 1. For every class of hedonic games for which it can be checked in polyno-
mial time whether a given partition is perfect, NP-hardness of PerfectPartition
implies NP-hardness of computing a Pareto optimal partition.

It might be less obvious that a procedure solving PerfectPartition can also be
deployed as an oracle for an algorithm to compute Pareto optimal partitions. To do so,
we first give a characterization of Pareto optimal partitions in terms of perfect parti-
tions, which forms the mathematical heart of the Preference Refinement Algorithm to
be presented in the next section.

The connection between perfection and Pareto optimality can intuitively be ex-
plained as follows. If all players are indi�erent among all coalitions, all partitions are

1 W-hedonic games are equivalent to hedonic games with W -preferences if individually ra-
tional outcomes are assumed. Unlike hedonic games with B-preferences, B-hedonic games
are defined in analogy to W-hedonic games and the preferences are not based on coalition
sizes (cf. [7]).
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perfect. It follows that the players can always relax their preferences up to a point where
perfect partitions become possible. We find that, if a partition is perfect for a minimally
relaxed preference profile—in the sense that, if any one player relaxes his preferences
only slightly less, no perfect partition is possible anymore—, this partition is Pareto
optimal for the original unrelaxed preference profile. To see this, assume � is perfect in
some minimally relaxed preference profile and that some player i reasserts some strict
preferences he had previously relaxed, thus rendering � no longer perfect. Now, � does
not rank among i’s most preferred partitions anymore. By assumption, none of i’s most
preferred partitions is also most preferred by all other players. Hence, it is impossi-
ble to find a partition �

� that is better for i than �, without some other player strictly
preferring � to �

�. It follows that � is Pareto optimal.
To make this argumentation precise, we introduce the concept of a coarsening of a

preference profile and the lattices these coarsenings define. Let R � (R1� � � � � Rn) and
R�
� (R�

1� � � � � R�
n) be preference profiles over a set X and let i be a player. We write

Ri �i R�
i if

Ri��x�y� � R�
i ��x�y� for all x � X and all y � X � maxRi (X).

Accordingly, Ri is exactly like R�
i , except that in R�

i player i may have strict preferences
among some of his most preferred coalitions in Ri. Thus, R�

i is finer than Ri. For in-
stance, let Ri, R�

i , R��
i , and R���

i be such that �1 Pi �2 Pi �3, �1 I�i �2 P�
i �3, �1 P��

i �2 I��i �3,
and �1 I���i �2 I���i �3, then R���

i �i R�
i �i Ri and R���

i �i R��
i , but not R��

i �i Ri. It can easily
be established that �i is a linear order for each player i.

We say that a preference profile R � (R1� � � � � Rn) over X is a coarsening of or
coarsens another preference profile R�

� (R�
1� � � � � R�

n) over X whenever Ri �i R�
i for

every player i. In that case we also say that R� refines R and write R � R�. Moreover, we
write R�R� if R�R� but not R��R. Thus, if R� refines R, i.e., if R � R�, then for each i
and all coalitions S and T we have that S R�

i T implies S Ri T , but not necessarily the
other way round. It is worth observing that, if a partition is perfect for some preference
profile R, then it is also perfect for any coarsening of R. The same holds for Pareto
optimal partitions.

For preference profiles R and R� with R � R�, let [R� R�] denote the set �R�� :R � R�� �

R��, i.e., the set of all coarsenings of R� that also refine R. ([R� R�]��) is a complete lattice
with R and R� as bottom and top element, respectively. We say that R covers R� if R is
a minimal refinement of R� with R�

� R, i.e., if R�
� R and there is no R�� such that

R�
� R��

� R. Observe that, if R covers R�, R and R� coincide for all but one player,
say i, for whom Ri is the unique minimal refinement of R�

i such that R�
i � Ri. We also

denote Ri by Cover(R�
i). If no cover of R�

i exists, Cover(R�
i) returns the empty set.

We are now in a position to prove the following theorem, which characterizes Pareto
optimal partitions for a preference profile R as those that are perfect for particular coars-
enings R� of R. These R� are such that no perfect partitions exist for any preference
profile that covers R�.

Theorem 1. Let (N� R�) and (N� R�) be hedonic games such that R� � R� and � a
perfect partition for R�. Then, � is Pareto optimal for R� if and only if there is some R �

[R�
� R�] such that (i) � is a perfect partition for R and (ii) there is no perfect partition

for any R� � [R�
� R�] that covers R.
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Proof. For the if-direction, assume there is some R � [R�
� R�] such that � is perfect

for R and there is no perfect partition for any R� � [R�
� R�] that covers R. For contra-

diction, also assume � is not Pareto optimal for R�. Then, there is some �
� such that

�
� R�

j � for all j and �
� P�

i � for some i. By R � R� and � being perfect for R, it follows
that �� is a perfect partition for R as well. Hence, �� Ii �. It follows that there is some
R�
� (R1� � � � � Ri�1� R�

i � Ri�1� � � � � Rn) in ([R�� R�]��) that covers R. Also observe that,
because R�

i is the unique minimal refinement of Ri such that Ri �i R�
i , and �

� P�
i � even

if �� Ii �, �� is still perfect for R�, a contradiction.
For the only-if direction assume that � is Pareto optimal for R�. Let R be the finest

coarsening of R� in [R�
� R�] for which � is perfect. Observe that R � (R1� � � � � Rn) can

be defined such that Ri � R�
i 	 �(X� Y) : X R�

i � and Y R�
i �� for all i. Since � is perfect

for R�, we have R� � R. If R � R�, we are done immediately. Otherwise, consider an
arbitrary R� � [R�

� R�] that covers R and assume for contradiction that some perfect
partition �

� exists for R�. Then, in particular, �� R�
k � for all k. Since R� covers R, there is

exactly one i with R�
i � Ri, whereas R�

j � R j for all j � i. As � is perfect for R, we also
have � R�

j �
� for all j � i. Since R� is a finer coarsening of R� than R, � is not perfect

for R� by assumption. It follows that �� P�
i �. Hence, � is not Pareto optimal for R�. As

R� � R�, we may conclude that � is not Pareto optimal for R�, a contradiction. 
�

4 The Preference Refinement Algorithm

In this section, we present the Preference Refinement Algorithm (PRA), a general al-
gorithm to compute Pareto optimal and individually rational partitions. The algorithm
invokes an oracle solving PerfectPartition and is based on the formal connec-
tion between Pareto optimality and perfection made explicit in Theorem 1. We define
PerfectPartition to return � if Ri � � for some i.

The idea underlying the algorithm is as follows. To calculate a Pareto optimal and in-
dividually rational partition for a hedonic game (N� R), first find that coarsening R� of R
in which each player is indi�erent among all his acceptable coalitions and his prefer-
ences among unacceptable coalitions are as in R. In this coarsening, a perfect and indi-
vidually rational partition is guaranteed to exist. Then, we search the lattice ([R�

� R]��)
for a preference profile that allows for a perfect partition but none of the profiles cover-
ing it do. By virtue of Theorem 1, every perfect partition for such a preference profile
will be a Pareto optimal partition for R. By only refining the preferences of one player
at a time, we can use divide-and-conquer to conduct the search. A formal specification
of PRA is given in Algorithm 1. Refine(Q�

i � Q�
i ) returns a refinement Q�

i � (Q�
i � Q�

i ],
i.e., Q�

i is a refinement of Q�
i but not a refinement of Q�

i . Refine(Q�
i � Q�

i ) can be
defined in at least three fundamental ways:

(i) Refine(Q�
i � Q�

i ) � Q�
i such that the number of refinements from Q�

i to Q�
i is

half of the number of refinements from Q�
i to Q�

i (default divide-and-conquer
setting);

(ii) Refine(Q�
i � Q�

i ) � Q�
i (serial dictator setting); and

(iii) Refine(Q�
i � Q�

i ) � Cover(Q�
i ).
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Algorithm 1. Preference Refinement Algorithm (PRA)
Input: Hedonic game (N� R)
Output: Pareto optimal and individually rational partition

1 Q�

i � Ri, for each i � N
2 Q�

i � Ri � �(X� Y) : X Ri �i� and Y Ri �i��, for each i � N
3 J � N
4 while J � � do
5 i � J
6 if PerfectPartition(N� (Q�

1 � � � � � Q�

i�1�Cover(Q�

i )� Q�

i�1� � � � � Q�

n )) � � then
7 J � J � �i�
8 else
9 Q�

i � Refine(Q�

i � Q�

i )
10 if PerfectPartition(N� (Q�

1 � � � � � Q�

i�1� Q�

i � Q�

i�1� � � � � Q�

n )) � � then
11 Q�

i � Q�

i

12 else
13 Q�

i � Q��

i where Cover(Q��

i ) � Q�

i

14 end if
15 end if
16 end while
17 return PerfectPartition(N� Q�)

The following theorem shows the correctness and completeness of PRA.

Theorem 2. For any hedonic game (N� R),

(i) PRA returns an individually rational and Pareto optimal partition.
(ii) For every individually rational and Pareto optimal partition �

�, there is an execu-
tion of PRA that returns a partition � such that � Ii �

� for all i in N.

Proof. For (i), we prove that during an execution of PRA, for each assignment of Q�,
there exists a perfect partition � for that assignment. This claim certainly holds for the
first assignment of Q�, the coarsest acceptable coarsening of R. Furthermore, Q� is
only refined (Step 9) if there exists a perfect partition for a refinement of Q�. Let Q�

be the final assignment of Q�. Then, we argue that the partition � returned by PRA is
Pareto optimal and individually rational. By Theorem 1, if � were not Pareto optimal,
there would exist a covering of Q� for which a perfect partition still exists and Q� would
not be the final assignment of Q�. Since, each player at least gets one of his acceptable
coalitions, � is also individually rational.

For (ii), first observe that, by Theorem 1, for each Pareto optimal and individually
rational partition � for a preference profile R there is some coarsening Q� of R where �

is perfect and no perfect partitions exist for any covering of Q�. By individual rationality
of �, it follows that Q� is a refinement of the initial assignment of Q�. An appropriate
number of coverings of the initial assignment of Q� with respect to each player results
in a final assignment Q� of Q�. The perfect partition for Q� that is returned by PRA is
then such that � Ii �

� for all i in N. 
�

We now specify the conditions under which PRA runs in polynomial time.
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Lemma 2. For any class of hedonic games for which any coarsening and
PerfectPartition can be computed in polynomial time, PRA runs in polynomial
time.

Furthermore, if for a given preference profile R and partition �, a coarsening of R
for which � is perfect can be computed in polynomial time, it can also be verified in
polynomial time whether � is Pareto optimal.

Proof (Sketch). Under the given conditions, we prove that PRA runs in polynomial
time. We first prove that the while-loop in PRA iterates a polynomial number of times.
In each iteration of the while-loop, either a player i which cannot be further improved
is removed from J (Step 7) or we enter the first else condition. In the first else, either
Q� is set to Q�

i or Q�
i is set to Q��

i where Cover(Q��
i ) � Q�

i . In either case, we discard
from future consideration, half of the refinements of Q�

i due to the default divide-and-
conquer definition of Refine in order to find a suitable refinement of the current Q�

with respect to i. Therefore, even if the representation of (N� R) may be such that each
player di�erentiates between an exponential number of coalitions, divide-and-conquer
ensures that PRA iterates a polynomial number of times. As the crucial subroutine
PerfectPartition takes polynomial time, PRA runs in polynomial time.

For the second part of the lemma, we run PRA to find a Pareto optimal partition that
Pareto dominates �. We therefore modify Step 2 by setting Q�

i to a coarsening of R for
which � is a perfect partition. Since such a coarsening can be computed in polynomial
time as stated by the condition in the lemma, Step 2 takes polynomial time. Since an
initial perfect partition exists for Q�

i , we run PRA as usual after Step 2. 
�

PRA applies not only to general hedonic games but to many natural classes of hedonic
games in which equivalence classes (of possibly exponentially many coalitions) for
each player are implicitly defined.2 In fact PRA runs in polynomial time even if there
are an exponential number of equivalence classes. Note that the lattice [Q�

� R] can be
of exponential height and doubly-exponential width. PRA traverses though this lattice
in an orderly way to compute a Pareto optimal partition.

Serial dictatorship is a well-studied mechanism in resource allocation, in which an
arbitrary player is chosen as the ‘dictator’ who is then given his most favored alloca-
tion and the process is repeated until all players or resources have been dealt with. In
the context of coalition formation, serial dictatorship is well-defined only if in every
iteration, the dictator has a unique most preferred coalition.

Proposition 1. For general hedonic games, W-hedonic games, and roommate games,
a Pareto optimal partition can be computed in polynomial time when preferences are
strict.

Proposition 1 follows from the application of serial dictatorship to hedonic games with
strict preferences over the coalitions. If the preferences over coalitions are not strict,

2 For example, in W-hedonic games, maxRi (N) specifies the set of favorite players of player i
but can also implicitly represent all those coalitions S such that the least preferred player in S
is also a favorite player for i.
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then the decision to assign one of the favorite coalitions to the dictator may be sub-
optimal. Even if players expresses strict preferences over other players, serial dictator-
ship may not work if the preferences induced over coalitions admit ties.

We see that if serial dictatorship works properly and eÆciently in some setting, then
so can PRA by simulating serial dictatorship. If in each iteration in Algorithm 1, the
same player is chosen in Step 5 (until it is deleted from J) and Q�

i is chosen in Step 9,
then PRA can simulate serial dictatorship. Therefore PRA can also achieve the positive
results of Proposition 1.

PRA has another advantage over serial dictatorship. Abdulkadiroğlu and Sönmez [1]
showed that in the case of strict preferences and house allocation settings, every Pareto
optimal allocation can be achieved by serial dictatorship. In the case of coalition forma-
tion, however, it is easy to construct a four-player hedonic game with strict preferences
for which there is a Pareto optimal partition that serial dictatorship cannot return.

5 Computational Results

In this section, we consider the problem of V����������	 (verifying whether a given
partition is Pareto optimal) and C�
�������	 (computing a Pareto optimal partition) for
the classes and representations of hedonic games mentioned in the preliminaries.

5.1 General Hedonic Games

As shown in Proposition 1, Pareto optimal partitions can be found eÆciently for general
hedonic games with strict preferences. If preferences are not strict, the problem turns
out to be NP-hard. We prove this statement by utilizing Lemma 1 and showing that
PerfectPartition is NP-hard by a reduction from E���C����B�3S��� (X3C).

Theorem 3. For a general hedonic game, computing a Pareto optimal partition is NP-
hard even when each player has a maximum of four acceptable coalitions and the max-
imum size of each coalition is three.

Interestingly, verifying Pareto optimality is coNP-complete even for strict preferences.3

Theorem 4. For a general hedonic game, verifying whether a partition � is Pareto op-
timal and whether � is weakly Pareto optimal is coNP-complete even when preferences
are strict and � consists of the grand coalition of all players.

5.2 Roommate Games

For the class of roommate games, we obtain more positive results.

Theorem 5. For roommate games, an individually rational and Pareto optimal coali-
tion can be computed in polynomial time.

3 Theorem 4 contrasts with the general observation that “in the area of matching theory usually
ties are ‘responsible’ for NP-completeness” [5].
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Proof (Sketch). We utilize Lemma 1. It is suÆcient to show that
PerfectPartition can be solved in time O(n3).

We say that j � F(i) if and only if j is a favorite player in i’s preference list. Construct
an undirected graph G � (V� E) where V � N	(N��0�), E � ��i� j�: i � ji � F( j) j �
F( j)� 	 ��i� (i� 0)� : i � F(i)�.

Then the claim is that there exists a perfect partition for (N� R) if and only if there
exists a matching of size n in graph G. It is clear that in a matching of size n, each
v � N is matched. If there exists a perfect partition, then each player in N is matched to
a player j � i such that j � F(i) or i is unmatched but i � F(i). In either case there exists
a matching M in which i is matched. In the first case, i is matched to j in a matching M
in G. In the second case, i is matched to (i� 0).

Now assume that there exists a matching M of size n in G. Then, each i � N is matched
to j � i or (i� 0). If i is matched to j, then we know �i� j� � E and therefore j � F(i).
If i is matched to (i� 0), then we know �i� (i� 0)� � E and therefore i � F(i). Thus, there
exists a perfect partition. 
�

By utilizing the second part of Lemma 1, it can be seen that there exists an algorithm
to compute a Pareto optimal improvement of a given roommate matching which takes
time O(n3) � O(n log(n)) � O(n4 log(n)). As a corollary we get the following.

Theorem 6. For roommate games, it can be checked in polynomial time whether a
partition is Pareto optimal.

We can devise a tailor-made algorithm for roommate games which finds a Pareto opti-
mal Pareto improvement of a given matching in O(n3)—the same asymptotic complex-
ity required by the algorithm of Morrill [11] for the restricted case of strict preferences.

5.3 W-Hedonic Games

We now turn to Pareto optimality in W-hedonic games.

Theorem 7. For W-hedonic games, a partition that is both individually rational and
Pareto optimal can be computed in polynomial time.

Proof (sketch). The statement follows from Lemma 2 and the fact that
PerfectPartition can be solved in polynomial time for W-hedonic games.
The latter is proved by a polynomial-time reduction of PerfectPartition to a
polynomial-time solvable problem called clique packing.

We first introduce the more general notion of graph packing. Let F be a set of undi-
rected graphs. An F -packing of a graph G is a subgraph H such that each component of
H is (isomorphic to) a member of F . The size of F -packing H is �V(H)�. We will infor-
mally say that vertex i is matched by F -packing H if i is in a connected component in
H. Then, a maximum F -packing of a graph G is one that matches the maximum num-
ber of vertices. It is easy to see that computing a maximum �K2�-packing of a graph is
equivalent to maximum cardinality matching. Hell and Kirkpatrick [10] and Cornuéjols
et al. [8] independently proved that there is a polynomial-time algorithm to compute
a maximum �K2� � � � � Kn�-packing of a graph. Cornuéjols et al. [8] note that finding a
�K2� � � � � Kn�-packing can be reduced to finding a �K2� K3�-packing.
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We are now in a position to reduce PerfectPartition for W-hedonic games
to computing a maximum �K2� K3�-packing. For a W-hedonic game (N� R), construct
a graph G � (N 	 (N � �0� 1�)� E) such that �(i� 0)� (i� 1)� � E for all i � N; �i� j� �

E if and only if i � maxR j(N) and j � maxRi(N) for i� j � N such that i � j; and
�i� (i� 0)�� �i� (i� 1)� � E if and only if i � maxRi (N) for all i � N. Let H be a maximum
�K2� K3�-packing of G.

It can then be proved that there exists a perfect partition of N according to R if and
only if �V(H)� � 3�N�. We omit the technical details due to space restrictions.

Since PerfectPartition for W-hedonic games reduces to checking whether
graph G can be packed perfectly by elements in F � �K2� K3�, we have a polynomial-
time algorithm to solve PerfectPartition for W-hedonic games. Denote by
CC(H) the set of connected components of graph H. If �V(H)� � 3�N� and a perfect
partition does exist, then �V(S ) � N : S � CC(H)� � ��� is a perfect partition. 
�

Due to the second part of Lemma 2, the following is evident.

Theorem 8. For W-hedonic games, it can be checked in polynomial time whether a
given partition is Pareto optimal or weakly Pareto optimal.

Our positive results for W-hedonic games also apply to hedonic games with W -
preferences.

5.4 B-Hedonic Games

We saw that for W-hedonic games, a Pareto optimal partition can be computed eÆ-
ciently, even in the presence of unacceptable players. In the absence of unacceptable
players, computing a Pareto optimal and individually rational partition is trivial in B-
hedonic games, as the partition consisting of the grand coalition is a solution.

Interestingly, if preferences do allow for unacceptable players, the same problem
becomes NP-hard. The statement is shown by a reduction from S��.

Theorem 9. For B-hedonic games, computing a Pareto optimal partition is NP-hard.

By using similar techniques, the following can be proved.

Theorem 10. For B-hedonic games, verifying whether a partition is weakly Pareto op-
timal is coNP-complete.

We expect the previous result to also hold for Pareto optimality rather than weak Pareto
optimality.

6 Conclusions

Pareto optimality and individual rationality are important requirements for desirable
partitions in coalition formation. In this paper, we examined computational and struc-
tural issues related to Pareto optimality in various classes of hedonic games (see Ta-
ble 1). We saw that unacceptability and ties are a major source of intractability when
computing Pareto optimal outcomes. In some cases, checking whether a given partition
is Pareto optimal can be significantly harder than finding one.
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Table 1. Complexity of Pareto optimality in hedonic games: positive results hold for both Pareto
optimality and individual rationality

Game V����������	 C�
�������	

General coNP-complete (Th. 4) NP-hard (Th. 3)
General (strict) coNP-complete (Th. 4) in P (Prop. 1)
Roommate in P (Th. 6) in P (Th. 5)
B-hedonic coNP-complete (Th. 10, weak PO) NP-hard (Th. 9)
W-hedonic in P (Th. 8) in P (Th. 7)

It should be noted that most of our insights gained into Pareto optimality and the re-
sulting algorithmic techniques—especially those presented in Section 3 and Section 4—
do not only apply to coalition formation but to any discrete allocation setting.
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Abstract. We introduce a novel computational model for single-keyword auc-
tions in sponsored search, which models explicitly externalities among advertis-
ers, an aspect that has not been fully reflected in the existing models, and is known
to affect the behavior of real advertisers. Our model takes into account both pos-
itive and negative correlations between any pair of advertisers, so that the click-
through rate of an ad depends on the identity, relative order and distance of other
ads appearing in the advertisements list. In the proposed model we present several
computational results concerning the Winner Determination problem for Social
Welfare maximization. These include hardness of approximation and polynomial
time exact and approximation algorithms. We conclude with an evaluation of the
Generalized Second Price mechanism in presence of externalities.

1 Introduction

Sponsored search advertising is nowadays a predominant and arguably most successful
paradigm for advertising products in a market, facilitated by the Internet. It constitutes
a major source of income for popular search engines like Google, Yahoo! or MS
Bing, who allocate up to 8− 9 advertisement slots in their sites, alongside the organic
results of keyword searches performed by end users. Each time an end user makes a
search for a keyword, slots are allocated to advertisers by means of an auction per-
formed automatically; advertisers are ranked in non-increasing order of a score, defined
as the product of their bid with a characteristic relevance quantity per advertiser. The
relevance of each advertiser is interpreted as the probability that his ad will be clicked
by an end user. The score corresponds then to the declared expected revenue of advertis-
ers. Advertisers ranked higher receive higher slots. Each advertiser is charged per click
an amount depending on the score (hence, the bid) of the one ranked below him.

The described auction is used in varying flavors by search engines. Apart from the
mentioned Rank-By-Revenue rule, a plainer Rank-By-Bid rule has also been used (e.g.
by Yahoo!). This auction, known as the Generalized Second Price (GSP) auction,
constitutes a generalization of the well-known strategyproof Vickrey auction [25]. The
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GSP auction is not strategyproof though; it encourages strategic bidding by the adver-
tisers instead of eliciting their valuations truthfully. This induces a strategic game rich
in Nash equilibria, and competitive behavior among advertisers that incurs significant
revenue to the search engines. Pure Nash Equilibria of the GSP mechanism were first
studied by Edelman, Ostrovsky, Schwartz [14] and Varian [24], under what came to be
known as the separable click-through rates model. In this model every slot is associated
with a Click-Through Rate (CTR), i.e. the probability that an ad displayed in this slot
will be clicked. The joint probability that an ad is clicked is given by the product of
the slot’s CTR with the relevance of the ad. Since [14,24], a rich literature on keyword
auctions has been published, concerning algorithmic and game theoretic issues such as
bidding strategies, social efficiency, revenue, see, e.g. [22] (chapter 28).

Recent experiments [18] show that the probability of a displayed ad being clicked
(hence, the utility of the advertiser) is affected by its relative order and distance to other
ads on the list. E.g., competing ads displayed nearby each other may distract a user’s at-
tention from any of them, while related ads may profit from nearby display (e.g. a cars
manufacturer and a spare parts supplier). We introduce a model for expressing such
externalities in keyword auctions. Externalities result in complicated strategic compe-
tition among advertisers, precluding stable outcomes and social welfare optimization.
A way of alleviating these effects is by solving optimally the Winner Determination
problem [2,1,19]; i.e., the problem of selecting winners and their assignment to slots, to
maximize the Social Welfare (the sum of the advertisers’ utilities and the auctioneer’s
revenue – defined formally in Section 2). Such a solution, paired with payments of the
Vickrey-Clarke-Groves mechanism [11] (chapter 1), yields a truthful mechanism. On
the other hand, the study of the GSP auction’s performance in presence of externali-
ties [16] yields insights for the current practice of sponsored search. In our model we
analyze exact and approximation algorithms for Winner Determination, and show how
externalities can harm the GSP auction’s stability and social efficiency.

Several recent works concern theoretical and experimental study of externalities in
keyword auctions [1,6,15,16,19,17,18]. These works associate the occurrence of ex-
ternalities with a model of how end users search through the list of ads and how this
affects the probability of an ad being clicked. This search is commonly modeled by a
top-down ordered scan of the list [6,1,19,16]. The popular Cascade Model [1,19], asso-
ciates a continuation probability with every ad, i.e. the likelihood of the user continuing
his ordered scan after viewing the ad. Using real data from keyword auctions, Jeziorski
and Segal [18] found that previously proposed models fail to express externalities. The
Cascade Model is contradicted by the fact that about half of the users do not click on the
ads sequentially, i.e., they return to higher slots after clicking on lower slots. Jeziorski
and Segal arrived at a structural model of end user behavior advocating that, after scan-
ning all the advertisements, users focus on a subset of consecutive slots. Within this
focus window, they observed externalities due to proximity and relative order of the
displayed ads. They highlight that an ad’s CTR on the list depends crucially on the ads
displayed in the other slots, above and below it. We aim at quantifying rigorously these
observations, while avoiding explicit modeling of end users’ behavior.

Contribution and Techniques. By using a social context graph [5], we design a novel
expressive model for describing positive and negative influences among advertisers’
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relevances in keyword auctions. Our model can describe influences depending on the
advertisers’: (i) IDs, (ii) relative order in the list of sponsored links and (iii) distance in
the list. Motivated by [18], we assume that end users focus on any window of c consec-
utive slots, within which externalities take effect. The model expresses the practically
relevant possibility of welfare maximization occurring under partial allocation of slots.

In our model we study the Winner Determination problem for social welfare maxi-
mization. We prove APX-hardness of the problem, even for window size 1 and pos-
itive only externalities. For positive only externalities we develop two approximation
preserving reductions of the problem to the Weighted m-Set Packing problem with sets
of size m = 3 and m = 2c+1 respectively. These reveal a tradeoff between approxima-
bility and computational efficiency; for k slots and n advertisers, we obtain algorithms
with approximation factors: (i) 6c in time O(kn2 log n), (ii) 4c in time O(k2n4) and
(iii) 2(c + 1) in polynomial time for any c = O(1). These results settle almost tightly
the approximability of the problem for positive-only externalities and c = O(1).

On the positive side, we build on the color coding technique [3] to obtain an exact
algorithm for Winner Determination in the full generality of our model. A derandom-
ization of our color coding is possible that yields a deterministic algorithm of running
time 2O(k)n2c+1 log2 n, hence the class of practically interesting instances of the prob-
lem with c = O(1) and even k = O(log n) is in P. This algorithm, paired with VCG
payments [11] yields a truthful mechanism for social welfare maximization, when the
advertisers’ valuations are private information. Notice that the problem can be solved
by exhaustive enumeration of

(
n
k

)
tuples of ads, in O(nk) time. For any c = O(1) our

algorithm is significantly faster, even for non constant values of k. Thus the problem is
not NP-hard for k = O(poly(log n)), unless NP ⊆ DTIME(npoly(log n)).

We conclude with an investigation of the GSP mechanism under externalities. We
find that pure Nash equilibria do not exist in general, for conservative bidders that do
not outbid their valuation [9,21]. Even when conservative equilibria exist, we show that
their social welfare can be arbitrarily low compared to the social optimum. Due to space
constraints several proofs are deferred to the full version of the paper.

2 A Model for Externalities in Keyword Auctions

We consider a set N = [n] = {1, 2, . . . n} of n advertisers (or players/bidders) and a
set K = {1, 2, . . . , k} of k ≤ n advertisement slots. Each player i ∈ N has valuation
vi per click and is associated with a probability qi that her ad is clicked, independently
of slot assignment. qi is often termed relevance and measures the intrinsic “quality” of
ad i. Each slot j is associated with a probability λj that an ad displayed in slot j will
be clicked; this is called the Click-Through Rate (CTR) of the slot. The (overall) Click-
Through Rate of an ad i ∈ N occupying slot j is λj · qi (separable CTRs). We assume
1 ≥ λ1 ≥ . . . ≥ λk > 0, i.e. that the top slot is slot 1, the second one is slot 2 and so
on. Let S ⊆ [n], |S| ≤ k, be the set of winning ads and π : S → K their assignment
to slots, i.e. π(i) ∈ K is the slot of advertiser i ∈ S. Every advertiser i ∈ S issues to
the search engine (auctioneer) a payment pi per received click, hence receives expected
utility ui(S, π) = λπ(i) · qi · (vi − pi). The Social Welfare is then:
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sw(S, π) =
∑
i∈S

λπ(i) · qi · vi =
∑
i∈S

ui(S, π) +
∑
i∈S

λπ(i) · qi · pi, (1)

where
∑

i∈S λπ(i) ·qi ·pi is the expected revenue of the auctioneer. Our modeling of ex-
ternalities is built on top of the separable CTRs model and induces amplified or dimin-
ished actual relevance Qi (compared to qi) to the advertisers, depending on their relative
position and distance of their ads on the list. We use a directed social context graph [5]
G(N, E+, E−), defined upon the set of advertisers N . Each edge (i, j) ∈ E+ ∪ E−

is associated with a function wij ∈ (0, 1). An edge (j, i) in E+ or in E− denotes po-
tential positive or negative influence respectively of i by j. Namely, edges in E+ and
E− model respectively positive and negative externalities among advertisers. For any
edge (j, i) ∈ E+ ∪ E−, the potential influence of j to i is quantified by a function
wji : {−k+1,−k+2, . . . ,−1, 1, . . . , k−2, k−1} �→ [0, 1]. If dπ(j, i) = π(i)−π(j)
is the distance of ad i from ad j in the list, wji(dπ(j, i)) is the probability that a user’s
interest in a displayed ad j may result in attraction/distraction of his attention to/from
an ad i respectively, depending on whether (j, i) ∈ E+ or (j, i) ∈ E− 1. It is reason-
able to assume that the closer i and j are in π, the stronger the influence of j on i is.
Formally, for every �, �′, with |�|, |�′| ≥ 1, if |�| < |�′|, then wji(�) ≥ wji(�′).

Let S ⊆ N be the set of winners and π be the permutation assigning them to the
slots. Define the subgraph GS(S, E+

S , E−
S ) of the context graph, induced by S. The

probability Qi(S, π) that a user is attracted by ad i is expressed as product Q+
i (S, π)×

Q−
i (S, π). Q+

i (S, π) is the probability that i attracts the user’s attention either by its
intrinsic relevance qi or by receiving positive influence. Q−

i (S, π) is the probability that
the user’s attention is not distracted from i due to negative influence of others. For each
i ∈ S define N+

i (S) = {j ∈ S : (j, i) ∈ E+
S } and N−

i (S) = {j ∈ S : (j, i) ∈ E−
S } to

be the set of neighbors of i in GS with positive and negative influence respectively. Let
us derive Q+

i (S, π) first. A user’s attention is not attracted by the ad of i with probability
(1 − qi) and if, independently, i is not positively influenced by any j ∈ N+

i (S). The
latter occurs either because j itself does not attract the user (with probability 1− qj), or
the positive influence of j to i does not occur (with probability qj(1 − wji(dπ(j, i))).
Then j does not influence i with probability (1 − qj) + qj(1 − wji(dπ(j, i))) = 1 −
qjwji(dπ(j, i)) and:

Q+
i (S, π) = 1− (1− qi) ·

∏
j∈N+

i (S)

( 1− qjwji(dπ(j, i)) ) (2)

For Q−
i (S, π) we use similar reasoning. A user’s attention is not distracted from the ad

of i due to negative influence of j ∈ N−
i (S) if either his attention is not captured by j

or, if it is, j fails to influece i negatively. This event occurs with probability (1− qj) +
qj(1−wji(dπ(j, i))) = 1− qjwji(dπ(j, i)). Assuming independence of the events for
all j ∈ N−

i (S), we have:

Q−
i (S, π) =

∏
j∈N−

i (S)

( 1− qjwji(dπ(j, i)) )

1 We note that if dπ(j, i) > 0, i appears below j, and if dπ(j, i) < 0, j appears below i in π.
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After deriving Qi(S, π) = Q+
i (S, π)×Q−

i (S, π), we can restate the social welfare as:

sw(S, π, G) =
∑
i∈S

λπ(i) ·Qi(S, π) · vi . (3)

Arguably, users’ attention and memory when they process the advertisements list have
a bounded scope. Therefore, we assume that there is an integer constant c > 0, called
window size, so that each ad j can only affect other ads at a distance at most c in
π. Formally, if window size is c, for all (j, i) ∈ E+ ∪ E− and all integers � with
|�| > c, wji(�) = 0. Then the relevance Qi only depends on the ads in N+

i (S)∪N−
i (S)

assigned to slots at distance at most c from i.

Related Work. Edelman, Ostrovsky, Schwartz [14] and Varian [24] first modeled the
game induced by the GSP auction mechanism under the assumption of separable CTRs,
i.e. that the probability of a specific ad being clicked when displayed in a certain slot
is given by the product of the slot’s CTR and the ad’s relevance. For this game model
they identified socially optimal pure Nash equilibria. Prior to these works, Aggarwal,
Goel and Motwani [2] had already designed a truthful mechanism for non-separable
CTRs (in this case the VCG auction is not applicable). For separable CTRs they proved
revenue equivalence of their mechanism to the VCG.

There has been a growing interest in modeling externalities in sponsored search and
in how they affect the advertisers’ bidding strategies and the properties of GSP equilib-
ria. The unpublished work of Das et al. [13] is probably the closest in spirit to ours. Das
et al. consider externalities among advertisers based on their relative quality (i.e., rele-
vance). However, the model of [13] treats advertisers as anonymous, in the sense that
externalities do not depend on their bids, but just on their relative quality. Our model
makes a step further, since in addition to the advertisers’ relative quality as measured
by their relevance, we also take into account their IDs, their dependencies in the context
graph, and their relative distance in the sponsored list.

Athey and Ellison [6] in one of the first models for externalities, they assumed an
ordered top-down scan of slots by end users. By assuming a certain cost incurred to
the end users for clicking on an ad, they derived the equilibria of the GSP auction for
their game. Along similar lines, Aggarwal et al. [1] and Kempe and Mahdian [19] stud-
ied Cascade Models involving Markovian end-users. Every ad is associated with its
individual CTR and a continuation probability, that an end-user will continue scanning
the list of ads (in a top-down order) after viewing that particular ad. The authors stud-
ied the winner determination problem for social welfare maximization. Equilibria of
the GSP auction mechanism in the cascade model were studied by Giotis and Karlin
in [16]. Kuminov and Tennenholtz [20] study equilibria of the GSP and VCG (cf. [22,
Ch. 9]) auctions in a similar model. The cascade model was assessed experimentally by
Craswell et al. [12]. Gomes, Immorlica and Markakis [17] were the first to document
externalities empirically under a cascade model, using real data.

Externalities among the bidders have also been considered in other similar settings.
Ghosh and Mahdian [15] study the complextity of the Winner Determination problem
and develop tractable incentive compatible mechanisms, under a model for external-
ities in online lead generation. Chen and Kempe [10] consider positive and negative
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social dependencies among bidders of single item auctions and study the properties of
equilibria for the first and second price auctions.

Winner Determination Problems. We denote by MSW-E the problem of Maximum
Social Welfare with Externalities, i.e. selecting a subset of winners S and a permutation
π of S that maximize sw(S, π, G). The complexity and performance of our algorithms
are parameterized by the window size c and we write MSW-E(c). An interesting spe-
cial case of MSW-E(c) with “positive-only” externalities occurs for E− = ∅; this is
denoted by MSW-PE(c). Motivated by the Cascade Model, we also consider the case
of forward-only positive-only externalities – denoted by MSW-FPE(c) – where an ad
j may only influence an ad i iff π(j) < π(i).

In presence of negative externalities, it may be profitable to select less than k ads and
arrange them in a broken list, namely a list with empty slots appearing between slots
occupied by negatively correlated ads. In practice however, this may not be feasible.
Therefore, we restrict feasible solutions to so-called unbroken lists, namely lists where
the selected ads occupy consecutive slots in the ad list starting from the first one2. Hence
a feasible solution can select less than k adds, but it is not allowed to use empty slots
and separate negatively correlated ads (i.e. the empty slots, if any, occupy the last k−|S|
slots in π). The analysis of our algorithms assumes the case of unbroken lists. However,
it is not difficult to generalize our algorithmic results to the case of broken lists.

3 An Exact Algorithm Based on Color Coding

A PTAS reduction from the Traveling Salesman Problem with distances 1, 2 [23] yields
APX-hardness of MSW-E(c) even for c = 1, with uniform functions wji = w, po-
sition multipliers λj , valuations vi and qualities qi. Also, note that there is an elegant
reduction from the Longest Path problem, that proves NP-hardness of MSW-FPE(1).

Theorem 1. MSW-FPE(1) is APX-hard even in the special case of uniform position
multipliers, valuations, and qualities.

In this section we develop and analyze an exact algorithm for MSW-E(c). We employ
color coding [3] and dynamic programming, to prove the following result:

Theorem 2. MSW-E(c) can be solved optimally in 2O(k) n2c+1 log2 n time.

For simplicity, we assume that the optimal solution consists of k ads. We can remove
this assumption by running the algorithm for every sponsored list size up to k, and keep
the best solution. Since the running time is exponential in k, this does not change the
asymptotics of the running time. To apply the technique of color coding, we consider a
fixed coloring h : N �→ [k] of the ads with k colors. A list (S, π) of k ads is colorful if
all ads in S are assigned different colors by h. In the following, we formulate a dynamic
programming algorithm that computes the best colorful list.

For each 2c-tuple of ads (i1, . . . , i2c) ∈ N2c, with all ads assigned different colors
by h, and each color set C ⊆ [k], |C| ≤ k−2c, that does not include any of the colors of

2 A reasonable assumption that may justify the restriction above is that there exist an adequate
number of “neutral” ads (k − 1 of them suffice) that do not negatively affect any other ad.
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i1, . . . , i2c, we compute sw(i1, . . . , i2c, C), namely the maximum social welfare if the
last |C| positions in the list are colored according to C, and on top of them, there are ads
i1, . . . , i2c in this order from top to bottom. More precisely, the solution corresponding
to sw(i1, . . . , i2c, C) assigns ad ip to slot k−(|C|+2c)+p, p = 1, . . . , 2c, and considers
the best choice of ads colored according to C for the last |C| slots. Clearly, there are
at most n2c 2k−2c different sw values to compute, and the maximum sw value for all
colorful tuples (i1, . . . , i2c, C), with |C| = k − 2c, corresponds to the best colorful list
of k ads. The proof of Theorem 2 follows:

Proof. For the basis of our dynamic programming, let C = ∅ and for all 2c-tuples
(i1, . . . , i2c) ∈ N2c with all ads assigned different colors by h, we have:

sw(i1, . . . , i2c, ∅) =
∑c

p=1 λk−2c+p ·Qip(i1, . . . , ip, . . . , ip+c) · vip

+
∑2c

p=c+1 λk−2c+p ·Qip(ip−c, . . . , ip, . . . , i2c) · vip ,

where Qip(i1, . . . , ip, . . . , ic+p) (resp. Qip(ip−c, . . . , ip, . . . , i2c)) is the CTR of ad ip
given that the (only) ads in the list at distance at most c from ip are i1, . . . , ic+p (resp.
ip−c, . . . , i2c) arranged in this order from top to bottom.

Given the values of sw for all 2c-tuples of ads and all color sets of cardinality s <
k − 2c, we compute the values of sw for all 2c-tuples (i1, . . . , i2c) and all color sets C
of cardinality s + 1:

sw(i1, . . . , i2c, C) = maxi:h(i)∈C {

sw(i2, . . . , i2c, i, C − {h(i)}) + λk−(|C|+2c)+1 ·Qi1(i1, . . . , ic+1) · vi1+
c∑

p=2

λk−(|C|+2c)+p · [Qip(i1, i2, . . . , ip, . . . , ip+c)−Qip(i2, . . . , ip, . . . , ip+c)] · vip+

λk−|C|−c+1[Qic+1(i1, i2, . . . , ic+1, . . . , i2c, i)−Qip(i2, . . . , ic+1, . . . , i2c, i)]vic+1

}
In the recursion above, the second term accounts for the additional social welfare due to
i1, and the third and the fourth term account for the difference in the social welfare due
to ads i2, . . . , ic+1, whose CTRs Qi2 , . . . , Qic+1 are affected by i1. Ads ic+2, . . . , i2c, i
are used to calculate the difference in the CTRs Qi2 , . . . , Qic+1 . The CTRs of ads
ic+2, . . . , i2c, i and of the ads at the bottom of the list with colors in C −{h(i)} are not
affected by i1, since their distance to i1 is greater than c.

Hence, for any fixed coloring h, the best colorful list of k ads can be computed in
time O(n2c+1 2k). If we choose a random coloring h, the probability that the optimal
solution is colorful under h is k!/kk > e−k. If we run the algorithm for ek ln n color-
ings chosen independently at random and keep the best solution, the probability of not
finding the optimal solution is at most 1/n. The approach can be derandomized using a
k-perfect family of hash functions of size 2O(k) log2 n ([3, Section 4] for details). ��

Corollary 1. For k = O(log n) and c = O(1), MSW-E(c) is in P.

Moreover, unless NP ⊆ DTIME(npoly(log n)), MSW-E(c) is not NP-hard for c =
O(1) and k = O(poly(log n)). The exact algorithm can be paired with VCG payments
to yield a truthful mechanism, when valuations are private to advertisers.
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4 O(c)-Approximation Algorithms for Positive Externalities

In this section, we show how to use polynomial-time approximation algorithms for the
Weighted m-Set Packing problem and approximate MSW-PE(c) within a factor of
O(c) in polynomial time. In Weighted m-Set Packing, we are given a collection of sets,
each with at most m elements and a positive weight, and seek a collection of disjoint sets
of maximum total weight. The greedy algorithm for Weighted m-Set Packing achieves
an approximation ratio of m, the algorithm of [8] achieves an approximation ratio of
(2/3)m in time quadratic in the number of sets, and the algorithm of [7] achieves an
approximation ratio of (m + 1)/2 in polynomial time for any constant m.

Theorem 3. An α-approximation T (ν)-time algorithm for Weighted 3-Set Packing with
ν sets yields a 2αc-approximation T (kn2)- time algorithm for MSW-PE(c), with n ads
and k slots.

Proof. We transform any instance of MSW-PE(c) to an instance of Weighted 3-Set
Packing with kn2/4 sets so that any α-approximation to the optimal set packing gives a
2αc-approximation to the optimal social welfare for the original MSW-PE(c) instance.
To simplify the presentation, we assume that k is even. Our proof can be easily extended
to the case where k is odd.

Given an instance of MSW-PE(c) with n ads and k slots, we partition the list into
k/2 blocks of 2 consecutive slots each. The set packing instance has

(
n
2

)
3-element sets

for each block. Namely, for every block p = 1, 3, 5, . . . , k− 1 and every subset {i1, i2}
of 2 ads, there is a set {i1, i2, p} in the set packing instance3. The weight W (i1, i2, p)
of each set {i1, i2, p} is the maximum social welfare if i1 and i2 are assigned to slots p
and p + 1, and i1, i2 are not influenced by any other ad in the list. Formally,

W (i1, i2, p) = max{λpQi1(i1, i2)vi1 + λp+1Qi2(i1, i2)vi2 ,

λpQi2(i2, i1)vi2 + λp+1Qi1(i2, i1)vi1}

where Qi1(i1, i2) = 1−(1−qi1)(1−qi2wi2i1(1)) (resp. Qi2(i1, i2) = 1−(1−qi2)(1−
qi1wi1i2(−1))) denotes the relevance of ad i1 (resp. i2) given that the only ad in the list
with an influence on i1 (resp. i2) is i2 (resp. i1) located just above (resp. below) i1 (resp.
i2) in the list.

Given an instance of MSW-PE(c) with n advertisers and k slots, the corresponding
instance of Weighted 3-Set Packing can be computed in O(kn2) time. To show that
the transformation above is approximation preserving, we prove that (i) the optimal set
packing has weight at least 1/(2c) of the maximum social welfare, and that (ii) given a
set packing of weight W , we can efficiently compute a solution for the original instance
of MSW-PE(c) with a social welfare of at least W .

To prove (i), we assume (by renumbering the ads appropriately if needed) that the
optimal list for the MSW-PE(c) instance is (1, . . . , k). We let Q∗

i be the relevance of ad

3 Throughout the proof, we implicitly adopt the simplifying assumption that the range of block
descriptors 1, 3, 5, . . . , k − 1 and the range of ad descriptors 1, . . . , n are disjoint.
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i in (1, . . . , k), and let W ∗ =
∑k

i=1 λiQ
∗
i vi be the optimal social welfare. We construct

a collection of 2c feasible set packings of total weight at least W ∗. Thus, at least one
of them has a weight of at least W ∗/(2c). The construction is based on the following
claim, which can be proven by induction on c.

Claim 1. Let c be any positive integer. Given a list (1, . . . , k), there is a collection
of 2c feasible 3-set packings such that for each pair i1, i2 of ads in (1, . . . , k) with
|i1−i2| ≤ c, the union of these packings contains a set {i1, i2, p}with p ≤ min{i1, i2}.

Intuitively, for each pair i1, i2 of ads located in (1, . . . , k) within a distance no more
than the window size c, and thus possibly having a positive influence on each other, the
collection of set packings constructed in the proof of Claim 1 includes a set {i1, i2, p}
whose weight accounts for the increase in i1’s and i2’s social welfare due to i2’s and i1’s
positive influence, respectively. Summing up the weights of all those sets, we account
for the positive influence between all pairs of ads in (1, . . . , k), and thus end up with a
total weight of at least W ∗.

Formally, let W (j) be the total weight of the j-th set packing constructed in the
proof of Claim 1, and let i1, i2, with i1 < i2, be any pair of ads in (1, . . . , k) included
in the same set {i1, i2, p} of the j-th packing. Since each ad appears in each set packing

at most once, we let Q
(j)
i1

= Qi1(i1, i2) and Q
(j)
i2

= Qi2(i1, i2) be the relevance of
i1 and i2 in the calculation of W (i1, i2, p). Since Claim 1 ensures that p ≤ i1, and
since slot CTRs are non-increasing, λi1 (resp. λi2 ) is no greater than λp (resp. λp+1).

Therefore, W (i1, i2, p) ≥ λi1Q
(j)
i1

vi1 + λi2Q
(j)
i2

vi2 . Setting Q
(j)
i = 0 for all ads i in

(1, . . . , k) which do not appear in any set of the j-th packing, we obtain that W (j) ≥∑k
i=1 λiQ

(j)
i vi . We show that

2c∑
j=1

W (j) ≥
k∑

i=1

λivi

2c∑
j=1

Q
(j)
i ≥

k∑
j=1

λiQ
∗
i vi = W ∗

The first inequality follows from the discussion above and by changing the order of the
summation. To establish the second inequality, we show that for every ad i in (1, . . . , k),∑2c

j=1 Q
(j)
i ≥ Q∗

i . To simplify the presentation, we focus on an ad i with c < i ≤ k−c.
Ads 1, . . . , c and k − c + 1, . . . , k can be treated similarly.

We recall that Q∗
i = 1−(1−qi)

∏i+c
j=i−c,j �=i Pi(j), where for each ad j in the sublist

(i − c, . . . , i − 1, i + 1, . . . , i + c), Pi(j) = (1 − qjwji(j − i)) ∈ [0, 1] accounts for
j’s positive influence on i’s relevance. Claim 1 ensures that for each j in (i− c, . . . , i−
1, i + 1, . . . , i + c), ads i and j are included in the same set of some set packing. Since
ad i appears in each set packing at most once, for simplicity, we can renumber the set
packings of Claim 1, and say that i and j are included in the same set of the j-th set
packing. Then, if j < i,

Q
(j)
i = 1− (1− qi)(1 − qjwji(−1)) ≥ 1− (1− qi)Pi(j) ,
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because wji is non-increasing with the distance of j and i in the list, and thus wji(−1) ≥
wji(j− i). The same holds if j > i. Therefore, Q(j)

i ≥ 1− (1− qi)Pi(j), for any j. To
conclude the proof of (i), we observe that:

i+c∑
j=i−c,j �=i

(1 − (1− qi)Pi(j)) ≥ 1− (1 − qi)
i+c∏

j=i−c,j �=i

Pi(j) = Q∗
i (4)

To establish (4), we repeatedly apply that for every x, y, z ∈ [0, 1], (1−xy)+(1−xz)≥
1 − xyz. We proceed to establish claim (ii), namely that given a set packing of weight
W , we can efficiently construct a sponsored list of social welfare at least W for the
original instance of MSW-PE(c). By construction, we can restrict our attention to set
packings of the form {{ip, ip+1, p}}p=1,3,...,k−1, where the weight of the packing is
W =

∑
p W (ip, ip+1, p), and where ads ip and ip+1 are indexed according to their best

order, with respect to which W (ip, ip+1, p) is calculated. Since we consider positive
externalities, the sponsored list (i1, i2, . . . , ik−1, ik) has social welfare at least W . ��

Combining Theorem 3 with the greedy 3-approximation algorithm for Weighted 3-Set
Packing and with the algorithm of [8] we obtain respectively:

Corollary 2. For n ads and k slots, the MSW-PE(c) problem can be approximated
within factor 6c in O(kn2 log n) time and within factor 4c in O(k2n4) time.

A similar reduction to the Weighted (2c + 1)-Set Packing problem yields:

Theorem 4. An f(m)–approximation T (ν, m)-time algorithm for Weighted m–Set Pa-
cking with ν sets yields a 2f(2c + 1)-approximation O(ckn2c + T (kn2c, 2c + 1))-time
algorithm for MSW-PE(c) with n ads and k slots.

5 On the GSP Mechanism with Externalities

In studying the GSP auction mechanism we make the reasonable assumption that only
a snapshot of the players’ intrinsic relevances qi, i ∈ N is available to the mecha-
nism. In practice, estimates of the players’ relevances are deduced by software of the
sponsored search platform; therefore the mechanism will eventually extract information
indicative of externalities. By that time however, associations among advertisers may
have changed. This justifies the mechanism’s unawareness of externalities. On the other
hand, each advertiser is aware of associations that may harm him or boost his relevance.
Given a social context graph G(N, E+, E−), with functions wji, (j, i) ∈ E+∪E− and
window size c, we assume each i ∈ N to know: E+

i = {(i′, i) ∈ E+|i′ ∈ N},
E−

i = {(i′, i) ∈ E−|i′ ∈ N} and of c and wji for every j ∈ E+
i ∪ E−

i .
In a keyword auction each advertiser i bids bi for receiving a slot in the list. The GSP

mechanism in its most common flavors uses the Rank-By-Revenue (RBR) rule to assign
advertisers to slots. Under RBR, advertisers are ranked in order of non-increasing score
qi · bi and higher scores are assigned higher CTR slots. The score of a bidder is his de-
clared expected revenue for a click. The plainer RBB rule is obtained by taking qi = 1
for all i ∈ N . Given a bid vector b, let φb : K → N denote the ranking of bidders in
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order of non-increasing expected revenue, i.e. φb(j) is the bidder assigned to slot j. Ac-
cording to the previously used definition of π, φ is an extension of π−1. Every slot win-
ning player φb(j), for j = 1, . . . , k pays per click a price (qφb(j+1) · bφb(j+1))/qφb(j);
i.e., the score of the bidder occupying the next position under b, divided by the intrin-
sic relevance of φb(j). Using his knowledge of externalities that influence him, player
φb(j) experiences a relevance Qφb(j)(b) and estimates his expected profit (utility) as:

uφb(j)(b) = λj ·Qφb(j)(b)× [vφb(j) − (qφb(j+1)/qφb(j)) · bφb(j+1)] (5)

We assume a complete information setting, as advertisers typically employ machine
learning techniques to estimate how much they should outbid a competitor. Such tech-
niques reveal the ranking information used by the GSP mechanism. Thus, in computing
his best response under a bid vector b−i, every advertiser i ∈ N is assumed to know
only qi′ and bi′ for each i′ ∈ N \{i}, and not the actual relevance Qi′ perceived by i′. In
studying pure Nash equilibria of the GSP mechanism we make the standard assumption
of conservative bidders [21], i.e. that bi ≤ vi for all i ∈ N . Then:

Proposition 1. The strategic game induced by the GSP mechanism under the RBR rule
and deterministic tie-breaking does not generally have pure Nash equilibria in presence
of forward positive externalities, even for 2 slots and 3 conservative players.

The case is similar for bidirectional positive externalities (deferred to full version). Even
when pure Nash equilibria exist, externalities may cause unbounded Price of Stabil-
ity [4], in contrast to the favorable social efficiency shown in [9], for the GSP mecha-
nism without externalities.

Proposition 2. There is an infinite family of instances of the stategic game induced by
the Generalized Second Price auction mechanism with unbounded Price of Stability,
even with conservative bidders.
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Abstract. Many-to-one matching markets exist in numerous different
forms, such as college admissions, matching medical interns to hospitals
for residencies, assigning housing to college students, and the classic firms
and workers market. In all these markets, externalities such as comple-
mentarities and peer effects severely complicate the preference ordering
of each agent. Further, research has shown that externalities lead to seri-
ous problems for market stability and for developing efficient algorithms
to find stable matchings. In this paper we make the observation that
peer effects are often the result of underlying social connections, and we
explore a formulation of the many-to-one matching market where peer
effects are derived from an underlying social network. The key feature
of our model is that it captures peer effects and complementarities us-
ing utility functions, rather than traditional preference ordering. With
this model and considering a weaker notion of stability, namely two-
sided exchange stability, we prove that stable matchings always exist
and characterize the set of stable matchings in terms of social welfare.
To characterize the efficiency of matching markets with externalities, we
provide general bounds on how far the welfare of the worst-case stable
matching can be from the welfare of the optimal matching, and find that
the structure of the social network (e.g. how well clustered the network
is) plays a large role.

1 Introduction

Many-to-one matching markets exist in numerous forms, such as college admis-
sions, the national medical residency program, freshman housing assignment, as
well as the classic firms-and-workers market. These markets are widely studied
in academia and also widely deployed in practice, and have been applied to other
areas, such as FCC spectrum allocation and supply chain networks [4,21].

In the conventional formulation, matching markets consist of two sets of
agents, such as medical interns and hospitals, each of which have preferences

� This work was supported in part by the National Science Foundation under grants
CCF-0729203, CNS-0932428 and CCF-1018927, by the Office of Naval Research
under the MURI grant N00014-08-1-0747, and by Caltech’s Lee Center for Advanced
Networking.

G. Persiano (Ed.): SAGT 2011, LNCS 6982, pp. 117–129, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



118 E. Bodine-Baron et al.

over the agents to which they are matched. In such settings it is important that
matchings are ‘stable’ in the sense that agents do not have incentive to change
assignments after being matched. The seminal paper on matching markets was
by Gale and Shapley [13], and following this work an enormous literature has
grown, e.g., [20,27,28,29] and the references therein. Further, variations on Gale
and Shapley’s original algorithm for finding a stable matching are in use by the
National Resident Matching Program (NRMP), which matches medical school
graduates to residency positions at hospitals [26].

However, there are problems with many of the applications of matching mar-
kets in practice. For example, couples participating in the NRMP often reject
their matches and search outside the system. In housing assignment markets
where college students are asked to list their preferences over housing options,
there is often collusion among friends to list the same preference order for houses.
These two examples highlight that ‘peer effects’, whether just couples or a more
general set of friends, often play a significant role in many-to-one matchings.
That is, agents care not only where they are matched, but also which other
agents are matched to the same place. Similarly, ‘complementarities’ often play
a role on the other side of the market. For example, hospitals and colleges care
not only about which individual students are assigned to them, but also that
the group has a certain diversity, e.g., of different specializations.

As a result of the issues highlighted above, there is a growing literature study-
ing many-to-one matchings with externalities (i.e., peer effects and complemen-
tarities) [10,14,18,19,22,24,3,11,30] and the research has found that designing
matching mechanisms is significantly more challenging when externalities are
considered, e.g. incentive compatible mechanism design is no longer possible.

The reason for the difficulty is that there is no longer a guarantee that a stable
many-to-one matching will exist when agents care about more than their own
matching [26,28], and, if a stable matching does exist, it can be computationally
difficult to find [25]. Consequently, most research has focused on identifying when
stable matchings do and do not exist. Papers have proceeded by constraining
the matching problem through restrictions of the possible preference orderings,
[10,14,18,19,22,24], and by considering variations on the standard notion of sta-
bility [3,11,30].

The key idea of this paper is that peer effects are often the result of an un-
derlying social network. That is, when agents care about where other agents are
matched, it is often because they are friends. With this in mind, we construct a
model in Section 2 that includes a weighted, undirected social network graph and
allows agents to have utilities (which implicitly defines their preference ordering)
that depend on where neighbors in the graph are assigned. The model is moti-
vated by [3], which also considers peer effects defined by a social network but
focuses on one-sided matching markets rather than two-sided matching markets.

We focus on two-sided exchange-stable matchings – see Section 2 for a detailed
definition. We note that compared to the traditional notion of stability of [13],
this is a distinct notion of stability, but one that is relevant to many situations
where agents can compare notes with each other, such as the housing assignment
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or medical matching problem. For example, in [3,4,12], “pairwise-stability” is
considered since they consider models where agents exchange offices or licenses
in FCC spectrum auctions. Further, consider a situation where two hospital
interns prefer to exchange the hospitals allocated to them by the NRMP. If this
is a traditional stable matching, the hospitals would not allow the swap, even
though the interns are highly unsatisfied with the match. Such a situation has
been documented in [15], and has led to a similar type of stability, exchange
stability, as defined in [1,8,9,15].

Given our model of peer effects, the focus of the paper is then on characterizing
the set of two-sided exchange-stable matchings, as defined in Section 2. Our
results concern (i) the existence of two-sided exchange-stable matchings and (ii)
the efficiency of exchange-stable matchings (in terms of social welfare).

With respect to the existence of two-sided exchange-stable matchings
(Section 3), it is not difficult to show that in our model stable matchings always
exist. Given the contrast to the negative results that are common for many-to-
one matchings, e.g., [11,25,26], these results are perhaps surprising.

With respect to the efficiency of exchange-stable matchings (Section 4), re-
sults are not as easy to obtain. In this context, we limit our focus to one-sided
matching markets and simplify utility functions, but as a result we are able to
attain bounds on the ratio of the welfare of the optimal matching to that of
the worst stable matching, i.e., the ‘price of anarchy’. We also demonstrate cases
where our bounds are tight. When considering only one-sided markets, our model
becomes similar to hedonic coalition formation, but with several key differences,
as highlighted in Section 4. Our results (Theorems 3 and 4) show that the price
of anarchy does not depend on the number of, say, interns, but does grow with
the number of, say, hospitals – though the growth is typically sublinear. Further,
we observe that the impact of the structure of the social network on the price
of anarchy happens only through the clustering of the network, which is well
understood in the context of social networks, e.g., [16,32]. Finally, it turns out
that the price of anarchy has a dual interpretation in our context; in addition to
providing a bound on the inefficiency caused by enforcing exchange-stability, it
turns out to also provide a bound on the loss of efficiency due to peer effects.

2 Model and Notation

To begin, we define the model we use to study many-to-one matchings with peer
effects and complementarities. There are four components to the model, which
we describe in turn: (i) basic notation for discussing matchings; (ii) the model for
agent utilities, which captures both peer effects and complementarities; (iii) the
notion of stability we consider; and (iv) the notion of social welfare we consider.

To provide a consistent language for discussing many-to-one matchings,
throughout this paper we use the setting of matching incoming students to resi-
dential houses. In this setting many students are matched to each house, and the
students have preferences over the houses, but also have peer effects as a result of
wanting to be matched to the same house as their friends. Similarly, the houses
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have preferences over the students, but there are additional complementarities
due to goals such as maintaining diversity. It is clear that some form of stability
is a key goal of this “housing assignment” problem.

Notation for Many-to-One Matchings. We define two finite and disjoint sets,
H = {h1, . . . , hm} and S = {s1, . . . , sn} denoting the houses and students, re-
spectively. For each house, there exists a positive integer quota qh which indicates
the number of positions a house has to offer. The quota for each house may be
different.

Definition 1. A matching is a subset μ ⊆ S × H such that |μ(s)| = 1 and
|μ(h)| = qh, where μ(s) = {h ∈ H : (s, h) ∈ μ} and μ(h) = {s ∈ S : (s, h) ∈ μ}.1

Note that we use μ2(s) to denote the set of student s’s housemates (students
also in house μ(s)).

Friendship Network. The friendship network among the students is modeled by
a weighted graph, G = (V, E, w) where V = S and the relationships between
students are represented by the weights of the edges connecting nodes. The
strength of a relationship between two students s and t is represented by the
weight of that edge, denoted by w(s, t) ∈ R

+ ∪{0}. We require that the graph is
undirected, i.e., the adjacency matrix is symmetric so that w(s, t) = w(t, s) for
all s, t.

Additionally, we define a few metrics quantifying the graph structure and its
role in the matching. Let the total weight of the graph be denoted by |E| :=
1
2

∑
s∈S

∑
t∈S w(s, t). Further, let the weight of edges connecting houses h and g

under matching μ be denoted by Ehg(μ) :=
∑

s∈μ(h)

∑
t∈μ(g) w(s, t). Note that

in the case of edges within the same house Ehh(μ) := 1
2

∑
s∈μ(h)

∑
t∈μ(h) w(s, t).

Finally, let the weight of edges that are within the houses of a particular matching
μ be denoted by Ein(μ) :=

∑
h∈H Ehh(μ).

Agent utility functions. Each agent derives some utility from a particular match-
ing and an agent (student or house) always strictly prefers matchings that give a
strictly higher utility and is indifferent between matchings that give equal utility.
This setup differs from the traditional notion of ‘preference orderings’ [13,28], but
is not uncommon [2,3,4,7,12]. It is through the definitions of the utility functions
that we model peer effects (for students) and complementarities (for houses).

Students derive benefit both from (i) the house they are assigned to and (ii)
their peers that are assigned to the same house. We model each house h as having
an desirability to student s of Ds

h ∈ R
+ ∪ {0}. If Ds

h = Dt
h ∀s �= t (objective

desirability), this value can be seen as representing something like the U.S. News
college rankings or hospital rankings – something that all students would agree
on. This leads to a utility for student s under matching μ of

1 If the number of students in μ(h), say r, is less than qh, then μ(h) contains qh − r
“holes” – represented as students with no friends and no preference over houses.
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Us(μ) := Ds
μ(s) +

∑
t∈μ2(s)

w(s, t) (1)

so that the total utility that a student derives from a match is a combination
of how “good” a house is as well as how many friends they will have in that
house.2,3

Similarly, the utility of a house h under matching μ is modeled by

Uh(μ) := Dh
μ(h), (2)

where Dh
σ denotes the desirability of a particular set of students σ for house h

(the utility house h derives from being matched to the set of students σ). Note
that this definition of utility allows general phenomena such as heterogeneous
house preferences over groups of students.

Two-sided exchange stability. Under the traditional definition of stability, if a
student and a house were to prefer each other to their current match (forming a
blocking pair), the student is free to move to the preferred house and the house
is free to evict (if necessary) another student to make space for the preferred
student. In our model, however, we assume that students and houses cannot “go
outside the system” (neither can students remain unmatched), like what medical
students and hospitals do when they operate outside of the NRMP. As a result,
we restrict ourselves to considering swaps of students between houses, similar to
[3,4,12].

To define exchange stability, it is convenient to first define a swap matching
μt

s in which students s and t switch places while keeping all other students’
assignments the same.

Definition 2. A swap matching μt
s = {μ \ {(s, h), (t, g)}} ∪ {(s, g), (t, h)}.

Note that the agents directly involved in the swap are the two students switch-
ing places and their respective houses – all other matchings remain the same.
Further, one of the students involved in the swap can be a “hole” representing
an open spot, thus allowing for single students moving to available vacancies.
When two actual students are involved, this type of swap is a two-sided version of
the “exchange” considered in [1,8,9,15] – two-sided exchange stability requires
that houses approve the swap. As a result, while an exchange-stable match-
ing may not exist in either the marriage or roommate problem, we show in
Section 3 that a two-sided exchange-stable matching will always exist for the
housing assignment problem.

Definition 3. A matching μ is two-sided exchange-stable (2ES) if and only
if there does not exist a pair of students (s, t) such that:
2 We note that the utility of any “holes” (such as what happens when a house’s quota

is not met), is simply Us(μ) = 0.
3 Note also that if we remove Ds

h from the utility function and allow unlimited quotas,
the matching problem becomes the coalitional affinity game from [7].
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(i) ∀ i ∈ {s, t, μ(s), μ(t)}, Ui(μt
s) ≥ Ui(μ) and

(ii) ∃ i ∈ {s, t, μ(s), μ(t)} such that Ui(μt
s) > Ui(μ)

This definition implies that a swap matching in which all agents involved are
indifferent is two-sided exchange-stable. This avoids looping between equivalent
matchings. Note that the above definition implies that if two students want to
switch between two houses (or a single student wants to “switch” with a hole),
the houses involved must “approve” the swap or if two houses want to switch
two students, the students involved must agree to the swap (a hole will always be
indifferent). This is natural for the house assignment problem and many other
many-to-one matching markets, but would be less appropriate for some other
settings, such as the college-admissions model.

Social welfare. One key focus of this paper is to develop an understanding of the
“efficiency loss” that results from enforcing stability of assignments in matching
markets. We measure the efficiency loss in terms of the “social welfare”:

W (μ) :=
∑
s∈S

Us(μ) +
∑
h∈H

Uh(μ)

Using this definition of social welfare, the efficiency loss can be quantified using
the Price of Anarchy (PoA) and Price of Stability (PoS). Specifically, the PoA
(PoS) is the ratio of the optimal social welfare over all matchings, not necessarily
stable, to the minimum (maximum) social welfare over all stable matchings.
Understanding the PoA and PoS is the focus of Section 4.

