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Abstract. The paper presents a novel approach to design and development of a 
modularized knowledge base. It is assumed that the knowledge base consists of 
a terminology (axioms) and a world description (assertions), both formulated in 
a Description Logics (DL) dialect. The approach is oriented towards 
decomposition of a knowledge base into logical components called contexts and 
further into semantic components called conglomerates. Both notions were 
elaborated separately elsewhere. The paper shows how contexts and 
conglomerates concepts can work in harmony to create a maintainable 
knowledge base. An architecture of a system that conforms to this approach, 
which additionally uses a query language called KQL (Knowledge Query 
Language), is presented. The approach is intended to be used to build a 
prototypical system that aims at integrating knowledge on cultural heritage 
coming from digital libraries, including user-defined libraries. The thorough 
discussion of related work is also given. 

Keywords: ontology, knowledge base, modularization, contexts, 
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1   Introduction 

In this paper we present a novel approach to design and implementation of large and 
scalable knowledge bases that conform to Description Logics [1] dialects 
expressiveness (according to W3C standards: that conform to OWL2 [2] with SWRL 
[3] extensions). This approach is based on three major concepts: contexts, 
conglomerates and a query language. Contexts are to logically situate a knowledge 
based in different frameworks so that logical statements are interpreted in a proper 
way, according to a given “situation”. Conglomerates are to divide a complex, large 
knowledge base into components, like a  relational database is divided into relations. 
Conglomerates can be operated upon by algebraic operations, like relations in a 
relational database. The operations can be performed via Knowledge Query Language 
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(KQL) statements that structurally remind that of SQL statements, which make them 
more easily understood by systems engineers. 

The paper is organized as follows. In the Section 2 we present the notion of 
contexts. In Section 3 we present the notion of conglomerates. In Section 4 the KQL 
language is presented. In Section 5 the architecture of the system that incorporates the 
three components is presented. The system is to be implemented as a part of the 
SyNat system intended to make the cultural and science Polish heritage available 
worldwide. Section 6 presents the related work. In Section 7 we conclude the paper. 

2   Contexts 

Contextualizing knowledge bases makes the process of their deployment and use 
more effective. Contextualized knowledge bases, if contextualization is properly 
conducted, are easier to design and maintain. Moreover, with use of contextualization, 
the efficiency of reasoning process can be greatly improved. In this section we 
describe our approach to modularization, Structured-Interpretation Model (SIM), an 
approach that has several distinguishing features, the most important of which is the 
relative straightforwardness of adapting the structure of knowledge the base to 
evolving needs of the user. 

As a basis we have taken Description Logic formalism and we adapted to it the 
notions of generalization and context instance. Let us recall that a DL ontology 
consists of a terminology (TBox) and a world description (ABox). The Formal 
definition of contextualized DL ontology is as follows: 

Definition 2.1. A contextualized TBox T = ({Ti}iœI, 1) consists of a set of TBoxes 
whose elements are called contexts, and a generalization relation 1 Œ I μ I which is a 
partial order established over the set of indexes I. The relation is acyclic and contains 
the only  least element m. We also introduce the following notions: 

 

Tm called the root context of the contextualized TBox T, 
Ti generalizes Tj iff i 1 j, 
 Ti specializes Tj iff j 1 i.   □ 

The idea behind introducing such hierarchical arrangement of contexts was to allow 
for constrained interactions between parts of terminology. The general rule here is 
that more specialized terminologies may “see” more general ones, but more general 
terminologies may be unaware of the existence of more specialized ones. 

Introduced contexts encompass only terminology. To deal with assertional part of 
the knowledge base we allow for creation of many ABoxes for one terminology. We 
call these ABoxes context instances. 

Definition 2.2. A contextualized ABox A = ({Aj}jœJ, inst, a) of contextualized TBox 
T = ({Ti}iœI, 1) is a triple consisting of: 

1. A set of ABoxes {Aj}jœJ, each of which is called an instance of context, 
2. The function inst: J → I relating each ABox from {Aj}jœJ with TBox from {Ti}iœI, 
3. The aggregation relation a Œ J μ J, which is a partial order established over the 

set of indexes J. We require that: 
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Definition 3.1. (conglomerate). A conglomerate M = (S, W) is a pair of a signature S 
(called a signature of the conglomerate) and a class W of S-interpretations (called 
models of the conglomerate). The two parts of M are denoted as S(M) and W(M), 
respectively. Each S-interpretation from W we call a model of M.    □ 

According to this definition, each conglomerate simply consists of all its models. We 
say that a conglomerate satisfies a particular sentence α, denoted M £ α, iff 
∀I ∈ W(M): I £ α.   

