
R. Bembenik et al. (Eds.): Intelligent Tools for Building a Scient. Info. Plat., SCI 390, pp. 179–201.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Modularized Knowledge Bases Using Contexts,
Conglomerates and a Query Language*

Krzysztof Goczyła, Aleksander Waloszek, Wojciech Waloszek, and Teresa Zawadzka

Gdansk University of Technology, Poland
{kris,alwal,wowal,tegra}@eti.pg.gda.pl

Abstract. The paper presents a novel approach to design and development of a
modularized knowledge base. It is assumed that the knowledge base consists of
a terminology (axioms) and a world description (assertions), both formulated in
a Description Logics (DL) dialect. The approach is oriented towards
decomposition of a knowledge base into logical components called contexts and
further into semantic components called conglomerates. Both notions were
elaborated separately elsewhere. The paper shows how contexts and
conglomerates concepts can work in harmony to create a maintainable
knowledge base. An architecture of a system that conforms to this approach,
which additionally uses a query language called KQL (Knowledge Query
Language), is presented. The approach is intended to be used to build a
prototypical system that aims at integrating knowledge on cultural heritage
coming from digital libraries, including user-defined libraries. The thorough
discussion of related work is also given.

Keywords: ontology, knowledge base, modularization, contexts,
conglomerates, knowledge integration.

1 Introduction

In this paper we present a novel approach to design and implementation of large and
scalable knowledge bases that conform to Description Logics [1] dialects
expressiveness (according to W3C standards: that conform to OWL2 [2] with SWRL
[3] extensions). This approach is based on three major concepts: contexts,
conglomerates and a query language. Contexts are to logically situate a knowledge
based in different frameworks so that logical statements are interpreted in a proper
way, according to a given “situation”. Conglomerates are to divide a complex, large
knowledge base into components, like a relational database is divided into relations.
Conglomerates can be operated upon by algebraic operations, like relations in a
relational database. The operations can be performed via Knowledge Query Language

* This work is partially supported by the Polish National Centre for Research and Development

(NCBiR) under Grant No. SP/I/1/77065/10 by the strategic scientific research and
experimental development program: „Interdisciplinary System for Interactive Scientific and
Scientific-Technical Information”.

180 K. Goczyła et al.

(KQL) statements that structurally remind that of SQL statements, which make them
more easily understood by systems engineers.

The paper is organized as follows. In the Section 2 we present the notion of
contexts. In Section 3 we present the notion of conglomerates. In Section 4 the KQL
language is presented. In Section 5 the architecture of the system that incorporates the
three components is presented. The system is to be implemented as a part of the
SyNat system intended to make the cultural and science Polish heritage available
worldwide. Section 6 presents the related work. In Section 7 we conclude the paper.

2 Contexts

Contextualizing knowledge bases makes the process of their deployment and use
more effective. Contextualized knowledge bases, if contextualization is properly
conducted, are easier to design and maintain. Moreover, with use of contextualization,
the efficiency of reasoning process can be greatly improved. In this section we
describe our approach to modularization, Structured-Interpretation Model (SIM), an
approach that has several distinguishing features, the most important of which is the
relative straightforwardness of adapting the structure of knowledge the base to
evolving needs of the user.

As a basis we have taken Description Logic formalism and we adapted to it the
notions of generalization and context instance. Let us recall that a DL ontology
consists of a terminology (TBox) and a world description (ABox). The Formal
definition of contextualized DL ontology is as follows:

Definition 2.1. A contextualized TBox T = ({Ti}iœI, 1) consists of a set of TBoxes
whose elements are called contexts, and a generalization relation 1 Œ I μ I which is a
partial order established over the set of indexes I. The relation is acyclic and contains
the only least element m. We also introduce the following notions:

Tm called the root context of the contextualized TBox T,
Ti generalizes Tj iff i 1 j,
 Ti specializes Tj iff j 1 i. □

The idea behind introducing such hierarchical arrangement of contexts was to allow
for constrained interactions between parts of terminology. The general rule here is
that more specialized terminologies may “see” more general ones, but more general
terminologies may be unaware of the existence of more specialized ones.

Introduced contexts encompass only terminology. To deal with assertional part of
the knowledge base we allow for creation of many ABoxes for one terminology. We
call these ABoxes context instances.

Definition 2.2. A contextualized ABox A = ({Aj}jœJ, inst, a) of contextualized TBox
T = ({Ti}iœI, 1) is a triple consisting of:

1. A set of ABoxes {Aj}jœJ, each of which is called an instance of context,
2. The function inst: J → I relating each ABox from {Aj}jœJ with TBox from {Ti}iœI,
3. The aggregation relation a Œ J μ J, which is a partial order established over the

set of indexes J. We require that:

Modularized Knowledge Base

a. a is acyclic an
b. inst(n) = m, wh
c. for each j a k s

We also say that:

An is called the root con
Aj is an instance of the c
Aj aggregates Ak iff j a
Aj is aggregated by Ak if
Aj is an aggregating con

Definition 2.3. A contex
contextualized TBox T and

Contextualized knowledge
context instance is given its
locality within context insta

Fig. 1. An

The general schema of
presented in Fig. 1. In this f
context instances and cont
A4 aggregates instances A
reductions of generalization

s Using Contexts, Conglomerates and a Query Language

nd contains the least element n,
here m is the least element of the relation 1,
such that j ≠ k holds inst(j) 1 inst(k) and inst(j) ≠ inst(k

ntext instance of the contextualized ABox A,
context Ti iff inst(j) = i,
k,
ff k a j,

ntext instance iff ∃k: j a k

xtualized knowledge base K = (T, A) consists of
a contextualized ABox A of T.

base is given the interpretation in a specific way: e
s own interpretation. Such an approach gives some leve
ances.

n example of contextualized knowledge base

a contextualized DL-ontology (a DL-knowledge base
figure relationships between context instances and betw
texts are depicted in the form of graph, e.g. the insta
8 and A9. For the sake of clarity only the transit

n and aggregation relations have been depicted.

181

k).

 □

f a
 □

each
el of

e) is
ween
ance
tive

182 K. Goczyła et al.

The example of the aggr
Here we have three context
that specializes T1 towards d
T1 but towards description
instances A2 and A3. Althou

model of the knowledge
1 1∈Mary WOMANI I). As a

interpretation I3 Mary is a

the information about M
relationships.