3 Existence of Stable Matchings

We begin by focusing on the existence of two-sided exchange-stable matchings.
In most prior work, matching markets with externalities do not have guaranteed
existence of a stable matching. In contrast, we prove that a 2ES matching always
exists in the model considered in this paper. We begin by proposing a potential
function Φ(μ) for the matching game:

Φ(μ) =
∑
h∈H

Uh(μ) +
∑
s∈S

Ds
μ(s) +

1
2

∑
s∈S

⎛⎝ ∑
x∈μ2(s)

w(s, x)

⎞⎠ (3)

Due to the symmetry of the social network, every approved swap will result in a
strict increase of the potential function. As there is a finite set of matches, this
results in the existence of a 2ES matching for every housing assignment market.

Theorem 1. All local maxima of Φ(μ) are two-sided exchange-stable.

If we assume that there are no vacancies in any of the houses and students value
houses according to the same rules (i.e., Ds

h = Dt
h ∀ s �= t), then each each

approved swap will result in a strict increase in the social welfare. Note that this
implies that the maximally efficient matching will be 2ES.
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Theorem 2. If house quotas are exactly met and Ds
h = Dt

h ∀ s �= t, all local
maxima of W (μ) are two-sided exchange-stable.

We omit the exact proofs here; see [5] for details. Note, however, that not all
2ES matchings are local maxima of Φ(μ) or W (μ). Such a case arises when one
student, for example, refuses a swap as her utility would decrease, but the other
student involved stands to benefit a great deal from such a swap. If the swap
were forced, the total potential function (or social welfare) could increase, but
only at the expense of the first student.

The contrast between Theorem 1 and the results such as [26] and [28] can
be explained by considering a few aspects of the model we study. In particular,
we are using a distinct type of stability appropriate to our housing assignment
market. Further, the assumption that the social network graph is symmetric is
key to guaranteeing existence.

4 Efficiency of Stable Matchings

To this point, we have focused on the existence of two-sided exchange-stable
matchings and how to find them. In this section our focus is on the “efficiency
loss” due to stability in a matching market and the role peer effects play in this
efficiency loss.

We measure the efficiency loss in a matching market using the price of stabil-
ity (PoS) and the price of anarchy (PoA) as defined in Section 2. Interestingly,
the price of anarchy has multiple interpretations in the context of this paper.
First, as is standard, it measures the worst-case loss of social welfare that results
due to enforcing two-sided exchange-stability. For example, the authors in [2]
bound the loss in social welfare caused by individual rationality (by enforcing
stable matchings) for matching markets without externalities. Second, it pro-
vides a competitive ratio for matching algorithms (like those described in [5]).
Even a centralized mechanism with complete information may only find a stable
matching, not necessarily the maximally efficient one. The price of anarchy gives
us a bound on this worst-case. Third, we show later that the price of anarchy
also has an interpretation as capturing the efficiency loss due to peer effects.

The results in this section all require one additional simplifying assumption
to our model: complementarities are ignored and only peer effects are consid-
ered. Specifically, we assume, for all of our PoA results, Uh(μ) = 0, and thus
W (μ) =

∑
s∈S Us(μ). Under this assumption, the market is one-sided, with only

students participating, and our notion of stability is simply exchange-stability.
This assumption is limiting, but there are still many settings within which the
model is appropriate. Two examples are the housing assignment problem in the
case when students can swap positions without needing house approval, and the
assignment of faculty to offices as discussed in [3], as clearly the offices have no
preferences over which faculty occupy them. In order to simplify the analysis,
we also make use of the assumptions in Theorem 2 : (i) Ds

h = Dt
h ∀ s �= t and

(ii) house quotas are exactly met.
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4.1 Related Models

When the housing assignment problem is restricted to a one-sided market in-
volving only students, we note that it becomes very similar to both (i) a hedonic
coalition formation game with symmetric additively separable preferences, as
described in [6], and (ii) a coalitional affinity game, as described in [7]. For a
more detailed discussion of these types of games and their relation to the results
in this paper, see [5].

While the one-sided housing assignment problem and hedonic coalition for-
mation games appear to be very similar, there are a number of key differences.
Most importantly, the housing assignment problem considers a fixed number of
houses with a limited number of spots available; students cannot break away
and form a new coalition/house, nor can a house have more students than its
quota. In addition, our model considers exchange-stability, which is closest to
the Nash stability of [6], but is still significantly different in that it involves a pair
of students willing and able to swap. Finally, each student gains utility from the
house they are matched with, in addition to the other members of that house,
which is different from the original formulation of hedonic coalition games.

4.2 Discussion of Results

To begin the discussion of our results, note that under our simplifying assump-
tions the price of stability is 1 for our model because any social welfare optimizing
matching is stable. However, the price of anarchy can be much larger than 1. In
fact, depending on the social network, the price of anarchy can be unboundedly
large, as illustrated in the following example.

Example 1 (Unbounded price of anarchy).
Consider a matching market with 4 students and 2 houses, each with a quota of
2, and two possible matchings illustrated by Figure 1. As shown in Figure 1 (a)
and (b), respectively, in the optimal matching μ∗, W (μ∗) = k; whereas there ex-
ists a exchange-stable matching with W (μ) = 2. Thus, as k increases, the price of
anarchy grows linearly in k.

Despite the fact that, in general, there is a large efficiency loss that results from
enforcing exchange-stability, in many realistic cases the efficiency loss is actually
quite small. The following two theorems provide insight into such cases.

k

1 1

Dh = 0

Dg = 0

Dh = 0 Dg = 0
k

1 1

(a) optimal matching (b) stable matching

Fig. 1. Arbitrarily bad exchange-stable matching
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A key parameter in these theorems is γ∗
m which captures how well the social

network can be “clustered” into a fixed number of m groups and is defined as
follows.

γm(μ) :=
Ein(μ)
|E| (4)

γ∗
m := max

μ
γm(μ) (5)

Thus, γ∗
m represents the maximum edges that can be captured by a partition

satisfying the house quotas. Note that γ∗
m is highly related to other clustering

metrics, such as the conductance [17], [31] and expansion [23].
We begin by noting that due to the assumption that

∑
h∈H Uh(μ) = 0, we

can separate the social welfare function into two components:

W (μ) =
∑
s∈S

Us(μ) =
∑
h∈H

∑
s∈μ(h)

⎛⎝Dh +
∑

t∈μ(h)

w(s, t)

⎞⎠ = 2Ein(μ) +
∑
h∈H

qhDh.

Thus,
maxμ W (μ)

minμ is stable W (μ)
=

Q + maxμ γm(μ)
Q + minstable μ γm(μ)

(6)

where

Q :=
∑

h∈H qhDh

2E
. (7)

Note that the parameter Q is independent of the particular matching μ.
Our first theorem regarding efficiency is for the “simple” case of unweighted

social networks with equal house quotas and/or equivalently valued houses.

Theorem 3. Let w(s, t) ∈ {0, 1} for all students s, t and let qh ≥ 2, Dh ∈
Z

+ ∪ {0} for all houses h. If qh = q for all h and/or Dh = D for all h, then

min
stable μ

W (μ) ≥ maxμ W (μ)
1 + 2(m− 1)γ∗

m

The bound in Theorem 3 is tight, as illustrated by the example below.

Example 2 (Tightness of Theorem 3).
Consider a setting with m houses and qh = mk for all h ∈ H . Students are
grouped into clusters of size k > 2, as shown for m = 3 in Figure 2. The houses
have Dh = k + 1 and Dg = Di = 0. Each student in the middle cluster in each
row has k edges to the other students outside of their cluster (but none within),
as shown.

The worst-case stable exchange-matching is represented by the vertical red
lines. Note that since Dh = k + 1, this matching is stable, even though all edges
are cut. Thus minμ stable γm(μ) = 0. The optimal matching is represented by the
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k edges

Di = 0 Dg = 0Dh = k + 1
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k edges
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k edges

k edges

k edges

Fig. 2. Network that achieves PoA bound

horizontal blue lines in the figure; note that γ∗
m = 1. To calculate the price of

anarchy, we start from equations (6) and (7) and calculate

Q =
∑

h∈H qhDh

2|E| =
mk(k + 1)

2mk(m− 1)k
=

k + 1
2(m− 1)k

,

which gives,

maxμ W (μ)
minstable μ W (μ)

=
Q + γ∗

m

Q + minμ stable γm(μ)
= 1 + 2(m− 1)

(
k

k + 1

)
.

Notice that as k becomes large, this approaches the bound of 1 + 2(m− 1)γ∗
m.

We note that the requirement qh = q for all h and/or Dh = D for all h is key
to the proof of Theorem 3 and in obtaining such a simple bound; otherwise,
Theorem 4 applies. We omit the proofs of these theorems here for brevity; see
[5] for the details.

Our second theorem removes the restrictions in the theorem above, at the
expense of a slightly weaker bound. Define qmax = maxh∈H qh, wmax =
maxs,t∈S w(s, t) and DΔ = minh,g∈H(Dh − Dg), assuming that the houses are
ordered in increasing values of Dh.

Theorem 4. Let w(s, t) ∈ R
+ ∪ {0} for all students s, t and Dh ∈ R

+ ∪ {0},
qh ∈ Z

+ for all houses h, then

min
stable μ

W (μ) ≥ maxμ W (μ)

1 + 2(m− 1)
(
γ∗

m + qmaxwmax

DΔ

)
Though Theorem 3 is tight, it is unclear at this point whether Theorem 4 is also
tight. However, a slight modification of the above example does show that it has
the correct asymptotics, i.e., there exists a family of examples that have price of
anarchy Θ(mγ∗

mqmaxwmaxD−1
Δ ).
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Fig. 3. Illustration of price of anarchy bounds in Theorem 3 for Caltech and Wikipedia
networks

A first observation one can make about these theorems is that the price of an-
archy has no direct dependence on the number of students. This is an important
practical observation since the number of houses is typically small, while the
number of students can be quite large (similar phenomena hold in many other
many-to-one matching markets). In contrast, the theorems highlight that the
degree of heterogeneity in quotas, network edge weights, and house valuations
all significantly impact inefficiency.

A second remark about the theorems is that the only dependence on the social
network is through γ∗

m, which measures how well the graph can be “clustered”
into m groups. An important note about γ∗

m is that it is highly dependent on
m, and tends to shrink quickly as m grows. A consequence of this behavior is
that the price of anarchy is not actually linear in m in Theorems 3 and 4, as it
may first appear, it turns out to be sublinear. This is illustrated in the context
of real social network data in Figures 3a and 3b. Note that as we are increasing
the number of houses, we are in fact creating finer allowable partitions of the
network. The social networks used to generate the above plots are described in
detail in [5].

Next, let us consider the impact of peer effects on the price of anarchy. Con-
sidering the simple setting of Theorem 3, we see that if there were no peer effects,
this would be equivalent to setting w(s, t) = 0 for all s, t. This would imply that
γ∗

m = 0, and so the price of anarchy is one. Thus, another interpretation of the
price of anarchy in Theorem 3 is the efficiency lost as a result of peer effects.

5 Concluding Remarks

In this paper we have focused on many-to-one matchings with peer effects and
complementarities. Typically, results on this topic tend to be negative, either
proving that stable matchings may not exist, e.g., [26,28], or that stable match-
ings are computationally difficult to find, e.g., [25].

In this paper, our goal has been to provide positive results. To this end,
we focus on the case when peer effects are the result of an underlying social
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network, and this restriction on the form of the peer effects allows us to prove
that a two-sided exchange-stable matching always exists. Further, we provide
bounds on the maximal inefficiency (price of anarchy) of any exchange-stable
matching and show how this inefficiency depends on the clustering properties of
the social network graph. Interestingly, in our context the price of anarchy has
a dual interpretation as characterizing the degree of inefficiency caused by peer
effects.

There are numerous examples of many-to-one matchings where the results in
this paper can provide insight; one of particular interest to us is the matching of
incoming undergraduates to residential houses which happens yearly at Caltech
and other universities. Currently incoming students only report a preference or-
der for houses, and so are incentivized to collude with friends and not reveal
their true preferences. For such settings, the results in this paper highlight the
importance of having students report not only their preference order on houses,
but also a list of friends with whom they would like to be matched. Using a com-
bination of these factors, the algorithms described in [5] and efficiency bounds
presented in this paper provide a promising approach, for this specific market
as well as any general market where peer effects change the space of stable
matchings.

The results in the current paper represent only a starting point for research
into the interaction of social networks and many-to-one matchings. There are
a number of simplifying assumptions in this work which would be interesting
to relax. For example, the efficiency bounds we have proven consider only a
one-sided market, where students rate houses similarly and quotas are exactly
met. These assumptions are key to providing simpler bounds, and they certainly
are valid in some matching markets; however relaxing these assumptions would
broaden the applicability of the work greatly.
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Abstract. The Shapley value is one of the most important solution
concepts in cooperative game theory. In coalitional games without exter-
nalities, it allows to compute a unique payoff division that meets certain
desirable fairness axioms. However, in many realistic applications where
externalities are present, Shapley’s axioms fail to indicate such a unique
division. Consequently, there are many extensions of Shapley value to
the environment with externalities proposed in the literature built upon
additional axioms. Two important such extensions are “externality-free”
value by Pham Do and Norde and value that “absorbed all externalities”
by McQuillin. They are good reference points in a space of potential
payoff divisions for coalitional games with externalities as they limit the
space at two opposite extremes. In a recent, important publication, De
Clippel and Serrano presented a marginality-based axiomatization of the
value by Pham Do Norde. In this paper, we propose a dual approach to
marginality which allows us to derive the value of McQuillin. Thus, we
close the picture outlined by De Clippel and Serrano.

1 Introduction

The Shapley value is one of the most important and extensively studied solution
concepts in coalitional game theory. In the environment where agents are allowed
to cooperate, the Shapley value lays down a fair allocation of jointly achieved
payoff. Here, fairness is built upon four axioms: (i) Efficiency (the whole payoff is
distributed among agents); (ii) Symmetry (division of payoff does not depend on
agents’ names), (iii) Additivity (when two different games are combined, agent’s
share is equal to sum of shares in games considered independently); and (iv) Null-
player Axiom (agent which has no impact on value of any coalition gets nothing).
In his seminal work, Shapley showed that his division scheme is unique, i.e. no
other division scheme meets all four axioms.

Since Shapley original work [1], his concept has been extended in a variety of
directions. One of them are coalitional games with externalities, where a value
of a coalition depends on formation of other coalitions in the system. Indeed,
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externalities occur in many real-life applications of coalitional games such as
oligopolistic markets (where a merger is likely to affect other companies), a po-
litical scene (where the importance of a political party highly depends on the
created coalitions), or a supply chain (where a large number of subcontractors
increases the standardization costs). Unfortunately, they are substantially more
challenging to the model than the conventional games. In particular, in the pres-
ence of externalities, the axioms proposed by Shapley are insufficient to deter-
mine a unique division of payoff. This problem was addressed in the literature by
several authors who proposed more extended axiomatizations. Two important
extensions of the Shapley value to games with externalities are “externality-
free” value proposed by Pham Do and Norde [3] and McQuillin’s value which
“absorbed all externalities” [2]. Both can be considered as reference points for
other extensions, as, under certain conditions, they limit the space of possible
extensions at two opposite extremes.

The key role in the formula for the Shapley value is played by the marginality
— an important economic concept in which evaluation of a player in a coalition is
based on a difference between the coalition’s values with and without the player.
Specifically, the Shapley value is calculated as the weighted average of marginal
contributions of players to all the coalitions in the game. This relationship of the
Shapley value to the marginality was emphasized by the beautiful work of Young
[8]. In Shapley’s axiomatic characterization marginality comes from the Null-
player Axiom which assigns zero value to every agent whose vector of marginal
contributions to coalitions equals to zero. Unfortunately, as mentioned above,
this axiom as well as the others do not determine the unique value in the case of
games with externalities. Thus, it became a common practise in the literature, to
add other, non-marginality based axioms. These axioms indeed allow for deriving
the unique Shapley value extended to games with externalities, however, not in
a way related to marginality as the original Shapley value did. In this context,
the key additional axiom of McQuillin was recursion which required the value
to be a fixed-point solution (i.e. if we consider a value to be a game by itself,
then the value computed for such a game should not change). Nevertheless,
marginality-based axiomatization of the McQuillin value that connects to the
original Shapley value has remained unknown.

In this paper we close this gap by proposing an alternative approach to
marginality. We present a new marginality axiom, which allows us to derive
the extension of the Shapley value proposed by McQuillin. Our approach is dual
to De Clippel and Serrano who in recent, important publication proposed a basic
approach to marginality and derived “externality-free” value of Pham Do and
Norde. In other words, we close the picture outlined by De Clippel and Serrano,
so that the two opposite values for games with externalities that limit the space
of many other extensions, are now based on the marginality principle.

Our new approach to marginality, which we call a steady marginality, differs
from those proposed earlier in the literature ([5,7,6]). To compute an agent’s
marginal contribution to a coalition we compare the value of the coalition with
the specific agent with the value of the coalition obtained by the transfer of the
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agent to another coalition, existing in the partition (so the number of coalitions
is steady). We then do not include the value of a coalition in a partition when a
specific agent forms its own singleton coalition.

The rest of the paper is organized as follows. In Section 2 we introduce the ba-
sic definitions and notation. In Section 3 we present our set of axioms, including
our new marginality axiom which we relate to “externality-free” marginality. In
Section 4 we define a new class of games and prove they form a basis of space of
games with externalities. Finally, in Section 5 we prove that there exists only one
value which satisfies all our axioms and that this value is equal to one proposed
earlier by McQuillin. Section 6 presents different approaches to marginality in
the literature. Section 7 concludes the paper and outlines future work.

2 Definitions and Notation

In this section we introduce the basic definitions and notation.
Let N = {1, 2, . . . , n} be the set of all agents. A coalition S is any subset of

agents, S ⊆ N . A partition P of N is a set of disjoint coalitions which covers the
whole set of agents, i.e., P = {S1, S2, . . . , Sk} and

⋃
i∈N Si = N , where Si∩Sj =

∅ for every i, j ∈ {1, . . . , k} with i �= j. The set of all partitions is denoted by P .
A coalition S being a part of a partition P is called an embedded coalition and
is denoted by (S, P ). By |P | we denote the number of coalitions in a partition
P . The set of all embedded coalitions is denoted EC and formally defined as:

EC
def= {(S, P ) : P ∈ P , S ∈ P}

As common in the literature, for S ⊂ N, i �∈ S, j ∈ S, we define S+i
def= S ∪ {i}

and S−j
def= S \ {j}. If S ∈ P then P−S

def= P \ {S}.
The following notation will play an important part in our paper: let S, T ∈ P

and i ∈ S. A function τS,T
i will represent the transition of an agent i from S to T :

τS,T
i (P ) def= P \ {S, T } ∪ {S−i, T+i}

In the literature it is a common convention to assume that in every partition
P ∈ P an empty, artificial coalition ∅ ∈ P exists. In our paper we accept a
different assumption that only one partition (the one with the grand-coalition)
contains a special empty coalition ∅.
Note 2.1. For technical convenience, in our paper we use the convention that in
every partition there are at least two coalitions, so we assume that in partition
with only one explicitly listed coalition there also exists an empty coalition.
In such a case, the grand coalition takes the form {N, ∅} (and |{N, ∅}| = 2).
However, we will not consider (∅, {N, ∅}) as a correct embedded coalition.

The game (in a partition-function form) is a function v : EC → R which asso-
ciates a real number with every embedded coalition. For convenience, we extend
the domain of v and assign a zero value to every incorrect embedded coalition
where S is empty: v(∅, P ) = 0.
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Among a collection of games we distinguish a set of games without externalities
(or, differently, characteristic function games), where the value of a coalition
does not depend on a partition of other agents. Formally, for each coalition
S and two partitions P1, P2 containing S we get v(S, P1) = v(S, P2). In this
case the definition of a game can be simplified to v̂ : 2N → R, as the only
argument is a coalition S. Conversely, we say that the game is with externalities
when the value for at least one coalition depends on a structure of other agents:
v(S, P1) �= v(S, P2) for some S and P1, P2 which contain S.

The value of the game is a function which assigns some payoff to every agent:
ϕ : v → R

N . This payoff is meant to be the agent’s share in the value achieved
by all players united in the grand coalition: v(N, {N, ∅}). We are interested in a
division of the payoff which is fair.

The Shapley value is defined as:

Shi(v̂) =
∑

S⊆N,i∈S

(|S| − 1)!(|N | − |S|)!
|N |! (v̂(S)− v̂(S−i))

where by v̂ we denote the game without externalities.
Shapley presented the following intuition behind his value. Assume that the

agents enter the coalition in random order. Every agent i brings to the set S−i

of agents who already entered the coalition its marginal contribution v̂(S) −
v̂(S−i). Therefore, Shapley value of an agent i is the average of all its marginal
contributions for every order of the agents’ arrivals.

One of the most common approaches to the extension of Shapley value for
games with externalities is the average approach proposed by Macho-Stadler et
al [4]. In this approach, from the game v we create a simpler game v̂ without
externalities and define ϕi(v) def= Shi(v̂). The value of each coalition S in v̂ is
computed as the weighted average of values of a coalition S embedded in different
partitions: v̂(S) =

∑
P∈P,S∈P α(S,P ) · v(S, P ). The different weights lead to the

different values. Two extremes in those approaches are “externality-free” value
and value which “absorbed all externalities”.

The first one was proposed by Pham Do and Norde. It can be obtained using
the average approach by defining v̂free(S) def= v(S, {{i} : i ∈ N−S} ∪ {S}) and
ϕfree

i (v) def= Shi(v̂free). Hence, the value of S is taken from the partition, in
which no externalities from merging coalitions affect it.

The second one, proposed by McQuillin, is dual to Pham Do and Norde.
Here, the value of S is taken from the partition, in which all other agents are
in one coalition: v̂McQ(S) def= v(S, {N−S , S}). As we can see, this value of S is
affected by all externalities from merging coalitions. McQuillin value takes the
form ϕMcQ

i (v) def= Shi(v̂McQ).

3 Axiomatic Characterization

In this section we will present our axioms including a new definition of the
marginal contribution. We will also briefly compare it to the definition proposed
by De Clippel and Serrano.
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Shapley value is based on four elementary axioms: Efficiency, Symmetry, Ad-
ditivity and Null-player Axiom. The first three are easily translated to games
with externalities.

Definition 3.1. (Efficiency) Function ϕ satisfies Efficiency if the whole payoff
is distributed among agents, i.e.

∑
i∈N ϕi(v) = v(N, {N, ∅}) for every game v.

Let σ : N → N be a permutation of the set of agents. Then

– for every coalition S ⊆ N , σ(S) def= {σ(i) : i ∈ S}
– for every partition P ∈ P , σ(P ) def= {σ(S) : S ∈ P} .

The permutation of game σ(v) is a game defined on every embedded coalition
by σ(v)(S, P ) def= v(σ(S), σ(P )) and the permutation of σ(ϕ(v)) is the vector
(ϕσ(i)(v))i∈N .

Definition 3.2. (Symmetry) Function ϕ satisfies Symmetry if agents’ values do
not depend on their names, i.e. ϕ(σ(v)) = σ(ϕ(v)) for every game v and every
permutation σ.

It is widely accepted ([5,4,2]) to translate Additivity as the Linearity in the
context of externalities.1

Definition 3.3. (Linearity) Function ϕ satisfies Linearity if:

(a) for every two games v1, v2, we have ϕ(v1 +v2) = ϕ(v1)+ϕ(v2), where v1 +v2

is a game defined by (v1 + v2)(S, P ) = v1(S, P ) + v2(S, P )
(b) for every game v and constant λ ∈ R, we have ϕ(λv) = λ ·ϕ(v), where λv is

a game defined by (λv)(S, P ) = λ · v(S, P ).

Our key axiom will be based on the marginality principle. When there are no
externalities, the marginal contribution of an agent i to a coalition S can be
easily calculated as a difference between the coalition value with and without an
agent i: v̂(S)− v̂(S−i). But when the externalities exist, the value of a coalition
S (embedded in P ) without an agent i depends on where the agent i is. Let us
define the elementary marginal contribution mc(i,S,P,T ) of an agent i to (S, P )
in comparison to i being in T ∈ P−S ∪ {∅} as a difference between the value
of (S, P ) and (S−i, τ

S,T
i (P )). Then the marginal contribution is the (weighted)

average of the elementary marginal contributions:

mc(i,S,P )(v) =
∑

T∈P−S∪{∅}
α(i,S,P,T )(v(S, P )− v(S−i, τ

S,T
i (P )))

1 Shapley based his value on Additivity – part (a) of our axiom – as it (combined
with his three other axioms) implies part (b) – a very intuitive assumption that
when we multiply every value in the game by some scalar, agents’ share will increase
respectively (i.e. the ratio of agents’ share will not change). As shown in [4], the
standard Shapley’s axioms translated to the games with externalities are too weak
to imply full Linearity. Thus, in the presence of externalities, Additivity is usually
strengthened to the Linearity.
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The empty set in the sum corresponds to the partition in which i is in a sin-
gleton coalition {i}.2 For our later discussion it would be convenient to consider
the elementary marginal contribution v(S, P )− v(S−i, τ

S,T
i (P )) as a cost of the

agent’s i transfer to a coalition T .
De Clippel and Serrano used only one non-zero weight for the transfer of i

to the empty coalition: α(i,S,P,∅) = 1 and α(i,S,P,T ) = 0 for T ∈ P−S . Their
definition of the marginal contribution takes the form:

mcfree
(i,S,P )(v) def= v(S, P )− v(S−i, P−S ∪ {S−i, {i}})

This approach is justified by treating the transfer as a two-step process. In
the first step, agent i leaves the coalition S and for a moment remains alone
(i.e., creates a singleton coalition). An optional second step consists of agent i
joining some coalition from P−S (in coalition terms, {i} merges with some other
coalition). Although both steps may change the value of S−i, the authors argue
that only the first one corresponds to the intrinsic marginal contribution – the
influence from the second step comes rather from the external effect of merging
coalitions, not from i leaving S. Discarding the impact of merging coalitions in
marginal contribution allowed them to derive an “externality-free” value.

We will consider the transfer of i in a different way. Our first step will consist
of leaving coalition S and joining one of the other coalitions in partition. In the
second step, agent i can exit his new coalition and create his own. Thus, we look
at creating new coalition as an extra action, which should not be included in the
effect of i leaving coalition S. According to this, the natural way to define the
steady marginal contribution of an agent i to (S, P ), is to take into account only
the transfer to the other existing coalition.

Definition 3.4. The steady marginal contribution of an agent i ∈ S to the
embedded coalition (S, P ) ∈ EC is defined as:

mcfull
(i,S,P )(v) def=

∑
T∈P−S

(v(S, P ) − v(S−i, τ
S,T
i (P )))

Then, mcfull
i (v) def= (mcfull

(i,S,P )(v))(S,P )∈EC,i∈S is a vector of steady marginal
contributions.

Our approach can be justified by these real life examples in which creation of
a new coalition is rare and not likely. These include political parties or million-
dollar industries (such as oil oligopoly). In all such situations, our approach is
likely to lead to more proper results.

Based on the definition of steady marginal contribution we can introduce
the last axiom, which is our version of the standard Null-player Axiom. In the
literature on games with externalities, it is common to assume ([4,5]) that agent
i is a null-player when all of his elementary marginal contributions are equal to
zero (v(S, P ) − v(S−i, τ

S,T
i (P )) = 0 for each (S, P ) ∈ EC such that i ∈ S and

2 Note that when (S, P ) = (N, {N, ∅}) then P−S ∪ {∅} = {∅}, so mc(i,N,{N,∅})(v) =
α(i,N,{N,∅},∅)(v(N, {N, ∅}) − v(N−i, {N−i, {i}})).



136 O. Skibski

T ∈ P−S ∪ {∅}). Our definition of null-player will differ – we will consider an
agent as a null-player when all of his steady marginal contributions are equal to
zero.3

Definition 3.5. (Null-player Axiom in a steady marginal contribution sense)
Function ϕ satisfies Null-player Axiom if for every agent i such that vector of
steady marginal contributions mcfull

i (v) is a zero vector occurs ϕi(v) = 0.

Thus, an agent is a null-player when for every embedded coalition his expected
value of transfer to the other existing coalition equals zero.4

4 Constant-Coalition Games

In this section we will introduce a new class of simple games – constant-coalition
games. This games will play a key role in a proof of the uniqueness of the value
in the next section. The name comes from the fact that, in a given game, every
partition in which a coalition with non-zero value is embedded, has exactly the
same number of coalitions. We show that the collection of such games is a basis
of partition function games.

First, we will need some additional notation.

Definition 4.1. (R1 � R2) Let R1, R2 be two proper, non-empty subsets of two
partitions. We say that R2 can be reduced to R1 (denoted R1 � R2) if three
conditions are met:
(a) all agents which appear in R1, appear in R2 (i.e.

⋃
T1∈R1

T1 ⊆
⋃

T2∈R2
T2)

(b) two agents which are in the same coalition in R1, are in the same coalition
in R2

(c) two agents which are not in the same coalition in R1 are not in the same
coalition in R2.

Assume R1 � R2. Based on the presented conditions, as we delete agents from
R2 which are not in R1, we get exactly the R1 configuration. This observation
can be expressed in an alternative definition of the �-operator.

Proposition 4.2. Let R1, R2 be two proper, non-empty subsets of two parti-
tions. Then:5

R1 � R2 ⇔ ∃S⊆NR1 = {T2 \ S : T2 ∈ R2 and T2 �⊆ S} ∨R1 = {∅}
3 It is easy to prove that our axiom strengthens the standard one, as the fact that

all of the agent’s i elementary marginal contributions equal zero implies that all his
steady marginal contributions are equal to zero as well.

4 I thank the anonymous reviewer for this interpretation.
5 The equivalence of the definitions when R1 and R2 contain only non-empty coalitions

is easy to see. As the only partition which contains an empty set is {N, ∅} then the
only proper, non-empty subset of the partition which contains an empty set is {∅}.
Based on the first definition {∅} � R2 for every R2 and R1 � {∅} implies R1 = {∅}
(as we don’t allow empty R1).
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For example {{1, 2}, {3}} � {{1, 2, 4}, {3}, {5}} but {{1, 2}, {3}} �� {{1, 2, 3}}
and {{1, 2}, {3}} �� {{1}, {3, 4}}.

Now we can introduce our new basis for games with externalities.

Definition 4.3. For every embedded coalition (S, P ), the constant-coalition
game e(S,P ) is defined by

e(S,P )(S̃, P̃ ) def=

{
(|P | − 1)−(|S̃\S|) if (P̃−S̃ � P−S) and (|P | = |P̃ |),
0 otherwise,

for every (S̃, P̃ ) ∈ EC.

Note that (P̃−S̃ � P−S) implies S ⊆ S̃ as we get Ñ \ S̃ ⊆ N \ S from the (a)
condition in �-operator definition. So, in our game, e(S,P ) non-zero values have
only embedded coalitions formed from (S, P ) by some transition of agents from
P \ {S} to S which does not change the number of the coalitions.

Lemma 4.4. The collection of constant-coalition games is a basis of the parti-
tion function games.

Proof. Let e = (e(S,P ))(S,P )∈EC be the vector of all games.

First, we will show that the constant-coalition games are linearly independent.
Suppose the contrary. Then there exists a vector of weights
α = (α(S,P ))(S,P )∈EC with at least one non-zero value such that α × e =∑

(S,P )∈EC α(S,P )e
(S,P ) is a zero vector. Let (S∗, P ∗) be the embedded coalition

with a non-zero weight α(S∗,P∗) �= 0 and minimal S∗ (i.e. (S∗, P ∗) is the minimal
element of the embedded-coalition relation r: (S1, P1)r(S2, P2)⇔ S1 ⊆ S2). So,
for any other game e(S,P ) either α(S,P ) = 0 or S �⊆ S∗ ⇒ e(S,P )(S∗, P ∗) = 0 (the
implication follows from the remarks after Definition 4.3). Then∑

(S,P )∈EC

α(S,P )e
(S,P )(S∗, P ∗) = α(S∗,P∗)e

(S∗,P∗)(S∗, P ∗) = α(S∗,P∗) �= 0,

contrary to the previous assumption.
The size of a collection of all the constant-coalition games is equal to the

dimension of the partition function games space, hence the collection must be a
basis. ��

5 Uniqueness of the Value

In this section we show that there exists only one value that satisfies all the
introduced axioms and that it is equivalent to the value proposed by McQuillin.

Theorem 5.1. There is a unique value ϕfull satisfying Efficiency, Symmetry,
Linearity and Null-player Axiom (in a steady marginality sense).

Proof. We will show that in every coalition-constant game there exists only one
value which satisfies those axioms. Based on Linearity and Lemma 4.4 this will
imply our theorem.
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Let e(S,P ) be one of the coalition-constant games. We will show that any
player i from the coalition other than S is a null-player (in a steady marginality
sense). Based on the Definition 3.5 we have to prove that mci(e(S,P )) is a zero
vector. So, for every (S̃, P̃ ) ∈ EC such that i ∈ S̃:

mc(i,S̃,P̃ )(e
(S,P )) =

∑
T̃∈P̃\{S̃}

e(S,P )(S̃, P̃ )− e(S,P )(S̃−i, τ
S̃,T̃
i (P̃ )) = 0

We divide the proof into two cases with zero and non-zero value of e(S,P )(S̃, P̃ ).

Lemma 5.2. If e(S,P )(S̃, P̃ ) = 0 then, for every T ∈ P̃ \ {S̃},

e(S,P )(S̃−i, τ
S̃,T
i (P̃ )) = 0.

Proof. Based on the definition of the coalition-constant games we can deduce
that at least one of the following conditions occurs:

– P̃−S̃ �� P−S - from the definition of �-operator we know that there is an
agent in P̃−S̃ which is not in P−S , or there is a pair of agents which are
together in one and not together in the other structure; it is easy to see, that
adding player i to some coalition in P̃−S̃ will not fix any of these anomalies;

– |P | �= |P̃ | - if i is alone (S̃ = {i}) then, for every T ∈ P̃ \ {S̃},

e(S,P )(S̃−i, τ
S̃,T
i (P̃ )) = e(S,P )(∅, τ S̃,T

i (P̃ )) = 0;

otherwise, as we only consider the transfer of an agent i to the other existing
coalition, the number of the coalitions remains intact: |P | �= |τ S̃,T

i (P̃ )|. ��

Lemma 5.3. If e(S,P )(S̃, P̃ ) = x for x > 0 then there exists only one T ∗ ∈
P̃ \{S̃} such that e(S,P )(S̃−i, τ

S̃,T∗
i (P̃ )) has non-zero value. Moreover, this value

is equal to x(|P | − 1).

Proof. If e(S,P )(S̃, P̃ ) > 0 and e(S,P )(S̃−i, τ
S̃,T
i (P̃ )) > 0 then from the definition:

e(S,P )(S̃−i, τ
S̃,T
i (P̃ )) = (|P | − 1)−|S̃−i\S| = (|P | − 1) · (|P | − 1)−|S̃\S|

= (|P | − 1) · e(S,P )(S̃, P̃ )

which proves the values equality part.
First we will consider a special case when P̃ contains the empty coalition.

Then P̃ = {N, ∅} (as it is the only partition with the empty coalition) and
the only transition of i is allowed to the empty coalition: (S̃, τ S̃,T

i (P̃ )) is equal
(N−i, {N−i, {i}}). As we assumed i �∈ S, we know that {i} � P−S and as
we’re not changing the partition size (|{N, ∅}| = |{N−i, {i}}|) this follows that
e(S,P )(N−i, {N−i, {i}}) > 0 and finishes this case.

Now let’s assume that all the coalitions in P̃ are non-empty. Let Ti ∈ P \ S
be the agent’s i coalition. From the constant-games definition we know that
P−S can be reduced to P̃−S̃ and that in both there is the same number of the
coalitions: |P−S | = |P̃−S̃ |. As the agents from one coalition cannot be separated,
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there must be some non-empty coalition T̃i in P̃−S̃ which can be reduced from
Ti by deleting agents from S̃. It must contain at least one agent denoted by
j (and j �= i, because i ∈ S̃). So when we consider a transition to any other
coalition than T̃i we will separate i and j agents which will violate (c) condition
in �-operator definition and imply zero value in e(S,P ) game. But in τ S̃,T̃i

i (P ) all
the conditions will be satisfied – (a) is obviously satisfied as i �∈ S and P̃−S̃ was
already a subset of P−S ; (b) and (c) are satisfied because the relations between an
additional i agent are equal to the relations of j who is already in the structure.

Again, we do not change the size of the partition. We have to check only one
special case when S̃ = {i}. But from e(S,P )(S̃, P̃ ) > 0 we get S ⊆ S̃ and as we
know that i �∈ S we get S = ∅ which means that the game e(S,P ) is incorrect.

So, finally: e(S,P )(S̃−i, τ
S̃,T̃i

i (P̃ )) > 0. ��

From Lemma 5.2 and Lemma 5.3 we have that every agent i �∈ S is a null-player
(in a steady marginality sense). Based on our Null-player Axiom (Definition
3.5), ϕfull

i (e(S,P )) = 0 and based on Symmetry (Definition 3.2) and Efficiency
(Definition 3.1) we get:

ϕfull
j (e(S,P )) =

1
|S| ·

∑
j∈S

ϕfull
j (e(S,P )) =

1
|S| · e

(S,P )(N, {N, ∅}).

As our value ϕfull clearly satisfies Efficiency, Linearity and Symmetry, the only
observation we need to add is that it also satisfies Null-player Axiom. As agents
not from S are null-players and get nothing it would be sufficient to show that no
agent from S is a null-player. But every agent j from S has a non-zero marginal
contribution to (S, P ): e(S,P )(S, P ) = 1 and e(S,P )(S−j , τ

S,T
j (P )) = 0 for every

T ∈ P \ S. That finishes the proof of Theorem 5.1. ��

Now let us show that our unique value is indeed equal to the value proposed by
McQuillin.

Theorem 5.4. Let v be a game with externalities. Then ϕMcQ(v) = ϕfull(v).

Proof. Again, based on Linearity, we will show the adequacy on the constant-
coalition games. In the proof of Theorem 5.1 we have showed that ϕfull

i (e(S,P )) =
0 for every i �∈ S and ϕfull

j (e(S,P )) = 1
|S| · e(S,P )(N, {N, ∅}) for every j ∈ S.

Let (S, P ) be an embedded coalition. Assume that |P | > 2. As |{N, ∅}| =
2 �= |P |, based on the definition of the constant-coalition games (Definition 4.3)
we get e(S,P )(N, {N, ∅}) = 0 and ϕfull

i (e(S,P )) = 0 for every agent i ∈ N . Also
ϕMcQ

i (e(S,P )) = 0 for every agent i ∈ N , because v̂McQ(S) = 0 for every S ⊆ N
as no embedded coalition of form (S̃, {S̃, N \ S̃}) has a non-zero value in e(S,P )

(the reason here is the same – the partitions sizes do not match).
If |P | = 2 then embedded coalition has the form (S, {S, N\S}) and e(S,{S,N\S})

assigns a non-zero value (equal 1) only to an embedded coalition (S̃, {S̃, N \ S̃)
such that S ⊆ S̃. Hence, v̂McQ(S̃) = 1 when S ⊆ S̃ and v̂(S̃) = 0 otherwise.
Based on the basic Shapley’s axioms for v̂McQ we get that ϕMcQ

i (e(S,P )) = 0 for
i �∈ S and ϕMcQ

j (e(S,P )) = Shj(v̂) = 1
|S| for j ∈ S.
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Let’s check if our value has the same results. As mentioned at the beginning
of the proof, for i �∈ S, ϕfull

i (e(S,P )) = 0 and for j ∈ S, ϕfull
j (e(S,P )) = 1

|S| ·
e(S,P )(N, {N, ∅}) = 1

|S| which completes the proof. ��

6 A Comparison of Various Marginality Definitions

In this section we examine various approaches to marginality more broadly and
we compare them with steady marginality.

In Section 3 we have presented the universal definition of marginality:

mc(i,S,P )(v) =
∑

T∈P−S∪{∅}
α(i,S,P,T )(v(S, P )− v(S−i, τ

S,T
i (P )))

Based on the accepted definition of marginal contribution we define a vector of
marginal contributions mci(v) = (mc(i,S,P )(v))(S,P )∈EC,i∈S .

It seems reasonable to normalize the weights by assuming that the sum of
them is equal 1:

∑
T∈P−S∪{∅} α(i,S,P,T ) = 1 for each (S, P ) ∈ EC such that

i ∈ S. As we have considered only 0-1 weights we have omitted this step to
increase the clarity of the presentation. But it is important to notice, that with
respect to the conventional axioms based on the marginality this normalization is
not significant as we compare mc(i,S,P ) only to the same marginal contribution in
other game (in Bolger [5] and De Clipper and Serrano [7] from mci(v1) = mci(v2)
we conclude ϕi(v1) = ϕi(v2)) or to zero (in Hu and Yang [6] and our paper from
mci(v1) = 0 we conclude that ϕi(v) = 0). Thus, the only important aspect is
the weight ratio.

In all the definitions of marginal contribution proposed in the literature
α(i,N,{N,∅},∅) = 1.6 Thus, in the rest of this section we assume, that P �= {N, ∅}.

Chronologically, the first definition of marginality proposed is also the most
intuitive one. Bolger [5] defined the marginality as a simple average of all the
elementary marginal contributions:

αB
(i,S,P,T ) = 1 for T ∈ P−S ∪ {∅}

In his paper, Bolger studied the basic games – games with only 0-1 values. Thus,
his marginal contribution is the number of partitions from which agent’s transfer
turns the S−i coalition value (negative if value of S is zero). Unfortunately, there
is no closed form expression for Bolger’s value.

Steady marginality is quite similar to Bolger’s one:

αfull
(i,S,P,T ) = 1 for T ∈ P−S and αfull

(i,S,P,T ) = 0 otherwise

We have also already introduced the marginality proposed by De Clipper and
Serrano:

αfree
(i,S,P,T ) = 1 for T = ∅ and αfree

(i,S,P,T ) = 0 otherwise

6 Assume that α(i,N,{N,∅},∅) = 0, then mc(i,N,{N,∅}) = 0 regardless of v(N, {N, ∅})
and v(N−i, {N, {i}}). So, in game with only one non-zero value for grand-coalition
v(N, {N, ∅}) = 1 all the marginal contributions are equal zero which is unintuitive
and with every axiom based on marginality results in a contradiction.
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It is easy to see, that our marginality complements De Clipper and Serrano’s
marginality to Bolger’s one.

Another approach was proposed by Hu and Yang [6]. Their marginality assigns
the same weight to the transfer to every existing coalition and higher value for
the partition where i is alone:

αHY
(i,S,P,T ) = 1 for T ∈ P−S and αHY

(i,S,P,T ) = 1 + r otherwise

where 1 + r = |{P∗∈P:(τS,∅
i (P )\{S−i})�P∗}|

|{P∗∈P:(τS,T
i (P )\{S−i})�P∗}| for any T ∈ P−S .7 It can be shown,

that r ≥ 0.
Let us consider a simple environment in which there exists m political parties

– S(j) for every j ∈ {1, 2, . . . , m} – and one independent agent i (i.e. N =
{i} ∪

⋃
j S(j)). Let P = {S(j) : j ∈ {1, 2, . . . , m}} ∪ {{i}} and define P (j) =

τ
{i},S(j)

i (P ). Assume that an agent i does not have any political power on his own,
but by joining one of the parties he increases the coalition value by (m− 1) and
decreases the values of other parties by 1, thus: v(S(j)

+i , P (j)) = v(S(j), P )+(m−1)
and v(S(j), P (k)) = v(S(j), P )− 1 for every S(j), S(k) ∈ P and S(j) �= S(k).

Consider the marginal contribution of an agent i to the coalition S
(j)
+i . As we

normalize weights (in a way mentioned before) based on non-existing marginality
we get mcfull

(i,S
(j)
+i ,P (j))

= m as we exclude a non-realistic situation from the con-

sideration – when agent i decides to waste his potential. De Clippel and Serrano
consider only this one situation and get mcfree

(i,S
(j)
+i ,P (j))

= m − 1. Bolger reaches

some compromise, as he does not differentiate partitions: mcB

(i,S
(j)
+i ,P (j))

= m− 1
m .

The last marginal contribution mcHY

(i,S
(j)
+i ,P (j))

is slightly smaller than Bolger’s and

depends on the size of S(j) and the number of parties.

7 Conclusions

In this paper we have studied the problem of finding a fair division of jointly
gained payoff in coalitional games with externalities. We have presented an inno-
vative approach to marginality in which the contribution of an agent to the coali-
tion is evaluated only in reference to the partitions where the agent is not alone.
This allowed us to define a new version of Null-player Axiom which, together
with Efficiency, Symmetry and Linearity, uniquely determines a division scheme.
We have proved that this value is equal to the one proposed earlier by McQuillin.

Our work can be extended in various directions. It is not clear if any of the
adopted axioms can be dropped (just as De Clippel and Serrano based their value
only on Symmetry, Efficiency and their version of Marginality axiom). Another
7 That definition may seem wrong, as it might not be obvious, why |{P ∗ ∈ P :

(τS,T
i (P ) \ {S−i}) � P ∗}| is equal for every T ∈ P−S . It appears, that |{P ∗ ∈

P : P̃−S̃ � P ∗}| depends only on |P̃ | and |S̃| and grows with increasing |P̃ |. That
also explains why the numerator is larger than the denominator in 1 + r fractional
definition.
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question is whether there exist any other definitions of marginality which lead
to McQuillin’s value. Looking a bit further, it would be interesting to find any
universal link between the definition of marginality and the formula for the value
derived from it. Finally, other approaches to marginality axioms can be studied.
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Abstract. We consider mechanisms without payments for the problem
of scheduling unrelated machines. Specifically, we consider truthful in ex-
pectation randomized mechanisms under the assumption that a machine
(player) is bound by its reports: when a machine lies and reports value
t̃ij for a task instead of the actual one tij , it will execute for time t̃ij if it
gets the task—unless the declared value t̃ij is less than the actual value
tij , in which case, it will execute for time tij . Our main technical result is
an optimal mechanism for one task and n players which has approxima-
tion ratio (n + 1)/2. We also provide a matching lower bound, showing
that no other truthful mechanism can achieve a better approximation
ratio. This immediately gives an approximation ratio of (n + 1)/2 and
n(n + 1)/2 for social cost and makespan minimization, respectively, for
any number of tasks.

1 Introduction

A major challenge today is to design algorithms that work well even when the
input is reported by selfish agents or when the algorithm runs on a system
with selfish components. The classical approach is to use mechanism design [13],
that is, to design algorithms that use payments to convince the selfish agents
to reveal the truth and then compute the outcome using the reported values.
Central to the mechanism design approach is the use of dominant strategies
as the equilibrium concept. Mechanism design is a very important framework
with many unexpected results and it remains a very active research area trying
to address some beautiful and challenging problems. Nevertheless, one major
problem with mechanism design with payments is that in many situations, the
use of payments may not be feasible.

Partly for this reason, there is a lot of recent interest in mechanisms that use
no payments (mechanism design without payments) [13]. Given that in many
problems we have obtained very poor results using mechanisms with payments,
it will be really surprising if the substantially more restricted class of mechanisms
without payments can achieve any positive results. For the general unrestricted
domain with at least 3 outcomes and truthful mechanisms without payments,
the Gibbard-Satterthwaite theorem [6,17] states that only dictatorial mecha-
nisms are truthful; dictatorial mechanisms are those in which a particular player
determines the outcome. Contrast this to Roberts theorem [16], which states
that if we allow payments, the truthful mechanisms are the affine maximizers,

G. Persiano (Ed.): SAGT 2011, LNCS 6982, pp. 143–153, 2011.
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a much richer class than the dictatorial mechanisms (yet a very poor class in
comparison to the set of all possible algorithms).

When we restrict the domain to scheduling unrelated machines, perhaps the
most influential problem in algorithmic game theory, the results so far have also
been disappointing. The best approximation ratio for the makespan that we
know by truthful in expectation mechanisms is (n + 1)/2 [3], where n is the
number of players. The best known lower bound of 2 [3,11] leaves the possibility
open for improved mechanisms. The situation for deterministic mechanisms is
similar: the upper bound is easily n [12], and the best known lower bound is 2.61
[8]. It may seem surprising that in this work we can achieve comparable results
using mechanisms without payments (our main result, Theorem 2, is a truthful in
expectation mechanism with approximation ratio n(n + 1)/2). But a moments
thought will reveal that we can get a slightly weaker bound (approximation
ratio n for one task and hence approximation ratio n2 for many tasks) with the
natural mechanism which allocates each task independently and with probability
inversely proportional to the execution times (Proposition 1). The assumption
that the players are bound by their declarations plays also a crucial role; without
it, no positive result is possible. The value of our main result is that it gives a
definite answer (tight upper and lower bounds, albeit only for one task) for this
fundamental problem.

Mechanism design without payments is a major topic in game theory [13],
although it has not been studied as intensively as the variant with payments
in algorithmic game theory. There are however many recent publications which
study such mechanisms. Procaccia and Tennenholtz [15] proposed to study ap-
proximate mechanism design without payments for combinatorial problems and
they studied facility location problems. This work was substantially extended
(see for example [10,9,1]). Such mechanisms studied also by Dughmi and Gosh
[4] who consider mechanisms assignment problems and by Guo and Conitzer [7]
who consider selling items without payments to 2 buyers. Conceptually, closer
to our approach of assuming that the players pay their declared values is the
notion of impositions of Nissim, Smorodinsky, and Tennenholtz [14] which was
further pursued by Fotakis and Tzamos [5].

2 Model

We study the problem of scheduling tasks when the machines are selfish. We
formulate the problem in its more general form, the unrelated machines version:
there are n selfish machines and m tasks; the machines are lazy and prefer not
to execute any tasks. Machine i needs time ti,j to execute task j. The tasks are
allocated to machines with the objective of minimizing the makespan (or the so-
cial welfare which is the negation of the sum of executing times of all machines).
Let a be an (optimal) allocation for input t, where ai,j is an indicator variable
about the event of allocating task j to machine i. The execution time of machine
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i is
∑m

j=1 ai,jti,j and the makespan is maxi=1,...,n

∑m
j=1 ai,jti,j . For randomized

algorithms, the allocation variables ai,j are not integral but real values in [0, 1]
which is the probability to allocate task j to machine i1.

In this work, we consider direct revelation mechanisms; a mechanism is sim-
ply a randomized scheduling algorithm S which computes an allocation based
on the declarations of the machines. There are no payments. More precisely,
every machine i reports its private values t̃i,j , one for each task and we apply
the algorithm S on this input. The notation t̃i,j instead of ti,j is used because
the machine may lie and not declare its true values ti,j . There is however a very
important difference with the standard Nisan-Ronen framework [12] for this
mechanism design problem. We assume that the machines are bound by their
reports. More precisely, if a machine i declares a value t̃i,j ≥ ti,j for task i and
is allocated the task, its actual cost is the declared value t̃i,j and not ti,j . One
justification for this assumption is that in some environments the machines can
be observed during the execution of the tasks and cannot afford to be caught
lying about the execution times. Similar assumptions have been used for other
problems. Our assumption is similar to the notion of imposition [14,5]; for exam-
ple, in the facility location problem, the players may be forced to use the facility
which is closer to their declared position instead of letting them freely choose
between the facilities. To complete our assumptions, we need to specify what
happens when a machine declares a smaller value, i.e., t̃i,j < ti,j . In this case, we
make the simple assumption that the actual cost is the true value ti,j ; it would
be simpler to assume that the machines are not allowed to lie in this direction,
but we prefer the weakest assumption since it does not affect our results. To
summarize, the cost of machine i for task j is max(ti,j , t̃i,j).

Our framework now is simple. We design a randomized scheduling algorithm
S. The selfish machines report values t̃i,j and we apply algorithm S to the
reported values. This induces a game among the machines: the pure strategies
of machine i are the vectors

(
t̃i,j
)m
j=1

with t̃i,j ≥ 0. The cost is the execution
time computed by algorithm S on input t̃. To be more precise, if a = S(t̃)
is the allocation computed by algorithm S on input t̃, the cost of machine i is
ci =

∑m
j=1 ai,j max(ti,j , t̃i,j). We seek mechanisms which minimize the makespan

maxi=1,...,n ci or the social cost
∑n

i=1 ci.
Our assumption is related to mechanisms with verification [12], in which the

mechanism learns the actual execution time of the machines and pays after the
execution. Because of the delayed payments, these mechanisms are much more
powerful than the mechanisms of our framework; for example, they can enforce
that the machines are bound by their declarations by imposing a very high
penalty for lying. A similar framework was proposed in [2], but in this case the
power of the mechanism is limited: it can only deny payment at the end when a
machine is caught lying by not being able to finish the tasks within the declared
time.

1 We may also interpret the probabilities as fractional allocations. Naturally, our re-
sults apply to the fractional allocations as well.
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2.1 The Case of a Single Task

We focus on the simple case of one task and n machines. Let t1, . . . , tn be the true
values of the machines for the task and let t̃1, . . . , t̃n be the declared values; we
drop the second subscript since there is only one task. Let pi(t̃) be the probability
of allocating the task to player i. The expected cost of player i is ci = ci(ti, t̃) =
pi(t̃)max(ti, t̃i), while the social cost of the algorithm is

∑n
i=1 ci (in the case of

the single task, the makespan and social cost are identical).
The mechanism is called truthful if for every t−i, the expected cost ci of player

i is minimized when t̃i = ti. This notion of truthfulness, truthful in expectation,
is the weakest notion of truthfulness which contains a richer class of mechanisms
than the standard notion on truthfulness or universal truthfulness. It is not ex
post truthful, meaning that after the players see the outcome of the coins, they
may want to change their declarations. It is trivial to see that the stronger notion
of truthfulness (universally truthful) cannot achieve any positive result. Notice
however, that for the fractional version of the scheduling problem, in which
we can allocate parts of the same tasks to different machines, we can consider
deterministic algorithms and consequently the strongest notion of truthfulness.

Claim. An algorithm is truthful if and only if for every i and t−i, tipi(t) is
non-decreasing in ti and pi(t) is non-increasing in ti.

Proof. Indeed, if tipi(t) is non-decreasing in ti, the player prefers ti to higher
values, i.e., when t̃i ≥ ti, the cost ci = pi(t̃i, t−i)t̃i is minimized at t̃i = ti.
Similarly, if pi(ti) is non-increasing, the player prefers ti to smaller values, i.e.,
when t̃i ≤ ti, the cost ci = pi(t̃i, t−i)ti is again minimized at t̃i = ti.

Conversely, if there exist x < y with pi(t−i, y)y < pi(t−i, x)x, then player
i gains by lying: when ti = x he prefers to declare y. Similarly, if there exist
x > y with pi(t−i, x) > pi(t−i, y), the player would again prefer to declare y
when ti = x.

A mechanism is defined simply by the probability functions pi(t). The expected
makespan is

∑
i ci and its approximating ratio is

∑
i ci/ mini ti. We seek truthful

mechanisms with small approximation ratio.

3 Truthful Mechanisms for One Task

In this section, we study the case of a single task. We first consider a natu-
ral mechanism, the proportional algorithm: It allocates the task to machine i
with probability inversely proportional to the declared value ti, i.e., pi(t) =
t−1
i /
∑

k t−1
k .

Proposition 1. The proportional algorithm is truthful and achieves approxima-
tion ratio n.

Proof. Indeed, to verify that the mechanism is truthful, it suffices to observe
that pi(t) is non-increasing in ti and that tipi(t) is non-decreasing it ti. The
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expected makespan of this mechanism is n/
∑

i t−1
i while the optimal makespan

is mini ti. It follows that the approximation ratio is at most n and that it can
be arbitrarily close to n (when for example one value is 1 and the other n − 1
values are arbitrarily high).

It is natural to ask whether there are better mechanisms than the proportional
mechanism. In the next subsection, we give a positive answer by designing an
optimal mechanism, albeit with not substantially better approximation ratio.

3.1 An Optimal Truthful Mechanism

In this subsection, we study truthful algorithms that have optimal approximation
ratio.

To find an optimal truthful mechanism, we want to find functions pi(t) such
that for every t:

– for every i: tipi(t) is non-decreasing in ti,
– for every i: pi(t) is non-increasing in ti,
–
∑

i pi(t) = 1

and which minimize maxt

∑
i tipi(t)/ mini ti. The first two conditions capture

truthfulness and the third condition the natural property that the probabilities
add to 1.

We will show the following theorem:

Theorem 1. There is a truthful in expectation mechanism without payments
with approximation ratio (n+1)/2. Conversely, no truthful in expectation mech-
anism without payments can have approximation ratio better than (n + 1)/2.

Before proceeding with the proof of the theorem, it is instructive to consider first
the case of n = 2 players. We will consider a symmetric mechanism, so it suffices
to give the probabilities pi(t) of assigning the task to player i when t1 ≤ t2. We
claim that the mechanism with probabilities

p1(t) = 1− t1
2t2

p2(t) =
t1
2t2

is truthful and has approximation ratio 3/2. To clarify: these are the probabilities
when t1 ≤ t2; by symmetry, we can compute the probabilities when the declared
value of the second player is smaller than the declared value of the first player.

Let us verify that this mechanism is truthful. Specifically we want to show
that the expected cost of player i is minimized when he declares his true value;
this must hold for every value t−i of the other player. Consider first player 1
(the one with true value less than the declared value of the other player).

– He has no reason to declare something less than t1, because p1(t) is non-
increasing in t1, consequently tipi(t) ≤ tipi(t̃i, t−i).

– He has no reason to declare something in (t1, t2), because t1p1(t) = t1− t21
2t2

=
t22−(t2−t1)

2

2t2
is increasing in t1 for t1 < t2.
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– Finally, he has no reason to declare something in [t2,∞). In this case, his lie
changes the order of the values, and, by the definition of the mechanism, the
probability of getting the task will be p2(t2, t̃1). Nevertheless, we still have

t1p1(t) =
t22 − (t2 − t1)2

2t2
≤ t2

2
= t̃1

t2

2t̃1
= t̃1p2(t2, t̃1).

We work similarly for the second player (the one with true value greater than the
declared value of the other player). If he declares his true value t2, his expected
cost is t2p2(t) = t1/2.
– He has no reason to declare something less than t1, because in this case the

probability p1(t1, t̃2) of getting the task is at least 1/2 and his cost will be
at least t2/2 ≥ t1/2.

– He has no reason to declare any other value greater than t1 because his cost
is going to be t̃2p2(t1, t̃2) = t1/2, anyway.

The above mechanism has approximation ratio 3/2, because the cost is

t1p1(t) + t2p2(t) = t1 −
t21
2t2

+
t1
2

=
3
2
t1 −

t21
2t2
≤ 3

2
t1.

Trivially, the approximation ratio tends to 3/2 as t2 tends to ∞.
We proceed to generalize the above to more than two players. Again, we define

a symmetric mechanism, so it suffices to describe it when t1 ≤ · · · ≤ tn:

p1 =
1
t1

∫ t1

0

n∏
i=2

(
1− y

ti

)
dy (1)

pk =
1

tkt1

∫ t1

0

∫ y

0

∏
i=2..n,i�=k

(
1− x

ti

)
dx dy for k �= 1

For example, for n = 2 we get the mechanism discussed above, and for n = 3
the probabilities are

p1 = 1− t1(t2 + t3)
2t2t3

+
t21

3t2t3
p2 =

t1
2t2
− t21

6t2t3
p3 =

t1
2t3
− t21

6t2t3
.

This definition is not arbitrary, but it is the natural solution to the requirements
at the beginning of this subsection. This will become apparent as we proceed to
show that this is an optimal algorithm for our problem.

First we verify that the mechanism is well-defined: We need to show that these
probabilities are nonnegative and add up to 1. Indeed, consider the quantities qi

inside the integrals

q1(y) =
n∏

i=2

(
1− y

ti

)
qk(y) =

1
tk

∫ y

0

∏
i=2..n,i�=k

(
1− x

ti

)
dx
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for which

pi =
1
t1

∫ t1

0

qi(y) dy.

Since the integral is for y ≤ t1 and t1 is the minimum among the tk’s, all factors
in these expressions are nonnegative. This shows that qi(y) ≥ 0 for every i =
1, . . . , n. We also observe that q′1(y) = −

∑n
i=2 q′k(y) which shows that

∑n
i=1 qi(y)

is constant; taking y = 0, we see that this constant is 1. In summary the pi’s are
nonnegative and their sum is 1

t1

∫ t1
0

∑n
i=1 qi(y) dy = 1

t1

∫ t1
0

1 dy = 1.
We also need to verify that this indeed a symmetric mechanism; otherwise

the above definition is not complete. Specifically, we need to show that if t1 = t2
then p1 = p2. Indeed, it is straightforward to verify it by employing the following
easy identity for every function g:∫ a

0

(a− y)g(y) dy ≤
∫ a

0

∫ y

0

g(x) dx dy2

In this case, g(y) =
∏n

i=3

(
1− y

ti

)
.

We now proceed to establish that the mechanism is truthful.

Lemma 1. The symmetric mechanism defined by the probabilities in (1) is
truthful.

Proof. To show that the algorithm is truthful, we observe that

– The probabilities pi are non-increasing in ti. This is trivially true for i �= 1
and it can be easily verified for i = 1. The fact that the probabilities are non-
increasing in ti shows that no player i has a reason to lie and declare a value
t̃i < ti. To see this, fix the values of the remaining players and assume that
player i changes his value to t̃i < ti. We will argue that the probability of
getting the task with the new value is greater than or equal to the original
probability; this suffices because the cost of the player is this probability
times ti.
If, after the change, the order of the players remains the same, the probability
does not decrease by this change because pi is non-increasing in ti. We need
to show the same when the change affects the order of the players. This turns
out to be easy but we note that we need to be careful, because the expressions
that define the probabilities of the mechanism depend on the order of the
values. However, we don’t need the expressions of the probabilities but a

2 Proof: Let G(y) =
∫ y

0
g(x) dx. Then∫ a

0

(a − y)g(y)−
∫ a

0

∫ y

0

g(x) dx dy =

∫ a

0

(a − y)g(y)− G(y) dy

=

∫ a

0

ag(y)− (yG(y))′ dy

= aG(a) − aG(a) = 0.
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simpler argument: imagine that we lower the value from ti to t̃i in stages:
from ti to ti−1 to ti−2, and so on, to ti−k, and finally to t̃i. In each stage,
the order of the values remains the same and therefore the probability can
only increase. It follows that it does not decrease from the total change. The
fact that the mechanism is symmetric is crucial in this argument because
the algebraic expressions of the probability of the player may change from
stage to stage, but the values at the boundaries ti−1, . . . , ti−k of successive
stages are the same.

– every player k for k �= 1 is truthful since tkpk is independent of his value tk;
this holds even when the player reports a higher value which may change
the order of the players

– player 1 has no reason to lie and report a value in (t1, t2] because t1p1 is
increasing in t1; furthermore, player 1 has no reason to report a higher value
than t2 which will change the order of the players because the cost will
change from t1p1 to t′kp′k = 1

t2

∫ t2
0

∫ y

0

∏n
i=3

(
1− x

ti

)
dx dy (because now the

minimum value is t2). It suffices therefore to show

t1p1 ≤ t′kp′k ⇔∫ t1

0

n∏
i=2

(
1− y

ti

)
dy ≤ 1

t2

∫ t2

0

∫ y

0

n∏
i=3

(
1− x

ti

)
dx dy ⇐

∫ t2

0

n∏
i=2

(
1− y

ti

)
dy ≤ 1

t2

∫ t2

0

∫ y

0

n∏
i=3

(
1− x

ti

)
dx dy ⇔

∫ t2

0

(t2 − y)
n∏

i=3

(
1− y

ti

)
dy ≤

∫ t2

0

∫ y

0

n∏
i=3

(
1− x

ti

)
dx dy

The last holds because of Equation (2).

Putting everything together, we see that the mechanism is indeed truthful.

Lemma 2. The symmetric mechanism defined by the probabilities in (1) has
approximation ratio (n + 1)/2.

Proof. Now that we have established that the algorithm is truthful, we proceed to
bound its approximation ratio. The approximation ratio is

∑n
i=1 tipi/t1. Clearly,

t1p1 ≤ t1 and for k > 1

tkpk =
1
t1

∫ t1

0

∫ y

0

∏
i=2..n,i�=k

(
1− x

ti

)
dx dy

≤ 1
t1

∫ t1

0

∫ y

0

1 dx dy

= t1/2.

Therefore,
∑n

i=1 tipi ≤ t1 + (n − 1)t1/2 = t1(n + 1)/2, which shows that the
approximation ratio is at most (n + 1)/2. It is trivial that if we fix the other
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values and let t1 tend to 0, the above inequalities are almost tight, and therefore
the approximation ratio can be arbitrarily close to (n + 1)/2.

We will now show that no other truthful algorithm has a better approximation
ratio.

Lemma 3. No truthful in expectation mechanism without payments has approx-
imation ratio smaller than (n + 1)/2.

Proof. We will employ instances with values of the form (1, 1, m, . . . , m) and
(1, m, . . . , m) where m is some large value (which we will allow to tend to infin-
ity to obtain the lower bound). Without loss of generality we can assume that the
mechanism is symmetric: if not, consider a non-symmetric mechanism M and cre-
ate a new mechanism which first permutes the values and then applies mechanism
M ; the new mechanism has approximation ratio smaller or equal to the approxi-
mation ratio of M . Let p and p′ be the probabilities assigned by an algorithm to
the above instances. For the instance (1, 1, m, . . . , m), we have 2p2+(n−2)p3 = 1
and the approximation ratio is at least r ≥ 2p2 + m(n− 2)p3 = m− 2p2(m− 1).
Similarly for the other instance (1, m, . . . , m) we have p′1 + (n − 1)p′2 = 1 and
r ≥ p′1 + (n− 1)mp′2 = 1 + (m− 1)(n− 1)p′2.

The crucial step is to use the truthfulness of player 2 to connect the two
instances. Specifically, the second player is truthful only when 1 · p2 ≤ m · p′2.
Substituting the value of p′2 in the bound of the second instance, we get that the
approximation is at least 1 + p2(m− 1)(n− 1)/m.

In summary, the approximation ratio is at least max{m − 2p2(m − 1), 1 +
p2(m − 1)(n − 1)/m}. The first expression is decreasing in p2 while the second
one is increasing in p2; the minimum approximation ratio is achieved when the
expressions are equal, that is, when p2 = m/(2m + n − 1) which gives ratio at
least (n+1)/2−(n2−1)/(4m+2n−2). As m tends to infinity, the approximation
ratio tends to (n + 1)/2.

