

Alex Graves

Supervised Sequence Labelling with Recurrent Neural Networks

Studies in Computational Intelligence,Volume 385

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 362. Pascal Bouvry, Horacio González-Vélez, and
Joanna Kolodziej (Eds.)
Intelligent Decision Systems in Large-Scale Distributed
Environments, 2011
ISBN 978-3-642-21270-3

Vol. 363. Kishan G. Mehrotra, Chilukuri Mohan, Jae C. Oh,
Pramod K.Varshney, and Moonis Ali (Eds.)
Developing Concepts in Applied Intelligence, 2011
ISBN 978-3-642-21331-1

Vol. 364. Roger Lee (Ed.)
Computer and Information Science, 2011
ISBN 978-3-642-21377-9

Vol. 365. Roger Lee (Ed.)
Computers, Networks, Systems, and Industrial
Engineering 2011, 2011
ISBN 978-3-642-21374-8

Vol. 366. Mario Köppen, Gerald Schaefer, and
Ajith Abraham (Eds.)
Intelligent Computational Optimization in Engineering, 2011
ISBN 978-3-642-21704-3

Vol. 367. Gabriel Luque and Enrique Alba
Parallel Genetic Algorithms, 2011
ISBN 978-3-642-22083-8

Vol. 368. Roger Lee (Ed.)
Software Engineering,Artificial Intelligence, Networking and
Parallel/Distributed Computing 2011, 2011
ISBN 978-3-642-22287-0

Vol. 369. Dominik Ry_zko, Piotr Gawrysiak, Henryk Rybinski,
and Marzena Kryszkiewicz (Eds.)
Emerging Intelligent Technologies in Industry, 2011
ISBN 978-3-642-22731-8

Vol. 370.Alexander Mehler, Kai-Uwe Kühnberger,
Henning Lobin, Harald Lüngen,Angelika Storrer, and
Andreas Witt (Eds.)
Modeling, Learning, and Processing of Text Technological
Data Structures, 2011
ISBN 978-3-642-22612-0

Vol. 371. Leonid Perlovsky, Ross Deming, and Roman Ilin
(Eds.)
Emotional Cognitive Neural Algorithms with Engineering
Applications, 2011
ISBN 978-3-642-22829-2

Vol. 372.António E. Ruano and
Annamária R.Várkonyi-Kóczy (Eds.)
New Advances in Intelligent Signal Processing, 2011
ISBN 978-3-642-11738-1

Vol. 373. Oleg Okun, Giorgio Valentini, and Matteo Re (Eds.)
Ensembles in Machine Learning Applications, 2011
ISBN 978-3-642-22909-1

Vol. 374. Dimitri Plemenos and Georgios Miaoulis (Eds.)
Intelligent Computer Graphics 2011, 2011
ISBN 978-3-642-22906-0

Vol. 375. Marenglen Biba and Fatos Xhafa (Eds.)
Learning Structure and Schemas from Documents, 2011
ISBN 978-3-642-22912-1

Vol. 376. Toyohide Watanabe and Lakhmi C. Jain (Eds.)
Innovations in Intelligent Machines – 2, 2012
ISBN 978-3-642-23189-6

Vol. 377. Roger Lee (Ed.)
Software Engineering Research, Management
and Applications 2011, 2011
ISBN 978-3-642-23201-5

Vol. 378. János Fodor, Ryszard Klempous, and
Carmen Paz Suárez Araujo (Eds.)
Recent Advances in Intelligent Engineering Systems, 2011
ISBN 978-3-642-23228-2

Vol. 379. Ferrante Neri, Carlos Cotta, and
Pablo Moscato (Eds.)
Handbook of Memetic Algorithms, 2012
ISBN 978-3-642-23246-6

Vol. 380.Anthony Brabazon, Michael O’Neill, and
Dietmar Maringer (Eds.)
Natural Computing in Computational Finance, 2011
ISBN 978-3-642-23335-7