We think that creators of an ontology are not able to foresee all its future uses. By 
necessity, the creators have to focus on a small set of chosen contexts of use of 
particular modules, and the contexts of their choice may not be adequate for a 
particular application of a knowledge base with this ontology. So, the conglomerate 
algebra puts stress on various methods of manipulation for them; that in general allow 
for changing and combining signature and models. 

3.2   Operators 

We assume that description logic L and domain set Δ are chosen and fixed. We 

denote a set of all modules as M, a set of all signatures as Σ, and a set of all S-
interpretations as Ι(S). We also use the notion of a projection I΄ =  I|S΄ of an S-

interpretation I to a signature S΄ (S΄ Œ S). I΄ is an S΄-interpretation for which the 

following holds: Δ I΄ = ΔI and XI΄ = XI for every X ∈ S΄. 

Extend 

εS: M → M, S ∈ Σ ; 
εS(M) = (S(M) ( S, {I ∈ Ι(S(M) ( S): I|S(M) ∈ W(M)}).   □ 

Extension extends a signature of a given module M by names from a given signature 
S. The allowed set of interpretations of each original name is preserved, and so are the 
relationships between original concepts, roles, and individuals (e.g. if M £ α, α ∈ 
L(S(M)), then also εS(M) £ α). 

Project 

πS: M → M, S ∈ Σ, S Œ S(M); 
πS(M) = (S, {I|S: I ∈ W(M)}).   □ 

Projection reduces a signature of a given module. However, relationships between 
original concepts, roles, and individuals whose names remain in the signature are 
preserved (e.g. if M £ α, α ∈ L(S), then also πS(M) £ α). 

Rename 

ργ: M → M, γ is a signature mapping; 
ργ(M) = (γ(S), γ(W)).   □ 
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Renaming uses the notion of a signature mapping. Signature mapping γ is a triple: (γC, 
γR, γI), each of them being a bijection from N to N. By γ(S) we mean γC(C(S)) ) 

γR(R(S)) ) γI(I(S)), and by γ(I), where I is  an S-interpretation, we mean an γ(S)-

interpretation I΄ such that ΔI΄ = ΔI and γ(X)I΄ = XI for every X ∈ S. Rename 
preserves relationships between concepts, roles, and individuals, however with 
respect to their name changes (e.g. if M £ α, α ∈ L(S(M)), then ργ(M) £ γ(α), where 

γ(α) is α transformed in such a way that all names in α have been systematically 
changed according to γ). 

Select 

σα: M → M, α ∈ L(S(M)); 

σα(M) = (S, {I ∈ W(M): I £ α}).  □ 

Selection leaves only these interpretations that are models of a sentence α. Obviously 
σα(M) £ α. 

Union 

(: M × M → M, S(M1) = S(M2); 

M1 ( M2 = (S(M1), W(M1) ( W(M2)).    □ 

Union performs a set-theoretic union of sets of models of conglomerates. The 
condition that S(M1) = S(M2) is not very restrictive because we can easily upgrade this 
operation to a generalized union (g: M1 (g M2 = εS(M

2
)(M1) ( εS(M

1
)(M2). 

Intersection 
': M × M → M, S(M1) = S(M2); 

M1 ' M2 = (S(M1), W(M1) ' W(M2)).    □ 

Difference 
–: M × M → M, S(M1) = S(M2); 

M1 – M2 = (S(M1), W(M1) – W(M2)).    □ 

Intersection and difference are analogous to the union, and can be generalized in the 
similar way to the case when signatures of the operands differ. 

Union and difference are non-linguistic (strictly semantic), i.e. their use may lead 
to generation of a conglomerate M for which there does not exist any corresponding 
set of sentences S in L. This issue will be elaborated on later in the paper. 

I-Join (intersecting join) 

×: M × M → M; 

M1 × M2 = (S΄, W΄); 
S΄ = γ1(S(M1)) ( γ2(S(M2)); 
W΄ = {I ∈ Ι(S΄): I|γ1(S(M1)) ∈ γ1(W(M1)) ∧ 

                I|γ2(S(M2)) ∈ γ2(W(M2))}.    □ 
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I-Join is an operation on two conglomerates. It uses two signature mappings γ1, γ2, 
each of them preceding every terminological name in a signature with a unique prefix. 
Thus, I-Join helps to solve potential naming conflict between conglomerates. I-Join 
preserves relationships between original concepts and roles in both modules (if M1 £ 
α, α ∈ L(S(M1)), then M΄ £ γ1(α), analogically for M2). 

I-Join is a non-primitive operation, as M1 × M2 can be expressed as ργ
1
(M1) 'g 

ργ
2
(M2). This derivation justifies the name “intersecting join” as we may perceive this 

join as a “safe” way of intersecting modules. 