Fig. 2. An exam

Other aspects of contexts

3 Conglomerates

Conglomerates are used to
like relations in a relationa
the hope to reach the matu
comparable to the one ac
software modules.

In the following we intr
examples of its use.

3.1 Basics

An assumption we take is
from an ontology rather th
ontology module strictly se

regation conformance of denotation is presented in Fig
ts: T1 that describes general notions of WOMAN and MAN
description of voices in a choir, and T3 that also speciali
of social relations. Context instance A1 aggregates cont

ugh ABox of A1 is empty, interpretation I1 in order to b

base has to assign Mary to the concept WOMAN (

consequence of this, the same rule enforces that in

assigned to the concept WIFE (i.e. 3 3∈Mary WIFEI I)

ary being a woman “flows” down the aggregat

mple of the aggregation conformance of denotation

s and contextualized knowledge bases can be found in [4

modularize large knowledge bases into manageable pie
al database. The main motivation behind conglomerate
urity of the collaborative ontology development and re
hieved by software engineering methods in the case

roduce basic notions of conglomerates algebra and pres

that a user is interested in conclusions that can be dra
han in particular axioms and assertions. So, we define
mantically, focusing only on its interpretations.

g. 2.
N, T2
izes
text
be a

(i.e.

the

, as

tion

4].

eces
es is
euse
e of

sent

awn
e an

Modularized Knowledge Bases Using Contexts, Conglomerates and a Query Language 183

Definition 3.1. (conglomerate). A conglomerate M = (S, W) is a pair of a signature S
(called a signature of the conglomerate) and a class W of S-interpretations (called
models of the conglomerate). The two parts of M are denoted as S(M) and W(M),
respectively. Each S-interpretation from W we call a model of M. □

According to this definition, each conglomerate simply consists of all its models. We
say that a conglomerate satisfies a particular sentence α, denoted M £ α, iff
∀I ∈ W(M): I £ α.

We think that creators of an ontology are not able to foresee all its future uses. By
necessity, the creators have to focus on a small set of chosen contexts of use of
particular modules, and the contexts of their choice may not be adequate for a
particular application of a knowledge base with this ontology. So, the conglomerate
algebra puts stress on various methods of manipulation for them; that in general allow
for changing and combining signature and models.

3.2 Operators

We assume that description logic L and domain set Δ are chosen and fixed. We

denote a set of all modules as M, a set of all signatures as Σ, and a set of all S-
interpretations as Ι(S). We also use the notion of a projection I΄ = I|S΄ of an S-

interpretation I to a signature S΄ (S΄ Œ S). I΄ is an S΄-interpretation for which the

following holds: Δ I΄ = ΔI and XI΄ = XI for every X ∈ S΄.

Extend

εS: M → M, S ∈ Σ ;
εS(M) = (S(M) (S, {I ∈ Ι(S(M) (S): I|S(M) ∈ W(M)}). □

Extension extends a signature of a given module M by names from a given signature
S. The allowed set of interpretations of each original name is preserved, and so are the
relationships between original concepts, roles, and individuals (e.g. if M £ α, α ∈
L(S(M)), then also εS(M) £ α).

Project

πS: M → M, S ∈ Σ, S Œ S(M);
πS(M) = (S, {I|S: I ∈ W(M)}). □

Projection reduces a signature of a given module. However, relationships between
original concepts, roles, and individuals whose names remain in the signature are
preserved (e.g. if M £ α, α ∈ L(S), then also πS(M) £ α).

Rename

ργ: M → M, γ is a signature mapping;
ργ(M) = (γ(S), γ(W)). □

184 K. Goczyła et al.

Renaming uses the notion of a signature mapping. Signature mapping γ is a triple: (γC,
γR, γI), each of them being a bijection from N to N. By γ(S) we mean γC(C(S)))

γR(R(S))) γI(I(S)), and by γ(I), where I is an S-interpretation, we mean an γ(S)-

interpretation I΄ such that ΔI΄ = ΔI and γ(X)I΄ = XI for every X ∈ S. Rename
preserves relationships between concepts, roles, and individuals, however with
respect to their name changes (e.g. if M £ α, α ∈ L(S(M)), then ργ(M) £ γ(α), where

γ(α) is α transformed in such a way that all names in α have been systematically
changed according to γ).

Select

σα: M → M, α ∈ L(S(M));

σα(M) = (S, {I ∈ W(M): I £ α}). □

Selection leaves only these interpretations that are models of a sentence α. Obviously
σα(M) £ α.

Union

(: M × M → M, S(M1) = S(M2);

M1 (M2 = (S(M1), W(M1) (W(M2)). □

Union performs a set-theoretic union of sets of models of conglomerates. The
condition that S(M1) = S(M2) is not very restrictive because we can easily upgrade this
operation to a generalized union (g: M1 (g M2 = εS(M

2
)(M1) (εS(M

1
)(M2).

Intersection
': M × M → M, S(M1) = S(M2);

M1 ' M2 = (S(M1), W(M1) ' W(M2)). □

Difference
–: M × M → M, S(M1) = S(M2);

M1 – M2 = (S(M1), W(M1) – W(M2)). □

Intersection and difference are analogous to the union, and can be generalized in the
similar way to the case when signatures of the operands differ.

Union and difference are non-linguistic (strictly semantic), i.e. their use may lead
to generation of a conglomerate M for which there does not exist any corresponding
set of sentences S in L. This issue will be elaborated on later in the paper.

I-Join (intersecting join)

×: M × M → M;

M1 × M2 = (S΄, W΄);
S΄ = γ1(S(M1)) (γ2(S(M2));
W΄ = {I ∈ Ι(S΄): I|γ1(S(M1)) ∈ γ1(W(M1)) ∧

 I|γ2(S(M2)) ∈ γ2(W(M2))}. □

Modularized Knowledge Bases Using Contexts, Conglomerates and a Query Language 185

I-Join is an operation on two conglomerates. It uses two signature mappings γ1, γ2,
each of them preceding every terminological name in a signature with a unique prefix.
Thus, I-Join helps to solve potential naming conflict between conglomerates. I-Join
preserves relationships between original concepts and roles in both modules (if M1 £
α, α ∈ L(S(M1)), then M΄ £ γ1(α), analogically for M2).