Vol. 381. Rados
�law Katarzyniak, Tzu-Fu Chiu,

Chao-Fu Hong, and Ngoc Thanh Nguyen (Eds.)
Semantic Methods for Knowledge Management and
Communication, 2011
ISBN 978-3-642-23417-0

Vol. 382. F.M.T. Brazier, Kees Nieuwenhuis, Gregor Pavlin,
Martijn Warnier, and Costin Badica (Eds.)
Intelligent Distributed Computing V, 2011
ISBN 978-3-642-24012-6

Vol. 383. Takayuki Ito, Minjie Zhang,Valentin Robu,
Shaheen Fatima, and Tokuro Matsuo(Eds.)
New Trends in Agent-based Complex Automated
Negotiations, 2011
ISBN 978-3-642-24695-1

Vol. 384. Daphna Weinshall, Jörn Anemüller,
and Luc van Gool (Eds.)
Detection and Identification of Rare Audiovisual Cues, 2012
ISBN 978-3-642-24033-1

Vol. 385.Alex Graves
Supervised Sequence Labelling with Recurrent Neural
Networks, 2012
ISBN 978-3-642-24796-5

Alex Graves

Supervised Sequence Labelling
with Recurrent Neural Networks

123

Author
Dr. Alex Graves
University of Toronto
Department of Computer Science
Toronto, Ontario
Canada

ISSN 1860-949X e-ISSN 1860-9503
ISBN 978-3-642-24796-5 e-ISBN 978-3-642-24797-2
DOI 10.1007/978-3-642-24797-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2011940011

c© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief ex-
cerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance
Center.Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication,neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

List of Tables IX

List of Figures XI

List of Algorithms XIII

1 Introduction 1
1.1 Structure of the Book . 3

2 Supervised Sequence Labelling 5
2.1 Supervised Learning . 5
2.2 Pattern Classification . 6

2.2.1 Probabilistic Classification 6
2.2.2 Training Probabilistic Classifiers 7
2.2.3 Generative and Discriminative Methods 8

2.3 Sequence Labelling . 9
2.3.1 Sequence Classification 11
2.3.2 Segment Classification 11
2.3.3 Temporal Classification 12

3 Neural Networks 15
3.1 Multilayer Perceptrons . 15

3.1.1 Forward Pass . 16
3.1.2 Output Layers . 18
3.1.3 Loss Functions . 19
3.1.4 Backward Pass . 20

3.2 Recurrent Neural Networks 22
3.2.1 Forward Pass . 22
3.2.2 Backward Pass . 23
3.2.3 Unfolding . 24
3.2.4 Bidirectional Networks 24
3.2.5 Sequential Jacobian 27

3.3 Network Training . 29
3.3.1 Gradient Descent Algorithms 29
3.3.2 Generalisation . 30

VI Contents

3.3.3 Input Representation 34
3.3.4 Weight Initialisation 35

4 Long Short-Term Memory 37
4.1 Network Architecture . 37
4.2 Influence of Preprocessing . 41
4.3 Gradient Calculation . 42
4.4 Architectural Variants . 42
4.5 Bidirectional Long Short-Term Memory 43
4.6 Network Equations . 43

