
On Designing the SONCA System

Linh Anh Nguyen1 and Hung Son Nguyen2

1 Institute of Informatics
2 Institute of Mathematics

University of Warsaw
Banacha 2, 02-097 Warsaw, Poland

{nguyen,son}@mimuw.edu.pl

Abstract. The SYNAT project aims to develop a universal, open host-
ing and communication platform for network knowledge resources for
science, education and open information society. The stage B13 of this
project aims to develop methods and algorithms of semantic indexing,
classification and retrieval using dictionaries, thesauri and ontologies as
well as methods of processing and visualizing results. The methods and
algorithms aim to support the dialogue with the repositories of text and
multimedia resources gathered on some servers. To realize the objectives
of the stages B13 and B14 of the SYNAT project we plan to develop and
implement a system called SONCA (Search based on ONtologies and
Compound Analytics).

We present ideas and proposals for the SONCA system. The main idea
is to allow combination of metadata-based search, syntactic keyword-
based search and semantic search, and to use ranks of objects. Semantic
search criteria may be keywords, concepts, or objects (for checking sim-
ilarity). Search criteria based on metadata play the role of exact restric-
tions, while syntactic keywords and semantic search criteria are fuzzy
restrictions. To enable metadata-based search, an appropriate document
representation is used. To enable syntactic keyword-based search, each
document (object) is stored together with information about the terms
occurring in its text attributes. The terms are normalized and only im-
portant ones are stored. To enable semantic search, the representation
of each document (object) is extended further with the most important
concepts that characterize the document. Such concepts belong to the
main ontology of SONCA.

We provide an abstract model for the SONCA system, an instantiation
of that model, some ideas for the user interface of SONCA as well as
proposals for increasing efficiency of the query answering process.

1 Introduction

The SYNAT project [13], realized in 2010-2013 by 16 scientific institutions, aims
to develop a universal, open hosting and communication platform for network
knowledge resources for science, education and open information society. Our
institution (MIMUW1) realizes two out of 52 stages of the SYNAT project. One
1 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw.

R. Bembenik et al. (Eds.): Intelligent Tools for Building a Scient. Info. Plat., SCI 390, pp. 9–35.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

10 L.A. Nguyen and H.S. Nguyen

of them is to develop methods and algorithms of semantic indexing, classification
and retrieval using dictionaries, thesauri and ontologies as well as methods of
processing and visualizing results. The methods and algorithms aim to support
the dialogue with the repositories of text and multimedia resources gathered
on some servers. To realize the objectives we plan to develop and implement a
system called SONCA (Search based on ONtologies and Compound Analytics).
The additional aim is to test our methods and prepare for an integration of our
system with the systems developed by the other partners of the SYNAT project.

Here are some assumptions for the SONCA system:

– The system offers searching objects like publications, authors, institutions
and other related information. Documents may be written in English, Polish
or other languages.

– The search engine extends metadata-based search and keyword-based search
with semantic search.

– The system is general-purpose, running on a large repository of gathered
objects (articles, institutions, authors ...). It does not assume to rely on
specific domains only.

– The system is extensible. It can work with different types of domain-specific
knowledge.

In this paper, we present ideas and proposals for the searching track of the
SONCA system. The main idea is to combine different search approaches includ-
ing metadata-based search, syntactic keyword-based search and semantic search,
and to use ranks of objects. Semantic search criteria may be keywords, concepts,
or objects (for checking similarity). Search criteria based on metadata play the
role of exact restrictions, while syntactic keywords and semantic search criteria
are fuzzy restrictions. To enable metadata-based search, an appropriate docu-
ment representation is used and the database of SONCA is designed accordingly.
To enable syntactic keyword-based search, each document (object) is stored to-
gether with information about the terms occurring in its text attributes. The
terms are normalized and only important ones are stored. To enable semantic
search, the representation of each document (object) is extended further with
the most important concepts that characterize the document. Such concepts
are specified by the main ontology of SONCA, which may consist of several
subontologies.

1.1 On the Web Ontology Language OWL

OWL is a standardized Web ontology language, with the first and second versions
recommended by W3C in 2004 [14] and 2009 [15], respectively. These versions,
OWL 1 and OWL 2, have some sublanguages (species/profiles):

– OWL 1 DL and OWL 2 DL support those users who want maximum expres-
siveness without losing computational completeness.

On Designing the SONCA System 11

– OWL 1 Lite, OWL 2 EL, OWL 2 QL and OWL 2 RL are restricted versions
with PTime data complexity of the “DL” sublanguages.

– OWL 1 Full and OWL 2 Full support those users who want maximum
expressiveness and the syntactic freedom of RDF with no computational
guarantees.

OWL 1 DL is based on the description logic SHOIN [11], while OWL 2 DL is
based on a more expressive description logic SROIQ [10]. Other well-known de-
scription logics (DLs) are ALC, SHIQ and SHOIQ. DLs are fragments of classi-
cal first-order logic and are variants of modal logics, used to describe the domain
of interest by means of individuals, concepts and roles. A concept is interpreted
as a set of individuals, while a role is interpreted as a binary relation between
individuals. The satisfiability checking problem is ExpTime-complete in ALC
and SHIQ; NExpTime-complete in SHOIN and SHOIQ; and N2ExpTime-
complete in SROIQ.

According to the recent survey [28], the third generation ontology reasoners
that support SHIQ or SROIQ are FaCT, FaCT++, RACER, Pellet, KAON2
and HermiT. The reasoners FaCT, FaCT++, RACER and Pellet are based on
tableaux, KAON2 is based on a translation into disjunctive Datalog, and Her-
miT is based on hypertableaux. That is, all of the listed reasoners except KAON2
are tableau-based. According to [30], KAON2 provides good performance for on-
tologies with rather simple TBoxes, but large ABoxes2; however, for ontologies
with large and complex TBoxes, existing tableau-based reasoners still provide
superior performance. The current version of KAON2 does not support nomi-
nals and cannot handle large numbers in cardinality statements. The reasoners
FaCT, FaCT++, RACER and Pellet use traditional tableau decision procedures
like the ones for SHIQ [12], SHOIQ [11], SROIQ [10]. These procedures use
backtracking to deal with disjunction (e.g., the union constructor). Their search
space is an “or”-tree of “and”-trees. Despite advanced blocking techniques (e.g.,
anywhere blocking), their complexities are non-optimal (e.g., NExpTime instead
of ExpTime for SHIQ; N2ExpTime instead of NExpTime for SHOIQ; and
N3ExpTime instead of N2ExpTime for SROIQ). Similarly, the decision pro-
cedure of HermiT also has a non-optimal complexity [6]. To obtain optimal and
efficient tableau decision procedures for DLs one may consider the optimization
techniques developed in [7,8,38,32,40,39,36,37,35].

The profiles OWL 2 EL, OWL 2 QL and OWL 2 RL are restricted sublan-
guages of OWL 2 FULL with PTime data complexity. They are based on the
families of DLs EL [1,2], DL-Lite [3] and DLP (Description Logic Programs) [9],
respectively. As fragments of DLs with PTime data complexity there are also
Horn-SHIQ [25], Horn-SROIQ [42], and the deterministic Horn fragments of
ALC and regular description logics [31,33]. Formalisms that combine a DL with
a rule language were studied, among others, in [27,4,26,29,5].

2 A TBox is a set of terminology axioms, including role axioms. In the literature of
DLs, sometimes role axioms are grouped into an RBox. An ABox is a set of individual
assertions.

12 L.A. Nguyen and H.S. Nguyen

1.2 Using Ontologies for the SONCA System

Ontologies can be used for:

– increasing flexibility in using different names for the same attribute/relation
– understanding the meanings of terms occurring in documents.

The first purpose is useful for the user interface (e.g., for transforming a user’s
query to a formal query) and for integrating modules implemented by different
partners of the SYNAT project. Ontologies in OWL or similar languages can be
used for this purpose.

The second purpose is useful for:

– matching or measuring similarity between:
• term – concept – document
• concept – document
• document – concept – document

– answering queries
– the user interface (for navigation and improving queries).

The second purpose seems more important (or at least harder to be fulfilled)
than the first one. In our opinion, ontologies in OWL are not suitable for the
second purpose due to the following reasons:

– Most documents of the SONCA system (like publications and webpages)
are unstructured or semi-structured. They are PDF files, (OCR’ed) texts,
HTML or XML documents, but not OWL-based documents.