I-Join is a non-primitive operation, as M1 × M2 can be expressed as ργ
1
(M1) 'g

ργ
2
(M2). This derivation justifies the name “intersecting join” as we may perceive this

join as a “safe” way of intersecting modules.

U-Join (union join)

«: M × M → M;
M1 « M2 = (S΄, W΄);

S΄ = γ1(S(M1)) (γ2(S(M2));
W΄ = {I ∈ Ι(S΄): I|γ1(S(M1)) ∈ γ1(W(M1)) ∨

 I|γ2(S(M2)) ∈ γ2(W(M2))}. □

U-Join is a counterpart of I-Join. γ1, γ2 have the same meaning as above. U-Join offers
the “safe” way of performing union. Naturally, M1 « M2 = ργ

1
(M1) (g ργ

2
(M2).

Put-Under

υC: M × M → M, C ∈ LC(S(M2));

M1 υC M2 = (S΄, W΄);
S΄ = S(M1) (S(M2);
W΄ = {I ∈ Ι(S΄): I|S(M2) ∈ W(M2) ∧

 (I|S(M1) ' CI) ∈ W(M1)}. □

Put-Under correlates the domains of two conglomerates. We use here a restriction of
an S-interpretation I: by I ' Δ΄ we mean an interpretation I΄ = (Δ΄,⋅I΄) such that XI΄

= XI ' Δ΄ for every X ∈ S. As each conglomerate induces a set of laws that enforce
certain relationships between concepts, roles, and individuals, then Put-Under can be
perceived as a restriction of the scope of these laws to a fragment of a larger domain.

3.3 Examples

Example 3.1. (intersecting conglomerates). Consider two conglomerates: M1
describes human resources and M2 the structure of a hospital.

M1 = M({∃isManagerIn.HTBusinessUnit m Expert,
 Expert m Employee})
M2 = M({leadsDepartment(johnSmith, neurosurgery), Department(neurosurgery)}).

To merge the information from the two conglomerates in order to infer that johnSmith
is an expert, we first create an intersection of the conglomerates: M´= M1 'g M2, and
then restrict the set of models by introducing additional “bridge” axioms: M´´= M´ 'g

186 K. Goczyła et al.

M({leadsDepartment m isManagerIn, Department m HTBusinessUnit}). The last step
can also be done by double selection. □

In the example we did not encounter any name conflict between conglomerates being
merged. In general, such a conflict may occur and I-Join operator should be used.
Below we show how to align two conglomerates in which the same set of terms is
used to express different meanings.

Example 3.2. (joining conglomerates). Consider two conglomerates: M1 and M2.
They contain assessment of several rooms for rent, and use the same categorization
and signature S = {HSRoom, ASRoom, LSRoom}, where the concepts denote high,
average and low standard rooms. But in M1 and M2 different criteria were used for
categorization, as in the first case we were looking for a room to spend just one day
and in the second case to stay for a longer period of time. We “import” the assessment
from M1 to M2 performing necessary translation of classification between the
conglomerates.

1. In the first step we simply I-Join the conglomerates (modules). As a result we
obtain a conglomerate M΄= M1 × M2. The concepts have been renamed, so S(M) =
{1:HSRoom, 2:HSRoom, 1:ASRoom, …}.

2. Next, we make the criteria of assessment explicit. In this example we use only one
criterion: a bathroom. So, we extend the signature of M΄ appropriately:
M΄΄= ε{RoomWithBathroom}(M΄).

3. Afterwards, we bind the criteria with the assessment. In M1 rooms with bathrooms
were automatically considered high standard. According to the criteria used in M2
no room with bathroom can be considered more than low standard.

M΄΄΄= M΄΄ 'g M({RoomWithBathroom m 1:HSRoom,
 ¬RoomWithBathroom m 2:LSRoom}).

Naturally, the second axiom is valid only if the domain consists of only rooms
(which is assumed).
4. Finally we remove unwanted terms from the module signature:

M = π{2:HSRoom, 2:ASRoom, 2:LSRoom}(M΄΄΄).

In these steps all the translations possible to perform were done. All average or low
standard rooms from M1 were considered low standard in accordance with criteria
from M2. □

Some other aspects of using conglomerates can be found in [5].

4 Knowledge Query Language

The basis of our work on a query language for a DL knowledge base is our opinion
that the development of a universal language for accessing knowledge bases must be
based on assumptions similar to those adopted and practically proven in the case of
SQL – beside the others, theoretical mathematical basis, language closure and
availability of commands to create, manipulate and control the knowledge. Thus, we
have based the KQL language on theoretical backgrounds presented in Sections 2 and
3, that is on contexts and conglomerates.

Modularized Knowledge Bases Using Contexts, Conglomerates and a Query Language 187

4.1 Basic Assumptions for KQL

The main statement for manipulating a conglomerate (called in KQL a
conglomeration) is the SELECT statement of the following structure:

SELECT concept_list, role_list, attributes_list
 ADD axiom_list
 FROM conglomeration_expression
 WHERE concept_expression
 HAVING concept_expression

With respect to the conglomerates algebra, the SELECT clause corresponds to the
projection—the choice of terms for a newly created conglomerate, the ADD clause
corresponds to the selection—the contraction of the set of allowed interpretations, the
WHERE and HAVING clauses correspond to the projection with respect to individual
names. The difference between the WHERE and HAVING clauses lies in the fact that the
WHERE clause selects those individuals that belong to a specified concept of the
original conglomerate (as defined in the FROM clause), while the HAVING clause selects
those individuals that belong to a specified concept of the target conglomerate. The
query is conceptually executed in the following steps: (1) Determining the basic
conglomerate on the basis of the FROM clause. (2) Reducing the individual names on
the basis of the WHERE clause. (3) Extending the alphabet with new concepts / roles /
attributes / individuals that occur in the statements contained in the ADD clause. (4)
"Adding" (i.e. extending the ontology) to the conglomerate the statements from the
ADD clause. (5) Projection of the alphabet only to the concepts / roles / attributes
contained in the SELECT clause. (6) Reducing the individuals names basing on the
HAVING clause.