4 Extension to Many Tasks and Discussion

In the previous section, we gave an optimal mechanism for one task. We can
use it to get a mechanism for many tasks by running it independently for ev-
ery task. The resulting mechanism is again truthful. If the objective is the so-
cial cost (i.e., to minimize the sum of the cost of all players), the mechanism
clearly retains its approximation ratio. If the objective however is the makespan,
then the approximation ratio is at most n(n + 1)/2, for the simple reason that
maxi ci ≤

∑
i ci ≤ n maxi ci. So we get

Theorem 2. There is a truthful in expectation mechanism without payments for
the problem of scheduling unrelated machines with approximation ratio (n+1)/2
when the objective is the social cost and n(n + 1)/2 when the objective is the
makespan.
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It follows from the case of one task that the approximation ratio (n + 1)/2 is
tight for the social cost. It is not clear that the pessimistic way we used to bound
the approximation ratio of the makespan is tight. It remains open to estimate
the approximation ratio of the given mechanism for many tasks. It is also open
whether there are (task-independent or not) mechanisms without payments for
many tasks with better approximation ratio.
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nisms. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 454–464.
Springer, Heidelberg (2007)

9. Lu, P., Sun, X., Wang, Y., Zhu, Z.: Asymptotically optimal strategy-proof mech-
anisms for two-facility games. In: Proceedings of the 11th ACM Conference on
Electronic Commerce, pp. 315–324. ACM, New York (2010)

10. Lu, P., Wang, Y., Zhou, Y.: Tighter bounds for facility games. In: Leonardi, S.
(ed.) WINE 2009. LNCS, vol. 5929, pp. 137–148. Springer, Heidelberg (2009)

11. Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness: extended ab-
stract. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 1143–1152. Society for Industrial and Applied Mathematics,
Philadelphia (2007)

12. Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In: Pro-
ceedings of the Thirty-First Annual ACM Symposium on Theory of Computing,
pp. 129–140. ACM, New York (1999)

13. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic game theory.
Cambridge Univ. Pr., Cambridge (2007)



Scheduling without Payments 153

14. Nissim, K., Smorodinsky, R., Tennenholtz, M.: Approximately optimal mechanism
design via differential privacy. Arxiv preprint arXiv:1004.2888 (2010)

15. Procaccia, A., Tennenholtz, M.: Approximate mechanism design without money.
In: Proceedings of the Tenth ACM Conference on Electronic Commerce,
pp. 177–186. ACM, New York (2009)

16. Roberts, K.: The characterization of implementable choice rules. Aggregation and
Revelation of Preferences, 321–348 (1979)

17. Satterthwaite, M.: Strategy-proofness and Arrow’s conditions: Existence and cor-
respondence theorems for voting procedures and social welfare functions. Journal
of Economic Theory 10(2), 187–217 (1975)



Combinatorial Agency of Threshold Functions

Shaili Jain1 and David C. Parkes2

1 Yale University, New Haven, CT
shaili.jain@yale.edu

2 Harvard University, Cambridge, MA
parkes@eecs.harvard.edu

Abstract. We study the combinatorial agency problem introduced by
Babaioff, Feldman and Nisan [5] and resolve some open questions posed
in their original paper. Our results include a characterization of the tran-
sition behavior for the class of threshold functions. This result confirms a
conjecture of [5], and generalizes their results for the transition behavior
for the OR technology and the AND technology. In addition to estab-
lishing a (tight) bound of 2 on the Price of Unaccountability (POU) for
the OR technology for the general case of n > 2 agents (the initial paper
established this for n = 2, an extended version establishes a bound of
2.5 for the general case), we establish that the POU is unbounded for
all other threshold functions (the initial paper established this only for
the case of the AND technology). We also obtain characterization re-
sults for certain compositions of anonymous technologies and establish
an unbounded POU for these cases.

1 Introduction

The classic principal-agent model of microeconomics considers an agent with un-
observable, costly actions, each with a corresponding distribution on outcomes,
and a principal with preferences over outcomes [9,15]. The principal cannot con-
tract on the action directly (e.g. the amount of effort exerted), but only on the
final outcome of the project. The main goal is to design contracts, with a pay-
ment from the principal to the agent conditioned upon the outcome, in order to
maximize the payoff to the principal in equilibrium with a rational, self-interested
agent.

The principal-agent model is a classic problem of moral hazard, with agents
with potentially misaligned incentives and private actions. A related theory has
considered the problem of moral hazard on teams of agents [4,14,13]. Much of
this work involves a continuous action choice by the agent (e.g., effort) and
a continuous outcome function, typically linear or concave in the effort of the
agents. Moreover, rather than considering the design of an optimal contract that
maximizes the welfare of a principal, considering the loss to the principal due
to transfers to agents, it is more typical to design contracts that maximize the
total value from the outcome net the cost of effort, and without consideration
of the transfers other than requiring some form of budget balance.

G. Persiano (Ed.): SAGT 2011, LNCS 6982, pp. 154–165, 2011.
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Babaioff et al. [5] introduce the combinatorial agency problem. This a version
of the moral hazard in teams problem in which the agents have binary actions
and the outcome is binary, but where the outcome technology is a complex com-
bination of the inputs of a team of agents. Each agent is able to exert high or low
effort in its own hidden action, with the success or failure of an overall project
depending on the specific technology function. In particular, these authors con-
sider a number of natural technology functions such as the AND technology,
the OR technology, the majority technology, and nested models such as AND-
of-ORs and OR-of-ANDs. This can be conceptualized as a problem of moral
hazard in teams where agents are situated on a graph, each controlling the effort
at a particular vertex.

The combinatorial agency framework considers the social welfare, in terms
of the cost to agents and the value to the principal, that can be achieved in
equilibrium under an optimal contract where the principal seeks a contract that
maximizes payoff, i.e. value net of transfers to the agents, in equilibrium. Thus
the focus is on contracts that would be selected by a principal, not be a designer
interested in finding an equilibrium that maximizes social welfare. In particular,
Babaioff et al. consider the (social) Price of Unaccountability (POU), which is
the worst case ratio between the optimal social welfare when actions are ob-
servable as compared to when they are not observable. The worst-case is taken
over different probabilities of success for an individual agent’s actions (and thus
different, uncertain technology functions), and over the principal’s value for a
successful outcome. The optimal social welfare is obtained by requesting a par-
ticular set of agents to exert effort, in order to maximize the total expected value
to the principal minus the cost incurred by these agents. In the agency case, the
social welfare is again this value net cost, but optimized under the contract that
maximizes the expected payoff of the principal.

The main contribution of this work is to characterize the transition behavior
for the k-out-of-n (or threshold) technology, for n agents and k ∈ {1, . . . , n}. The
threshold technology is anonymous, meaning that the probability of a success-
ful outcome only depends on the number of agents exerting high effort, not the
specific set of agents. Because of this, the transition behavior — a characteriza-
tion of the optimal contract, which specifies which agents to contract with, as a
function of the principal’s valuation — can be explained in terms of the number
of agents with whom the principal contracts. We establish that the transition
behavior (in both the non-strategic and agency cases) includes a transition from
contracting between 0 and l agents for some 1 ≤ l ≤ n, followed by all n− l re-
maining transitions, for any 0 < α < β < 1, where α (resp. β) is the probability
that the action of a low effort (resp. high effort) action by an agent results in a
successful local outcome. This generalizes the prior result of Babaioff et al. [5]
for the AND gate (a single transition from 0 agents to all n agents contracted)
and the OR gate (all n transitions), and closes an important open question.

Considering the POU, we establish a tight bound of 2 for the OR technology,
for all values of n, α and β = 1− α. The initial paper established this POU for
the case of n = 2 agents only, while an extended version of the paper provides



156 S. Jain and D.C. Parkes

a bound of n = 2.5 for the general n > 2 case [6]. In addition, we establish
that the POU is unbounded for the threshold technology for the general case of
k ≥ 2, n ≥ 2. The initial paper established this result only for AND technology,
and so our result closes this for the more general threshold case for any 0 <
α < β < 1. In addition, we consider non-anonymous technology functions such
as Majority-of-AND, Majority-of-OR, and AND-of-Majority, and study their
transition behavior.

We believe that this work is an interesting step in extending the combinatorial
agency model in a direction of interest for crowdsourcing [16,3,1,2]. Combinato-
rial agency is relevant to applications where neither the effort nor the individual
outcome of each worker is observable. All that is observable is the ultimate suc-
cess or failure. Perhaps the boundaries between individual contributions are hard
to define, or workers prefer to hide individual contributions in some way (e.g., to
protect their privacy.) Perhaps it is extremely costly, or even impossible, to de-
termine the quality of the work performed by an individual worker when studied
in isolation. The threshold technology seems natural in modeling crowdsourcing
problems in which success requires getting enough suitable contributions.

Related Work. A characterization of the transition behavior was first conjec-
tured for the Majority technology in Babaioff et al. [5], but almost all of the
subsequent literature is restricted to read-once networks [7,8,11,12]. The combi-
natorial agency problem has also been studied under mixed Nash equilibria [7].
Babaioff et al. [8] study “free labor” and whether the principal can benefit from
having certain agents reduce their effort level, even when this effort is free. The
principal is hurt by free labor under the OR technology, because free labor can
lead to free riding. Another variation allows the principal to audit some fraction
of the agents, and discover their individual private action [10]. Some computa-
tional complexity results for identifying optimal contracts have also been devel-
oped. This problem is NP-hard for OR technology [11], and the difficulty is later
shown to be a property of unobservable actions [12]. This is in contrast to the
AND technology, which admits a polynomial time algorithm for computing the
optimal contract. An FPTAS is developed for OR technology, and extended to
almost all series-parallel technologies [11].

2 Model

In the combinatorial agency model, a principal employs a set of n self-interested
agents. Each agent i has an action space Ai and a cost (of effort) associated with
each action ci(ai) ≥ 0 for every ai ∈ Ai. We let a−i = (a1, . . . , ai−1, ai+1, . . . , an)
denote the action profile of all other agents besides agent i. Similar to Babaioff
et al. [5], we focus on a binary-action model. That is, agents either exert effort
(ai = 1) or do not exert effort (ai = 0), and the cost function becomes ci if ai = 1
and 0 if ai = 0. If agent i exerts effort, she succeeds with probability βi. If agent
i does not exert effort, she succeeds with probability αi, where 0 < αi < βi < 1.
We deal with the case of homogenous agents (e.g. βi = β, αi = α and ci = c
for all i), though some of the prior work deals with the case of heterogenous
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agents. Sometimes we use the additional assumption of [5], that β = 1 − α,
where 0 < α < 1

2 .
Completing the description of the technology is the outcome function f , which

determines the success or failure of the overall project as a function of the success
or failure of each agent. Let x = (x1, . . . , xn), with xi ∈ {0, 1} to denote the
success or failure of the action of agent i given its selected effort level. Following
Babaioff et al. [5] we focus on a binary outcome setting, so that the outcome
is 1 (= success) or 0 (= failure.) Given this, we study the following outcome
functions:

1. AND technology: f(x1, x2, ..., xn) = ∧i∈Nxi. In other words, the project
succeeds if and only if all agents succeed in their tasks.

2. OR technology: f(x1, x2, ..., xn) = ∨i∈Nxi. In other words, the project suc-
ceeds if and only if at least one agent succeeds in her task.

3. Majority technology: f(x) = 1 if a majority of the xi are 1. In other words,
the project succeeds if and only if a majority of the agents succeed at their
tasks.

4. Threshold technology: We can generalize the majority technology into a
threshold technology, where f(x) = 1 if and only if at least k of the xi are
1, e.g. at least k of the n agents succeed in their tasks.

In fact, the threshold technology is a generalization of the OR, AND and majority
technologies, since the k = 1 case is equivalent to the OR technology, the k = n
case is equivalent to the AND technology, and the k = !n

2 " case is equivalent to
the majority technology. It should be noted that the set of threshold technologies
is exactly the set of threshold functions. It is easy to see that each of these
outcome functions is anonymous, meaning that the outcome is invariant to a
permutation on the agent identities.

Given outcome function f , and success probabilities α and β, then action
profile a induces a probability p(a) ∈ [0, 1] with which the project will succeed.
This is just

p(a) = Ex[f(x) | x ∼ a] (1)

where the local outcomes x are distributed according to α, β and as a result of
the effort a by agents. Since p considers the combined effect of technology f , α
and β, then we refer to p as the technology function.

The principal has a value v for a successful outcome and 0 for an unsuccessful
outcome. Like [5], we assume that the principal is risk-neutral and seeks to
maximize expected value minus expected payments to agents. The principal is
unable to observe either the actions a or the (local) outcomes x. The only thing
the principal can observe is the success or failure of the overall project. Based
on this, a contract specifies a payment ti ≥ 0 to each agent i when the project
succeeds, with a payment of zero otherwise. The principal can pay the agents,
but not fine them. It is convenient to include in a contract the set of agents that
the principal intends to exert high effort; this is the set of agents that will exert
high effort when the principal selects an appropriate payment function.
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The utility to agent i under action profile a is ui(a) = ti ·p(a)−ci if the agent
exerts effort, and ui(a) = ti · p(a) otherwise. The principal’s expected utility is
u(a) = v·p(a)−

∑
i∈N ti ·p(a). The principal’s task is to design a contract so that

its utility is maximized under an action profile a that is a Nash equilibrium. We
make the same assumption as Babaioff et al. [5], that if there are multiple Nash
equilibria (NE), the principal can contract for the best NE. The social welfare
for an action profile a is given by u(a) +

∑
i∈N ui(a) = v · p(a) −

∑
i∈N ci · ai,

with payments from the principal to the agents canceling out.
Throughout, we focus on outcome functions that are monotonic, so that

f(x) = 1 ⇒ f(x′
1, x−1) = 1 for x′

1 ≥ x1. Based on this, then the technol-
ogy function p is also monotonic in the amount of effort exerted, that is for all
i and all a−i ∈ {0, 1}n−1, p(1, a−i) ≥ p(0, a−i). Similarly, a technology func-
tion p is anonymous if it symmetric with respect to the players. That is, it is
anonymous if it only depends on the number of agents that exert effort and is
indifferent to permutations of the joint action profile a. This is true whenever
the underlying outcome function is anonymous.

In the non-strategic variant of the problem, the principal can choose which
agents exert effort and these agents need not be “motivated”, the principal can
simply bear their cost of exerting effort. Let S∗

a and S∗
ns denote the optimal

set of agents to contract with in the agency case and the non-strategic case
respectively. That is, these sets of agents are those that maximize the expected
value to the principal net cost, first where the sets must be induced in a Nash
equilibrium and second when they can be simply selected.

Definition 1. [5] The Price of Unaccountability (POU) for an outcome func-
tion f is defined as the worst case ratio (over v, α and β) of the social welfare
in the non-strategic case and the social welfare of the agency case:

POU (f) = sup
v>0,α,β

p(S∗
ns(v)) · v −

∑
i∈S∗

ns(v) ci

p(S∗
a(v)) · v −

∑
i∈S∗

a(v) ci
, (2)

where p is the technology function induced by f , α and β, with 0 < α < β < 1.

In studying the POU, it becomes useful to characterize the transition behavior
for a technology. The transition behavior is, for a fixed technology function p,
the optimal set of contracted agents as a function of the principal’s value v. We
know that when v = 0 it is optimal to contract with 0 agents and likewise, as
v → ∞, it is optimal to contract with all agents. However, we would like to
understand what are the optimal sets of agents contracted between these two
extreme cases. There are, in fact, two sets of transitions, for both the agency
and the non-strategic case. For anonymous technologies, there can be at most n
transitions in either case, since the number of agents in the optimal contract is
(weakly) monotonically increasing in the principal’s value. We seek to understand
how many transitions occur, and the nature of each “jump” (i.e. the change in
number of agents contracted with at a transition.)

We also consider compositions of these technologies such as majority-of-AND,
Majority-of-OR, and AND-of-Majority. These technologies are no longer anony-
mous. With non-anonymous technologies, one needs to specify the contracted
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set of agents, in addition to the number of agents contracted. In considering
composition of anonymous technologies, we assume we are composing identical
technology functions, e.g. each AND gate in the majority-of-AND technology
consists of the same number of agents.

3 Transition Behavior of the Optimal Contract

Below we will characterize the transition behavior of the threshold technology.
We show that there exists an l ∈ {1, ..., n} such that the first transition is from 0
to l agents followed by all remaining transitions. This result holds for any value
of α, β such that 0 < α < β < 1.

Our proof builds on the framework of Babaioff et al. [5]. In Babaioff et al.,
it was shown that the AND technology always exhibits “increasing returns to
scale” (IRS) and the OR technology always exhibits “decreasing returns to scale”
(DRS). It was also shown that any anonymous technology that exhibits IRS
has a single transition from 0 to n agents for the optimal contract in the non-
strategic case and that any anonymous technology that exhibits DRS exhibits all
n transitions in the non-strategic case. Similar to the non-strategic case, it was
shown in Babaioff et al. that the AND technology always exhibits overpayment
(OP), in the agency case, where the OP condition guarantees a single transition
from 0 to n, and the OR technology always exhibits increasing relative marginal
payment (IRMP), in the agency case, where the IRMP condition guarantees all
n transitions.

We show that the threshold technology exhibits IRS up to a certain number
of agents contracted and DRS thereafter, which gives the transition characteri-
zation for the non-strategic case. Likewise, we show that the threshold function
exhibits OP to a point and IRMP in the agency case, which is sufficient to give
the transition characterization for the agency case. Our analysis is new, in the
sense that we consider the possibility that a single technology can exhibit IRS
up to a certain number of agents contracted, followed by DRS and likewise,
that it can exhibit OP up to a certain number of agents contracted, followed by
IRMP. Babaioff et al. only considered the possibility a function exhibits either
IRS or DRS, and likewise, either OP or IRMP. In addition to this insight, we use
properties of (log) convex functions to establish this result. We state our main
theorems below:

Theorem 1. For any threshold technology (any k, n, c, α and β) in the non-
strategic case, there exists an 1 ≤ lns ≤ n where, such that the first transition
is from 0 to lns agents, followed by all remaining n− lns transitions.

Theorem 2. For any threshold technology (any k, n, c, α and β) in the agency
case, there exists an 1 ≤ la ≤ lns such that the first transition is from 0 to la
agents, followed by all remaining n− la transitions.

The following observations give us the optimal payment rule for any technol-
ogy and establish a monotonic property for the optimal contract as a function
of v.
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Definition 2. [5] The marginal contribution of agent i for a given a−i is de-
noted by Δi(a−i) = p(1, a−i)− p(0, a−i), and is the difference in the probability
of success of the technology function when agent i exerts effort and when she
does not.

For anonymous technologies, if exactly j entries in a−i are 1, then Δi = pj+1−pj ,
where pj is the probability of success when exactly j agents exert effort. Since p
is strictly monotone, we have Δi > 0 for all i.

Remark 1. [5] The best contracts (from the principal’s point of view) that induce
the action profile a ∈ {0, 1}n as a Nash equilibrium are ti = 0 when the project
is unsuccessful and ti = ci

Δi(a−i)
when the project succeeds and the principal

requests effort ai = 1 from agent i.

The following lemma gives a set of sufficient conditions for an anonymous tech-
nology to have a first transition from 0 to l, for some l ∈ {1, ..., n}, followed
by all remaining n− l transitions. This lemma holds for both the non-strategic
case (where Qi = i · c) and the agency case (where Qi = i·c

Δi
). We view this

lemma as a generalization of Theorem 9 from [5] and it follows a similar proof
structure in that it uses Lemmas 12 and 13 from [5] that relate the principal’s
utility of contracting with a fixed number of agents to the Qi values. This lemma
states that as long as a technology function exhibits OP up to a certain number
of agents contracted followed by IRMP, then the transition behavior involves a
first transition from 0 to l, for some l ∈ {1, ..., n}, followed by all remaining n− l
transitions.

Lemma 1. Any anonymous technology function that satisfies:

1. Qi

Ql
> pi−p0

pl−p0
for all i �= l

2. Ql+1−Ql

pl+1−pl
> Ql

pl−p0

3. Qi+1−Qi

pi+1−pi
> Qi−Qi−1

pi−pi−1
for all i > l

for some l ∈ {1, ..., n} has a first transition from 0 to l and then all n − l
subsequent transitions, where Qi is defined appropriate for the non-strategic case
or the agency case.

Now that we have established a set of sufficient conditions for an anonymous
technology to exhibit a first transition from 0 to l, followed by all remaining
transitions (for either the non-strategic case or the agency case), we interpret
what these conditions are for the non-strategic case.

Lemma 2. Any anonymous technology that has a probability of success function
that satisfies:

1. pi−p0
i > pi−1−p0

i−1 for all 2 ≤ i ≤ l and pi−p0
i < pi−1−p0

i−1 for all i > l

2. 1
pi+1−pi

> 1
pi−pi−1

for all i > l

for some l ∈ {1, ..., n} has a first transition from 0 to l and then all n − l
subsequent transitions for the nonstrategic version of the problem.
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In establishing that the threshold technology satisfies the conditions outlined in
Lemma 2, it becomes useful to define a property of the probability of success
function.

Definition 3. We say that a probability of success p for a particular technology
is unimodal if it satisfies one of three alternatives:

1. pi − pi−1 > pi−1 − pi−2 for all 2 ≤ i ≤ j and pi − pi−1 < pi−1 − pi−2 for all
i > j

2. pi − pi−1 > pi−1 − pi−2 for all 2 ≤ i ≤ n
3. pi − pi−1 < pi−1 − pi−2 for all 2 ≤ i ≤ n

Let f(i) = pi−p0
i . This function is useful to consider, because in order to

establish the first condition of Lemma 2, we need to show that f(i) is unimodal.

Lemma 3. If the probability of success function is unimodal over the set {1, ..., n},
then we know that f(i) is also unimodal.

Corollary 1. For any anonymous technology function (p, c) that has a unimodal
probability of success, there exists an 1 ≤ l ≤ n such that the first transition in
the non-strategic case is from 0 to l agents (where l is the smallest value that
satisfies pl−p0

l >
pl+1−p0

l+1 ) followed by all remaining n− l transitions.

Therefore, it suffices to show that p is unimodal in order to establish that the
technology (p, c) exhibits a first transition from 0 to l, for some l ∈ {1, ..., n},
followed by all remaining n− l transitions, in the non-strategic case.

Lemma 4. The probability of success function for any threshold technology is
unimodal.

The characterization of the transition behavior of the threshold technology in
the non-strategic case follows from Lemmas 2, 3, and 4.

Theorem 1. For any threshold technology (any k, n, c, α and β) in the non-
strategic case, there exists an 1 ≤ lns ≤ n where, such that the first transition is
from 0 to lns agents, followed by all remaining n− lns transitions.

Now that we have characterized the transition behavior of the threshold technol-
ogy, for any k, in the non-strategic case, we focus on establishing the conditions
of Lemma 1, for the agency case. The following lemma is used to show that the
first condition in Lemma 1 is satisfied by the threshold technology.

Lemma 5. The discrete valued function, Qi

pi−p0
, is convex.

Lemma 6. There exists a value of 1 ≤ la ≤ n such that Qi

Qla
> pi−p0

pla−p0
for all

i �= la.

Since there exists an la such that Qi

pi−p0
> Qi+1

pi+1−p0
for all 1 ≤ i < la and Qi

pi−p0
<

Qi+1
pi+1−p0

for all la ≤ i < n, we have the following corollary.
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Corollary 2. We have Qla+1−Qla

pla+1−pla
>

Qla

pla−p0
, where 1 ≤ la ≤ n satisfies Qi

Qla
>

pi−p0
pla−p0

for all i �= la.

Lemma 7. We have Qi+1−Qi

pi+1−pi
> Qi−Qi−1

pi−pi−1
for all i > la where la is the smallest

value such that Qla

pla−p0
<

Qla+1
pla+1

.

Lemmas 1, 6, and 7 and Corollary 2 establish the following result.

Theorem 2. For any threshold technology (any k, n, c, α and β) in the agency
case, there exists an 1 ≤ la ≤ lns such that the first transition is from 0 to la
agents, followed by all remaining n− la transitions.

These results beg the question, how do the values of la and lns relate to k? Below
we give the trend in transition behavior as a function of β, when α = 0. This
remark holds for both the non-strategic and agency cases. We also provide a
technical lemma regarding the value of la and lns as α→ 0. This lemma is used
in the next section to establish an unbounded POU for the threshold function.

Remark 2. For any threshold technology with fixed k ≥ 2, n, c and α = 0, we
have that l = k for β close enough to 1 and l = n for β close enough to 0.

Lemma 8. As α→ 0, we know that k ≤ la ≤ lns, where la is the first transition
in the agency case and lns is the first transition in the non-strategic case.

We note that it is not always the case that la ≥ k. For example, when α = 1
2 − ε,

β = 1
2 + ε and ε is sufficiently small, we have all n transitions, regardless of the

value of k.

4 Price of Unaccountability

Lemma 9. [5] For any technology function, the price of unaccountability is
obtained at some value v which is a transition point, of either the agency or the
non-strategic cases.

We are able to improve upon this result, for the OR technology, which is needed
to establish Theorem 4.

Lemma 10. For the OR technology, the price of unaccountability occurs at a
transition in the agency case, as opposed to a transition in the non-strategic case.

The following theorem is a result of Babaioff et al. [5], where they derive the
price of unaccountability for AND technology where β = 1− α.

Theorem 3. [5] For the AND technology with α = 1 − β, the price of un-
accountability occurs at the transition point of the agency case and is POU =
( 1

α − 1)n−1 + (1− α
1−α ).
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Remark 3. [5] The price of unaccountability for the AND technology is not
bounded. More specifically, POU →∞ as α→ 0 and POU →∞ as β → 0.

Babaioff et al. [5] show that the Price of Unaccountability for the OR technology
is bounded by 2 for exactly 2 agents and give an upper bound of 2.5 for the
general case [6], when β = 1−α. We extend these results for the β = 1−α case
and show that the Price of Unaccountability is bounded above by 2 for any OR
technology (i.e. for all n). This result is tight, namely, as α→ 0, POU → 2. We
suspect that these results hold for the more general 0 < α < β < 1 case, but we
have been unable to prove it for all values of α, β.

Theorem 4. The POU for the OR technology is bounded by 2 for all α, β = 1−α
and n.

In contrast to the OR technology, we show that the POU for the threshold
technology with k ≥ 2 is unbounded. This result holds for any 0 < α < β < 1.

Theorem 5. The Price of Unaccountability for the threshold technology is not
bounded for all values of k ≥ 2 and n. More specifically, when α→ 0, POU →∞.

5 Composition of Anonymous Technologies

5.1 Majority-of-ANDs

We prove the transition behavior for the majority-of-AND technology in the non-
strategic case. These results hold for the more general threshold-of-ORs case.
For the following assume that in the majority-of-AND technology, the majority
gate contains q AND gates, each with m agents. This builds on a conjecture of
Babaioff et al. who conjecture the following behavior for both the non-strategic
and agency cases. We are unable to prove the transition behavior for the agency
case.

Lemma 11. If the principal decides to contract with j ·m + a agents for some
j ∈ Z+ and some 0 ≤ a < m, the probability of success is maximized by fully
contracting j AND gates and contracting with a remaining agents on the same
AND gate.

Lemma 12. For any principal’s value v, the optimal contract involves a set of
fully contracted AND gate.

Theorem 6. The transition behavior for the majority-of-AND technology in the
non-strategic case has a first transition to l fully contracted AND gates, where
1 ≤ l ≤ n, followed by each subsequent transition of fully contracted AND gates.

While we are unable to characterize the transition behavior for the majority-
of-AND technology in the agency case, we know that the first transition in the
agency case must involve contracting at most l ·m agents. This allows us to prove
that the Price of Unaccountability is unbounded.

Theorem 7. The Price of Unaccountability is unbounded for the majority-of-
AND technology.
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5.2 Majority of ORs

We will characterize the transition behavior for the non-strategic case of the
majority of ORs below. In what follows, we assume that each OR gate has j
agents and there are m of them comprising a majority function (i.e. n = j ·m).
We also assume that k = !m

2 ". In considering the majority-of-OR case, we further
assume that β = 1− α and 0 < α < 1

2 .

Lemma 13. Consider an integer i such that i = a ·m + b, where 0 ≤ b < m.
Fixing i, the probability of success for a majority-of-ORs function is maximized
when a + 1 agents are contracted on each of b OR gates and a agents are con-
tracted on each of n− b OR gates.

The following lemma gives the complete transition behavior in the majority-of-
OR technology in the nonstrategic case.

Lemma 14. The first transition for the non-strategic case of the majority-of-
OR technology jumps from contracting with 0 agents to l agents, where 1 ≤ l ≤ k,
followed by all remaining transitions, where the transitions proceed in such a way
so that no OR gate has more than 1 more agent contracted as compared to any
other OR gate.

We conjecture that a similar transition behavior holds in the agency case, but
we have thus far been unable to prove it. However, we do know that as α→ 0,
the first transition jumps to k. This is enough to determine that the POU is
unbounded.

Theorem 8. The Price of Unaccountability is unbounded for the majority-of-
OR technology.

5.3 AND of Majority

In what follows, we will also characterize the transition behavior of AND-of-
majorities. These results hold for the more general AND-of-threshold’s. We give
a result from [5] that allows for the characterization of the transition behavior
of AND-of-majority. Let g and h be two Boolean functions on disjoint inputs
with any cost vectors, and let f = g ∧ h. An optimal contract S for f for some
v is composed of some agents from the g-part (denoted by the set R) and some
agents from the h-part (denoted by the set T ).

Lemma 15. [5] Let S be an optimal contract for f = g ∧ h on v. Then, T is
an optimal contract for h on v · tg(R), and R is an optimal contract for g on
v · th(T ).

The previous lemma gives us a characterization of the transition behavior in the
AND-of-majorities technology. The statement of this result is analogous to the re-
sult given in [5] for the AND-of-ORs technology. Since the previous lemma holds for
both the non-strategic and agency variations of the problem, the following theorem
holds for both the non-strategic and agency variations of the problem.
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Theorem 9. Let h be an anonymous majority technology and let f =
∧nc

j=1

be the AND of majority technology that is obtained by a conjunction of nc of
these majority technology functions on disjoint inputs. Then for any value v,
an optimal contract contracts with the same number of agents in each majority
component.

Theorem 9 gives us a complete characterization of the transition behavior in the
AND-of-majorities technology for both the non-strategic and the agency cases.
Since we know that the first transition in both the agency and non-strategic
cases for the AND-of-majority technology occurs to a value greater than 1, we
have the following result.

Theorem 10. The Price of Unaccountability is unbounded for the AND-of-
majority technology.
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Abstract. We study problems of scheduling jobs on related machines so
as to minimize the makespan in the setting where machines are strategic
agents. In this problem, each job j has a length lj and each machine i
has a private speed ti. The running time of job j on machine i is tilj . We
seek a mechanism that obtains speed bids of machines and then assign
jobs and payments to machines so that the machines have incentive to
report true speeds and the allocation and payments are also envy-free.
We show that

1. A deterministic envy-free, truthful, individually rational, and anony-
mous mechanism cannot approximate the makespan strictly better
than 2− 1/m, where m is the number of machines. This result con-
trasts with prior work giving a deterministic PTAS for envy-free
anonymous assignment and a distinct deterministic PTAS for truth-
ful anonymous mechanism.

2. For two machines of different speeds, the unique deterministic scal-
able allocation of any envy-free, truthful, individually rational, and
anonymous mechanism is to allocate all jobs to the quickest machine.
This allocation is the same as that of the VCG mechanism, yielding
a 2-approximation to the minimum makespan.

3. No payments can make any of the prior published monotone and lo-
cally efficient allocations that yield better than an m-approximation
for Q||Cmax [1,3,5,9,13] a truthful, envy-free, individually rational,
and anonymous mechanism.

Keywords: Mechanism Design, Incentive Compatible, Envy-Free,
Makespan Approximation.

1 Introduction

We study problems of scheduling jobs on related machines so as to minimize the
makespan (i.e. Q||Cmax) in a strategic environment. Each job j has a length lj
and each machine i has a private speed ti, which is only known by that machine.
The speed ti is the time it takes machine i to process one unit length of a job
— ti is the inverse of the usual sense of speed. The running time of job j on
machine i is tilj. A single job cannot be performed by more than one machine
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(indivisible), but multiple jobs can be assigned to a single machine. The workload
of a machine is the total length of jobs assigned to that machine and the cost is
the running time of its workload. The scheduler would like to schedule jobs to
complete in minimum time, but has to pay machines to run jobs. The utility of a
machine is the difference between the payment to the machine and its cost. The
mechanism used by the scheduler asks the machines for their speeds and then
determines an allocation of jobs to machines and payments to machines. Ideally,
the mechanism should be fair and efficient. To accomplish this, the following
features of mechanism are desirable.

Individually rational. A mechanism is individually rational (IR), if no agent
gets negative utility when reporting his true private information, since a
rational agent will refuse the allocation and payment if his utility is negative.
In order that each machine accepts its allocation and payment, the payment
to a machine should exceed its cost of executing the jobs.

Truthful. A mechanism is truthful or incentive compatible (IC), if each agent
maximizes his utility by reporting his true private information. Under truth-
telling, it is easier for the designer to design and analyze mechanisms, since
agents’ dominant strategies are known by the designer. In a truthful mecha-
nism, an agent does not need to compute the strategy maximizing his utility,
since it is simpler to report his true information.

Envy-free. A mechanism is envy-free (EF), if no agent can improve his utility
by switching his allocation and payment with that of another. Envy-freeness
is a strong concept of fairness [10,11]: each agent is happiest with his alloca-
tion and payment.

Prior work on envy-free mechanisms for makespan approximation problems as-
sumes that all machine speeds are public knowledge [6,15]. We assume that the
speed of a machine is private information of that machine. This assumption
makes it harder to achieve envy-freeness. Only if the mechanism is also truthful,
can the mechanism designer ensure that the allocation is truly envy-free.

In this paper, we prove results about anonymous mechanisms. A mechanism
is anonymous, roughly speaking, if when two agents switch their bids, their
allocated jobs and payments also switch. This means the allocation and payments
depend only on the agents’ bids, not on their names. Anonymous mechanisms
are of interest in this problem for two reasons. On the one hand, to the best
of our knowledge, all polynomial-time mechanisms for Q||Cmax are anonymous
[1,3,5,9,15]. On the other hand, in addition to envy-freeness, anonymity can be
viewed as an additional characteristic of fairness [4].

We also study scalable allocations. Scalability means that multiplying the
speeds by the same positive constant does not change the allocation. Intuitively,
the allocation function should not depend on the “units” in which the speed are
measured, and hence scalability is a natural notion. But allocations based on
rounded speeds of machines are typically not scalable [1,5,13].

The truthful mechanisms and envy-free mechanisms for Q||Cmax are both
well-understood. There is a payment scheme to make an allocation truthful if
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and only if the allocation is monotone decreasing [3]. For Q||Cmax, an allocation
is monotone decreasing if no machine gets more workload by bidding a slower
speed than its true speed. On the other hand, a mechanism for Q||Cmax can
be envy-free if and only if its allocation is locally efficient [15]. An allocation is
locally efficient if a machine never gets less workload than a slower one.

The complexity of truthful mechanisms and, separately, envy-free mechanisms
have been completely settled. Q||Cmax is strongly NP-hard, so there is no FPTAS
for this problem, assuming P �= NP. On the other hand, there is a deterministic
monotone PTAS [5] and a distinct deterministic locally efficient PTAS [15]. This
implies the existence of truthful mechanisms and distinct envy-free mechanisms
that approximate the makespan arbitrarily closely. However, neither of these
payment functions make the mechanisms both truthful and envy-free.

The VCG mechanism for Q||Cmax is truthful, envy-free, individually rational,
and anonymous [8]. However, since the VCG mechanism maximizes the social
welfare (i.e. minimizing the total running time), it always allocates all jobs to the
quickest machines, yielding a m-approximation of makespan for m machines in
the worst case. So a question is whether there is a truthful, envy-free, individually
rational and anonymous mechanism that approximates the makespan better than
the VCG mechanism. Since there already exists many allocation functions that
are both monotone and locally efficient, one natural step to answer this question
could be checking whether some of these allocation functions admit truthful and
envy-free payments.

Our Results. We show that

1. A deterministic envy-free, truthful, individually rational, and anonymous
mechanism cannot approximate the makespan strictly better than 2− 1/m,
where m is the number of machines. (Section 3). This result contrasts with
prior results [5,15] discussed above.

2. For two machines of different speeds, the unique deterministic scalable allo-
cation of any envy-free, truthful, individually rational, and anonymous mech-
anism is to allocate all jobs to the quickest machine. (Section 5). This alloca-
tion is the same as that of the VCG mechanism, yielding a 2-approximation
of makespan for this case.

3. No payments can make any of the prior published monotone and locally ef-
ficient allocations that yield better than an m-approximation for Q||Cmax

[1,3,5,9,13] a truthful, envy-free, individually rational, and anonymous mech-
anism.

Related Work. Hochbaum and Shmoys [12] give a PTAS for Q||Cmax. Andelman,
Azar, and Sorani [1] give a 5-approximation deterministic truthful mechanism.
Kovács improves the approximation ratio to 3 [13] and then to 2.8 [14]. Random-
ization has been successfully applied to this problem. Archer and Tardos [3] give
a 3-approximate randomized mechanism, which is improved to 2 in [2]. Dhang-
watnotai [9] et. al. give a monotone randomized PTAS. All these randomized
mechanisms are truthful-in-expectation. However, we can show that no payment
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function can form a truthful, envy-free, individually rational and anonymous
mechanism with any allocation function of these mechanisms. We give a proof
for a deterministic allocation [13] in Section 5 and proofs for other allocations
are similar to it.

When players have different finite valuation spaces, it is known that a mono-
tone and locally efficient allocation function may not admit prices to form a
simultaneously truthful and envy-free mechanism for allocating goods among
players [7]. In this paper, we consider mechanisms where all players have identi-
cal infinite valuation spaces.

Cohen et. al. [8] study the truthful and envy-free mechanisms on combinatorial
auctions with additive valuations where agents have a upper capacity on the
number of items they can receive. They seek truthful and envy-free mechanisms
that maximize social welfare and show that VCG with Clarke Pivot payments is
envy-free if agents’ capacities are all equal. Their result can be interpreted in our
setting by viewing that each agent has the same capacity n and the valuation
of each agent is the reverse of its cost. So their result implies that the VCG
mechanism for Q||Cmax is truthful and envy-free; but the VCG mechanism does
not give a good approximation guarantee for makespan.

2 Preliminaries

There are m machines and n jobs. Each agent will report a bid bi ∈ R to the
mechanism. Let t denote the vector of true speeds and b the vector of bids.

A mechanism consists of a pair of functions (w, p). An allocation w maps a
vector of bids to a vector of allocated workload, where wi(b) is the workload of
agent i. For all bid vectors b, w(b) must correspond to a valid job assignment.
An allocation w is called scalable if wi(b) = wi(c · b) for all bid vectors b, all
i ∈ {1 . . .m} and all scalars c > 0. A payment p maps a vector of bids to a
vector of payments, i.e. pi(b) is the payment to agent i.

The cost machine i incurs by the assigned jobs is tiwi(b). Machine i’s private
value ti measures its cost per unit work. Each machine i attempts to maximize
its utility, ui(ti, b) := pi(b)− tiwi(b).

The makespan of allocation w(b) is defined as maxi wi(b) · ti. A mechanism
(w, p) is c-approximate if for all bids b and values t, the makespan of the allocation
given by w is within c times the makespan of the optimal allocation, i.e.,

maxi wi(b) · ti ≤ c ·OPT (t),

where OPT (t) is the minimum makespan for machines with speeds t .
Vector b is sometimes written as (bi, b−i), where b−i is the vector of bids, not

including agent i. A mechanism (w, p) is truthful or incentive compatible, if each
agent i maximizes his utility by bidding his true value ti, i.e., for all agent i, all
possible ti, bi and b−i,

pi(ti, b−i)− tiwi(ti, b−i) ≥ pi(bi, b−i)− tiwi(bi, b−i)
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A mechanism (w, p) is individually rational, if agents who bid truthfully never
incur a negative utility, i.e. ui(ti, (ti, b−i)) ≥ 0 for all agents i, true value ti and
other agents’ bids b−i.

A mechanism (w, p) is envy-free if no agent wishes to switch his allocation
and payment with another. For all i, j ∈ {1, . . . , m} and all bids b,

pi(b)− biwi(b) ≥ pj(b)− biwj(b).

Notice that we use bids b instead of the true speeds t in this definition, because
a mechanism can determine the envy-free allocation only based on the bids.
However, a mechanism can ensure the outcome is envy-free, only if it is also
truthful.

A mechanism (w, p) is anonymous if for every bid vector b = (b1, . . . , bm),
every k such that bk is unique and every l �= k,

wl(. . . , bk−1, bl, bk+1, . . . , bl−1, bk, bl+1, . . .) = wk(b)

and
pl(. . . , bk−1, bl, bk+1, . . . , bl−1, bk, bl+1, . . .) = pk(b).

The condition that bk is unique is important, because in some case the mechanism
may have to allocate jobs of different lengths to agents with the same bids. If
mechanism (w, p) is anonymous and the bid of an agent is unique, the workload
of that agent stays the same no matter how that agent is indexed. So we can
write wi(bi, b−i) simply as w(bi, b−i) for unique bi to represent the workload of
agent i. Similarly, we can write pi(bi, b−i) simply as p(bi, b−i) for unique bi.

Characterization of Truthful Mechanisms

Lemma 1 ([3]). The allocation w(b) admits a truthful payment scheme if and
only if w is monotone decreasing, i.e., wi(b′i, b−i) ≤ wi(bi, b−i) for all i, b−i, b

′
i ≥

bi. In this case, the mechanism is truthful if and only if the payments satisfy

pi(bi, b−i) = hi(b−i) + biwi(bi, b−i)−
∫ bi

0

wi(u, b−i) du, ∀i (1)

where the his can be arbitrary functions.

By Lemma 1, the only flexibility in designing the truthful payments for allocation
w is to choose the terms hi(b−i). The utility of truth-telling agent i is hi(b−i)−∫ bi

0
wi(u, b−i)du, because his cost is tiwi(ti, b−i), which cancels out the second

term in the payment formula. Thus, in order to make the mechanism individually
rational, the term hi(b−i) should be at least

∫ bi

0 wi(u, b−i) du for any bi. Since
bi can be arbitrarily large, hi should satisfy

hi(b−i) ≥
∫ ∞

0

wi(u, b−i) du, ∀i, b−i. (2)
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Characterization of envy-free mechanisms. An allocation function w is
envy-free implementable if there exists a payment function p such that the mech-
anism M = (w, p) is envy-free. An allocation function w is locally efficient if for
all bids b, and all permutations π of {1, · · · , m},

m∑
i=1

bi · wi(b) ≤
m∑

i=1

bi · wπ(i)(b).

Lemma 2 ([15]). Allocation w is envy-free implementable if and only if w is
locally efficient.

The proof of sufficiency constructs a payment scheme that ensures the envy-
freeness for any locally efficient allocation w. Specifically, assuming b1 ≥ b2 ≥
. . . ≥ bm, the payments for related machines are the following:

pi(b) =

{
b1 · w1(b) for i = 1
pi−1(b) + bi · (wi(b)− wi−1(b)) for i ∈ {2, . . . , m}

These payments are not truthful payments, since p1(b) is clearly not in the form
of (1). But the set of envy-free payments is a convex polytope for fixed w, since
payments satisfying linear constraints ∀i, j pi(b) − biwi(b) ≥ pj(b) − biwj(b)
are envy-free. So there could be other payments that are both envy-free and
truthful.

3 Lower Bound on Anonymous Mechanisms

In this section, we will prove an approximation lower bound for truthful, envy-
free, individually rational, and anonymous mechanisms.

Theorem 1. Let M = (w, p) be a deterministic, truthful, envy-free, individually
rational, and anonymous mechanism. Then M is not c-approximate for c <
2− 1

m .

Since the only flexibility when designing payments in a truthful mechanism is
to choose the his, we need to know what kind of his are required for envy-free
anonymous mechanisms. The following two lemmas give necessary conditions on
his.

Lemma 3. If a mechanism (w, p) is both truthful and anonymous, then there
is a function h such that hi(v) = h(v) in (1) for all bid vector v ∈ R

m−1
+ and

machines i.

Proof. Let β be a real number such that β < minj vj . For all i ∈ {1, . . . , m− 1},
define vector b(i) = (v1, . . . , vi−1, β, vi, . . . , vm−1), b′(i) = (v1, . . . , vi, β, vi+1, . . . ,

vm−1). Since v = b
(i)
−i = b

′(i)
−(i+1) and M is anonymous, it must be that pi(b(i)) =

pi+1(b′(i)) and wi(b(i)) = wi+1(b′(i)). Since α < vj for any 0 < α < β, j ∈
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{1 . . .m−1}, we also have wi(α, v) = wi+1(α, v) by anonymity. Thus, for truthful
payments, we have

hi(v) = pi(b(i))− βwi(b(i)) +
∫ β

0

wi(α, v) dα

= pi+1(b′(i))− βwi+1(b′(i)) +
∫ β

0

wi+1(α, v) dα = hi+1(v). ��

Lemma 4. Let L =
∑

k lk. If mechanism M = (w, p) is truthful, envy-free, and
anonymous, then

h(t−i)− h(t−j) ≤ L · ti + (tj − ti)wi(t), (3)

for all t ∈ R
m
+ and i, j ∈ {1, . . . , m}.

Proof. If machine j does not envy machine i, then pj(t)−tjwj(t) ≥ pi(t)−tjwi(t).
Using (1) to substitute in for pi and pj , and Lemma 3, this yields(

h(t−j) + tjwj(t)−
∫ tj

0 w(x, t−j) dx
)
− tjwj(t)

≥
(
h(t−i) + tiwi(t)−

∫ ti

0 w(x, t−i) dx
)
− tjwi(t).

Rearranging terms gives

h(t−i)− h(t−j) ≤
∫ ti

0

w(x, t−i) dx−
∫ tj

0

w(x, t−j)dx + (tj − ti)wi(t)

≤
∫ ti

0

L dx−
∫ tj

0

0 dx + (tj − ti)wi(t)

= L · ti + (tj − ti)wi(t). ��

Proof of Theorem 1. Consider n = m jobs of length l = (1, . . . , 1, m). Let
L := 2m − 1 denote the total length of the jobs. Define speed vector t =
(mα, . . . , mα, α), where α is a real number that only depends on m and c and
will be determined at the end of this section. We will show that if M is de-
terministic, truthful, envy-free, individually rational and anonymous, it should
allocate all jobs to the quickest machine in this instance.

Claim 5. For speed vector t = (mα, . . . , mα, α) and jobs l = (1, . . . , 1, m), if M
is c-approximate and wi(t) ≥ 1 for some i ∈ {1, . . . , m− 1}, then

h(t−1) ≥ (L +
m− 1

Lc
) · α.

Proof. Since M is truthful and individually rational, inequality (2) applies, and

h(t−1) ≥
∫ ∞

0

w(x, t−1) dx

≥
∫ α

Lc

0

w(x, t−1) dx +
∫ α

α
Lc

w(x, t−1) dx +
∫ mα

α

w(x, t−1) dx.
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Apply M to vector (x, t−1). By the local efficiency of w, job m should be assigned
to the quickest machine. So for x < α, w(x, t−1) ≥ lm. When x < α

Lc , all the jobs
should be assigned to the machine with speed x for a makespan less than α/c.
Otherwise the makespan is at least α, contradicting M is c-approximate. Since
wi(mα, t−i) ≥ 1 for some i ∈ {1, . . . , m−1}, monotonicity implies wi(x, t−1) ≥ 1
for all x ∈ (α, mα). Since x ∈ (α, mα) is unique in vector (x, t−1), we get
w(x, t−1) ≥ 1 by anonymity. Thus

h(t−1) ≥
∫ α

Lc

0

L dx+
∫ α

α
Lc

m dx+
∫ mα

α

1 dx = (L+
m− 1

Lc
)α. ��

Let t′ = (1, mα, . . . , mα, α). Applying M to t′, Lemma 4 implies

h(t′−1)− h(t′−m) ≤ L + (α− 1)w1(t′) ≤ L · α.

Since t′−1 = t−1, this implies

h(t−1) ≤ L · α + h(t′−m). (4)

Claim 6. If M is c-approximate, then h(t−1) < L ·α+f(m, c), where f(m, c) =
γm−1L + h(γm−2, γm−1, . . . , γ, 1) and γ = cL + ε for some 0 < ε < 1.

Proof. Define speed vector t(i) = (γi−1, γi−2, . . . , γ, 1, mα, . . . , mα) of length m
for i ≥ 2, where γ = cL + ε for some 0 < ε < 1.

Let us consider the allocation M makes to machine 1 for bid vector t(i).
The speed of machine 1 is γi−1 ≥ γ for i ≥ 2. The speed of machine i is 1. The
makespan of allocating all jobs to machine i is L while the makespan of allocating
at least one job to machine 1 is at least γ = cL + ε. Since M is c-approximate,
this means w1(t(i)) = 0. Using Lemma 4, we have

h(t(i)−1)− h(t(i)−m) ≤ t
(i)
1 L + (t(i)m − t

(i)
1 )w1(t(i)) = γi−1L.

Since t
(i)
−m = t

(i+1)
−1 , this implies h(t(i)−1)−h(t(i+1)

−1 ) ≤ γi−1L for i ∈ {2, . . . , m−1}.
Summing up these inequalities on all i, we have

h(t(2)−1)− h(t(m)
−1 ) ≤ L

m−1∑
i=2

γi−1 < γm−1L

Since t′−m = t
(2)
−1, we get h(t′−m) < γm−1L + h(t(m)

−1 ) = f(m, c). Plugging this
into (4) yields

h(t−1) < L · α + f(m, c). (5)

��
To complete the proof of Theorem 1, consider speed vector t with α = Lc

m−1f(m, c).
If mechanism M does not allocate all jobs to machine m, then wi(t) ≥ 1 for some
i ∈ {1, . . . , m−1}. Then Claim 5 implies that h(t−1) ≥ α ·L+f(m, c), contradict-
ing (5). So M must allocate all jobs to machine m in this case, yielding a makespan
of (2m− 1)α while the makespan of the schedule that assigns job j to machine j
for all j is mα. Thus, M is c-approximate for some c ≥ 2− 1/m. ��
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4 Characterizing Scalable Mechanisms on Two Machines

In this section, we will show that for two machines, there is just one deterministic
scalable allocation that can be made truthful, envy-free, individually rational,
and anonymous. This allocation turns out to be the same allocation as the VCG
mechanism.

Lemma 7. Let w be a deterministic and scalable allocation function for 2 ma-
chines. For some k > 1, if w(x, a) > 0 for all a > 0 and x < ka, then there is
some g(k) > 0 such that∫ ka

a

w(x, a) dx ≥
∫ a

a
k

w(a, x) dx + g(k) · a.

Proof. For a < x < ka, let x = a2

t .∫ ka

a

w(x, a) dx =
∫ a

k

a

w(
a2

t
, a)(−a2

t2
) dt (integrate by substitution)

=
∫ a

a
k

a2

t2
w(a, t) dt (w is scalable)

=
∫ k+1

2k a

a
k

a2

t2
w(a, t) dt +

∫ a

k+1
2k a

a2

t2
w(a, t) dt

For a
k < t < k+1

2k a and k > 1, we have a2

t2 ≥ a2/(k+1
2k a)2 = 4k2

(k+1)2 > 1. For
k+1
2k a < t < a, we have a2

t2 ≥ 1. Therefore,

∫ ka

a

w(x, a) dx ≥ 4k2

(k + 1)2

∫ k+1
2k a

a
k

w(a, t) dt +
∫ a

k+1
2k a

w(a, t) dt

=
(

4k2

(k + 1)2
− 1
)∫ k+1

2k a

a
k

w(a, t) dt +
∫ a

a
k

w(a, t) dt

We also have∫ k+1
2k a

a
k

w(a, t) dt =
∫ k+1

2k a

a
k

w(1,
t

a
) dt = a

∫ k+1
2k

1
k

w(1, y) dy.

The first equality follows the scalability of w and we get the second equality by
substituting t with ay. Since w(x, a) > 0 for all a > 0 and x < ka, we have
w(1, y) > 0 for y > 1/k. In sum,

∫ ka

a w(x, a) dx ≥
∫ a

a
k

w(a, x) dx+ g(k) ·a, where

g(k) =
(

4k2

(k+1)2 − 1
) ∫ k+1

2k
1
k

w(1, y) dy > 0. ��
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Theorem 2. Let M = (w, p) be deterministic, truthful, envy-free, individually
rational, and anonymous. If w is scalable, then for two machines of different
speeds, w allocates all jobs to the quickest machine.

Proof. Let L denote the total length of jobs. First, consider two machines of
speed t1 = 1 and t2 = a (a > 1). Since M is truthful, envy-free, and anonymous,
by Lemma 4, we have

h(a)− h(1) ≤ L + (a− 1)L = L · a (6)

Since w is individually rational, h(1) ≥
∫∞
0 w(x, 1) ≥ 0. We will show that

w(ka, a) = 0 for any k > 1. For a contradiction, assume w(ra, a) > 0 for some
r > 1. Let k be such that w(x, a) > 0 for x < ka and w(x, a) = 0 for x > ka.
By monotonicity, such a k exists. By the assumption that w(ra, a) > 0 for some
r > 1, we know that k > 1. Since w is scalable, we have for any x > ka,
w(y, a) = w(a, x) = L if y/a = a/x, i.e. y = a2/x < a/k. Therefore,

h(a) ≥
∫ ∞

0

w(x, a) dx

=
∫ a

k

0

L dx +
∫ a

a
k

w(x, a) dx +
∫ ka

a

w(x, a) dx

≥ L

k
a +
∫ a

a
k

w(x, a) dx +
∫ a

a
k

w(a, x) dx + g(k) · a (Lemma 7)

≥ L

k
a +
∫ a

a
k

(w(x, a) + w(a, x)) dx + g(k) · a

=
L

k
a +
∫ a

a
k

L dx + g(k) · a

= (L + g(k))a (7)

Take a > h(1)/g(k). We have h(a) > aL+h(1) from (7). This contradicts (6). ��

5 Payments for Known Allocation Rules

Although the VCG mechanism is truthful, envy-free, individually rational, and
anonymous, it does not have a good approximation guarantee for makespan. In
this section, we show that the LPT* algorithm that guarantees a 3-approximation
of makespan [13] admits no truthful, envy-free, individually rational, and anony-
mous payments. We also prove a similar result for randomized mechanisms in
the full paper: the randomized 2-approximation algorithm in [2,3], whose ex-
pected allocation is monotone decreasing and locally efficient, admits no pay-
ment function that make it simultaneously truthful-in-expectation, envy-free-in-
expectation, individually rational, and anonymous. We can prove similar results
with similar proofs for the allocations in [1,5,9].
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Let wj
i be the workload of machine i before job j is assigned. Assume the

jobs are indexed so that l1 ≥ l2 ≥ . . . ≥ lm. The LPT* algorithm is presented
as Algorithm 1. Note that this algorithm rounds the speeds and hence is not
scalable.

Algorithm 1. LPT* Algorithm
1: Define rounded speed of machine i to be si := 2�log bi�.
2: for j = 1 to m do
3: Assign job j to machine i that minimizes (wj

i + lj) · si.
4: end for
5: Among machines of same rounded speed, reorder bundles on these machines so

that a machine with smaller bid gets more jobs.

Theorem 3. There is no payment function that will make LPT* simultaneously
truthful, envy-free, individually rational, and anonymous.

Proof. Let w denote the allocation of the LPT* algorithm. For a contradiction,
assume there exists a payment function p such that mechanism M = (w, p) is
truthful, envy-free, individually rational, and anonymous.

Apply M to the problem of two jobs with lengths l1 = 2 and l2 = 1, and
two machines with speeds t1 = 1, t2 = a where a > 1 and a is a power of 2. By
Lemma 4, we have

h(a)− h(1) ≤ 3 + (a− 1) · 3 = 3a. (8)

Since M is individually rational, we also have

h(a) ≥
∫ ∞

0

w(x, a) dx

≥
∫ a

4

0

w(x, a) dx +
∫ a

a
4

w(x, a) dx +
∫ 2a

a

w(x, a) dx

≥ a

4
w(

a

4
, a) +

∫ a

a
4

w(x, a) dx + a · w(2a, a),

where the last inequality follows the monotonicity of w. Since a is a power of 2,
the LPT* algorithm ensures w(a

4 , a) = 3 and w(2a, a) = 1. Since w is locally
efficient, for any a

4 < x < a, a machine with speed x gets at least job one, i.e.,
w(x, a) ≥ 2. Therefore, h(a) ≥ a

4 · 3 + 3a
4 · 2 + a · 1 = 13

4 a. Now take a = 8h(1),
we have h(a) ≥ 13

4 a = 26h(1) and h(a) ≤ h(1) + 3a = 25h(1) from (8), a
contradiction. ��
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Abstract. We introduce a novel pricing and resource allocation ap-
proach for batch jobs on cloud systems. In our economic model, users
submit jobs with a value function that specifies willingness to pay as
a function of job due dates. The cloud provider in response allocates a
subset of these jobs, taking into advantage the flexibility of allocating
resources to jobs in the cloud environment. Focusing on social-welfare as
the system objective (especially relevant for private or in-house clouds),
we construct a resource allocation algorithm which provides a small ap-
proximation factor that approaches 2 as the number of servers increases.
An appealing property of our scheme is that jobs are allocated non-
preemptively, i.e., jobs run in one shot without interruption. This prop-
erty has practical significance, as it avoids significant network and stor-
age resources for checkpointing. Based on this algorithm, we then design
an efficient truthful-in-expectation mechanism, which significantly im-
proves the running complexity of black-box reduction mechanisms that
can be applied to the problem, thereby facilitating its implementation in
real systems.

1 Introduction

Cloud computing offers easily accessible computing resources of variable size and
capabilities. This paradigm allows applications to rent computing resources and
services on-demand, benefiting from dynamic allocation and the economy of scale
of large data centers. Cloud computing providers, such as Microsoft, Amazon
and Google, are offering cloud hosting of user applications under a utility pricing
model. The most common purchasing options are pay-as-you-go (or on-demand)
schemes, in which users pay per-unit resource (e.g., a virtual machine) per-unit
time (e.g., per hour). The advantage of this pricing approach is in its simplicity,
in the sense that users pay for the resources they get. However, such an approach
suffers from two shortcomings. First, the user pays for computation as if it were
a tangible commodity, rather than paying for desired performance. To exemplify
this point, consider a finance firm which has to process the daily stock exchange
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data with a deadline of an hour before the next trading day. Such a firm does
not care about allocation of servers over time as long as the job is finished by
its due date. At the same time, the cloud can deliver higher value to users by
knowing user-centric valuation for the limited resources being contended for.
This form of value-based scheduling, however, is not supported by pay-as-you-
go pricing. Second, current pricing schemes lack a market feedback signal that
prevents users from submitting unbounded amounts of work. Thus, users are not
incentivized to respond to variation in resource demand and supply.

In this paper, we propose a novel pricing model for cloud environments, which
focuses on quality rather than quantity. Specifically, we incorporate the signifi-
cance of the completion time of a job, rather than the exact number of servers
that the job gets at any given time. In our economic model, customers specify
the overall amount of resources (server or virtual machine hours) which they
require for their job, and how much they are willing to pay for these resources
as a function of due date. For example, a particular customer may submit a job
at 9am, specifying that she needs a total of 1000 server hours, and is willing
to pay $100 if she gets them by 5pm and $200 if she gets them by 2pm. This
framework is especially relevant for batch jobs (e.g., financial analytics, image
processing, search index updates) that are carried out until completion. Under
our scheme, the cloud determines the scheduling of resources according to the
submitted jobs, the users’ willingness to pay and its own capacity constraints.
This entire approach raises fundamental issues in mechanism design, as users
may try to game the system by reporting false values and potentially increasing
their utility. Hence, any algorithmic solution should incentivize users to report
their true values (or willingness to pay) for the different job due dates.

Pricing in shared computing systems such as cloud computing can have diverse
objectives, such as maximizing profits or optimizing system-related metrics (e.g.,
delay or throughput). We focus in this work on maximizing the social welfare,
i.e., the sum of users’ values. This objective is especially relevant for private or
in-house clouds, such as a government cloud, or enterprize computing clusters.

Our results. We design an efficient truthful-in-expectation mechanism for a
new scheduling problem, called the Bounded Flexible Scheduling (BFS) problem,
which is directly motivated by the cloud computing paradigm. A cloud containing
C servers receives a set of job requests with heterogeneous demand and values per
deadline (or due date), where the objective is to maximize the social welfare, i.e.,
the sum of the values of the scheduled jobs. The scheduling of a job is flexible,
i.e., it can be allocated a different number of servers per time unit and in a
possibly preemptive (non-contiguous) manner, under parallelism thresholds. The
parallelism threshold represents the job’s limitations on parallelized execution.
For every job j, we denote by kj the maximum number of servers that can be
allocated to job j in any given time unit. The maximal parallelism thresholds
across jobs, denoted by k, is assumed to be much smaller than the cloud capacity
C, as typical in practical settings.

No approximation algorithm is known for the BFS problem. When relaxing
the parallelism threshold constraint, our model coincides with the problem of
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maximizing the profit of preemptively scheduling jobs on a single server. Lawler
[9] gives an optimal solution in pseudo-polynomial time via dynamic program-
ming to this problem, implying also an FPTAS for it. However, his algorithm
cannot be extended to the case where jobs have parallelization limits.

Our first result is an LP-based approximation algorithm for BFS that gives
an approximation factor of α �

(
1 + C

C−k

)
(1 + ε) to the optimal social welfare

for every ε > 0. With the gap between k and C being large, the approximation
factor approaches 2. The running time of the algorithm, apart from solving the
linear program, is polynomial in the number of jobs, the number of time slots and
1
ε . The design of the algorithm proceeds through several steps. We first consider
the natural LP formulation for the BFS problem. Since this LP has a very
large integrality gap, we strengthen it by incorporating additional constraints
that decrease the this gap. We proceed by defining a reallocation algorithm that
converts any solution of the LP to a value-equivalent canonical form, in which the
number of servers allocated per job does not decrease over the execution period
of the job. Our approximation algorithm then decomposes the optimal solution
in canonical form to a relatively small number of feasible BFS solutions, with
their average social welfare being an α-approximation (thus, at least one of them
is an α-approximation). An appealing property of our scheme is that jobs are
allocated non-preemptively, i.e., jobs run in one shot without interruption. This
property has practical significance, as it avoids significant network and storage
resources for checkpointing the intermediate state of jobs that are distributed
across multiple servers running in parallel.

The approximation algorithm that we develop is essential for constructing an
efficient truthful-in-expectation mechanism that preserves the α-approximation.
To obtain this result, we slightly modify the approximation algorithm to get
an exact decomposition of an optimal fractional solution. This decomposition is
then used to simulate (in expectation) a “fractional” VCG mechanism, which
is truthful. The main advantage of our mechanism is that the allocation rule
requires only a single execution of the approximation algorithm, whereas known
black-box reductions that can be applied invoke the approximation algorithm
many times, providing only a polynomial bound on the number of invocations. At
the end of the paper, we discuss the process of computing the charged payments.

Related Work. We compare our results to known work in algorithmic mecha-
nism design and scheduling. An extensive amount of work has been carried out
in these fields, starting with the seminal paper of Nisan and Ronen [10] (see also
[11] for a survey book). Of relevance to our work are papers which introduce
black-box schemes of turning approximation algorithms to incentive compat-
ible mechanisms, while maintaining the approximation ratio of the algorithm.
Specifically, Lavi and Swamy [7] show how to construct a truthful-in-expectation
mechanism for packing problems that are solved through LP-based approxima-
tion algorithms. Dughmi and Roughgarden [6] prove that packing problems that
have an FPTAS solution can be turned into a truthful-in-expectation mechanism



A Truthful Mechanism for Value-Based Scheduling in Cloud Computing 181

which is also an FPTAS. We note that there are several papers that combine
scheduling and mechanism design (e.g., [8,1]), mostly focusing on makespan min-
imization.

Scheduling has been a perpetual field of research in operations research and
computer science (see e.g., [5,3,4,12,9] and references therein). Of specific rele-
vance to our work are [4,12], which consider variations of the interval-scheduling
problem. These papers utilize a decomposition technique for their solutions,
which we extend to a more complex model in which the amount of resources
allocated to a job can change over time.

2 Definitions and Notation

In the Bounded Flexible Scheduling (BFS) problem, a cloud provider is in
charge of a cloud containing a fixed number of C servers. The time axis is
divided into T time slots T = {1, 2, . . . T}. The cloud provider receives requests
from n clients, denoted by J = {1, 2, . . . n}, where each client has a job that
needs to be executed. We will often refer to a client either as a player or by the
job belonging to her. The cloud provider can choose to reject some of the job
requests, for instance if allocating other jobs increases its profit. In this model,
the cloud can gain profit only by fully completing a job.

Every job j is described by a tuple 〈Dj , kj , vj〉. The first parameter Dj ,
the demand of job j, is the total amount of demand units required to com-
plete the job, where a demand unit corresponds to a single server being assigned
to the job for a single time slot. Parallel execution of a job is allowed, that is,
the job can be executed on several servers in parallel. In this model we assume
that the additional overhead due to parallelism is negligible. However, parallel
execution of a job is limited by a threshold kj , which is the maximal number of
servers that can be simultaneously assigned to job j in a single time slot. We
assume that k � maxj {kj} is substantially smaller than the total capacity C,
i.e., k $ C.

Let vj : T → R
+,0 be the valuation function of job j. That is, vj (t) is the

value gained by the owner of job j if job j is completed at time t. The valuation
function vj is naturally assumed to be monotonically non-increasing in t. The
goal is to maximize the sum of values of the jobs that are scheduled by the cloud.
In this paper, two types of valuation functions will be of specific interest to us:

• Deadline Valuation Functions: Here, players have a deadline dj which
they need to meet. Formally, vj (t) is a step down function, which is equal to a
constant scalar vj until the deadline dj and 0 afterwards.

• General Valuation Functions: The functions vj(t) are arbitrary monoton-
ically non-increasing functions.