– Reasoning in OWL DL has a very high complexity.
– The knowledge base of a very large system like SONCA may be inconsis-

tent. Despite that paraconsistent reasoning has been studied for DLs (e.g.,
in [41,34]), the techniques may be not advanced enough.

For these reasons, we propose to use a thesaurus extended with fuzzy relation-
ships between the concepts to “understand” the meanings of terms occurring in
documents. We call that thesaurus the main ontology of SONCA. It may consist
of several subontologies. We can construct it from sources like DBpedia [16],
WordNet [17] and plWordNet [18]. In this paper we address the construction of
this main ontology and its use for query answering. We omit ontologies in OWL,
which does not mean they are not useful for SONCA and SYNAT.

1.3 The Contributions and the Structure of This Work

In this paper we provide an abstract model for the SONCA system, an instan-
tiation of that model, some ideas for the user interface of SONCA as well as
proposals for increasing efficiency of the query answering process.

The abstract model includes notions and requirements of:

– the collection of terms
– the main ontology

On Designing the SONCA System 13

– three abstract document-representations
– abstract queries (together with their meanings).

The second document representation extends the first one with information
about terms occurring in the document, and the third document representation
extends the second one with ObjectRank and RelatedConcepts of the document.

Our instantiation of that abstract model provides definitions and detailed
descriptions for the model, including:

– a function computing concepts similar to a given concept
– a method of computing ObjectRank of an object
– a function computing RelatedConcepts of an object
– several functions measuring similarity between terms, concepts and objects.

The rest of this paper is structured as follows. In Section 2 we present our
abstract model of SONCA. In Section 3 we present our instantiation of that
model. Section 4 is devoted to the user interface of SONCA. Section 5 contains
our proposals for increasing efficiency of the query answering process. Section 6
contains some concluding remarks. Appendix A is devoted to DBpedia and its
use for the SONCA system.

2 An Abstract Model for SONCA

2.1 Terms, Concepts and Ontologies

A term is a string representing a word or a phrase of a few words, which has
been normalized using some algorithm (e.g., a stemming algorithm). The maxi-
mal number of words in a term is parameterized by MaxTermLength and chosen
appropriately. The importance of a term ti in a text dj (which can be an ele-
ment of a document) is usually measured by tf-idf i,j (term frequency - inverse
document frequency), which is defined as tf i,j × idf i, where tf i,j stands for the
frequency of ti in dj , and idf i stands for the general importance of term ti in
the set of all documents of the system. There are different possible definitions of
tf i,j and idf i [19].

The system contains information about important terms, which is a collection
TERMS of pairs (ti, idf i). Only terms ti with high enough idf i will be stored in
this collection. The threshold for idf is parameterized by MinIdf and chosen
appropriately.

Consider, for example, the text “information and decision systems”. As terms
in this text one can consider “information”,“and”, “decision”, “system”, “decision
system”, “information and decision”, “information and decision system”. Notice
that we exclude the phrases “information and”, “and decision”, “and decision
systems”. Among the listed terms, “and” probably has very low idf value and is
not stored.

The system implements a function Terms(dj , h) that, for a given text dj and
a tf-idf threshold h, returns information about the most important terms ti
occurring in dj in the form of a collection of pairs (ti, tf i,j) with tf-idf i,j ≥ h.

14 L.A. Nguyen and H.S. Nguyen

The system also implements a function Simst(s, t), which measures the simi-
larity between a string and a term.

A concept is understood here as a meaning, which is specified, amongst others,
by an ID and a list of pairs (label, weight), where label is a term and weight is a
real number in (0, 1] representing the accuracy that the term has that meaning.

The system implements a function Simtc(t, c), which measures the similarity
between a term t and a concept (with ID) c, i.e., the accuracy that the term t
has the meaning c.

An ontology is a compact data structure containing information about con-
cepts and the relationships between them. For a given ontology, the system
implements a function SimilarConcepts(c, n, s), where c is a concept (ID), n is
a natural number and s is a real number in (0, 1]. This function returns a list
of no more than n pairs (ci, si) such that c1, c2, . . . are the concepts of the on-
tology most similar to c and si ≥ s is the similarity between c and ci. (This
similarity measure between concepts need not be a commutative operator.) The
system also implements a function PossibleConcepts(t) which returns the set of
concepts which may correspond to the term t.

2.2 Abstract Document-Representations

The database of SONCA contains a set of objects, which may be publications,
authors, institutions, etc. Each object is represented as a tree-like document (like
an XML document). The original form of a publication may be an image. How-
ever, in the current paper we assume that such a document has been OCR’ed and
we have its text-based representation, possibly with references to images repre-
senting the whole paper and its figures. Images are not treated as documents;
they are stored in a specific way and only used for visualization in user inter-
faces, but not for the search process. Using the terminology of XML, an object
is an element; each complex element has a name, possibly some attributes, and
contents, which are simple values (e.g., texts, numbers, references) or complex
elements; each attribute has a name and a simple value. Elements and attributes
of XML are similar, but with the differences that, values of attributes are simple
(i.e. without structure), attributes are functional, and the order of attributes are
inessential, while the order of elements is essential.

In the current paper, we use the term “attribute” to refer to both “attribute”
and“element”as the ones of XML. When necessary we use adjectives like simple,
complex, functional to describe attributes. In our settings, the order of attributes
with the same name in a given scope is essential. Documents and attributes have
types, which are simple or complex. A value of a simple type is either a literal
(e.g., a number, a date, a reference, or a short text) or a long text.

We give below an exemplary document, which consists of pairs of the form
(an attribute name: a value or a list of values), where values may be complex
structures:

ID: 1024

Type: 1

On Designing the SONCA System 15

Title: "Rudiments of rough sets"

AuthorID: 1121, 1432

JournalID: 2124

Volume: 177

Number: 1

Year: 2007

Pages: "3-27"

Abstract: ...

Keyword: "vague concepts", "information and decision systems", ...

Section:

(Section 1):

Title: "Introduction"

Text: ...

Citation:

(Citation 1):

Reference: 3243, 3324, 4532

Text: ...

...

...

...

We distinguish external objects as the ones with ID (like publications and au-
thors) from internal objects that do not have ID (like sections in a paper). By a
document, in a narrower sense, we mean a publication, but in a broader sense,
we mean any external object.

By ADR1 we call the above discussed abstract representation of documents.
By ADR2 we call the representation that extends ADR1 with information

about the most important terms occurring in a document. In particular, in
ADR2 each simple attribute of a document whose value is a text dj will be
stored together with Terms(dj , h), where the tf-idf threshold h is parameterized
(h = MinTfIdf [full path of the attribute]) and chosen for each attribute in an
appropriate way. Furthermore, we assume that, for each document x in ADR2,
the set of all normalized words of text attributes of x, denoted by words(x),
and the set of all terms of text attributes of x, denoted by terms(x), are stored
together with x.

By ADR3 we call the representation that extends ADR2 for an external object
with information about ObjectRank and the most important concepts related
with that object. This representation is discussed below.

Some attributes link different external objects (e.g., authorship and refer-
ences). In this way, objects are connected and create a graph like a web.
ObjectRank serves the same role as PageRank (see, e.g., [20]).

In ADR3, each publication is stored with a list of pairs (c1, s1), . . . , (cn, sn),
where c1, . . . , cn is the list of the concepts most related to the topic of the
publication, and each si represents the similarity between ci and the topic,
in the scale (0, 1]. Only pairs (ci, si) with high enough si are stored. That
is, we take the pairs (ci, si) with si greater than or equal to a parameter
MinConSimForDoc. The number of such pairs is bounded by a limit param-
eterized by MaxConceptsForDoc, which is chosen appropriately.

16 L.A. Nguyen and H.S. Nguyen

Similarly, other external objects like authors, journals or conferences are stored
with a list of the most important related concepts (representing the fields the
author works in or the fields the journal or conference involves).

We use RelatedConcepts as the attribute representing the list of the most
important related concepts of a given document in ADR3.

Documents are added to the system at some stage in ADR1. They are then ex-
tended to ADR2, and after that to ADR3, possibly in a few stages (for improving
the quality of the additional information).

2.3 Abstract Queries

In this subsection we define a general form for queries in SONCA. Such a form
is not provided by the user, but by the user interface module. It is a form which
requires preprocessing before the query is passed to the search module.

We assume that the system implements the following functions:

– Simsyn
so (x, y) is a function that maps a pair consisting of a phrase (string)

x and an external object (e.g., a publication) y to a real number in [0, 1]
representing the syntactic similarity between x and y.