A direct consequence of KQL closure is ability of query nesting. Every time a
conglomerate is needed, one can use named conglomerates defined in knowledge base
or conglomerates created on the fly by KQL expressions with the use of
conglomerates algebra operators (such as INTERSECT, JOIN, UJOIN) or the SELECT
clause. As a consequence of KQL closure and the ability of query nesting, the
uniformity of modification and definition language has been achieved: one can use
query nesting also in conglomerate creation statements:

CREATE CONGLOMERATION conglomeration_name

…

FROM conglomeration_expression

In KQL it is assumed that terminological queries are issued against a metaontology or
a meta conglomerate. A metaontology is nothing but a single conglomerate
knowledge base that stores information about conglomerates and rules. A meta
conglomerate is also a single conglomerate knowledge base that stores information
about exactly one conglomerate.

188 K. Goczyła et al.

As a consequence of using the metaontology it is possible to issue terminological
queries in a similar way how the assertional queries are issued; the only difference is
that a query is directed to the metaontology rather than to the knowledge base itself.
This follows from the fact that conglomerates, concepts, roles, attributes, and
individuals from a knowledge base are reified to individuals in the metaontology and
the relationships between them are reified to the corresponding binary relationships
between individuals.

4.2 Examples of KQL Usage

The examples below have already been defined in terms of the conglomerate algebra.

Example 4.1. (simple import). We consider two conglomerates: M1 describes human
resources, and M2 describes a structure of a hospital.

CREATE CONGLOMERATION M1
 ADD CONCEPT HTBusinessUnit
 ADD CONCEPT Expert
 ADD CONCEPT Employee
 ADD ROLE isManagerIn

CONSTRAIN M1
 EXIST isManagerIn HTBusinessUnit ISSUB Expert
 Expert ISSUB Employee

CREATE CONGLOMERATION M2
 ADD CONCEPT Department
 ADD ROLE leadsDepartment
 ADD INDIVIDUAL johnSmith
 ADD INDIVIDUAL neurosurgery

CONSTRAIN M2
 (johnSmith, neurosurgery) IS leadsDepartment
 neurosurgery IS Department

In KQL each conglomerate is created in two steps. In the first step the conglomerate
signature is created (CREATE CONGLOMERATION statement). In the second step the
constraints (sets of statements that must be satisfied) are added (CONSTRAIN
statement). In the example above, the first conglomerate defines an employee and an
expert. We assume that each expert is an employee, and anyone who manages at least
one business unit is an expert. The second conglomerate describes John Smith who
leads the department of neurosurgery. We want to ask whether johnSmith is the
expert.

Modularized Knowledge Bases Using Contexts, Conglomerates and a Query Language 189

SELECT Expert
 ADD leadsDepartment ISSUB isManagerIn
 ADD Department ISSUB HTBusisnessUnit
 FROM M1 INTERSECT M2
 WHERE {johnSmith}

To merge the information from the two conglomerates in order to check whether
johnSmith is an expert we first create an intersection of the conglomerates (FROM
statement), and then restrict the set of model by introducing additional “bridge”
axioms (ADD statement). The result of the query is a new conglomerate whose
signature consists of two terms: > and Expert. In our example johnSmith is an
instance of Expert concept. □

Example 4.2. (different versions and what-if problems) This example illustrates use
of union and negation in KQL. Let us consider a conglomerate M:

CREATE CONGLOMERATION M
 ADD CONCEPT TrustedWitness ADD CONCEPT CrimeScene
 ADD ROLE murdered
 ADD ROLE accuses
 ADD ROLE presentAt
 ADD INDIVIDUAL victim
CONSTRAIN CONGLOMERATION M
 Top ISSUB <= 1 INV (murdered) {victim}
 EXIST INV(accuses) TrustedWitness

 ISSUB EXIST INV(murdered) {victim}
 TrustedWitness ISSUB EXIST presentAt CrimeScene

The M conglomerate describes a world that assumes the only one murderer who is
accused by a trusted witness (who has been present at the crime scene). We consider
two (mutually exclusive) versions of facts (e.g. collected by two investigating agents:
John Shady and Henry Brilliant). To achieve that we define two new conglomerates
(one for each agent).

CREATE CONGLOMERATION M1
FROM(
 SELECT *
 ADD johnShady IS TrustedWitness
 ADD (johnShady, tedInnocent) IS accuses
FROM M
)

CREATE CONGLOMERATION M2
FROM(
 SELECT *
 ADD henryBrillant IS TrustedWitness

190 K. Goczyła et al.

 ADD (henryBrillant, markGuilty) IS accuses
 FROM M
)

Having such defined conglomerates M1 i M2 we would like to analyze different
scenarios. Therefore we create a new conglomerate M0 = M1 UNION M2.

We may assume that henryBrillant is not a trusted witness:

SELECT Murderer
 ADD NOT TrustedWitness(henryBrilliant)
 ADD Murderer EQ EXIST murdered {victim}
 FROM M1 UNION M2

We ask for a murderer. Therefore we define Murderer as a person who murdered a
victim. The resulting conglomerate will return exactly one individual (tedInnocent)
as an instance of Murderer concept.

We may assume that markGuilty is a murderer

SELECT TrustedWitness, NotTrustedWitness
 ADD (markGuilty, victim) IS murdered
 ADD NotTrustedWitness EQ NOT TrustedWitness
 FROM M1 UNION M2

In this case we can conclude that henryBrillant is a trusted witness (but this does
not mean that johnShady is not a trusted witness). The conglomerate created within
the query defines NotTrustedWitness concept (the complement of TrustedWitness
concept defined in conglomerates M1 and M2). The conglomerate which is the result
for this query will return a single instance of TrustedWitness concept and will return
no instance of NotTrustedWitnesss concept.

We may assume that johnShady was not present at the crime scene

SELECT TrustedWitness, Murderer
 ADD johnShady IS EXIST presentAt CrimeScene
 ADD Murderer EQ EXIST murdered {victim}
 FROM M1 UNION M2

In this case we can conclude that johnShady is not a trusted witness and
markGuilty is the murderer. To do this we define Murderer concept similarly to
the second example. □

More examples of KQL usage can be found in [6].

Modularized Knowledge Bases Using Contexts, Conglomerates and a Query Language 191

5 The Architecture

The techniques described above can be composed to create a comprehensive and
uniform approach to creating large federated knowledge bases. In such a base every
component is treated as a sovereign entity (conglomerate), so that it is possible to
exploit its contents in its full variety. While the entities are sovereign, they are not
independent, but organized in hierarchical structure of contexts.

