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Abstract. We present the relational database schema aimed at effi-
cient storage and querying parsed scientific articles, as well as entities
corresponding to researchers, institutions, scientific areas, et cetera. An
important requirement in front of the proposed model is to operate with
various types of entities, but with no increase of schema’s complexity. An-
other aspect is to store detailed information about parsed articles in order
to conduct advanced analytics in combination with the domain knowl-
edge about scientific topics, by means of standard SQL and RDBMS
management. The overall goal is to enable offline, possibly incremental
computation of semantic indexes supporting end users via other mod-
ules, optimized for fast search and not necessarily for fast analytics, as
well as direct ad-hoc SQL access by the most advanced users.

Keywords: RDBMS systems, database schema optimization, SQL-based
analytics, document repositories, information retrieval and synthesis.

1 Introduction

One of the major functionalities of the “Interdisciplinary System for Interactive
Scientific and Scientific-Technical Information” – a scientific project financed by
Polish Government in 2010-20131 – is to analyze and intelligently index large
collections of scientific articles [12]. From technical point of view, it requires
fast access to heterogeneous sources of articles, as well as convenient means for
storing information retrieved from those articles. Such tasks may be partially
compared to building and using various types of indexes in the Web search
and enterprise search solutions. However, one should note that building truly
meaningful indexes and other, more compound types of information may require
processing and comparing huge sets of articles. Also, the level of detail while
accessing and comparing those articles may be crucial for the quality of results.

During initial investigation, as in many other real-life projects, we quickly re-
alized that there might be no single database/repository methodology perfectly

1 http://ismis2011.ii.pw.edu.pl/post_conference_event.php
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addressing all of the above expectations [1]. For example, dedicated document
stores seem to be the best ones for gathering and managing original files and
metadata of articles acquired from different sources, with an additional option
of applying structural retrieval / OCR algorithms to their particular instances.
On the other hand, standard RDBMS engines or key-value stores are appro-
priate for providing results of the indexing and analytic processes to end users
and external tools aiming at search and visualization of the scientific contents.
Going further, more analytic-oriented RDBMS solutions are a better choice for
managing information about articles and other related entities in a form of data
tables that can be efficiently queried using aggregate, nested, quite often ad-hoc
SQL statements generated by advanced users or generated automatically by the
data mining algorithms aimed at ranking, grouping, et cetera.

In this paper, we concentrate on the last of above aspects, particularly, a
relational model for information about articles and related entities that may be
appropriate for compound SQL-based analytics. At the beginning, our intension
was to store in such model only relatively high-level information and metadata
available for articles, in combination with the history of system’s usage and the
domain knowledge about scientific areas – everything expressed within a unified
relational database schema. Actually, we could see similar attempts also in other
projects [7], which provided us with additional inspiration and technical hints.
However, encouraged by some recent examples of data warehouses storing far
more detailed information about compound entities, such as natural language
[8] and multimedia [15], we decided to enrich our originally planned model by
fully parsed texts of articles (and descriptions of other entities).

The paper is organized as follows: Section 2 outlines fundamental require-
ments for the relational database schema and its integration with other modules
in the project. Section 3 contains preliminary analysis of the most significant
challenges and their possible solutions. Section 4 describes three major areas of
our schema: generic, analytic, and ontological, populated with instances, objects,
and concepts, respectively. Section 5 concludes the paper.

2 Requirements

In order to establish fully functional solution, we keep information about articles
and their related entities in two forms – document repository optimized for
navigation and RDBMS optimized for analytics. This way, we achieve duality
of scientific content storage which has important implications for efficiency and
scalability of algorithms designed within the project [12]. It is thus important to
consider two levels of requirements: the specifics of relational database schema
and the way of interaction of RDBMS part of solution with other modules. Let
us outline the main requirements at the first level:

– there are three kinds of information to be stored: gained directly from parsed
documents, related to domain knowledge delivered by experts or gained from
well-known sources, and retrieved by combining two above kinds
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– it has to be prepared for noisy and incomplete information (e.g.: missing
metadata, different input file formats, partially known article structure)

– large volumes of data to be stored in a form enabling advanced analytics
– multiple instances of the same objects (articles, scientists, institutes) may

occur because algorithms aimed at avoiding such cases prior to loading data
into RDBMS may be insufficient

– it should be open for adding new types of information and entities but in a
flexible way, i.e., additions should not enforce schema modifications

– it should enable indexing, querying, and generally reasoning about each part
(e.g.: abstract, section) of an article separately and, if necessary, combining
results in an article’s structure-aware way.