– Simsem
so (x, y) (resp. Simco(x, y) or Simoo(x, y)) is a function that maps a

pair consisting of a phrase (resp. a concept or an external object3) x and an
external object (e.g., a publication) y to a real number in [0, 1] representing
the semantic similarity between x and y.

Simple attributes whose values are expected to be long texts (e.g., the text of
a section) are called long-text attributes. The part of the database of SONCA
without values of long-text attributes is called the metadata of the system.

A general query is a tuple

Φ = (ΦMetadata , ΦSynPhrases , ΦSemPhrases , ΦConcepts , ΦSimObjects , Φweighting)

where

– ΦMetadata is a logical formula over the metadata of the system, with only one
free variable standing for the queried object; the formula can be an SQL-like
query, a first-order logic formula, a fixpoint formula, a rule-based query (e.g.,
a Datalog or stratified Datalog¬ query), a description-logic-like query, etc

– ΦSynPhrases is
• either a set of weighted phrases, i.e., a set of pairs (si, wi), where each si

is a string and the corresponding wi is a weight for si (the phrases from
ΦSynPhrases are syntactically matched with queried objects)

• or a Boolean combination using ∧ and ∨ of fuzzy expressions of the form
Simsyn

so (si, x) with the same variable x, where each si is a phrase and x
stands for the queried object; in this case, ΦSynPhrases is a fuzzy function
with argument x

3 e.g., a publication or an author.

On Designing the SONCA System 17

– ΦSemPhrases can be described similarly as for ΦSynPhrases except that the word
“syntactically” is replaced by “semantically”and Simsyn

so (si, x) is replaced by
Simsem

so (si, x)
– ΦConcepts is

• either a set of weighted concepts (used to matching with queried objects)
• or a Boolean combination using ∧ and ∨ of fuzzy expressions of the form

Simco(ci, x) with the same variable x, where each ci is a concept and x
stands for the queried object; in this case, ΦConcepts is a fuzzy function
with argument x

– ΦSimObjects is
• either a set of weighted objects (used to “semantically” matching with

queried objects w.r.t. similarity of topics/fields)
• or a Boolean combination using ∧ and ∨ of fuzzy expressions of the form

Simoo(oi, x) with the same variable x, where each oi is an external object
and x stands for the queried object; in this case, ΦSimObjects is a fuzzy
function with argument x

– Φweighting is a (monotonic) function from [0, 1]4 × R to R.

Notice that the given form of queries enables combination of searching based on
metadata, searching based on syntactic keywords and “semantic” searching.

The user interface module may interact with the user to improve the query by
eliminating ΦSemPhrases , ΦSimObjects and modifying ΦConcepts . It is more likely
that the user will give a list of phrases (resp. concepts, objects) instead of a set
of weighted phrases (resp. concepts, objects). In that case, the system uses an
appropriate conversion method. (Note that the first element in a list usually has
a greater weight than the others.)

The result of a query Φ is specified as follows:

– Assume an appropriate definition for the fuzzy Boolean operators ∧ and ∨.
For example, (x ∧ y) = (x.y) and (x ∨ y) = (x + y − x.y). An alternative
definition is (x ∧ y) = min(x, y) and (x ∨ y) = max(x, y).

– Let X be the set of all external objects x (with an appropriate type) of the
system such that ΦMetadata(x) holds.

– For ΦSynPhrases = {(s1, w1), . . . , (sn, wn)} and x ∈ X , define the matching
score of ΦSynPhrases for x as follows:

mssyn
s (ΦSynPhrases , x) =

Σn
i=1(wi × Simsyn

so (si, x))
Σn

i=1wi
.

– If ΦSynPhrases is a fuzzy function then define

mssyn
s (ΦSynPhrases , x) = ΦSynPhrases (x)

– For ΦSemPhrases = {(s1, w1), . . . , (sn, wn)} and x ∈ X , define the matching
score of ΦSemPhrases for x as follows:

mssem
s (ΦSemPhrases , x) =

Σn
i=1(wi × Simsem

so (si, x))
Σn

i=1wi

18 L.A. Nguyen and H.S. Nguyen

– If ΦSemPhrases is a fuzzy function then define

mssem
s (ΦSemPhrases , x) = ΦSemPhrases(x)

– For ΦConcepts = {(c1, w1), . . . , (cn, wn)} and x ∈ X , define the matching
score of ΦConcepts for x as follows:

msc(ΦConcepts , x) =
Σn

i=1(wi × Simco(ci, x))
Σn

i=1wi

– If ΦConcepts is a fuzzy function then define

msc(ΦConcepts , x) = ΦConcepts(x)

– For ΦSimObjects = {(o1, w1), . . . , (on, wn)} and x ∈ X , define the matching
score of ΦSimObjects for x as follows:

mso(ΦSimObjects , x) =
Σn

i=1(wi × Simoo(oi, x))
Σn

i=1wi

– If ΦSimObjects is a fuzzy function then define

mso(ΦSimObjects , x) = ΦSimObjects(x)

– For x ∈ X , define the matching score of Φ for x as follows:

ms(Φ, x) = Φweighting (y1, y2, y3, y4, y5)

where

y1 = mssyn
s (ΦSynPhrases , x)

y2 = mssem
s (ΦSemPhrases , x)

y3 = msc(ΦConcepts , x)
y4 = mso(ΦSimObjects , x)
y5 = ObjectRank(x)

– The result of the query Φ is the set of objects x ∈ X that have the highest
scores ms(Φ, x). The maximal number of objects to return is parameterized
by MaxResults.

2.4 Summary

The proposed abstract model for SONCA depends on:

– computing a collection of terms (TERMS) and defining a function
Terms(d, h), where d is a text and h is a tf-idf threshold

– using a general-purpose ontology with the following functions:

On Designing the SONCA System 19

• PossibleConcepts(t), where t is a term
• Simtc(x, y), where x is a term and y is a concept
• SimilarConcepts(c, n, s), where c is a concept, n is the maximal number

of returned concepts which are similar to c, and s is a threshold for
similarity

– using the abstract document-representation ADR3 (in particular, computing
and using ObjectRank and RelatedConcepts of objects)

– defining and implementing the following similarity functions:
• Simst(x, y), where x is a string and y is a term
• Simsyn

so (x, y), where x is a string and y is an object (a document)
• Simsem

so (x, y), where x is a string and y is an object (a document)
• Simco(x, y), where x is a concept and y is an object (a document)
• Simoo(x, y), where x and y are objects (documents)

– using appropriate values for the parameters MaxTermLength, MinIdf ,
MinTfIdf [], MaxConceptsForDoc, MinConSimForDoc, MaxResults

– using an appropriate definition for the fuzzy Boolean operators ∧ and ∨.

Function Simsem
so may be defined by using Terms , PossibleConcepts , Simst,

Simtc, SimilarConcepts and the attributes RelatedConcepts of objects. Func-
tions Simco and Simoo may be defined by using function SimilarConcepts and
the attributes RelatedConcepts of objects.

3 An Instantiation of the Abstract Model

In this section, we describe how the abstract model presented in the previous
section can be implemented. There are other possible realizations of that ab-
stract model, and what proposed in this section also allows different ways of
implementation.

3.1 Collection TERMS and Involved Functions

Collection TERMS can be constructed either by extracting terms from the
database of SONCA or by importing terms from existing datasets. Consider
the first case. Assume that most documents have been stored in the SONCA
system using ADR1 representation. For each text d occurring in the system,
every phrase of d consisting of no more than MaxTermLength words is checked
and, if it is acceptable as a term, will be normalized and added to the collection
TERMS. For example, a phrase like “and decision” is not accepted as a term, and
a phrase “decision systems” can be normalized to “decision system”. At the end,
the measure idf i of each element ti of TERMS will be computed; if idf i > MinIdf
then idf i will be stored together with ti in TERMS, else the term ti is deleted
from TERMS. After that we assume that idf values of elements of TERMS are
rescaled to fit into the interval (0, 1]. For the case TERMS is constructed by
importing terms from existing datasets, the parameters MaxTermLength and
MinIdf are also used in an appropriate way, and rescaling to the interval (0, 1]
is also performed.

20 L.A. Nguyen and H.S. Nguyen

Function Terms(d, h), where d is a text and h is a tf-idf threshold, may be
defined as follows:

– initialize rs to an empty list
– for every phrase t of d consisting of no more than MaxTermLength words

• let t′ be the normalized form of t
• if t′ occurs in TERMS then

∗ let x be the tf measure of t in d
∗ let y be the idf measure of t in TERMS
∗ if x.y ≥ h then add the pair (t, x) to rs

– sort rs decreasingly w.r.t. the second coordinates of the pairs
– return rs .