4.6.1 Forward Pass . 44
4.6.2 Backward Pass . 44

5 A Comparison of Network Architectures 47
5.1 Experimental Setup . 47
5.2 Network Architectures . 48

5.2.1 Computational Complexity 49
5.2.2 Range of Context . 49
5.2.3 Output Layers . 49

5.3 Network Training . 51
5.3.1 Retraining . 51

5.4 Results . 52
5.4.1 Previous Work . 54
5.4.2 Effect of Increased Context 54
5.4.3 Weighted Error . 56

6 Hidden Markov Model Hybrids 57
6.1 Background . 57
6.2 Experiment: Phoneme Recognition 58

6.2.1 Experimental Setup 59
6.2.2 Results . 59

7 Connectionist Temporal Classification 61
7.1 Background . 61
7.2 From Outputs to Labellings 63

7.2.1 Role of the Blank Labels 64
7.2.2 Bidirectional and Unidirectional Networks 64

7.3 Forward-Backward Algorithm 64
7.3.1 Log Scale . 68

7.4 Loss Function . 68
7.4.1 Loss Gradient . 69

7.5 Decoding . 71
7.5.1 Best Path Decoding 71
7.5.2 Prefix Search Decoding 72
7.5.3 Constrained Decoding 73

7.6 Experiments . 78

Contents VII

7.6.1 Phoneme Recognition 1 79
7.6.2 Phoneme Recognition 2 80
7.6.3 Keyword Spotting . 81
7.6.4 Online Handwriting Recognition 85
7.6.5 Offline Handwriting Recognition 88

7.7 Discussion . 91

8 Multidimensional Networks 95
8.1 Background . 95
8.2 Network Architecture . 97

8.2.1 Multidirectional Networks 100
8.2.2 Multidimensional Long Short-Term Memory 102

8.3 Experiments . 104
8.3.1 Air Freight Data . 104
8.3.2 MNIST Data . 105
8.3.3 Analysis . 107

9 Hierarchical Subsampling Networks 109
9.1 Network Architecture . 110

9.1.1 Subsampling Window Sizes 112
9.1.2 Hidden Layer Sizes . 112
9.1.3 Number of Levels . 113
9.1.4 Multidimensional Networks 113
9.1.5 Output Layers . 115
9.1.6 Complete System . 116

9.2 Experiments . 117
9.2.1 Offline Arabic Handwriting Recognition 119
9.2.2 Online Arabic Handwriting Recognition 122
9.2.3 French Handwriting Recognition 124
9.2.4 Farsi/Arabic Character Classification 126
9.2.5 Phoneme Recognition 127

References 133

Acknowledgements 141

List of Tables

5.1 Framewise phoneme classification results on TIMIT 52
5.2 Comparison of BLSTM with previous network 54

6.1 Phoneme recognition results on TIMIT 60

7.1 Phoneme recognition results on TIMIT with 61 phonemes . . 79
7.2 Folding the 61 phonemes in TIMIT onto 39 categories 80
7.3 Phoneme recognition results on TIMIT with 39 phonemes . . 82
7.4 Keyword spotting results on Verbmobil 83
7.5 Character recognition results on IAM-OnDB 86
7.6 Word recognition on IAM-OnDB 88
7.7 Word recognition results on IAM-DB 92

8.1 Classification results on MNIST 106

9.1 Networks for offline Arabic handwriting recognition 121
9.2 Offline Arabic handwriting recognition competition results . . 121
9.3 Networks for online Arabic handwriting recognition 124
9.4 Online Arabic handwriting recognition competition results . . 125
9.5 Network for French handwriting recognition 126
9.6 French handwriting recognition competition results 127
9.7 Networks for Farsi/Arabic handwriting recognition 129
9.8 Farsi/Arabic handwriting recognition competition results . . 129
9.9 Networks for phoneme recognition on TIMIT 129
9.10 Phoneme recognition results on TIMIT 130