As for the second level of requirements, RDBMS part is going to rebuild its
content in an offline fashion. The latest, not yet processed articles (we use times-
tamp to identify such articles) can be parsed cyclically (e.g.: every week) and
then loaded to RDBMS in a bulk load style. The results of SQL-based algo-
rithms working on the relational database can be exported cyclically to external
layers, to support search capabilities and user interfaces. On the other hand, the
whole data stored in RDBMS should be permanently available to advanced users
who (when permitted) can generate direct SQL statements and project members
working on algorithmic enhancements (often requiring dynamic creation of new
intermediate tables or unmaterialized views).

Given the above scenarios, we tend to look at RDBMS solutions with good
data compression and/or abilities to distribute data and query workloads. How-
ever, we need to remember that standard MPP database solutions [6] or, e.g.,
extensions towards MapReduce computations [13] may be risky given a need
to process truly compound and diversified analytics. More information about
applied software can be found in [12]. In this paper, we focus mainly on the
relational database schema specification, although we also comment on some
performance results obtained by using one of RDBMS engines [16].

3 Preliminaries

3.1 Multiple Instances of the Same Object

One of the problems that we encountered during the schema design was the
existence of potentially many instances of the same article in various suppliers’
resources (given some analogies to popular search engines, we may call it du-
plication). Such cases may actually occur also for other types of objects, e.g.,
scientists or institutes. While parsing and loading information about new arti-
cles, we retrieve lots of meaningful information about their authors, references,
et cetera. However, in order to keep the loading processes as simple and realistic
as possible, we do not conduct full checking whether (and to what degree) the
retrieved entities are instances of objects already stored in RDBMS part.

From the system effectiveness and results representation points of view, it is of
course more useful to get information about, e.g., a book in general rather than
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about its specific PDF or scanned versions. It brings us to the task of recognizing
such situations within RDBMS and storing the relevant information at the level
of equivalence classes of instances corresponding to the same objects. As already
mentioned, it might be partially implemented online, during data load, however
too sophisticated techniques would significantly decrease the load speed. It may
also yield biased results as there is an asymmetry of information between the
beginning and the end of load. Thus, we should rather implement and trigger
the matching (deduplication) mechanisms after each bigger data load. There are
surely plenty of possible matching techniques basing on instances’ metadata or
their internal structures (see e.g. [17]). Most of them can be successfully trans-
lated into SQL-based analytic processes, additionally supported (if necessary)
by accessing the document store counterpart discussed in Section 2.

As a result, we introduce double identification for entities. First, during
new publications (and other types of entities or their parts) are added, the
new instances are created, assigned with the first level identifiers (column
id_instance). Then, the matching algorithms merge instances (or their parts)
into objects, which are basically the classes of (parts of) instances, assigned with
the second level identifiers (column id_object). All answers for queries submit-
ted to the system by users are assumed to concern the id_object level.

3.2 Sources of Information

There may be multiple algorithms for retrieving information from articles and
other entities. In order to identify entities obtained using different algorithms,
we introduce the source of information. Each (version of) algorithm has its cor-
responding id_source. Algorithms’s description is available in additional table
SOURCE comprising of columns id_source (INT) and source_name (VARCHAR,
e.g.: ’wikipedia_eng_20101231’ or ’heuristic_X’).

3.3 DICTIONARY Data Type

We introduce the DICTIONARY column type, which reflects a kind of internal
normalization of relational database schema. Each value of a column of DICTIO-
NARY type is assumed to be internally encoded as an integer, stored effectively
inside a database engine. Some RDBMS technologies actually support this kind
of functionality [16]. Such mechanism is then totally transparent to end users,
because columns remain visible with their original data types.

3.4 Adaptation of Existing Solutions

We use experiences of some finished or lasting projects and approaches to design
a model meeting requirements formulated in Section 2, according to relatively
standard modeling processes [18]. We adapted some solutions related to types of
relations and multilingual sources from CERIF project [7]. We were also inspired
by some entity-attribute-value (eav) variants [5] and some techniques of storing
xml files in relational databases [4].