Having collection TERMS and function Terms(d, h) defined, documents repre-
sented in ADR1 can be enriched to ADR2 in the usual way.

Function Simst(x, y) for a string x and a term y from TERMS may be defined
as follows, where SimST1 and SimST2 are parameters of SONCA with values
in (0, 1]:

– if the normalized form of x is equal to y then return 1
– let sx be the set of normalized forms of words occurring in x
– let sy be the set of normalized forms of words occurring in y
– if sx = sy then return SimST1 else s := sx ∩ sy

– if s = sx then a := 1 else a := SimST2
– if s = sy then b := 1 else

• let b0 be the maximal idf measure of a word from s w.r.t. TERMS
• let b1 be the idf measure of y w.r.t. TERMS
• b := (b0/b1)× (|s|/|sy|) (one can modify this formula somehow, e.g., by

applying sqrt to the whole formula or a part of it)
– if the words of s occur in x in the same order as in y (ignoring the differences

caused by normalization) then c := 1 else c := SimST1
– return a × b × c.

3.2 The Main Ontology and Involved Functions

The SONCA system may use a number of ontologies, but they are combined
into one, which is called the main ontology of SONCA. This ontology contains
information about concepts and relationships between them.

A concept is specified by the concept ID, the ID of the component ontology (if
necessary), and a list of pairs (label, weight) called the list of labels of the concept,
where label is a term and weight is a real number in (0, 1] representing the
accuracy that the term has the concept’s meaning. In the case information about
the weight is not available, we assume that it is equal to 1. Information about
concepts may be stored in a few tables (e.g., component ontologies, concepts,
labels of concepts). IDs of concepts are unique. For convenience, sometimes we
just write “concept” to mean “concept-ID”.

On Designing the SONCA System 21

We index essential words occurring in labels of concepts by using a table
WORD-CONC consisting of pairs (word, concept-ID) together with an index on
the attribute “word”. For each word w occurring in label l of a concept c : let w′

be the normalized form of w; if w′ occurs in TERMS then add the pair (w, c) to
that table.

We use a table CONC-CONC to store relationships between concepts. It con-
sists of tuples of the form (ID1, ID2, type, similarity), where ID1 and ID2 are
IDs of two concepts, type is the type of the relationship, and similarity is a real
number in (0, 1) representing the degree that the first concept is similar to the
second concept. In the case information about the similarity is not available, it
will be computed from the type, according to some strategy based on parame-
ters. For example, the type “is a subconcept of” (e.g., Man is a subconcept of
Human) may have similarity = 0.8, while the type “is a superconcept of” may
have similarity = 0.4 (notice the asymmetry).

The main ontology of SONCA can be constructed from DBpedia, in particular,
from the datasets “Articles Categories”, “Categories (Skos)”, “Links to YAGO2”
and “Word Net Classes”. See the appendix for more details.

Function PossibleConcepts (t), which returns the set of concepts which may
correspond to the term t, can be defined as follows:

– if the dataset “Disambiguation Links” of DBpedia can be used to determine
the concepts corresponding to t then use it and return the result

– rs := ∅
– add to rs all concepts that have t as a label
– for each word w occurring in t:

• let w′ be the normalized form of w
• for each pair (w′, c) occurring in WORD-CONC, add c to rs

– return rs .

Function Simtc(x, y), where x is a term and y is a concept, may be defined as
follows:

– let the list of labels of y be (l1, w1) . . . (lk, wk)
– let t-conormtc be the t-conorm used for Simtc (e.g., ⊥max or ⊥sum)4

– return t-conormtc{Simst(x, li) × wi | 1 ≤ i ≤ k}.
Function SimilarConcepts(c, n, s), where c is a concept, n is the maximal number
of expected concepts similar to c, and s is a threshold for similarity, may be
defined as shown on page 22.

3.3 Computing ObjectRank and RelatedConcepts of Objects

Recall that ObjectRank and RelatedConcepts of objects are information to be
added to ADR2 to obtain ADR3. To compute ObjectRank values of publications,
authors and institutions we create a graph consisting of those objects as vertices,
with edges specified as follows:
4 ⊥max(a, b) = max(a, b) and ⊥sum(a, b) = a + b − a.b, for a, b ∈ [0, 1].

22 L.A. Nguyen and H.S. Nguyen

Function. SimilarConcepts(c, n, s)
let t-conorm-SimCon be the t-conorm used for SimilarConcepts ;
rs := {(c, 1)}, min := 1, count := 1, limit := s, used := ∅;
while (rs \ used) �= ∅ do

let (c1, w1) be a pair from rs \ used with the largest w1;
add (c1, w1) to used;
foreach tuple (c1, c2, , w2) in table CONC-CONC do

w′
2 := w1 × w2;

if w′
2 ≥ limit and (count < n or w′

2 > min) then
if there exists (c2, w

′′
2) ∈ rs then

replace (c2, w
′′
2) in rs by (c2, t-conorm-SimCon(w′

2, w
′′
2))

else if count < n then
add (c2, w

′
2) to rs and increase count by 1

else
find a pair (c3, min) ∈ rs;
replace (c3, min) in rs by (c2, w

′
2)

update the variable min to min{w | (, w) ∈ rs};
if count = n then limit := min

return rs

– for each publication x :
• for each publication x′ cited by x, add the edge (x, x′) to the graph
• for each author y of x, add the edges (x, y) and (y, x) to the graph
• for each institution z declared in x as an affiliation of an author of x,

add the edge (x, z) to the graph
– for each author y and each current institution z of y, add the edges (y, z)

and (z, y) to the graph.

Having that graph constructed, ObjectRank values of the objects can be com-
puted as PageRank values of Web pages, treating edges of the graph as links be-
tween Web pages. Some modifications can be investigated, e.g., assigning weights
to the edges, starting with different ObjectRank values for different objects, or
adding other kinds of edge/vertex to the graph.

Values RelatedConcepts of objects can be computed in the following order:

1. values RelatedConcepts of journals and conferences
2. preliminary values RelatedConcepts of publications, computed without using

citations and information about authors
3. preliminary values RelatedConcepts of authors
4. refined values RelatedConcepts of publications and authors.

Consider computing RelatedConcepts for a journal/conference x which is de-
scribed by a list of topics (t1, . . . , tk), where each ti is a term (already nor-
malized). When such a description is not available, use the name of x as
a “topic”. It can be assumed that each ti corresponds to a concept, or at
most two concepts. Here, we can ignore the limits MinConSimForDoc and
MaxConceptsForDoc. RelatedConcepts of x may be computed as follows, where

On Designing the SONCA System 23

ParamRC1 , ParamRC2 , ParamRC3 are parameters (e.g., with values 100, 0.4,
0.8, respectively):

– rs := ∅
– for each 1 ≤ i ≤ k :

• choose yi ∈ PossibleConcepts(ti) with a maximal value Simtc(ti, yi)
• add the pair (yi,Simtc(ti, yi)) to rs

– for each 1 ≤ i ≤ k :
• let C := {c | (c,) ∈ SimilarConcepts(yi,ParamRC1 ,ParamRC2)}
• choose zi ∈ PossibleConcepts(ti) \ C with a maximal value Simtc(ti, zi)
• if Simtc(ti, zi) ≥ Simtc(ti, yi) × ParamRC3) or

(Simtc(ti, zi) ≥ Simtc(ti, yi) × ParamRC2 and zi is “supported” by rs)
then add the pair (zi,Simtc(ti, zi)) to rs

– return rs .

Recall that a publication in ADR1 form has a tree-like structure, where each leaf
can be specified as a pair (a, d) with a being the sequence of component attributes
forming the path from the root to the leaf and d being the value of the leaf (i.e., the
value of the last attribute in the sequence). One can treat a as a complex attribute.
Let WeightForRC [a] be a parameter standing for the weight of a for computing
values RelatedConcepts of publications. Different complex concepts may have dif-
ferent weights. For example, an explicit keyword or a term in the title should have
a higher weight than a term occurring in the text of a section.