U-Join (union join) 

«: M × M → M; 
M1 « M2 = (S΄, W΄); 

S΄ = γ1(S(M1)) ( γ2(S(M2)); 
W΄ = {I ∈ Ι(S΄): I|γ1(S(M1)) ∈ γ1(W(M1)) ∨ 

    I|γ2(S(M2)) ∈ γ2(W(M2))}.    □ 

U-Join is a counterpart of I-Join. γ1, γ2 have the same meaning as above. U-Join offers 
the “safe” way of performing union. Naturally, M1 « M2 = ργ

1
(M1) (g ργ

2
(M2). 

Put-Under 

υC: M × M → M, C ∈ LC(S(M2)); 

M1 υC M2 = (S΄, W΄); 
S΄ = S(M1) ( S(M2); 
W΄ = {I ∈ Ι(S΄): I|S(M2) ∈ W(M2) ∧ 

              (I|S(M1) ' CI) ∈ W(M1)}.    □ 

Put-Under correlates the domains of two conglomerates. We use here a restriction of 
an S-interpretation I: by I ' Δ΄ we mean an interpretation I΄ = (Δ΄,⋅I΄) such that XI΄ 

= XI ' Δ΄ for every X ∈ S. As each conglomerate induces a set of laws that enforce 
certain relationships between concepts, roles, and individuals, then Put-Under can be 
perceived as a restriction of the scope of these laws to a fragment of a larger domain. 

3.3   Examples 

Example 3.1. (intersecting conglomerates). Consider two conglomerates: M1 
describes human resources and M2 the structure of a hospital. 

M1 = M({∃isManagerIn.HTBusinessUnit m Expert,  
 Expert m Employee}) 
M2 = M({leadsDepartment(johnSmith, neurosurgery), Department(neurosurgery)}). 

To merge the information from the two conglomerates in order to infer that johnSmith 
is an expert, we first create an intersection of the conglomerates: M´= M1 'g M2, and 
then restrict the set of models by introducing additional “bridge” axioms: M´´= M´ 'g 
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M({leadsDepartment m isManagerIn, Department m HTBusinessUnit}). The last step 
can also be done by double selection.                           □ 

In the example we did not encounter any name conflict between conglomerates being 
merged. In general, such a conflict may occur and I-Join operator should be used. 
Below we show how to align two conglomerates in which the same set of terms is 
used to express different meanings.   

Example 3.2. (joining conglomerates). Consider two conglomerates: M1 and M2. 
They contain assessment of several rooms for rent, and use the same categorization 
and signature S = {HSRoom, ASRoom, LSRoom}, where the concepts denote high, 
average and low standard rooms. But in M1 and M2 different criteria were used for 
categorization, as in the first case we were looking for a room to spend just one day 
and in the second case to stay for a longer period of time. We “import” the assessment 
from M1 to M2 performing necessary translation of classification between the 
conglomerates. 

1. In the first step we simply I-Join the conglomerates (modules). As a result we 
obtain a conglomerate M΄= M1 × M2. The concepts have been renamed, so S(M) = 
{1:HSRoom, 2:HSRoom, 1:ASRoom, …}. 

2. Next, we make the criteria of assessment explicit. In this example we use only one 
criterion: a bathroom. So, we extend the signature of M΄ appropriately: 
M΄΄= ε{RoomWithBathroom}(M΄). 

3. Afterwards, we bind the criteria with the assessment. In M1 rooms with bathrooms 
were automatically considered high standard. According to the criteria used in M2 
no room with bathroom can be considered more than low standard.  

M΄΄΄= M΄΄ 'g M({RoomWithBathroom m 1:HSRoom, 
           ¬RoomWithBathroom m 2:LSRoom}). 

Naturally, the second axiom is valid only if the domain consists of only rooms 
(which is assumed). 
4. Finally we remove unwanted terms from the module signature: 

M = π{2:HSRoom, 2:ASRoom, 2:LSRoom}(M΄΄΄). 

In these steps all the translations possible to perform were done. All average or low 
standard rooms from M1 were considered low standard in accordance with criteria 
from M2.    □ 

Some other aspects of using conglomerates can be found in [5]. 