RDBMS Model for Scientific Articles Analytics 53

Fig. 1. Universal schema of assigning properties to entities and relations to entity pairs.
In Section 4, we consider three sets of tables for three various entity semantics.

We store all properties of entities and all relations between entities in two
tables. Thus, in order to add a new type of property or relation to the system,
it is enough to insert a new row into one of tables displayed in Figure 1. This
way, we avoid creating too many tables. We take the advantage of this universal
solution in several areas of our model. The values of relations (e.g. ’IsAutho-
rOf’, ’IsAffiliatedTo’) are coded in DICTIONARY manner and stored in table
ENTITY_ENTITY. The values of properties are coded as integers and stored in ta-
ble ENTITY_PROPERTY. Their values can be decoded using table PROPERTY_VALUE
with specific lingual context. For example, we can store the same person alias as
’Kolmogorov’ (for English) and ’Kołmogorow’ (Polish).

Where justified, there is temporality of described assignment for properties
and relations taken into account. It is done by introducing validation time win-
dows. There are two timestamps – start_date and end_date. If a given property
or relation is not temporal, then we set up its corresponding start_date and
end_date to minimum and maximum possible values, respectively.

There is always some tradeoff between effectiveness of storing data and easi-
ness of their usage. One might consider our approach ineffective because of the
size of tables ENTITY_PROPERTY and ENTITY_ENTITY but there are RDBMS so-
lutions that can easily cope with this problem [16]. In future, in order to further
increase effectiveness of a database engine, we can also consider some techniques
of organizing data (such as partitioning, sorting, clustering), as well as some
analytic algorithms that can work with faster approximate SQL queries.
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Fig. 2. Generic part of the proposed schema

4 Three Major Areas

4.1 Generic Area: Instances

This area contains only tables in which the primary keys include id_instance.
Table INSTANCE corresponds to detailed information about instances – entities
that we are able to distinguish while parsing the raw data (nxml files, which
may result from various techniques of structural document segmentation and
generally understood OCR [2,12]). At the current stage of our project these are:
persons, documents, and organizations. This table contains information about
structures of documents. In particular, we store information about documents
decomposed onto parts such as abstract, section, bibliography et cetera. Each
decomposed part is treated as a separate instance (together with information
about its structural membership to a higher-level instance), which enables us to
operate with the parts of documents when creating semantic indexes and con-
ducting ad-hoc analytics. For example, investigation of trends in some domains
of science may be enriched by the analysis of occurrences of concepts related
to that domain in the concluding sections (summaries, directions for further re-
search) of earlier articles followed by their analogous occurrences in technical
sections of later articles. We go back to this topic in Section 4.4.

Some discussion how to efficiently store various xml-like structures in a rela-
tional database can be found, e.g., in [10]. The proposed schema refers to the
state of the art in this area, although it contains also some specific solutions
reflecting the nature and quality of the input data. Generally, we may expect
two categories of instances – those corresponding to the (parts of) input articles
(or input data related to other types of entities) and those extracted from the in-
put articles but not corresponding directly to any of them. (Although they may
later turn out to be instances of some objects already stored in the database;
see Section 3.1.) For the sake of consistency and simplicity, we represent them in
the same way, with some parts of metadata and structural information missing
depending on category and quality of parsed information.
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Table 1. Columns in table INSTANCE

column name column type note
id_instance INT id of (a part of) publication, person, institution
id_source INT it indicates which parsing method was applied
instance_type DICTIONARY type of instance, e.g.: document, person, abstract
id_superinstance INT id of the direct higher-level instance in hierarchy
id_instance_ref INT id of an instance that instance was parsed from
id_mongo VARCHAR id of the original document stored in MongoDB
load_time TIMESTAMP time of loading the package containing instance
start_pos INT the beginning of instance’s range (see Figure 3)
end_pos INT the end of instance’s range (see Figure 3)
word VARCHAR it is NULL for instance_type other than ’word’

Whenever some portion of text or information from other sources (e.g.: various
forms of metadata) is classified as an instance, new records in table INSTANCE
are generated, with new id_instance associated. As mentioned earlier, at this
stage, we do not take into account that it may be a new instance of an object that
already exists in the system. The attributes of table INSTANCE are displayed in
Figure 2. In particular, we decided to use MongoDB [3] as the store of collected
articles. Thus, column id_mongo refers to identifiers of the corresponding articles
in the store. (It applies only to the first above category of instances – those
corresponding to input articles.) However, we may think about this column in a
more abstract way, as an identifier of original, not parsed content.