The SyNat project gives an opportunity to create such a federated base in a
systematic way, and thus to validate the proposed approach. The notions of contexts,
conglomerates, and the query language presented above are used in the following
knowledge integration system (see Fig. 3). Data (pieces of knowledge) are stored in
data (knowledge) sources1 (at the left-hand side of the figure). They are “pushed”
(pre-loaded statically) or “pulled” (loaded dynamically, on demand) into
conglomerates (ontology modules) of a knowledge base. Contents of each source are
perceived by the rest of the system as autonomous conglomerates.

The knowledge base is managed by a knowledge base management system called
RKaSeA, the system developed at Gdansk University of Technology. The system, in
its present stage of development, is equipped with the ability of handling the most
important algebraic operations (intersection, projection, and selection), with the
option of extending the range of operators by use of a specialized subsystem. The
specialized subsystem takes advantage of L-(2)-representation of conglomerates
(described in details in [28]; in a nutshell it gives the possibility of representing
conglomerates in the form of sets of sentences), which enables use of standard
inference engines for selected reasoning tasks. Another subsystem of RKaSeA is
Knowledge Layer [29], fully integrated (by use of MCA—Maximum Coverage
Algorithm—for reasoning from both internally stored ABoxes and external
knowledge) with the reasoning mechanism and allowing for attaching external
knowledge sources as separate conglomerates. The external knowledge sources may
also be NORs (non-ontological resources).

In the proposed architecture the pieces of knowledge are enriched with additional
semantics. This enrichment is done by combining the knowledge from external
modules with the selected fragments of integrated and contextualized Ontology of
Science (Fig. 3). This name might be a bit misleading as we intend to include in this
ontology also a choice of upper-level, commonly shared ontologies, primarily CIDOC
[7] CRM. Such organization allows us to conduct an individualized method of
integration of knowledge into the contextualized framework for each of the external
conglomerates. It is also worth stressing that the system is flexible enough to easily
accommodate new knowledge. Ontology of Science may contain “private” entities,
added in personalized way by each user, such that use of them may improve the
process of integration and tailor it for fulfillment of special needs of individual users
and working groups of scientists.

1 During the first phase of development knowledge sources from the Polish Federation of

Digital Libraries (http://fbc.pionier.net.pl) will be exploited.

192 K. Goczyła et al.

Fig. 3. The architecture of a knowledge integration system with contextualized knowledge
bases divided into conglomerates and queried using KQL

Both external conglomerates and modules of Ontology of Science may be accessed
by RKaSeA [8], that is able to interpret KQL queries issued by a user. The exact form
of queries issued by the user is still subject to discussions. It is assumed though that
the User Query Subsystem produces enough information to formulate KQL requests.
Since the process of composing a query might be burdensome and difficult, we
purport that it might be desirable to use some selected reasoning mechanisms to
support it. This kind of reasoning is done over Ontology of Sources which holds
meta-knowledge about the structure of the knowledge base.

The proposed general architecture forms a basis for two more detailed scenarios of
use of the system. In the first scenario we assume that the contents of external
modules is well-known and standardized to conform to selected upper-level

Modularized Knowledge Bases Using Contexts, Conglomerates and a Query Language 193

ontologies and standards. In this scenario the primary role of the system focuses on
selection of appropriate fragments of knowledge sources and on interpretation of
queries issued by the users. In the second scenario we may not assume any initial
level of conformance of the external source. In this scenario the system focuses on
managing sources (with use of Ontology of Sources), selecting methods and
procedures of integration, and maintaining uniform contextualized structure of the
collection of managed external and internal conglomerates.

6 Related Work

In this section we present some related work concerning issues connected with
integration of knowledge sources. In this section we describe two major approaches to
modularization, and we also present some languages aimed at communication with
knowledge bases.

We can distinguish between two main approaches in this field: an inference
approach and an algebraic approach. The former addresses the question of how
knowledge collected in one source affects logical consequences inferred from another
source. The latter proposes algebraic methods to separate needed fragments from
given sources and then join them in an appropriate way in order to find a proper
answer for a given question.

The inference approach was firstly connected with the research field called
ontology merging and then embraced issues addressed to the subject of
modularization or contextualization of ontologies.

Modularization (contextualization) of ontologies is recently a domain of intensive
research. It was the subject of two large European projects: Knowledge Web
(http://knowledgeweb.semanticweb.org/semanticportal/sewView/frames.html) and
NeOn (http://www.neon-project.org/). There exist a lot of motivations to apply a
contextual approach to representing knowledge. The most significant are (according
to the NeOn deliverable D 3.1.1 [10]):

1. Supporting different viewpoints.
2. Dealing with temporal information.
3. Dealing with inconsistent information.
4. Personalization.
5. Situation awareness in pervasive computing.
6. Scalability.
7. Ontology adaptation and views on ontologies.
8. Matching pairs (groups) of ontologies.

In the field of integration of knowledge from different and heterogeneous sources the
results achieved during research on contextualization are very useful. Particularly the
work on contextualization of logics is worth of mentioning. The examples of useful
formalisms are, among others, modal logic ([11), the logic of demonstratives ([12]),
and context logics ([13]). Obviously, all of them comply to the inference approach. In
the environment of Semantic Web the most valuable is work connected with

194 K. Goczyła et al.

MultiContext Systems/Loc
MCS/LMS relies on restri
(called a target ontology)
(called a source ontology).
the kind of inference rules
became a start point for th
distributed knowledge base

One of the most recog
([16]). In DDL, the idea
important notion is a distri
modules that are independe
module to a target mo
correspondences, which are
source ontology Ki and a ta

i:C j:D in
i:C j:D o
i:a j:b in

where i:C and i:a is respect

j:b is respectively a concept
Every module has its ow

of the rules the relation bet
called a domain relation an
domain of Ki, and Dj is the
describe conditions under
knowledge base. If we d

distributed knowledge base

Ii satisfies Ki

rij(C
Ii) Œ DIi for all i

rij(C
Ii) û DIi for all i

bIj œ rij(a
Ii) for all i

where CIi is a subset of Di

and rij(C
Ii) is a shortcut for

means {x| x œ Dj - $y œ Di
During reasoning over th

should be taken into accoun

i:A j:G
i:B j:H

and in Ki the axiom B m A e

cal Model Semantics ([14][15]). The main idea
icting the set of allowed interpretations of an ontolo
by a subset of conclusions drawn from another ontolo
Those conclusions are enabled via bridge rules which

s defined particularly for the target ontology. MCS/L
he family of modularization methods that allow to cre
s consisting of a number of pairwise linked ontologies.