4   Knowledge Query Language  

The basis of our work on a query language for a DL knowledge base is our opinion 
that the development of a universal language for accessing knowledge bases must be 
based on assumptions similar to those adopted and practically proven in the case of 
SQL – beside the others, theoretical mathematical basis, language closure and 
availability of commands to create, manipulate and control the knowledge. Thus, we 
have based the KQL language on theoretical backgrounds presented in Sections 2 and 
3, that is on contexts and conglomerates.  
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4.1   Basic Assumptions for KQL  

The main statement for manipulating a conglomerate (called in KQL a 
conglomeration) is the SELECT statement of the following structure: 

SELECT concept_list, role_list, attributes_list  
 ADD axiom_list 
 FROM conglomeration_expression 
 WHERE concept_expression  
 HAVING concept_expression 

With respect to the conglomerates algebra, the SELECT clause corresponds to the 
projection—the choice of terms for a newly created conglomerate, the ADD clause 
corresponds to the selection—the contraction of the set of allowed interpretations, the 
WHERE and HAVING clauses correspond to the projection with respect to individual 
names. The difference between the WHERE and HAVING clauses lies in the fact that the 
WHERE clause selects those individuals that belong to a specified concept of the 
original conglomerate (as defined in the FROM clause), while the HAVING clause selects 
those individuals that belong to a specified concept of the target conglomerate. The 
query is conceptually executed in the following steps: (1) Determining the basic 
conglomerate on the basis of the FROM clause. (2) Reducing the individual names on 
the basis of the WHERE clause. (3) Extending the alphabet with new concepts / roles / 
attributes / individuals that occur in the statements contained in the ADD clause. (4) 
"Adding" (i.e. extending the ontology) to the conglomerate the statements from the 
ADD clause. (5) Projection of the alphabet only to the concepts / roles / attributes 
contained in the SELECT clause. (6) Reducing the individuals names basing on the 
HAVING clause.  

A direct consequence of KQL closure is ability of query nesting. Every time a 
conglomerate is needed, one can use named conglomerates defined in knowledge base 
or conglomerates created on the fly by KQL expressions with the use of 
conglomerates algebra operators (such as INTERSECT, JOIN, UJOIN) or the SELECT 
clause. As a consequence of KQL closure and the ability of query nesting, the 
uniformity of modification and definition language has been achieved: one can use 
query nesting also in conglomerate creation statements: 

CREATE CONGLOMERATION conglomeration_name 

… 

FROM conglomeration_expression 

In KQL it is assumed that terminological queries are issued against a metaontology or 
a meta conglomerate. A metaontology is nothing but a single conglomerate 
knowledge base that stores information about conglomerates and rules. A meta  
conglomerate is also a single conglomerate knowledge base that stores information 
about exactly one conglomerate.  
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As a consequence of using the metaontology it is possible to issue terminological 
queries in a similar way how the assertional queries are issued; the only difference is 
that a query is directed to the metaontology rather than to the knowledge base itself. 
This follows from the fact that conglomerates, concepts, roles, attributes, and 
individuals from a knowledge base are reified to individuals in the metaontology and 
the relationships between them are reified to the corresponding binary relationships 
between individuals.  

4.2   Examples of KQL Usage 

The examples below have already been defined in terms of the conglomerate algebra. 

Example 4.1. (simple import). We consider two conglomerates: M1 describes human 
resources, and M2 describes a structure of a hospital.  

CREATE CONGLOMERATION M1 
 ADD CONCEPT HTBusinessUnit 
 ADD CONCEPT Expert 
 ADD CONCEPT Employee 
 ADD ROLE isManagerIn 

CONSTRAIN M1 
 EXIST isManagerIn HTBusinessUnit ISSUB Expert 
 Expert ISSUB Employee 

CREATE CONGLOMERATION M2 
 ADD CONCEPT Department 
 ADD ROLE leadsDepartment 
 ADD INDIVIDUAL johnSmith 
 ADD INDIVIDUAL neurosurgery 

CONSTRAIN M2 
 (johnSmith, neurosurgery) IS leadsDepartment 
 neurosurgery IS Department 

In KQL each conglomerate is created in two steps. In the first step the conglomerate 
signature is created (CREATE CONGLOMERATION statement). In the second step the 
constraints (sets of statements that must be satisfied) are added (CONSTRAIN 
statement). In the example above, the first conglomerate defines an employee and an 
expert. We assume that each expert is an employee, and anyone who manages at least 
one business unit is an expert. The second conglomerate describes John Smith who 
leads the department of neurosurgery. We want to ask whether johnSmith is the 
expert. 
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SELECT Expert 
 ADD leadsDepartment ISSUB isManagerIn  
 ADD Department ISSUB HTBusisnessUnit 
 FROM M1 INTERSECT M2 
 WHERE {johnSmith} 

To merge the information from the two conglomerates in order to check whether 
johnSmith is an expert we first create an intersection of the conglomerates (FROM 
statement), and then restrict the set of model by introducing additional “bridge” 
axioms (ADD statement). The result of the query is a new conglomerate whose 
signature consists of two terms: > and Expert. In our example johnSmith is an 
instance of Expert concept.    □ 

Example 4.2. (different versions and what-if problems) This example illustrates use 
of union and negation in KQL. Let us consider a conglomerate M: 