As already pointed out, table INSTANCE reflects the structure of publications
and their decomposition onto parts (with words as the lowest hierarchy level).
Hierarchy levels are encoded by column instance_type. Decomposition is per-
formed by the parsing algorithms. It is reversible, i.e., no information is lost.
Figure 3 illustrates relationship between an nxml file and its INSTANCE content.

When a new instance is detected during the parsing process, the piece of data
which enables us to distinguish it is referred using column id_instance_ref.
The details are available in Table 1. Thus, column id_instance_ref creates
a link to instances of other objects detected in a given instance (e.g.: items
in the bibliography). In particular, one may think about id_instance_ref as
responsible for linkage between two above-mentioned categories of instances that
are represented in a uniform way in our schema.

All metadata enclosed in input files or gained from other sources are stored
in two tables: INSTANCE_PROPERTY and INSTANCE_INSTANCE. The latter one in-
cludes connections between persons and organizations, which should be revealed
during analyzing publication (e.g.: affiliations), between organizations and pub-
lications (e.g.: editors of documents from references) and between persons and
publications (e.g.: relation of being an author of publication).

In this part of the model, we also use the structure illustrated by Figure 1,
for entity = instance.
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<Document>
<Abstract>
This is an exemplary abstract.

<\Abstract>
<Section>
In this section we present nothing.

<\Section>
<\Document>
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1 0 13 Document
2 1 0 6 Abstract
3 2 0 1 word This
4 2 1 2 word is
5 2 2 3 word an
6 2 3 4 word exemplary
7 2 4 5 word abstract
8 2 5 6 word .
9 1 6 12 Section
10 9 6 7 word In
11 9 7 8 word this
12 9 8 9 word section
13 9 9 10 word we
14 9 10 11 word present
15 9 11 12 word nothing
16 9 12 13 word .

Fig. 3. An example of nxml file and its corresponding content in table INSTANCE

As already noted in Section 3.4, one might claim that it is unrealistic to put
such a huge volume of data into a relational database schema. In order to verify
it, we conducted a simple experiment with the RDBMS software introduced in
[16], optimized with respect to data compression [9] and SQL-based analytics
[14]. We parsed and loaded 5,000 scientific articles according to the proposed
schema. The size of nxml representations of those articles was about 350 MB.
We measured compression ratios for data stored in the applied RDBMS solu-
tion. Physical size of table INSTANCE turned out to be almost 40 times smaller
than the corresponding tabular data obtained from the parsing algorithm. The
sizes of tables INSTANCE_INSTANCE, INSTANCE_PROPERTY, and PROPERTY_VALUE
were, respectively, 30, 20, and 5.5 times smaller than their corresponding inputs.
We also measured performance of some examples of SQL statements reflecting,
e.g., matching of instances of the same objects, or labeling objects with their
most strongly represented concepts. Although 5,000 documents is significantly
less than we should expect eventually in practice, we could clearly see that the
observed SQL speed would be fully satisfactory even for far larger data.

4.2 Analytic Area: Objects

In this area we store tables, which are results of analytic algorithms performed
on raw data stored in generic area. Again, we refer to the structure presented in
Figure 1, this time for entity = object.

Let us start with table OBJECT_MATCH, which contains results of the matching
algorithms, which group parts of instances (the whole instance is also treated
as a ’part’) in classes named objects and assign them with integer identifiers
id_object. Thus, OBJECT_MATCH has two attributes: id_instance, which is
INSTANCE’s primary key and id_object, which yields that every instance’s part
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Fig. 4. Ontological part of the proposed schema

belongs to a group corresponding to an object. In the experimental phase of
our project, we test multiple algorithms matching instances. We assume that
id_object encodes a type of algorithm used to create the corresponding ob-
ject. Eventually, once we verify which strategy is optimal, we will use a unique
matching algorithm for the whole framework.

After all, analytic part of our relational database model is quite analogous
to generic part displayed in Figure 2. The difference is that now we work at
the level of id_object instead of id_instance. The corresponding attributes
in tables describing objects are filled in by algorithms processing data in tables
OBJECT_MATCH and INSTANCE. For example, table OBJECT_OBJECT stores infor-
mation about relations between objects computed based on relations between
instances in table INSTANCE_INSTANCE. This level is also a place for more intel-
ligent algorithms that find a wider range of types and degrees of relationships
between objects than it is present at the level of instances.