gnized methods is Distributed Description Logic (DD
of MCS/LMS is adopted to DL. In this idea the m

ibuted interpretation—a set of local interpretations for
ent ontologies. The information is imported from a sou
odule indirectly through bridge rules and individ
e special bridge rules created for individual names. Fo

arget ontology Kj the rules have the form:

nto bridge rule
onto bridge rule
ndividual correspondence

tively a concept or an individual defined in Ki, and j:D

t or an individual defined in Kj.
wn local domain. In order to describe properly the seman

tween the two domains should be defined. The relation
nd relates the two domains rij Œ Di μ Dj, where Di is
e domain of Kj. Usage of the domain relation rij allow

which a distributed interpretation satisfies a distribu
denote the distributed interpretation I = {Ii}iœI and

 K = {Ki}iœI, we can say that I is a model of K iff:

:C j:D

:C j:D

:a j:b

i representing the concept C in the local interpretation

r {x| x œ Dj - $y œ CIi - (x, y) œ rij}. Analogously, rij(
- (x, y) œ rij}.

he target ontology the source ontology and the bridge ru
nt. If, for example, the following bridge rules are defined

exists, then, in Kj, the axiom H m G holds.

of
ogy
ogy
are

LMS
eate

DL)
most

the
urce
dual
or a

and

ntics
n is
the

s to
uted
the

n Ii,

aIi)

ules
d:

Modularized Knowledge Bases Using Contexts, Conglomerates and a Query Language 195

Another technique is E-Connections ([17]). The main semantic difference
comparing to DDL is that domains of modules are disjoint, so a relation between them
is not needed. The technique allows to define roles connecting individuals from
different domains. These special roles are called link relations. All link relations are
gathered in the set E consisting of sets Eij of relations linking ontologies i and j. E-
Connections also defines the notion of distributed interpretation:

M = ‚ (Di)1§ i§ n , (∏

Mi)1§ i§ n , (∏
Mij)1§ i,j§ n Ú

where Di is the domain of i-th ontology, for i ∫ j Di ' Dj = ¯, and interpretation
functions maps each concept A of i-th ontology into AMi Œ Di, each role R into RMi Œ

Di μ Di, each individual a into aMi œ Di, and each link relation p ∈ Eij into pMij Œ
DI μ Dj.

During creation of an ontology containing link relations it is possible to use special
concept constructs $p.Z, "p.Z, §np.Z or ¥np.Z, Z is a concept from j-th ontology, and
n œ N. The semantics of such concepts is defined as follows:

($p.Z)Mi = {a œ Di: $b œ Dj ((a, b) œ pMij - b œ ZMj)},

("p.Z)Mi = {a œ Di: "b œ Dj ((a, b) œ pMij ö b œ ZMj)},

(§np.Z)Mi = {a œ Di: |{b: ((a, b) œ pMij - b œ ZMj)}| § n },

(¥np.Z)Mi = {a œ Di: |{b: ((a, b) œ pMij - b œ ZMj)}| ¥ n }.

Usage of these concepts allows for reasoning in the terms of i-th ontology within j-th
ontology. If, for example, in j-th ontology the axiom D m C is defined, and in i-th
ontology there exist axioms $p.C m G and H m $p.D, where p œ Eij, then in i-th
ontology the axiom H m G holds.

The both presented methods try to solve the problems with contextual reasoning,
i.e. how should interpretations of modules affect each other, how to preserve
decidability, soundness and completeness. Although very important, results of this
work do not help with the problem that we call the problem of contextual designing.
They offer no tools that could allow to express why contexts were created and what is
their purpose. In contrast to them, our proposal, the SIM method, is an example of a
framework for designing context-semantic knowledge bases, i.e. knowledge bases
where contexts are explicit elements of conceptualization and affect the semantics of
another members of the model.

The second approach, the algebraic one, is based on the idea that all possible
theories constitute a structure with the relationships between the elements describable
by algebraic operation. In this approach we can distinguish two kinds of structures:
syntactic and semantic ones.

A prominent example of an algebra for syntactic structures is the method described
by Mitra in [18] (also by Mitra and Wiederhold in [19]). An ontology module is

196 K. Goczyła et al.

defined here as a set of sentences, namely RDF triples, so that every algebraic
operation gives such a set as a result.

The simplest use case for the algebra is integration of knowledge from two
ontologies. To show how this algebra works in practice, we follow here a slightly
modified example from [19] and assume that the two ontologies being integrated, O1
and O2, describe respectively the domains of maritime vessels and cars (Fig. 4).

To enable conduction of any algebraic operation on the two ontologies, we firstly
have to define special rules, called articulation rules, that explain the relationships
between terms in the ontologies. For our example we define two such rules:

→ subClassOf(O1.Motorboat, CombustionVehicle)
→ subClassOf(O2.Car, CombustionVehicle)

These rules state that both a motorboat and a car are vehicles with a combustion
engine. After defining the rules it is possible to perform binary operations on O1 and
O2. There are three kinds of such operations: union, intersection and difference.
Outcome of each operation is a set of sentences, defined as follows. We assume that
O1,2 denotes the RDF graph obtained by “executing” the articulation rules (treated as
production rules). Then (see Fig. 4):

• the union of O1 and O2 is the union of graphs O1, O2 and O1,2,
• the intersection of O1 and O2 is the graph O1,2,
• the difference between O1 and O2 is the graph O1 from which all nodes present

in O1,2 have been removed.

The described algebra is relatively straightforward and convenient for describing
different points of view (or even contexts, as Mitra and Wiederhold argue in [19]).
Nevertheless, its commitment to syntax can be a source of major difficulties with its
use for practical, large ontologies. The outcome of algebraic operations relies heavily
on the exact form of the sentences used in the modules being integrated. If the same
semantic information is expressed with two different sentences, the result can easily
convey the intention of the user. Moreover, to use the algebra one has to define a set
of articulation rules. These sets constitute a new kind of extraontological objects that
have their own syntax and particularities and need to be managed and maintained by a
user, which can be cumbersome.