CREATE CONGLOMERATION M 
 ADD CONCEPT TrustedWitness ADD CONCEPT CrimeScene 
 ADD ROLE murdered 
 ADD ROLE accuses 
 ADD ROLE presentAt 
 ADD INDIVIDUAL victim 
CONSTRAIN CONGLOMERATION M 
 Top ISSUB <= 1 INV (murdered) {victim} 
 EXIST INV(accuses) TrustedWitness 

     ISSUB EXIST INV(murdered) {victim} 
 TrustedWitness ISSUB EXIST presentAt CrimeScene 

The M conglomerate describes a world that assumes the only one murderer who is 
accused by a trusted witness (who has been present at the crime scene). We consider 
two (mutually exclusive) versions of facts (e.g. collected by two investigating agents: 
John Shady and Henry Brilliant). To achieve that we define two new conglomerates 
(one for each agent).  

CREATE CONGLOMERATION M1 
FROM(  
 SELECT * 
 ADD johnShady IS  TrustedWitness 
 ADD (johnShady, tedInnocent) IS accuses 
FROM M 
) 

CREATE CONGLOMERATION M2 
FROM(  
 SELECT * 
 ADD henryBrillant IS TrustedWitness 
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 ADD (henryBrillant, markGuilty) IS accuses 
 FROM M 
) 

Having such defined conglomerates M1 i M2 we would like to analyze different 
scenarios. Therefore we create a new conglomerate M0 = M1 UNION M2. 

We may assume that henryBrillant is not a trusted witness: 

SELECT Murderer 
 ADD NOT TrustedWitness(henryBrilliant) 
 ADD Murderer EQ EXIST murdered {victim} 
 FROM M1 UNION M2 

We ask for a murderer. Therefore we define Murderer as a person who murdered a 
victim. The resulting conglomerate will return exactly one individual (tedInnocent) 
as an instance of Murderer concept. 

We may assume that markGuilty is a murderer 

SELECT TrustedWitness, NotTrustedWitness 
 ADD (markGuilty, victim) IS murdered 
 ADD NotTrustedWitness EQ NOT TrustedWitness  
 FROM M1 UNION M2 

In this case we can conclude that henryBrillant is a trusted witness (but this does 
not mean that johnShady is not a trusted witness). The conglomerate created within 
the query defines NotTrustedWitness concept (the complement of TrustedWitness 
concept defined in conglomerates M1 and M2). The conglomerate which is the result 
for this query will return a single instance of TrustedWitness concept and will return 
no instance of NotTrustedWitnesss concept. 

We may assume that johnShady was not present at the crime scene 

SELECT TrustedWitness, Murderer 
 ADD johnShady IS EXIST presentAt CrimeScene 
 ADD Murderer EQ EXIST murdered {victim} 
 FROM M1 UNION M2 

In this case we can conclude that johnShady is not a trusted witness and 
markGuilty is the murderer. To do this we define Murderer concept similarly to 
the second example.   □ 

More examples of KQL usage can be found in [6]. 
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5   The Architecture 

The techniques described above can be composed to create a comprehensive and 
uniform approach to creating large federated knowledge bases. In such a base every 
component is treated as a sovereign entity (conglomerate), so that it is possible to 
exploit its contents in its full variety. While the entities are sovereign, they are not 
independent, but organized in hierarchical structure of contexts.  

The SyNat project gives an opportunity to create such a federated base in a 
systematic way, and thus to validate the proposed approach. The notions of contexts, 
conglomerates, and the query language presented above are used in the following 
knowledge integration system (see Fig. 3). Data (pieces of knowledge) are stored in 
data (knowledge) sources1 (at the left-hand side of the figure). They are “pushed” 
(pre-loaded statically) or “pulled” (loaded dynamically, on demand) into 
conglomerates (ontology modules) of a knowledge base. Contents of each source are 
perceived by the rest of the system as autonomous conglomerates.  

The knowledge base is managed by a knowledge base management system called 
RKaSeA, the system developed at Gdansk University of Technology. The system, in 
its present stage of development, is equipped with the ability of handling the most 
important algebraic operations (intersection, projection, and selection), with the 
option of extending the range of operators by use of a specialized subsystem. The 
specialized subsystem takes advantage of L-(2)-representation of conglomerates 
(described in details in [28]; in a nutshell it gives the possibility of representing 
conglomerates in the form of sets of sentences), which enables use of standard 
inference engines for selected reasoning tasks. Another subsystem of RKaSeA is 
Knowledge Layer [29], fully integrated (by use of MCA—Maximum Coverage 
Algorithm—for reasoning from both internally stored ABoxes and external 
knowledge) with the reasoning mechanism and allowing for attaching external 
knowledge sources as separate conglomerates. The external knowledge sources may 
also be NORs (non-ontological resources). 