4.3 Ontological Area: Concepts

From syntactic point of view, one can treat ontologies as models of knowledge in
which there can be distinguished entities, their properties and relations between
them. This fits to our approach, therefore, we are going to store information
retrieved from ontologies in tables similar to these described in Section 3.4. In
case of ontologies, we will talk about concepts instead of instances (see Figure
4). Our major challenge in this area was to provide fairly universal framework
for storing information about concepts acquired from different sources, such as,
e.g., Wikipedia (full articles) or Wordnet (only lexems). Generally speaking, as
a concept we treat every entity that can be retrieved from a source provided
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Fig. 5. Linking concepts and objects in table CONCEPT_OBJECT

by an expert (and using an algorithms accepted by an expert), which can have
properties and some describable relations to other concepts.

Properties of concepts (e.g.: name of a concept) and relations between concepts
are assumed to be temporal.

Apart from tables described in Section 3.4, we also need representation of
concepts as texts. Such information is contained in table CONCEPT built similarly
to INSTANCE. As one can represent a concept by different text descriptions, we
introduce column concept_part_type. There is, however, a slight difference
between this column and instance_type in table INSTANCE – as for now, we did
not find a reason for introducing hierarchy for concept descriptions like in case
of instances. Hence, concept_part_type is not the key in table CONCEPT. Also,
we do not need to consider column concept_superpart.

We decided to separate the above subset of tables from generic part as we
assume that ontologies will be loaded in more supervised way, so there is no
place for noise or incompleteness. There is also a principal difference in usage of
both parts. Instances reflect lower level information – we use them mainly for
producing objects, not for retrieving new knowledge like in case of concepts and
objects in the next subsection. Differences in data supply process are also the
reason for distinguishing between object and concept areas.

4.4 Linking Concepts and Objects

Table CONCEPT_OBJECT (Figure 5) consists of relations between ontological
concepts and analytic objects. One of the most important relations which we
can derive, store and use is labeling documents or scientists with topics from
ontologies (e.g. from Wikipedia). Going further, we can do it not only for
the whole articles but also for their particular parts, which can lead to some
interesting article structure-aware analytics. Querying the parts of documents is
quite well-established area of research (see e.g. [11]). We have already mentioned
about it in Section 4.1, although it may now make more sense for objects instead
of their instances. One more example may be to reason about the most promising
areas of science, e.g., by means a query formulated by a student who searches for
potential topics of future thesis, where SQL-based heuristics may extract topics
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occurring frequently in the concluding parts of articles but with no significant
representation in bibliographies and major parts of articles.

Table CONCEPT_OBJECT is built analogously to ENTITY_ENTITY in Figure 1,
where the first entity becomes analytic object and the second entity becomes on-
tological concept. The parts of objects (having the status of objects as well)
can be also, e.g., equations, tables or figures in a publication. Thus, table
CONCEPT_OBJECT may include a number of interesting relations, e.g., labeling
specific figures from specified books with concepts such as ’Pythagorean theo-
rem’, or reflecting our previously discussed examples related to analyzing scien-
tific trends and search for interesting scientific topics.

5 Conclusion

The presented model of storing and processing information related to scientific
content has resulted from a number of design iterations that took into account
various requirements, such as diversity and incompleteness of data sources, oc-
currence of multiple instances of the same objects, a need of dealing with poten-
tially growing amount of types of objects without making the database schema
overcomplicated, as well as analyzing objects with respect to various types re-
lationships with concepts representing domain knowledge provided by experts
or extracted semi-automatically from available sources. The obtained relational
database schema contains core tables for three main layers – generic (instances),
analytic (objects), and ontological (concepts) – in analogous formats, with ability
to create additional intermediate tables and views whenever necessary.

Our major motivation to apply RDBMS framework was to provide a dual
form of storing scientific content. We noticed that different tasks in our project
required different characteristics of data access and processing, including massive
comparisons of large collections of parts of documents. Ability to use SQL over
clearly defined schema may open a variety of analytic possibilities. Appropriately
chosen database technologies may enable to store huge amounts of parsed data
and run SQL-based analytic tasks satisfactorily fast.
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