List of Figures

2.1 Sequence labelling . 9

2.2 Three classes of sequence labelling task 10

2.3 Importance of context in segment classification 12

3.1 A multilayer perceptron . 16

3.2 Neural network activation functions 17

3.3 A recurrent neural network 22

3.4 An unfolded recurrent network 25

3.5 An unfolded bidirectional network 26

3.6 Sequential Jacobian for a bidirectional network 28

3.7 Overfitting on training data 31

3.8 Different Kinds of Input Perturbation 33

4.1 The vanishing gradient problem for RNNs 38

4.2 LSTM memory block with one cell 39

4.3 An LSTM network . 40

4.4 Preservation of gradient information by LSTM 41

5.1 Various networks classifying an excerpt from TIMIT 50

5.2 Framewise phoneme classification results on TIMIT 53

5.3 Learning curves on TIMIT . 53

5.4 BLSTM network classifying the utterance “one oh five” . . . 55

7.1 CTC and framewise classification 62

7.2 Unidirectional and Bidirectional CTC Networks Phonetically
Transcribing an Excerpt from TIMIT 65

7.3 CTC forward-backward algorithm 67

7.4 Evolution of the CTC error signal during training 70

7.5 Problem with best path decoding 71

7.6 Prefix search decoding . 72

7.7 CTC outputs for keyword spotting on Verbmobil 84

7.8 Sequential Jacobian for keyword spotting on Verbmobil . . . 84

7.9 BLSTM-CTC network labelling an excerpt from
IAM-OnDB . 87

XII List of Figures

7.10 BLSTM-CTC Sequential Jacobian from IAM-OnDB
with raw inputs . 89

7.11 BLSTM-CTC Sequential Jacobian from IAM-OnDB
with preprocessed inputs . 90

8.1 MDRNN forward pass . 97
8.2 MDRNN backward pass . 97
8.3 Sequence ordering of 2D data 98
8.4 Context available to a unidirectional two dimensional

RNN . 100
8.5 Axes used by the hidden layers in a multidirectional

MDRNN . 101
8.6 Context available to a multidirectional MDRNN 101
8.7 Frame from the Air Freight database 105
8.8 MNIST image before and after deformation 106
8.9 MDRNN applied to an image from the Air Freight

database . 107
8.10 Sequential Jacobian of an MDRNN for an image

from MNIST . 107

9.1 Information flow through an HSRNN 110
9.2 An unfolded HSRNN . 111
9.3 Information flow through a multidirectional HSRNN 114
9.4 HSRNN applied to offline Arabic handwriting recognition . . 118
9.5 Offline Arabic word images 120
9.6 Offline Arabic error curves . 122
9.7 Online Arabic input sequences 124
9.8 French word images . 125
9.9 Farsi character images . 128
9.10 Three representations of a TIMIT utterance 130

List of Algorithms

3.1 BRNN Forward Pass . 26
3.2 BRNN Backward Pass . 26
3.3 Online Learning with Gradient Descent 30
3.4 Online Learning with Gradient Descent and Weight Noise . . 33
7.1 Prefix Search Decoding . 74
7.2 CTC Token Passing . 77
8.1 MDRNN Forward Pass . 99
8.2 MDRNN Backward Pass . 99
8.3 Multidirectional MDRNN Forward Pass 102
8.4 Multidirectional MDRNN Backward Pass 102

Chapter 1

Introduction

In machine learning, the term sequence labelling encompasses all tasks where
sequences of data are transcribed with sequences of discrete labels. Well-
known examples include speech and handwriting recognition, protein sec-
ondary structure prediction and part-of-speech tagging. Supervised sequence
labelling refers specifically to those cases where a set of hand-transcribed se-
quences is provided for algorithm training. What distinguishes such problems
from the traditional framework of supervised pattern classification is that the
individual data points cannot be assumed to be independent. Instead, both
the inputs and the labels form strongly correlated sequences. In speech recog-
nition for example, the input (a speech signal) is produced by the continuous
motion of the vocal tract, while the labels (a sequence of words) are mutu-
ally constrained by the laws of syntax and grammar. A further complication
is that in many cases the alignment between inputs and labels is unknown.
This requires the use of algorithms able to determine the location as well as
the identity of the output labels.

Recurrent neural networks (RNNs) are a class of artificial neural network
architecture that—inspired by the cyclical connectivity of neurons in the
brain—uses iterative function loops to store information. RNNs have several
properties that make them an attractive choice for sequence labelling: they
are flexible in their use of context information (because they can learn what
to store and what to ignore); they accept many different types and represen-
tations of data; and they can recognise sequential patterns in the presence of
sequential distortions. However they also have several drawbacks that have
limited their application to real-world sequence labelling problems.