For simplicity of notation, when discussing the case of general valuation func-
tions, we will set dj = T for every player. Define Tj = {t ∈ T : t ≤ dj} as the set
of time slots in which job j can be executed and Jt = {j ∈ J : t ≤ dj} as the
set of jobs that can be executed at time t.
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A mapping yj : Tj → [0, kj] is an assignment of servers to job j per time unit,
which does not violate the parallelism threshold kj

1. A mapping which fully
executes job j is called an allocation. Formally, an allocation aj : Tj → [0, kj ] is
a mapping for job j with

∑
t aj (t) = Dj . Denote by Aj the set of allocations aj

which fully execute job j and let A =
⋃n

j=1Aj . Let s (yj) = min {t : yj (t) > 0}
and e (yj) = max {t : yj (t) > 0} denote the start and end times of a mapping yj ,
respectively. Specifically, for an allocation aj , e (aj) is the time in which job j is
completed when the job is allocated according to aj , and vj (e (aj)) is the value
gained by the owner of job j. We will often use vj (aj) instead of vj (e (aj)) to
shorten notations.

3 Approximation Algorithm for BFS

In this section we present an algorithm for BFS that approximates the social wel-
fare, i.e., the sum of values gained by the players. When discussing the approxi-
mation algorithm, we assume that players bid truthfully. In Section 4, we describe
a payment scheme that gives players an incentive to bid truthfully. We begin this
section by describing an LP relaxation for the case of deadline valuation func-
tions and continue by presenting a canonical solution form in which all mappings
are Monotonically Non Decreasing (MND) mappings, defined later. This result
is then generalized for general valuation functions (Section 3.2). Finally, we give
a decomposition algorithm (Section 3.3) which yields an α-approximation to the
optimal social welfare of BFS.

3.1 LP Relaxation of BFS with Deadline Valuation Functions

Linear Relaxation. Consider the following relaxed linear program. Every vari-
able yj (t) for t ∈ Tj in (LP-D) denotes the number of servers assigned to j at
time t. We use yj to denote the mapping induced by the variables {yj (t)}t∈Tj

and xj as the completed fraction of job j.

(LP-D) max
n∑

j=1

vjxj

s.t.
∑
t∈Tj

yj (t) = Dj · xj ∀j ∈ J (1)

∑
j∈Jt

yj (t) ≤ C ∀t ∈ T (2)

0 ≤ yj (t) ≤ kjxj ∀j ∈ J , t ∈ Tj (3)
0 ≤ xj ≤ 1 ∀j ∈ J (4)

1 For tractability, we assume that the assignment yj is a continuous decision variable.
In practice, non-integer allocations will have to be translated to integer ones, for
example by processor sharing within each time interval.
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Reallocate(y)
1. While y contains non-MND mappings

1.1. Let j be a job generating a maximal(a, b)-violation according to �
1.2. ReallocationStep(y, j, a, b)

ReallocationStep(y, j, a, b)
1. Let j′ be a job such that yj′ (a) < yj′ (b)
2. Tmax = {t ∈ [a, b] : yj′ (t) = yj′ (b)}
3. δ = max {yj′ (t) : t ∈ [a, b] \ Tmax}
4. Δ = min

{
yj(a)−yj(b)

1+|Tmax| ,
yj′ (b)−yj′ (a)

1+|Tmax| , yj′ (b) − δ
}

5. Reallocate as follows:
5.1. yj′ (t) ← yj′ (t) − Δ for every t ∈ Tmax

5.2. yj′ (a) ← yj′ (a) + Δ · |Tmax|
5.3. yj (a) ← yj (a) − Δ · |Tmax|
5.4. yj (t) ← yj (t) + Δ for every t ∈ Tmax

Constraints (1) and (2) are job demand and capacity constraints. Typically,
the parallelized execution constraints would take the form 0 ≤ yj (t) ≤ k. How-
ever, the integrality gap in this case can be as high as Ω (n). Intuitively, (3)
“prevents” us from getting bad mappings which do not correspond to feasible
allocations. That is, if we would have extended a mapping yj (disregarding ca-
pacity constraints) by dividing every entry in yj by xj , we would have exceeded
the parallelization threshold of job j. Before continuing, we mention that there
is a strong connection between the choice of (3) and the configuration LP for
the BFS problem. In fact, (3) can be viewed as an efficient way of implementing
the configuration LP. We leave the details to the full version of this paper.

MND Mappings and the Reallocation Algorithm. We now present a
canonical solution form of solutions for (LP-D), in which all mappings are mono-
tonically non decreasing (defined next). This canonical form will allow us to con-
struct an approximation algorithm for BFS with a good approximation factor.

Definition 1. A monotonically non-decreasing (MND) mapping (alloca-
tion) yj : Tj → [0, kj ] is a mapping (allocation) which is monotonically non-
decreasing in the interval [s (yj) , e (yj)].

MND mappings propose implementation advantages, such as the allocation al-
gorithm being non-preemptive, as well as theoretical advantages which will allow
us to construct a good approximation algorithm for BFS. We first present the
main result of this subsection:

Theorem 1. There is a poly(n, T ) time algorithm that transforms any feasible
solution y of (LP-D) to an equivalent solution that obtains the same social welfare
as y, in which all mappings are MND mappings.

This theorem is a result of the following reallocation algorithm. Let y be a feasible
solution to (LP-D). To simplify arguments, we add an additional “idle” job
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which is allocated whenever there are free servers. This allows us to assume
without loss of generality that in every time slot, all C servers are in use. We
present a reallocation algorithm that transforms the mappings in y to MND
mappings. The reallocation algorithm will swap between assignments of jobs to
servers, without changing the completed fraction of every job (xj), such that
no completion time of a job will be delayed. Since the valuation functions are
deadline valuation functions, the social welfare of the resulting solution will be
equal to the social welfare matching y. Specifically, an optimal solution to (LP-
D) will remain optimal. We introduce some definitions and notations prior to
the description of the reallocation algorithm.

Definition 2. Job j generates an (a, b)-violation, a < b, if yj (a) > yj (b) > 0.
Violations are weakly ordered according to a binary relation � over T × T :

(a, b) � (a′, b′) ⇔ b < b′ or (b = b′) ∧ (a ≤ a′) (5)

Note that there can be several maximal pairs (a, b) according to �.

Given a solution y to (LP-D), our goal is to eliminate all (a, b)-violations in y
and consequently remain with only MND mappings, keeping y a feasible solution
to (LP-D). The reallocation algorithm works as follows: In every step we try to
eliminate one of the maximal (a, b)-violations, according to the order induced
by �. Let j be the job generating this maximal (a, b)-violation. The main ob-
servation is that there must be some job j′ with yj′ (a) < yj′ (b), since in every
time slot all C servers are in use. We apply a reallocation step, which tries to
eliminate this violation by shifting workload of job j from a to later time slots (b
in particular), and by doing the opposite to j′. To be precise, we increase yj in
time slots in Tmax (line 2) by a value Δ > 0 (line 4), and increase yj′ (a) by the
amount we decreased from other variables. We note that if we do not decrease
yj′ for all time slots in Tmax, we will generate (ã, b)-violations for a < ã and
therefore the reallocation algorithm may not terminate.

We choose Δ such that after calling the reallocation step either: 1. yj (a) =
yj (b) 2. yj′ (a) = yj′ (b) 3. The size of Tmax increases. In the second case, if
the (a, b)-violation hasn’t been resolved, there must be a different job j′′ with
yj′′ (a) < yj′′ (b), and therefore we can call the reallocation step again. In the
third case, we simply expand Tmax and recalculate Δ. The reallocation algorithm
repeatedly applies the reallocation step, choosing the maximal (a, b)-violation
under �, until all mappings become MND mappings. The following lemma guar-
antees the correctness of the reallocation algorithm.

Lemma 1. Let y be a feasible solution of (LP-D) and let j be a job generat-
ing a maximal (a, b)-violation over �. Denote by ỹ the vector y after calling
ReallocationStep(y, j, a, b) and let

(
ã, b̃
)

be the maximal violation in ỹ. Then:

1. ỹ is a feasible solution of (LP-D).
2.
(
ã, b̃
)
� (a, b)

3. No new (a, b)-violations are added to ỹ.
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Fig. 1. Resolving an (a, b)-violation generated by j, with Tmax = {b, b − 1, b − 4}. X-
axis represents time

The reallocation algorithm runs in poly (n, T ) time. To show this, consider a
potential function which is the total number of violations. The reallocation al-
gorithm resolves at least one violation after at most nT calls to the reallocation
step. The maximal initial number of such violations is bounded by O

(
nT 2

)
and

a reallocation step can be efficiently implemented, proving the statement.

3.2 Extension to General Valuation Functions

To extend the results presented so far to the case of general valuation functions,
we expand (LP-D) by splitting every player into T subplayers, one for each end
time, each associated with a deadline valuation function. Formally, every player
j will be substituted by T subplayers j1, j2, . . . jT , all with the same demand
and parallelization bound as j. For ease of notation, we denote by ye

j (t) the
variables in the linear program matching subplayer je, and use similar super-
script notations henceforth. For every subplayer je, we set ve

j = vj (e) and de
j = e.

Apart from demand and capacity constraints, we include constraint (3) for every
subplayer je and add an additional set of constraints:∑

e∈T
xe

j ≤ 1 ∀j ∈ J (6)

This is indeed a relaxation of BFS (we can map an allocation aj in a BFS solution
to the subplayer je(aj)). The reallocation algorithm does not change the values
xe

j , thus it will not violate (6). We note that these results can be extended to
the case where valuation functions are non-monotone. From this point on, we
refer to (LP) as the relaxed linear program for general valuation functions, after
adding (6). When applying results to deadline valuation functions settings, every
player j will be viewed as a single subplayer jdj (making (6) redundant).

3.3 Decomposing an Optimal MND Fractional Solution

The approximation algorithm presented in this section constructs a set of feasible
solutions to BFS from a fractional optimal solution to (LP) given in the canonical
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Coloring Algorithm(S)
1. Sort the MND allocations a ∈ S according to e (a) in descending order.
2. For every MND allocation a in this order

2.1 Color a in some color c such that c remains a feasible integral solution.

MND form. The algorithm is similar to the coloring algorithm used in [4,12] for
the weighted job interval scheduling problem. The first step of the algorithm
constructs a multiset S ⊂

⋃n
j=1Aj of allocations out of an optimal solution of

(LP) given in MND form and then divides the allocations in S into a set of
feasible solutions to BFS.

Step I: Construction of S. Let N be a large number to be determined later.
Consider a job j which is substituted by a set of subplayers j1, j2, . . . , jT (or a
single subplayer jdj for the case of deadline valuation functions). Let y be an
optimal solution of (LP) after applying the reallocation algorithm. For every
subplayer je, let ae

j be the allocation corresponding to ye
j , defined: ae

j (t) =
ye

j (t)

xe
j

for every t ∈ Tj . Note that ae
j is an allocation by the definition of xe

j and by (3).
We construct S as follows: Let x̄e

j denote the value xe
j rounded up to the nearest

integer multiplication of 1
N . For every subplayer je, add Nx̄e

j copies of ae
j to S.

Step II: Coloring Allocations. The coloring algorithm will color copies of MND
allocations in S such that any set of allocations with identical color will induce a
feasible integral solution to BFS. Let 1, 2, ..., COL denote the set of colors used
by the coloring algorithm, described above. We use a ∈ c to represent that an
allocation a is colored in color c. Given a color c, let c (t) =

∑
a∈c a (t) denote

the total load of MND allocations colored in c at time t. The following two
lemmas prove that the number of colors used is relatively small. This allows us
to construct an α-approximation algorithm in Theorem 2.

Lemma 2. Consider an iteration after some allocation a ∈ S is colored. Then,
for every color c, c (t) is monotonically non-decreasing in the range [1, e (a)].

Proof (Sketch). Since the sum of MND vectors is MND. Proof by induction. ��

Lemma 3. If COL = N ·
(
1 + C

C−k

)(
1 + nT

N

)
, then when the algorithm handles

an allocation a ∈ S there is always a free color c in which a can be colored.

Proof (Sketch). Consider the point when a copy of an allocation aj is colored.
Job j is associated with at most N

(
1 + nT

N

)
− 1 copies other than aj (since we

rounded up the values xe
j . For any color c that cannot be used due to capacity

constraints we must have: c (e (aj)) ≥ C − k. Thus, there is always a free color
in which aj can be colored. ��

Theorem 2. There is a poly
(
n, T, 1

ε

)
time approximation algorithm that given

an optimal solution to (LP) returns an α �
(
1 + C

C−k

)
(1 + ε) approximation to

BFS for every ε > 0.
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Proof (Sketch). Set N = nT
ε . The social welfare obtained by the best color out

of the COL colors is at least:
N ·
∑

je vj x̄e
j

COL ≥ N ·OPT∗
COL = OPT∗

α ��

4 Truthfulness-in-Expectation

Up until now we have assumed that players report their true valuation functions
to the cloud provider and that prices are charged accordingly. However, in reality,
players may choose to untruthfully report a valuation function bj which differs
from their true valuation function vj if they may gain from it. In this section, we
construct an efficient mechanism that charges costs from players such that re-
porting their valuation function untruthfully cannot benefit them. Unlike known
black-box reductions for constructing such mechanisms, our construction calls
the approximation algorithm only once, significantly improving the complexity
of the mechanism.

We begin by introducing the common terminology used in mechanism design.
Every participating player chooses a type out of a known type space. In our
model, players choose a valuation function vj out of the set of monotonically
non-increasing valuation functions (or deadline valuation functions) to represent
its true type. Denote by Vj the set of types from which player j can choose and
let V = V1 × · · · × Vn. For a vector v, denote by v−j the vector v restricted to
entries of players other than j and denote V−j accordingly. Let O denote the set
of all possible outcomes of the mechanism and let vj (o) for o ∈ O represents the
value gained by player j under outcome o. A mechanism M = (f, p) consists of
an allocation rule f : V → O and a pricing rule pj : V → R for each player j.
Players report a bid type bj ∈ Vj to the mechanism, which can be different from
their true type vj . The mechanism, given a reported type vector b = (b1, . . . , bn)
computes an outcome o = f (b) and charges pj (b) from each player. Each player
strives to maximize its utility: uj (b) = vj (o) − pj (b), where oj in our model
is the allocation according to which job j is allocated, if at all. Mechanisms
such as this, where the valuation function does not consist of a single scalar are
called multi-parameter mechanisms. Our goal is to construct a multi-parameter
mechanism where players benefit by declaring their true type. Another desired
property is that players do not lose when truthfully reporting their values.

Definition 3. A deterministic mechanism is truthful if for any player j, re-
porting its true type maximizes uj (b). That is, given any bid bj ∈ Vj and any
v−j ∈ V−j , we have:

uj ((vj , v−j)) ≥ uj ((bj , v−j)) (7)

where vj ∈ Vj is the true type of player j. A randomized mechanism is truthful-
in-expectation if for any player j, reporting its true type maximizes the expected
value of uj (b). That is, (7) holds in expectation.

Definition 4. A mechanism is individually rational (IR) if uj (v) does not
receive negative values when player j bids truthfully, for every j and v−j ∈ V−j.
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4.1 The Fractional VCG Mechanism

We start by giving a truthful, IR fractional mechanism that can return a frac-
tional allocation, that is, allocate fractions of jobs according to (LP):

1. Given reported types bj : T → R
+,0, Solve (LP) and get an optimal solution

y∗. Let o ∈ O be the outcome matching y∗.
2. Charge pj (b) = hj (o−j)−

∑
i�=j bi (oi) from every player j, where hj is any

function independent of oj .

This is the well known VCG mechanism. Recall that (LP) maximizes the social
welfare, i.e., the sum of values gained by all players. Assuming all other players
act truthful, player j gains uj (b) = OPT ∗ − hj (o−j) by bidding truthfully and
therefore the mechanism is optimal, since deviating can only decrease

∑
i vi (o).

Note that by dividing both valuation functions and charged prices by some
constant, the fractional VCG mechanism remains truthful. This will be useful
later on. Individual rationality of the fractional VCG mechanism is obtained by
setting the functions hj according to Clarke’s pivot rule [11].

4.2 A New Efficient Truthful-in-Expectation Mechanism

Lavi and Swamy [7] give a black-box reduction for combinatorial auction packing
problems from constructing a truthful-in-expectation mechanism to finding an
approximation algorithm that verifies an integrality gap of the “natural” LP
for the problem. Their reduction finds an exact decomposition of the optimal
fractional solution (scaled down by some constant β) into a distribution over
feasible integer solutions. By sampling a solution out of this distribution and
charging payments according to the fractional VCG mechanism (scaled down
by β), they obtain truthfulness-in-expectation. The downside of the reduction
given in [7] is that the approximation algorithm A is used as a separation oracle
for an additional linear program used as part of the reduction, making their
construction inefficient. We follow along the lines of [7] in order to construct
a truthful-in-expectation mechanism for the BFS problem, and show how to
achieve the same results as [7] by calling our approximation algorithm once.

Recall that the algorithm from Theorem 2 constructs a set of feasible solutions
to BFS out of an optimal solution to LP. Ideally, we would have wanted to replace
the exact decomposition found by [7] with the output of our decomposition
algorithm (by drawing one of the colors uniformly). However, this does not work
since our decomposition is not an exact one, because the values xe

j have been
rounded up to x̄e

j prior to the construction of S.
To overcome this issue, we use a simple alternative technique to round the

entries in x to integer multiplications of 1
N . We construct a vector x̃ such that

E
[
x̃e

j

]
= xe

j for every subplayer je, as follows: Assume that xe
j = q

N +r for q ∈ N

and 0 ≤ r < 1
N . Then, set x̃e

j = q+1
N with probability N ·r and x̃e

j = q
N otherwise.

Note that E
[
x̃e

j

]
= xe

j as required. Now, we construct S out of x̃ and call the
coloring algorithm. By uniformly drawing one of the colors c and scheduling
jobs according to the allocations colored in c, we obtain an expected welfare
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of: E

[
N

COL

∑
je vj x̃

e
j

]
= OPT∗

α . By charging fractional VCG prices, scaled down
by α, we obtain truthfulness-in-expectation. Notice that this mechanism is not
individually rational, since unallocated jobs may be charged. Lavi and Swamy
[7] solve this problem by showing how to modify the pricing rule so that the
mechanism will be individually rational. Notice that the number of colors used
by the coloring algorithm must always be COL, even though it is an upper bound
on the number of colors needed. Otherwise, players might benefit from reporting
their valuation functions untruthfully by effecting the number of solutions.

Theorem 3. There is a truthful-in-expectation, individually rational mechanism
for BFS that provides an expected α-approximation of the optimal social welfare.

Finally, we discuss the process of computing the payments pj (b). Note that to
directly calculate the payments charged by VCG, one must solve a linear pro-
gram for every player j. [2] describes an implicit pricing scheme that requires
only a single invocation of the approximation algorithm to construct both an
allocation rule and pricing rules of a truthful-in-expectation mechanism. This
result can be plugged into our mechanism, thus decreasing the number of calls
to our approximation algorithm to one. However, their scheme induces a mecha-
nism that is only individually rational in expectation (specifically, it may charge
negative prices) and causes a multiplicative (constant) loss to social welfare.
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1. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: FOCS,
pp. 482–491 (2001)

2. Babaioff, M., Kleinberg, R., Slivkins, A.: Truthful mechanisms with implicit pay-
ment computation. In: EC, pp. 43–52 (2010)

3. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach
to approximating resource allocation and scheduling. JACM 48, 1069–1090 (2001)

4. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Approximating the throughput of
multiple machines in real-time scheduling. SIAM Journal of Computing 31(2),
331–352 (2001)

5. Brucker, P.: Scheduling Algorithms, 4th edn. Springer, Heidelberg (2004)
6. Dughmi, S., Roughgarden, T.: Black-box randomized reductions in algorithmic

mechanism design. In: FOCS, pp. 775–784 (2010)
7. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear pro-

gramming. In: FOCS, pp. 595–604 (2005)
8. Lavi, R., Swamy, C.: Truthful mechanism design for multi-dimensional scheduling

via cycle monotonicity. In: EC (2007)
9. Lawler, E.L.: A dynamic programming algorithm for preemptive scheduling of a

single machine to minimize the number of late jobs. Annals of Oper. Research 26,
125–133 (1991)

10. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: STOC (1999)
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Abstract. We focus on the problem of computing approximate Nash
equilibria and well-supported approximate Nash equilibria in random bi-
matrix games, where each player’s payoffs are bounded and independent
random variables, not necessarily identically distributed, but with com-
mon expectations. We show that the completely mixed uniform strat-
egy profile, i.e. the combination of mixed strategies (one per player)
where each player plays with equal probability each one of her available

pure strategies, is with high probability a
√

ln n
n

-Nash equilibrium and

a
√

3 lnn
n

-well supported Nash equilibrium, where n is the number of

pure strategies available to each player. This asserts that the completely
mixed, uniform strategy profile is an almost Nash equilibrium for random
bimatrix games, since it is, with high probability, an ε-well-supported
Nash equilibrium where ε tends to zero as n tends to infinity.

1 Introduction

Non-cooperative game theory has been extensively used in understanding the
phenomena observed when decision makers interact. A non-cooperative game in
strategic form consists of a set of players, and, for each player, a set of strategies
available to her as well as a payoff function mapping each strategy profile (i.e.
each combination of strategies, one for each player) to a real number that cap-
tures the preferences of the player over the possible outcomes of the game. The
most important solution concept in non-cooperative game theory is the notion
of Nash equilibrium [12]; this is a strategy profile from which no player would
have an incentive to unilaterally deviate, i.e. no player could increase her pay-
off by choosing another strategy while the rest of the players persevered their
strategies.

Despite the certain existence of such equilibria [12], the problem of finding any
Nash equilibrium even for games involving only two players has been recently
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proved to be complete in the PPAD (polynomial parity argument, directed ver-
sion) class [3], introduced by [13]. Given this fact, the importance of the com-
putation of approximate Nash equilibria, also referred to as ε-Nash equilibria,
became clear. An ε-Nash equilibrium is a strategy profile such that no deviating
player could achieve a payoff higher than the one that the specific profile gives
her, plus ε.

A stronger notion of approximate Nash equilibria is the ε-well-supported Nash
equilibria; these are strategy profiles such that each player plays with non-zero
probability only strategies that are approximately best-responses, i.e., strategies
giving the player a payoff that is no less than the one that the specific profile
gives her, minus ε.

In this work, we focus on the problem of computing an ε-Nash equilibrium as
well as an ε-well supported Nash equilibrium of a random n× n bimatrix game.
In a random game, as considered in this work, the entries of each player’s payoff
matrix are random variables which are drawn independently from some prob-
ability distribution on the interval [0, 1]. We do not require that these random
variables should be identically distributed, but we assume that, in each matrix,
all entries have the same mean (μA for the first player and μB for the second
player).

We show that the completely mixed, uniform strategy profile where each player
plays with equal probability each of her n available pure strategies is, with

high probability, a
√

lnn
n -Nash equilibrium and a

√
3 ln n

n -well supported Nash
equilibrium. This implies that the simple uniform randomization over the set of
pure strategies of each player yields an almost Nash equilibrium profile, in the
sense that it is, with high probability, an ε-well-supported Nash equilibrium with
ε tending to zero as the number of available strategies tends to infinity.

Related Work. [12] introduced the concept of Nash equilibria in non-cooperative
games and proved that any game possesses at least one such equilibrium; how-
ever, the computational complexity of finding a Nash equilibrium used to be a
wide open problem for several years. A well-known algorithm for computing a
Nash equilibrium of a game with 2 players is the Lemke-Howson algorithm [10],
however it has exponential worst-case running time in the number of available
pure strategies [14].

Recently, [5] showed that the problem of computing a Nash equilibrium in a
game with 4 or more players is PPAD-complete; this result was later extended to
games with 3 players [6]. Eventually, [3] proved that the problem is PPAD-com-
plete for bimatrix games in which each player has n available pure strategies.

In [11], following similar techniques as in [1], it was shown that, for any bima-
trix game and for any constant ε > 0, there exists an ε-Nash equilibrium with
only logarithmic support (in the number n of available pure strategies). This
result directly yields a quasi-polynomial (nO(ln n)) algorithm for computing such
an approximate equilibrium. Moreover, as pointed out in [1], no algorithm that
examines supports smaller than about ln n can achieve an approximation better
than 1

4 .
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In [4] it was shown that the problem of computing a 1
nΘ(1) -Nash equilibrium is

PPAD-complete, and that bimatrix games are unlikely to have a fully polynomial
time approximation scheme (unless PPAD ⊆ P). However, it was conjectured
that it is unlikely that finding an ε-Nash equilibrium is PPAD-complete when
ε is an absolute constant. Until know, the best polynomial-time algorithm for
computing an ε-Nash equilibrium is due to [15] and achieves an approximation
factor ε = 0.3393.

[2] analyzed a Las Vegas algorithm for finding a Nash equilibrium in 2-player
random games. In their model however the matrices entries were considered to
be identically distributed (drawn either from the uniform distribution on some
interval with zero mean, or from the standard Normal distribution N(0, 1)).
The randomized algorithm proposed in [2] always finds an equilibrium, and an
involved analysis of its time complexity shows that it runs in polynomial time
(namely O(n3 ln lnn)) with high probability.

Here we show that the simple strategy profile where each player plays with
equal probability each of her available pure strategies is possibly an almost Nash
equilibrium for the random games we consider. Our model of a random bima-
trix game is less restrictive than the one considered in [2], since it allows for
non-identically distributed payoffs. The results presented here give a clear and
straightforward method for computing almost Nash equilibrium strategies in
random games, without searching among possible supports or computing the
probabilities that the pure strategies of each player should be played with.

2 Games and Nash Equilibria

2.1 Notation

For an integer n, let [n] = {1, 2, . . . , n}. For a n × 1 vector x we denote by
x1, x2, . . . xn the components of x and by xT the transpose of x. We denote by
ei the column vector with a 1 at the ith coordinate and 0 elsewhere; the size of ei

will be clear from the context. For an n×m matrix A, we denote aij the element
in the i-th row and j-th column of A. Let P

n be the set of all probability vectors
in n dimensions, i.e. P

n ≡ {x ∈ R
n :
∑n

i=1 xi = 1 and xi ≥ 0 for all i ∈ [n]} .
For an event E in a sample space, denote Pr{E} the probability of event E
occurring. For a random variable X that follows the probability distribution D,
denote E [X ] the expectation of X (according to the probability distribution D).

2.2 Bimatrix Games

A noncooperative game Γ = 〈N, (Si)i∈N , (ui)i∈N 〉 consists of (i) a finite set of
players N , (ii) a nonempty finite set of pure strategies Si for each player i ∈ N
and (iii) a payoff function ui : ×i∈NSi → R for each player i ∈ N .

Bimatrix games [9, 10] are a special case of 2-player games (i.e. |N | = 2) such
that the payoff functions can be described by two real n×m matrices A and B,
where n = |S1| and m = |S2|. More specifically, the n rows of matrices A and B
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represent the n pure strategies of the first player (also called the row player), and
the m columns represent the pure strategies of the second player (the column
player). Then, when the row player chooses strategy i and the column player
chooses strategy j, the former gets payoff aij while the latter gets payoff bij .
Based on this, bimatrix games are denoted by Γ = 〈A, B〉.

A mixed strategy for player i ∈ N is a probability distribution on the set of
her pure strategies Si. In a bimatrix game Γ = 〈A, B〉, a mixed strategy for
the row player can be expressed as a probability vector x ∈ P

n while a mixed
strategy for the column player can be expressed as a probability vector y ∈ P

m.
A strategy profile (x,y) is a combination of strategies, one for each player. In a
given strategy profile (x,y) the players get expected payoffs xT Ay (row player)
and xT By (column player). The support of a player in a strategy profile is the
subset of her pure strategies that are assigned strictly positive probability.

We define the completely mixed, uniform strategy profile as the strategy pro-
file where each player plays with equal probability each of her available pure
strategies:

Definition 1 (Completely mixed, uniform strategy profile). Consider a
n×m bimatrix game Γ = 〈A, B〉. The completely mixed, uniform strategy profile
is the strategy profile (x,y) such that

xi =
1
n
∀i ∈ [n] and yj =

1
m

∀j ∈ [m] .

2.3 Nash Equilibria and Approximate Nash Equilibria

A Nash equilibrium [12] for a game Γ is a combination of (pure or mixed)
strategies, one for each player, such that no player could increase her payoff by
unilaterally changing her strategy.

Definition 2 (Nash equilibrium). A strategy profile (x,y) is a Nash equilib-
rium for the n×m bimatrix game Γ = 〈A, B〉 if

1. For all pure strategies i ∈ [n] of the row player, eT
i Ay ≤ xT Ay and

2. For all pure strategies j ∈ [m] of the column player, xT Bej ≤ xT By.

Equivalently,

Definition 3 (Nash equilibrium). A strategy profile (x,y) is a Nash equilib-
rium for the n×m bimatrix game Γ = 〈A, B〉 if

1. For all pure strategies i ∈ [n] of the row player,

xi > 0⇒ eT
i Ay ≥ eT

k Ay ∀k ∈ [n]

2. For all pure strategies j ∈ [m] of the column player,

yj > 0⇒ xT Bej ≥ xT Bek ∀k ∈ [m] .
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For ε > 0, an ε-Nash equilibrium (or an ε-approximate Nash equilibrium)
is a combination of (pure or mixed) strategies, one for each player, such that
no player could increase her payoff more than ε by unilaterally changing her
strategy:

Definition 4 (ε-Nash equilibrium). For any ε > 0 a strategy profile (x,y) is
an ε-Nash equilibrium for the n×m bimatrix game Γ = 〈A, B〉 if

1. For all pure strategies i ∈ [n] of the row player, eT
i Ay ≤ xT Ay + ε and

2. For all pure strategies j ∈ [m] of the column player, xT Bej ≤ xT By + ε.

A stronger notion of approximate Nash equilibria was introduced in [7, 5]: For ε >
0, an ε-well supported Nash equilibrium (or a well-supported ε-approximate Nash
equilibrium) is a combination of (pure or mixed) strategies, one for each player,
such that each player plays only approximately best-response pure strategies
with non-zero probability:

Definition 5 (ε-well-supported Nash equilibrium). For any ε > 0 a stra-
tegy profile (x,y) is an ε-well-supported Nash equilibrium for the n×m bimatrix
game Γ = 〈A, B〉 if

1. For all pure strategies i ∈ [n] of the row player,

xi > 0⇒ eT
i Ay ≥ eT

k Ay − ε ∀k ∈ [n]

2. For all pure strategies j ∈ [m] of the column player,

yj > 0⇒ xT Bej ≥ xT Bek − ε ∀k ∈ [m] .

Observe that every ε-well-supported Nash equilibrium is also an ε-Nash equi-
librium, but the converse need not be true. However, as pointed out in [4], for
every ε > 0, given an ε

8n -Nash equilibrium we can compute in polynomial time
an ε-well-supported Nash equilibrium.

We define an almost Nash equilibrium as an ε-well-supported Nash equilibrium
such that ε tends to zero as the number of the available pure strategies of the
players tends to infinity:

Definition 6 (Almost Nash equilibrium). A strategy profile (x,y) is an
almost Nash equilibrium for the n× n bimatrix game Γ = 〈A, B〉 if

1. For all pure strategies i ∈ [n] of the row player,

xi > 0⇒ eT
i Ay ≥ eT

k Ay − ε(n) ∀k ∈ [n]

2. For all pure strategies j ∈ [n] of the column player,

yj > 0⇒ xT Bej ≥ xT Bek − ε(n) ∀k ∈ [n] .

3. limn→∞ ε(n) = 0.
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2.4 Random Bimatrix Games

As pointed out in [4], the set of Nash equilibria of a bimatrix game remains
precisely the same if we multiply all entries of a matrix by a positive constant
or if we add the same constant to each entry. Therefore, it suffices to consider
bimatrix games with normalized matrices so as to study their complexity. We
adopt the normalization used in [11]: we assume that the value of each entry in
the matrices is lower bounded by 0 and upper bounded by 1. Such games are
referred to as positively normalized [4]. Furthermore, in this work we focus on
random bimatrix games:

Definition 7 (Random bimatrix game). A n ×m random bimatrix game
Γ = 〈A, B〉 is n×m bimatrix game such that

1. all elements of matrix A are independent random variables, each taking a
value in the interval [0, 1] and with expectation μA ∈ [0, 1], and

2. all elements of matrix B are independent random variables, each taking a
value in the interval [0, 1] and with expectation μB ∈ [0, 1].

Note that, according to the above definition, the entries of each matrix of a
bimatrix game need not be identically distributed; it suffices that they all have
the same expectation.

3 Approximate Nash Equilibria in Random Games

In the following, we deal with the problem of computing an ε-Nash equilibrium of
a random n×n bimatrix game Γ = 〈A, B〉. We show that the completely mixed,

uniform strategy profile is, with high probability, a
√

lnn
n -Nash equilibrium. For

the proof we will use the following lemma:

Lemma 1 ([8]). If Y1, . . . Ym, Z1, . . . , Zn are independent random variables
with values in the interval [a, b], and if Ȳ = (Y1 + · · · + Ym)/m and Z̄ =
(Z1 + · · ·+ Zn)/n, then for t > 0

Pr
{
Ȳ − Z̄ −

(
E [Ȳ ]− E [Z̄]

)
≥ t
}
≤ exp

(
− 2t2(

1
m + 1

n

)
(b − a)2

)
.

Theorem 1. Let Γ = 〈A, B〉 be a n×m random bimatrix game and let (x,y)
be the completely mixed, uniform strategy profile for Γ . Then, for any ε > 0,

Pr {(x,y) is an ε-Nash equilibrium} ≥ 1−
(
n exp(−2mε2) + m exp(−2nε2)

)
.

Proof. Fix r ∈ [n]. Then

eT
r Ay =

∑
j∈[m]

arjyj =
1
m

∑
j∈[m]

arj ,

xT Ay =
∑
i∈[n]

∑
j∈[m]

aijxiyj =
1

nm

∑
i∈[n]

∑
j∈[m]

aij .
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Now,

eT
r Ay − xT Ay =

1
m

∑
j∈[m]

arj −
1

nm

∑
i∈[n]

∑
j∈[m]

aij

=
1
m

∑
j∈[m]

arj −
1

nm

∑
j∈[m]

arj −
1

nm

∑
i∈[n],i�=r

∑
j∈[m]

aij

=
n− 1
nm

∑
j∈[m]

arj −
1

nm

∑
i∈[n],i�=r

∑
j∈[m]

aij ,

and therefore, for any ε > 0,

Pr
{
eT

r Ay − xT Ay ≥ ε
}

=

Pr

{∑
j∈[m] arj

m
−
∑

i∈[n],i�=r

∑
j∈[m] aij

(n− 1)m
≥ n

n− 1
ε

}
.

Now we can apply Lemma 1: all random variables are mutually independent,
a = 0 and b = 1, t = n

n−1ε. Moreover,

E

⎡⎣ 1
m

∑
j∈[m]

arj

⎤⎦ =
1
m
·m · μA = μA

E

⎡⎣ 1
(n− 1)m

∑
i∈[n],i�=r

∑
j∈[m]

aij

⎤⎦ =
1

(n− 1)m
· (n− 1)m · μA = μA .

So

Pr
{
eT

r Ay − xT Ay ≥ ε
}
≤ exp

⎛⎝− 2 n2

(n−1)2 ε2(
1
m + 1

(n−1)m

)
(1− 0)2

⎞⎠
= exp

(
−2

nm

n− 1
ε2
)

≤ exp(−2mε2) .

Now,

Pr
{
∃r ∈ [n] : eT

r Ay − xT Ay ≥ ε
}
≤
∑
r∈[n]

Pr
{
eT

r Ay − xT Ay ≥ ε
}

≤ n exp(−2mε2) .

Similarly, we can show that for any c ∈ [m],

Pr
{
xT Bec − xT By ≥ ε

}
≤ exp(−2nε2)
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and hence

Pr
{
∃c ∈ [m] : xT Bec − xT By ≥ ε

}
≤
∑

c∈[m]

Pr
{
xT Bec − xT By ≥ ε

}
≤ m exp(−2nε2) .

Therefore, for any ε > 0,

Pr {(x,y) is an ε-Nash equilibrium} ≥ 1−
(
n exp(−2mε2) + m exp(−2nε2)

)
,

as needed. ��

Corollary 1. Consider a n× n random bimatrix game Γ . Then the completely

mixed, uniform strategy profile is, with high probability, a
√

lnn
n -Nash equilibrium

for Γ .

Proof. Let (x,y) denote the uniform strategy profile for Γ . By Theorem 1,

Pr{(x,y) is an ε-Nash equilibrium} ≥ 1− 2
(
n exp(−2nε2)

)
.

Setting ε =
√

lnn
n , it follows that the uniform strategy profile is a

√
lnn
n -Nash

equilibrium for 〈A, B〉 with probability

Pr

{
(x,y) is a

√
ln n

n
-Nash equilibrium

}
≥ 1− 2n exp

(
−2n

lnn

n

)
= 1− 2

n
.��

4 Well-Supported Nash Equilibria in Random Games

In this section we show that the completely mixed, uniform strategy profile is,

with high probability, a
√

3 ln n
n -well supported Nash equilibrium for a n × n

random bimatrix game.

Theorem 2. Let Γ = 〈A, B〉 be a n× n random bimatrix game. Then the com-

pletely mixed, uniform strategy profile is a
√

3 ln n
n -well supported Nash equilib-

rium for Γ , with high probability.

Proof. By definition, the completely mixed, uniform strategy profile (x,y) is an
ε-well supported Nash equilibrium if and only if, for all i, j ∈ [n],

eT
i Ay ≥ eT

j Ay − ε

eT
j Ay − eT

i Ay ≤ ε

1
n

n∑
k=1

ajk −
1
n

n∑
k=1

aik ≤ ε
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and

xT Bei ≥ xT Bej − ε

xT Bej − xT Bei ≤ ε

1
n

n∑
k=1

bkj −
1
n

n∑
k=1

bki ≤ ε .

Now fix i, j ∈ [n]. Then

E
[

1
n

n∑
k=1

ajk

]
= E

[
1
n

n∑
k=1

aik

]
=

1
n
· n · μA = μA

E
[

1
n

n∑
k=1

bkj

]
= E

[
1
n

n∑
k=1

bki

]
=

1
n
· n · μB = μB ,

therefore, by Lemma 1,

Pr

{
1
n

n∑
k=1

ajk −
1
n

n∑
k=1

aik ≥ ε

}
≤ exp

(
− 2ε2(

1
n + 1

n

)
(1− 0)2

)
= exp

(
−nε2

)
,

and similarly

Pr

{
1
n

n∑
k=1

bkj −
1
n

n∑
k=1

bki ≥ ε

}
≤ exp

(
−nε2

)
.

Thus

Pr{(x,y) is an ε-well-supported Nash equilibrium}
= 1− Pr

{
∃i, j : eT

i Ay ≥ eT
j Ay − ε or xT Bei ≥ xT Bej − ε

}
≥ 1−

(
n

2

)
· 2 · exp

(
−nε2

)
= 1− n(n− 1) exp

(
−nε2

)
.

Setting ε =
√

3 lnn
n we get

Pr{(x,y) is an ε-well-supported Nash equilibrium}

≥ 1− n(n− 1) exp
(
−n

3 lnn

n

)
≥ 1− n2 · 1

n3

= 1− 1
n

.

Therefore the completely mixed, uniform strategy profile (x,y) is a
√

3 lnn
n -well

supported Nash equilibrium for Γ with high probability. ��
Corollary 2. The completely mixed, uniform strategy profile is an almost Nash
equilibrium for random bimatrix games, with high probability.
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Abstract. We introduce two new decision problems, denoted as ∃ RA-
TIONAL NASH and ∃ IRRATIONAL NASH, pertinent to the rational-
ity and irrationality, respectively, of Nash equilibria for (finite) strategic
games. These problems ask, given a strategic game, whether or not it
admits (i) a rational Nash equilibrium where all probabilities are ra-
tional numbers, and (ii) an irrational Nash equilibrium where at least
one probability is irrational, respectively. We are interested here in the
complexities of ∃ RATIONAL NASH and ∃ IRRATIONAL NASH.

Towards this end, we study two other decision problems, denoted as
NASH-EQUIVALENCE and NASH-REDUCTION, pertinent to some mu-
tual properties of the sets of Nash equilibria of two given strategic games
with the same number of players. NASH-EQUIVALENCE asks whether
the two sets of Nash equilibria coincide; we identify a restriction of
its complementary problem that witnesses ∃ RATIONAL NASH. NASH-
REDUCTION asks whether or not there is a so called Nash reduction (a
suitable map between corresponding strategy sets of players) that yields
a Nash equilibrium of the former game from a Nash equilibrium of the
latter game; we identify a restriction of it that witnesses ∃ IRRATIONAL
NASH.

As our main result, we provide two distinct reductions to simultane-
ously show that (i)NASH-EQUIVALENCE is co-NP-hard and∃RATIONAL
NASH isNP-hard, and (ii)NASH-REDUCTION and∃ IRRATIONALNASH
are NP-hard, respectively. The reductions significantly extend techniques
previously employed by Conitzer and Sandholm [6, 7].

1 Introduction

Motivation, Framework and Techniques. Understanding the complexity of
algorithmic problems pertinent to equilibria in (finite) strategic games is one
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of the most intensively studied topics in Algorithmic Game Theory today (see,
for example, [3–9, 15, 16, 19] and references therein). Much of this research
has focused on Nash equilibria [17, 18], perhaps the most influential equilibrium
concept in all of Game Theory ever. In the wake of the complexity results for
search problems about Nash equilibria, a series of breakthrough results [4, 8]
shows that, even for two-player games, computing an (exact) Nash equilibrium
is complete for PPAD [19], a complexity class to capture the computation of
discrete fixed points; so also is the problem of computing an approximate Nash
equilibrium for games with any number of players.

In this work, we study the complexity of decision problems related to Nash
equilibria. The celebrated result of John Nash [17, 18] shows that every (finite)
game admits a mixed Nash equilibrium; so, it trivializes the decision problem
for (the existence of) mixed Nash equilibria, while it simultaneously opens up
a wide avenue for studying the complexity of decision problems for Nash equi-
libria with certain properties (e.g., pure). To the best of our knowledge, Gilboa
and Zemel [13] were the first to present complexity results (more specifically,
NP-hardness results) about mixed Nash equilibria (and correlated equilibria)
for games represented in explicit form; they identified some NP-hard decision
problems about the existence of (mixed) Nash equilibria with certain properties
for two-player strategic games.

Much later, Conitzer and Sandholm [6, 7] provided a very notable unify-
ing reduction, henceforth abbreviated as CS-reduction, to show that all decision
problems from [13] and many more are NP-hard. The CS-reduction [6, 7] yields
a two-player game out of a CNF formula φ; it is then shown that the game has
a Nash equilibrium with certain properties (in addition to some fixed pure Nash
equilibrium) if and only if φ is satisfiable. Hence, deciding the properties is NP-
hard. The CS-reduction uses literals, variables and clauses from the formula φ
together with a special strategy f as the strategies of each player. The essence
is that (i) both players choosing f results in a pure Nash equilibrium, and (ii)
a player could otherwise improve (by switching to f) unless both players only
randomize over literals. More important, a Nash equilibrium where both players
only randomize over literals is possible (and has certain properties) if and only
if φ is satisfiable.

In this paper, we extend the work from [6, 7, 13]. We study for the first time
the complexity of deciding rationality and irrationality properties of mixed Nash
equilibria. Recall that a Nash equilibrium is rational if all involved probabilities
are rational and otherwise it is irrational; all two-player games have only ratio-
nal Nash equilibria, while there are known three-player games with no rational
Nash equilibrium (cf. [18]). The corresponding decision problems, denoted as
∃ RATIONAL NASH and ∃ IRRATIONAL NASH, respectively, ask if there is a
rational (resp., irrational) Nash equilibrium1. So, both problems trivialize when
restricted to two-player games but become non-trivial for games with at least
three players. Since the CS-reduction [6, 7] applies to two-player games, it will

1 We were inspired to study these problems by a corresponding question posed by E.
Koutsoupias [14] to M. Yannakakis during his Invited Talk at SAGT 2009.
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not be directly applicable to settling the complexity of ∃ RATIONAL NASH and
∃ IRRATIONAL NASH.

Contribution and Significance. Gross plan: Establishing the NP-hardness of
the problems ∃ RATIONAL NASH and ∃ IRRATIONAL NASH is achieved via the
following plan:

1. Identify suitable decision problems witnessing ∃ RATIONAL NASH and ∃
IRRATIONAL NASH that make no reference to rationality or irrationality.
These will be NASH-EQUIVALENCE and NASH-REDUCTION, respectively;
on input a pair of strategic games SG and ŜG with the same number of players
r ≥ 2, they inquire about some mutual properties of their Nash equilibria.

2. Use CS-like reductions to simultaneously show that both problems NASH-
EQUIVALENCE and ∃ RATIONAL NASH (resp., NASH-REDUCTION and ∃
IRRATIONAL NASH) are NP-hard.

The problems NASH-EQUIVALENCE and ∃ RATIONAL NASH: NASH-

EQUIVALENCE asks whether the sets of Nash equilibria of SG and ŜG co-
incide. Fixing ŜG to some gadget game yields the restricted problem NASH-

EQUIVALENCE(ŜG); so, NASH-EQUIVALENCE(ŜG) takes the single input SG.
Note that (i) if the set of Nash equilibria for ŜG is a subset of those for SG and
(ii) ŜG has no rational Nash equilibrium, then SG has a rational Nash equilib-
rium if and only if the set of Nash equilibria for SG and ŜG do not coincide. So,
the existence of a rational Nash equilibrium is a witness to the non-equivalence
of SG and ŜG. So, if NASH-EQUIVALENCE(ŜG) is NP-hard, then so is ∃ RA-

TIONAL NASH. We show that NASH-EQUIVALENCE(ŜG) is NP-hard for an
arbitrary but fixed strategic game ŜG (Proposition 2 and Theorem 1). Fixing
ŜG to admit no rational Nash equilibrium yields that ∃ RATIONAL NASH is
NP-hard (Proposition 4 and Theorem 2).

The problems NASH-REDUCTION and ∃ IRRATIONAL NASH: NASH-

REDUCTION asks whether there is a Nash reduction from SG to ŜG. Roughly
speaking, a Nash reduction consists of a family of surjective functions, one per
player, mapping the strategy set of each player in SG to the strategy set of the
same player in ŜG. Note that any family of surjective functions induces a map
from mixed profiles for SG to mixed profiles for ŜG in the natural way: probabil-
ities to different strategies of a player in SG that map to the same strategy (of
the player) in ŜG are added up. However, a Nash reduction must, in addition,
preserve at least one Nash equilibrium: there must be a Nash equilibrium σ

for SG that maps to a Nash equilibrium σ̂ for ŜG. Note that (i) if there is a
Nash reduction from SG to ŜG, and (ii) SG has only rational Nash equilibria,
then ŜG has at least one rational Nash equilibrium. So, if ŜG is chosen to have
no rational Nash equilibrium, then either there is no Nash reduction from SG

to ŜG or SG has an irrational Nash equilibrium. Hence, the inexistence of an
irrational Nash equilibrium is a witness to the inexistence of a Nash reduction
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from SG to ŜG. So, if NASH-REDUCTION(ŜG) is NP-hard, then so is ∃ IRRA-

TIONAL NASH. We show that NASH-REDUCTION(ŜG) is NP-hard for a fixed
strategic game ŜG which (a) is constant-sum with sum r · u, (b) has a unique
Nash equilibrium which is (b/i) fully mixed and in which (b/ii) the utility of
each player is u (Proposition 6 and Theorem 3). Fixing the gadget ŜG so that,
in addition, it admits no rational Nash equilibrium yields that ∃ IRRATIONAL
NASH is NP-hard (Proposition 8 and Theorem 4).

To the best of our knowledge, our complexity results for ∃ RATIONAL NASH
and ∃ IRRATIONAL NASH are the first NP-hardness results for a decision prob-
lem inquiring the existence of a combinatorial object involving rational (resp.,
irrational) numbers; no such NP-hard problems are listed in [12].

Other Related Work. Etessami and Yannakakis [9] study the related search
problem of computing an approximation to a Nash equilibrium (for games with
at least three players) within a specified precision: a rational point that differs
from an (irrational) Nash equilibrium by at most ε in every coordinate (which is
different than computing an ε-approximate Nash equilibrium, which may be very
far from an actual Nash equilibrium). It is shown [9, Theorem 4] that placing
this problem in NP would imply the breakthrough result that the SQUARE-
ROOT-SUM [11] problem in also in NP , which is a long-standing open problem
in Complexity Theory. It is also shown [9, Theorem 18] that the same problem
is complete for the complexity class FIXP introduced there.

Fiat and Papadimitriou [10] use a new gadget based on a generalized rock-
paper-scissors game in a reduction arguably simpler than the CS-reduction [6, 7];
thereby, they prove [10, Theorem 5] that it is NP-hard to decide if a two-player
game where players are not expectation-maximizers has a Nash equilibrium. (The
existence result of Nash [17, 18] does not apply to such games.) Austrin et al
[2] prove that approximate variants of several NP-hard problems about Nash
equilibria from [6, 7] are as hard as finding a hidden clique of size O(log n) in
the random graph G(n, 1/2).

2 Definitions and Preliminaries

Background from Game Theory. A game is a triple SG = 〈[r], {Σi}i∈[r],
{Ui}i∈[r]〉, where: (i) [r] = {1, . . . , r} is a finite set of players with r ≥ 2, and
(ii) for each player i ∈ [r], Σi is the set of strategies for player i, and Ui is the
utility function Ui : ×k∈[r]Σk → R for player i. For any integer r ≥ 2, denote
as r-SG the set of r-player games; so, SG =

⋃
r≥2 r-SG is the set of all games.

Denote Σ = ×k∈[r]Σk. A profile is a tuple s of r strategies, one for each
player. For a profile s, the vector U(s) = 〈U1(s), . . . , Ur(s)〉 is called the utility
vector. The game SG is constant-sum if there is a constant c such that for any
profile s,

∑
i∈[r] Ui(s) = c. A partial profile s−i is a tuple of r−1 strategies, one

for each player other than i; it results by eliminating the strategy si of player
i ∈ [r] from the profile s. For a profile s and a strategy ti ∈ Σi of player i,
denoted as s−i % ti the profile obtained by substituting strategy ti for strategy
si in the profile s. Denote Σ−i = ×k∈[r]|k �=iΣk.
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A mixed strategy for player i ∈ [r] is a probability distribution σi on her strat-
egy setΣi; so, amixed strategy for player i is aprobabilitydistributiononher strate-
gies: a function σi : Σi → [0, 1] such that

∑
s∈Σi

σi(s) = 1. Denote as Support(σi)
the set of strategies s ∈ Σi such that σi(s) > 0. The mixed strategy σi : Σi → [0, 1]
is rational if all values of σi are rational numbers; else, it is irrational.

A mixed profile σ = (σi)i∈[r] is a tuple of mixed strategies, one for each
player. A mixed profile σ induces a probability measure Pσ on the set of profiles
in the natural way. Say that the profile s is enabled in the mixed profile σ,
and write s ∼ σ, if Pσ(s) > 0; note that for a profile s, Pσ(s) =

∏
k∈[r] σk(sk).

Under the mixed profile σ, the utility of each player becomes a random variable.
So, associated with the mixed profile σ is the expected utility for each player
i ∈ [r], denoted as Ui(σ) and defined as the expectation according to Pσ of her
utility for a profile s enabled in the mixed profile σ; so, Ui(σ) = Es∼σ (Ui (s)) =∑

s∈Σ(SG) Pσ(s) · Ui(s) =
∑

s∈Σ(SG)

(∏
k∈[r] σk(sk)

)
· Ui(s). A partial mixed

profile σ−i is a tuple of r−1 mixed strategies, one for each player other than i.
For a mixed profile σ and a mixed strategy τi of player i ∈ [r], denote as σ−i % τi

the mixed profile obtained by substituting the mixed strategy τi for the mixed
strategy σi in the mixed profile σ. A mixed profile is rational if all of its mixed
strategies are rational; else, it is irrational. So, a profile is the degenerate case
of a rational mixed profile where all rational probabilities are either 0 or 1.

A pure Nash equilibrium, or Nash equilibrium for short, is a profile s ∈ Σ
such that for each player i ∈ [r], for each strategy ti ∈ Σi, Ui (s) ≥ Ui (s−i % ti).
A mixed Nash equilibrium is a mixed profile σ such that for each player
i ∈ [r], for each mixed strategy τi, Ui(σ) ≥ Ui(σ−i % τi). For the mixed profile
σ to be a mixed Nash equilibrium, it is (necessary and) sufficient that for each
player i ∈ [r], for each strategy ti ∈ Σi, Ui(σ) ≥ Ui(σ−i % ti). For a strategic
game SG, denote as NE(SG) the set of Nash equilibria for SG. Nash equilibria
will classified as pure, mixed rational (or rational for short) and mixed
irrational (or irrational for short) in the natural way.

Background from Complexity Theory. A decision problem Π is identified
with a set of positive instances encoded over {0, 1}; so, Π ⊆ {0, 1}∗. The classNP
is the set of all decision problems for which there is a deterministic, polynomial-
time algorithm V such that for every instance w, w is a positive instance if and
only if there is a certificate c ∈ {0, 1}p(|w|) (for some polynomial p : N→ N) such
that V accepts the input 〈w, c〉. The class co-NP is the set of all complements of
decision problems in NP . Say that the decision problem Π′ polynomially reduces
to the decision problem Π, denoted as Π′ ≤P Π, if there is a polynomial-time
function f : {0, 1} → {0, 1}∗ such that w is a positive instance for Π1 if and only
if w is a positive instance for Π2. The decision problem Π is NP-hard if for every
decision problem Π′ ∈ NP , Π′ ≤P Π.

A boolean formula φ is in Conjunctive Normal Form, abbreviated as CNF,
if φ =

∧
1≤i≤k

∨
1≤j≤l �ij , where �ij is a literal: a boolean variable or its nega-

tion; so, φ is a conjunction of clauses. Denote C(φ) = {
∨

j∈[l] �ij | i ∈ [k]}, the
set of clauses in φ. Denote as V(φ) and L(φ) the sets of variables and literals,
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respectively, in the formula φ, with |V(φ)| = n and |L(φ)| = 2n. The function
v : L(φ) → V(φ) gives the variable corresponding to a literal; so, for a variable
v ∈ V(φ), v(�) = v(�) = v. An assignment is a function from V(φ) to {0, 1}; so,
an assignment is represented by a tuple of literals 〈�1, . . . , �n〉 where for each
index j ∈ [n], v(�j) = vj and �j = 1 (under the assignment). The formula φ
is satisfiable if there is a satisfying assignment: one that makes φ equal to 1.
The decision problem CNF SAT is identified with the set of satisfiable boolean
formulas in CNF. We recall that CNF SAT is NP-hard.

Some Decision Problems about Nash Equilibria.
Decision problems about Nash equivalence. A pair of games ŜG and SG are Nash-

equivalent if NE(ŜG) = NE(SG). So, this leads to the following decision prob-
lem:
NASH-EQUIVALENCE

INSTANCE: Two games ŜG and SG from r-SG, for some integer r ≥ 2.
QUESTION: Are ŜG and SG Nash-equivalent?

The next decision problem is a restriction of NASH-EQUIVALENCE; it is param-
eterized by some fixed game ŜG from r-SG, for some integer r ≥ 2. The game
ŜG will be called a gadget game.

NASH-EQUIVALENCE (ŜG)
INSTANCE: A game SG from r-SG.
QUESTION: Are ŜG and SG Nash-equivalent?

So, NASH-EQUIVALENCE (ŜG) ≤P NASH-EQUIVALENCE.
Decision problems about Nash reductions. Consider now a pair of games ŜG, SG ∈
r-SG. Assume that for each player i ∈ [r], |Σi| ≥ |Σ̂i|. A surjective mapping

from SG to ŜG is a family of surjective functions H = {hi}i∈[r] where for each
player i ∈ [r], hi : Σi → Σ̂i; so, a surjective mapping maps strategies of each
player i ∈ [r] in the game SG to strategies of the same player in the game ŜG

in a surjective way. Note that a surjective mapping H from SG to ŜG induces a
corresponding surjective mapping from the set of profiles Σ for the game SG to
the set of profiles Σ̂ for the game ŜG. In turn, it induces a mapping H from the
set of mixed profiles for SG to the set of mixed profiles for ŜG as follows. Consider
a mixed profile σ for SG. Then, σ maps to the mixed profile σ̂ = H(σ), where
for each player i ∈ [r], for each strategy ŝ ∈ Σ̂i, σ̂i(ŝ) =

∑
s∈Σi|hi(s)=ŝ σi(s).

A Nash reduction from the game SG to the game ŜG is a surjective mapping
from SG to ŜG such that there is a Nash equilibrium σ for the game SG for which
the mixed profileH(σ) is a Nash equilibrium for the game ŜG. Say that the game
SG Nash-reduces to the game ŜG if there is a Nash reduction from SG to ŜG.
So, this leads to the following decision problem:
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NASH-REDUCTION
INSTANCE: Two games ŜG and SG from r-SG, for some integer r ≥ 2.
QUESTION: Does SG Nash-reduce to ŜG?

The next decision problem is a restriction of NASH-REDUCTION; it is parame-
terized by some fixed game ŜG from r-SG, for some integer r ≥ 2. The game ŜG
will be called a gadget game.

NASH-REDUCTION (ŜG)
INSTANCE: A game ŜG from r-SG.
QUESTION: Does SG Nash-reduce to ŜG?

So, NASH-REDUCTION (ŜG) ≤P NASH-REDUCTION.
Rationality and Irrationality Problems: To the best of our knowledge, the following
problems are new.
∃ RATIONAL NASH

INSTANCE: A game SG.
QUESTION: Does SG have a rational Nash equilibrium?

∃ IRRATIONAL NASH
INSTANCE: A game SG.
QUESTION: Does SG have an irrational Nash equilibrium?

3 Complexity of NASH-EQUIVALENCE and ∃ RATIONAL
NASH

The Reduction. Given a CNF formula φ, construct the game SG(φ) =〈
[r], {Σi}i∈[r] , {Ui}i∈[r]

〉
:

– For each player i ∈ [2], Σi := Σ̂i∪L(φ)∪V(φ)∪C(φ); for each player i ∈ [r]\[2],
Σi := Σ̂i ∪ {δ}. Roughly speaking, each strategy in Σ̂i with i ∈ [r] is inher-
ited from the gadget game ŜG, while δ is some new strategy; the remaining
strategies come from the formula φ. Players 1 and 2 are special; they are the
only players whose sets of strategies are influenced by the formula φ.

– To specify the utility functions, we need some notation. First, π denotes
a permutation on [r]. Second, denote u = max

{
Ûi(s)

}
i∈[r],s∈Σ̂

and u =

min
{

Ûi(s)
}

i∈[r],s∈Σ̂
; so, u and u are the maximum and minimum utilities,

respectively, of a player in the strategic game ŜG.
Fix now a profile s = 〈s1, . . . , sr〉 from Σ = Σ1×. . .×Σr. Use s to partition

[r] into P̂(s) = {i ∈ [r] | si ∈ Σ̂i} and P(s) = {i ∈ [r] | si �∈ Σ̂i}; loosely
speaking, P̂(s) and P(s) are the sets of players choosing and not choosing
strategies inherited from ŜG, respectively. The utility vector U(s) is depicted
in the following table, where v ∈ V(φ), �1, �2, � ∈ L(φ) and c ∈ C(φ).
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Case Condition on the profile s = 〈s1, . . . , sr〉 Utility vector U(s)
(1) s = 〈�1, �2, δ, . . . , δ〉 with �1 �= �2 〈u + 1, . . . , u + 1〉
(2) s = 〈�1, �2, δ, . . . , δ〉 with �1 = �2 〈u− 1, . . . , u− 1〉
(3) s = 〈v, �, δ, . . . , δ〉 with v(�) �= v 〈u + 2, u− 1, . . . , u− 1〉
(4) s = 〈v, �, δ, . . . , δ〉 with v(�) �= v 〈u + 2− n, u− 1, . . . , u− 1〉
(5) s = 〈c, �, δ, . . . , δ〉 with � �∈ c 〈u + 2, u− 1, . . . , u− 1〉
(6) s = 〈c, �, δ, . . . , δ〉 with � ∈ c 〈u + 2− n, u− 1, . . . , u− 1〉
(7) For each i ∈ [r], si ∈ Σ̂i Û(〈s1, . . . , sr〉)
(8) P̂(s) �= ∅ and P(s) �= ∅ Ui(s) = u + 1 if i ∈ P̂(s)

or u− 1 if i ∈ P(s)

(9) s = π(t), where t falls in one of π
(
Û(t)

)
the Cases (1) through (8)

(10) None of the above Ui(s) = u− 1 for each i ∈ [r]

Clearly, the construction of SG(φ) from φ is carried out in polynomial time. For
brevity, we shall also write SG, L, V and C for SG(φ), L(φ), V(φ) and C(φ).

From the construction of the utility functions, we observe that for each player
i ∈ [r] \ [2], Ui(s) ≤ u + 1. We also observe that

∑
i∈[2] Ui(s) ≤ 2(u + 1) with∑

i∈[2] Ui(s) = 2(u + 1) if and only if s = 〈�1, �2, δ, . . . , δ〉 with �1 �= �2. This
implies that for any property P satisfied by at least one pure profile enabled in
a mixed profile σ, Es∼σ

(∑
i∈[2] Ui(s) | s satisfies P

)
≤ 2 (u + 1).

For a fixed player i ∈ [r], denote σi(Σ̂i) =
∑

s∈Σ̂i
σi(σ) and σi(L) =∑

�∈L σi(�); so, σi(Σ̂i) and σi(L) are the probability masses put on strategies
from Σ̂i and on literals from L, respectively. We prove:

Proposition 1. The following conditions are equivalent: (1) φ is satisfiable, (2)

NE(SG) �= NE(ŜG), and (3) SG admits a rational Nash equilibrium in NE(SG)\
NE(ŜG).

The equivalence of Conditions (1) and (2) in Proposition 1 yields:

Proposition 2. Fix an arbitrary game ŜG. Then, CNF SAT ≤P

NASH-EQUIVALENCE (ŜG).

There are already known three-players games with no rational Nash equilib-
rium (cf. [18]). As an additional example, consider the gadget game ŜG1 =〈
[3], {Σ̂i}i∈[3], {Ûi}i∈[3]

〉
, where for each player i ∈ [3], Σ̂i = {0, 1}. The utilities,

given in the style s = 〈s1, s2, s3〉 → 〈U1(s), U2(s), U3(s)〉, are defined as follows:
〈0, 0, 0〉 → 〈1, 3, 3〉, 〈0, 0, 1〉 → 〈0, 1, 2〉, 〈0, 1, 0〉 → 〈3, 2, 2〉, 〈0, 1, 1〉 → 〈2, 3, 1〉,
〈1, 0, 0〉 → 〈2, 3, 1〉, 〈1, 0, 1〉 → 〈2, 0, 3〉, 〈1, 1, 0〉 → 〈1, 0, 3〉, 〈1, 1, 1〉 → 〈0, 1, 2〉.

Proposition 3. The gadget game ŜG1 has a unique Nash equilibrium σ, and σ
is irrational.
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Using ŜG1 as the gadget game in the reduction, Condition (3) of Proposition 1
becomes: (3’) SG admits a rational Nash equilibrium. So, the equivalence of Con-
ditions (1) and (3) implies:

Proposition 4. CNF SAT ≤P ∃ RATIONAL NASH.

Since CNF SAT is NP-hard, Propositions 2 and 4 immediately imply:

Theorem 1. NASH-EQUIVALENCE(ŜG) is co-NP-hard.

Theorem 2. ∃ RATIONAL NASH is NP-hard.

4 Complexity of NASH-REDUCTION and ∃ IRRATIONAL
NASH

The Reduction. We shall consider a game ŜG =
〈

[r],
{

Σ̂i

}
i∈[r]

,
{
Ûi

}
i∈[r]

〉
with the following properties: (P1) ŜG is constant-sum with constant c = ur,
and (P2) ŜG has a unique Nash equilibrium σ̂ which is fully mixed and such
that Ûi(σ̂) = u for each player i ∈ [r].

For each player i ∈ [r] in the game ŜG, set Σ̂i := {1, . . . , mi}; so, for each
player i ∈ [r], for each strategy j ∈ [mi], σ̂i(j) is the probability that player i
chooses strategy j in a mixed profile σ̂.

Consider now a boolean formula φ in CNF with |V(φ)| = n ≥ m :=
maxi∈[r]{mi} variables. Set V(φ) := {1, 2, . . . , n}; so, the boolean variables in
φ are numbered 1, 2, . . . , n. For each player i ∈ [r] and for each variable k ∈ [n],
define

gi(�k) = gi(�k) =
{

k if k ∈ [mi − 1]
mi if k ≥ mi

.

Moreover, for each player i ∈ [r] and for each j ∈ [mi] define

ni(j) =
{

1 if j ∈ [mi − 1]
n−mi + 1 if j = mi

.

For a player i ∈ [r], denote s(i) = (i + 1)mod r; so, s(i) is the successor modulo
r of player i ∈ [r].

Construct the strategic game SG(φ) =
〈
[r], {Σi}i∈[r] , {Ui}i∈[r]

〉
as follows.

– For each player i ∈ [r], Σi := V(φ) ∪ L(φ) ∪ C(φ) ∪ {f}.
– Fix a profile s from Σ = Σ1 × . . . × Σr. Denote f = 〈f, . . . , f〉. Denote

Pf (s) = {i ∈ [r] | si = f}; so, |Pf (s)| = r if and only if s = f . The utility
vector U(s) is depicted in the following table.
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Case Condition on the profile s = 〈s1, . . . , sr〉 Utility vector U(s)

(1) s = 〈�1, . . . , �r〉 with
(i) �i ∈ L(φ) for each i ∈ [r] & Û

(〈
sg(�1), . . . , sg(�r)

〉)
(ii) �i �= �j for each distinct pair i, j ∈ [r]

(2) (i) si = v ∈ V(φ) for some i ∈ [r], Ui(s) = u + 1 &
(ii) sj ∈ L(φ) for each j ∈ [r] \ {i} & Uj(s) = u− 2 for each j ∈ [r] \ {i}
(iii) v(ss(i)) �= v

(3) (i) si = v ∈ V(φ) for some i ∈ [r], Ui(s) = u + 1− ni(gi(ss(i)))
σ̂s(i)(gi(ss(i)))

&

(ii) sj ∈ L(φ) for each j ∈ [r] \ {i} & Uj(s) = u− 2 for each j ∈ [r] \ {i}
(iii) v(ss(i)) = v

(4) (i) si = c ∈ C(φ) for some i ∈ [r], Ui(s) = u + 1 &
(ii) sj ∈ L(φ) for each j ∈ [r] \ {i} & Uj(s) = u− 2 for each j ∈ [r] \ {i}
(iii) ss(i) �∈ c

(5) (i) si = c ∈ C(φ) for some i ∈ [r], Ui(s) = u + 1− ni(gi(ss(i)))
σ̂s(i)(gi(ss(i)))

&

(ii) sj ∈ L(φ) for each j ∈ [r] \ {i} & Uj(s) = u− 2 for each j ∈ [r] \ {i}
(iii) ss(i) ∈ c

(6) |Pf (s)| = r Ui(s) = u− 1 for each i ∈ r
(7) 0 < |Pf (s)| < r Ui(s) = u if si = f

Uj(s) = u− 2 if si �= f

(8) None of the above Ui(s) = u− 1 for each i ∈ [r]

Clearly, the construction of SG(φ) from φ is carried out in polynomial time. For
brevity, we shall also write SG, L, V and C for SG(φ), L(φ), V(φ) and C(φ). Here
is an observation to use later:

For each profile s,
∑

i∈[r] Ui(s) ≤ r · u with
∑

i∈[r] Ui(s) = r · u if and only
if s = 〈�1, . . . , �r〉 with (i) �i ∈ L for each i ∈ [r], and (ii) �i �= �j for each
distinct pair i, j ∈ [r]. (To see this, note that by Case (1) in the definition of
the utility vectors

∑
i∈[r] Ui (〈�1, . . . , �r〉) =

∑
i∈[r] Ûi

(〈
sg(�1), . . . , sg(�r)

〉)
= r ·u,

since ŜG is constant-sum with c = r · u.) This implies that for any property P
satisfied by at least one pure profile enabled in a mixed profile σ, it holds that
Es∼σ

(∑
i∈[r] Ui(s) | s satisfies P

)
≤ r · u.