The aforementioned issues are not characteristic for the algebra by Mitra; on the
contrary, they seem to be inherent for every algebra whose universe is based on
syntactic form of sentences. This strongly suggests that semantic approach might be
much more convenient for combining knowledge from different sources.

No approach known to the authors of this paper goes as deeply into semantic
structures as conglomerate algebra. However, in the algebra proposed by participants
of the NeOn project (deliverables D1.1.3 [20] and D1.1.4 [21]), a module is treated
essentially (when we neglect its interfaces and version information) as a theory (i.e. a
set of sentences augmented with all conclusions). This allows us to treat this method
as a semantic one, because a theory can be identified with an appropriate set of
models.

Modularized Knowledge Base

Fig. 4. An exam

In NeOn algebra there is
Instead, the algebra intro
(semantic) entailment. Am
and difference ((, ', ‒, resp

M1 (M2 = M iff M
M1 ' M2 = M iff M
M1 ‒ M2 = M iff M

There is strong analogy bet
The union operation in Ne
outcome. Nevertheless, the
concerns difference betwee
module can possibly be a d
tautology.

While the definition of
between NeOn and cong
dissimilarity of definitions
expressivity of the used lan
for union of M({A m B}) a
that expresses the result. W
situations, this fact is also
such assumption we may
modules. Consequently,
constitute a basis for a qu
algebra is for SQL.

In the last part of this se
with knowledge bases. The
recommended by W3C. Th
it is not strictly addressed

s Using Contexts, Conglomerates and a Query Language

mple of the aggregation conformance of denotation

s no need for defining any special bridge axioms or ru
duces several operations characterized in the terms

mong them, there are the operations of union, intersect
p.) defined as follows (α is any standard DL sentence):

M £ α ↔ M1 £ α / M2 £ α
M £ α ↔ M1 £ α - M2 £ α
M £ α ↔ M1 £ α - Ÿ (M2 £ α)

tween the above definitions and the conglomerate algeb
eOn and the intersection of conglomerates give the sa
ere are also important differences. The most notable
n modules. NeOn definition seems to be faulty, because

difference, which can be easily shown by putting for α

difference can probably be fixed, there is a discrepa
glomerate algebra that is much deeper than a sim
s. Since NeOn module is a theory, it cannot exceed
nguage. In conglomerate algebra it is not the case, as
nd M({B m A}) there is no corresponding set of senten

While possibly this may be considered a drawback in so
o foundational for conglomerate algebra, as only throu
y obtain an extension of Boolean algebra for seman

through this assumption, conglomerate algebra m
uery language that is equivalently strong as the relatio

ection we refer to some languages created to communic
e most known and most widely applied is SPARQL [2
his is a query language designed for RDF repositories, t

to ontologies. But, as OWL is built on top of RDF, i

197

ules.
s of
tion

bra.
ame
one

e no
any

ancy
mple

the
e.g.

nces
ome
ugh
ntic
may
onal

cate
22],
thus
it is

198 K. Goczyła et al.

often used for ontological purposes. As SPARQL is a query language, the syntax does
not allow to enter changes into knowledge base.

There are many languages designed for ontologies. DIG ([23], [24]), proposed in
University of Manchester, is a language defined for maintaining ontologies defined in
DL. OWL-QL ([25]), designed for Stanford Knowledge Systems Laboratory is a
continuation of DQL—DAML Query Language. nRQL [26] is the query language for
RacerPro. SAIQL [27] is developed in University of Koblenz-Landau and University
of Aberdeen during the works on the NeOn project. None of these languages is able to
deal with modular knowledge bases. A query is always addressed to one ontology.
None of them is closed: queries cannot be nested in themselves, although the last
one—SAIQL—returns as an answer a set of sentences forming a fully working OWL
DL ontology rather than just substitutions of variables.

7 Conclusions

This paper presents the architecture and methods for building large federated
knowledge bases. As the primary criteria for selecting methods of knowledge
representation in such knowledge bases an ontology organization, capabilities of
inference for a selected representation and a set of characteristics of an internal query
language were selected.

With respect to the ontology organization, we assumed that the adequate method of
knowledge representation must provide:

1. An appropriate structure of ontological modules

─ with the ability to add new source modules and update ontology of science,
─ with the ability to organize knowledge at various levels of detail,
─ with the ability to dynamically create ontological modules when answering

queries,
─ with the ability to dynamically locate a set of modules containing information

that can affect the answer to the query.

2. Expressiveness of CIDOC CRM (SHIN(D), version Erlangen CRM).
3. Capability of retrieving data from external sources using “push” and “pull”

methods.
4. Capability of adding sources incompatible with CIDOC CRM (changing

perspective) in a way that preserves possibility of metadata conversion and
unification to CIDOC CRM-compatible form.

With respect to the inference capabilities, we assumed that the method of knowledge
representation must provide:
5. Capability of inference from combined modules (including these combined ad

hoc) with a well-defined semantics (global semantics) while still maintaining the
semantics of each module (local semantics).

6. Capability of sound and complete inference from ontologies defined in
description logic with minimal expressiveness of ALCHI(D).

7. Capability of Open World Assumption aware inference.

Modularized Knowledge Bases Using Contexts, Conglomerates and a Query Language 199

With respect to the internal query language, we assumed that an adequate language
must provide:
8. Capability of processing information expressed in description logic with

minimal expressiveness of ALCHI(D).
9. Capability of binding information contained in different modules of varying

granularity.
10. Capability of transformation of assertional knowledge (ABox) to terminological

knowledge (TBox) and vice versa.
11. Capability of nesting queries (i.e. using modules created ad hoc in further

processing).

These requirements imply that the basic feature of the presented solution is its
modularity, and a non-modular methods are only a theoretical basis for the modular
methods. One of the key distinguishing factors is the division of modular methods to
semantic and non-semantic ones. The non-semantic methods emphasizes on locality
and compatibility problems associated strongly with the inference. Although these
problems are not irrelevant with respect to the proposed solution (see requirement 5),
the emphasis here is put on the dynamic and efficient management of modules from
the point of view of contextual features, especially of detail and scope (requirements 1
and 5), but also perspective (requirement 4). This analysis led to exploiting in the
presented solution the SIM method that allows automatic conclusions flow between
modules (instances of contexts). In this way, knowledge bases built on the basis of the
SIM method solve the detail and scope problem in a natural and effective way.