In the proposed architecture the pieces of knowledge are enriched with additional 
semantics. This enrichment is done by combining the knowledge from external 
modules with the selected fragments of integrated and contextualized Ontology of 
Science (Fig. 3). This name might be a bit misleading as we intend to include in this 
ontology also a choice of upper-level, commonly shared ontologies, primarily CIDOC 
[7] CRM. Such organization allows us to conduct an individualized method of 
integration of knowledge into the contextualized framework for each of the external 
conglomerates. It is also worth stressing that the system is flexible enough to easily 
accommodate new knowledge. Ontology of Science may contain “private” entities, 
added in personalized way by each user, such that use of them may improve the 
process of integration and tailor it for fulfillment of special needs of individual users 
and working groups of scientists.  

                                                           
1 During the first phase of development knowledge sources from the Polish Federation of 

Digital Libraries (http://fbc.pionier.net.pl) will be exploited. 
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Fig. 3. The architecture of a knowledge integration system with contextualized knowledge 
bases divided into conglomerates and queried using KQL 

Both external conglomerates and modules of Ontology of Science may be accessed 
by RKaSeA [8], that is able to interpret KQL queries issued by a user. The exact form 
of queries issued by the user is still subject to discussions. It is assumed though that 
the User Query Subsystem produces enough information to formulate KQL requests. 
Since the process of composing a query might be burdensome and difficult, we 
purport that it might be desirable to use some selected reasoning mechanisms to 
support it. This kind of reasoning is done over Ontology of Sources which holds 
meta-knowledge about the structure of the knowledge base. 

The proposed general architecture forms a basis for two more detailed scenarios of 
use of the system. In the first scenario we assume that the contents of external 
modules is well-known and standardized to conform to selected upper-level  
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ontologies and standards. In this scenario the primary role of the system focuses on 
selection of appropriate fragments of knowledge sources and on interpretation of 
queries issued by the users. In the second scenario we may not assume any initial 
level of conformance of the external source. In this scenario the system focuses on 
managing sources (with use of Ontology of Sources), selecting methods and 
procedures of integration, and maintaining uniform contextualized structure of the 
collection of managed external and internal conglomerates. 

6   Related Work 

In this section we present some related work concerning issues connected with 
integration of knowledge sources. In this section we describe two major approaches to 
modularization, and we also present some languages aimed at communication with 
knowledge bases. 

We can distinguish between two main approaches in this field: an inference 
approach and an algebraic approach. The former addresses the question of how 
knowledge collected in one source affects logical consequences inferred from another 
source. The latter proposes algebraic methods to separate needed fragments from 
given sources and then join them in an appropriate way in order to find a proper 
answer for a given question.  

The inference approach was firstly connected with the research field called 
ontology merging and then embraced issues addressed to the subject of 
modularization or contextualization of ontologies. 

Modularization (contextualization) of ontologies is recently a domain of intensive 
research. It was the subject of two large European projects: Knowledge Web 
(http://knowledgeweb.semanticweb.org/semanticportal/sewView/frames.html) and 
NeOn (http://www.neon-project.org/). There exist a lot of motivations to apply a 
contextual approach to representing knowledge. The most significant are (according 
to the NeOn deliverable D 3.1.1 [10]): 

1. Supporting different viewpoints. 
2. Dealing with temporal information. 
3. Dealing with inconsistent information. 
4. Personalization. 
5. Situation awareness in pervasive computing. 
6. Scalability. 
7. Ontology adaptation and views on ontologies. 
8. Matching pairs (groups) of ontologies. 

In the field of integration of knowledge from different and heterogeneous sources the 
results achieved during research on contextualization are very useful. Particularly the 
work on contextualization of logics is worth of mentioning. The examples of useful 
formalisms are, among others, modal logic ([11), the logic of demonstratives ([12]), 
and context logics ([13]). Obviously, all of them comply to the inference approach. In 
the environment of Semantic Web the most valuable is work connected with  
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Another technique is E-Connections ([17]). The main semantic difference 
comparing to DDL is that domains of modules are disjoint, so a relation between them 
is not needed. The technique allows to define roles connecting individuals from 
different domains. These special roles are called link relations. All link relations are 
gathered in the set E consisting of sets Eij of relations linking ontologies i and j. E-
Connections also defines the notion of distributed interpretation: 

 
M = ‚ (Di)1§ i§ n , (∏ 

Mi)1§ i§ n , (∏ 
Mij)1§ i,j§ n Ú 

 
where Di is the domain of i-th ontology, for i ∫ j Di ' Dj = ¯, and interpretation 
functions maps each concept A of i-th ontology into AMi Œ Di, each role R into RMi Œ 

Di μ Di, each individual a into aMi œ Di, and each link relation p ∈ Eij into pMij Œ 
DI μ Dj. 