Let H be the surjective mapping from SG to ŜG defined as follows: for each
player i ∈ [r],

hi(s) =
{

gi(�) if s = �,
∗ otherwise,

where ∗ means a don’t care situation. We prove:

Proposition 5. Consider a gadget game ŜG satisfying Properties (P1) and
(P2). Then, the following conditions are equivalent: (1) φ is satisfiable, (2) SG

admits a Nash equilibrium σ �= f , and (3) SG Nash-reduces to ŜG.
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The equivalence of Conditions (1) and (2) in Proposition 5 yields:

Proposition 6. Consider a gadget game ŜG satisfying Properties (P1) and
(P2). Then, CNF SAT ≤P NASH-REDUCTION(ŜG).

We shall now exhibit a gadget game satisfying Properties (P1) and (P2).

Consider the gadget game ŜG2 =
〈

[3],
{
Σ̂i

}
i∈[3]

,
{
Ûi

}
i∈[3]

〉
, where for

each player i ∈ [3], Σ̂i = {0, 1}. The utilities, given in the style
s = 〈s1, s2, s3〉 → 〈U1(s), U2(s), U3(s)〉, are defined as follows: 〈0, 0, 0〉 →
〈2, 4,−3〉, 〈0, 0, 1〉 → 〈−1, 5,−1〉, 〈0, 1, 0〉 → 〈3,−4, 4〉, 〈0, 1, 1〉 → 〈2, 0, 1〉,
〈1, 0, 0〉 → 〈−3, 6, 0〉, 〈1, 0, 1〉 → 〈4,−6, 5〉, 〈1, 1, 0〉 → 〈−1,−1, 5〉, 〈1, 1, 1〉 →
〈3863−173

√
471

74 , 6877+107
√

471
1850 , −1323+57

√
471

25 〉.
Note that ŜG2 is constant-sum, with constant equal to r. We prove:

Proposition 7. The gadget game ŜG2 has a single Nash equilibrium σ̂, which
is irrational, fully mixed and in which for each player i ∈ [3], Ûi(σ̂) = 1.

Using ŜG2 as the gadget game in the reduction, Condition (3) in Proposition 5
implies that SG has an irrational Nash equilibrium. Hence, Condition (2) is equiva-
lent to the Condition (2’) SG admits an irrational Nash equilibrium. So, the equiv-
alence of Conditions (1) and (2) implies:

Proposition 8. CNF SAT ≤P ∃ IRRATIONAL NASH.

Since CNF SAT is NP-hard, Propositions 6 and 8 immediately imply:

Theorem 3. NASH-REDUCTION(ŜG) is NP-hard.

Theorem 4. ∃ IRRATIONAL NASH is NP-hard.

5 Epilogue

Our work initiates the study of the complexity of decision problems about the
rationality and irrationality of Nash equilibria. It remains open to determine
the extent of strategic games for which NP-hardness holds for ∃ RATIONAL
NASH and ∃ IRRATIONAL NASH. For example, what happens if we restrict to
win-lose games [1]: games where all utilities are 0 or 1? What is the smallest
value for the utilities that suffices for NP-hardness? A wide avenue for further
research concerns the extent of the decision problems and the games for which
NP-hardness holds.

What is the relation between ∃ IRRATIONAL NASH and the SQUARE-ROOT-
SUM problem [11]? Is ∃ IRRATIONAL NASH SQUARE-ROOT-SUM-hard (cf. [9])?

Irrational Nash equilibria are a manifestation of a familiar phenomenon in
science and engineering, where the quantities of interest are solutions to nonlinear
equations, so that they can be irrational. Are there other manifestations where
deciding irrationality is NP-hard?
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Abstract. We introduce a new threshold model of social networks, in which the
nodes influenced by their neighbours can adopt one out of several alternatives.
We characterize the graphs for which adoption of a product by the whole network
is possible (respectively necessary) and the ones for which a unique outcome is
guaranteed. These characterizations directly yield polynomial time algorithms
that allow us to determine whether a given social network satisfies one of the
above properties.

We also study algorithmic questions for networks without unique outcomes. We
show that the problem of computing the minimum possible spread of a product is
NP-hard to approximate with an approximation ratio better than Ω(n), in con-
trast to the maximum spread, which is efficiently computable. We then move on
to questions regarding the behavior of a node with respect to adopting some (resp.
a given) product. We show that the problem of determining whether a given node
has to adopt some (resp. a given) product in all final networks is co-NP-complete.

1 Introduction

1.1 Background

Social networks have become a huge interdisciplinary research area with important
links to sociology, economics, epidemiology, computer science, and mathematics. A
flurry of numerous articles and recent books [10,6] shows the growing relevance of this
field as it deals with such diverse topics as epidemics, spread of certain patterns of social
behaviour, effects of advertising, and emergence of ‘bubbles’ in financial markets.

A large part of research on social networks focusses on the problem of diffusion, that
is the spread of a certain event or information over the network, e.g., becoming infected
or adopting a given product. In the remainder of the paper, we will use as a running
example the adoption of a product, which is being marketed over a social network.

Two prevalent models have been considered for capturing diffusion: the threshold
models introduced in [8] and [15] and the independent cascade models studied in [7].
In threshold models, which is the focus of our work, each node i has a threshold θ(i) ∈
(0, 1] and it decides to adopt a product when the total weight of incoming edges from

� A full version with all missing proofs is available at the authors’ homepages.
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nodes that have already adopted a product reaches or exceeds θ(i). In a special case a
node decides to adopt a product if at least the fraction θ(i) of its neighbours has done so.
In cascade models, each node that adopts a product can activate each of his neighbours
with a certain probability and each node has only one chance of activating a neighbour.

Most of research has focussed on the situation in which the players face the choice of
adopting a specific product or not. In this setting, the algorithmic problem of choosing
an initial set of nodes so as to maximize the adoption of a given product and certain
variants of this were studied initially in [11] and in several publications that followed,
e.g., [5,14].

When studying social networks from the point of view of adopting new products
that come to the market, it is natural to lift the restriction of a single product. One
natural example is when users choose among competing programs from providers of
mobile telephones. Then, because of lower subscription costs, each owner of a mobile
telephone naturally prefers to choose the same provider that his friends choose. In such
situations, the outcome of the adoption process does not need to be unique. Indeed,
individuals with a low ’threshold’ can adopt any product a small group of their friends
adopts. As a result this leads to different considerations than before.

In the presence of multiple products, diffusion has been investigated recently for cas-
cade models in [2,4,12], where new approximation algorithms and hardness results have
been proposed. For threshold models, an extension to two products has been recently
proposed in [3], where the authors examine whether the algorithmic approach of [11]
can be extended. Algorithms and hardness of approximation results are provided for
certain variants of the diffusion process.

Game theoretic aspects have also been considered in the case of two products. In
particular, the behavior of best response dynamics in infinite graphs is studied in [13],
when each node has to choose between two different products. An extension of this
model is studied in [9] with a focus on notions of compatibility and bilinguality, i.e.,
having the option to adopt both products at an extra cost so as to be compatible with all
your neighbours.

1.2 Contributions

We study a new model of a social network in which nodes (agents) can choose out of
several alternatives and in which various outcomes of the adoption process are possible.
Our model combines a number of features present in various models of networks.

It is a threshold model and we assume that the threshold of a node is a fixed number
as in [5] (and unlike [11,3], where they are random variables). This is in contrast to
Hebb’s model of learning in networks of neurons, the focus of which is on learning,
leading to strengthening of the connections (here thresholds). In our context threshold
should be viewed as a fixed ‘resistance level’ of a node to adopt a product. In contrast
to the SIR model, see, e.g., [10], in which a node can be in only two states, in our model
each node can choose out of several states (products). We also allow that not all nodes
have exactly the same set of products to choose from, e.g. due to geographic or income
restrictions some products may be available only to a subset of the nodes. If a node
changes its state from the initial one, the new state (that corresponds to the adopted
product) is final, as is the case with most of the related literature.
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Our work consists of two parts. In the first part (Sections 3, 4, 5) we study three
basic problems concerning this model. In particular, we find necessary and sufficient
conditions for determining whether

• a specific product will possibly be adopted by all nodes.
• a specific product will necessarily be adopted by all nodes.
• the adoption process of the products will yield a unique outcome.

For each of these questions, we obtain a characterization with respect to the structure
of the underlying graph.

In the second part (Section 6), we focus on networks that do not possess a unique
outcome and investigate the complexity of various problems concerning the adoption
process. We start with estimating the minimum and maximum number of nodes that
may adopt a given product. Then we move on to questions regarding the behavior of
a given node in terms of adopting a given product or some product from its list. We
resolve the complexity of all these problems. As we show, some of these problems
are efficiently solvable, whereas the remaining ones are either co-NP-complete or have
strong inapproximability properties.

2 Preliminaries

Assume a fixed weighted directed graph G = (V, E) (with no parallel edges and no
self-loops), with n = |V | and wij ∈ [0, 1] being the weight of edge (i, j). Given a node
i of G we denote by N(i) the set of nodes from which there is an incoming edge to i.
We call each j ∈ N(i) a neighbour of i in G. We assume that for each node i such that
N(i) �= ∅,

∑
j∈N(i) wji ≤ 1. Further, we have a threshold function θ that assigns to

each node i ∈ V a fixed value θ(i) ∈ (0, 1]. Finally, we fix a finite set P of alternatives
to which we shall refer as products.

By a social network we mean a tuple (G, P, p, θ), where p is a function that assigns
to each node of G a non-empty subset of P . The idea is that each node i is offered a non-
empty set p(i) ⊆ P of products from which it can make its choice. If p(i) is a singleton,
say p(i) = {t}, the node adopted the product t. Otherwise it can adopt a product if the
total weight of incoming edges from neighbours that have already adopted it is at least
equal to the threshold θ(i). To formalize the questions we want to address, we need to
introduce a number of notions. Since G, P and θ are fixed, we often identify each social
network with the function p.

Consider a binary relation → on social networks. Denote by →∗ the reflexive,
transitive closure of → . We call a reduction sequence p→∗ p′ maximal if for no p′′

we have p′→ p′′. In that case we will say that p′ is a final network, given the initial
network p.

Definition 1. Assume an initial social network p and a network p′. We say that

• p′ is reachable (from p) if p→∗ p′,

• p′ is unavoidable (from p) if for all maximal sequences of reductions p→∗ p′′ we
have p′ = p′′,

• p has a unique outcome if some social network is unavoidable from p.
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From now on we specialize the relation → . Given a social network p, and a product
t ∈ p(i) for some node i with N(i) �= ∅, we use the abbreviation A(t, i) (for ‘adoption
condition of product t by node i’) for∑

j∈N(i)|p(j)={t}
wji ≥ θ(i)

When N(i) = ∅, we stipulate that A(t, i) holds for every t ∈ p(i).

Definition 2.
• We write p1→ p2 if p2 �= p1 and for all nodes i, if p2(i) �= p1(i), then |p1(i)| ≥ 2

and for some t ∈ p1(i)

p2(i) = {t} and A(t, i) holds in p1.

• We say that node i in a social network p

– adopted product t if p(i) = {t},
– can adopt product t if t ∈ p(i), |p(i)| ≥ 2, and A(t, i) holds in p.

In particular, a node i with no neighbours and more than one product in p(i) can adopt
any product that is a possible choice for it. Note that each modification of the function
p results in assigning to a node i a singleton set. Thus, if p1→∗ p2, then for all nodes i
either p2(i) = p1(i) or p2(i) is a singleton set.

One of the questions we are interested is whether a product t can spread to the whole
network. We will denote this final network by [t], where [t] denotes the constant function
p such that p(i) = {t} for all nodes i. Furthermore, given a social network (G, P, p, θ)
and a product t ∈ P we denote by Gp,t the weighted directed graph obtained from G
by removing from it all edges to nodes i with p(i) = {t}. That is, in Gp,t for all such
nodes i we have N(i) = ∅ and for all other nodes the set of neighbours in Gp,t and G
is the same.

If each weight wj,i in the considered graph equals 1
|N(i)| , then we call the corre-

sponding social network equitable. Hence in equitable social networks the adoption
condition, A(t, i), holds if at least a fraction θ(i) of the neighbours of i adopted in p
product t.

Example 1. As an example for illustrating the definitions, consider the equitable social
networks in Figure 1, where P = {t1, t2} and where we mention next to each node the
set of products available to it.

In the first social network, if θ(a) ≤ 1
3 , then the network in which node a adopts

product t1 is reachable, and so is the case for product t2. If 1
3 < θ(a) ≤ 2

3 , then only
the network in which node a adopts product t1 is reachable. Further, if θ(a) > 2

3 , then
none of the above two networks is reachable. Finally, the initial network has a unique
outcome iff 1

3 < θ(a).
For the second social network the following more elaborate case distinction lists the

possible values of p in the final reachable networks.
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Fig. 1. Two examples of social networks

θ(b) ≤ 1
3
∧ θ(c) ≤ 1

2
: (p(b) = {t1} ∨ p(b) = {t2}) ∧ (p(c) = {t1} ∨ p(c) = {t2})

θ(b) ≤ 1
3
∧ θ(c) > 1

2
: (p(b) = {t1} ∧ p(c) = P ) ∨ (p(b) = p(c) = {t2})

1
3

< θ(b) ≤ 2
3
∧ θ(c) ≤ 1

2
: p(b) = p(c) = {t2}

1
3

< θ(b) ∧ θ(c) > 1
2

: p(b) = p(c) = P
2
3

< θ(b) ∧ θ(c) ≤ 1
2

: p(b) = P ∧ p(c) = {t2}

In particular, when 1
3 < θ(b) ≤ 2

3 and θ(c) ≤ 1
2 , node b adopts product t2 only after

node c adopts it.

3 Reachable Outcomes

We start with providing necessary and sufficient conditions for a product to be reach-
able by all nodes. This is achieved by a structural characterization of graphs that allow
products to spread to the whole graph, given the threshold function θ. In particular, we
shall need the following notion.

Definition 3. Given a threshold function θ we call a weighted directed graph θ-well-
structured if for some function level that maps nodes to natural numbers, we have that
for all nodes i such that N(i) �= ∅ ∑

j∈N(i)|level(j)<level(i)

wji ≥ θ(i). (1)

In other words, a weighted directed graph is θ-well-structured if levels can be assigned
to its nodes in such a way that for each node i such that N(i) �= ∅, the sum of the
weights of the incoming edges from lower levels is at least θ(i). We will often refer to
the function level as a certificate for the graph being θ-well-structured. Note that there
can be many certificates for a given graph. Note also that θ-well structured graphs can
have cycles. For instance, it is easy to check that the second social network in Figure 1
is θ-well structured when θ(i) ≤ 1

3 for every node i.
We have the following characterization.

Theorem 1. Assume a social network (G, P, p, θ) and a product top ∈ P . A social
network (G, P, [top], θ) is reachable from (G, P, p, θ) iff
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– for all i, top ∈ p(i),
– Gp,top is θ-well-structured.

Proof. (⇒ ) If for some node i we have top �∈ p(i), then i cannot adopt product top
and [top] is not reachable.

To establish the second condition consider a reduction sequence

p1→ p2→ . . .→ pm

starting in p and such that pm = [top].
Assign now to each node i the minimal k such that pk+1(i) = {top}. We claim that

this definition of the level function shows that Gp,top is θ-well-structured. Consider a
node i.

Case 1. level(i) = 0.
Then p(i) = {top}, so by the definition of Gp,top we have N(i) = ∅ in Gp,top. Hence

we do not need to argue about these nodes since we only need to ensure condition (1)
for nodes with N(i) �= ∅.
Case 2. level(i) > 0.

Suppose that N(i) �= ∅ and that level(i) = k. By the definition of the reduction →
the adoption condition A(top, i) holds in pk, i.e.,∑

j∈N(i)|pk(j)={top}
wji ≥ θ(i).

But for each j ∈ N(i) such that pk(j) = {top} we have by definition level(j) <
level(i). So (1) holds.

(⇐ ) Consider a certificate function level showing that Gp,top is θ-well-structured.
Without loss of generality we can assume that the nodes in Gp,top such that N(i) = ∅
are exactly the nodes of level 0. We construct by induction on the level m a reduction
sequence p→∗ p′′, such that for all nodes i we have top ∈ p′′(i) and for all nodes i of
level ≤ m we have p′′(i) = {top}.

Consider level 0. By definition of Gp,top, a node i is of level 0 iff it has no neighbours
in G or p(i) = {top}. In the former case, by the first condition, top ∈ p(i). So p→∗ p′′,
where the function p′′ is defined by

p′′(i) :=
{
{top} if level(i) = 0
p(i) otherwise

This establishes the induction basis.
Suppose the claim holds for some level m. So we have p→∗ p′, where for all nodes

i we have top ∈ p′(i) and for all nodes i of level≤ m we have p′(i) = {top}.
Consider the nodes of level m + 1. For each such node i we have top ∈ p′(i),

N(i) �= ∅ and ∑
j∈N(i)|level(j)<level(i)

wji ≥ θ(i).
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By the definition of Gp,top the sets of neighbours of i in G and Gp,top are the same.
By the induction hypothesis for all nodes j such that level(j) < level(i) we have
p′(j) = {top}.

So either node i adopted product top in p′ or can adopt product top in p′. Hence
p′→∗ p′′, where the function p′′ is defined by

p′′(i) :=
{
{top} if level(i) = m + 1
p′(i) otherwise

Consequently p→∗ p′′, which establishes the induction step. We conclude p→∗ [top].

Next we show that testing if a graph is θ-well-structured can be efficiently solved.

Theorem 2. Given a weighted directed graph G and a threshold function θ, we can
decide whether G is θ-well-structured in time O(n2).

Proof. (Sketch) We claim that the following simple algorithm achieves this:

• Given a weighted directed graph G, first assign level 0 to all nodes with N(i) = ∅.
If no such node exists, output that the graph is not θ-well-structured.
• Inductively, at step i, assign level i to each node for which condition (1) from Def-

inition 3 is satisfied when considering only its neighbours that have been assigned
levels 0, . . ., i− 1.
• If by iterating this all nodes are assigned a level, then output that the graph is

θ-well-structured. Otherwise, output that G is not θ-well-structured.

The above algorithm can be implemented in time O(n2 + |E|) = O(n2), by using the
adjacency list representation. To prove correctness, note that if the input graph is not θ-
well-structured, then the algorithm will output No, as otherwise, at termination it would
have constructed a level function for a non-θ-well-structured graph. For the reverse,
suppose a graph G is θ-well-structured. The idea of the proof is to use a certificate
function, in which all nodes are assigned the minimum possible level. We then prove
by induction that this is precisely the level assignment produced by the algorithm and
hence it outputs Yes. Due to lack of space, we omit the proof.

Finally, we end this section by observing that determining whether a network [top] is
reachable can also be solved efficiently.

Theorem 3. Assume a social network (G, P, p, θ) and a product top ∈ P . There
is an algorithm running in time O(n2) that determines whether the social network
(G, P, [top], θ) is reachable.

4 Unavoidable Outcomes

Next, we focus on the notion of unavoidable outcomes. We establish the following
characterization.

Theorem 4. Assume a social network (G, P, p, θ) and a product top ∈ P . A social
network (G, P, [top], θ) is unavoidable iff
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– for all i, if N(i) = ∅, then p(i) = {top},
– for all i, top ∈ p(i),
– Gp,top is θ-well-structured.

To prove this, we need first a few lemmas, the proofs of which we omit from this
version.

Lemma 1. Suppose that p→∗ p′ and for some node i we have p′(i) = {t}. Then for
some node j such that N(j) = ∅ or p(j) is a singleton, we have t ∈ p(j).

Intuitively, this means that each product eventually adopted can also be initially adopted
(by a possibly different node).

Lemma 2. Assume a social network (G, P, p, θ) and a product top ∈ P . Suppose that

– for all i, if N(i) = ∅ or p(i) is a singleton, then p(i) = {top}.

Then a unique outcome of (G, P, p, θ) exists.

Intuitively, this means that if initially only one product can be adopted, then a unique
outcome of the social network exists.

Proof of Theorem 4: (Sketch) By Theorem 1 and Lemma 2.

In analogy to Theorem 3, we also have the following simple fact.

Theorem 5. Assume a social network (G, P, p, θ) and a product top ∈ P . There
is an algorithm, running in time O(n2), that determines whether the social network
(G, P, [top], θ) is unavoidable.

5 Unique Outcomes

We now consider the question of when does a network admit a unique outcome. To
answer this, we introduce the following definitions.

Definition 4. Given social networks p, p′ based on the same graph we say that

– node i can switch in p′ given p if i adopted in p′ a product t and for some t′ �= t

t′ ∈ p(i) ∧ A(t′, i) holds in p′,

– p′ is ambivalent given p if it contains a node that either can adopt more than one
product or can switch in p′ given p,

– the reduction p→ p′ is fast if for each node i, if i can adopt a product in p then i
adopted a product in p′. Intuitively, p→ p′ is then a ‘maximal’ one-step reduction
of p.

Definition 5. By the contraction sequence of a social network we mean the unique
reduction sequence p→∗ p′ such that
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– each of its reduction steps is fast,
– either p→∗ p′ is maximal or p′ is the first network in the sequence p→∗ p′ that is

ambivalent given p.

We now formulate a characterization of social networks that admit a unique outcome.
We omit the proof.

Theorem 6. A social network admits a unique outcome iff its contraction sequence
ends in a non-ambivalent social network.

Corollary 1. Assume a social network (G, P, p, θ) such that

– for all nodes i we have θ(i) > 1
2 ,

– for all i, if N(i) = ∅, then p(i) is a singleton.

Then (G, P, p, θ) admits a unique outcome.

The above corollary can be strengthened by assuming that the network is such that
if θ(i) ≤ 1

2 then |N(i)| < 2 or |p(i)| = 1. The reason is that the nodes for which
|N(i)| < 2 or |p(i)| = 1 cannot introduce an ambivalence.

When for some node i, θ(i) ≤ 1
2 holds and neither |N(i)| < 2 nor |p(i)| = 1, the

equitable social network still may admit a unique outcome but it does not have to. For
instance the second social network in Figure 1 admits a unique outcome for the last
three alternatives (explained in Example 1), while for the first two is does not.

Theorem 6 also yields an algorithm to test if a network has a unique outcome. The
algorithm simply has to simulate the contraction sequence of a network and determine
whether it ends in a non-ambivalent network. The statement of the algorithm and its
analysis are omitted.

Theorem 7. There exists a polynomial time algorithm, running in time O(n2 + n|P |),
that determines whether a social network admits a unique outcome. Furthermore, if for
all nodes i we have θ(i) > 1

2 , there is a O(n2) algorithm.

For all practical purposes we have |P | << n, so even for the general case the running
time would typically be O(n2).

6 Product Adoption in Networks without Unique Outcomes

The results of the previous section reveal that many social networks will not admit a
unique outcome. In this section, we consider some natural questions regarding product
adoption that are of interest for such networks. We start with two optimization problems.

Suppose that a product top is neither unavoidable by all nodes nor reachable. We
would like then to estimate the worst and best-case scenario for the spread of this prod-
uct. That is, starting from a given initial network p, what is the minimum (resp. maxi-
mum) number of nodes that will adopt this product in a final network (recall that a final
network is one that has been obtained from some initial network by a maximal sequence
of reductions). Hence, the following two problems are of interest.
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MIN-ADOPTION: Given a social network (G, P, p, θ) and a product top, find the min-
imum number of nodes that adopted top in a final network, starting from (G, P, p, θ).

MAX-ADOPTION: Given a social network (G, P, p, θ) and a product top, find the
maximum number of nodes that adopted top in a final network, starting from (G, P, p, θ).

We show that these two problems are substantially different, the first being essen-
tially inapproximable while the second efficiently solvable.

Theorem 8. If n is the number of nodes of a network, then

(i) It is NP-hard to approximate MIN-ADOPTION with an approximation ratio better
than Ω(n).

(ii) The MAX-ADOPTION problem can be solved in O(n2) time.

Proof. (i) We give a reduction from the PARTITION problem, which is: given n pos-
itive rational numbers (a1, . . ., an), is there a set S such that

∑
i∈S ai =

∑
i�∈S ai?

Consider an instance I of PARTITION. WLOG, suppose we have normalized the num-
bers so that

∑n
i=1 ai = 1. Hence the question is to decide whether there is a set S such

that
∑

i∈S ai =
∑

i�∈S ai = 1
2 .

We build an instance of our problem with 3 products, namely P = {top, t, t′}, and
with the graph shown in Figure 2. The number of nodes in the line that starts to the right
of node e is M = nO(1), hence the reduction is of polynomial time. The weights in those
edges is 1. The thresholds of the nodes are θ(a) = θ(b) = θ(c) = θ(d) = 1

2 , θ(e) =
1/2 + ε, for some ε > 0 and for the nodes to the right of e we can set the thresholds
to an arbitrary positive number in (0, 1]. Finally, for each node i ∈ {1, . . ., n}, we set
wi,a = wi,b = ai. The weights of the other edges can be seen in the figure.

Fig. 2. The graph of the reduction with P = {top, t, t′} and R = {t, t′}

We claim that if there exists a solution to I , then a final network exists where the
number of nodes that adopted top equals 3, otherwise in all final networks the number
of nodes that adopted top equals M + 5. This directly yields the desired result.

Suppose there is a solution S to I . Then we can have the nodes corresponding to the
set S adopt t and the remaining nodes from {1, . . ., n} adopt t′. This implies that node
a can adopt t and node b can adopt t′. Subsequently, node c can adopt t and node d can
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adopt t′, which implies that node e cannot adopt any product. Hence a final network
exists in which only 3 nodes adopted top.

For the reverse direction, suppose there is no solution to the PARTITION problem.
Then, no matter how we partition the nodes {1, . . ., n}, into 2 sets S, S′, it will always
be that for one of them, say S, we have

∑
i∈S ai > 1

2 , whereas for the other we have∑
i∈S′ ai < 1

2 . Thus in each final network, no matter which nodes from {1, . . ., n}
adopted t or t′, the nodes a and b adopted the same product. Suppose that nodes a and b
both adopted t (the same applies if they both adopt t′). This in turn implies that node c
adopted t and node d did not adopt t′. Thus, the node d could only adopt top. But then
the only choice for node e was to adopt top and this propagates along the whole line to
the right of e. This completes the proof of (i).
(ii) The algorithm for MAX-ADOPTION resembles the one used in the proof of The-
orem 7. Given the product top, it suffices to start with the nodes that have already
adopted the product and perform fast reductions but only with respect to top until no
further adoption of top is possible.

We now move on to some decision problems that concern the behavior of a specific
node in a given social network. We consider the following natural questions.

ADOPTION 1: (unavoidable adoption of some product)
Determine whether a given node has to adopt some product in all final networks.
ADOPTION 2: (unavoidable adoption of a given product)
Determine whether a given node has to adopt a given product in all final networks.
ADOPTION 3: (possible adoption of some product)
Determine whether a given node can adopt some product in some final network.
ADOPTION 4: (possible adoption of a given product)
Determine whether a given node can adopt a given product in some final network.

Theorem 9. The complexity of the above problems is as follows:

(i) ADOPTION 1 is co-NP-complete.
(ii) ADOPTION 2 is co-NP-complete.

(iii) ADOPTION 3 can be solved in O(n2|P |) time.
(iv) ADOPTION 4 can be solved in O(n2) time.

The proofs of (i) and (ii) use the reduction given in the proof of Theorem 8. We omit
the proof due to lack of space.

7 Conclusions and Future Work

We have introduced a diffusion model in the presence of multiple competing products
and studied some basic questions. We have provided characterizations of the underlying
graph structure for determining whether a product can spread or will necessarily spread
to the whole graph, and of the networks that admit a unique outcome. We also studied
the complexity of various problems that are of interest for networks that do not admit a
unique outcome, such as the problems of computing the minimum or maximum number
of nodes that will adopt a given product, or determining whether a given node has to
adopt some (resp. a given) product in all final networks.
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In the proposed model, one could also incorporate game theoretic aspects by consid-
ering a strategic game either between the nodes who decide which product to choose,
or between the producers who decide to offer their products for free to some selected
nodes. In the former case, a game theoretic analysis for players choosing between two
products has been presented in [13]. An extension with the additional option of adopt-
ing both products has been considered in [9]. The latter case, with the producers being
the players, has been recently studied in [1] in a different model than the threshold ones.
We are particularly interested in analyzing the set of Nash equilibria in the presence of
multiple products, as well as in introducing threshold behavior in the model of [1].

Acknowledgement. We would like to thank Berthold Vöcking for suggesting to us the
first two problems in Section 6.
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Abstract. Social and other networks have been shown empirically to
exhibit high edge clustering — that is, the density of local neighborhoods,
as measured by the clustering coefficient, is often much larger than the
overall edge density of the network. In social networks, a desire for tight-
knit circles of friendships — the colloquial “social clique” — is often
cited as the primary driver of such structure.

We introduce and analyze a new network formation game in which
rational players must balance edge purchases with a desire to maximize
their own clustering coefficient. Our results include the following:

– Construction of a number of specific families of equilibrium networks,
including ones showing that equilibria can have rather general binary
tree-like structure, including highly asymmetric binary trees. This is
in contrast to other network formation games that yield only sym-
metric equilibrium networks. Our equilibria also include ones with
large or small diameter, and ones with wide variance of degrees.

– A general characterization of (non-degenerate) equilibrium networks,
showing that such networks are always sparse and paid for by low-
degree vertices, whereas high-degree “free riders” always have low
utility.

– A proof that for edge cost α ≥ 1/2 the Price of Anarchy grows
linearly with the population size n while for edge cost α less than
1/2, the Price of Anarchy of the formation game is bounded by a
constant depending only on α, and independent of n. Moreover, an
explicit upper bound is constructed when the edge cost is a ”simple”
rational (small numerator) less than 1/2.

– A proof that for edge cost α less than 1/2 the average vertex clus-
tering coefficient grows at least as fast as a function depending only
on α, while the overall edge density goes to zero at a rate inversely
proportional to the number of vertices in the network.

– Results establishing the intractability of even weakly approximating
best response computations.

Several of our results hold even for weaker notions of equilibrium, such
as those based on link stability.
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1 Introduction

The proliferation of large-scale social and technological networks over the last
decade has given rise to an emerging science. One of the primary aims of the
empirical branch of this new science is to quantify and examine the striking ap-
parent structural commonalities that many of these large networks share, despite
their differing origins, populations, and function. For example, one empirical nar-
rative in this vein that is still unfolding is the claim that large-scale networks
from social, economic, technological and other origins often share the properties
of small diameter, heavy-tailed degree distributions, and high edge clustering.

Because of this, one of the primary goals of the theoretical branch of this new
science is the formulation of simple models of network formation that can explain
such apparent structural universalities. Interestingly, to date such efforts have
mainly fallen into two categories. In the stochastic network formation literature,
probabilistic models for network growth are proposed that exhibit one or more
of the structural universals of interest in expectation or with high probability. In
contrast, in the game-theoretic network formation links do not form randomly,
but for a “reason” (rationality), and the interest is in the structural and other
properties that can arise at population equilibrium. The game-theoretic models
to date have primarily technological, rather than sociological, motivations, such
as efficient routing concerns in communication networks (see [18,13] for good
overviews of both approaches, as well as Related Work below).

In this paper we introduce and study a new network formation game explicitly
motivated by an empirical phenomenon often cited in large social networks: the
tendency for friendship to be transitive, or for friends of friends to be friends
themselves [13,8]. In sociology and other fields, this notion is quantified by the
clustering coefficient of a network, and a long series of studies has documented
the fact that social networks routinely exhibit much larger clustering coefficients
than would be expected from their overall edge density alone [19,13]. In social
networks, homophily (the tendency for like to associate with like), the tendency
for introductions to be made through mutual acquaintances, and a human desire
for tight-knit cohorts are all cited as possible forces towards high clustering co-
efficients [12,8]. Given the frequent observation of clustering in social networks,
and the long history of sociological and psychological theories regarding its ori-
gins in individuals, it is of interest to examine the consequences when clustering
is considered the primary source of utility in a network formation game. In the
same way that previous papers have taken abstract human or organizational
desires, such as those of being well-connected or centrally placed in a network,
and studied them as network formation games [14,3,11,10], here we do so for the
notion of clustering.

We thus introduce and analyze a network formation game in which rational
players must balance edge purchases, each of fixed cost, with a desire to maximize
their own clustering coefficients. Like most of the prior work in formation games,
we consider a unilateral, rather than bilateral, edge purchase model (Twitter
rather than Facebook); such a model is appropriate for many, though obviously
not all, social networks. Our results include the following:
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– Construction of a number of specific families of equilibrium networks, in-
cluding ones showing that equilibria can have rather general binary tree-like
structure, including highly asymmetric binary trees. This is in contrast to
other network formation games that yield only symmetric equilibrium net-
works. Our equilibria also include ones with large or small diameter, and
ones with wide variance of degrees.

– A general characterization of (non-degenerate) equilibrium networks, show-
ing that such networks are always sparse and paid for by low-degree vertices,
whereas high-degree “free riders” always have low utility.

– A proof that for edge cost α ≥ 1/2 the Price of Anarchy grows linearly
with the population size n while for edge cost α less than 1/2, the Price of
Anarchy of the formation game is bounded by a constant depending only on
α, and independent of n. Moreover, an explicit upper bound is constructed
when the edge cost is a ”simple” rational (small numerator) less than 1/2.

– A proof that for edge cost α less than 1/2 the average vertex clustering
coefficient grows at least as fast as a function depending only on α, while
the overall edge density goes to zero at a rate inversely proportional to the
number of vertices in the network.

– Results establishing the intractability of even weakly approximating best
response computations.

Several of our results hold even for weaker notions of equilibrium, such as those
based on link stability.

In the extended version of the paper we also consider other variants of the
game, including a non-normalized version of clustering coefficient and bilateral
edge purchases one [7].

2 Related Work

Models of social and technological networks can be roughly divided into two
categories — stochastic generative models and game-theoretic models.

A stochastic generative model captures the dynamics of a specific stochastic
process and characterizes the networks created in the limit of that process. Per-
haps the most notable stochastic generative models are the preferential attach-
ment model [4] and the small-world model [20]. In the preferential attachment
model nodes arrive one at a time and each new node stochastically connects
to a fixed number of previous nodes, where the probability of connecting to
a specific node is proportional to that node’s current degree in the network.
Networks created by the model are known to have a limiting power-law degree
distribution [5], a prominent property of various social networks. In contrast to
the preferential attachment model, the small-world generative model assumes
that all nodes are given in advance. In that model one starts with a ring lattice
on the n nodes and rewires each edge independently with some fixed probability.
Networks created this way are known to have low diameter and a large average
clustering coefficient, for a large range of the rewiring probability [20]. While
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the preferential attachment model and the small-world model are able to only
generate networks with some properties of real social networks, a recent model
following similar lines as that of preferential attachment was shown to being able
to generate networks with several more properties of real social networks [17].

A second approach to modeling social and technological networks is based on
game theory. A node is equipped with a utility function that for each outcome
of the game quantifies how good the outcome is for that node. The utility of a
node is a function that depends on the structure of the outcome network and
the cost of the edges the node purchased. Game theoretic formation models
roughly divide into unilateral and bilateral games. In unilateral games a node
can purchase an edge to another node without asking for that node’s consent.
In a bilateral game each edge is a result of mutual consent between the edge’s
endpoints. In both variants once the edge is constructed both parties can use
it1. The seminal work of Fabrikant et al. [11] present an Internet routing latency
game where the utility of a node is the sum of its shortest path distances to all
other nodes plus the cost of the edges the node purchased. The game is perceived
as a minimum latency game where a node’s goal is to route packets quickly to
their destination. The authors showed that regular trees are Nash Equilibrium
(NE) networks of the game and raised the question whether the game has non-
tree NE. Albers et al. [1] provide the first construction of a cyclic NE for the game
using methods from finite affine spaces. Alon et al. [2] provide a combinatorial
construction of a link stable network with diameter three for the routing game.

Bala and Goyal analyzed a general formation game where the utility of a node
is a two-parameter function where the first parameter is the number of nodes
a node is connected to in the outcome graph, and the second parameter is the
number of edges the node bought [3]. Under a mild monotonicity condition on
this utility function the authors showed that the Nash Equilibrium networks of
the game are trees and the strict Nash Equilibrium networks are star-like (plus
the empty network for some edge costs).

Borgs et al. [6] have recently introduced a unilateral network formation game
motivated from affiliation networks. In their model a player can unilaterally
initiate social events with a cost proportional to the number of invitees. Any two
players that meet regularly at events will then form an (undirected) edge. The
utility of a player is its degree in the network minus the cost of events he initiated.
The authors show that the class of NE of the game contains sparse networks as
well as power-law networks and that the average clustering coefficient of each
NE network is bigger than the inverse of the average degree in that network.

Jackson and Wolinsky [14] were the first to introduce a general bilateral game,
called the “connections model”. The utility of a node in this game is a sum of
discounted shortest path distances to all other nodes plus the cost of the edges
adjacent to the node. The authors presented the notion of link-stability where
no two nodes want to purchase a missing edge between them, and no node
wants to unilaterally remove an adjacent edge. The authors presented a partial

1 A third type of formation games, where edges are purchased unilaterally and can
only be used by the purchasing party, is rarely considered in the literature.
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characterization of all link stable networks of the game. A specific version of the
game, where the edge cost is not uniform but depends on a metric on the network
nodes, was further analyzed in [15]. The authors showed that for a specifically
chosen discount factor for the utility of path lengths the link-stable networks
of the metric version include regular networks, complete networks, chain, and
star networks. However, the analysis is limited to specific values of the discount
factor and no general characterization of equilibria networks is given.

Evan-Dar et al. [9] analyze a formation game for bipartite exchange economies.
The network is bipartite containing buyers on one side and sellers on the other
and edge purchases represent trading opportunities between its endpoint parties.
The authors where able to provide a complete characterization of all NE of the
network formation game which is rather exceptional in the literature.

The Price of Anarchy measure was introduced by [16] to quantify the ineffi-
ciency of NE networks with respect to a central designed solution. It is defined
as the ratio between the best welfare (sum of node’s utilities) of a network to
the worst welfare of a NE network. The routing game presented by Fabrikant et
al. was shown to have a low Price of Anarchy [11,1].

3 Preliminaries

The game we shall study, which we will refer to as the CC game, is a one-shot, full
information game on n players that shall form the vertices of an undirected graph
or network. The pure strategies of the game are the possible sets of undirected
edges a player may purchase to the other n− 1 players. The price of all edges is
the same and known in advance to all players. The edge price is denoted by α.

As in a number of previously studied network formation games, we consider
edge purchases to be unilateral — a player may purchase an edge to any other
party without consent from that party — but all players may potentially benefit
from the edge purchases of others. In this sense edges are undirected, but we
also need to keep track of who purchased each edge. Given the edge purchases
of all players the outcome of the game yields a directed network on n nodes,
denoted as G , where an edge from node u to node v is present if and only if u
purchased an edge to v. Throughout we shall analyze both the properties of the
directed graph G , as well as the undirected graph it induces.

We denote by Iv the set of nodes that purchased edges to v and by Ov the
set of nodes v purchased an edge to. We denote the in-degree of v in G as
in-deg(v) and its out-degree as out-deg(v). The total degree of v is defined as
deg(v) = in-deg(v) + out-deg(v).

We denote the number of triangles that v is part of in G by Δ(v). The number
of triangles containing v in which the two other nodes both belong to Iv is
denoted as ΔI(v). Similarly, the number of triangles containing v where the
two other nodes belong to Ov is denoted as ΔO(v). The number of triangles
containing v where one of the other nodes belongs to Iv and the remaining one
belongs to Ov is denoted as ΔI,O(v). These sets are all disjoint by definition and
we have Δ(v) = ΔI(v) + ΔO(v) + ΔI,O(v).
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The clustering coefficient of a node v in G is defined as the probability that two
randomly selected neighbors of v are directly connected to each other: CC(v) =

Δ(v)

(deg(v)
2 ) if deg(v) ≥ 2, and 0 otherwise. In the CC game, players must balance

their desire for high clustering coefficient against their edge expenditures. The
utility of v in the game is defined to be utility(v) = CC(v)−α ·out-deg(v). When
the edge cost α ≥ 1 all strategies for a node v are dominated by the strategy
to purchase no edges at all, so we will assume from now on that 0 < α < 1.
Most of our results will consider the natural case in which α is a constant not
depending on the population size n — forming edges has a fixed cost — though
we will occasionally discuss cases where α diminishes with increasing n. Some of
our results will also depend on α being a rational number.

As in much of the related literature, our main interest in this paper is to study
the properties of the pure Nash equilibrium (NE) networks of the CC game. For
some of our results we shall slightly refine this notion to exclude some degenerate
cases and thus focus on the interesting ones. Note that the empty network (no
edge purchases) is a trivial NE with zero social welfare (total utility) that we
will omit from consideration. We also ask that players who purchase edges have
non-zero utility. Note that (at least) zero utility can always be obtained by
purchasing no edges . This condition demands that the action taken by only a
subset of the players (those buying edges) be better than only one of their many
alternatives (buying no edges), and even then only in the case that the latter
gives zero utility. It is thus a considerable weakening of the standard notion of
a strict Nash equilibrium. We next codify these restrictions:

Definition 1. A non-degenerate NE is a non-empty, pure Nash Equilibrium of
the CC game in which out-deg(v) ≥ 1 implies utility(v) > 0 for all players v.

The social welfare of a given network is defined as the sum of all players’ utilities.
The (non-degenerate) Price of Anarchy (PoA) is defined as the ratio of the
highest social welfare of any directed network with n nodes to the worst social
welfare of any non-degenerate NE.

4 A (Partial) Catalog of CC Game Nash Equilibria

We begin by constructing a number of families of non-degenerate NE of the CC
game, focusing primarily on the network topologies that can arise at equilibrium.
Each of these families is defined for arbitrarily large population size n, and has
social welfare scaling linearly with n. We do not propose this catalog to be
exhaustive; indeed it is interesting to see the diversity of structures that can
arise at equilibrium, and we suspect there are others. Subsequent sections are
devoted to the study of general properties of non-degenerate NE.

The first three constructions below are sufficiently simple that their equilib-
rium proofs can be established by straightforward calculations that we omit. We
do provide the equilibrium proof for our last, and richest, construction.
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Fig. 1. A variety of Nash Equilibrium networks of the CC-Game: Disjoint Triangles
NE (a), Popular Victims NE (b and c), Triangular Hub and Spokes NE (d), Binary
Tree-Like NE (e)

Disjoint Triangles NE. Perhaps the simplest non-degenerate NE consists of
n/3 disjoint triangles. The nodes in each group form a triangle by purchasing
one edge each (Figure 1a). Clearly this structure is a non-degenerate NE for any
0 < α < 1; for n divisible by 3 it also maximizes the social welfare, a fact we
shall use throughout.

Popular Victims NE. This non-degenerate NE shows a case where the most
“popular” (highest degree) nodes suffer the lowest utility. Let n ≥ 4. The con-
struction is as follows: a player u connects to a player v, and each other node
connects directly to both u and v by purchasing two edges (Figure 1b). When the
edge cost is inversely proportional to n, α = 2

n−1 − ε, for any ε > 0, this network
is a non-degenerate equilibrium. To see this, notice that all players other than u
and v are playing their best responses and get a positive utility provided α < 1

2 .
Node v cannot improve its utility since all nodes are connected to it. Last, if
α < 2

n−1 , u wouldn’t want to remove the edge it purchased to v and therefore is
playing its best response. Furthermore, u is getting a positive utility.

Note that this network is “paid for” by low-degree vertices, all of whom enjoy
high utility, while the high-degree victims u and v suffer low utility. We shall
show later that in fact this is a property of all non-degenerate NE.

Triangular Hub and Spokes NE. Consider the network shown in Figure 1d;
it is easily verified that for edge cost α = 1

2 − ε, for any ε > 0 this is a non-
degenerate NE. Furthermore, this construction can be scaled up to make the
“hub” node have arbitrarily high degree at the same (constant) edge cost, and
disjoint copies of this construction of different size can be combined to form new
non-degenerate NE. In this fashion we may create non-degenerate NE whose
(total) degree distributions are effectively unconstrained.

Binary Tree-Like NE. We next construct a large family of non-degenerate
NE obtained by the following construction. We take any rooted, directed binary
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tree T (with edges always oriented towards the leaves), where the root has out-
degree of one, and replace each directed edge in T with a local gadget of the
type given in Figure 1c. As an example of the construction, consider starting
with the rooted, directed tree T on five vertices shown in Figure 1e (inset). The
resulting network G(T ) is given in Figure 1e.

It is worth emphasizing that this construction yields a rather rich family of
non-degenerate NE with a variety of asymmetries possible, which is somewhat
unusual in the network formation game literature. At one extreme it contains
connected, small diameter networks (constructed from balanced binary trees)
and on the other extreme it contains connected, large diameter networks (con-
structed from path-like graphs). Since the argument that the construction does
yield NE is considerably more involved than for our previous examples, a formal
theorem is given. The proof is omitted due to lack of space and is given in the
extended version of the paper [7].

Theorem 1. For any rooted, directed binary tree T where the root has out-degree
of one, let G(T ) be the directed network obtained by the construction described
above. Then for any edge cost that is smaller than some constant independent of
network size, G(T ) is a non-degenerate pure NE of the CC game.

5 General Properties of CC Game Nash Equilibria

Given the apparent diversity and potential asymmetry of the NE of the CC
game, what general statements might we hope to make about their topological
and utility properties? Certain very basic and crude characterizations are easily
obtained — for instance, the fact that any NE has at most n

α edges follows from
the fact that each node can purchase at most 1

α edges at equilibrium since all
utilities are non-negative. Notice that this observation does not imply a non-
trivial restriction on the total degree or utility of any individual node.

In this section, we prove a considerably stronger characterization motivated by
the commonalities in the NE described in the last section. Namely, we prove that
any (non-degenerate) NE is paid for by nodes of low total degree and high utility,
while high-degree vertices are always victims of low utility. This characterization
will then be applied in the following section to obtain non-trivial bounds on the
Price of Anarchy for the CC game.

Theorem 2. Let 0 < α < 1
2 . Then in any non-degenerate NE of the CC game:

– For any node v, if out-deg(v) ≥ 1, then deg(v) < 3
α , and utility(v) = c(α) >

0, where the strictly positive constant c(α) depends only on α, and not the
population size n. Moreover, when 1

α is integral, c(α) > α3

9 . 2 Thus, vertices
purchasing an edge have low total degree and a positive, constant utility.

– For any node v with deg(v) ≥ 3
α , utility(v) < 3

α(deg(v)−1) . Thus, high-degree
vertices have low utility.

2 A similar bound holds for “simple” rational α; see the proof.
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Proof. We start by proving the first part of the theorem. Let v be any node in
a non-degenerate NE network that purchased an edge and has an in-degree of
at least two (the claim is trivially true when in-degree of v is at most one). The
upper bound on v’s total degree is derived from the fact the v’s utility is higher
than what it could have gotten by purchasing no edges at all:

Δ(v)(
deg(v)

2

) − α · out-deg(v) ≥ ΔI(v)(
in-deg(v)

2

) .
Simplifying, we get

ΔI(v)
(

2
deg(v)(deg(v) − 1)

− 2
in-deg(v)(in-deg(v)− 1)

)
+

ΔI,O(v) + ΔO(v)
deg(v)(deg(v)−1)

2

≥ α · out-deg(v).

Since 2
deg(v)(deg(v)−1) −

2
in-deg(v)(in-deg(v)−1) < 0, we get

ΔI,O(v) + ΔO(v)
out-deg(v)deg(v)(deg(v)− 1)

>
α

2
.

By using ΔO(v) ≤
(
out-deg(v)

2

)
and ΔI,O(v) ≤ in-deg(v) · out-deg(v), we get

in-deg(v)out-deg(v) + out-deg(v)(out-deg(v)−1)
2

out-deg(v)deg(v)(deg(v)− 1)
>

α

2
,

so 1
deg(v) + 1

2deg(v) > α
2 , or alternatively, deg(v) < 3

α .

Next, we prove a lower bound on v’s utility that follows from it being strictly
positive (non-degeneracy). Recall that utility(v) = Δ(v)

(deg(v)
2 ) − αout-deg(v) > 0.

Since deg(v) < 3
α , the RHS of the utility expression can only equal one out of

a finite number possible of possibilities that depend only on α and not on n. In
particular, for each α we can choose the worst possible value that still renders
utility(v) strictly positive. We denote that value by c(α).

Furthermore if 1
α is integral, by taking a common denominator the left hand-

side can be written as a strictly positive numerator divided by a denominator
of 1

1
α (deg(v)

2 ) . Using deg(v) < 3
α , we get that v’s utility is bigger than α3

9 . (More

generally note that if α = p/q for integers p < q and thus rational, a similar
argument yields a lower bound of α3

9p on the utility, and thus “simple” α give
constructive lower bounds.)

We next prove the second part of the theorem. Consider a node v with a total
degree of at least 3

α . We saw earlier that a node that purchased edges has a
degree of less than 3

α so v could not have purchased edges at all. Moreover, a
node u that purchased an edge to v has degree less than 3

α and so v is part of
less than 3

α joint triangles with u. Therefore the total triangle count of node v

is less than 1
2d · 3

α . Thus, v’s utility is less than
1
2 d 3

α

(d
2)

= 3
α(d−1) .
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6 The Price of Anarchy

As has been mentioned, a disjoint union of triangles is a maximum social welfare
NE, whereas all the specific families of NE given in Section 4 have a social welfare
growing linearly with the population size n. In this section we prove that the
non-degenerate Price of Anarchy is upper bounded by a function depending only
on α, and not on n, for all α < 1/2, and give an explicit expression for the upper
bound when α is a ”simple” rational (small numerator). This turns out to be a
fairly straightforward consequence of the characterization given in Theorem 2.
The proof can be found in the extended version of the paper [7].

Theorem 3. For edge cost α ≥ 1
2 the non-degenerate Price of Anarchy for the

CC game is lower bounded by Ω(n(1 − α)), and for edge cost α < 1
2 it is upper

bounded by an expression that depends only on α. Moreover, when 1
α is integral

the Price of Anarchy is upper bounded by 36(1−α)
α4

3

While Theorem 3 upper bounds the non-degenerate Price of Anarchy indepen-
dent of the population size n for α < 1/2, it leaves open the question of the exact
dependence on α and whether it is even real or not. Indeed, all specific construc-
tions in Section 4 have a constant Price of Anarchy independent of α, even when
α is a small numerator rational. We leave the resolution of this dependence as
an open problem.

It is natural to ask how robust the results we have described so far are with
respect to modifications of the equilibrium notion — especially in light of the
results in the following section, where we will prove that even approximate best-
response computations for the CC game are intractable. Indeed, it is for similar
reasons that in other network formation games, researchers often consider weaker
notions of equilibrium, such as link stability (which asks only that players cannot
improve their utilities by adding or dropping a single edge purchase).

Notice that an equilibrium concept resilient only to the addition or removal of
a single one edge already has a Price of Anarchy of Ω(n(1−α)) for any edge cost,
since a network with one triangle and many isolated nodes is then in equilibrium
no matter how small α is (a single edge purchase can never help). However,
define k-stability to be the equilibrium concept in which players cannot benefit
by switching from their assigned edge purchase set S to any other edge purchase
set S′ for which the symmetric set difference |S − S′| ≤ k. (Thus standard link
stability corresponds to 1-stability.) For any fixed value of k, computing best
responses under k-stability becomes a computationally tractable problem, and
for k ≥ 2, all of our results can be shown to hold under this notion as well:

Theorem 4. For all k ≥ 2, Theorems 2 and 3 remain true when we replace NE
by k-stability.

The proof is omitted, but mainly involves technical modifications of the proof
of the first part of Theorem 2 to consider the utility effects of dropping only the
most beneficial edge purchases, rather than all edge purchases.
3 A similar bound holds for ”simple” (small numerator) rational α.
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We end by noting that a low PoA implies that the average vertex clustering
coefficient is high.

Corollary 1. For edge cost α < 1
2 the average vertex clustering coefficient grows

at least as some function g(α) independent of the network size, while the net-
work’s overall edge density goes to zero at a rate smaller or equal to 2α

n−1 .

7 Intractability of Best Responses

A natural question that arises in many complex network formation games is how
difficult it can be to compute best responses, which would seem a prerequisite
to reaching NE dynamically; for instance, best-response computation was shown
to be NP-hard to compute for a routing formation game [11]. Here we show
that best responses in the CC game are intractable even to approximate, thus
motivating the weaker notion of k-stability in the last section.

Theorem 5. Given a directed graph G and a node v in G (where G represents
the edge purchases of the other nodes), the edge cost α (encoded as a rational
number), and an integer f ≥ 1, computing a strategy (set of edge purchases) for
v with CC game utility at least 1

f of the best-response utility is not polynomial
time computable, unless P = NP.

The proof is given in the extended version of the paper [7].
One way to deal with the inapproximability of best response is to focus on

computing best responses under k-stability, k ≥ 1. Although the problem of
computing best response under k stability for each node becomes tractable for
fixed values of k, the corresponding dynamics doesn’t always converge to a k-
stable network, as shown in Figure 2. Therefore there is no simple solution to
the inapproximability of best-responses.

Fig. 2. Here we consider the weakest notion of best response, where a node can either
add or remove at most one edge to improve its utility. Edge cost can be taken to be
any 0 < α < 1. Figure 2a shows the initial network, and in each consecutive round the
network is drawn after the node colored gray played its best-response under k-stability,
k ≥ 1. The dynamics returns to its initial configuration after six rounds as shown in
Figure 2g, so it never converges to a k-stable network.
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free random graph process. Random Struct. Algorithms 18(3), 279–290 (2001)

6. Borgs, C., Chayes, J.T., Ding, J., Lucier, B.: The hitchhiker’s guide to affiliation
networks: A game-theoretic approach. In: ICS (2011)

7. Brautbar, M., Kearns, M.: A clustering coefficient network formation game, ex-
tended version, http://arxiv.org/abs/1010.1561

8. Easley, D., Kleinberg, J.: Networks Crowds and Markets: Reasoning about a Highly
Connected World. Cambridge University Press, Cambridge (2010)

9. Even-Dar, E., Kearns, M., Suri, S.: A network formation game for bipartite ex-
change economies. In: SODA, pp. 697–706 (2007)

10. Even-Dar, E., Kearns, M.: A small world threshold for economic network formation.
In: NIPS, pp. 385–392 (2006)

11. Fabrikant, A., Luthra, A., Maneva, E.N., Papadimitriou, C.H., Shenker, S.: On a
network creation game. In: PODC, pp. 347–351 (2003)

12. Heider, F.: The Psychology of Interpersonal Relations. John Wiley & Sons, Chich-
ester (1958)

13. Jackson, M.O.: Social and Economic Networks. Princeton University Press, Prince-
ton (2008)

14. Jackson, M.O., Wolinsky, A.: A strategic model of social and economic networks.
J. of Economic Theory 71, 44–74 (1996)

15. Johnson, C., Gilles, R.P.: Spatial social networks. Review of Economic Design 5,
273–299 (2000)

16. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

17. Lattanzi, S., Sivakumar, D.: Affiliation networks. In: STOC, pp. 427–434 (2009)
18. Newman, M., Barabasi, A.L., Watts, D.J.: The Structure and Dynamics of Net-

works. Princeton University Press, Princeton (2006)
19. Watts, D.J.: Small worlds. Princeton University Press, Princeton (1999)
20. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Na-

ture 393(6684), 440–442 (1998)

http://arxiv.org/abs/1010.1561


On the Existence of Pure Strategy Nash Equilibria in
Integer–Splittable Weighted Congestion Games

Long Tran-Thanh1, Maria Polukarov1, Archie Chapman2,
Alex Rogers1, and Nicholas R. Jennings1

1 School of Electronics and Computer Science,
University of Southampton, UK

{ltt08r,mp3,acr,nrj}@ecs.soton.ac.uk
2 The University of Sydney Business School, Sydney, Australia

a.chapman@econ.usyd.edu.au

Abstract. We study the existence of pure strategy Nash equilibria (PSNE) in
integer–splittable weighted congestion games (ISWCGs), where agents can strate-
gically assign different amounts of demand to different resources, but must dis-
tribute this demand in fixed-size parts. Such scenarios arise in a wide range of
application domains, including job scheduling and network routing, where agents
have to allocate multiple tasks and can assign a number of tasks to a particular
selected resource. Specifically, in an ISWCG, an agent has a certain total demand
(aka weight) that it needs to satisfy, and can do so by requesting one or more
integer units of each resource from an element of a given collection of feasible
subsets.1 Each resource is associated with a unit–cost function of its level of con-
gestion; as such, the cost to an agent for using a particular resource is the product
of the resource unit–cost and the number of units the agent requests.

While general ISWCGs do not admit PSNE (Rosenthal, 1973b), the restricted
subclass of these games with linear unit–cost functions has been shown to possess
a potential function (Meyers, 2006), and hence, PSNE. However, the linearity of
costs may not be necessary for the existence of equilibria in pure strategies. Thus,
in this paper we prove that PSNE always exist for a larger class of convex and
monotonically increasing unit–costs. On the other hand, our result is accompa-
nied by a limiting asumption on the structure of agents’ strategy sets: specifically,
each agent is associated with its set of accessible resources, and can distribute its
demand across any subset of these resources.

Importantly, we show that neither monotonicity nor convexity on its own
guarantees this result. Moreover, we give a counterexample with monotone and
semi–convex cost functions, thus distinguishing ISWCGs from the class of
infinitely–splittable congestion games for which the conditions of monotonicity
and semi–convexity have been shown to be sufficient for PSNE existence (Rosen,
1965). Furthermore, we demonstrate that the finite improvement path property
(FIP) does not hold for convex increasing ISWCGs. Thus, in contrast to the case
with linear costs, a potential function argument cannot be used to prove our re-
sult. Instead, we provide a procedure that converges to an equilibrium from an
arbitrary initial strategy profile, and in doing so show that ISWCGs with convex
increasing unit–cost functions are weakly acyclic.

1 Additionally, strategy sets are restricted by certain domain–specific constraints—for instance,
in network routing, an agent’s strategy must define a feasible flow between its given pair of
source and target nodes.

G. Persiano (Ed.): SAGT 2011, LNCS 6982, pp. 236–253, 2011.
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1 Introduction

The study of interaction of multiple self–interested parties (“agents”) sharing
commonly–available facilities (“resources”) is central to computational game theory.
Such settings naturally arise in a wide range of typical application domains, from
traffic routing in networks (e.g. roads, air traffic or information and communica-
tion networks (Rosenthal, 1973a; Roughgarden and Tardos, 2002)), to competition
in job scheduling problems (e.g. for computational services or machine scheduling
(Koutsoupias and Papadimitriou, 1999)).

In many real–world scenarios in these domains, agents may find it beneficial to as-
sign different amounts of demand to different resources, but may have restrictions on the
size of units in which this demand is distributed. For example, consider a job schedul-
ing problem, comprised of n agents and m independent machines, where each agent has
several indivisable jobs to be executed. To each selected machine, an agent pays a usage
cost, which is equal to the number of jobs the agent allocates to that machine multiplied
by the unit–cost per job, typically depending on the total level of demand on the ma-
chine (i.e., its congestion). A similar situation arises in communication networks (e.g.
the Internet), where agents send packets (or, messages) and have to decide how many
packets to route on each path in the network to minimise possible delays. Additional
examples for a problem of this kind may include procuring factor inputs for manufac-
turing processes or purchasing transport capacity for logistics networks. Importantly, in
all these situations, the agents cannot split their demands in arbitrary ways, but must do
so in integer units.

Problems of this kind are addressed in the literature as integer–splittable weighted
congestion games (ISWCGs), where agents strategically choose from a common set
of resources, and are allowed to assign multi–unit requests to each of their selected
resources; however, they are constrained to make their allocations in fixed-size parts
(particularly, integer units). Each resource is equipped with a “unit–cost function” that
indicates the cost that each agent pays per unit of request, depending on the aggregate
level of congestion on that resource (i.e., the total number of units the users contribute
to the resource). Since the agents may have different congestion impacts, the cost each
agent has to pay for the use of a particular resource is the product of the amount of
units it requests from that resource and the corresponding unit–cost. For example, in
a computational services setting, if an agent were to purchase four units of processor
time from a particular service provider, it would pay the same unit–cost for all four
units, with the unit–cost determined by the total demand from all agents for that re-
source. The overall agent’s cost is given by the sum of its costs for each resource it
uses. In a ISWCG, each agent has a certain integer demand (or, weight) for resource
units it needs to satisfy, and its aim is to minimise the total cost of the units by distribut-
ing its weight across the available resources. Unit–cost functions are resource–specific,
but are the same for all agents (i.e., resource providers cannot discriminate between
users), while demands for resource units can vary across the agents. Note that the above
examples are captured in the ISWCG model by identifying the set of resources with
the set of machines or network links, respectively, where differences in their tech-
nical parameters and performance factors, such as efficiency, or speed, are reflected
by resource–dependent costs per unit (e.g. job, or data packet). An agent’s demand
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represents the amount of resources (job, or data traffic) each agent has, and the set of
feasible assignments (task allocations, traffic routes) corresponds to the set of feasible
strategy profiles.

1.1 Related Work

Much of related work deals with a traditional congestion game model by Rosenthal
(1973a), where agents have to choose from a given finite set of resources, and where the
possible choices of an agent are given by the subsets of resources that satisfy its goals.
The cost of a resource is determined by the total number of its users, and an agent’s
overall cost is given by the sum of resource costs over the set of the agent’s selected
resources. In a variant setting of network congestion models, agents have to choose
subsets of edges on a graph forming a path from the agent’s origin to destination, in
order to route their demand (i.e. flow) through the network, and the cost (e.g. latency)
of each edge varies with the number of agents traversing that edge.

The important property of congestion games shown by Rosenthal (1973a) is the ex-
istence of a Nash equilibrium in pure strategies (PSNE)—a profile where each agent
plays a certain (non–randomised) strategy and no one has an incentive to unilaterally
change it. Such solutions are highly desirable, since, from a system–wide perspective,
they imply that a system has a deterministic stable state. This is necessary in a range
of control problems where randomised strategies are not appropriate (e.g. in industrial
processing or transport applications). Also, unlike mixed strategy and correlated equi-
libria, PSNE do not rely on the assumption that agents have the capacity to accurately
randomise their actions according to an equilibrium prescription.

Moreover, congestion games are also known to possess a stronger charateristic, called
the “finite improvement path property” (FIP), implying that any sequence of unilateral
improvement deviations (i.e., strategy changes that decrease an agent’s total cost) will
converge to a PSNE in finite time. This is implied by the existence of a “potential func-
tion” that decreases along any such improvement path (Monderer and Shapley, 1996).
Given this, the players can use a variety of simple potential–based search processes to
find a PSNE in a distributed fashion, such as fictitious play or weighted regret monitor-
ing (Leslie and Collins, 2006; Marden et al., 2007).

The traditional model has been generalised to a variety of related situations. Such
generalisations, for example, include player–specific congestion games (Milchtaich,
1996) where an agent’s payoff depends on its identity, weighted congestion
games (Milchtaich, 1996), in which agents may have different (although fixed) con-
gestion impacts (weights), local–effect games (Leyton-Brown and Tennenholtz, 2003)
with an agent’s cost for a particular resource being also affected by a congestion on
its neighbouring resources, congestion games with failures (Penn et al., 2009a) and
random-order congestion games (Penn et al., 2009b) modelling faulty or asynchronous
resources, and congestion–averse games (Byde et al., 2009; Voice et al., 2009) where
the agents’ utilities are determined by general real–valued functions of congestion vec-
tors. Note that in all these settings, agents are restricted to request only a single or a fixed
number of units from each particular chosen resource; that is, in terms of the network
congestion model, they have to unsplittably route their flow within the network.
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At the other extreme, infinitely–splittable congestion game models assume that agents
have divisible demand, which can be fractionally split acroos an arbitrary number of
resources (paths), in any proportion (Orda et al., 1993; Cominetti et al., 2009). For this
setting, a result from Rosen (1965) implies that PSNE are guaranteed to exist if resource
cost functions are semi–convex2 and monotone increasing. As an intermediate concept
between splittable and unsplittable games, the model of k–splittable network conges-
tion models was introduced by Beier et al. (2004) to capture scenarios where agents are
restricted to split their demand across at most k different paths. However, the portion of
the demand that an agent allocates to a single path can be fractional. Beier et al. (2004)
showed that it is NP–hard to decide whether a PSNE exists within such settings. In
addition, Shachnai and Tamir (2002); Krysta et al. (2003) obtained similar results for
k–splittable congestion games in the job scheduling domain.

More relevant to our work is the paper by Meyers (2006) where the k–splittable
model is modified so that agents are only allowed to allocate integer amounts of de-
mand to each chosen resource (or, path). The authors showed that the restricted sub-
class of these games where the unit–cost functions are linear, possesses a potential
function, and hence, the FIP holds and a PSNE is guaranteed to exist. For a gen-
eral case, Rosenthal (1973b) gave an example of an asymmetric weighted network
congestion game that does not have an equilibrium in pure strategies. More recently,
Dunkel and Schulz (2008) strengthened this result by showing that the problem of de-
ciding whether a weighted network congestion game with integer–splittable flows ad-
mits a PSNE is strongly NP–hard.