Let x be a publication in ADR2 form. A preliminary value RelatedConcepts
for x can be computed by function RelatedConceptsOfPub(x) given on page 24,
where UsingSupportsForRC is a Boolean parameter, ParamRC4 is a parame-
ter of type natural number, ParamRC5 and ParamRC6 are parameters with
values in (0, 1]. Exemplary values for these parameters are ParamRC4 = 100,
ParamRC5 = 0.1 and ParamRC6 = 0.6. A term t in a text d of a complex
attribute a may corresponds to a concept c. If w1 is the tf-idf measure of t in
d w.r.t. TERMS, w2 = Simtc(t, c) and w3 is the weight of a, then the weight of
c for x is increased by w1 × w2 × w3. The function RelatedConceptsOfPub
accumulates weights for each possible related concept. In the case the flag
UsingSupportsForRC is set on, “support” for each related concept c is computed,
based on its similarity to the other related concepts, and is used to modify the
weight of c. After that, concepts with too small weights are eliminated, and
weights of the remaining concepts are rescaled to fit into the interval (0, 1].

In the case values of WeightForRC [] are normalized to the interval (0, 1],
one can use a t-conorm denoted by t-conorm-RCP to modify function
RelatedConceptsOfPub as follows (which may result in a worse function):

– replace w′ + WeightForRC [ai] × w in line 2 by

t-conorm-RCP (w′,WeightForRC [ai] × w)

– replace w′ + w′′ in line 2 by t-conorm-RCP (w′, w′′)
– delete line 2 (i.e., rescaling is not needed anymore).

24 L.A. Nguyen and H.S. Nguyen

Function. RelatedConceptsOfPub(x)
Input: a publication x in ADR2 form (specified as a document ID).
Output: a set of weighted concepts which are the most related to the topic of x.

let all the text leaves of the tree-representation of x be (a1, d1), . . . , (an, dn), not1

counting the terms used for extending ADR1 to ADR2;
rs := ∅;2

foreach 1 ≤ i ≤ n do3

rsi := ∅;4

let (t1, w1), . . . , (tk, wk) be the list of pairs (term, frequency) associated with5

di in the ADR2 of x;
foreach 1 ≤ j ≤ k do6

foreach c ∈ PossibleConcepts(tj) do7

add the pair (c, wj × idf (tj) × Simtc(tj , c)) to rsi8

delete from rsi pairs (c, w) with “too low” w;9

foreach (c, w) ∈ rsi do10

if there exists (c, w′) ∈ rs then11

replace (c, w′) in rs by (c, w′ + WeightForRC [ai] × w)12

else add the pair (c,WeightForRC [ai] × w) to rs13

delete from rs pairs (c, w) with “too low” w;14

if UsingSupportsForRC then15

supports := rs ;16

foreach (c, w) ∈ rs do17

foreach (c′, w′) ∈ SimilarConcepts(c, ParamRC4 , ParamRC5) do18

if there exists (c′, w′′) ∈ supports then19

replace (c′, w′′) in supports by (c′, w′ + w′′)20

foreach (c, w′) ∈ supports do21

let w be the value such that (c, w) ∈ rs ;22

replace (c, w) in rs by (c, w × ParamRC6 + w′ × (1 − ParamRC6))23

keep in rs only MaxConceptsForDoc pairs (c, w) with the highest w;24

rescale values of the second components of pairs from rs to the interval (0, 1] in25

an appropriate way (to reflect similarities of the corresponding concepts to the
topic of the publication x);
delete from rs pairs (c, w) with w < MinConSimForDoc;26

return rs27

Having preliminary values RelatedConcepts of publications computed, prelim-
inary values RelatedConcepts of authors representing their research areas can
be computed next. We can assume that the topics of publications of an au-
thor x are more concrete than the main research areas of x. A prelimi-
nary value RelatedConcepts for an author x can be computed by function
ResearchAreasOfAuthor(x) given on page 25, where ParamRC7 is a parameter
of type natural number and ParamRC8 is a parameter with value in (0, 1]. Exem-
plary values for these parameters are ParamRC7 = 100 and ParamRC8 = 0.4.

On Designing the SONCA System 25

Function. ResearchAreasOfAuthor(x)
let y1, . . . , yn be the publications of x, already in ADR3 form;1

rs := ∅;2

foreach 1 ≤ i ≤ n do3

foreach (c, w) ∈ RelatedConcepts(yi) do4

foreach (c′, w′) ∈ SimilarConcepts(c, ParamRC7 , ParamRC8) do5

if there exists (c′, w′′) ∈ rs then6

replace (c′, w′′) in rs by (c′, w′′ + w × w′)7

else add (c′, w × w′) to rs8

keep in rs only MaxConceptsForDoc pairs (c, w) with the highest w;9

rescale values of the second components of pairs from rs to the interval (0, 1] in10

an appropriate way (to reflect similarities of the corresponding concepts to the
research areas of the author x);
delete from rs pairs (c, w) with w < MinConSimForDoc;11

return rs12

Function. Simsyn
so (x, y)

Input: a string x and an object y.
Output: a value in [0, 1] representing similarity between x and y.

let the set of normalized words of x be {u1, . . . , um};1

sum := 0, sum2 := 0;2

foreach 1 ≤ i ≤ m do3

sum := sum + idf (ui);4

if ui ∈ words(y) then sum2 := sum2 + idf (ui)5

let the set of terms of x be {t1, . . . , tn};6

sum ′ := 0, sum ′
2 := 0;7

foreach 1 ≤ i ≤ n do8

sum ′ := sum ′ + idf (ti);9

if ti ∈ terms(y) then sum ′
2 := sum ′

2 + idf (ti)10

return (sum2/sum) × ParamSim1 + (sum ′
2/sum

′) × (1 − ParamSim1)11

One can also use a t-conorm denoted by t-conorm-RCA to modify function
ResearchAreasOfAuthor as follows (which may result in a worse function):

– replace w′′ + w × w′ in line 3 by t-conorm-RCA(w′′, w × w′)
– delete line 3 (i.e., rescaling is not needed anymore).

In the next stage, values RelatedConcepts of publications can be refined by taking
into account also preliminary values RelatedConcepts of the cited papers and
the authors. After that, values RelatedConcepts of authors can also be refined
by taking into account also refined values RelatedConcepts of their publications.
We do not go into details, but want to emphasize that weights of topics of cited
papers should be small enough unless it is known which cited papers are most
related to the considered publication.

26 L.A. Nguyen and H.S. Nguyen

3.4 Computing Other Similarity Functions

Function Simsyn
so (x, y), where x is a string and y is an object, may be defined as

shown on page 25, where parameter ParamSim1 has a value in (0, 1], e.g., 0.7.

Function. Simsem
so (x, y)

Input: a string x and an object y.
Output: a value in [0, 1] representing similarity between x and y.

let t-conorm-Simsem
so be the t-conorm used for Simsem

so ;
rs := 0;
let Terms(x,ParamSim2) = ((t1, w1), . . . , (tn, wn));
foreach 1 ≤ i ≤ n do

foreach c ∈ PossibleConcepts(ti) do
foreach (c′, w) ∈ SimilarConcepts(c,ParamSim3 ,ParamSim4) do

if there exists (c′, w′) ∈ RelatedConcepts(y) then
rs := t-conorm-Simsem

so (rs ,Simst(x, ti) × Simtc(ti, c) × w × w′)

return rs

Function. Simco(x, y)
Input: a concept x and an object y.
Output: a value in [0, 1] representing similarity between x and y.

let t-conorm-Simco be the t-conorm used for Simco;
rs := 0;
foreach (c, w) ∈ SimilarConcepts(x,ParamSim3 ,ParamSim4) do

if there exists (c, w′) ∈ RelatedConcepts(y) then
rs := t-conorm-Simco(rs, w × w′)

return rs

Function. Simoo(x, y)
Input: objects x and y.
Output: a value in [0, 1] representing similarity of y to x.

let t-conorm-Simoo be the t-conorm used for Simoo;
concepts := ∅;
foreach (c, w) ∈ RelatedConcepts(x) do

foreach (c′, w′) ∈ SimilarConcepts(c,ParamSim3 ,ParamSim4) do
if there exists (c′, w′′) ∈ concepts then

replace (c′, w′′) in concepts by (c′, t-conorm-Simoo(w′′, w × w′))
else add (c′, w × w′) to concepts

sum := 0, sum2 := 0;
foreach (c, w) ∈ concepts do

sum := sum + w;
if there exists (c, w′) ∈ RelatedConcepts(y) then

sum2 := sum2 + min(w, w′)

return sum2/sum

On Designing the SONCA System 27

Function Simsem
so (x, y), where x is a string and y is an object, may be defined as

shown on page 26, where parameter ParamSim2 is a tf-idf threshold, parameter
ParamSim3 is of type natural number, and parameter ParamSim4 has a value
in (0, 1]. Exemplary values for ParamSim3 and ParamSim4 are 100 and 0.4,
respectively.