During creation of an ontology containing link relations it is possible to use special 
concept constructs $p.Z, "p.Z, §np.Z or ¥np.Z, Z is a concept from j-th ontology, and 
n œ N. The semantics of such concepts is defined as follows: 

 
($p.Z)Mi = {a œ Di: $b œ Dj ((a, b) œ pMij - b œ ZMj)}, 

("p.Z)Mi = {a œ Di: "b œ Dj ((a, b) œ pMij ö b œ ZMj)}, 

(§np.Z)Mi = {a œ Di: |{b: ((a, b) œ pMij - b œ ZMj)}| § n }, 

(¥np.Z)Mi = {a œ Di: |{b: ((a, b) œ pMij - b œ ZMj)}| ¥ n }. 
 

Usage of these concepts allows for reasoning in the terms of i-th ontology within j-th 
ontology. If, for example, in j-th ontology the axiom D m C is defined, and in i-th 
ontology there exist axioms $p.C m G and H m $p.D, where p œ Eij, then in i-th 
ontology the axiom H m G holds. 

The both presented methods try to solve the problems with contextual reasoning, 
i.e. how should interpretations of modules affect each other, how to preserve 
decidability, soundness and completeness. Although very important, results of this 
work do not help with the problem that we call the problem of contextual designing. 
They offer no tools that could allow to express why contexts were created and what is 
their purpose. In contrast to them, our proposal, the SIM method, is an example of a 
framework for designing context-semantic knowledge bases, i.e. knowledge bases 
where contexts are explicit elements of conceptualization and affect the semantics of 
another members of the model. 

The second approach, the algebraic one, is based on the idea that all possible 
theories constitute a structure with the relationships between the elements describable 
by algebraic operation. In this approach we can distinguish two kinds of structures: 
syntactic and semantic ones. 

A prominent example of an algebra for syntactic structures is the method described 
by Mitra in [18] (also by Mitra and Wiederhold in [19]). An ontology module is  
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defined here as a set of sentences, namely RDF triples, so that every algebraic 
operation gives such a set as a result. 

The simplest use case for the algebra is integration of knowledge from two 
ontologies. To show how this algebra works in practice, we follow here a slightly 
modified example from [19] and assume that the two ontologies being integrated, O1 
and O2, describe respectively the domains of maritime vessels and cars (Fig. 4). 

To enable conduction of any algebraic operation on the two ontologies, we firstly 
have to define special rules, called articulation rules, that explain the relationships 
between terms in the ontologies. For our example we define two such rules: 

 
→ subClassOf(O1.Motorboat, CombustionVehicle) 
→ subClassOf(O2.Car, CombustionVehicle) 
 

These rules state that both a motorboat and a car are vehicles with a combustion 
engine. After defining the rules it is possible to perform binary operations on O1 and 
O2. There are three kinds of such operations: union, intersection and difference. 
Outcome of each operation is a set of sentences, defined as follows. We assume that 
O1,2 denotes the RDF graph obtained by “executing” the articulation rules (treated as 
production rules). Then (see Fig. 4): 

• the union of O1 and O2 is the union of graphs O1, O2 and O1,2, 
• the intersection of O1 and O2 is the graph O1,2, 
• the difference between O1 and O2 is the graph O1 from which all nodes present 

in O1,2 have been removed. 

The described algebra is relatively straightforward and convenient for describing 
different points of view (or even contexts, as Mitra and Wiederhold argue in [19]). 
Nevertheless, its commitment to syntax can be a source of major difficulties with its 
use for practical, large ontologies. The outcome of algebraic operations relies heavily 
on the exact form of the sentences used in the modules being integrated. If the same 
semantic information is expressed with two different sentences, the result can easily 
convey the intention of the user. Moreover, to use the algebra one has to define a set 
of articulation rules. These sets constitute a new kind of extraontological objects that 
have their own syntax and particularities and need to be managed and maintained by a 
user, which can be cumbersome. 

The aforementioned issues are not characteristic for the algebra by Mitra; on the 
contrary, they seem to be inherent for every algebra whose universe is based on 
syntactic form of sentences. This strongly suggests that semantic approach might be 
much more convenient for combining knowledge from different sources.  

No approach known to the authors of this paper goes as deeply into semantic 
structures as conglomerate algebra. However, in the algebra proposed by participants 
of the NeOn project (deliverables D1.1.3 [20] and D1.1.4 [21]), a module is treated 
essentially (when we neglect its interfaces and version information) as a theory (i.e. a 
set of sentences augmented with all conclusions). This allows us to treat this method 
as a semantic one, because a theory can be identified with an appropriate set of 
models. 
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often used for ontological purposes. As SPARQL is a query language, the syntax does 
not allow to enter changes into knowledge base. 