1.2 Our Contribution

In this paper, we extend positive results on the existence of a pure strategy equilibrium
in integer–splittable congestion games to a larger class of unit–cost functions which
are monotonically increasing and convex. From a practical point of view, this class is
important as convex increasing costs occur in a wide range of application domains. In-
deed, in many real–world systems, marginal costs typically increase as total demand
increases (e.g. energy cost in smart grids or delay in multi–server systems). Further-
more, such systems are often regarded as overloaded, if the total demand exceeds a
certain threshold. In this case, the users often have to pay extremely higher costs for
using the resources (in smart grids, for example, each power plant has a finite produc-
tion limit, and if the total demand exceeds the sum of these limits, additional expensive
peaking plant must supply the excess). We note that our result is accompanied by a lim-
iting asumption on the structure of agents’ strategy sets. Specifically, we assume that
each agent is associated with its set of accessible resources, wich is a part of a given
superset, and can distribute its demand across any subset of these resources. For sake
of brevity, in what follows we slightly abuse the notation and use the term ISWCG to
define a game with such restricted strategy set structures.

The above assumption implies that negative results by Rosenthal (1973b) and
Dunkel and Schulz (2008) do not apply to our setting. However, as we show, the exis-
tence of PSNE is still violated. Moreover, PSNE are not guaranteed to exist in games with

2 A function f(x) is semi-convex if x · f(x) is convex.
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either non–monotone or non–convex unit–costs, implying the necessity of these condi-
tions for PSNE existence. Interestingly, our examples show that even functions which are
monotone and semi–convex result in games with no pure strategy equilibria, thus distin-
guishing between the classes of ISWCGs and infinitely–splittable congestion games.

Following this, our main result proves that a pure strategy equilibrium is guaranteed
for ISWCGs with monotonically increasing and convex unit–costs. Importantly, as we
show, PSNE exist in these games despite of the non–existence of a potential function
and the FIP. Consequently, in contrast to the case with linear costs (Meyers, 2006),
potential–based methods cannot be used for proving PSNE existence and finding such
equilibria. Based on this, we provide a search algorithm that returns a PSNE of a given
game in finite time. Finally, we note that our algorithm shows convergence from an
arbitrary initial strategy profile, thus showing that convex increasing ISWCGs possess
the weak acyclicity property (Monderer and Shapley, 1996).

The remainder of the paper unfolds as follows. First, in Section 2 we formally define
the model for ISWCGs. Then, in Section 3 we show that no guarantees on PSNE ex-
istence can be made if the unit–cost functions are not convex or monotone increasing.
Following this, in Section 4 we study the case of ISWCGs with convex increasing costs.
We show that these games do not generally possess a potential function by giving an
example of an improvement cycle. Nonetheless, we prove that they are guaranteed to
possess PSNE if the cost function is convex and monotone increasing, and devise an al-
gorithm for computing them. Due to space limitations, some of the proofs are ommited
from this version of the paper.

2 The Model

Consider a congestion domain with a set N = {1, . . . , n} of agents, where each agent
i ∈ N has a set Ri of mi ∈ N accessible resources, which is a subset of a finite superset
R = {r1, . . . , rm}. An agent i needs to execute X i ∈ N task units, and can distribute
this demand (or, weight) arbitrarily among its resources. Note that each agent can use
more than one integer unit from a single selected resource. An agent i’s (pure) strategy
is given by xi =

(
xi

r

)
r∈R

, where xi
r ∈ N is the number of units that agent i demands

from resource r ∈ R, such that xi
r = 0 for all r /∈ Ri and∑

r∈R

xi
r =

∑
r∈Ri

xi
r = Xi (1)

Every combination of strategies (a strategy profile) x =
(
xi
)
i∈N

corresponds to a
congestion vector h(x) = (hr(x))r∈R, where

hr (x) =
∑
i∈N

xi
r (2)

indicates the congestion—the total number of assigned tasks (or, demanded units) on
resource r ∈ R in profile x.

From the perspective of agent i, a strategy profile x can be viewed as
(
xi, x−i

)
,

where x−i stands for the joint strategy of other agents. Similarly, for r ∈ R we denote
by
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h−i
r (x) =

∑
j �=i

xj
r = hr (x) − xi

r (3)

the congestion on resource r incurred by the collective demand of the agents, excluding
agent i.

Each resource r ∈ R is associated with a unit–cost (or simply, a cost) function
cr : N → R defining the cost for a unit of demand on resource r as a function of
the total congestion on the resource. For simplicity, it is convenient to assume that cost
functions are non–negative, although our results do not rely on this assumption.

Given this, the payoff function of an agent is defined as follows. The overall cost
agent i has to pay in a strategy profile x is

Ci(x) =
∑
r∈R

xi
rcr (hr(x)) (4)

Furthermore, the total cost of the system is given by

C (x) =
∑
i∈N

Ci (x) =
∑
r∈R

hr (x) cr (hr(x)) (5)

Definition 1. An integer–splittable weighted congestion game (ISWCG) Γ =(
N, R,

(
Xi
)

i∈N
, (cr(·))r∈R

)
consists of a set N of n ∈ N agents, a set R of m ∈ N

resources, a unit–cost function cr for each resource, and for each agent i a set of ac-
cessible resources Ri ⊆ R and a total demand (aka weight) X i. The strategy set for

each agent i ∈ N is the set of m-dimensional vectors
{(

xi
r

)
r∈R
∈ N

m
}

, such that∑
r∈R xi

r = X i, xi
r = 0 ∀r /∈ Ri, and the cost to the agent for a combination of

strategies x is Ci(x) =
∑

r∈R xi
rcr (hr(x)), where hr(x) is the vector of congestion

as determined by x.

3 Non-existence of PSNE

In this section, we show that general ISWCGs do not necessarily admit pure strategy
Nash equilibria (PSNE). We provide two examples, based on which we reason about
conditions that would guarantee PSNE existence.

Example 1. Consider a two–player ISWCG with demands X1 = 2 and X2 = 1, and
two resources with the following unit–cost functions:

cr1 (1) = 12, cr1 (2) = 5, cr1 (3) = 7

cr2 (1) = 10, cr2 (2) = 6, cr2 (3) = 10

The payoff matrix of the game is presented in Table 1. One can easily verify that there
is no PSNE in this game.

Table 1. No PSNE in ISWCGs with non-monotone unit–costs

(0, 2) (1, 1) (2, 0)

(0, 1) 10, 20 6, 18 10, 10
(1, 0) 12, 12 5, 15 7, 14
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Note that the cost functions in Example 1 are not monotone, but convex. That is, the
convexity condition on its own is not sufficient for the existence of a pure strategy
equilibrium. The next example demonstrates that neither is monotonicity sufficient.

Example 2. Consider a two–player ISWCG with demands X1 = 3 and X2 = 1, and
two identical resources with a unit–cost function cr1(·) = cr2(·) = cr(·) given by:

cr (1) = 3, cr (2) = 8, cr (3) = 10 cr (4) = 12

The payoff matrix of the game is presented in Table 2. Inspection shows that there is no
PSNE in this game.

Table 2. No PSNE in ISWCGs with non-convex cost functions

(0,3) (1,2) (2,1) (3,0)
(1,0) 3, 30 8, 24 10, 23 12, 36
(0,1) 12, 36 10, 23 8, 24 3, 30

As mentioned above, Example 1 is convex, while Example 2 is monotone–increasing,
implying that if either property of the cost functions is violated, a PSNE is not guaran-
teed. Furthermore, the cost function cr(x) in Example 2 is semi–convex (i.e., x · cr(x)
is convex). It implies that the conditions of monotonicity and semi-convexity, which
have been shown to be sufficient for PSNE existence in infinitely–splittable congestion
games, do not apply to the integer–splittable case! Based on this, in the following sec-
tion we prove that a pure strategy equilibrium always exists in the ISWCGs whose
resource unit–cost functions are monotone–increasing and convex.

4 Convex Increasing ISWCGs

In this section, we investigate the subclass of ISWCGs with convex and monotonically
increasing cost functions (henceforth, convex increasing ISWCGs). Our main result
proves that pure strategy Nash equilibria always exist in such games. Importantly, as we
show in 4.1, an arbitrary sequence of myopic improving deviations may cycle even in
this case; hence, the FIP property does not hold and a potential function argument is not
applicable. Against this background, in 4.2 we propose a special dynamic procedure,
that reaches an equilibrium from any starting point. This shows that convex increasing
integer–splittable congestion games possess the weak–acyclicity property and implies
an algorithm for finding PSNE in these games.

4.1 Violating the Finite Improvement Property

Given a pure strategy profile of a game, consider an arbitrary sequence of unilateral
moves, where at each step a deviating agent improves its payoff with respect to the
current one it gets from the game. If such a sequence of myopic improvement steps ter-
minates, the resulting strategy profile is a Nash equilibrium. Now, if every such path
leads to a PSNE, it is said that the game has the finite improvement path property
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(FIP). Importantly, the FIP is equivalent to the existence of a generalised ordinal poten-
tial (Monderer and Shapley, 1996)—a real-valued function over the set of pure strategy
profiles that strictly decreases along any improvement path. Thereby, if the FIP holds
for a particular game, then the agents only need to search for a local minimum point
of the potential, in order to find a pure strategy equilibrium. It is known that Rosen-
thal’s congestion games always possess a potential function and the FIP and, in fact,
are a central class of games with this property (see Monderer and Shapley (1996) for a
detailed discussion).

Below, we demonstrate that convex increasing ISWCGs do not fall within the frame-
work of congestion games, as these games generally violate the FIP property. Specif-
ically, we provide an example of the convex increasing ISWCG that contains an im-
provement cycle, as follows.

Example 3. Consider a convex increasing ISWCG game with 2 agents N = {1, 2}
and 5 resources R = {r1, r2, . . . , r5}, where both agents have access to all of the
resources. Agent 1 requires 14 units of resources, and agent 2’s demand is 36. The
unit–cost functions have the following particular values:

cr1 (1) = 39

cr2 (1) = 350

cr3 (35) = 5, cr3 (36) = 8, cr3 (37) = 21

cr4 (1) = 150

cr5 (13) = 16, cr5 (14) = 22, cr5 (15) = 52

Consider profile x = (x1, x2), where x1 = (1, 0, 10, 0, 3) and x2 = (0, 1, 25, 0, 10),
with a corresponding congestion vector h(x) = (1, 1, 35, 0, 13). Accordingly, the vec-
tor of unit–cost values as determined by x is (39, 350, 5, 0, 16), and the agents’ overall
costs are C1(x) = 1·39+10·5+3·16 = 137 and C2(x) = 1·350+25·5+10·16 = 635.
We construct an improvement cycle that starts at x and consists of simple improvement
steps at which an agent moves a single task unit from one resource to another. First,
agent 1 moves 1 unit from r1 to r3. The resulting cost to agent 1 is then given by
11 ·8+3 ·16 = 136, which is less by 1 than what the agent paid before. Following this,
agent 2 moves a unit from r2 to r3 and gets 26 · 21 + 10 · 16 = 706, thus reducing the
cost of 1 · 350 + 25 · 8 + 10 · 16 = 710 it paid after the first improvement step by agent
1. The whole sequence of moves and the corresponding cost reductions to deviating

Table 3. Improvement cycle in ISWCGs with convex increasing unit–cost functions

Step Deviator Move Improvement
1 Agent 1 1 unit r1 → r3 137 - 136 = 1
2 Agent 2 1 unit r2 → r3 710 - 706 = 4
3 Agent 1 1 unit r3 → r4 279 - 278 = 1
4 Agent 2 1 unit r3 → r5 368 - 367 = 1
5 Agent 1 1 unit r4 → r5 266 - 258 = 8
6 Agent 2 1 unit r5 → r2 697 - 695 = 2
7 Agent 1 1 unit r5 → r1 138 - 137 = 1
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agents is listed in Table 3. Note that after 7th step the system turns back to the initial
strategy profile, and so the improvement path cycles.

However, the non-existence of the FIP and a potential function in a class of games does
not generally contradict the existence of an equilibrium in pure strategies. Thus, in the
following section, we prove that convex increasing integer–splittable congestion games
do always possess such an equilibrium, despite of the non–existence of the FIP. Our
proof is constructive and yields a natural procedure that achieves an equilibrium point
in a finite number of steps. Importantly, the convergence is guaranteed, regardless of
the initial strategy profile, and so convex increasing congestion games with multi–unit
resource demands are weakly–acyclic.

4.2 Nash Equilibria

We start with the following Lemma 1, introducing a useful property of convex increas-
ing functions that we will employ in proving results within this section.

Lemma 1. Let c : N → R be a convex and monotonically increasing function. Then,
for any 0 ≤ x ≤ y integer and h ≥ 0, the following holds:

• yc (h + y) − xc (h + x) ≥ (y − x) [(x + 1) c (h + x + 1) − xc (h + x)]

• yc (h + y) − xc (h + x) ≤ (y − x) [yc (h + y) − (y − 1) c (h + y − 1)]

Moreover, the inequalities are strict if y > x + 1.

We now turn to prove our main result. In doing so, we first provide a useful characterisa-
tion of best response strategies in ISWCGs with convex increasing costs (Theorem 1).
We then use this characterisation to prove PSNE existence (Theorem 2) and define a
special type of improvement dynamics (Algorithm 1) that converges to a Nash equilib-
rium from an arbitrary starting point (Theorem 3).

Distances between Strategies

Definition 2. The modified Hamming distance between agent i’s strategies xi =(
xi

r

)
r∈R

and yi =
(
yi

r

)
r∈R

is defined as

H
(
xi, yi

)
=
∑
r∈R

∣∣∣xi
r − yi

r

∣∣∣ (6)

Now, since equation (1) must hold for any strategy of agent i, from Definition 2 we
easily derive the following lemma.

Lemma 2. In an integer–splittable congestion game, if xi �= yi are different strategies
of agent i, then H

(
xi, yi

)
≥ 2.

Based on this lemma, if the modified Hamming distance between two strategies xi and
yi is exactly 2, we will refer to them as neighbours. The next lemma then states that
an improving deviation from a particular strategy (if one exists) can always be found
among its neighbours.

Lemma 3. Let x =
(
xi, x−i

)
be a strategy profile of a given ISWCG with convex

increasing costs. If xi is not agent i’s best response against x−i, then there exists a
strategy yi, such that H

(
xi, yi

)
= 2 and Ci

(
yi, x−i

)
< Ci (x).
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Single Unit Moves. Given this, it will be useful to identify best improving deviations
within the set of neighbouring strategies.

Definition 3. Let Di
max (x) denote the value of maximal improvement that agent i can

achieve by deviating to a neighbouring strategy from profile x. That is,

Di
max (x) = max

yi: H(xi,yi)=2

{
C (x) − C

(
yi, x−i

)}
(7)

Obviously, if x is a Nash equilibrium profile, then for any i ∈ N we have Di
max (x) ≤

0. Otherwise, if for some agent i its strategy xi is not a best response against x−i,
then by Lemma 3, there exists a strategy yi for agent i such that H

(
xi, yi

)
= 2 and

Di
max (x) ≥ U (x)− U

(
yi, x−i

)
> 0. This implies the following theorem.

Theorem 1. Given a convex increasing ISWCG, a strategy xi is a best response to
agent i ∈ N against s−i if and only if Di

max (x) ≤ 0.

Thereby, a strategy profile x is a PSNE if and only if the condition in Theorem 1 holds
for each agent i ∈ N . We seek such a profile by constructing an improvement path,
where at each step an agent deviates to a best neighboring strategy. Let us now charac-
terise these improving moves.

From Lemma 2, it is easy to see that xi and yi are neighboring strategies of agent
i ∈ N if and only if there are p, q ∈ Ri such that yi

p = xi
p − 1 and yi

q = xi
q + 1. That

is, agent i deviates from xi to yi by moving exactly one task unit from resource p to
resource q. Hereafter, we refer to such deviations as single unit moves.

Let Di
p→q (x) denote agent i’s value of improvement by taking a single unit move

p→ q from profile x. That is,

Di
p→q (x) = Ci (x) − Ci

(
yi, x−i

)
(8)

where yi is such that yi
p = xi

p − 1, yi
q = xi

q + 1 and yi
r = xi

r for all r ∈ R \ {p, q}.
Given this, we can rewrite Di

max (x) as follows:

Di
max (x) = max

p �=q∈Ri

Di
p→q (x) (9)

Now, let us calculate

Di
p→q (x) =

[
xi

pcp (hp (x)) −
(
xi

p − 1
)

cp (hp (x) − 1)
]

+
[
xi

qcq (hq (x)) −
(
xi

q + 1
)

cq (hq (x) + 1)
]

(10)

and consider

(11)pi∗ ∈ arg max
r∈Ri: xi

r>0
{xi

rcr (hr (x)) −
(
xi

r − 1
)

cj (hr (x) − 1)}

That is, resource pi∗ guarantees to agent i a maximal cost reduction if it removes one
unit of demand from that resource. Similarly, resource

(12)qi∗ ∈ arg min
r∈Ri

{
(
xi

r + 1
)

cj (hr (x) + 1) − xi
rcj (hr (x))}

guarantees a minimal increase in cost when i adds one unit of demand to qi∗.



246 L. Tran-Thanh et al.

Obviously, for any pair of resources p and q with xi
p > 0 we have that Di

p→q (x) ≤
Di

pi∗→qi∗ (x). That is, if pi∗ �= qi∗ then Di
max (x) = Di

pi∗→qi∗ (x), and if Di
max (x) >

0 then pi∗ → qi∗ is a best single unit move to agent i from x. Otherwise, if pi∗ = qi∗,
then the following lemma implies that xi is a best response strategy to agent i.

Lemma 4. Given a convex increasing ISWCG and a strategy profile x, if for agent
i ∈ N there exist pi∗ and qi∗ (as defined in equations (11) and (12), respectively) such
that pi∗ = qi∗, then Di

max (x) ≤ 0.

Best Response Dynamics. Let x be an arbitrary strategy profile of a given ISWCG with
convex increasing costs. As we concluded before from Theorem 1, if Di

max (x) ≤ 0
holds for every agent i ∈ N then x is a Nash equilibrium strategy profile. So assume
otherwise, and let i be an agent with Di

max (x) > 0. By Lemma 4, we have that pi∗ �=
qi∗, and let Bi(x) denote the number of best single unit moves of i from x. We prove
the following.

Theorem 2. Given an ISWCG with convex increasing costs, let x be a strategy profile
which is not in equilibrium. Then, there exists a profile y, such that for each agent
i ∈ N , one of the following three conditions is satisfied:

1. Di
max (x) > Di

max (y)

2. Di
max (x) = Di

max (y) and Bi(x) > Bi(y)

3. Di
max (x) = Di

max (y) and Bi(x) = Bi(y)

Moreover, for at least one agent either 1. or 2. holds.

Corollary 1. Given an ISWCG with convex increasing costs and a strategy profile x,
let

(13)P (x) = L ·
∑
i∈N

Di
max(x) +

∑
i∈N

Bi(x)

where L is a large number satisfying L ≥ nm(m−1)
minp,q,k,l |cp(k)−cq(l)| . Then, if x is not a Nash

equilibrium, then there exists a profile y, such that P (x) > P (y).

Note that function P (·) in (13) does not decrease along any improvement path, and so
the FIP does not follow. Nonetheless, Theorem 2 and Corollary 1 imply the existence of
pure strategy Nash equilibria in convex increasing integer–splittable congestion games.
To prove Theorem 2 we need the following auxiliary lemma.

Lemma 5. Given a convex increasing ISWCG, assume there is a sequence
(x1, x2, . . . xT ) of strategy profiles such that:

– x1 is not a pure strategy Nash equilibrium, and x2 is obtained from x1 by a best
single unit move of some agent i with Di

max (x1) > 0

– ∀1 < t < T, ∃r+
t , r−t ∈ R , such that h

r+
t

(xt) = h
r+

t
(x1)+1, h

r−
t

(xt) = h
r−

t
(x1)−

1. Furthermore, ∀r ∈ R \ {r+
t , r−t }we have hr (xt) = hr (x1)



On the Existence of Pure Strategy Nash Equilibria in Integer–Splittable 247

– ∀1 < t < T , ∃jt ∈ N with Djt
max (xt) > Djt

max (x1) or Djt
max (xt) = Djt

max (x1) ∧
Bjt(xt) > Bjt(x1), and ∃r ∈ Rjt , such that either Djt

max (xt) = Dj

r+
t →r

(xt) or

Djt
max (xt) = Djt

r→r−
t

(xt) . Furthermore, xt+1is obtained from xt by the correspond-

ing best single unit move by agent j, that removes a unit from r+
t (or adds one to

r−t ). Moreover, if r = r+
t or r = r−t (i.e., Dj

max (xt) = Dj

r+
t →r−

t

(xt)), then

t + 1 = T .

Then, for all 1 < t < T we have Djt
max (xt+1) < Djt

max (x1) or Djt
max (xt+1) = Djt

max (x1)∧
Bjt(xt+1) < Bjt(x1).

That is, at each step t in the sequence, we have an agent jt, whose current maximal
improvement is higher than the value it had in the initial strategy profile x1 (or the
number of best single unit moves available to i at step t is greater than that it had at the
first step). Furthermore, the congestion levels in xt differ from congestion levels in the
initial profile x1 for only two resources r+

t and r−t , plus/minus one unit each. A best
move of agent jt is to either move a unit from r+

t to some resource r (and so r = r+
t+1,

unless r = r−t ), or to take one from some r and add to r−t (in which case, r = r−t+1,
unless r = r+

t ). This best move by jt then results in the subsequent strategy profile
xt+1, and if r = r−t or r = r+

t (i.e., agent jt’s best move is from r+
t to r−t ), then this

is the last move in the sequence. Now, if such a sequence exists in a given game, then
at each iteration, the value of maximal improvement for the corresponding deviator (or
the number of its available best single unit moves) decreases comparing to what it had
in the initial point of the sequence x1.

Proof (of Theorem 2). We construct a finite sequence of best single unit moves that re-
sults in a strategy profile y for which the theorem holds. In particular, we first prove that
during the sequence, if we reach a certain congestion level profile twice, then we can
leave out the in between steps. Using this result, we then show that we cannot infinitely
continue the sequence without reaching a strategy profile for which the theorem holds.

In doing so, we define a particular order of moves, as follows. Let {x1, x2, . . .}
denote the sequence of strategy profiles resulted from a sequence of best single unit
moves xt → xt+1, t ≥ 1, as defined in Lemma 5. We refer to the moves r+

t → r
and r−t → r as forward and backward moves, respectively (moves r+

t → r−t can be
both, but we will make it clear in the context). Note that by Lemma 5, if at step t some
agent i violates the conditions of the theorem, then there is always either a forward or
a backward move that it can apply. Given this, we start the sequence with a series of
forward moves, and when no such move is available, we switch to backward moves if
any exist. We prove that this construction leads to a desired strategy profile in any case.
The steps involved within the proof are described below.

Step 1: By definition, we move from x1 to x2 with some agent i who applies its best
single unit move. From x2, we only allow agents to make forward moves (if exist); that
is, for now, backward moves are out of consideration. Let {rf1 , rf2 , rf3 , . . .} denote the
sequence of such forward moves, where rft → rft+1 denotes a forward move from
resource rft to rft+1 at step t. For the sake of simplicity, we assume that the first move,
that deviates x1 to x2, is also a forward move (i.e., that move is rf1 → rf2 , and we start
the sequence from the initial strategy profile).
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Now, consider the case where ∃u, v, u < v, such that rfu = rfv , and none of them is
equal to rf1 ; that is, the sequence of forward moves creates a loop by turning back to a
previously visited resource, which is not the first resource. We show that if the sequence
is {rf1 , rf2 , . . . , rfu , . . . , rfv , rfv+1 , . . .}, then if agent i is the one who makes the move
rfv → rfv+1 , then it can make the move rfu → rfv+1 as well; and thus, the sequence
{rf1 , rf2 , . . . , rfu , rfv+1 , . . .} is also a feasible sequence of forward moves. That is, we
can leave out the loop {rfu+1 , . . . , rfv}, without violating the conditions of Lemma 5.

Let xfu and xfv denote the profiles that result from subsequences {rf1 , rf2 , . . . , rfu}
and {rf1 , rf2 , . . . , rfu , . . . , rfv}, respectively. Now, suppose that agent i makes the
move rfv → rfv+1 from xfv . We show that this move is available to i at xfu as well.
Indeed, consider the congestion level and the demand of agent i on resource rfu in xfu

and xfv . Since all the moves are forward moves, it is easy to see that the congestion
level in both profiles is given by hrfu

(x1) + 1 (this is since rfu = r+
fu

= r+
fv

). Fur-
thermore, it can be shown that the demand of agent i on rfu in xfv is at most as high
as it was in xfu . One exceptional case is when agent i is the one who makes the move
rfv−1 → rfv , and thus its demand on rfu may be increased by one. However, Lemma 5
implies that whenever an agent makes a best unit move (either forward or backward),
at next step of the sequence it satisfies the conditions of the theorem. Hence, it cannot
be the one who makes the subsequent move. Given this, if agent i is the one who makes
the move rfv−1 → rfv , then it cannot make the move rfv → rfv+1 , which is a contra-
diction. This implies that the demand of agent i on rfu cannot be greater in xfv than
that it has in xfu .

Now, if the demand of agent i on resource rfv+1 in xfv is smaller than its demand on
the same resource in xfu , then we show that this results in a contradiction. We prove this
by indirection; that is, suppose that it is true. This implies that there exists u < z < v,
such that rfz = rfv+1 , and agent i moved a unit from rfz to rfz+1 within the sequence.
Furthermore, the demand of agent i on rfz = rfv+1 after the move is decreased by 1,
compared to its demand in xfu . That is, since the demand of agent i on rfv+1 in xfv

is smaller than in xfu , agent i must move some units from that resource in between.
Thus, we focus on the first move among these, which decreases agent i’s demand by 1.
Note that, by definition of the sequence, rfv+1 → rfz+1 is a best single unit move of
agent i in xfz . Now, let a denote the amount of agent i’s decreased cost by removing
one unit from rfv+1 in xfz , and b denote the agent’s increased cost by adding one unit
to rfz+1 , also in xfz . Thus, the improvement that agent i gets by making rfv+1 → rfz+1

is a− b > 0. Similarly, let c denote the amount of agent i’s decreased cost by removing
one unit from rfv in xfv , and d denote the agent’s increased cost by adding one unit to
rfv+1 (i.e. rfz ), also in xfv . Since rfv → rfv+1 is also a best single move, c−d > 0. It is
easy to see that both the congestion level and the demand of agent i on rfv+1 remain the
same after the move rfv → rfv+1 , and before the move rfv+1 → rfz+1 . Thus, we have
d = a; and thus, c− b > a− b > 0. This implies that in xfz , the best single move is not
moving from rfv+1 to rfz+1 , but from rfv (since both the congestion level and agent i’s
demand on rfu is not modified between xfu and xfv ; that is, it stays unchanged within
the loop). This, however, is a contradiction, since rfv+1 → rfz+1 is supposed to be the
best single move in xfz .
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Given this, the demand of agent i on resource rfv+1 in xfv is at least as its de-
mand on the same resource in xfu . In this case, rfu → rfv+1 is feasible for agent i
from xfu as well. Indeed, since rfu → rfv+1 is feasible for agent i in xfv , such that
the demand of agent i on rfu in xfv is not higher than in xfu , and its demand on
rfv+1 in xfv is not smaller than in xfu . That is, by choosing rfw = rfv+1 , we get that
{rf1 , rf2 , . . . , rfu , rfw , . . .} is also a feasible sequence, without the {rfu+1 , . . . , rfv}
loop.

Thus, in summary, we can say that if there’s a loop within the sequence, that does
not return to rf1 , then we can leave that loop out of the sequence.

Step 2: Now, we will show that if the sequence does not return to rf1 , then it has
to be finite. We prove this by contradiction as follows: Suppose that the sequence is
infinite and never returns to rf1 . Given this, there is an infinite subsequence of moves
rfu(t) → rfu(t)+1 applied by a particular agent i, such that rfu(1) = rfu(2) = . . . and
rfu(1)+1 = rfu(2)+1 = . . .. That is, agent i makes the same move rfu(t) → rfu(t)+1

infinitely many times within the sequence. Furthermore, the demand of i on resources
rfu(t) and rfu(t)+1 are the same for every t. That is, if agent i’s demands on rfu(1) and
rfu(1)+1 are a and b, respectively, then they are a and b for any t.

Now, consider the move rfu(1) → rfu(1)+1 of agent i. After this move, agent i’s
demand on rfu(1) and rfu(1)+1 becomes a−1 and b+1, respectively. However we know
that when agent i makes the move rfu(2) → rfu(2)+1 , these values return to a and b again.
That is, before applying rfu(2) → rfu(2)+1 , agent i had to make a move rfv → rfv+1 ,
where rfv+1 = rfu(1) = rfu(2) , to increase its demand on rfu(2) back to a. Now, note
that u (1) < v < u (2)−1. This implies that the subsequence {rfv+2 , . . . , rfu(2)} forms
a loop, and thus, according to the claim we stated in Step 1, we can leave this loop
out from the sequence. That is, the moves rfv → rfv+1 and rfu(2) → rfu(2)+1 become
subsequent moves within the sequence. However, as Lemma 5 implies, none of the
agents can subsequently make more than one move within the sequence, and thus, this
situation is not possible. This contradicts the initial assumption, and hence, sequence
{rf1 , rf2 , . . .} either returns to rf1 , or it is finite.

Step 3: Based on the results described in Step 2, if {rf1 , rf2 , . . .} (i.e. the sequence
of forward moves) is not finite, then it has to return to rf1 . That is, ∃v such that in
{rf1 , rf2 , . . . , rfv}, rfv = rf1 . If there is an inner loop within this sequence, then we
can remove that loop (as proved in Step 1). Thus, we can assume that the sequence
does not contain any inner loops (note that the sequence itself is also a loop). Let xfv

denote the resulting strategy profile by making this sequence of forward moves. We
show below that xfv satisfies the conditions of the theorem; that is, it is the strategy
profile we are looking for.

Note that by returning to rf1 , the congestion level on all the resources in xfv is the
same as it is in x1. Since the sequence does not contain any inner loops, it is easy to see
that for any agent i, there is a set of disjoint pairs of resources rfu(k) , rfu(k)+1 such that
agent i makes the move rfu(k) → rfu(k)+1 within the sequence. This indicates that in xfv ,
agent i’s demand on rfu(k) is decreased by 1, compared to that it has on that resource
in x1 (since agent i removes one unit from that resource). On the other hand, agent i’s
demand on rfu(k)+1 is increased by 1, compared to that it has on that resource in x1.
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In order to prove the claim above, we show that the value of a best unit move of
agent i in xfv is decreased, compared to that it has in x1 (or the number of such moves
is decreased). Since the congestion level is the same on all the resources in the two
strategy profiles, we just need to consider the cases where agent i makes a move from
rfu(k)+1 (where the demand is increased) to rfu(l) (where the demand is decreased) for
a particular pair of k, l.

If k = l, then rfu(k) → rfu(k)+1 is a forward move of agent i. Let xfu(k) and xfu(k)+1

denote the strategy profiles before and after the move. If rfu(k) → rfu(k)+1 is not the
first move in the sequence, then the congestion levels on resources rfu(k) and rfu(k)+1

in xfu(k) and xfu(k)+1 are: hrfu(k)

(
xfu(k)

)
= hrfu(k)

(x1) + 1 , hrfu(k)+1

(
xfu(k)

)
=

hrfu(k)
(x1), and hrfu(k)

(
xfu(k)+1

)
= hrfu(k)

(x1) , hrfu(k)+1

(
xfu(k)+1

)
= hrfu(k)

(x1)+

1, respectively. Thus, after the move, the congestion level on rfu(k) in xfu(k)+1 is the
same as in xfv , while the congestion on rfu(k)+1 is greater by 1 than in xfv . Since
rfu(k) → rfu(k)+1 is a best unit move at xfu(k) , reversing this move (i.e., moving back
from xfu(k)+1 to rfu(k) ) in xfu(k)+1) is not possible. Given this, since the congestion on
rfu(k)+1 in xfv is decreased, compared to that in xfu(k)+1 , the move xfu(k)+1 → rfu(k)

is also not feasible. Note that the proof above also works for the case where rfu(k) →
rfu(k)+1 is the first move of the sequence (although the values of congestion levels are
slightly different).

Now let k �= l. Again, we first consider the case where none of the moves rfu(k) →
rfu(k)+1 and rfu(l) → rfu(l)+1 is the first move of the sequence. If k < l (i.e. the agent
makes rfu(k) → rfu(k)+1 earlier), then consider the move rfu(l) → rfu(l)+1 , and let
xfu(l) and xfu(l)+1 denote the strategy profiles before and after this move, respectively.
Since agent i makes this move later, in xfu(l)+1 , the congestion level of rfu(k)+1 and
rfu(l) is the same as they have in xfv . Given this, the improvement value of move
xfu(k)+1 → rfu(l) is exactly the same as it is in xfu(l)+1 . Since rfu(l) → rfu(l)+1 is a
best unit move in xfu(l) , resource rfu(l) belongs to the set defined in (11) (i.e. set of
p∗); that is, reducing a unit from rfu(l) guarantees a maximal cost reduction to agent i
in strategy profile xfu(l) . This implies that the cost reduction by reducing a unit from
rfu(k)+1 is not greater than the cost reduction by reducing a unit from rfu(l) . Given this,
it is easy to see that the reverse move xfu(k)+1 → rfu(l) in strategy profile xfu(l)+1

cannot be positive (i.e., it is not a feasible move). The proof for k > l works in a similar
way.

This implies that none of xfu(k)+1 → rfu(l) is feasible in xfv . Thus, xfv satisfies the
conditions of the theorem, where x1 replaces x and xfv replaces y.

Step 4: Next, consider the case where the sequence of forward moves,{rf1, rf2 , . . . rfK},
is finite (i.e. K <∞). At this point, we allow agents to make backward moves (i.e., moves
that add a unit to r−t at each step t). Let {rb1 , rb2 , . . .} denote the sequence of backward
moves, where ∀t, rbt+1 → rbt is the backward move made by some agent i. Note that
here rb1 = rf1 . Similarly to the case of forward moves, one can show that if there is a loop
within {rb1 , rb2 , . . .}, then we can leave that loop out from the sequence. Furthermore,
one of the following must hold for {rb1 , rb2 , . . .}: (i) apart from rb1 , {rb1 , rb2 , . . .} also
contains a resource rfu from the sequence of {rf1 , rf2 , . . . rfK }; that is, ∃v > 1, u >
0 such that rbv = rfu ; or (ii) it does not contain such resource, but then it must be
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finite. The proof is also based on contradiction, and is similar to the proof described
in Step 2.

Now, if {rb1 , rb2 , . . .} contains a resource from the sequence of forward moves,
then consider the following sequence of moves: {rf1 , rf2 , . . . rfu , rb1 , rb2 , rbv}. That
is, we leave out all the moves after rbv in the sequence of backward moves, and all
the moves after rfu in the sequence of forward moves. It is easy to see that this se-
quence is also feasible, that is, all of the moves are best unit moves of some agent i
who violates the conditions of the theorem. Now, if the sequence contains inner loops
from the backward moves side (the subsequence of forward moves is loopless), we
leave these loops out. This way, we obtain a loop similar to the loop described in
Step 3. Let xbv denote the strategy profile resulted by the sequence of moves within
{rf1 , rf2 , . . . rfv , rb1 , rb2 , rbv}. We show that xbv satisfies the conditions of the theo-
rem (the proof is similar to the one described in Step 3).

Finally, in the case where {rb1 , rb2 , . . . , rbL} is also finite (i.e. L < ∞), let xT

denote the resulting strategy profile by making the moves of the combined sequence
{rf1 , rf2 , . . . rfK} and {rb1 , rb2 , . . . , rbL}. One can easily see that the conditions of the
theorem hold for xT . This completes the proof. �

ISWCG Algorithm. The proof of Theorem 2 suggests a particular dynamic procedure
that consists of best single unit moves (Algorithm 1) and arrives at a pure strategy Nash
equilibrium from any starting point in finite time. This implies that convex increasing
congestion games ISWCG are weakly–acyclic (Monderer and Shapley, 1996)—that is,
possess an improvement dynamics whose convergence is guaranteed from an arbitrary
initial strategy profile.

Theorem 3. Algorithm 1 finds a pure strategy Nash equilibrium in a given convex in-
creasing ISWCG.

Proof. The algorithm constructs a sequence of strategy profiles, {x1, x2, . . .}, such that
∀t, xt+1 satisfies Theorem 2 with respect to profile xt (steps 4− 19). Then, Corollary 1
implies that ∀t, P (xt) > P (xt+1), where P (x) is defined in equation (13). That is,
sequence {P (x1) , P (x2) , . . .} is strictly decreasing. Hence, since the game is finite,
the algorithm terminates in a PSNE after a finite number of steps. �

5 Conclusions

In this paper, we explore the conditions for PSNE existence in integer–splittalbe con-
gestion games. Although these games do not necessarily admit such an equilibrium, we
prove that it is guaranteed to exist in an important subclass of ISWCGs with convex
increasing unit–cost functions. Furthermore, we demonstrate that although convex in-
creasing ISWCGs do not have the FIP property, they do possess weak acyclicity, and
we provide a natural procedure that achieves an equilibrium from an arbitrary initial
strategy profile.

Our results suggest several directions for future research. Specifically, given PSNE
existence and convergence, it is important to address further properties of integer–
splittable congestion games, such as completeness of the model, quality of solutions
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Algorithm 1. ISWCG Algorithm.
1: Initialisation: Let t = 1, xt = x
2: If �∃ i : Di

max > 0 → STOP
3: while PSNE not found do
4: xt ← starting position
5: {rf} ← sequence of forward moves, k = 1
6: while forward move is feasible do
7: make a forward move: rfk

→ rfk+1 , k := k + 1
8: if there is an inner loop then leave out the loop
9: if rfk

= rf1 then xt+1 ← resulting resource profile of {rf1 , rf2 , . . . rfk
} from xt,

GOTO STEP 20
10: end while
11: {rf1 , rf2 , . . . rfK} ← resulting sequence of forward moves
12: {rb} ← sequence of backward moves, l = 1
13: while backward move is feasible do
14: make a backward move: rbl+1 → rbl

, l := l + 1
15: if there is an inner loop then leave out the loop
16: if ∃rfv ∈ {rf} such that rbl

= rfv then xt+1 ← resulting resource profile of
{rf1 , rf2 , . . . rfu , rb1 , rb2 , rbv} from xt, GOTO STEP 20

17: end while
18: {rb1 , rb2 , . . . , rbL} ← resulting sequence of backward moves
19: xt+1 ← resulting resource profile of {rf1 , rf2 , . . . rfK} and {rb1 , rb2 , . . . , rbL} from xt

20: if xt+1 = PSNE then STOP
21: t := t + 1

22: end while

and computational complexity. To this end, we aim to (i) investigate how far the as-
sumptions on the agents’ strategy sets and payoff functions can be relaxed while still
guaranteeing the existence of pure strategy equilibria, (ii) characterise the efficiency of
PSNE in terms of prices of anarchy and stability, and (iii) provide a complexity anal-
ysis of the problem of finding equilibria and develop efficient algorithmic solutions, if
applicable.
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Abstract. We initiate the study of game dynamics in the Sum Basic
Network Creation Game, which was recently introduced by Alon et
al.[SPAA’10]. In this game players are associated to vertices in a graph
and are allowed to “swap” edges, that is to remove an incident edge and
insert a new incident edge. By performing such moves, every player tries
to minimize her connection cost, which is the sum of distances to all
other vertices. When played on a tree, we prove that this game admits
an ordinal potential function, which implies guaranteed convergence to
a pure Nash Equilibrium. We show a cubic upper bound on the number
of steps needed for any improving response dynamic to converge to a
stable tree and propose and analyse a best response dynamic, where the
players having the highest cost are allowed to move. For this dynamic
we show an almost tight linear upper bound for the convergence speed.
Furthermore, we contrast these positive results by showing that, when
played on general graphs, this game allows best response cycles. This
implies that there cannot exist an ordinal potential function and that
fundamentally different techniques are required for analysing this case.
For computing a best response we show a similar contrast: On the one
hand we give a linear-time algorithm for computing a best response on
trees even if players are allowed to swap multiple edges at a time. On the
other hand we prove that this task is NP-hard even on simple general
graphs, if more than one edge can be swapped at a time. The latter
addresses a proposal by Alon et al..

1 Introduction

The importance of the Internet as well as other networks has inspired a huge body
of scientific work to provide models and analyses of the networks we interact with
every day. These models incorporate game theoretic notions to be able to express
and analyse selfish behavior within these networks. Such behavior by players can
be the creation or removal of links to influence the network structure to better
suit their needs. However, most of this work focused on static properties of such
networks, like structural properties of solution concepts. Prominent examples
are bounds on the Price of Anarchy or on the Price of Stability of (pure) Nash
Equilibria in games that model network creation. The problem is, that such
results do not explain how selfish and myopic players can actually find such
desired states.

G. Persiano (Ed.): SAGT 2011, LNCS 6982, pp. 254–265, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In this paper we focus on the process itself. That is, on the dynamic behavior
of players which eventually leads to a state of the game having interesting prop-
erties like stability against unilateral deviations and low social cost. We initiate
the study of myopic game dynamics in the Sum Basic Network Creation
Game, which was introduced very recently by Alon et al.[2]. This elegant model
incorporates important aspects of network design as well as network routing but
is at the same time simple enough to provide insights into the induced dynamic
process. The idea is to let players “swap” edges to resemble the natural process
of weighing two decisions (possible edges) against each other. We investigate the
convergence process of dynamics which allow players to myopically swap edges
until a stable state of the game emerges. Furthermore, we take the mechanism
design perspective and propose a specific dynamic, which yields near optimal
convergence speed.

1.1 Related Work

The line of researchwhich is closest to our work was initiated by Fabrikant et al.[5],
who considered network creation with a fixed edge-cost of α. For some ranges of
α they proved first bounds on the Price of Anarchy [8], which is the ratio of the
social cost of the worst (pure) Nash Equilibrium and the minimum possible social
cost achieved by central design. Subsequent work [9,1,4,10] has shown, that this
ratio is constant for almost all values of α. Only for α ∈ Θ(n) there remains a gap.
However, there is a downside of this model: As already observed in [5], computing
a best response is NP-hard, which implies, that players cannot efficiently decide if
the game has reached a stable state. This computational hardness prevents myopic
dynamics from being applied to finding a pure Nash Equilibrium.

Very recently, Alon et al.[2] proposed a slightly different model, which no
longer depends on the parameter α but still captures important aspects of net-
work creation. The authors consider two different cost-measures, namely the sum
of distances to all other players and the maximum distance to all other players
and give bounds on the price of anarchy. Here, we adopt the former measure.
Alon et al. proved that in this case the star is the only equilibrium tree. In-
terestingly, as observed in [10], it is not true that the class of equilibria in the
model without parameter is a super-class of the equilibria in the original model.
Nevertheless, we believe that the model of Alon et al. is still interesting, because
it models the natural process of locally weighing alternatives against each other.
Furthermore, it has another striking feature: Best responses can be computed
efficiently. Thus, applying myopic dynamics seems a natural choice for the task
of finding stable states in the game. The authors of [2] also propose to analyse
the case where players are allowed to swap more than one edge at a time.

The work of Baumann and Stiller [3] is very similar in spirit to our work. They
provide deep insights into the dynamics of a related network creation game and
show various structural properties, e.g. sufficient and necessary conditions for
stability.

Due to space constraints we refer for further work on selfish network creation
to Jackson’s survey [6] and to the references in Nisan et al.[12, Chapter 19].
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1.2 Model and Definitions

The Sum Basic Network Creation Game is defined as follows: Given an
undirected, connected graph G = (V, E), where each vertex corresponds to a
player. Every player v ∈ V selfishly aims to minimize her connection cost by
performing moves in the game. A player’s connection cost c(v) is the sum of all
shortest-path distances to all other players. If the graph is disconnected, then we
define c(v) to be infinite. At any time, a player can “swap” an incident existing
edge with an incident non-edge at no cost. More formally, let u be a neighbor of
v and w be a non-neighbor of v, then the edge swap (u, w) of player v removes
the edge vu and creates the edge vw. Let ΓG(v) denote the closed neighborhood
of v in G, which includes v and all neighbors of v. The set of pure strategies for
player v in G is SG(v) =

(
ΓG(v) \ {v} × V \ ΓG(v)

)
∪ {⊥}, where ⊥ denotes,

that player v does not swap. Note, that this set depends on the current graph
G and that moves of players in the game modify the graph. We allow only pure
strategies and call a pure strategy s ∈ SG(v), which decreases player v’s current
connection cost most, a best response. Sometimes we say that a vertex x is a
best response of a player v, which abbreviates, that v has a best response of the
form (y, x), for some y �= x.

We assume that players are lazy, in the sense that if for some player v the best
possible edge-swap yields no decrease in connection cost, then player v prefers the
strategy ⊥, that is, not to swap. We say that G is stable or in swap-equilibrium
if ⊥ is a best response for every player.

Since the model does not include costs for edges, the utility of a player is
simply the negative of her connection cost. Let x ∈ G denote that G contains
vertex x. The connection cost of player v in graph G is defined as cG(v) =∑

x∈G dG(v, x), where dG(v, x) is the number of edges on the shortest path from
v to x in G. We omit the reference to G, if it is clear from the context. The social
cost of a graph G is the sum of the connection costs of all players in G.

Furthermore, we use the convention, that for a graph G, we let |G| denote the
number of vertices in G and we define G−x to be the graph G after the removal
of vertex x.

1.3 Our Contribution

We provide a rigorous treatment of the induced game dynamics of the Sum Basic
Network Creation Game on trees. For this case, Theorem 1 shows that the
game dynamic has the desirable property that local improvements by players
directly yield a global improvement in terms of the social cost. More formally,
we show that the game on trees is an ordinal potential game[11], that is, there
exists a function mapping states of the game to values with the property that
pure Nash Equilibria of the game correspond to local minima of the function.
A prominent feature of such games is, that a series of local improvements must
eventually converge to a pure Nash Equilibrium – a stable state of the game
in which no player wants to unilaterally change her strategy. Theorem 3 shows
that this convergence is fast by providing a cubic upper bound on the number
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of steps any improving response dynamic needs to reach such a stable state.
Furthermore we introduce and analyse a natural dynamic called Max Cost Best
Response Dynamic. This dynamic is proven to be close to optimal in terms of
convergence speed, since Theorem 4 shows that the number of steps needed by
this dynamic almost matches the trivial lower bound. This implies, that the
process of finding a pure Nash Equilibrium can be significantly sped up by
introducing coordination and enforcing that best responses are played.

In contrast to these positive results on trees, Theorem 7 is a strong negative
result for the Sum Basic Network Creation Game on general graphs. We
show that in this case best response dynamics can cycle, which implies, that
there cannot exist an ordinal potential function. Thus, any treatment of the
game dynamics on general graphs requires fundamentally different techniques
and is an interesting open problem for ongoing research.

Last, but not least, we use structural insights to obtain a linear-time algo-
rithm for computing a best response on trees even for the case where players are
allowed to swap multiple edges at a time. For the game on general graphs, we
provide another sharp contrast by showing that computing a best response in
the general case is NP-hard, if more than one edge can be swapped at a time.
This is particularly interesting, since this addresses the proposal of Alon et al.[2]
to analyse this case. Our results imply, that in this case best responses can be
efficiently computed only if the game is played on trees or on very simple graphs.

Due to space constraints some proofs are omitted. They can be found in the
full version of the paper.

2 Playing on a Tree

In this section we consider the special case where the given graph G is a tree. We
show, that the Sum Basic Network Creation Game on trees belongs to the
well-studied class of ordinal potential games [11]. This guarantees the desirable
property that pure Nash Equilibria always exist and that such solutions can be
found by myopic play.

Theorem 1. The Sum Basic Network Creation Game on trees is an or-
dinal potential game.

Before we prove the Theorem, we analyse the impact of an edge-swap on the
connection cost of the swapping player and on the social cost.

Let T = (V, E) be a tree having n vertices. Assume that player v performs
the edge-swap vu to vw in the tree T . (Note, that this implies, that vw /∈ E).
Let T ′ be the tree obtained after this edge-swap. Let Φ and Φ′ be the social
cost of T and T ′, respectively. Let Tv and Tu be the tree T rooted at v and u,
respectively. Let A be the subtree rooted at v in Tu and let B be the subtree
rooted at u in Tv. See Fig. 1 for an illustration. Let cK(z) =

∑
k∈K dK(z, k)

denote the connection cost of player z within tree K.

Lemma 1. The change in player v’s connection cost induced by the edge-swap
vu to vw is Δ(v) = cB(u)− cB(w).
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Fig. 1. Player v swaps edge vu to edge vw

The following Lemma implies the desired property, that local improvement of a
player yields a global improvement in terms of social cost.

Lemma 2. The change in social cost induced by the edge-swap vu to vw is

Δ(Φ) = 2|A|Δ(v) .

Proof (Theorem 1). By Lemma 2, we have that the social cost strictly decreases
if and only if the connection cost of the swapping player strictly decreases. This
implies, that the social cost Φ is an ordinal potential function for the Sum Basic
Network Creation Game on trees. ��

Theorem 1 guarantees that a pure Nash Equilibrium of this game can be reached
by myopic play, even if the players do not play in an optimal way. We only
need one very natural ingredient for convergence: Whenever a player moves, this
move must decrease this player’s connection cost. We call every dynamic where
a player strictly improves by making a move (or passing if no improving move
is possible) an improving response dynamic(IRD). Such a dynamic stops if no
player can strictly improve, which implies that any IRD stops if a stable graph
is obtained.

2.1 Improving Response Dynamics on Trees

For trees it was shown by Alon et al.[2] that the star is the only stable tree.
Using this observation and Theorem 1, we arrive at the following Corollary.

Corollary 1. For every tree T , every IRD converges to a star.

Having guaranteed convergence, the natural question to ask is how many steps
are needed to reach the unique pure Nash Equilibrium by myopic play. The
following Theorems provide a lower and an upper bound on that number.

Theorem 2. Let Pn be a path having n vertices. Any IRD on Pn needs at least
max{0, n− 3} steps to converge.

Lemma 3. Pn is the tree on n vertices which has maximum social cost.

Theorem 3. Any IRD on trees having n vertices converges in O(n3) steps.
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Proof. The idea is to start with the tree having the highest potential and to
bound the number of steps any IRD needs by analysing the number of steps
needed if this potential is decreased by the smallest possible amount per step.
By Lemma 3, we have that Pn has the maximum social cost ΦPn . Observe, that
ΦPn =

∑n−1
i=1 2i(n − i) = n3−n

3 . Let Xn be a star having n vertices. We have
ΦXn = 2n2 − 4n + 2. To transform Pn into Xn any IRD has to decrease the
social cost by ΦPn − ΦXn = n3

3 − 2n2 + 11n
3 − 2. Since we have an IRD, every

moving player decreases her connection cost by at least 1. By Lemma 2, we
have that the minimum decrease in social cost by any move is 2. Hence, at most
n3

6 − n2 + 11n
6 − 1 ∈ O(n3) steps are needed to transform Pn into Xn. ��

2.2 Best Response Dynamics on Trees

It is reasonable to assume, that players greedily try to decrease their connection
cost most, whenever swapping an edge. In this section we analyse dynamics,
where every move of a player is a best response move.

Since a best response is always an improving response, we have that every
dynamic where every move is a best response must converge to a star for every
tree T . We are left with the question of how fast best response dynamics converge.
In the following, we analyse a specific best response dynamic, called Max Cost
Best Response Dynamic(mcBRD), whose convergence speed almost matches the
lower bound provided by Theorem 2. Hence, for best response dynamics we can
significantly improve the upper bound of Theorem 3.

Definition 1. The Max Cost Best Response Dynamic on a graph G is a dy-
namic, where in every step the player having the highest connection cost is al-
lowed to play a best response. If two or more players have maximum connection
cost, then one of them is chosen uniformly at random.

In this section we show the following upper bound on the speed of convergence for
the Max Cost Best Response Dynamic. Surprisingly, mcBRD behaves differently
depending on whether the number of vertices in the tree is odd or even.

Theorem 4. Let T be a tree having n vertices. The following holds:

– If n is even, then mcBRD(T ) converges after at most max{0, n − 3} steps
and every player moves at most once.

– If n is odd, then at most max{0, n + 'n/2( − 5} steps are needed and every
player moves at most twice.

In order to prove Theorem 4, we first show some useful properties of the conver-
gence process induced by the mcBRD-rule.

We begin with characterizing a player’s best response on a tree. Here, the
notion of a center-vertex is crucial.

Definition 2. A center-vertex of a graph G is a vertex x, which satisfies

x ∈ arg min
v∈G

c(v) .



260 P. Lenzner

Lemma 4. Let v be an arbitrary vertex of a tree T and let F = T−v =
⋃l

j=1 Tl,
where the trees Tj are connected components in the forest F . Let u1, . . . , ul be
the neighbors of v in T , where uj is a vertex of Tj for all 1 ≤ j ≤ l. Let wj be a
center-vertex of the tree Tj. The best response of v in T is the edge-swap vuj to
vwj , where j ∈ argmaxj{cTj(uj)− cTj (wj)}.

The next Lemma provides a very useful property of neighbors in a tree.

Lemma 5. Let u and w be neighbors in a tree T . Let Tu and Tw denote the
tree T rooted at vertex u and w, respectively. Let U be the set of vertices in
the subtree rooted at u in Tw. Analogously, let W be the set of vertices in the
subtree rooted at w in Tu. Then we have c(u) ≤ c(w) ⇐⇒ |U | ≥ |W | and
c(u) < c(w) ⇐⇒ |U | > |W |.
We can use Lemma 5, to show an important property of the mcBRD-process.

Lemma 6. Let T be a tree. Every player who moves in a step of mcBRD(T )
must be a leaf.

The following Lemma provides the key to analysing mcBRD. It shows, that at
some point in the dynamic a certain behavior is “triggered”, which forces the
dynamic to converge quickly.

Lemma 7 (First Trigger Lemma). Let T be a tree. If the player who moves
in step i of mcBRD(T ) has a unique best response vertex w, then all players who
move in a later step of mcBRD(T ) will connect to vertex w.

Lemma 8. In any tree T on n vertices, there are at most two center-vertices.
If this is the case, then they are neighbors and n must be even.

Now we are ready, to prove the first part of Theorem 4.

Proof (Theorem 4, Part 1). We show, that if the number of vertices in a tree T
is even, then mcBRD needs at most max{0, n− 3} to converge and every player
moves at most once.

If T has two vertices, then it is already a star and no player will move in
mcBRD(T ). Thus, let T be a tree having at least n ≥ 4 vertices, where n is
even. By Lemma 6, we have that in every step of mcBRD(T ) a leaf l of the
current tree is allowed to move. By Lemma 4, we know that player l will connect
to a center-vertex of T ′− l, where T ′ is the tree before player l moves. Observe,
that the tree T ′ − l has an odd number of vertices. By Lemma 8, we have that
any tree having an odd number of vertices must have a unique center vertex. It
follows, that the leaf who moves in the first step of mcBRD(T ) has a unique best
response. Let this best response be the edge-swap towards vertex w. Lemma 7
implies, that all players who move in a later step of mcBRD(T ), will connect
to vertex w as well. Furthermore, again by Lemma 7, after the first step of
mcBRD(T ) it holds, that every vertex who is already connected to vertex w will
never move again. Hence, every vertex moves at most once.

By Lemma 5, we have that w must be an inner vertex of T . Thus, w has at
most n−3 non-neighbors, which implies that the dynamic mcBRD(T ) will need
at most n− 3 steps to converge to a star having w as its center-vertex. ��
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The next Theorem shows a lower bound on the speed of convergence for
mcBRD on trees having an odd number of vertices. Surprisingly, the behav-
ior of the dynamic on such instances is much more complex. The lower bound
for odd n is roughly 50% greater than the upper bound for even n. Furthermore,
the following Theorem together with Theorem 2 implies, that the analysis of
mcBRD is tight.

Theorem 5. There is a family of trees having an odd number of vertices greater
than 5, where mcBRD can take n + 'n/2( − 5 steps to converge. Furthermore,
every player moves at most twice.

Figure 2 shows an example of a tree which belongs to the above mentioned family
of trees and it sketches the convergence process induced by mcBRD.
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Fig. 2. Example of a tree T having 17 vertices, where mcBRD(T ) takes n+�n/2�−5 =
20 steps to converge. The vertices x1, . . . , x6, u move twice.

Lemma 9 (Second Trigger Lemma). Let T be an unstable tree having n
vertices. If after any step i in mcBRD(T ) a vertex w of T i has degree !n/2",
then this vertex will be the unique best response to connect to for all players
moving in a later step of mcBRD(T ).

Lemma 10. Let T be an unstable tree having an odd number of vertices. Only
vertices which are best responses of the player who moves in the first step of
mcBRD(T ) will be best responses in any step of mcBRD(T ).

Finally, we have set the stage to prove the second part of Theorem 4.

Proof (Theorem 4, Part 2). We show that if a tree T has an odd number of
vertices, then mcBRD(T ) takes at most max{0, n+ 'n/2(−5} steps to converge
and every player moves at most twice.

If n = 5, then the worst case instance is a path and thus the convergence
takes at most 2 steps. Hence, we assume for the following that n ≥ 7. Observe,
that there are two events that force the dynamic to converge: Let E1 be the
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event, where for the first time in the convergence process a vertex w becomes
the unique best response of a moving player. Let E2 be the event, where for the
first time a vertex w has degree !n/2".

If event E1 occurs in step j, then, by Lemma 7, all non-neighbors of the vertex
w will connect to w in the subsequent steps of mcBRD(T ). Thus, mcBRD(T ) will
converge in at most j + |V \Γ (w)| steps, where Γ (w) is the closed neighborhood
of w. If event E2 occurs in step j, then, by Lemma 9, all non-neighbors of w will
connect to w in the subsequent steps. Thus, in this case j + 'n/2( − 1 steps are
needed for mcBRD(T ) to converge.

Let T be any tree and v be the first player to move and assume that v has
two best responses p and q, since otherwise the dynamic will converge in at most
n− 3 steps. By Lemma 10, we have that in any step of mcBRD(T ) a player will
connect either to p or to q. Let t1(T ) denote the number of steps until event E1 is
the first event to occur in mcBRD(T ). Analogously, let t2(T ) denote the number
of steps until E2 is the first occurring event. Let r1(T ) denote the number of
steps needed for convergence after event E1. Hence, the maximum number of
steps needed until mcBRD(T ) converges is

t(T ) = max{t1(T ) + r1(T ), t2(T ) + 'n/2( − 1} .

We claim, that t1(T ) + r1(T ) ≤ n + 'n/2( − 5. Observe, that r1(T ) ≤ n − 3,
since the vertex that becomes the center of the star must be an inner vertex
of T and, thus, can have at most n − 3 non-neighbors. Furthermore, if t1(T ) ≤
'n/2( − 2, then the claim is true. Now let t1(T ) > 'n/2( − 2. Note, that both
p and q must be inner vertices of T . Thus, they have at least degree 2. Since
event E2 did not occur in the first t1(T ) steps of mcBRD(T ) we have that
not all players who moved within the first t1(T ) steps can be connected to p.
Thus, at least x = t1(T )− ('n/2( − 2) players have connected to q. This yields
t1(T ) + r1(T ) ≤ t1(T ) + n− 3− x ≤ n + 'n/2(− 5. On the other hand, since all
players move either to p or q and both p and q have degree at least 2, it follows
that t2(T ) ≤ 2('n/2( − 2). Hence, t2(T ) + 'n/2( − 1 ≤ n + 'n/2( − 5.

Observe, that any player x who is a neighbor of either p or q will not move
again until event E1 or E2 happens. This holds because every leaf, which is not
a neighbor of p or q must have higher connection cost than x and will therefore
move before x. Thus, every player moves at most twice. ��

2.3 Computing a Best Response on Trees

Observe, that Lemma 4 directly yields an algorithm for computing a best re-
sponse move of a player v: Compute the connection-costs of all other vertices in
T − v within their respective connected component to find a center-vertex for
every component. Then choose the center-vertex, which yields the greatest cost
decrease for player v. Clearly, the connection-cost of a player can be obtained
using a BFS-computation. However the above naive approach of computing a
center-vertex yields an algorithm with running time quadratic in n, since Ω(n)
BFS-computations can occur. The following Lemma shows, that a center-vertex
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can be computed in linear time, which is clearly optimal. The algorithm crucially
uses the structural property provided by Lemma 5.

Lemma 11. Let T be a tree having n vertices. A center-vertex of T and its
connection-cost can be computed in O(n) time.

Proof. We give a linear time algorithm, which computes a center-vertex of T and
its connection-cost. Let L be the set of leaves of T . Clearly, L can be computed
in O(n) steps by inspecting every vertex.

Given T and L, the algorithm proceeds in two stages:

1. The algorithm computes for every vertex v of T two values nv and cv. This
is done in reverse BFS-order: We define nv to be the number of vertices
in the already processed subtree Tv containing v and cv to v’s connection-
cost to all vertices in Tv. For every leaf l ∈ L we set nl := 1 and cl := 0.
Let i be an inner vertex and assume that we have already processed all
but one neighbor of i. Let a1, . . . , as denote these neighbors. We set ni :=
1+na1+· · ·+nas and ci := ni−1+ca1+· · ·+cas . By breaking ties arbitrarily,
this computation terminates at a root-vertex r, for which all neighbors are
already processed. Let b1, . . . , bq denote these neighbors. We set nr := n and
cr := n− 1 + cb1 + · · ·+ cbq .

2. Starting from vertex r, the algorithm performs a local search for the center-
vertex with the help of Lemma 5. For all neighbors bi ∈ {b1, . . . , bq} of r,
the algorithm checks if nbi > nr − nbi . Since T is a tree, this can hold
for at most one neighbor x. In this case, x will be considered as new root-
vertex. Let c1, . . . , cs, r be the neighbors of x. By setting nx := n and cx :=
n − 1 + c1 + · · · + cs + cr − cx we arrive at the same situation as before
and we now check for all neighbors cj �= r if ncj > nx − ncj holds and
proceed as above. Once no neighbor of the current root-vertex satisfies the
above condition, the algorithm terminates and the current root-vertex is the
desired center-vertex.

The correctness of the above algorithm follows by Lemma 5. Step 1 clearly takes
time O(n). Step 2 takes linear time as well, since the condition is checked exactly
once for every edge towards a neighbor and there are only n− 1 edges in T . ��

Theorem 6. If p ≥ 1 edges can be swapped at a time, then the best response of
a player v can be computed in linear time if G is a tree.

Proofsketch. Let v be a degree d vertex in G and let v1, . . . , vd denote the neigh-
bors of v in G. The k ≤ min{p, d} edge swaps that decrease player v’s connection
cost most can be determined as follows.

Consider the forest F = T1∪T2∪· · ·∪Td obtained by deleting v. By Lemma 4
we have that every swap in player v’s best response is of the form (vi, wi), where
wi is a center-vertex of Ti. Thus, computing player v’s best response reduces to
finding a center-vertex in each tree Ti and to computing the corresponding cost
decreases. By Lemma 11 we have that both tasks can be done in time linear to
the number of vertices in each Ti.
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3 Playing on General Graphs

3.1 Best Response Dynamics on General Graphs

Definition 3. A cycle x1, . . . , xl is a best response cycle, if x1 = xl and each
xi is a pure strategy profile in the Sum Basic Network Creation Game and
for all 1 ≤ k ≤ l − 1 there is a player pk whose best response move transforms
the profile xk into xk+1.

Theorem 7. The Sum Basic Network Creation Game allows best response
cycles.

Proof. Consider the graph G depicted left in Figure 3 and let x1 denote the
corresponding strategy profile. Player a can decrease its connection cost and
one of its best responses is to swap edge ab with edge ac. This leads to the
second graph depicted in Figure 3. Call the corresponding strategy profile x2.
Now, player b has the swap bc to ba as its best response, which leads to the
third graph depicted in the illustration, with x3 as its strategy profile. Finally,
player c can perform the swap ca to cb as its best response, which leads to
profile x4 = x1. Thus, x1, x2, x3, x4 is a best response cycle in the Sum Basic
Network Creation Game on graph G. ��

Voorneveld [13] introduced the class of best-response potential games, which is
a super-class of ordinal potential games. Furthermore he proves, that if the
strategy space is countable, then a strategic game is a best-response potential
game if and only if there is no best response cycle. This implies the following
Corollary.

Corollary 2. There cannot exist an ordinal potential function for the Sum Ba-
sic Network Creation Game on graphs containing cycles.
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Fig. 3. Example of a graph, where the Sum Basic Network Creation Game allows
a best response cycle. The steps of the cycle are shown.

3.2 Computing a Best Response in General Graphs

Given an undirected, connected graph G, then the best response for player v
can be computed in O(n2) time, since |SG(v)| < n2 and we can try all pure
strategies to find the best one. Quite surprisingly, computing the best response
is hard if we allow a player to swap p > 1 edges at a time.
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Theorem 8. If players are allowed to swap p > 1 edges at a time, then comput-
ing the best response is NP-hard even if G is planar and has maximum degree 3.

Proofsketch. We reduce from the p-Median-Problem [7].
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Abstract. We price various financial instruments, which are classified
as exotic options, using the regret bounds of an online algorithm. In
addition, we derive a general result, which upper bounds the price of any
derivative whose payoff is a convex function of the final asset price. The
market model used is adversarial, making our price bounds robust. Our
results extend the work of [9], which used regret minimization to price
the standard European call option, and demonstrate the applicability of
regret minimization to derivative pricing.

1 Introduction

Pricing derivatives is one of the most fundamental questions in finance. A deriva-
tive is a security whose price is dependent on the price of one or more underlying
assets, for example, stocks. An important type of derivative is an option, which
is a financial instrument that allows its holder to buy or sell a certain asset for
a given price at a given time. For example, a European call option allows its
holder, at its expiration time T , to buy the asset for a price K. In other words,
the option pays max(ST − K, 0) at time T , where ST is the asset (stock) price
at time T . Another standard option is the European put option, which allows its
holder to sell the asset for a price K at time T , or, equivalently, to receive a pay-
off of max(K −ST , 0). Buying such options enables stock holders to hedge their
investments against future asset price changes. These options are also widely
traded as securities in their own right. Apart from the standard call and put
options, there are numerous other option types that are traded or developed to
meet particular financial needs. Such options are collectively known as exotic
options. One of the main contributions of this paper is pricing a variety of exotic
options using regret minimization.