The conglomerate-based method used in our approach combines the features of
semantic and non-semantic approach. With the latter it has in common the great
emphasis put on the management of the global semantics of modules. However, the
space of modules in the conglomerate-based method has an algebraic nature. The
actual semantics of this space must be imposed by a designer of a knowledge base by
different means of expressiveness, outside the scope of conglomerate-based method.
Hence, the proposed combination of the SIM and conglomerate-based methods work
smoothly together.

Although selecting a knowledge representation language is somehow independent
on the choice of knowledge representation methods, it is easily seen that the choice of
conglomerate knowledge base is tightly connected with KQL as the internal query
language. KQL, as based on closed algebraic structure, is the only one that provides
nesting queries in a natural way (requirement 11).

In conclusion we can state that none of the methods of knowledge representation is
mature enough to meet all the requirements defined above. Using SIM and
conglomerate-based methods together seems to simultaneously fulfill the
requirements for the management of modules scope and details as well as perspective
and offer a very flexible way to create a new ontological modules (by means of
conglomerate algebra and KQL). So, next research and prototype implementation will
be conducted in this direction.

200 K. Goczyła et al.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: Description
Logic Handbook. Cambridge University Press (2002)

2. OWL 2 Web Ontology Language Document Overview, W3C Recommendation, October
27 (2009), http://www.w3.org/TR/owl2-overview/

3. SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3C Member
Submission, May 21 (2004), http://www.w3.org/Submission/SWRL/

4. Goczyła, K., Waloszek, A., Waloszek, W.: Contextualization of a DL knowledge base. In:
Proceedings of the 20th International Workshop on Description DL 2007,
Brixen/Bressanone, Italy, pp. 291–299 (2007)

5. Goczyła, K., Waloszek, A., Waloszek, W.: Algebra of ontology modules for semantic
agents. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI),
vol. 5796, pp. 492–503. Springer, Heidelberg (2009)

6. Goczyła, K., Piotrowski, P., Waloszek, A., Waloszek, W., Zawadzka, T.: Terminological
and Assertional Queries in KQL Knowledge Access Language. In: Pan, J.-S., Chen, S.-M.,
Nguyen, N.T. (eds.) ICCCI 2010. LNCS, vol. 6423, pp. 102–111. Springer, Heidelberg
(2010)

7. Goczyła, K., Grabowska, T., Waloszek, W., Zawadzki, M.: The Knowledge Cartography –
A New Approach to Reasoning over Description Logics Ontologies. In: Wiedermann, J.,
Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831,
pp. 293–302. Springer, Heidelberg (2006)

8. CIDOC Conceptual Reference Model (CRM), http://www.cidoc-crm.org/
9. Dublin Core Metadata Element Set, Version 1.1,

http://dublincore.org/documents/dces/
10. Haase, P., Hitzler, P., Rudolph, S., Qi, G.: D3.1.1 Context Languages—State of the Art.

The NeOn project deliverable (2006)
11. Garson, J.W.: Modal Logic for Philosophers. Cambridge University Press (2006)
12. Kaplan, D.: On the Logic of Demonstratives. Journal of Philosophical Logic (8), 81–98

(1978)
13. McCarthy, J.: Notes on Formalizing Context. In: Proceedings of IJCAI 1993, pp. 562–555.

Morgan Kaufmann (1993)
14. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do without

modal logics. Artificial Intelligence 65(1), 29–70 (1994)
15. Ghidini, C., Giunchiglia, F.: Local model semantics, or contextual reasoning = locality +

compatibility. Artificial Intelligence 127(2), 221–259 (2001)
16. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from

peer sources. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data Semantics
I. LNCS, vol. 2800, pp. 153–184. Springer, Heidelberg (2003)

17. Kutz, O., Wolter, F., Zakharyaschev, M.: Connecting abstract description systems. In:
Proceedings of the Twelfth International Conference on the Principles of Knowledge
Representation and Reasoning 2002, pp. 215–226. Morgan Kaufmann (2002)

18. Mitra, P.: An Algebraic Framework for the Interoperation of Ontologies. PhD thesis,
Stanford (2004)

19. Mitra, P., Wiederhold, G.: An Ontology-Composition Algebra. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies, pp. 93–113. Springer, Heidelberg (2004)

20. d’Aquin, M.: D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra.
The NeOn project deliverable (2008)

Modularized Knowledge Bases Using Contexts, Conglomerates and a Query Language 201

21. d’Aquin, M.: D1.1.4 NeOn Formalisms for Modularization: Implementation and
Evaluation. The NeOn project deliverable (2008)

22. Prud’hommeaux, E.: SPARQL Query Language for RDF,
http://www.w3.org/TR/rdf-sparql-query/

23. Bechhofer, S.: The DIG Descritption Logic Interface: DIG/1.1. University of Manchester
(2003)

24. DIG 2.0: The DIG Description Logic Interface. DIG Working Group Note (September
2006), http://dig.cs.manchester.ac.uk/

25. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL—A Language for Deductive Query
Answering on the Semantic Web. Knowledge Systems Laboratory, Stanford University,
Stanford (2003)

26. RacerPro User’s Guide,
http://www.racer-systems.com/products/racerpro/manual.phtml

27. Kubias, A., Schenk, S., Staab, S.: SAIQL Query Engine - Querying OWL Theories for
Ontology Extraction. In: OWLED 2007 OWL: Experiences and Directions Third
International Workshop (2007)

28. Goczyła, K., Waloszek, A., Waloszek, W.: A Semantic Algebra for Modularized
Description Logics Knowledge Bases. In: Grau, B.C. (ed.) Proceedings of the 22nd
International Workshop on Description Logics (DL 2009), Oxford (2009)

29. Goczyła, K., Zawadzka, T., Zawadzki, M.: Managing Data from Heterogeneous data
Sources using Knowledge Layer, Software Engineering Techiques: Design for Quality. In:
Sacha, K. (red.) IFIP International Federation for Information Processing. 227, pp. 300–312.
Springer, Boston (2006)

	Modularized Knowledge Bases Using Contexts,Conglomerates and a Query Language
	Introduction
	Contexts
	Conglomerates
	Basics
	Operators
	Examples

	Knowledge Query Language
	Basic Assumptions for KQL
	Examples of KQL Usage

	The Architecture
	Related Work
	Conclusions
	References