Function Simco(x, y), where x is a concept and y is an object, may be defined
as shown on page 26.

Function Simoo(x, y), which measures similarity of an object y to an object
x, may be defined as shown on page 26. This function first extends the list of
weighted concepts related with x, and then checks similarity of y to that list of
concepts.

4 On the User Interface for SONCA

As mentioned before, the SONCA system enables combination of metadata-
based search, syntactic keyword-based search and semantic search. A simple
search may depend only on basic metadata. Most existing websites for searching
publications use such kind of search, including:

– SCOPUS Search [21]
– Advanced Search - Scirus
– Google Advanced Scholar Search
– CiteSeerX Advanced Search
– Advanced Product Search - Elsevier
– arXiv.org Search
– Biomedical Search [22].

Among the above websites the interface of “SCOPUS Search” seems most flex-
ible. It allows also “author search” and “affiliation search”. Note that syntactic
keyword-based search is used for the attribute “abstract” in some of the men-
tioned websites. The website “Google Advanced Scholar Search” puts more em-
phasis on syntactic keyword-based search, but still uses some metadata.

A simple user interface for SONCA may use fields for typing in:

– conditions on basic metadata
– a list or a Boolean expression of syntactic keywords
– a list or a Boolean expression of semantic keywords.

Basic metadata may include, e.g., the attributes used for “SCOPUS Search”.
We may allow also attributes like ObjectRank , the number of citations of a
publication, or the H-index of an author. Using the simple interface, the system
decides itself what weights to associate with the keywords, how to combine the
conditions on fuzzy matching, and how to weight the results.

An advanced user interface for SONCA should allow sophisticated ways for:

– specifying conditions on metadata
– providing a list of weighted syntactic keywords, possibly for some concrete

long-text attributes or for the whole queried document

28 L.A. Nguyen and H.S. Nguyen

– specifying conditions on fuzzy matching using semantic keywords, concepts
and objects

– specifying a method for combining the conditions and weighting the results.

Consider the first item of the above list. Here are some proposals:

– We can define a user logical data model, based on the relational database
model of SONCA, by using appropriate views and hiding or blocking access
to certain information. We can then allow the user to write SQL-like queries
using that data model.

– Alternatively, we can allow the user to construct description-logic-like queries
by using concept names, role names and constructors from a certain list.

– We can allow the user to query an external system (e.g., DBpedia by using
SPARQL) and use the returned results in specifying a query to the SONCA
system. We can also allow using search results returned by SONCA to specify
another query to SONCA.

– We can allow the user to specify and use additional predicates by some recur-
sive rule language, e.g., semipositive Datalog¬ with the standard semantics.

The idea of querying an external system like DBpedia can also be adopted for
specifying keywords or concepts for a query to SONCA.

The part involving semantic search in a query may consist of three compo-
nents ΦSemPhrases , ΦConcepts and ΦSimObjects . By preprocessing the query and
interacting with the user, the interface module may convert that part to a list
or an expression of only weighted concepts.

The interface module may help the user in constructing or refining a query by
using the main ontology. The approach of the DOPE Browser [23] for navigating
and refining queries is interesting and can be adopted for the SONCA system.

5 On Efficient Computation

There are two kinds of computation: pre-computation, e.g., for computing
RelatedConcepts and ObjectRank of objects; and online computation, e.g., for an-
swering queries. Accuracy seems more important for pre-computation, while effi-
ciency seems more important for online computation. In this section, we present
some proposals for increasing efficiency of the query answering process.

Consider the case when the part involving semantic search of a query consists
of a set of weighted phrases, a set of weighted concepts, and a set of weighted
objects (used for checking similarity). That part can be converted to a set of
weighted concepts, e.g., by function ConvertSemSubquery given on page 29. The
conversion result can be presented to the user and improved by him/her.

Having a set of weighted concepts for matching with documents, we first
extend it by function ExtendConcepts given on page 29 and then match concepts
of the resulting set directly with the documents by function DirectSemMatching
given on page 30.

Our first proposal is to preprocess the part involving semantic search of a
query by using functions ConvertSemSubquery and ExtendConcepts (or similar

On Designing the SONCA System 29

Function. ConvertSemSubquery(ΦSemPhrases, ΦConcepts , ΦSimObjects)
Input: ΦSemPhrases = {(s1, u1), . . . , (sh, uh)}, ΦConcepts = {(c1, v1), . . . , (ck, vk)},

ΦSimObjects = {(o1, w1), . . . , (ol, wl)}, where each si is a string, each ci is
a concept, each oi is an object, and each ui (resp. vi, wi) is the weight
of si (resp. ci, oi).

Output: a set of weighted concepts.

let t-conorm-CSS be the t-conorm used for this function;1

concepts := {(c1, v1), . . . , (ck, vk)};2

foreach 1 ≤ i ≤ h do3

let Terms(si,ParamSim2) = ((t1, x1), . . . , (tn, xn)) and sum = Σn
i=1 xi;4

foreach 1 ≤ j ≤ n do5

foreach c ∈ PossibleConcepts(tj) do6

if there exists (c, v) ∈ concepts then7

replace (c, v) in concepts by8

(c, t-conorm-CSS(v, ui × (xj/sum)×Simst(si, tj)×Simtc(tj , c)))
else add (c, ui × (xj/sum) × Simst(si, tj) × Simtc(tj , c)) to concepts9

foreach 1 ≤ i ≤ l do10

let sum = Σ {v | there exists (c, v) ∈ RelatedConcepts(oi)};11

foreach (c, v) ∈ RelatedConcepts(oi) do12

if there exists (c, v′) ∈ concepts then13

replace (c, v′) in concepts by (c, t-conorm-CSS(v′, wi × v/sum))14

else add (c, wi × v/sum) to concepts15

return concepts16

Function. ExtendConcepts(concepts)
Input: a set concepts = {(c1, w1), . . . , (ck, wk)}, where each ci is a concept and

wi is the weight of ci.
Output: another set of weighted concepts.

let t-conorm-EC be the t-conorm used for this function;1

rs := ∅;2

foreach 1 ≤ i ≤ k do3

foreach (c, w) ∈ SimilarConcepts(ci,ParamSim3 ,ParamSim4) do4

if there exists (c, w′) ∈ rs then5

replace (c, w′) in rs by (c, t-conorm-EC (w′, wi × w))6

else add (c, wi × w) to rs7

return rs8

ones) and then apply function DirectSemMatching (or a similar one) to score
documents from a given set X w.r.t. that part of the query. This replaces the
functions mssem

s , msc, mso and requires a change for the function ms proposed
in Section 2.3. The point is that preprocessing the query does not depend on
documents and can be done efficiently, while direct matching can also be done
efficiently using set-oriented operations.

30 L.A. Nguyen and H.S. Nguyen

Function. DirectSemMatching(concepts, X)
Input: a set concepts = {(c1, w1), . . . , (ck, wk)}, where each ci is a concept and

wi is the weight of ci; and a set X of objects
Output: a set of pairs (x,ms), where x ∈ X and ms is a matching score for x

w.r.t. concepts

rs := ∅;1

sum := w1 + . . . + wk;2

foreach x ∈ X do3

sum2 := 0;4

foreach 1 ≤ i ≤ k do5

if there exists (ci, w
′
i) ∈ RelatedConcepts(x) then6

sum2 := sum2 + min(wi, w
′
i)7

add (x, sum2/sum) to rs8

return rs9

Given a query Φ = (ΦMetadata , ΦSynPhrases , ΦSemPhrases , ΦConcepts ,
ΦSimObjects , Φweighting), we can apply ΦMetadata first to restrict the set of pos-
sible results to a set X of objects. If the component ΦMetadata is empty or the
returned set X is still too big, it is desirable to restrict the set further before
scoring the objects using the other components of Φ. For this aim one can adopt
the restriction that each result of the search must be an object containing a term
specified by ΦSynPhrases . If the set is still too big, a further restriction may be the
assumption that each result of the search must be an object “related” to a con-
cept specified by ΦSemPhrases , ΦConcepts or ΦSimObjects (e.g., a concept specified
by ExtendConcepts(ConvertSemSubquery(ΦSemPhrases , ΦConcepts , ΦSimObjects)).