A pricing formula and model of great theoretic and practical influence are due
to Black and Scholes [1] and Merton [14]. In their Nobel Prize-winning work,
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they modeled the price of a stock as a geometric Brownian motion stochastic
process. In addition, their model assumes an arbitrage-free market, namely, that
market prices provide no opportunities for riskless profit. The Black-Scholes-
Merton (BSM) model has several known drawbacks. First, the model is only an
abstraction of price changes, while in reality prices are discrete and experience
sharp jumps, and the daily returns are neither independent nor identically dis-
tributed. Second, the main parameter which is required, the stock volatility, is
not observable, and has to be estimated.1 In this work we investigate the pricing
of derivatives in an adversarial online learning model which was introduced in
[9]. A major advantage of such an adversarial online approach is that price jumps
and discrete trading are inherently assumed in the model.

Many financial applications can be cast naturally in the framework of online
learning. The basic actions are selling or buying of the basic assets, say stocks
or bonds, and the payoff of the algorithm is compared to some benchmark. For
example, in the problem of portfolio selection, an online algorithm distributes
capital among n assets at each time period 1 ≤ t ≤ T . The algorithm’s returns
are then measured against a reference class of investment strategies. By bounding
the regret relative to that reference class, the return of the online algorithm can
be guaranteed to exceed some proportion of the return of the best investment
strategy in the reference class (see [5] for a comprehensive exposition of regret
minimization, including portfolio selection).

Our work uses regret minimization to price derivatives. The general idea in
pricing using regret minimization is that the regret bounds translate to a bound
on the price of the financial instrument. More specifically, the regret bounds can
guarantee that the payoff of a certain online algorithm will dominate the payoff
of the financial instrument, and this implies that in an arbitrage-free market,
the initial cost of the algorithm must be an upper bound on the cost of the
financial instrument. This approach was pioneered in [9], where it was used to
derive upper and lower bounds on the price of European call options. Our goal
is to show that regret minimization based pricing is applicable to a wider range
of financial instruments.

Our first contribution is extending the results of [9] by applying a unified
regret minimization framework to pricing a variety of options. We give price
bounds for various known exotic options, namely, the exchange option, the shout
option, the average strike call option, and the average price call option (geometric
and arithmetic averages). We derive these bounds by upper bounding the price
of an option whose payoff is the maximum of several derivatives. We price this
option based on regret bounds w.r.t. the underlying derivatives, and then express
the above exotic options in terms of this option. In our analysis, we use the
Polynomial Weights algorithm [6] as the regret minimization component.

1 In fact, in many cases people compute the implied volatility, which is the volatility
that under the BSM model would give the current option price. It is well documented
that the implied volatility is not constant, even for a given expiration time, and
depends on the strike price.
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A second contribution is demonstrating that pricing using regret minimiza-
tion is applicable to a broad class of securities, namely, convex path-independent
derivatives. This class consists of all derivatives whose payoff is a convex function
of the final asset price. Convex derivatives can be shown to have the same payoff
as a portfolio of call options that contains no short positions. We can thus use
any upper bound on the price of call options, e.g., the bound of [9], to derive an
upper bound on the price of convex derivatives.

We conclude with an experimental demonstration of our bounds for the price
of average strike call options, considering data from the S&P 500 index.

Related work. The main financial problem dealt with in the learning literature is
portfolio selection, where the main goal is to maximize returns. For this purpose,
the performance of algorithms is compared to benchmarks, which are expected
in many cases to significantly outperform the best asset. It is important to note
that competing against these benchmarks is, therefore, harder than competing
against the underlying assets, which is our aim when pricing certain options.

The most widely used benchmark in works on portfolio selection is the best
constantly rebalanced portfolio (BCRP). A key result by Cover [7] gives an algo-
rithm, the universal portfolio, which achieves the same asymptotic growth rate
as the BCRP, even under adversarial conditions. Subsequent work incorporated
side information and transaction costs, proved optimal regret w.r.t. the BCRP,
improved computational complexity, and considered short selling [8,15,2,13,17].
The work of [12] used a simple multiplicative update rule with a linear com-
plexity in the number of assets, but gave worse regret bounds compared with
the universal portfolio. The algorithms of [16] achieve bounded regret w.r.t. an-
other benchmark, namely, the best switching regime between N fixed investment
strategies, with and without transaction costs. Interestingly, the algorithms of
both [12] and [16] were shown to outperform the universal portfolio on real data,
with the latter occasionally outperforming the BCRP itself. Other approaches
directly seek to exploit the underlying statistics of the market [3,10]. The au-
thors of [10] show that their methods achieve the optimal asymptotic growth
rate almost surely, assuming the markets are stationary and ergodic.

Work on portfolio selection has led to online trading algorithms with im-
proved returns under statistical and adversarial assumptions, and provided re-
gret bounds w.r.t. rich reference classes, in particular, constantly rebalanced
portfolios. For pricing options, we also seek to prove adversarial regret bounds,
but our reference class is simply a set of n assets. Working with this simple refer-
ence class, we can achieve better regret bounds than those given w.r.t. superior
benchmarks such as the BCRP. Consider a näıve buy and hold algorithm which
initially divides capital equally between assets, and performs no further action.
This algorithm clearly has a regret bound of lnn w.r.t. the log returns of any
of the assets. In comparison, the universal portfolio’s (optimal) bound w.r.t. the
BCRP is n−1

2 ln 2T + ln Γ ( 1
2 )n

Γ ( n
2 ) + o(1) (see, e.g., [5]). If n = T , as in the case of

some path-dependent options, we get an Ω(T ) regret bound, which grows ar-
bitrarily large as the trading frequency increases. The problematic dependence
on T persists even if n is small, for example, in the case of call options, where
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n = 2. Another algorithm by Hazan and Kale [11] has regret bounds that de-
pend on the quadratic variability2 of the single period returns. Their bound is a
great improvement over the previous bound, under realistic conditions where the
quadratic variability is much smaller than T . However, it is still lower bounded
by the näıve bound of lnn, for every n. Therefore, we do not use regret bounds
w.r.t. the BCRP in the context of pricing options.

Outline. The outline of the paper is as follows. In Section 2 we provide notation
and definitions. Section 3 presents an upper bound on the price of an option
whose payoff is the maximum of several derivatives, given the regret bounds of a
trading algorithm. In Section 4 we upper bound the price of a variety of options,
based on the regret bounds of the Polynomial Weights algorithm. In Section 5
we show how any upper bound on the price of call options can be used to upper
bound the price of any convex path-independent derivative. In Section 6 we give
empirical results.

2 Preliminaries

We consider a discrete-time finite-horizon model, with a risky asset (stock) and a
risk-free asset (bond or cash). The price of the stock at time t ∈ {0, 1, . . . , T} is St

and the price of the risk-free asset is Bt. Initially, B0 = S0 = 1. We assume that
the price of cash does not change, i.e., Bt = 1, which is equivalent to assuming
a zero risk-free interest rate. We further assume that we can buy or sell any real
quantity of stocks with no transaction costs. For the stock we denote by rt the
single period return between t − 1 and t, so St = St−1(1 + rt).

A realization of the prices is a price path, which is the vector rt = (r1, . . . , rt).
We define a few parameters of a price path. We denote by M an upper bound
on stock prices St, by R an upper bound on absolute single period returns |rt|,
and by Q an upper bound on the quadratic variation

∑T
t=1 r2

t . We will assume
that the bounds R, Q, and M are given, and ΠM,R,Q, or simply Π , will denote
the set of all price paths satisfying these bounds. We note that, apart from M ,
stock prices are always upper bounded by e

√
QT , as can be easily verified. Since

max 1≤t≤T (r2
t ) ≤

∑T
t=1 r2

t < R2T , we may assume that R2 ≤ Q ≤ R2T . The
number of time steps, T , is influenced by both the frequency of trading and the
absolute time duration. For this reason it is instructive to consider M and Q as
fixed, rather than as increasing in T .

A trading algorithm A starts with a total asset value V0. At every time period
t ≥ 1, A sets weights ws,t ≥ 0 for stock and wc,t ≥ 0 for cash, and we define the
fractions ps,t = ws,t/Wt and pc,t = wc,t/Wt, where Wt = ws,t + wc,t. A fraction
ps,t of the total asset value, Vt−1, is placed in stock, and likewise, pc,tVt−1 is
placed in cash. Following that, the stock price St becomes known, the asset
value is updated to Vt = Vt−1(1 + rtps,t), and time period t + 1 begins.

2 Their definition is different from the quadratic variation Q, which we will use. In
particular, their variability is centered around the average value of the daily returns,
in a way similar to the variance of random variables.
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We comment that since we assume that both weights are non-negative, the al-
gorithms we consider use neither short selling of the stock, nor buying on margin
(negative positions in cash). However, as part of the arbitrage-free assumption,
we assume that short selling is, in general, allowed in the market.

We next define specific types of options referred to in this work:

C A European call option C(K, T ) is a security paying max(ST − K, 0) at
time T , where K is the strike price and T is the expiration time.

EX An exchange option EX(X1,X2, T ) allows the holder to exchange asset X2

for asset X1 at time T , making its payoff max(X1,T − X2,T , 0).
SH A shout option SH(K, T ) allows its holder to “shout” and lock in a mini-

mum value for the payoff at one time 0 ≤ τ ≤ T during the lifetime of the
option. Its payoff at time T is, therefore, max(ST − K, Sτ − K, 0). (If the
holder does not shout, the payoff is max(ST − K, 0).)

AP An average price call option AP(K, T ) is a type of Asian option that pays
max(S̄T − K, 0) at time T , where S̄T may be either the arithmetic or
the geometric mean of the stock’s prices. To distinguish between these
two possibilities, we will denote APA(K, T ) for the option whose pay-
off is max(S̄A

T − K, 0), where S̄A
T = 1

T+1

∑T
t=0 St is the arithmetic mean,

and APG(K, T ) for the option whose payoff is max(S̄G
T − K, 0), where

S̄G
T = (

∏T
t=0 St)

1
T+1 is the geometric mean.

AS An average strike call option AS(T ) is a type of Asian option that allows
its holder to get the difference between the final stock price and the average
stock price, namely, a payoff of max(ST − S̄A

T , 0).

We will use bold text for denoting securities and plain text for denoting their
values at time 0. For example, we write SH(K, T ) for the value of the option
SH(K, T ) at time 0.

The above options are a special case of stock derivatives whose value at time
T is some function of rT , the price path of the underlying stock.3 A European
call option is an example of a path-independent derivative, since its payoff of
max(ST −K, 0) depends only on the price at time T. An average strike option is
an example of a path-dependent derivative, since its payoff depends on the entire
price path of the stock.

Finally, we may assume that strike prices for European calls, average price
calls, and shout options satisfy K ∈ [0, M ]. The reason is that for K > M , the
payoffs are always 0, and so are the option values. Working with K < 0 simply
adds a constant to the payoff and value of the same option with K = 0.

3 Arbitrage-Free Bounds

We assume that the pricing is arbitrage-free, which is defined as follows. Trading
algorithm A1 dominates trading algorithm A2 w.r.t. the set of price paths Π , if
for every price path in Π , the final value of A1 is at least the final value of A2.
3 Except for the shout option.
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The arbitrage-free assumption says that if A1 dominates A2, then the initial value
of A1 is at least the initial value of A2. This assumption is natural, because if it
is violated, it becomes possible to make a riskless profit by buying into A1 and
selling A2. The resulting flow of funds from A2 to A1 affects the stock price in a
way that causes even a small arbitrage opportunity to quickly disappear.

For example, define trading algorithm AAS which simply buys the average
strike call option and holds it. Its initial value is AS(T ) and its final value is
max(ST − S̄A

T , 0). Assume we design a trading strategy A1 whose initial value is
V0, and its value at time T always satisfies VT ≥ max(ST − S̄A

T , 0). This implies
that A1 dominates AAS . Therefore, by the arbitrage-free assumption, we have
that AS(T ) ≤ V0.

We now establish a connection between bounds on the multiplicative regret
of a trading algorithm and arbitrage-free pricing, extending a result from [9].

Consider n derivatives, X1, . . . ,Xn. Let X1,t, . . . , Xn,t be their values at time
t, and assume Xi,T > 0 for every 1 ≤ i ≤ n. We now consider an option that
pays the maximal value of a set of given derivatives.4 More specifically, we will
denote Ψ(X1, . . . ,Xn, T ) for an option that pays max(X1,T , . . . , Xn,T ) at time
T , and Ψ(X1, . . . ,Xn, T ) for its value at time 0.

Definition 1. Let A be a trading algorithm with initial value V0 = 1, and let
β1, . . . , βn > 0. A is said to have a (β1, . . . , βn) multiplicative regret w.r.t. deriva-
tives X1, . . . ,Xn if for every price path and every 1 ≤ i ≤ n, VT ≥ βiXi,T .

Lemma 1. If there exists a trading algorithm with a (β1, . . . , βn) multiplicative
regret w.r.t. derivatives X1, . . . ,Xn, then Ψ(X1, . . . ,Xn, T ) ≤ 1/β, where β =
min1≤i≤n βi.

Proof. We have that VT ≥ β max1≤i≤n Xi,T , therefore, the payoff of the algo-
rithm dominates β units of the option Ψ(X1, . . . ,Xn, T ). By the arbitrage-free
assumption, Ψ(X1, . . . ,Xn, T ) ≤ 1/β. ��

Moreover, the lemma indicates exactly how improved regret bounds for a trading
algorithm relate to tighter upper bounds on Ψ(X1, . . . ,Xn, T ).

4 Price Bounds for a Variety of Options

In order to obtain concrete price bounds, we require a specific trading algorithm
whose multiplicative regret bounds we can plug into Lemma 1. Following [9], we
use an adaptation of the Polynomial Weights algorithm [6], called Generic.

It is important to note that in this section we consider derivatives that are
tradable. We will define specific tradable derivatives later for pricing specific
options. Let X1, . . . ,Xn be such derivatives, where ri,T = (ri,1, . . . , ri,T ) is the
price path of Xi, for 1 ≤ i ≤ n. We will require that |ri,t| < R < 1−1/

√
2 ≈ 0.3,

and
∑T

t=1 r2
i,t ≤ Qi, for every 1 ≤ i ≤ n. We will assume Xi,0 > 0 for every

1 ≤ i ≤ n, which implies that the derivatives have positive values at all times.
4 Equivalently, this option is a call on the maximum with a zero strike price.
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Theorem 1. ([9]) Assume X1,0 = . . . = Xn,0 = 1. Let VT be the final value
of the Generic algorithm investing 1 unit of cash in X1, . . . ,Xn with initial
fractions p1,1, . . . , pn,1, and η ∈ [1, 1−2R

2R(1−R) ]. Then for every 1 ≤ i ≤ n,

VT ≥ p
1
η

i,1e
−(η−1)QiXi,T .

In what follows, we will write ηmax = 1−2R
2R(1−R) for short. We can now derive a

bound on Ψ(X1, . . . ,Xn, T ).

Theorem 2. For every η ∈ [1, ηmax],

Ψ(X1, . . . ,Xn, T ) ≤
(

n∑
i=1

eη(η−1)QiXη
i,0

) 1
η

.

Proof. For every 1 ≤ i ≤ n, define X′
i = X−1

i,0 Xi, namely, a fraction of Xi with
value 1 at time 0. Applying Theorem 1 to these new assets, we have that for
every 1 ≤ i ≤ n,

VT ≥ p
1
η

i,1e
−(η−1)QiX ′

i,T = p
1
η

i,1e
−(η−1)QiX−1

i,0 X i,T .

Denoting βi = p
1/η
i,1 e−(η−1)QiX−1

i,0 and β = min1≤i≤n βi, we have by Lemma
1 that Ψ(X1, . . . ,Xn, T ) ≤ 1/β. For any fixed η, we may optimize this bound
by picking a probability vector (p1,1, . . . , pn,1) that maximizes β. Clearly, β is
maximized if β1 = . . . = βn = c for some constant c > 0. This is equivalent to
having pi,1 = cηeη(η−1)QiXη

i,0 for every 1 ≤ i ≤ n. To ensure that (p1,1, . . . , pn,1)
is a probability vector, we must set c = (

∑n
i=1 eη(η−1)QiXη

i,0)
−1/η. We thus have

that Ψ(X1, . . . ,Xn, T ) ≤ 1/β = 1/c = (
∑n

i=1 eη(η−1)QiXη
i,0)

1/η. ��

We next utilize the bound on Ψ(X1, . . . ,Xn, T ) to bound the price of various
exotic options, as well as the ordinary call option.

Theorem 3. For every η ∈ [1, ηmax] , the following bounds hold:

– EX(X1,X2, T ) ≤ (eη(η−1)Q1Xη
1,0 + eη(η−1)Q2Xη

2,0)
1/η − X2,0

– SH(K, T ) ≤ (Kη + 2eη(η−1)QSη
0)

1/η − K
– AS(T ) ≤ S0(e(η−1)Q+(ln 2)/η − 1)

Proof. Throughout this proof, we use the notation X3 = X1 + X2 to indicate
that the payoff of the derivative X3 is always equal to the combined payoffs of
the derivatives X1 and X2. Equivalently, we will write X2 = X3−X1. We point
out that by the arbitrage-free assumption, equal payoffs imply equal values at
time 0. Therefore, we have that X3,0 = X1,0 + X2,0.

– Since EX(X1,X2, T ) = Ψ(X1,X2, T )−X2, we have that EX(X1,X2, T ) =
Ψ(X1,X2, T )−X2,0 ≤ (

∑2
i=1 eη(η−1)QiXη

i,0)
1/η −X2,0, where the inequality

is by Theorem 2.
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– Let X1 be the stock. Let X2 be an algorithm that buys a single stock at time
0, and if the option holder shouts, sells it immediately. In addition, let X3 be
K in cash (implying Q3 = 0). Note that the quadratic variations of both X1

and X2 are upper bounded by Q. Since SH(K, T ) = Ψ(X1,X2,X3)−X3, we
have by Theorem 2 that SH(K, T ) ≤ (Kη +

∑2
i=1 eη(η−1)QiXη

i,0)
1/η − K ≤

(Kη + 2eη(η−1)QSη
0)

1/η − K.
– For the bound on AS(T ), let X1 be the stock and let X2 be an algorithm that

buys a single stock at time 0 and sells a fraction 1
T+1 of the stock at each time

0 ≤ t ≤ T . We thus have that X2,T = 1
T+1

∑T
t=0 St. Denote by Q2 an upper

bound on the quadratic variation of X2. Since AS(T ) = EX(X1,X2, T ),
then by our bound on EX(X1,X2, T ), we have that AS(T ) ≤ (eη(η−1)QSη

0 +
eη(η−1)Q2Sη

0 )1/η−S0 = S0((eη(η−1)Q +eη(η−1)Q2)1/η−1). For every t, X2,t =
1

T+1

∑t
τ=0 Sτ + T−t

T+1St, therefore,

|r2,t| =

∣∣∣∣∣ 1
T+1

∑t
τ=0 Sτ + T−t

T+1St

1
T+1

∑t−1
τ=0 Sτ + T+1−t

T+1 St−1

− 1

∣∣∣∣∣ =
∣∣∣∣∣ 1

T+1St + T−t
T+1St − T+1−t

T+1 St−1

1
T+1

∑t−1
τ=0 Sτ + T+1−t

T+1 St−1

∣∣∣∣∣
=

T+1−t
T+1 |St − St−1|

1
T+1

∑t−1
τ=0 Sτ + T+1−t

T+1 St−1

≤
T+1−t
T+1 |St − St−1|

T+1−t
T+1 St−1

= |rt| .

Therefore,
∑T

t=1 r2
2,t ≤

∑T
t=1 r2

t ≤ Q, and we may assume Q2 = Q. We thus
have that AS(T ) ≤ S0[(2eη(η−1)Q)1/η − 1], and the result follows. ��

Since an ordinary call is actually EX(X1,X2, T ), where X1 is the stock and X2

is K in cash, we can derive the following bound from [9]:

Corollary 1. ([9]) The price of a European call option satisfies C(K, T ) ≤
min1≤η≤ηmax

(
Kη + Sη

0 eη(η−1)Q
)1/η − K.

For the average strike option we can optimize for η explicitly:

Corollary 2. The price of an average strike call option satisfies AS(T ) ≤
S0(e(ηopt−1)Q+(ln 2)/ηopt − 1), where ηopt = max{1, min(

√
(ln 2)/Q, ηmax)}.

We note that the above bound has different behaviors depending on the value of
Q. The bound has a value of S0(e(ηmax−1)Q+(ln 2)/ηmax − 1) for Q < (ln 2)/η2

max,
S0(e

√
4Q ln 2−Q − 1) for (ln 2)/η2

max ≤ Q < ln 2, and (a trivial) S0 for Q ≥ ln 2.

Average Price Call Options

Average price call options provide a smoothed version of European call options
by averaging over the whole price path of the stock, and they are less expensive
than European options. To allow a counterpart of this phenomenon in our model,
we will allow the quadratic variation parameter Q to depend on time. More
specifically, we will assume that Qt is an upper bound on

∑t
τ=1 r2

τ , where Q1 ≤
. . . ≤ QT .

The following simple relation is easily verified using the inequality of the
arithmetic and geometric means:
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Theorem 4. The prices of average price call options satisfy APG(K, T ) ≤
APA(K, T ) ≤ 1

T+1

∑T
t=0 C(K, t).

Using the bound of Corollary 1, we can obtain a concrete bound for both types
of average price calls. However, its dependence on the sequence Q1, . . . , QT is
complicated. A simpler relation is given for APG(K, T ) by the following theorem
(proof omitted):

Theorem 5. Let Q̂T = 1
T+1

∑T
t=1 Qt, R̂ =

√
T

T+1R, and η̂max = 1−2R̂
2R̂(1−R̂)

. It
holds that

APG(K, T ) ≤ min
1≤η≤η̂max

(
Kη + Sη

0 eη(η−1)Q̂T

) 1
η − K .

Since η̂max ≥ ηmax, the above expression does not exceed the bound of Corollary
1 with Q̂T as the value of the quadratic variation. In other words, APG(K, T ) is
upper bounded by the bound for a regular call with the averaged quadratic varia-
tion, which, depending on Q1, . . . , QT , may be significantly smaller
than QT .

5 Convex Path-Independent Derivatives

In this section we move beyond specific options, and provide adversarial price
bounds for a general class of derivatives. For this purpose, we add a new assump-
tion to our model, namely, that the final stock price, ST , has finite resolution.
We thus assume that ST ∈ P = {jΔp: 0 ≤ j ≤ N}, where Δp = M/N , for some
N > 2. This assumption mirrors the situation in reality.

It is a well-known result from finance, that exact pricing of European call
options yields exact pricing for every path-independent derivative of a stock [4].
This result relies on the fact that every derivative is equivalent to a portfolio of
call options with various strike prices.

Formally, for any f :P → R, we define f
(1)
Δp :P \ {M} → R as f

(1)
Δp(p) =

f(p+Δp)−f(p)
Δp and f

(2)
Δp :P \{0, M} → R as f

(2)
Δp(p) = f(p+Δp)−2f(p)+f(p−Δp)

Δp2 . The
next lemma and theorem follow immediately from a result in [4], and essentially
rephrase it:

Lemma 2. ([4]) Define gK :P → R as gK(p) = max(p−K, 0). For every p ∈ P,

f(p) = f(0) + f
(1)
Δp(0) · g0(p) +

M−Δp∑
K=Δp

f
(2)
Δp(K) · gK(p) · Δp .

Note that gK(p) is the payoff of C(K, T ) and that, in addition, C(0, T ) = S0,
because the payoff of C(0, T ) is equivalent to a single stock. We thus get the
following theorem:
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Theorem 6. ([4]) Let X be a path-independent derivative with payoff f :P → R.
The initial value of X is given by

X = f(0) + f
(1)
Δp(0) · S0 +

M−Δp∑
K=Δp

f
(2)
Δp(K) · C(K, T ) · Δp .

In the BSM model, where an exact pricing of call options is known, this amounts
to pricing all path-independent derivatives exactly. In our model, however, where
only upper bounds on call option prices are available, we cannot utilize this
relation in every case. We must have that f

(2)
Δp(K) ≥ 0 for every K in order

to substitute those upper bounds for the terms C(K, T ). This requirement is
fulfilled by convex derivatives.

Theorem 7. Let X be a path-independent derivative with payoff f :P → R,
where f is the restriction to P of some convex function f̄ : [0, M ] → R. Let
C(K, T ) ≤ U(K) for every K ∈ P, where U :P → R. Then

X ≤ f(0) + f
(1)
Δp(0) · S0 +

M−Δp∑
K=Δp

f
(2)
Δp(K) · U(K) · Δp .

Proof. By Theorem 6, it is enough to show that f
(2)
Δp(K) ≥ 0 for every K ∈

[Δp, M − Δp]. By the convexity of f̄ , f(K) = f(1
2 (K − Δp) + 1

2 (K + Δp)) ≤
1
2f(K − Δp) + 1

2f(K + Δp), and thus f(K+Δp)−2f(K)+f(K−Δp)
Δp2 ≥ 0. ��

An Example: A Long Strangle Strategy

A long strangle investment strategy involves the purchase of a put option with
a strike price of K1 and a call option with a strike price of K2, where K1 < K2.
The payoff of this strategy is max(K1 − ST , 0) + max(ST − K2, 0), which is a
convex function of ST . By Theorem 6, the value of a long strangle is K1 − S0 +
C(K1, T ) + C(K2, T ). Denoting Cu(K, T ) for the bound of Corollary 1, we can
upper bound the price of a long strangle by K1 − S0 + Cu(K1, T ) + Cu(K2, T ).

6 Empirical Results

In order to examine our results empirically, we consider the S&P 500 index data
for the years 1950-2010. (The results are plotted in Figure 1.) We computed a
price for a 1-year average strike call using our bound, with R = 0.15 and Q = 0.1.
These R and Q values hold for all years but two in the test. In addition, for each
year we computed the payoff of an average strike call option and also ran the
Generic algorithm and computed the total profit. We used a single value of η,
namely, the optimal value for the price bound. The stock prices for each year
were normalized so that S0 = 1 at the beginning of the year.

It is instructive to compare our upper bound on the option price, which was
calculated to be 0.53, to the net payoff. The net payoff is the difference between
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Fig. 1. A breakdown of the option writer’s cash flow, for average strike call options, in
terms of option payoff, option price, and total profit from the algorithm’s trading. Data
is calculated for 1-year average strike call options on the S&P 500 index for the years
1950-2010, with R = 0.15 and Q = 0.1. For the option writer to make a profit, the
payoff minus profit line must be below the option price, which is 0.53 in this setting.
Note that the “hindsight” empirical price is 0.25.

the payoff to the option holder (always non-negative) and the profit (or loss) the
algorithm made in trading. It can be seen that our option price dominates the
net payoff for every year, with the maximal net payoff at 0.25.

We point out that our results are influenced by the fact that we assume a zero
risk-free interest rate, while in reality the interest rate can be substantial.
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Abstract. We consider a model of next-hop routing by self-interested
agents. In this model, nodes in a graph (representing ISPs, Autonomous
Systems, etc.) make pricing decisions of how much to charge for forward-
ing traffic from each of their upstream neighbors, and routing decisions
of which downstream neighbors to forward traffic to (i.e., choosing the
next hop). Traffic originates at a subset of these nodes that derive a util-
ity when the traffic is routed to its destination node; the traffic demand
is elastic and the utility derived from it can be different for different
source nodes. Our next-hop routing and pricing model is in sharp con-
trast with the more common source routing and pricing models, in which
the source of traffic determines the entire route from source to destina-
tion. For our model, we begin by showing sufficient conditions for prices
to result in a Nash equilibrium, and in fact give an efficient algorithm
to compute a Nash equilibrium which is as good as the centralized op-
timum, thus proving that the price of stability is 1. When only a single
source node exists, then the price of anarchy is 1 as well, as long as some
minor assumptions on player behavior is made. The above results hold
for arbitrary convex pricing functions, but with the assumption that the
utilities derived from getting traffic to its destination are linear. When
utilities can be non-linear functions, we show that Nash equilibrium may
not exist, even with simple discrete pricing models.

Keywords: Network Pricing, Selfish Routing, Elastic Demand, Price of
Stability, Nash Equilibrium.

1 Introduction

The ubiquitous impact of the Internet on modern life is a testimony to its growth
in the past two decades. One of the principal factors behind this growth has been
the decentralization of control, which also allows it to be modeled naturally as a
system of interacting but independent, self-interested agents. More specifically,
the Internet can be viewed as a collection of ISPs or ASes (Autonomous Systems)
that are interested in routing and pricing traffic to maximize their individual
revenues [3, 8, 16]. Similar frameworks have also been applied to the study of
relaying/routing of traffic in wireless ad-hoc networks [20, 21]. The study of large
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decentralized networks of self-interested agents, with regard to their efficiency,
has sparked an enormous amount of interest, as the insight thus earned can be
used to extract maximum utility from existing infrastructure, as well as to make
good policy decisions.

We consider the interactions of self-interested agents in a network at a very
abstract level, where each agent is modeled as a self-interested node in a graph.
Traffic originates at a subset of these nodes that derive a utility when the traffic
is routed to its destination node, which may be many hops away. We consider
next-hop routing, where each node on the path of the traffic individually deter-
mines which node(s) the traffic should be forwarded to (i.e., chooses the “next
hop”). Nodes are allowed to charge their upstream neighbors for the traffic that
they are asked to forward, as is typically done in contracts formed by neigh-
boring Autonomous Systems in the Internet. Thus, a node obtains payments
from its upstream neighbors for accepting their traffic for forwarding, and must
in turn pay its downstream neighbors for receiving its traffic (i.e., the traffic
it has accepted to forward, plus the traffic that it originates). Moreover, the
nodes, being self-interested, will always choose to send traffic to the downstream
neighbors with the cheapest price. As remarked in [4], for example, there is an
interplay between setting the price to forward traffic, and choosing the routing
policies of a node, since both decisions can change the profit/cost of a node
(Autonomous System). In this paper, we consider both decisions to be under
the control of each node, and study the properties of the equilibrium solutions
of this game, which we believe captures the fundamental aspects of next-hop
routing by self-interested agents.

Our next-hop routing and pricing model is in sharp contrast with the more
common “source routing” and pricing models (see e.g., [7, 11, 15, 18]). In the
latter models, the source node of the traffic determines its entire route from the
source to the destination. Next-hop models provide a better representation of the
routing protocols and pricing practices in the current Internet, as well as those
that are likely to dominate the future multi-hop wireless networks [16]. In the
Internet, traffic flow and service pricing negotiations occur at the inter-domain
level, between an ISP and its neighboring ISPs (i.e., ISPs with which it shares
a POP (Point-Of-Presence) and has a customer/provider/peering relationship)
[12]. Inter-domain routing follows the BGP protocol, where hops at the AS level
are determined one at a time [17]. Even though BGP determines this next hop
based on information on the entire AS-level path, the benefits of making it
strictly next-hop has been argued recently [19]. Our next-hop routing and pric-
ing model also closely captures the Path Vector Contract Switching framework
proposed for the future Internet [22], where neighboring ISPs establish contracts
(on the amount of flow and its pricing) towards forwarding traffic for a specific
destination. Source routing requires knowledge of the entire path at the source
node, and this practical limitation has restricted the use of source routing in
the Internet, while next-hop routing involves decision making by agents that is
much more local and distributed.
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In addition to its focus on next-hop routing, our model differs from most
existing models in several other aspects as well. We assume that links in our
network have fixed capacities, which represents the constraints associated with
routing somewhat better than having linear cost functions that depend on how
much traffic is being routed. An important feature of our model is the existence
of multiple sources that have elastic demands with non-uniform utilities. See the
Related Work section on further contrast with existing models.

Model Summary. We now give a brief outline of our model. A more detailed
description is given in Section 2.

We are given a directed acyclic graph G = (V, E) containing a special sink
node t, and edge capacities ce. As commonly done when analyzing competition
in networks [5, 7, 16], we assume that all edges of this DAG, except the ones
that are incident on the sink node, have a special non-monopolistic property.
For our model, this property essentially ensures that enough capacity exists that
no node could charge an infinitely high price for forwarding traffic, and yet have
other nodes pay this price because they have no alternative.

The players of our game are all vertices of G except the sink node. An edge
e = (u, v) ∈ E with capacity ce denotes that player u has the capacity to send
a flow of size ce to player v. Additionally, every player v has an associated
source utility λv. This means that if a player v sends fv amount of its own
flow (flow originating form vertex v) to the sink t, then the player will obtain
a utility of λvfv. Thus, the player demands are elastic, since each player can
choose an amount of traffic to send in order to maximize its utility. We consider
an extension of this model in Section 5 where source utilities are allowed to be
non-linear.

Players choose prices on their incoming edges. For every edge e = (u, v) player
v chooses a price pe such that if u sends a flow of size fe on edge e then u pays an
amount pefe to v. Players route flow on outgoing edges such that this minimizes
their cost, but are obligated to forward all flow that they receive. Finally, the
utility of a player is the total amount of money it receives from upstream players
and the utility obtained by sending its own flow minus the amount of money
paid to the downstream nodes.

Example. To illustrate some key consequences of our model, consider the
example in Figure 1. The utility values of all nodes except the ones mentioned
are 0. Edge (j, k), (k, l), (l, t) have capacity 2 and all other edges have capacity
1. Not all the edges in the graph are pictured: for every edge (u, v) shown in
the figure that does not satisfy the non-monopolistic property, there also exist
(non-pictured) edges (u, w), (w, t) of capacities 1 such that w has a high source
utility (say 1000). In any optimal solution edge (u, w) will not have any flow on
it whereas (w, t) will be saturated. Now it is not difficult to see that any optimal
solution will consist of the flow indicated in Figure 1, where the double walled
edges are saturated with flow, except edge (j, k) has a flow of size 1 whereas its
capacity is 2.
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Fig. 1. An example illustrating our model, and the “long-range” effects that node
utilities can have on edge prices

A more careful analysis shows that any Nash equilibrium strategy that yields
this optimal flow will have the following edge prices: p(j,k) = p(k,l) = λj , p(b,d) =
3. Also p(c,d) ≥ p(c,f) ≥ p(f,g) ≥ p(g,h) ≥ p(h,i) ≥ p(i,k) ≥ λj . This means that
the price of edge (c, d) depends on the source utility value of node j, and thus
there are “long-range” interactions between source utilities and edge prices.

Results. Our main goal involves understanding the properties of stable solutions
in this pricing game: specifically we focus on pure Nash equilibrium. In Section
3 we give an efficient algorithm that constructs a Nash equilibrium strategy that
is as good as the optimal solution. In other words, we show that the price of
stability is 1, and thus it is always possible to implement traffic pricing that
maximizes social welfare. This holds for an arbitrary number of sources with
elastic demands of heterogenous value. We also show in Section 4 that in case of
a single source, under some reasonable behavioral assumptions for the players,
the price of anarchy is 1, and in fact player prices at equilibrium are unique.

Until this point, the source utilities λv and the allowed price functions pe

were considered to be linear. In Section 5, we instead consider the more general
case where the source utility can be an arbitrary concave function Λv(fv), and
the prices can be arbitrary convex functions Πe(fe). We show that the above
results still hold if arbitrary convex prices are allowed, and thus allowing non-
linear prices does not impact the quality of equilibrium solutions. On the other
hand, if source utilities can be non-linear functions, then we show that pure Nash
equilibrium may no longer exist, even for discrete pricing models.

Related work. Selfish routing and pricing games have been studied in many con-
texts (see e.g., [2–5, 10, 11, 13, 14, 18], and the many references in [9, 15]). As
mentioned before, most of the work in this area has been done using source rout-
ing, where a source of traffic chooses the entire path that the traffic takes. In one
such model, [6, 7] consider a game where there are two sets of players. One set of
players own edges of the network (edges have finite capacities) and sell capacity
to players of the second set. The second set of players obtain utility for routing
a unit amount of flow from its source to destination and hence buys capacity on
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edges along the route if it is profitable to do so. The essential difference between
source routing models like the one in [6, 7] and ours is that in our model when
a node changes its price on an incoming edge, only its upstream neighbors are
immediately affected and may change their routes; whereas in the source routing
model, any change in prices by the first set of players is seen by all players of
the second set, and can immediately result in a globally different routing. Thus
next hop routing operates much more on local knowledge [19].

Perhaps the most relevant paper to ours is by Papadimitriou and Valiant
[16], in which they define a next hop routing model where players are edges of a
network, and argue for the importance of next-hop routing models. The strategy
of players in their game is similar to our model: players charge neighbors for
processing and forwarding flow. Unlike our model where edges have capacities,
their model has edges with (linear) latencies, and deals only with a single source
with a fixed demand. Although their results can most likely be extended to
networks with multiple sources, the crucial complications in our model arise
from the fact that we consider sources with elastic demands and non-uniform
utilities. This leads to complex interaction of prices as illustrated by the example
in Figure 1, and prevents us from using the methods from [16] for analysis. To
further illustrate the differences between our model and the one from [16], notice
that in our model, the price of anarchy for single source games is 1, while in [16],
the price of anarchy can be large.

Another recent next-hop routing model is discussed by Xi and Yeh [21]. As
in [16], their model only considers a single source with a fixed amount of traffic
demand. The links in [21] have latency functions instead of capacities. For these
reasons, just as with [16], equilibrium solutions in [21] are very different from the
ones in our model, and have a very different structure. In essence, the complexity
in our game arises from the interplay between different source utilities and edge
capacities, while in [16] and [21] it arises due to the presence of latency functions.
Finally, [4] considers a somewhat general routing game that can also include
next-hop routing as a special case, but uses a very different pricing mechanism
from the one considered here.

2 Model

We are given a directed acyclic graph G = (V, E) containing a special sink node
t, and edge capacities ce. To arrive at a meaningful model of price competition,
we assume that all edges of this DAG, except the ones that are incident on the
sink node, have a special non-monopolistic property. This property says that
for any edge e = (u, v), even if this edge is removed from the graph, the total
capacity of outgoing edges of node u will be greater than the total capacity of
its incoming edges. The rationale behind this property will be explained once
the model has been illustrated in more detail.

The set of players in our game consists of all vertices of G, except the sink
node. An edge e = (u, v) ∈ E with capacity ce denotes that player u has the
capacity to send a flow of size ce to player v. Additionally, every player v has an
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associated source utility λv. This means that if a player v sends fv amount of
its own flow (flow originating form vertex v) to the sink t, then the player will
obtain a utility of λv · fv. We consider an extension of this model in Section 5
where source utilities are allowed to be non-linear.

Player Strategy. The core behavior of our model is that a vertex can charge a
price for the flow being sent through it. For example, since edge e = (u, v) is
incident on v, node v can set a price pe on this edge. If vertex u sends a flow fe

on this edge then vertex u has to pay an amount equalling fe · pe to vertex v.
(We will consider a model where the price per packet changes with the amount
of flow being sent on the edge in Section 5.)

So apart from gaining utility by sending their own flow, vertices also gain
utility for receiving flows and lose utility by paying the next-hop vertices that
receive their flow. Also, observe that for the flow to reach the sink, it is es-
sential that intermediate nodes forward the flow reliably. Hence every player is
required to forward all incoming flow (alternatively, we can think of there being
a very large penalty for accepting payment for incoming flow that the player has
no intention of forwarding). The forwarding of all flow is always possible since
the non-monopolistic property ensures that for every node the total outgoing
capacity is always greater that the total incoming capacity.

Imagine a situation where in order to route all its incoming flow, node u always
has to forward some flow to vertex v. Since it is obligatory for u to forward all
its incoming flow, v can charge an exorbitantly high price on edge (u, v), and u
would have to pay it. In other words, v can act as a monopoly. Similarly to [16],
existence of such a structure in G may lead to no meaningful equilibrium and the
non-monopolistic property for edge (u, v) obviates precisely this situation. Since
the sink node is not a player, it does not set prices for edges that are incident
on it (we assume that price is fixed at 0, and that wlog these edges are always
saturated); neither do these edges need to satisfy the non-monopolistic property,
as long as the outgoing capacity of each node is at least as large as the incoming
capacity.

In order to provide a more formal definition of the player strategies and the
resulting flow, we define the following terminology. Let Ein

v and Eout
v be the set

of incoming and outgoing edges for node v respectively. The vector of flows on
the incoming edges of vertex v is denoted by f in

v and on the outgoing edges is
denoted by fout

v . Similarly, the vector of prices on the incoming edges is denoted
by pin

v and on the outgoing edges is denoted by pout
v . Let fv be the amount of

own flow (flow originating at vertex v) sent by vertex v to sink t.
We assume that a vertex always sends or forwards flow by choosing the outgo-

ing edges that have the lowest price and have free capacity. Also, if there exists
an outgoing edge with free capacity and has pe < λv then the node will always
send its own flow on such an edge, and will never send its own flow on edges with
pe > λv. To make this precise, we define a notion of valid flows, which are flows
where every vertex forwards flow in order to maximize its utility. Specifically,
given the prices pout

v and flows f in
v , we define the set of valid resulting flows fout

v

to be Fv(f in
v , pout

v ), which are all flows satisfying the following conditions:
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– ∀e ∈ Eout
v : fe ≤ ce (usual capacity constraint);

fv =
∑

e∈Ein
v

fe −
∑

e∈Eout
v

fe ≥ 0 (usual flow conservation)
– ∀e ∈ Eout

v : fe > 0 only if for every e′ ∈ Eout
v \e with pe′ < pe, e′ is saturated

(send on cheapest edges first),
– ∀e ∈ Eout

v : pe < λv implies that e is saturated (send own flow if profitable),
and
pe > λv and fe > 0 imply that fv = 0 (don’t send own flow if unprofitable).

Any way of forwarding flow to maximize v’s utility obeys these conditions. The
last condition holds since if v is sending its own flow, but fe > 0 for some edge
e ∈ Eout

v with pe > λv, then v could re-distribute its flow so that it is sending its
own flow on edge e, and then improve its utility by sending less of its own flow.

When all prices in pout
v are distinct from each other and λv, then Fv(f in

v , pout
v )

is a unique flow resulting from forwarding flow from all from all incoming edges,
beginning with the edges of least cost, and then sending its own flow on remaining
edges with free capacity and cost pe < λv. Now consider instead a situation where
two or more outgoing edges have the same price. So long as they have the same
price, the utility of player v is not affected by the choice of edge on which it
sends a flow. Similarly, when there exists an outgoing edge with free capacity
and pe = λv, the vertex is indifferent towards the choice of sending its own flow
on the edge. In this model we assume that both these tie-breaking choices are
left up to the players and are part of their strategy. More formally, since each
valid flow in Fv(f in

v , pout
v ) corresponds to a tie-breaking rule selected by player

v, we associate these tie-breaking rules with a flow generation function γv which,
given the incoming flows and out going prices, produces an outgoing flow. The
set of these flow generation functions is denoted by Γv:

Γv = {γv| ∀f in
v , pout

v : γv(f in
v , pout

v ) = fout
v ∈ Fv(f in

v , pout
v )}

In other words, Γv contains all functions that generate only valid out-flows.
Hence the strategy set of each player v is R|Ein

v |
+ × Γv, and a strategy of the

player is given by the tuple {pin
v , γv} where pin

v ∈ R|Ein
v |

+ and γv ∈ Γv. We denote
the collective strategy of all players by {P, γ}.

Outcome. Each flow generating function γv needs incoming flow and prices on
outgoing edges in order to compute the resulting flow. Given a strategy {P, γ},
the prices are already known. The algorithm to produce the resulting flow is
then simply: Iterate over v ∈ V in topologically sorted order (recall that our
graph is a DAG), and set fout

v = γv(f in
v , pout

v ). We denote the resulting flow by
f(P, γ): this is the outcome of the strategy {P, γ}.

Utility and Best Response. Given the output flow f(P, γ), the utility of player
v is given by the following expression:

utilityv(P, γ) =
∑

e∈Ein
v

fe · pe −
∑

e∈Eout
v

fe · pe + λv · fv
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Consider a player v who is computing its best response to a strategy {P, γ}.
Notice that by changing its prices pin

v , the resulting flow f in
v may become com-

pletely different from f(P, γ). If this were not the case, then v could always raise
its incoming price, knowing that this would increase its utility since the flow
would remain the same. In essence, players in this game anticipate changes in
flow that result from price changes, but myopically assume that the prices of
all other nodes remain the same when computing their own best response. Such
behavior is reasonable in ISP routing settings, for example, since price setting
takes place on a much slower time scale than routing.

3 Uniform Nash Equilibrium and Price of Stability

We first show useful sufficient conditions for a strategy to be a Nash equilibrium.

Theorem 1. If flow f(P, γ) and prices P satisfy the following conditions, then
strategy {P, γ} is a Nash equilibrium:

(a) For every node u, the price on all edges of Eout
u , except edge (u, t) if it exists,

is the same. Let this price be denoted by yu.
(b) If fu > 0 then yu = λu; if fu = 0 then yu ≥ λu.
(c) For ∀v �= t, if edge (u, v) has a positive flow on it, then yu ≥ yv.
(d) For ∀v �= t, if edge e = (u, v) is unsaturated (fe < ce), then yu ≤ yv.

Proof of the theorem can be found in full version of the paper [1].
Theorem 1 gives sufficient conditions for a strategy to be a Nash equilibrium.

We will call such strategies uniform, since all the outgoing prices are the same
for every node in such a solution. As we will show below, good uniform Nash
equilibria always exist, and can be efficiently computed.

Definition 1. Uniform Nash equilibrium: Any Nash equilibrium strategy that
satisfies the conditions of Theorem 1 is a uniform Nash equilibrium.

3.1 Computing a Good Nash Equilibrium

By an optimal solution to this game, we will mean one in which the sum of
the utilities of all players is maximized. Since the price paid by players to each
other cancels out in the sum, optimal solutions are ones in which

∑
v λvfv is

maximized. We will call a flow f∗ socially optimal if
∑

v λvf∗
v is maximum over

all flows that obey capacity constraints and where f∗
v flow originates at node v,

with all flow ending at the sink t (it is easy to see that, without loss of generality,
all edges incident on t are saturated). Clearly,

∑
v λvf∗

v is the social welfare in
an optimal solution, since if all prices are set to 0, and γ is such that f∗ is
the resulting flow, then this results in social welfare of

∑
v λvf∗

v . The following
theorem states that flow f∗ can also be achieved by a Nash equilibrium solution,
i.e., that the price of stability of this game is 1.
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Theorem 2. Given a socially optimal flow f∗, there exists a collective strategy
{P, γ} such that f(P, γ) = f∗ and {P, γ} is a uniform Nash Equilibrium. In
other words, the price of stability is 1.

Full proof of this theorem appears in the full version of the paper [1]. However,
a gist of the proof is given here.

Given an optimal solution f∗, we give an algorithm that assigns prices to
edges. The assignment of prices is such that for a given vertex, the price of all
outgoing edges is the same. The price of outgoing edges of node v is set to the
smallest λw with f∗

w > 0 that is reachable from v in the residual flow graph for
optimal flow f∗. Finally we show that such an assignment of prices satisfies all
conditions of Theorem 1.

4 Reasonable Assumptions and Price of Anarchy

Consider a game where all players with non-zero λv value are not neighbors of
the sink. Now consider a strategy for this game where every vertex charges a very
high price (say bigger than the highest λv value). Given this pricing strategy,
no vertex will send its own flow and still every vertex will have no incentive to
deviate, i.e., the strategy will be in Nash equilibrium. This is because no vertex
would unilaterally reduce the prices of its incoming edges, given that they will
have to pay a large amount to forward any flow sent to them. Nodes that have
edges incident to the sink will not change their prices as there is no hope of
obtaining any flow and hence, any profit. In this Nash equilibrium strategy the
total utility of players is 0 and hence the price of anarchy is unbounded. These
“bad equilibria” cannot be eliminated even after introducing pairwise deviations.

In order to eliminate such unrealistic solutions from consideration, work deal-
ing with similar scenarios made some reasonable assumptions about player be-
havior. For example, [16] assumes that if a player does not receive any flow on its
incoming edge, then she never charge an unnecessarily large price for this edge.
In this section, we make the same assumption on the players’ pricing strategy:

Property 1. If a vertex v does not receive any flow on edge (u, v), then it sets
p(u,v) to be the price of the cheapest unsaturated outgoing edge of v, if one
exists.

We call pricing strategies that satisfy this property reasonable. This property
simply says that given an edge (u, v) that has no flow on it, node v will charge
the minimum price such that potential flow on this edge will not result in loss
of utility for v. Below we show that, at least for single-source games (i.e., games
where only one node has a non-zero λ value), this additional assumption on
player behavior causes all equilibria to become as good as the optimum solution.
Proof of the following theorem appears in full version of the paper [1].

Theorem 3. For a single source game where players form reasonable pricing
strategies, the price of anarchy is 1.
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5 Non-linear Utility and Price Functions

In previous sections we analyzed the case where the utility of sending one unit of
own flow (will also be referred to as ‘per packet’) was constant for the player. We
will now study the case where the utility is a concave function of the amount of
flow sent. This mirrors the fact that sending more flow usually has diminishing
returns for the player. We denote this utility function as Λv(fv) where fv is the
total amount of own flow sent by node v and Λv is continuously differentiable,
concave, and non-decreasing. Additionally, denote the derivative of Λv by λv: in
the old model this was a constant, but now it is a non-increasing function.

Similarly when players receive flow on an incoming edge, the processing cost
for each unit of flow generally increases with the total amount of flow. Hence
we look at the case where the price charged by each player for incoming flow
is a convex function. We denote this by Πe(fe) where fe is the flow on edge e
and Πe is a continuously differentiable convex non-decreasing function. Let πe

be the derivative of Πe: in the old model this was called pe and was a constant;
now it is a non-decreasing function.

This more general model is formally defined in full version of the paper [1]: it
is a strict generalization of the model in Section 2.

If utility functions Λv are linear, then we show that all our results for linear
price functions also hold for arbitrary convex price functions, thus showing that
allowing players to set non-linear prices does not make the system any worse. To
do this, we prove analogues of Theorems 1 and 3. By proving that the conditions
from Theorem 1 imply that a solution is a Nash equilibrium, even when changing
your strategy to an arbitrary price function is allowed, we immediately get the
consequence that the price of stability is 1, since we already showed how to
create an optimal solution satisfying these conditions in Theorem 2. The proofs
of all following theorems can be found in full version of the paper [1].

Theorem 4. For instances with linear utility functions and non-decreasing,
convex price functions, the price of stability is 1.

In section 4 we showed that when prices have to be linear, the price of anarchy
is 1 for networks with a single source under the mild assumption that players do
not set large prices without a good reason (Property 1). We also show that the
same result holds if prices are allowed to be convex non-decreasing functions.
Note that utilities are still linear. Since edge prices are allowed to be functions,
we call pricing strategies that satisfy the following property as reasonable:

Property 2. If a vertex v does not receive any flow on edge (u, v), then it sets
Π(u,v)(x) = p(u,v)x where p(u,v) is the cheapest marginal price of all unsaturated
outgoing edges of v, if one exists.

Proof of the following theorem can be found in full version of the paper [1].

Theorem 5. If node utilities are linear and edge prices are allowed to be con-
vex non-decreasing functions then, for a single source game where players form
reasonable pricing strategies, the price of anarchy is 1.
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If utility functions Λv can be non-linear, then we give an example (Figure 2)
which does not admit a pure Nash equilibrium. We show that in any Nash
equilibrium strategy for example in Figure 2, there exists another equilibrium
strategy where the price functions for edges (c, a) and (c, b) are linear and the
edges will have the same price. We also show that in any Nash equilibrium
strategy, edges (c, a) and (c, b) will be saturated. These observations cannot be
satisfied simultaneously given the utility function Λv and consequently, a pure
Nash equilibrium strategy does not exist.

Again the details can found in full version of the paper [1].

b

a

c t

1

1

1

1

Fig. 2. Λc(f) = −9f2 + 37f for f ≤ 2. Λa = Λb = 0. All edges have capacity 1

We also show that this example does not admit a Nash equilibrium even in
the (nicer) case when all prices must be discrete, and thus the non-existence
of equilibrium does not stem from the fact that prices can be changed by an
infinitesimal amount.

Theorem 6. If the player utilities Λv are concave non-decreasing functions,
then pure Nash equilibrium may not exist.
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Abstract. Weakly-acyclic games – a superclass of potential games –
capture distributed environments where simple, globally-asynchronous
interactions between strategic agents are guaranteed to converge to an
equilibrium. We explore the class of routing games in [4, 12], which mod-
els important aspects of routing on the Internet. We show that, in in-
teresting contexts, such routing games are weakly acyclic and, moreover,
that pure Nash equilibria in such games can be found in a computation-
ally efficient manner.

Keywords: Weakly-acyclic games, routing games, convergence to Nash
equilibrium, best-response dynamics.

1 Introduction

1.1 Weakly-Acyclic Games

Convergence to a pure Nash equilibrium (PNE) is an important objective in a
large variety of application domains – both computerized and economic. Ideally,
this can be achieved via simple and natural dynamics, e.g., better-response or
best-response dynamics. Under better-response dynamics, players start at some
initial strategy profile and take turns selecting strategies. At each (discrete)
time step, a single player selects a strategy that increases his utility (given the
others’ current strategies). Under best-response dynamics, at every time step the
“active” player chooses a strategy that maximizes his utility. Better-response and
best-response dynamics are simple, low-cost behaviors to build into distributed
systems, as evidenced by today’s protocol for routing on the Internet [4, 12].

Convergence of better-/best-response dynamics to PNE is the subject of much
research in game theory. Clearly, a necessary condition for better-/best-response
dynamics to converge to a PNE regardless of the initial state is that, for ev-
ery such state, there exist some better-/best-response improvement path to a
PNE, i.e., a sequence of players’ better-/best-response strategies which lead to a
PNE.1 Games for which this holds (e.g., potential games [15]) are called “weakly
� Current affiliation: Google Inc. This work was done while the author was a doctoral

student at the Technion.
1 Observe that this is equivalent to requiring that the game have no “non-trivial” sink

equilibria [8, 4] under better-response dynamics (i.e., that it have no sink equilibrium
of size greater than 1).
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acyclic” [18, 14]. Weak acyclicity has also been shown to imply that simple
dynamics (e.g., randomized better-/best-response dynamics, no-regret dynam-
ics) are guaranteed to reach a PNE [13, 14, 18]. Thus, weak acyclicity captures
distributed environments where a PNE can be reached via simple, globally-
asynchronous interactions between strategic agents, regardless of the starting
state of the system.

While the class of potential games – a subclass of weakly-acyclic games – is
the subject of extensive research, relatively little attention has been given to the
much broader class of weakly-acyclic games (see, e.g., [3, 13]). As a result, very
few concrete examples of weakly-acyclic games that do not fall in the category
of potential games are known. One famous result along these lines is that of
Milchtaich [14]. [14] studies Rosenthal’s congestion games [17] and proves that,
in interesting cases where the payoff functions (utilities) are player-specific, such
games are weakly acyclic (but not necessarily potential games).

Our focus in this work is on another extensively studied environment: routing
on the Internet. We show that weak acyclicity is important for analyzing such
environments. Our work, alongside its implication for Internet routing, provides
concrete examples of weakly acyclic games that lie beyond the space of potential
games, as well as technical insights into the structure of such games.

1.2 (Internet) Routing Games

The Border Gateway Protocol (BGP) establishes routes between the smaller, in-
dependently administered, often competing networks that make up the Internet.
Hence, BGP can be regarded as the glue that holds today’s Internet together.
Over the past decade there has been extensive research on the computational
and strategic facets of routing with BGP. Recent advances along these lines were
obtained via game-theoretic analyses (see, e.g., [4, 9, 12, 16]), which rely on the
simple, yet important, observation that BGP can be regarded as best-response
dynamics in a specific class of routing games [4, 12]. We now provide an intuitive
exposition of the class of routing games in [4, 12]. We refer the reader to Sect. 2
for a formal presentation.

In the game-theoretic framework of [4, 12], the players are source nodes re-
siding on a network graph, which aim to send traffic to a unique destination in
the network. Each source node has a (private) ranking of all simple (loop-free)
routes between itself and the destination. We stress that, in practice, different
source nodes can have very different, often conflicting, rankings of routes, reflect-
ing, e.g., local business interests [7] (in particular, source nodes do not always
prefer shorter routes to longer ones). Every source node’s strategy space is the
set of its neighboring nodes in the network; a choice of strategy represents a
choice of a single neighbor to forward traffic to. Observe that every combination
of source nodes’ strategies thus captures how traffic is forwarded (hop-by-hop)
towards the destination. A source node’s utility from every such combination of
strategies reflects how highly its ranks its induced route to the destination.

Fabrikant and Papadimitriou [4] and, independently, Levin et al. [12], observed
that BGP can be regarded as best-response dynamics in this class of routing
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games and that PNEs in such games translate to the notion of stable routing
states, which has been extensively studied in communication networks literature.
These observations laid the foundations for recent results regarding the dynamics
and incentive compatibility of routing on the Internet (see [9, 11, 16]).

1.3 Our Contributions: Weakly-Acyclic Routing Games

We present two interesting subclasses of routing games – (1) routing games with
Byzantine players and (2) backup routing games – which capture important
aspects of routing on the Internet. Routing games with Byzantine players intu-
itively capture scenarios where all but a few players are “well behaved”, and the
remaining players behave in an arbitrary manner. Such erratic “Byzantine” (in
distributed computing terminology) misbehavior can, for instance, be the conse-
quence of router configuration errors. Backup routing games model the common
practice of backup routing with BGP [6].

We prove that games in both these classes are weakly acyclic, even under best-
response (i.e., from every initial state there exists a best-response improvement
path to a PNE). Our results thus establish that, in these two contexts, a PNE
is guaranteed to exist and can be reached via simple, globally-asynchronous
interactions between strategic agents regardless of the initial state of the system.
Moreover, we prove that not only is a PNE reachable from every initial state via
a best-response improvement path, but that this path is “short” (of polynomial
length). Hence, in these subclasses of routing games, a PNE can be found in a
computationally-efficient manner; simply start at an arbitrary initial state and
follow the short best-response improvement path – whose construction we give
explicitly – until a PNE is reached.

Routing games with Byzantine players. To illustrate this subclass of games,
consider the scenario that all source nodes but a single source node m have
a “shortest-path ranking” of routes, i.e., they always prefer shorter routes to
longer routes. Unlike the other source nodes, m’s ranking of routes need not
necessarily be a shortest-path ranking and is not restricted in any way, e.g., m
might even always prioritize longer routes over shorter routes. We aim to answer
the following question: “Can m’s erratic behavior render the network unstable?”.

We prove a surprising positive result: every routing game of the above form
(i.e., with a single “misbehaving” source node) is weakly acyclic under best-
response. Hence, in particular, routing games where each player has a shortest-
path ranking are guaranteed to posses a PNE even in the presence of an arbitrary
change in a single source node’s behavior! We generalize this result to a broader
class of routing policies. We point out that our work is one of few to explore the
impact of “irrational” behavior in game-theoretic settings (see [1, 2, 10]).

Backup routing games. In this subclass of routing games each edge in the
network graph is either categorized as a “primary” edge or as a “backup” edge.
A source node with multiple outgoing edges prefers forwarding traffic to neigh-
boring nodes to which it is connected via primary edges over forwarding traffic
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to neighbors to which it is connected via backup edges. Such “backup relation-
ships” are often established in practice to provide connectivity in the event of
network failures via redundancy; the intent is that backup edges be used for
carrying traffic only in case of failures in the primary edges [6]. We consider nat-
ural restrictions on source nodes’ routing policies which capture this notion of
“backup routing”. We prove that the resulting routing games are weakly acyclic.

1.4 Organization

We present the class of weakly-acyclic games and the class of weakly-acyclic
under best-response games in Sect. 2, where we also present the class of rout-
ing games of [4, 12]. In Sect. 3, we illustrate the type of results we obtain via
two simple families of weakly-acyclic routing games. We present our results for
routing games with Byzantine players, and for backup-routing games, in Sects. 4
and 5, respectively. Due to space constraints, all proofs appear in the full version
of the paper.

2 Model

2.1 Weakly-Acyclic Games

We use standard game-theoretic notation. Consider a normal-form game with n
players 1, . . . , n, where each player i has strategy space Si and utility function
ui (which specifies player i’s utility for every combination of players’ strategies).
Let S = S1 × . . . × Sn and S−i = S1 × . . . × Si−1 × Si+1 × . . . × Sn. For every
si ∈ Si and s−i ∈ S−i, (si, s−i) denotes the combination of players’ strategies
where player i’s strategy is si and the other players’ strategies are as in s−i.

Definition 2.1. (better-response strategies) We call a strategy s∗i ∈ Si a
“ better-response” of player i to a strategy vector s = (si, s−i) ∈ S if ui(s∗i , s−i) >
ui(si, s−i).

Definition 2.2. (best-response strategies) We call a strategy s∗i ∈ Si a
“ best response” of player i to a combination of other players’ strategies s−i ∈
S−i if s∗i ∈ argmaxsi∈Siui(si, s−i).

Definition 2.3. (pure Nash equilibria) A strategy vector s = (s1, . . . , sn) ∈
S is a pure Nash equilibrium (PNE) if si is a best response to s−i for every
player i.

Definition 2.4. (better- and best-response improvement paths) A better-
response (best-response) improvement path in a game Γ is a sequence of strategy
vectors s(1), . . . , s(k) ∈ S, each reachable from the previous via a better response
(best response) of a single player.

We are now ready to present the class of weakly-acyclic games and the class of
weakly-acyclic under best-response games.
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Definition 2.5. (weak acyclicity and weak acyclicity under best re-
sponse) A game Γ is weakly acyclic (weakly acyclic under best response) if,
from every s ∈ S there exists a better-response (best-response) improvement path
to a pure Nash equilibrium of Γ .

2.2 (Internet) Routing Games

In the class of routing games in [4, 12] the players are n source nodes 1, . . . , n
residing on a network G = (V, E) who wish to send traffic to a unique destination
node d. Let Pi be the set consisting of all simple (loop-free) routes from source
node i to d in G and of the “empty route” ⊥. Each source node i’s strategy is its
choice of an outgoing edge ei ∈ E(G) (intuitively, a neighboring node to forward
traffic to), or the empty set ∅ (intuitively, not forwarding traffic). Observe that
every combination of source nodes’ strategies s ∈ S thus specifies a (directed)
subgraph Gs of G in which each source node has outdegree at most 1. Given a
combination of nodes’ strategies s ∈ S we define i’s induced route Rs

i to be i’s
unique simple route to d in Gs if such a route exists, and ⊥ otherwise.

We now define source nodes’ utility functions. Each source node i has a routing
policy with two components: (1) a ranking function πi that maps elements in
Pi to the integers, such that πi(⊥) < πi(R) for all R ∈ Pi \ {⊥}; and (2) an
export policy that, for each neighboring node j ∈ V (G), specifies a set of routes
Rij ⊆ Pi that i is willing to make available to j. To simplify notation, when
πi(R) < πi(Q) (πi(R) ≤ πi(Q)) for some routes R, Q ∈ Pi, we write R <i Q
(R ≤i Q). We say that a route Ri ∈ Pi is “permitted” if each node on R is willing
to export its (sub)route to its predecessor on R. Given a combination of nodes’
strategies s ∈ S, i’s utility is π(Rs

i ) if Rs
i is permitted and 0 otherwise.

3 Illustration: Simple Weakly-Acyclic Routing Games

We now illustrate the kind of results we obtain via two simple families of weakly-
acyclic games.

Shortest-path routing with Byzantine players. Consider the scenario that
all source nodes have shortest-path rankings (where shorter routes are always
preferred to longer ones) and “export-all policies”, i.e., each node i is willing
to make all routes in Pi available to all neighboring nodes. We call games of
this form “shortest-path routing games”. We make the simple observation that
shortest-path routing games are potential games. Now, consider the case that
there is a single Byzantine player, i.e., that the routing policy of a single source
node in a shortest-path routing game is changed arbitrarily. We now present the
following corollary of a more general result proved in Sect. 4.

Corollary 3.1. Every shortest-path routing game with a single Byzantine player
is weakly-acyclic under best response and, moreover, a PNE in such a game can
be found in a computationally-efficient manner.
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In contrast, we show (Appendix A) that shortest-path routing games with a
single Byzantine player are no longer necessarily potential games.

Theorem 3.1. There exists a shortest-path routing game with a single Byzan-
tine player which is not a potential game.

Shortest-path backup routing. In this setting, every edge in the network
graph is either “primary” or “backup”. A source node always prefers a route
through a neighbor to which it is connected via a primary edge (“primary route”)
over a route through a neighbor to which it is connected via a backup edge
(“backup route”). When faced with a choice between two (or more) primary
routes, or two (or more) backup routes, nodes always prioritize shorter routes.
Every source node i has an export-all policy (i.e., i is willing to make all routes
in Pi available to all neighboring nodes). We prove the following.

Theorem 3.2. Every shortest-path backup routing game is a potential game
and, moreover, a PNE in such a game can be found in a computationally-efficient
manner.

In Sect. 5 we examine a more complex class of backup routing games and show
that games in that class are guaranteed to be weakly acyclic under best-response
yet are not necessarily potential games.

4 Routing Games with Byzantine Players

We now present our results for the class of routing games with Byzantine players.

4.1 Routing Policies

[5] introduces the notions of policy consistency and of consistent export, which
generalize natural classes of routing policies, e.g., shortest-path routing and next-
hop routing. We now present these two concepts.

Policy-Consistent Ranking. Two well-studied classes of ranking functions
are shortest-path rankings and next-hop rankings. Shortest-path rankings always
prioritize shorter routes. Next-hop rankings, in contrast, rank routes based solely
on the identity of the “next-hop” – the immediate neighbor – en route to the
destination, i.e., a next-hop ranking assigns the same preference to all routes
that share the same next-hop node. [5] generalizes these two classes of rankings
as follows.

Definition 4.1. (policy consistency) [5] Let i and j be two adjacent source
nodes in G. We say that i is policy consistent with j iff for every two routes
Q, R ∈ Pj such that i /∈ Q, R, if R <j Q, then (i, j)R ≤i (i, j)Q. We say that
policy consistency holds if each source node is policy consistent with each of its
neighboring source nodes.

Observe that in the scenario that all source nodes have shortest-path rankings,
and also in the scenario that all nodes have next-hop rankings, policy consistency
indeed holds. (See [5] for more details.)
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Consistent Export. The simplest export policy is the export-all policy, where
a source node i is willing to make all routes in Pi available to all neighboring
nodes. [5] presents the following generalization of export-all.