There are many languages designed for ontologies. DIG ([23], [24]), proposed in 
University of Manchester, is a language defined for maintaining ontologies defined in 
DL. OWL-QL ([25]), designed for Stanford Knowledge Systems Laboratory is a 
continuation of DQL—DAML Query Language. nRQL [26] is the query language for 
RacerPro. SAIQL [27] is developed in University of Koblenz-Landau and University 
of Aberdeen during the works on the NeOn project. None of these languages is able to 
deal with modular knowledge bases. A query is always addressed to one ontology. 
None of them is closed: queries cannot be nested in themselves, although the last 
one—SAIQL—returns as an answer a set of sentences forming a fully working OWL 
DL ontology rather than just substitutions of variables. 

7   Conclusions 

This paper presents the architecture and methods for building large federated 
knowledge bases. As the primary criteria for selecting methods of knowledge 
representation in such knowledge bases an ontology organization, capabilities of 
inference for a selected representation and a set of characteristics of an internal query 
language were selected. 

With respect to the ontology organization, we assumed that the adequate method of 
knowledge representation must provide: 

1. An appropriate structure of ontological modules 

─ with the ability to add new source modules and update ontology of science, 
─ with the ability to organize knowledge at various levels of detail, 
─ with the ability to dynamically create ontological modules when answering 

queries, 
─ with the ability to dynamically locate a set of modules containing information 

that can affect the answer to the query. 

2. Expressiveness of CIDOC CRM (SHIN(D), version Erlangen CRM). 
3. Capability of retrieving data from external sources using “push” and “pull” 

methods. 
4. Capability of adding sources incompatible with CIDOC CRM (changing 

perspective) in a way that preserves possibility of metadata conversion and 
unification to CIDOC CRM-compatible form. 

With respect to the inference capabilities, we assumed that the method of knowledge 
representation must provide: 
5. Capability of inference from combined modules (including these combined ad 

hoc) with a well-defined semantics (global semantics) while still maintaining the 
semantics of each module (local semantics). 

6. Capability of sound and complete inference from ontologies defined in 
description logic with minimal expressiveness of ALCHI(D). 

7. Capability of Open World Assumption aware inference. 
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With respect to the internal query language, we assumed that an adequate language 
must provide: 
8. Capability of processing information expressed in description logic with 

minimal expressiveness of ALCHI(D). 
9. Capability of binding information contained in different modules of varying 

granularity. 
10. Capability  of transformation of assertional knowledge (ABox) to terminological 

knowledge (TBox) and vice versa. 
11. Capability of nesting queries (i.e. using modules created ad hoc in further 

processing). 

These requirements imply that the basic feature of the presented solution is its 
modularity, and a non-modular methods are only a theoretical basis for the modular 
methods. One of the key distinguishing factors is the division of modular methods to 
semantic and non-semantic ones. The non-semantic methods emphasizes on locality 
and compatibility problems associated strongly with the inference. Although these 
problems are not irrelevant with respect to the proposed solution (see requirement 5), 
the emphasis here is put on the dynamic and efficient management of modules from 
the point of view of contextual features, especially of detail and scope (requirements 1 
and 5), but also perspective (requirement 4). This analysis led to exploiting in the 
presented solution the SIM method that allows automatic conclusions flow between 
modules (instances of contexts). In this way, knowledge bases built on the basis of the 
SIM method solve the detail and scope problem in a natural and effective way. 

The conglomerate-based method used in our approach combines the features of 
semantic and non-semantic approach. With the latter it has in common the great 
emphasis put on the management of the global semantics of modules. However, the 
space of modules in the conglomerate-based method has an algebraic nature. The 
actual semantics of this space must be imposed by a designer of a knowledge base by 
different means of expressiveness, outside the scope of conglomerate-based method. 
Hence, the proposed combination of the SIM and conglomerate-based methods work 
smoothly together. 

Although selecting a knowledge representation language is somehow independent 
on the choice of knowledge representation methods, it is easily seen that the choice of 
conglomerate knowledge base is tightly connected with  KQL as the internal query 
language. KQL, as based on closed algebraic structure, is the only one that provides 
nesting queries in a natural way (requirement 11). 

In conclusion we can state that none of the methods of knowledge representation is 
mature enough to meet all the requirements defined above. Using SIM and 
conglomerate-based methods together seems to simultaneously fulfill the 
requirements for the management of modules scope and details as well as perspective 
and offer a very flexible way to create a new ontological modules (by means of 
conglomerate algebra and KQL). So, next research and prototype implementation will 
be conducted in this direction.  
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