6 Conclusions

We have designed the SONCA system using the query-oriented approach. Our
design allows combination of metadata-based search, syntactic keyword-based
search and semantic search, and the use of ObjectRank . In our approach, se-
mantic search is based on measuring similarity between terms, concepts and
documents. Our proposals have carefully been chosen to guarantee practicabil-
ity of the system. However, implementation and evaluation were not undertaken,
and it is highly probable that the design, in particular, the detailed definitions
of functions, can be significantly improved.

Acknowledgements. This work was supported by the National Centre for Re-
search and Development (NCBiR) under Grant No. SP/I/1/77065/10 by the
strategic scientific research and experimental development program: “Interdisci-
plinary System for Interactive Scientific and Scientific-Technical Information”.

On Designing the SONCA System 31

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI 2005,
pp. 364–369. Morgan-Kaufmann Publishers (2005)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Proc. of the
OWLED 2008 DC Workshop on OWL: Experiences and Directions (2008)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The L-Lite family. J.
Autom. Reasoning 39(3), 385–429 (2007)

4. Drabent, W., Ma�luszyński, J.: Well-founded semantics for hybrid rules. In: Marchiori,
M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 1–15. Springer,
Heidelberg (2007)

5. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for
description logic programs in the Semantic Web. ACM Trans. Comput. Log. 12(2),
11 (2011)

6. Glimm, B., Horrocks, I., Motik, B.: Optimized description logic reasoning via core
blocking. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 457–471.
Springer, Heidelberg (2010)

7. Goré, R., Nguyen, L.A.: EXPTIME tableaux with global caching for description
logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.)
TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 133–148. Springer, Heidelberg
(2007)

8. Goré, R., Widmann, F.: Sound global state caching for ALC with inverse roles.
In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607,
pp. 205–219. Springer, Heidelberg (2009)

9. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: Proc. WWW 2003, pp. 48–57
(2003)

10. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.
KR 2006, pp. 57–67. AAAI Press (2006)

11. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Autom. Rea-
soning 39(3), 249–276 (2007)

12. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-
tion logics. Logic Journal of the IGPL 8(3) (2000)

13. http://www.synat.pl

14. http://www.w3.org/TR/owl-guide/

15. http://www.w3.org/TR/owl2-overview/

16. http://wiki.dbpedia.org/About

17. http://wordnet.princeton.edu/

18. http://plwordnet.pwr.wroc.pl/wordnet/

19. http://en.wikipedia.org/wiki/Tf-idf

20. http://pl.wikipedia.org/wiki/PageRank

21. http://www.scopus.com/search/form.url

22. http://www.biomedsearch.com/search.html

23. http://www.w3.org/2001/sw/sweo/public/UseCases/Elsevier/

24. http://www.w3.org/TR/skos-reference/

25. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction
to disjunctive Datalog. J. Autom. Reasoning 39(3), 351–384 (2007)

26. Knorr, M., Alferes, J.J., Hitzler, P.: A coherent well-founded model for hybrid
MKNF knowledge bases. In: Proc. ECAI 2008, Frontiers in Artificial Intelligence
and Applications, vol. 178, pp. 99–103. IOS Press (2008)

http://www.synat.pl
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl2-overview/
http://wiki.dbpedia.org/About
http://wordnet.princeton.edu/
http://plwordnet.pwr.wroc.pl/wordnet/
http://en.wikipedia.org/wiki/Tf-idf
http://pl.wikipedia.org/wiki/PageRank
http://www.scopus.com/search/form.url
http://www.biomedsearch.com/search.html
http://www.w3.org/2001/sw/sweo/public/UseCases/Elsevier/
http://www.w3.org/TR/skos-reference/

32 L.A. Nguyen and H.S. Nguyen

27. Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in
CARIN. Artif. Intell. 104(1-2), 165–209 (1998)

28. Mishra, R.B., Kumar, S.: Semantic web reasoners and languages. Artif. Intell.
Rev. 35(4), 339–368 (2011)

29. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5) (2010)
30. Motik, B., Sattler, U.: A comparison of reasoning techniques for querying large

description logic ABoxes. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 227–241. Springer, Heidelberg (2006)

31. Nguyen, L.A.: A bottom-up method for the deterministic horn fragment of the
description logic ALC. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A.
(eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 346–358. Springer, Heidelberg
(2006)

32. Nguyen, L.A.: An efficient tableau prover using global caching for the description
logic ALC. Fundam. Inform. 93(1-3), 273–288 (2009)

33. Nguyen, L.A.: Horn knowledge bases in regular description logics with PTime data
complexity. Fundam. Inform. 104(4), 349–384 (2010)

34. Nguyen, L.A.: Paraconsistent and approximate semantics for the OWL 2 web on-
tology language. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu,
Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 710–720. Springer, Heidelberg (2010)

35. Nguyen, L.A.: A cut-free exptime tableau decision procedure for the logic extending
converse-PDL with regular inclusion axioms. CoRR, abs/1104.0405 (2011)

36. Nguyen, L.A.: Cut-free expTime tableaux for checking satisfiability of a knowledge
base in the description logic ALCI. In: Kryszkiewicz, M., Rybinski, H., Skowron,
A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 465–475. Springer, Heidel-
berg (2011)

37. Nguyen, L.A.: A cut-free expTime tableau decision procedure for the descrip-
tion logic SHI. In: J ↪edrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI
2011, Part I. LNCS(LNAI), vol. 6922, pp. 572–581. Springer, Heidelberg (2011),
http://arxiv.org/abs/1106.2305

38. Nguyen, L.A., Sza�las, A.: expTime tableaux for checking satisfiability of a knowl-
edge base in the description logic ALC. In: Nguyen, N.T., Kowalczyk, R., Chen,
S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 437–448. Springer, Heidel-
berg (2009)

39. Nguyen, L.A., Sza�las, A.: Checking consistency of an ABox w.r.t. global assump-
tions in PDL. Fundam. Inform. 102(1), 97–113 (2010)

40. Nguyen, L.A., Sza�las, A.: Tableaux with global caching for checking satisfiabil-
ity of a knowledge base in the description logic SH. T. Computational Collective
Intelligence 1, 21–38 (2010)

41. Nguyen, L.A., Sza�las, A.: Three-valued paraconsistent reasoning for semantic web
agents. In: J ↪edrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-
AMSTA 2010. LNCS, vol. 6070, pp. 152–162. Springer, Heidelberg (2010)

42. Ortiz, M., Rudolph, S., Simkus, M.: Worst-case optimal reasoning for the Horn-DL
fragments of OWL 1 and 2. In: Proc. KR 2010. AAAI Press (2010)

http://arxiv.org/abs/1106.2305

On Designing the SONCA System 33

A Appendix: On DBpedia

DBpedia is a very useful source of structured information. It allows us to ask so-
phisticated queries against Wikipedia, and to link other data sets on the Web to
Wikipedia data. DBpedia can be used as a main ontological source for SONCA,
as it contains a large multi-domain ontology, links to Wikipedia pages and con-
nections to other information sources like WordNet.

The DBpedia data set describes more than 3.5 million “things” with over
half a billion “facts”. The current version DBpedia 3.6 is available for download
at http://wiki.dbpedia.org/Downloads36. The most important datasets for
SONCA are:

Articles Categories: links from resources to categories using the SKOS vo-
cabulary [24].

Categories (Skos): information about which concept is a category and how
categories are related using the SKOS Vocabulary.

Disambiguation Links
Links to YAGO2: YAGO type information for DBpedia resources and

the YAGO class hierarchy (the YAGO Classification is derived from the
Wikipedia category system using Word Net).

Word Net Classes: classification links to RDF representations of WordNet
classes.

The dataset Ontology Infobox Properties is one of the four high-quality
“mapping-based” datasets in the /ontology/ namespace of DBpedia, but we can
use it as an “external source”. Other useful datasets for SONCA are, for exam-
ple, Homepages, Persondata, External Links, Redirects, Links to DBLP, Links
to Cyc.

Information from datasets like Categories (Labels), Titles, Links to Wikipedia
Article can (probably) be computed from identifications of “things”.

The dataset DBpedia Ontology is too small and seems useless for SONCA.
For example, it does not contain words/concepts “Computer Science” (in any
combination of cases). Consequently, the dataset Ontology Infobox Types, which
contains triples of the form $object rdf:type $class (concept) is not useful for
SONCA either.