Definition 4.2. (consistent export) [5] Let i and j be two adjacent nodes in
G. We say that i consistently exports with respect to j iff there is some route
R ∈ Pi such that Rij = {Q| Q ∈ Pi and R ≤i Q}. We say that a node i
consistently exports if it consistently exports with respect to each neighboring
node j. We say that consistent export holds if all nodes consistently export.

Observe that when all source nodes have all-export policies then consistent ex-
port indeed trivially holds.

4.2 Positive Result

Consider games for which policy consistency and consistent export hold. These
games include, among others, routing games with shortest-path rankings and
export-all policies, as well as routing games with next-hop rankings and export-
all policies, and can easily be shown to be potential games. We turn our attention
to the scenario that there exists a single Byzantine player, i.e., that the routing
policy of a single player can be changed in an arbitrary manner. We prove the
following surprising positive result.

Theorem 4.1. If policy consistency and consistent export hold for a routing
game then the game is weakly acyclic under best response even in the presence
of a single Byzantine player. Moreover, a PNE in such a game (with a single
Byzantine player) can be found in a computationally-efficient manner.

Can this result be extended to more than a single Byzantine player? Simple ex-
amples show that the answer to this question is, in general, No. We believe, how-
ever, that under certain reasonable conditions (e.g., that the number of Byzan-
tine nodes not exceed a certain threshold, and that the Byzantine nodes not be
“too concentrated” in a single part of the network) our result can be made to
hold more generally. We leave this as an interesting direction for future research.

5 Backup Routing Games

In Sect. 3, we considered the following simple setting. Every edge in the network
graph is either categorized as a “primary” edge or as a “backup” edge. A source
node with multiple outgoing edges ranks routes in which it is connected to the
next-hop node via a primary edge (“primary routes”) more highly than routes in
which it is connected to the next-hop node via a backup edge (“backup routes”).
When faced with a choice between multiple routes in the same category (pri-
mary/backup) a source node always prioritizes shorter routes over longer routes.
In addition, every source node has an export-all policy. We have shown that
games that fall within this subclass of routing games are weakly-acyclic (and,
in fact, even potential games). Next, we present a more realistic model, inspired
by today’s commercial Internet.
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5.1 Commercial Backup-Routing Games

As before, each edge in the network graph is either “primary” or “backup”. In
addition, neighboring nodes in the network graph have one of two business re-
lationships: either one node is a customer of the other (which is its provider)
or the two nodes are peers. We make the standard assumption that no node is
an indirect customer of itself, i.e., that there are no customer-provider cycles in
this business hierarchy [7]. We now present constraints on source nodes’ ranking
functions and export policies that are naturally induced by this business hier-
archy and extend the famous economic Gao-Rexford constraints [7] to handle
backup routing. See [7] for a detailed explanation of this economic framework.

Ranking. A source node with multiple outgoing edges ranks primary routes
more highly than backup routes. When faced with a choice between multiple
routes in the same category (primary/backup), a source node always prioritizes
(revenue-generating) routes in which its next-hop is its customer (“customer
routes”) over routes in which its next-hop is its peer/provider (“peer/provider
routes”). Consider the network in Fig. 1(a). In the event that node 3 has a
primary edge to its peer, node 2, and a backup edge to its customer, node 1,
node 3 should prefer routes through 2 over routes through 1. However, if 3’s
edges to nodes 1 and 2 are both primary or both backup, node 3 should prefer
routes through 1 over routes through 2.

Fig. 1. Commercial Backup Routing
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Export. A source node is willing to export all routes through it to its customers,
but is only willing to export (all of) its customer routes to neighbors its peers and
providers. Intuitively, this captures a source node’s willingness to carry transit
traffic for its customers, but not for its peers and providers (by whom it is not
paid). Consider the network in Fig. 1(b), and suppose that all edges are primary.
Node 5 should announce routes through node 1, its customer, to all neighboring
nodes. However, node 5 should only announce routes through node 3, its peer,
to its customers (nodes 1 and 2), and not to its other peer (node 4) and provider
(node 6).

We call routing games where each node has a ranking function and export
policy as above “commercial backup-routing games”.

5.2 Positive Result

We prove the following positive result for the class of commercial backup-routing
games.

Theorem 5.1. Every commercial backup-routing game is weakly acyclic un-
der best-response and, moreover, a PNE in such a game can be found in a
computationally-efficient manner.

We show (Appendix B) that commercial backup-routing games are, in fact, not
contained in the class of potential games.

Theorem 5.2. There exists a commercial backup-routing game which is not a
potential game.
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A Shortest-Path Routing Games with a Single Byzantine
Player are not Necessarily Potential Games

Consider the network G partially described by Fig. 2. We are interested in three
nodes: x, y and m, where m is the Byzantine node. The paths P1, P2, P3, P4 and
P5 are all disjoint, and their lengths are 8, 6, 2, 2 and 10 respectively.

Hence, x prefers the path (x, m)P4 (length 3) over P1 (8) which is preferred
over (x, m)P5 (11).

Also, y prefers the path (y, x)(x, m)P4 (length 4) over P2 (6) which is preferred
over (y, x)P1 (9).

The Byzantine node m has the following preferences:

P3P2 <m P4 <m P5 <m P3(y, x)P1 .

We now present a better-response improvement cycle. In this cycle, all nodes
but x, y and m are fixed, and the paths P1, P2, P3, P4 and P5 are all valid routes
resulting from the fixed strategies of these nodes. Now, consider the following
sequence of transitions.

– x chooses P1, y chooses x and m chooses P3.
– x chooses P1, y chooses P2 and m chooses P3.
– x chooses P1, y chooses P2 and m chooses P4.
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x
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P3

P2P4
P5

Fig. 2. A shortest-path routing game with a single Byzantine player that is not a
potential game

– x chooses m, y chooses P2 and m chooses P4.
– x chooses m, y chooses x and m chooses P4.
– x chooses m, y chooses x and m chooses P5.
– x chooses P1, y chooses x and m chooses P5.
– x chooses P1, y chooses x and m chooses P3.

Observe that every strategy profile is reachable from the strategy profile that
comes before it via the better response of a single node in {x, y, m}, and that the
first strategy and the last strategy in this sequence are identical. Hence, there
exists a better-response improvement cycle and so this game is not a potential
game.

B Commercial Backup-Routing Games Are Not
Necessarily Potential Games

Consider the network in Fig. 3. There are 6 source nodes 1, 2, 3, a, b, c and a
unique destination node d. The business relationships between nodes, and the
classification of edges into primary edges and backup edges are described in
the figure. Each of the source nodes 1, 2, and 3 has a next-hop ranking, and
its preferences over next-hops are as in the figure (e.g., node 1 prefers all routes
through its peer a over the direct route to its customer d, over all routes through
its provider c). Each of the source nodes a, b, and c prefers routes through its peer
(to which it is connected via a primary edge) over routes through its customer
(to which it is connected via a backup edge). Observe that these rankings are
indeed backup/primary commercial rankings (each node prefers primary routes
over backup routes and, within each category of routes, prefers customer routes
to peer/provider routes). Each source node has a commercial export-all policy,
that is, it exports all routes to its customers and all customer routes to its
peers/providers.
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Fig. 3. A commercial backup routing game that is not a potential game

Observe that this routing game possesses (multiple) PNE, e.g., the routing
state in which nodes 1 and 2 forward traffic directly to d, and node 3 forward
traffic to node 1. We now show that the game is not a potential game by pre-
senting a better-response improvement cycle. Consider the case that each of the
source nodes a, b, and c’s strategy is fixed to be the outgoing link to its customer
(e.g., c sends traffic to 1). Now, consider the following sequence of transitions
between 3-tuples of source nodes 1, 2, and 3’s strategies (listed in that order):
((1d), (2d), (3c)) → ((1a), (2d), (3c)) → ((1a), (2d), (3d)) → ((1a), (2b), (3d)) →
((1d), (2b), (3d)) → ((1d), (2b), (3c)) → ((1d), (2d), (3c)). Observe that every 3-
tuple of strategies is reachable from the 3-tuple that comes before it via the
best-response of a single node in {1, 2, 3}, and that the first 3-tuple and last
3-tuple in this sequence are identical. Hence, there exists a best-response im-
provement cycle and so this game is not a potential game.
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1 Università Telematica Internazionale Uninettuno, Rome, Italy
vincenzo.bonifaci@uninettunouniversity.net

2 Department of Computer Science, University of Southern California, USA
salek@usc.edu

3 CWI and VU University Amsterdam, The Netherlands
g.schaefer@cwi.nl

Abstract. An effective means to reduce the inefficiency of Nash flows in non-
atomic network routing games is to impose tolls on the arcs of the network. It is
a well-known fact that marginal cost tolls induce a Nash flow that corresponds
to a minimum cost flow. However, despite their effectiveness, marginal cost tolls
suffer from two major drawbacks, namely (i) that potentially every arc of the
network is tolled, and (ii) that the imposed tolls can be arbitrarily large.

In this paper, we study the restricted network toll problem in which tolls can be
imposed on the arcs of the network but are restricted to not exceed a predefined
threshold for every arc. We show that optimal restricted tolls can be computed
efficiently for parallel-arc networks and affine latency functions. This generalizes
a previous work on taxing subnetworks to arbitrary restrictions. Our algorithm
is quite simple, but relies on solving several convex programs. The key to our
approach is a characterization of the flows that are inducible by restricted tolls
for single-commodity networks. We also derive bounds on the efficiency of re-
stricted tolls for multi-commodity networks and polynomial latency functions.
These bounds are tight even for parallel-arc networks. Our bounds show that
restricted tolls can significantly reduce the price of anarchy if the restrictions
imposed on arcs with high-degree polynomials are not too severe. Our proof is
constructive. We define tolls respecting the given thresholds and show that these
tolls lead to a reduced price of anarchy by using a (λ ,μ)-smoothness approach.

1 Introduction

Congestion in traffic networks has several negative effects as it causes, e.g., environ-
mental pollution, waste of natural resources and time, stress on the traffic participants,
etc. With the increase in traffic in recent years, it becomes an increasingly important
issue to implement regulation means that efficiently reduce congestion in networks. In
this context, road pricing has long been recognized as being one of the most effective
regulation means. The idea is to charge traffic participants for the usage of roads by
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imposing tolls. Such negative incentives usually lead to a change in behavior in that
traffic participants, for example, travel along longer (but less congested) routes, avoid
certain parts of the network (at certain times), or do not travel at all during peak-times,
etc. Recent technological advances, in particular, in satellite technology, facilitate the
realization of such pricing schemes, e.g., by enabling to collect tolls electronically. Fur-
thermore, they open up the possibility to implement dynamic pricing schemes, in which
tolls may vary over time or depend on congestion.

In this paper, we study the problem of computing efficient pricing schemes to reduce
congestion in network applications caused by selfish behavior. In our studies we use
a well-established model of traffic routing in networks, also known as the Wardrop
model. In this model, we are given a directed graph G = (V,A) with latency functions
� := (�a)a∈A on the arcs, k commodities (s1,t1), . . . ,(sk, tk) ∈V ×V , and a non-negative
demand ri for every commodity i ∈ [k]. The latency functions are used to model the
(flow-dependent) congestion on the arcs and are assumed to be non-negative and non-
decrasing. The demand ri of commodity i∈ [k] specifies the amount of flow that needs to
be routed from si to ti. A common interpretation is that the ri units of flow represent an
(infinitely) large population of players, each controlling an infinitesimal amount of the
ri flow units. The goal of every player is to send his flow along a shortest latency path
from its source si to its destination ti. The resulting game is also called a non-atomic
network routing game. A flow f in which no player has an incentive to unilaterally
deviate from its path is called a Nash flow (or Wardrop flow).

In general, a Nash flow can be inefficient in the sense that it does not correspond
to an optimal flow that minimizes social cost, i.e., the total average latency. The price
of anarchy [14] is a measure to quantify the efficiency loss caused by selfish behavior.
In the context of network routing games, it is defined as the worst-case ratio over all
instances between the cost of a Nash flow and the cost of an optimal flow. In a seminal
work, Roughgarden and Tardos [19] show that the price of anarchy of non-atomic net-
work routing games is unbounded in general and provide bounds for specific classes of
latency functions, e.g., polynomial latency functions.

An effective means to reduce the price of anarchy in network routing games is to
impose non-negative tolls τ := (τa)a∈A on the arcs. We consider both dynamic and static
tolls in this paper. In the dynamic case, the toll that is imposed on arc a∈ A is defined by
a (flow-dependent) toll function τa which maps every flow value x to a non-negative toll
τa(x). In the static case, the toll on arc a ∈ A is specified by a non-negative constant τa.
By traversing an arc a ∈ A with flow value x, a player now experiences a delay of �a(x)
and additionally has to pay a toll of τa(x). We let α > 0 be a parameter that specifies
how players value time over money. That is, the combined cost of an arc a∈ A with flow
value x is defined as φa(x) := �a(x)+ ατa(x). We assume that every players’ goal is to
choose a path that minimizes his total combined cost. A stable outcome of this game is
a Nash flow with respect to the combined cost functions φ := (φa)a∈A.

A fundamental result due to Beckman, McGuire and Winsten [2] states that marginal
cost tolls induce a Nash flow that is socially optimal. That is, if we define τa(x) :=
1
α x ·�′a(x) for every arc a ∈ A then a Nash flow with respect to φ is an optimal flow with
respect to �. Even though marginal cost tolls are theoretically appealing, they have two
major drawbacks: (i) It is assumed that tolls can be imposed on every arc of the network.
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(ii) The tolls imposed on the arcs can be arbitrarily large. These are severe drawbacks
that rule out the applicability of marginal cost tolls in several situations.

In this paper, we overcome these drawbacks by restricting the set of feasible tolls.
These restrictions are assumed to be given exogenously by means of threshold functions
on the arcs. That is, in a restricted network toll problem we are given an instance of
the network routing game together with some threshold functions θ := (θa)a∈A that
specify an upper bound on the maximum toll chargeable on each arc. As for tolls, we
call threshold functions θ dynamic if they are flow-dependent and static otherwise. We
call the tolls τ = (τa)a∈A θ -restricted if for every a ∈ A, 0 ≤ τa(x) ≤ θa(x) for all flow
values x ≥ 0. Given θ -restricted tolls τ , let f τ denote a Nash flow that is induced by τ ,
i.e., f τ is a Nash flow with respect to φ = �+ ατ .

Our model incorporates several interesting special cases. For example, we can en-
force that tolls are only imposed on a subnetwork induced by a subset T ⊆ A of the arcs
by setting θa = ∞ for every a ∈ T and θa = 0 otherwise. Another example is that we
can restrict the toll on each arc a ∈ A by a (flow-independent) threshold value θa. Yet
another example is that we can require that the toll on each arc a ∈ A does not exceed a
certain fraction of the latency of that arc, e.g., θa(x) = ε�a(x) for some ε > 0.

Given the restrictions imposed on the set of feasible tolls, the following two natural
questions arise and will be studied in this paper:

1. Can one quantify the efficiency of θ -restricted tolls?
We are interested in studying the efficiency of θ -restricted tolls in relation to the
cost of a socially optimal flow. To this aim, we define the efficiency of θ -restricted
tolls as the minimum ratio of the cost of a Nash flow f τ inducible by θ -restricted
tolls τ and the cost of an optimal flow. We also address the problem of computing
θ -restricted tolls that guarantee a certain efficiency.

2. Can one compute (approximately) optimal θ -restricted tolls?
We consider the problem of computing (approximately) optimal θ -restricted tolls.
We call θ -restricted tolls τ optimal if the Nash flow f τ induced by τ has cost less
than or equal to any other Nash flow that is inducible by θ -restricted tolls. Similarly,
θ -restricted tolls τ are said to be λ -approximate for some λ ≥ 1 if the cost of f τ is
at most λ times the cost of any other Nash flow inducible by θ -restricted tolls.

Clearly, from the discussion above it follows that we obtain an efficiency of one if
θa = ∞ for every a ∈ A. On the other hand, the efficiency coincides with the price of
anarchy if θa = 0 for every a ∈ A.

The special case that tolls can only be imposed on a subset T ⊆ A of the arcs has
recently been studied by Hoefer, Olbrich and Skopalik [12]. For this case, the authors
derive an algorithm to compute optimal T -restricted tolls for parallel-arc networks with
affine latency functions. They also prove that the problem of computing optimal tolls
is NP-hard, even for two-commodity networks and affine latency functions. Note that
the restricted network toll problem that we consider here is more general, and thus this
hardness result extends to our setting.

Our Results. The main contributions presented in this paper are as follows:

In Section 3 we show that optimal θ -restricted tolls can be computed efficiently
in parallel-arc networks with affine latency functions. This extends the result of
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Hoefer et al. [12] to arbitrary dynamic threshold functions on the arcs. Our approach is
different from the one described in [12]. Despite its generality, our algorithm is quite
simple. The key to our approach is a characterization of the flows that are inducible by
θ -restricted tolls. Our characterization applies to single-commodity networks in gen-
eral. It allows us to determine whether a given flow is inducible by θ -restricted tolls by
verifying whether there is a negative cycle in a properly constructed graph (which can
be done in polynomial time). Based on this characterization, we derive an algorithm to
compute optimal θ -restricted tolls for parallel-arc networks. Our algorithm works for
general latency functions; however, we can only guarantee polynomial running time if
all latency and threshold functions are affine (in which case we need to solve a series of
convex quadratic programs).

In Section 4 we derive upper bounds on the efficiency of dynamic θ -restricted tolls
for multi-commodity networks and polynomial latency functions of degree p. Our pric-
ing scheme is a simple and natural adaptation of marginal cost tolls to the restricted
setting: for every arc a ∈ A we charge marginal cost tolls if this does not exceed the
threshold θa, and we charge θa otherwise. Essentially, we show that these tolls achieve
an efficiency that depends on the degree of the polynomial and the smallest ratio be-
tween the threshold value and the latency of an arc (see Section 4 for precise state-
ments). The technique that we use to prove these bounds rests on a (λ ,μ)-smoothness
approach [18] that was used (implicitly) in previous works to bound the price of anarchy
of routing games (see, e.g., [1,3,4,10]) and put into a more general context in [18]. We
also prove that our bounds are tight, even for parallel-arc networks. Our pricing scheme
also provides a way to compute θ -restricted tolls for multi-commodity networks and
polynomial latency functions that are λ -approximate, where λ is equal to the estab-
lished efficiency.

Our findings support the intuition that, in order to achieve a good efficiency, it is
more important to be able to impose tolls on the arcs that are sensitive to flow changes
(high degree polynomials) than on the arcs that are relatively insensitive to flow changes
(low degree polynomials).

For the special case that all restrictions are of the form θa(x) = ε�a(x), our bound
matches exactly the price of stability of ε-Nash flows shown by Christodoulou, Kout-
soupias and Spirakis [5]. Our result therefore shows that such tolls allow us to reduce
the (generally large) inefficiency of Nash flows to at least the price of stability of ε-Nash
flows; the actual instance-dependent efficiency of such tolls might be better than that.

All our results mentioned above hold for dynamic threshold functions (and thus also
for static ones).

Related Work. As mentioned above, most related to our work is the recent article [12]
by Hoefer et al. who study the problem of taxing subnetworks, a special case of the
restricted toll problem that we consider here. The authors focus on the problem of com-
puting optimal tolls. They show that this problem is NP-hard for two-commodity net-
works and affine latency functions by a reduction from partition. They also derive an
algorithm to compute optimal tolls for parallel-arc networks and affine latency func-
tions. Their algorithm is sophisticated and crucially exploits that the restrictions are of
the form θa ∈ {0,∞} for every arc a ∈ A.
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The classic result that marginal cost pricing induces optimal flows is due to Beck-
mann, McGuire and Winsten [2]. More recently, it has been shown that optimal-
inducing tolls exist even when users are heterogeneous, i.e., have different latency/toll
trade-offs: this was first shown for single-commodity networks by Cole, Dodis and
Roughgarden [6] and then extended to the multi-commodity case by Fleischer, Jain and
Mahdian [9] and independently by Karakostas and Kolliopoulos [13].

Cole et al. [7] study the setting in which the cost of each user is defined as the latency
plus the taxes paid by the user. For heterogeneous users, Fleischer [8] shows that if there
is a single commodity, then tolls that are linear in the maximum latency of the optimal
flow are sufficient to force the users to the system optimum. The question of computing
tolls that enforce particular flows has been studied in [11]. The above papers all study
the non-atomic model; tolls for heterogeneous users in the context of atomic routing
games have been considered by Swamy [20].

Bounds on the price of anarchy and the price of stability of ε-Nash flows in non-
atomic and atomic congestion games, including network congestion games, have been
derived recently by Christodoulou et al. [5].

2 Preliminaries

We provide formal definitions of the concepts introduced in the Introduction. Suppose
we are given an instance I = (G,(�a)a∈A,(si, ti)i∈[k],(ri)i∈[k]) of the non-atomic net-
work routing game. Let Pi denote the set of all simple directed si, ti-paths in G and
define P := ∪i∈[k]Pi. An outcome of the game is a flow f : P → R+ that is feasible,
i.e., ∑P∈Pi

fP = ri for every i ∈ [k]. Given a flow f , the total flow on arc a ∈ A is de-
fined as fa := ∑P∈P:a∈P fP. We define the latency of a path P ∈ P with respect to f
as �P( f ) := ∑a∈P �a( fa). The total cost C( f ) of f is given by its average latency, i.e.,
C( f ) := ∑P∈P fP�P( f ). A flow that minimizes C(·) is called optimal and denoted by
f ∗. A feasible flow f is called a Nash flow (or Wardrop flow) with respect to � := (�a)a∈A

if and only if

∀i ∈ [k], ∀P ∈ Pi, fP > 0 : �P( f ) ≤ �P′( f ) ∀P′ ∈ Pi. (1)

Throughout this paper, we assume that the latency functions are non-negative, non-
decreasing, differentiable and semi-convex, i.e., x · �a(x) is convex for every arc a ∈ A;
such latency functions are also called standard [16]. The cost of a Nash flow is unique
if the latency functions are standard.

In a restricted network toll problem we are given an instance I of the network
routing game and threshold functions θ := (θa)a∈A on the arcs. In this setting,
non-negative tolls τ := (τa)a∈A can be imposed on the arcs that have to obey the
bounds defined by the threshold functions (θa)a∈A. In the most general setting, both
tolls and threshold functions are flow-dependent. Unless stated otherwise, we assume
that both tolls and threshold functions are non-decreasing and continuous. Given a
feasible flow f , we define the combined cost that a player experiences by traversing arc
a ∈ A as φa( fa) = �a( fa)+ ατa( fa). We assume that every players’ goal is to choose
a path P that minimizes the combined cost �P( f )+ατP( f ), where τP( f ) := ∑a∈P τa( fa).
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For notational convenience, we assume that α is normalized to 1. This is without loss
of generality because we can always divide all toll functions by α .

The tolls τ = (τa)a∈A are called θ -restricted if for every arc a ∈ A, 0 ≤ τa(x)≤ θa(x)
for all flow values x ≥ 0. We define T (θ ) as the set of all θ -restricted tolls, i.e.,

T (θ ) := {(τa)a∈A | ∀a ∈ A : 0 ≤ τa(x) ≤ θa(x) ∀x ≥ 0}.

Given θ -restricted tolls τ , let f τ denote a Nash flow that is induced by τ , i.e., f τ is
a Nash flow with respect to φ = � + τ . The efficiency of θ -restricted tolls for a given
instance of the restricted network toll problem is defined as minτ∈T (θ)C( f τ )/C( f ∗).
That is, we relate the cost of the best Nash flow f τ that is inducible by θ -restricted tolls
τ to the cost of an optimal flow. Note that we account for the average latency of the
network here rather than the total disutility (latency plus toll) of the players. The reason
for that is that we are interested in characterizing the effect of tolls on the performance
(measured in terms of average latency) of the network.

Given the restrictions θ = (θa)a∈A on the arcs, θ -restricted tolls τ are optimal if the
Nash flow f τ induced by τ satisfies C( f τ ) ≤ C( f τ̄ ) for all Nash flows f τ̄ induced by
θ -restricted tolls τ̄ . Similarly, θ -restricted tolls τ are ρ-approximate for some ρ ≥ 1 if
C( f τ ) ≤ ρC( f τ̄) for all Nash flows f τ̄ induced by θ -restricted tolls τ̄ .

3 Computing Optimal θ -Restricted Tolls

We first give a characterization of the flows that are inducible by θ -restricted tolls for
single-commodity networks. This characterization will be the key to derive an algorithm
that computes optimal θ -restricted tolls for parallel-arc networks. All results presented
in this section hold for flow-dependent threshold functions θ .

3.1 Characterization of Inducible Flows for Single-Commodity Networks

We consider the problem of determining whether a given flow f is inducible by θ -
restricted tolls. We focus on the single-commodity case. As we will see, this problem
reduces to verifying whether there is a negative cycle in a properly constructed graph.

Suppose we are given a flow f . Recall that f is a Nash flow with respect to � + τ
iff for every two s,t-paths P,P′ ∈ P with fP > 0 it holds �P( f ) + τP ≤ �P′( f ) + τP′ .
Said differently, every flow-carrying path must be a shortest path with respect to the
combined cost φ := � + τ . Subsequently, let �a, τa and θa refer to �a( fa), τa( fa) and
θa( fa), respectively. (In the discussion below, several definitions will depend on the flow
f ; however, for notational convenience we often do not state this dependence explicitly.)

We use the following alternative characterization of Nash flows (see, e.g., [17]). For
every vertex u ∈ V , let δu be the length of a shortest path from s to u with respect to
�+ τ . Define A+ as the set of arcs with positive flow, i.e., A+ := {a ∈ A : fa > 0}. Then
f is a Nash flow with respect to φ = �+ τ if and only if (i) δv ≤ δu + �a + τa for every
arc a = (u,v) ∈ A, and (ii) δv = δu + �a + τa for every arc a = (u,v) ∈ A+.
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We can thus express the set F (θ ) of θ -restricted tolls that induce f as follows:

F (θ ) := {(τa)a∈A | δv − δu ≤ �a + τa ∀a = (u,v) ∈ A\A+

δv − δu = �a + τa ∀a = (u,v) ∈ A+

δu free ∀u ∈V
0 ≤ τa ≤ θa ∀a ∈ A}.

(2)

Note that the (δu)u∈V are unrestricted in this formulation. Alternatively, we could have
required that δs = 0 and δu ≥ 0 for every u ∈ V . However, this is equivalent to the
formulation (2) stated above.

We define a graph Ĝ = Ĝ( f ) = (V, Â) with arc-costs c : Â →R as follows: Ĝ contains
all arcs a = (u,v) ∈ A and, additionally, for every arc a = (u,v) ∈ A+ the reversed arc
(v,u). We call the former type of arcs forward arcs and the latter type of arcs backward
arcs. The cost of each forward arc a = (u,v) ∈ Â is equal to ca := �a + θa. Every back-
ward arc a = (v,u) ∈ Â has a cost equal to the negative of the latency of its reversed arc
(u,v) ∈ A, i.e., ca := −�(u,v).

Given some subset X of arcs and functions (ga)a∈X , we define g(X) as a short for
∑a∈X ga.

Theorem 1. Let f be an arbitrary feasible flow. Then f is inducible by θ -restricted
tolls if and only if Ĝ( f ) does not contain a cycle of negative cost.

Proof. Suppose Ĝ = Ĝ( f ) contains a cycle C ⊆ Â of negative cost. Since only backward
arcs have negative cost, at least one backward arc is part of C. Partition C into the set
F of forward arcs and the set B of backward arcs, respectively. Let B̄ denote the set of
reversed arcs in B. Note that B̄ ⊆ A+. We have c(C) = c(F)+ c(B) = �(F)+ θ (F)−
�(B̄) < 0.

Suppose for the sake of contradiction that τ = (τa)a∈A ∈ F (θ ) are feasible tolls
that induce f . By the feasibility of τ , we have for every forward arc a = (u,v) ∈ F ,
δv−δu ≤ �(u,v) +τ(u,v) and for every backward arc a = (u,v)∈B, δu−δv = �(v,u) +τ(v,u),
or equivalently, δv − δu = −�(v,u)− τ(v,u). Summing over all arcs in C, we obtain

0 = ∑
(u,v)∈C

δv − δu ≤ ∑
(u,v)∈F

�(u,v) + τ(u,v)− ∑
(u,v)∈B

�(v,u) + τ(v,u)

≤ �(F)+ θ (F)− �(B̄)− τ(B̄) < −τ(B̄),

where the last inequality follows from the observation above. Thus τ(B̄) < 0 which is a
contradiction since τa ≥ 0 for every arc a ∈ A.

Next suppose that Ĝ does not contain a negative cycle. We can then determine the
shortest path distance δu from s to every node u ∈ V in Ĝ with respect to c. (These
distances are well-defined because Ĝ does not contain a negative cycle.) Note that for
every arc a = (u,v) ∈ Â we have δv ≤ δu + c(u,v). Based on these distances, we extract
tolls τ := (τa)a∈A as follows: For every arc a = (u,v) ∈ A, we define τa := max{0,δv −
δu − �a}. We show that τ induces f . By definition, we have for every arc a = (u,v) ∈ A:
δv−δu−τa ≤ �a. Consider an arc a = (u,v)∈ A+. Then δu−δv ≤−�a, or equivalently,
δv −δu − �a ≥ 0. Thus, δv −δu −τa = �a. Clearly, τa ≥ 0 for every a ∈ A. Moreover, for
every arc a = (u,v) ∈ A we have δv − δu ≤ �a + θa and thus δv − δu − �a ≤ θa. We can
infer that τa ≤ θa for every a = (u,v) ∈ A. ��
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Note that the proof of the theorem also provides a way to extract the respective tolls
if f is inducible by θ -restricted tolls: Given f , we compute the shortest path distance
δu with respect to c from s to u for every u ∈ V and define the toll τa for every arc
a = (u,v) ∈ A as in the proof of Theorem 1.

The following corollary is an immediate consequence of the above theorem and the
fact that negative cycles can be detected efficiently (e.g., by the Bellman-Ford algo-
rithm).

Corollary 1. Given a flow f , we can determine in polynomial time whether f is in-
ducible by θ -restricted tolls.

3.2 Computing Optimal Tolls in Parallel-Arc Networks

In light of the above characterization, the problem of computing θ -restricted tolls such
that the cost C( f τ ) of the induced Nash flow f τ is minimized is equivalent to the prob-
lem of computing a minimum cost flow f such that Ĝ( f ) does not contain a negative
cost cycle. Once we have determined f , we can extract the optimal θ -restricted tolls
τ as defined in the proof of Theorem 1. This equivalence constitutes the basis of our
algorithm to compute optimal tolls in parallel-arc networks.

Let G = (V,A) be a parallel-arc network and let f be a feasible flow. The condition
of Theorem 1 then reduces to the following property: f is inducible by θ -restricted tolls
if and only if

∀a ∈ A, fa > 0 : �a( fa) ≤ �a′( fa′)+ θa′( fa′) ∀a′ ∈ A. (3)

Note that these conditions are similar to the Nash flow conditions in (1) (specialized to
parallel-arc networks) with the difference that we allow some additional slack θa′( fa′)
on the right-hand side. Thus, our goal is to determine a minimum cost flow f among all
flows that satisfy (3).

Corollary 2. The problem of computing optimal θ -restricted tolls for the parallel-arc
restricted network toll problem is equivalent to computing a minimum cost flow f sat-
isfying (3).

Computing a minimum cost flow can be done efficiently by solving a convex program.
However, here we need to ensure (3) additionally and it is a-priori not clear how to
encode these constraints. Note that for Nash flows the corresponding conditions are
ensured by applying the Karush-Kuhn-Tucker conditions to a convex program with an
appropriately chosen objective function. A similar approach does not work here because
we cannot deliberately choose an objective function and because of the asymmetry in
(3) (due to the slack).

Our approach exploits the following key insight. Fix some minimum cost flow f ∗

satisfying (3) and suppose we knew the minimum value z = min{�a(0)+ θa(0) | a ∈
A, f ∗a = 0} among all zero-flow arcs in f ∗. Let z = ∞ if all arcs have positive flow
in f ∗. We can then compute an minimum cost flow f z = ( f z

a)a∈A satisfying (3) as
follows. From (3) we infer that f z

a = 0 for every arc a ∈ A with �a(0) > z. Let
Az = {a ∈ A | �a(0) ≤ z} be the remaining arcs. On the arcs in Az, we compute a
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Algorithm 1. Algorithm to compute a minimum cost flow satisfying (3)

Let Z = {�a(0)+θa(0) | a ∈ A}.1

for every z ∈ Z∪{∞} do2

Define Az := {a ∈ A | �a(0) ≤ z}.3

Set f z
a = 0 for every a /∈ Az.4

Let ( f z
a)a∈Az be an optimal solution of cost Cz to the program in (4).5

(Remark: ( f z
a)a∈Az is undefined and Cz = ∞ if (4) is infeasible.)

end6

Return f = f z with Cz minimum among all z ∈ Z ∪{∞}.7

feasible flow ( f z
a)a∈Az of minimum cost satisfying �a( f z

a) ≤ z for every a ∈ Az and
�a( f z

a) ≤ �a′( f z
a′)+ θa′( f z

a′) for every a,a′ ∈ Az. The latter can be done by solving the
program:

Cz = min ∑a∈Az f z
a�a( f z

a)
s.t. ∑a∈Az f z

a = r
f z
a ≥ 0 ∀a ∈ Az

�a( f z
a) ≤ z ∀a ∈ Az

�a( f z
a) ≤ �a′( f z

a′)+ θa′( f z
a′) ∀a,a′ ∈ Az.

(4)

The only remaining problem is that we do not know z. However, because there are at
most |A|+ 1 different possibilities (including the case z = ∞), we can simply compute
a flow f z for each possible value z and finally return the best flow f that has been
encountered. The complete algorithm is summarized in Algorithm 1.

Theorem 2. Algorithm 1 computes a minimum cost flow f satisfying (3).

Proof. Let f = f z be the flow returned by Algorithm 1. Clearly, f is a feasible flow by
construction. We argue that f satisfies (3). Consider some a ∈ A+. Note that fa′ = 0 for
every arc a′ /∈ Az and thus a ∈ Az. Because ( fa)a∈Az is a feasible solution to (4), we have
�a( fa) ≤ z ≤ �a′(0) = �a′( fa′) for every a′ /∈ Az. Moreover, �a( fa) ≤ �a′( fa′)+ θa′( fa′)
for every a′ ∈ Az. Thus, f satisfies (3).

Let f ∗ be an optimal flow. We show that C( f ) ≤ C( f ∗). Define z as the minimum
value �a( f ∗a )+θa( f ∗a ) of a zero-flow arc a∈ A, i.e., z = min{�a(0)+θa(0) | a∈ A, f ∗a =
0}. Let z = ∞ if all arcs have positive flow. Note that f ∗a = 0 for every a /∈ Az and thus
C( f ∗) = ∑a∈Az f ∗a �a( f ∗a ). Observe that ( f ∗a )a∈Az is a feasible solution for the program in
(4) with respect to z. Thus C( f z) ≤ C( f ∗). Because C( f ) ≤ C( f z), this concludes the
proof. ��

Finally, observe that the program in (4) is convex if all latency and threshold functions
are affine, i.e., of the form q1x + q0 with q1,q0 ≥ 0. In particular, the constraints of (4)
are linear and the objective function is convex quadratic in this case, so the program can
be solved exactly in polynomial time [15].

Corollary 3. Algorithm 1 computes a minimum cost flow f satisfying (3) in polynomial
time if all latency and threshold functions are affine.

Hoefer et al. [12] derived a similar result for the special case that θa ∈ {0,∞} for every
arc a ∈ A.
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4 General Efficiency of θ -Restricted Tolls

We provide bounds on the efficiency of θ -restricted tolls for multi-commodity networks
with polynomial latency functions of degree p. Our approach is constructive: We show
how to compute θ -restricted tolls for a given instance of the restricted network toll
problem that guarantee the claimed efficiency bound. The results given in this section
hold for dynamic threshold functions.

Let Lp be defined as the set of all polynomial functions g of the form g(x) =
∑p

d=0 qdxd with non-negative coefficients qd , d = 0, . . . , p. Moreover, let Md refer to the
set of all monomial functions of the form �a(x) = qdxd with non-negative coefficient qd .
Suppose we are given an arc a ∈ A with �a ∈ Lp. We can replace a by a sequence of
p + 1 arcs with latency functions in Mp, . . . ,M0, respectively, in the obvious way. We
can therefore assume without loss of generality that all latency functions (�a)a∈A of the
given instance are monomials.

The basic idea is very simple. We define toll functions (τa)a∈A as follows:

τa(x) := min{x · �′a(x), θa(x)}. (5)

That is, on each arc a ∈ A, we impose marginal cost tolls x ·�′a(x) if this does not exceed
the threshold θa(x) and otherwise charge the maximum possible toll θa(x). Clearly,
these tolls are θ -restricted. Note that these tolls are dynamic. It is not hard to derive
tolls that are static and achieve the same efficiency (details will be given in the full
version).

Let φ := (φa)a∈A be the combined cost, i.e., for every a ∈ A, φa(x) := �a(x)+ τa(x)
for every x ≥ 0, and let f = f τ be a Nash flow with respect to φ . We next derive a
bound on the ratio C( f )/C( f ∗), where f ∗ is an optimal flow. We adapt the (λ ,μ)-
smoothness approach [18] (see also [3,10]). Because f is a Nash flow with respect
to φ , it satisfies the following variational inequality, i.e., for every feasible flow x,
∑a∈A φa( fa) fa ≤ ∑a∈A φa( fa)xa. By the definition of φ , we have

C( f ) ≤ ∑
a∈A

�a( fa)xa + τa( fa)(xa − fa) ≤ ∑
a∈A

ω(�a,λ )�a( fa) fa + λ �a(xa)xa, (6)

where we define

ω(�a,λ ) := sup
fa,xa≥0

(�a( fa)+ τa( fa)−λ �a(xa))xa − τa( fa) fa

�a( fa) fa
.

We assume by convention that 0/0 = 0. Finally, let ω(λ ) := supa∈A ω(�a,λ ). With this
definition, (6) implies C( f ) ≤ ω(λ )C( f )+ λC(x). Because ω(λ ) depends on λ , let Λ
refer to the values of λ such that ω(λ ) < 1. Then for every λ ∈ Λ , we obtain

C( f ) ≤ λ (1−ω(λ ))−1C(x). (7)

The goal is to find λ ∈ Λ that provides the best upper bound. We omit some proofs in
this section due to space restrictions.

Lemma 1. Let �a ∈ Md and define εa := τa( fa)/�a( fa). We have ω(�a,λ ) =( d(1+εa)
d+1

)( 1+εa
(d+1)λ

)1/d − εa. Moreover, ω(�a,λ ) < 1 for λ ≥
( 1+εa

d+1

)(
d

d+1

)d
.
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We continue to study the values for ω(�a,λ ) and λ . Observe that for every arc a ∈ A
with �a ∈ Md there are two possibilities for εa = τa( fa)/�a( fa): If τa( fa) = fa · �′a( fa)
then εa = d; otherwise, τa( fa) = θa( fa) < fa · �′a( fa) and thus εa = θa( fa)/�a( fa) < d.

We thus obtain
( 1+εa

d+1

)(
d

d+1

)d ≤
(

1+d
d+1

)(
d

d+1

)d . Choosing λ = 1 therefore satisfies
the restrictions imposed on λ in the above lemma (and is tight for d = 0). Subsequently,
we fix λ := 1. We need to derive an upper bound on ω(�a,1): Note that ω(�a,1) de-
creases as εa increases. This motivates the following definitions:

ε̄d = min{εa | a ∈ A, �a ∈ Md} and ω(d,1) = d
( 1+ε̄d

1+d

)1+1/d − ε̄d. (8)

With these definitions, we obtain ω(1) = maxd=0,...,p ω(d,1).

Corollary 4. Suppose ε̄d = d. Then ω(d,1) = 0.

Observe that if we have ε̄d = d for every d = 0, . . . , p then the above corollary in com-
bination with (7) implies that C( f ) ≤ C(x) (which actually follows readily from the
observation that in this case marginal cost tolls are θ -restricted and induce an optimal
flow).

In order to state our results below, it will turn out to be convenient to define

γ(d,ε) :=
(
(1 + ε)

(
1− d

d+1

(
1+ε
d+1

)1/d
))−1

.

Theorem 3. Given an instance of the restricted network toll problem with latency func-
tions in Lp, the efficiency of the tolls in (5) is no worse than maxd=0,...,p γ(d, ε̄d).

Proof. The proof follows from (7) with λ = 1 (λ ∈ Λ as argued above). ��
We give some interpretation of the above theorem. Our result suggests that it is more
important to impose large tolls on arcs with high degree latency functions than on the
ones with low degree functions. As an example, consider the following extreme situa-
tion: Suppose the restrictions (θa)a∈A are such that we can impose marginal cost tolls
on all arcs a ∈ A with latency functions of degree larger than t, and no tolls on all other
arcs. The above bound then proves that the tolls in (5) achieve an efficiency no worse
than the price of anarchy for degree t polynomials, i.e., γ(t,0) (see [19]).

We next show that the bound in Theorem 3 is tight.

Theorem 4. For every p and every choice of δ with 0 ≤ δ ≤ p there is a parallel-arc
instance of the restricted network toll problem with latency functions in Lp such that
the efficiency of the tolls in (5) is equal to γ(p,δ ).

The next corollary characterizes the efficiency of θ -restricted tolls enforcing that the
toll on each arc does not exceed an ε-fraction of the travel time along that arc. This
bound matches exactly the price of stability of ε-Nash flows shown by Christodoulou,
Koutsoupias and Spirakis [5].

Corollary 5. Given an instance of the restricted network toll problem with latency
functions in Lp and threshold functions of the form θa(x) = ε�a(x), the efficiency of
the tolls in (5) is no worse than 1 if ε ≥ p and no worse than γ(p,ε) otherwise.

Our approach can also be used to compute θ -restricted tolls that are ρ-approximate,
where ρ is the efficiency guarantee stated in Theorem 3 (details will be given in the full
version of the paper).
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Abstract. We embark on an agenda to investigate how stochastic delays and
risk aversion transform traditional models of routing games and the correspond-
ing equilibrium concepts. Moving from deterministic to stochastic delays with
risk-averse players introduces nonconvexities that make the network game more
difficult to analyze even if one assumes that the variability of delays is exogenous.
(For example, even computing players’ best responses has an unknown complex-
ity [24].) This paper focuses on equilibrium existence and characterization in the
different settings of atomic vs. nonatomic players and exogenous vs. endogenous
factors causing the variability of edge delays. We also show that succinct repre-
sentations of equilibria always exist even though the game is non-additive, i.e.,
the cost along a path is not a sum of costs over edges of the path as is typically
assumed in selfish routing problems. Finally, we investigate the inefficiencies
resulting from the stochastic nature of delays. We prove that under exogenous
stochastic delays, the price of anarchy is exactly the same as in the corresponding
game with deterministic delays. This implies that the stochastic delays and play-
ers’ risk aversion do not further degrade a system in the worst-case more than the
selfishness of players.

Keywords: Non-additive nonatomic congestion game, stochastic Nash equilib-
rium, stochastic Wardrop equilibrium, risk aversion.

1 Introduction

Heavy traffic and the uncertainty of traffic conditions exacerbate the daily lives of mil-
lions of people across the globe. According to the 2010 Urban Mobility Report [32],
“in 2009, congestion caused urban Americans to travel 4.8 billion hours more and to
purchase an extra 3.9 billion gallons of fuel for a congestion cost of $115 billion.” For a
comparison, that congestion cost was $85 billion in 1999. High and variable congestion
necessitates drivers to buffer in extra time when planning important trips. The recom-
mendation in the report was to consider a buffer of approximately 30% (Los Angeles)
to 40% (Chicago) more than the average travel time, and around twice as long as the
travel time at night when traffic is light.

A common driver reaction in the face of heavy and uncertain traffic conditions is to
look for alternate, sometimes longer but less crowded and less variable routes [15]. With
the widespread use of ever-improving technologies for measuring traffic, one might
ask: is there a way to game the system? What route should be selected given other
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drivers’ route choices? Considering routing games on networks where delay functions
are stochastic, we analyze the resulting equilibria when strategic, risk-averse commuters
take into account the variability of delays. This approach generalizes the traditional
model of Wardrop competition [37] by incorporating uncertainty.

Risk aversion forces players to go beyond considering expected delays. Since it is
unlikely that they base their routing decisions on something as complicated as a full
distribution of delays along an exponential number of possible paths, it is reasonable
that considering expected delays and their standard deviations is a good first-order ap-
proximation on route selection. To incorporate the standard deviation of delays into the
players’ objectives, we consider the traditional mean-standard deviation (mean-stdev)
objective [14,18] whereby players minimize the cost on a path, defined as the path mean
plus a risk-aversion factor times the path standard deviation.1 By linearity of expecta-
tions, the mean of the path equals the sum of the means over all its edges. However, the
standard deviation along a path does not decompose as a sum over edges because of the
risk-diversification effect. Instead, it is given by the square root of the sum of squared
standard deviations on the edges of that path. Due to the complicating square root, a sin-
gle player’s subproblem—a shortest path problem with respect to stochastic costs—is a
nonconvex optimization problem for which no polynomial running-time algorithms are
known. This is in sharp contrast to the subproblem of the Wardrop network game—a
shortest path problem, which admits efficient solutions.

A compelling interpretation of this objective in the case of normally-distributed un-
certainty is that the mean-stdev of a path equals a percentile of delay along it. This
model is also related to typical quantifications of risk, most notably the value-at-risk
objective commonly used in finance, whereby one seeks to minimize commute time
subject to arriving on time to a destination with at least, say, 95% chance.

Our mean-stdev model works for arbitrary distributions with finite first and second
moment. To simplify the analysis, throughout this paper we assume that delays of dif-
ferent edges are uncorrelated. Nevertheless, a limited amount of correlation is to be
expected in practice; for example, if there is an accident in a location, it causes ripple
effects upstream. We remark that local correlations can be addressed with a polyno-
mial graph transformation that encodes correlation explicitly in edges by modifying the
standard-deviation functions with correlation coefficients [23]. This results in a graph
with independent edge delays where all our results and algorithms carry through.

Related Work. Our model is based on the traditional competitive network game intro-
duced by Wardrop in the 1950’s where he postulated that the prevailing traffic condi-
tions can be determined from the assumption that players jointly select shortest routes
[37]. The game was formalized in an influential book by Beckmann et al. that lays out

1 Another alternative would have been to consider the mean-variance objective. This approach
reduces to a deterministic Wardrop network game in which the edge delay functions already
incorporate the information on variability. However, the mean and variance are measured in
different units so a combination of them is hard to interpret. In addition, under this objective
it may happen that players select routes that are stochastically dominated by others. Although
this counterintuitive phenomenon may also happen under the mean-stdev objective with some
artificially constructed distributions, it is guaranteed not to happen under normal distributions.
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the mathematical foundations to analyze competitive networks [4]. These models find
applications in various domains such as transportation [33] and telecommunication net-
works [1]. In the last decade, these games received renewed attention with many studies
aimed at understanding under what conditions equilibria exist, what uniqueness proper-
ties they satisfy, how to compute them efficiently, how expensive they are in relation to
a centralized solution, and how to align incentives so the equilibria become optimal. For
general references on these topics, we refer the readers to some recent surveys [9,27].

In the majority of models used by theoreticians who study the properties of network
games, and by practitioners who compute solutions to real problems, delays have been
considered deterministic. Although there are models that incorporate some form of un-
certainty [3,5,16,17,19,36], none of these models has become widely accepted in prac-
tice, nor have they been extensively studied. Perhaps the only exception is the stochastic
user equilibrium model, introduced by Dial in the 1970’s [11], which has been studied
and used in practice (see, e.g., [34,35]). Under it, different players perceive each route
differently, distributing demand in the network according to a logit model. To reduce
route enumeration, the model just takes into account a subset of “efficient routes.” In
contrast, the objective of the players in the network game we consider is to choose the
path that minimizes the mean plus a multiple of the standard deviation of delay. This
problem belongs to the class of stochastic shortest path problems (see, for instance,
some classic references [2,6] and some newer ones [12,13,25,22]).

In the network games literature, the model most related to our work is that of Ordóñez
and Stier-Moses [28]. They introduce a game with uncertainty elements and risk-averse
users and study how the solutions provided by it can be approximated numerically by
an efficient column-generation method that is based on robust optimization. The main
conclusion is that the solutions computed using their approach are good approxima-
tions of percentile equilibria in practice. Here, a percentile equilibrium is a solution in
which percentiles of delays along flow-bearing paths are minimal. The main difference
between their approach and ours is that their insights are based on computational ex-
periments whereas the current work focuses on theoretical analysis and also considers
the more general settings of endogenously-determined standard deviations and atomic
games.

Next, we formally define our model and equilibrium concepts and study the existence
of equilibrium under exogenous (Section 3) and endogenous (Section 4) variability of
delays. We summarize these results in Table 1. We then prove that equilibria that use
polynomially-many paths—referred to as succint—exist (Section 5), and finally we an-
alyze properties of the socially-optimal solution and study the inefficiency of stochastic
Wardrop equilibria (Section 6).

2 The Model

We consider a directed graph G = (V, E) with an aggregate demand of dk units of
flow between source-destination pairs (sk, tk) for k ∈ K . We let Pk be the set of all
paths between sk and tk, and P := ∪k∈KPk be the set of all paths. We encode players
decisions as a flow vector f = (fπ)π∈P ∈ R

|P|
+ over all paths. Such a flow is feasible

when demands are satisfied, as given by constraints
∑

π∈Pk
fπ = dk for all k ∈ K .
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Table 1. Equilibria in Stochastic Routing Games

Exogenous Noise Endogenous Noise
Nonatomic Equilibrium exists; Equilibrium exists;

Users Solves exponentially-large convex program Solves variational inequality

Atomic Equilibrium exists; No pure strategy equilibrium
Users Potential game

For simplicity, when we write the flow on an edge fe depending on the full flow f , we
refer to

∑
π�e fπ. When we need multiple flow variables, we use the analogous notation

x, xπ , xe.
The congestible network is modeled with stochastic delay functions �e(xe)+ ξe(xe)

for each edge e ∈ E. Here, �e(xe) measures the expected delay when the edge has flow
xe, and the random variable ξe(xe) represents the stochastic delay error. The function
�e(·) is assumed continuous and non-decreasing. The expectation of ξe(xe) is zero and
its standard deviation is σe(xe), for a continuous and non-decreasing function σe(·).
Although the distribution may depend on xe, we will separately consider the simpli-
fied case in which σe(xe) = σe is a constant given exogenously, independent from xe.
We also assume that these random variables are all uncorrelated with each other. Risk-
averse players choose paths according to the mean-standard deviation (mean-stdev) ob-
jective, which we also refer to as the cost along route π:

Qπ(f) :=
∑
e∈π

�e(fe) + γ

√∑
e∈π

σe(fe)2 , (1)

where γ ≥ 0 quantifies the risk aversion of players, assumed homogeneous.
The nonatomic version of the game considers the setting where infinite players con-

trol an insignificant amount of flow each so the path choice of a player does not uni-
laterally affect the costs experienced by other players (even though the joint actions
of players affect other players). The following definition captures that at equilibrium
players route flow along paths with minimum cost Qπ(·).

Definition 1. The stochastic Wardrop equilibrium of a nonatomic routing game is a
flow f such that for every source-destination pair k ∈ K and for every path π ∈ Pk

with positive flow, Qπ(f) ≤ Qπ′(f) for every path π′ ∈ Pk .

Instead, the atomic version of the game assumes that each player wishes to route one
unit of flow. Consequently, the path choice of even one player directly affects the costs
experienced by others. There are two versions of the atomic game: in the splittable
case players can split their demands along multiple paths, and in the unsplittable case
they are forced to choose a single path. In this paper we focus on the atomic unsplit-
table case, which we will sometimes refer to just as atomic. The natural extension of
Wardrop equilibrium to the atomic case only differs in that players need to anticipate
the effect of a player changing to another path. This game always admits a mixed-
strategy equilibrium (under the standard expected payoffs with respect to the mixing



318 E. Nikolova and N.E. Stier-Moses

probabilities) because it is a finite normal-form game [21], so we focus on the existence
of pure-strategy equilibria.

Definition 2. A pure-strategy stochastic Nash equilibrium of the atomic unsplittable
routing game is a flow f such that for every source-destination pair k ∈ K and for
every path π ∈ Pk with positive flow, we have that Qπ(f) ≤ Qπ′(f + Iπ′ − Iπ) for
every π′ ∈ Pk . Here, Iπ denotes a vector that contains a one for path π and zeros
otherwise.

One of the goals of this work is to evaluate the performance of equilibria. Hence, we
define a social cost function that will allow us to compare different flows and determine
the inefficiency of solutions. The social cost function is the total cost among players:

C(f) :=
∑
π∈P

fπQπ(f) . (2)

3 Exogenous Standard Deviations

In this section, we consider exogenous noise factors, which result in constant standard
deviations σe(xe) = σe that do not depend on the flow on the edge. In this case, the path
cost (1) can be written as Qπ(f) =

∑
e∈π �e(fe) + γ(

∑
e∈π σ2

e)1/2. We investigate the
existence of equilibria and provide a characterization. First, we show that an equilibrium
always exists, despite the challenge posed by the non-additive cost function. Due to
space restrictions, missing proofs can be found in the full version of this paper.

Theorem 1. A nonatomic routing game with exogenous standard deviations always
admits a stochastic Wardrop equilibrium.

The proof uses a path-based convex programming formulation given by Ordóñez and
Stier-Moses [28]:

min
{∑

e∈E

∫ xe

0

�e(z)dz+
∑
π∈P

γfπ

√∑
e∈π

σ2
e : such that xe =

∑
π∈P: e∈π

fπ for e ∈ E,

dk =
∑

π∈Pk

fπ for k ∈ K, fπ ≥ 0 for π ∈ P
}

. (3)

Besides proving existence, the formulation also provides a way to compute this equilib-
rium using column generation. We remark that this method typically will not use many
paths and hence, it is likely to be practical. In addition, the formulation implies that the
equilibrium is unique, provided that the objective function (3) is strictly convex:

Corollary 1. The equilibrium of the stochastic nonatomic routing game with exogenous
standard deviations is unique (in terms of edge loads) whenever the expected delay
functions are strictly increasing.
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We now return briefly to the question of computation. The convex program (3) con-
tains exponentially-many variables (the flows on all paths) and a polynomial number
of constraints. We will see in Section 5 that an equilibrium always has a succinct de-
composition that uses at most |E| paths; unfortunately, since we do not know ahead
of time which paths these are, we cannot write a succinct version of the convex pro-
gram. In the case of constant expected delays, the objective (3) coincides with the social
cost, and both problems reduce to computing a stochastic shortest path for each source-
destination pair. Thus, both the equilibrium and social optimum computation are at least
as hard as the stochastic shortest path problem [26,24].

Theorem 2. When the expected delays and standard deviations are constant for each
edge, the equilibrium and social optimum coincide and can be found in time nO(log n).

Now, we switch to the atomic unsplittable case and show that the stochastic routing
game admits a potential function. We prove this using the characterization given by
Monderer and Shapley [20]. The potential game structure implies that an equilibrium
always exists.

Theorem 3. An atomic unsplittable routing game with exogenous standard deviations
is potential and, therefore, it always admits a pure-strategy stochastic Nash equilibrium.

In contrast to the uniqueness of equilibrium in the nonatomic game, the pure-strategy
equilibria in the atomic case need not be unique because they are a generalization of
those in deterministic games, which admit multiple equilibria. (For example, a game
with two players with a unit demand choosing among three parallel edges with �e(xe) =
xe and σe = 0 admits three equilibria.)

4 Endogenous Standard Deviations

In this section, we consider flow-dependent standard deviations of edge delays. This
makes the standard deviations endogenous to the game. We show that equilibria exist
in the nonatomic game but they may not exist in the atomic game.

The following example illustrates how an equilibrium changes under endogenous
standard deviations. Assume a demand of d = 1 and consider a network consisting of
two parallel edges with delays �1(x) = x and �2(x) = 1, followed by a chain of k
edges that players must traverse. This instance admits two paths, each comprising one
of the two parallel edges and the chain. We let L denote the expected delay along the
chain (a constant since the flow traversing it is fixed) and assume that σe(xe) = sxe for
all edges, for some constant s ≥ 0. Although both the deterministic and the exogenous
standard-deviation games are equivalent to Pigou’s instance [30,31], the equilibrium
with endogenous standard deviations changes significantly. Indeed, it is given by a root
of the degree-4 polynomial (1− 4s2)x4 + 4s2x3 + (4s4 − 2s2 − 4ks2)x2 − 4s4x + s4

such that x ∈ [0, 1], which in principle might not exist (where x denotes the flow on one
of the two paths). An insight with algorithmic implications arising from this example
is that an equilibrium in the stochastic game does not decompose to equilibria in sub-
graphs of the given graph, and in fact it may be quite different from the equilibria in the
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subgraphs. Hence, it is not immediate how to decompose the problem by partitioning a
graph into smaller pieces.

We can show the existence of equilibrium in the general nonatomic setting via a
variational inequality. In fact, the following results also hold in the much more general
setting where edge-delay functions depend on the full vector of flows, as long as this
dependence is continuous.

Theorem 4. The nonatomic game with endogenous standard deviations admits a
stochastic Wardrop equilibrium.

In contrast to the case of exogenous standard deviations, however, the game with en-
dogenous standard deviations is not potential [20] and equilibria cannot be character-
ized as the solution to a global optimization problem.

Proposition 1. The stochastic routing game with nonconstant variances does not admit
a cardinal potential.

As in the deterministic case, the stochastic game may have multiple edge-flow equilibria
when the delays and variances are not strictly increasing. An open question that remains
is whether the equilibrium is unique when the expected delay and/or standard-deviation
functions are strictly increasing. The standard approach to establish the uniqueness of a
solution to a variational inequality is to show the monotonicity of the path-cost operator
(the vector of path cost functions for all paths). However, neither monotonicity, nor a
weaker notion of pseudo-monotonicity holds for our problem.

Proposition 2. The path-cost operator of the nonatomic routing game with endogenous
standard deviations is not pseudo-monotone.

Although we were not able to prove uniqueness in general, we can do so in the extreme
cases of players’ risk attitudes. We do so by showing that in those cases the stochastic
game resembles a deterministic one.

Proposition 3. In the two extreme settings where players are either risk-neutral or in-
finitely risk averse, the nonatomic routing game admits a unique stochastic Wardrop
equilibrium, for strictly increasing expected edge delays and standard deviations.

In contrast to the existence of equilibria in nonatomic games, there are atomic games
that do not admit a pure-strategy Nash equilibrium. Mixed-strategy equilibria always
exist because the game is finite [21].

Proposition 4. The atomic unsplittable routing game with endogenous standard devi-
ations may not have pure-strategy Nash equilibria, even in the case of a single source-
destination pair in a series-parallel network with affine edge mean and standard-
deviation functions.

5 Succinct Representations of Equilibria

We now turn our attention to how one can decompose an equilibrium of the nonatomic
game represented as an edge-flow vector to a path-flow vector, and to whether a
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succinct vector of path flows at equilibrium always exists. The first question is trivial in
the deterministic routing game: any path-flow decomposition of an edge flow at equi-
librium works since path costs are additive. Instead, path costs of the stochastic game
are non-additive and different flow decompositions of the same edge flow may incur
different path costs. In particular, for an edge flow at equilibrium, some path-flow de-
compositions are at equilibrium and others are not. This is captured by the next lemma
which illustrates that shortest paths with respect to path costs do not need to satisfy
Bellman equations since a subpath of a shortest path need not be shortest.

Lemma 1. In a nonatomic game, not all path-flow decompositions of an edge flow at
equilibrium constitute an equilibrium.

The previous lemma prompts the question of how one can find a flow decomposition
of an equilibrium given as an edge flow. Does a succinct decomposition always exist
(namely one that assigns positive flow to only polynomially-many paths)? The next
few results provide positive answers to these questions. We show that succinct flow
decompositions exist and they can be found in time slightly larger than polynomial,
|V |O(log |V |), which is the best-known running time of an exact algorithm for solv-
ing the underlying stochastic shortest path problem [26]. Alternatively, using a fully-
polynomial approximation algorithm for the stochastic shortest path problem [24], one
can find approximate flow decompositions of equilibria in polynomial time. We first
provide a characterization of flow decompositions of equilibria that will enable us to
show the existence of succinct decompositions.

Lemma 2. Consider a flow decomposition fP of an edge-flow equilibrium with support
P ⊂ P (the set of paths with positive flow). Then, every flow decomposition whose
support is a subset of P and whose resulting edge flow is the same as that of fP is also
at equilibrium.

Using the lemma above, we can prove the existence of succinct equilibrium decompo-
sitions.

Theorem 5. For an equilibrium (fe)e∈E given as an edge flow, there exists a succinct
flow decomposition that uses at most |E| paths. Furthermore, this decomposition can be
found in time |V |O(log |V |), and an ε-approximate equilibrium succinct decomposition
can be found in polynomial time.

It remains open whether finding an equilibrium can be done in polynomial time. This
is related to the open question of whether the stochastic shortest path subproblem is in
P [26].

Corollary 2. Given an edge flow, we can verify that it is at equilibrium in time
|V |O(log |V |).

Analogously, we can verify that a given set of player strategies (paths) in the atomic
setting forms an equilibrium in time |V |O(log |V |).



322 E. Nikolova and N.E. Stier-Moses

6 Price of Anarchy

In this section we compute bounds for the price of anarchy (POA) for stochastic Wardrop
equilibria of the nonatomic game. Recall that the price of anarchy is defined as the
supremum over all problem instances of the ratio of the equilibrium cost to the social
optimum cost [29]. In the case of exogenous standard deviations, the POA turns out to
be the same as in the corresponding deterministic game: it is 4/3 for linear expected
delays and (1 − β)−1 for general expected delays for an appropriate definition of β as
in Correa et al. [7] for the corresponding deterministic routing game. The bounds result
from a modification of the bounding techniques of Correa et al. [7,8].

In the case of endogenous standard deviations, an analysis of the price of anarchy
is more elusive and it remains open whether the equilibrium is unique. For this reason,
we focus our analysis to the limiting case of extreme risk aversion (the other extreme
case, where users are risk neutral, is well-understood). Hence, we assume that path costs
are equal to the path standard deviations Qπ(f) = (

∑
e∈π σe(fe)2)1/2. Recall that in

this extreme case, Proposition 3 implies that there is a unique equilibrium that can be
computed efficiently with a convex program.

We now show that the first order optimality conditions of the optimization problem
that defines socially-optimal solutions are satisfied at the equilibrium, when standard-
deviation delay functions are monomials of the same degree. Note that in the deter-
ministic case, it is known that the POA is exactly one precisely for that class of delay
functions [10].

Theorem 6. Consider a nonatomic network game with endogenous standard devia-
tions of the form σe(xe) = aex

p
e for some fixed p ≥ 0. An equilibrium of the game is a

stationary point of the social-optimum (SO) problem

min
{∑

π∈P
fπQπ(f) :

∑
π∈Pk

fπ = dk ∀k ∈ K and fπ ≥ 0 ∀π ∈ P
}

.

As a corollary from the above theorem, whenever the SO problem has a unique station-
ary point, it would follow that equilibria and social optima coincide and, consequently,
the price of anarchy would be 1. Before we identify settings for which convexity of the
social cost holds, we show that despite the somewhat misleading square root, the path
costs are convex in the edge-flow variables when the standard deviations σe(xe) are
convex functions.

Proposition 5. The path costs Qπ(x) = (
∑

e∈π σe(xe)2)1/2 are convex whenever the
edge standard-deviation functions σe(xe) are convex.

As a corollary from Proposition 5 and from the fact that the sum of convex functions
is convex, it follows that path costs are also convex in the general case where the path
cost is a sum of the mean and standard deviation of the path, as long as the edge mean
and standard-deviation functions are convex in the edge flow.

Next, we identify sufficient conditions for the convexity of the social cost, which bear
an intriguing resemblance to the sufficient conditions for the uniqueness of equilibrium
mentioned earlier.
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Fig. 1. Non-convex slice of the social cost function

Proposition 6. The social cost C(x) = xQ(x) =
∑

π∈P xπQπ(x) is convex whenever
the path-cost operator Q is monotone and the path costs Qπ(x) are convex.

As established above, the path costs are convex (under convex standard-deviation func-
tions), however the path-cost operator is not necessarily monotone even in the basic
case of linear standard deviation functions equal to σe(x) = x, and thus, the social cost
may not be convex as shown in Figure 1. Nevertheless, we can still show that the POA
is 1 in a network of n pairs of parallel edges connected in series.

Proposition 7. Consider a nonatomic game on a network of n pairs of parallel edges
connected in series with zero mean delays and standard deviation functions equal to
σe(x) = x for all edges. In this case, socially-optimal flows and equilibria coincide.

Despite the limitation of the hypothesis, the proof requires a careful analysis to bound
the social cost, in contrast to our results for exogenous standard deviations under gen-
eral graphs and costs. For the case of endogenous standard deviations, whether the
nonconvexity of the social cost can be circumvented to obtain price of anarchy bounds
for more general graphs and delay functions remains open.

7 Conclusions and Open Problems

We have set out to extend the classical theory of Wardrop equilibria and congestion
games to the more realistic setting of uncertain delays, focusing on the methodology
and questions of algorithmic game theory. The uncertainty of delays calls for models
that incorporate players’ attitudes towards risk. In this paper, we have focused on the
model whereby players seek to minimize a linear combination of the expectation and
standard deviation of delays along their chosen route.

The directions pursued in this work have opened a variety of questions which would
be interesting to explore in future studies. Some of these questions are:
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– What is the complexity of computing an equilibrium when it exists (exogenous
standard deviations with atomic or nonatomic players; endogenous standard devia-
tions with nonatomic players)?

– What is the complexity of computing the socially-optimal solution? What is the
complexity of computing the socially-optimal flow decomposition if one knows
the edge flow that represents a socially-optimal solution?

– Can there be multiple equilibria in the nonatomic game with endogenous standard
deviations?

– What is the price of anarchy for stochastic Wardrop equilibria in the setting of
nonatomic games with endogenous standard deviations, for general graphs and gen-
eral classes of cost functions?

– Ordóñez and Stier-Moses considered the case of players with heterogenous attitudes
toward risk [28]. Can some of the results in this paper be extended to that setting?

Of course, one could pursue other natural models and player utilities and build on or
complement what we have developed here. In particular, our model might be enriched
by also considering stochastic demands to make the demand side more realistic.
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