Here is some exemplary information from the preview of datasets:

– Articles Categories:
• <http://dbpedia.org/resource/Aristotle>
<http://purl.org/dc/terms/subject>
<http://dbpedia.org/resource/Category:Metaphysicians> .

• <http://dbpedia.org/resource/Aristotle>
<http://purl.org/dc/terms/subject>
<http://dbpedia.org/resource/Category:Humor_researchers> .

• <http://dbpedia.org/resource/Aristotle>
<http://purl.org/dc/terms/subject>
<http://dbpedia.org/resource/Category:History_of_science> .

http://wiki.dbpedia.org/Downloads36
<http://dbpedia.org/resource/Aristotle>
<http://purl.org/dc/terms/subject>
<http://dbpedia.org/resource/Category:Metaphysicians>
<http://dbpedia.org/resource/Aristotle>
<http://purl.org/dc/terms/subject>
<http://dbpedia.org/resource/Category:Humor_researchers>
<http://dbpedia.org/resource/Aristotle>
<http://purl.org/dc/terms/subject>
<http://dbpedia.org/resource/Category:History_of_science>

34 L.A. Nguyen and H.S. Nguyen

• . . . (on “Aristotle”)
• We have a problem here. Namely, in DBpedia, “concept” means a con-

cept defined in the dataset DBpedia Ontology. As mentioned before, this
dataset is too small and rather useless for SONCA. Hence, we have to
take “categories” as concepts in a broader sense. But, “Aristotle” is not
an instance of “History of science”. An alternation is to use the YAGO
Classification.

– Categories (Skos):
• <http://dbpedia.org/resource/Category:Futurama>
<http://www.w3.org/2004/02/skos/core#broader>
<http://dbpedia.org/resource/
Category:Comic_science_fiction> .

• <http://dbpedia.org/resource/Category:Futurama>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/2004/02/skos/core#Concept> .

• <http://dbpedia.org/resource/Category:World_War_II>
<http://www.w3.org/2004/02/skos/core#broader>
<http://dbpedia.org/resource/
Category:Wars_involving_Poland> .

– Disambiguation Links:
• <http://dbpedia.org/resource/Alien>
<http://dbpedia.org/ontology/wikiPageDisambiguates>
<http://dbpedia.org/resource/Alien_%28law%29> .

• <http://dbpedia.org/resource/Alien>
<http://dbpedia.org/ontology/wikiPageDisambiguates>
<http://dbpedia.org/resource/Alien_%28franchise%29> .

• <http://dbpedia.org/resource/Alien>
<http://dbpedia.org/ontology/wikiPageDisambiguates>
<http://dbpedia.org/resource/Alien_%28film%29> .

• Information of this kind is useful for tagging documents with concepts.
– Links to YAGO2:

• <http://dbpedia.org/resource/Aristotle>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://dbpedia.org/class/yago/AncientGreekPhilosophers> .

• <http://dbpedia.org/resource/Aristotle>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://dbpedia.org/class/yago/4th-centuryBCPhilosophers> .

• <http://dbpedia.org/resource/Aristotle>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://dbpedia.org/class/yago/HumorResearchers> .

• . . . (on “Aristotle”)
– Word Net Classes:

• <http://dbpedia.org/resource/%24_%28film%29>
<http://dbpedia.org/property/wordnet_type>
<http://www.w3.org/2006/03/wn/wn20/instances/
synset-movie-noun-1> .

<http://dbpedia.org/resource/Category:Futurama>
<http://www.w3.org/2004/02/skos/core#broader>
<http://dbpedia.org/resource/Category:Comic_science_fiction>
<http://dbpedia.org/resource/Category:Comic_science_fiction>
<http://dbpedia.org/resource/Category:Futurama>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/2004/02/skos/core#Concept>
<http://dbpedia.org/resource/Category:World_War_II>
<http://www.w3.org/2004/02/skos/core#broader>
<http://dbpedia.org/resource/Category:Wars_involving_Poland>
<http://dbpedia.org/resource/Category:Wars_involving_Poland>
<http://dbpedia.org/resource/Alien>
<http://dbpedia.org/ontology/wikiPageDisambiguates>
<http://dbpedia.org/resource/Alien_%28law%29>
<http://dbpedia.org/resource/Alien>
<http://dbpedia.org/ontology/wikiPageDisambiguates>
<http://dbpedia.org/resource/Alien_%28franchise%29>
<http://dbpedia.org/resource/Alien>
<http://dbpedia.org/ontology/wikiPageDisambiguates>
<http://dbpedia.org/resource/Alien_%28film%29>
<http://dbpedia.org/resource/Aristotle>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://dbpedia.org/class/yago/AncientGreekPhilosophers>
<http://dbpedia.org/resource/Aristotle>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://dbpedia.org/class/yago/4th-centuryBCPhilosophers>
<http://dbpedia.org/resource/Aristotle>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://dbpedia.org/class/yago/HumorResearchers>
<http://dbpedia.org/resource/%24_%28film%29>
<http://dbpedia.org/property/wordnet_type>
<http://www.w3.org/2006/03/wn/wn20/instances/synset-movie-noun-1>
<http://www.w3.org/2006/03/wn/wn20/instances/synset-movie-noun-1>

On Designing the SONCA System 35

• <http://dbpedia.org/resource/%26_%28song%29>
<http://dbpedia.org/property/wordnet_type>
<http://www.w3.org/2006/03/wn/wn20/instances/
synset-phonograph_record-noun-1> .

• <http://dbpedia.org/resource/%2703_Bonnie_%26_Clyde>
<http://dbpedia.org/property/wordnet_type>
<http://www.w3.org/2006/03/wn/wn20/instances/
synset-phonograph_record-noun-1> .

• The reason for using this dataset is that a keyword may belongs to
different concepts and WordNet contains information about “frequency
counts” that is useful for tagging documents with concepts.

Note that YAGO2 Class and DBpedia Category are different notions. The
dataset Links to YAGO2 provides classes together with a good relation “is-
instance-of” from objects (resources) to classes. As mentioned before, there is
no relation like “is-instance-of” from resources to categories. A similar relation
from resources to categories is called “subject”. For example, “Aristotle” has a
subject belonging to the category “History of science”.

There are the following semantic relations between categories
(skos:semanticRelation), given in a hierarchy:
– skos:related

• skos:relatedMatch
– skos:broaderTransitive

• skos:broader
∗ skos:broadMatch

– skos:narrowerTransitive
• skos:narrower

∗ skos:narrowMatch
– skos:mappingRelation

• skos:closeMatch
∗ skos:exactMatch

• skos:relatedMatch
• skos:broadMatch
• skos:narrowMatch

We can restrict to categories of DBpedia, without using Yago classes. With
this assumption, the most important notions and information from DBpedia for
SONCA are:
– resource (object) and the relationship resource-category (subject) from the

dataset Articles Categories
– the relationships category-category (skos:semanticRelation) from the dataset

Categories (Skos)
– information from the datasets Disambiguation Links and Word Net Classes

(used for choosing resources/categories and tagging documents with them)
– properties from the dataset Ontology Infobox Properties, which will be used

as an additional feature for query languages and user interfaces for SONCA
and are not required being stored in the database of SONCA.

Of course, other information from DBpedia (e.g., abstracts) are also useful for
SONCA to a certain extent.

<http://dbpedia.org/resource/%26_%28song%29>
<http://dbpedia.org/property/wordnet_type>
<http://www.w3.org/2006/03/wn/wn20/instances/synset-phonograph_record-noun-1>
<http://www.w3.org/2006/03/wn/wn20/instances/synset-phonograph_record-noun-1>
<http://dbpedia.org/resource/%2703_Bonnie_%26_Clyde>
<http://dbpedia.org/property/wordnet_type>
<http://www.w3.org/2006/03/wn/wn20/instances/synset-phonograph_record-noun-1>
<http://www.w3.org/2006/03/wn/wn20/instances/synset-phonograph_record-noun-1>

	On Designing the SONCA System
	Introduction
	On the Web Ontology Language OWL
	Using Ontologies for the SONCA System
	The Contributions and the Structure of This Work

	An Abstract Model for SONCA
	Terms, Concepts and Ontologies
	Abstract Document-Representations
	Abstract Queries
	Summary

	An Instantiation of the Abstract Model
	Collection TERMS and Involved Functions
	The Main Ontology and Involved Functions
	Computing ObjectRank and RelatedConcepts of Objects
	Computing Other Similarity Functions

	On the User Interface for SONCA
	On Efficient Computation
	Conclusions
	References