Perhaps the most serious flaw of standard RNNs is that it is very dif-
ficult to get them to store information for long periods of time (Hochre-
iter et al., 2001b). This limits the range of context they can access,
which is of critical importance to sequence labelling. Long Short-Term
Memory (LSTM; Hochreiter and Schmidhuber, 1997) is a redesign of the
RNN architecture around special ‘memory cell’ units. In various synthetic
tasks, LSTM has been shown capable of storing and accessing informa-
tion over very long timespans (Gers et al., 2002; Gers and Schmidhuber,
2001). It has also proved advantageous in real-world domains such as speech

A. Graves: Supervised Sequence Labell. with Recur. Neur. Networks, SCI 385, pp. 1–3.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

2 1 Introduction

processing (Graves and Schmidhuber, 2005b) and bioinformatics (Hochreiter
et al., 2007). LSTM is therefore the architecture of choice throughout the
book.

Another issue with the standard RNN architecture is that it can only access
contextual information in one direction (typically the past, if the sequence
is temporal). This makes perfect sense for time-series prediction, but for
sequence labelling it is usually advantageous to exploit the context on both
sides of the labels. Bidirectional RNNs (Schuster and Paliwal, 1997) scan
the data forwards and backwards with two separate recurrent layers, thereby
removing the asymmetry between input directions and providing access to all
surrounding context. Bidirectional LSTM (Graves and Schmidhuber, 2005b)
combines the benefits of long-range memory and bidirectional processing.

For tasks such as speech recognition, where the alignment between the
inputs and the labels is unknown, RNNs have so far been limited to an aux-
iliary role. The problem is that the standard training methods require a sep-
arate target for every input, which is usually not available. The traditional
solution—the so-called hybrid approach—is to use hidden Markov models to
generate targets for the RNN, then invert the RNN outputs to provide ob-
servation probabilities (Bourlard and Morgan, 1994). However the hybrid
approach does not exploit the full potential of RNNs for sequence processing,
and it also leads to an awkward combination of discriminative and genera-
tive training. The connectionist temporal classification (CTC) output layer
(Graves et al., 2006) removes the need for hidden Markov models by directly
training RNNs to label sequences with unknown alignments, using a single
discriminative loss function. CTC can also be combined with probabilistic
language models for word-level speech and handwriting recognition.

Recurrent neural networks were designed for one-dimensional sequences.
However some of their properties, such as robustness to warping and flexi-
ble use of context, are also desirable in multidimensional domains like image
and video processing. Multidimensional RNNs, a special case of directed
acyclic graph RNNs (Baldi and Pollastri, 2003), generalise to multidimen-
sional data by replacing the one-dimensional chain of network updates with
an n-dimensional grid. Multidimensional LSTM (Graves et al., 2007) brings
the improved memory of LSTM to multidimensional networks.

Even with the LSTM architecture, RNNs tend to struggle with very long
data sequences. As well as placing increased demands on the network’s
memory, such sequences can be be prohibitively time-consuming to process.
The problem is especially acute for multidimensional data such as images or
videos, where the volume of input information can be enormous. Hierarchical
subsampling RNNs (Graves and Schmidhuber, 2009) contain a stack of
recurrent network layers with progressively lower spatiotemporal resolution.
As long as the reduction in resolution is large enough, and the layers at the
bottom of the hierarchy are small enough, this approach can be made com-
putationally efficient for almost any size of sequence. Furthermore, because

1.1 Structure of the Book 3

the effective distance between the inputs decreases as the information moves
up the hierarchy, the network’s memory requirements are reduced.

The combination of multidimensional LSTM, CTC output layers and hi-
erarchical subsampling leads to a general-purpose sequence labelling system
entirely constructed out of recurrent neural networks. The system is flexible,
and can be applied with minimal adaptation to a wide range of data and
tasks. It is also powerful, as this book will demonstrate with state-of-the-art
results in speech and handwriting recognition.

1.1 Structure of the Book

The chapters are roughly grouped into three parts: background material is
presented in Chapters 2–4, Chapters 5 and 6 are primarily experimental, and
new methods are introduced in Chapters 7–9.

Chapter 2 briefly reviews supervised learning in general, and pattern clas-
sification in particular. It also provides a formal definition of sequence la-
belling, and discusses three classes of sequence labelling task that arise under
different relationships between the input and label sequences. Chapter 3
provides background material for feedforward and recurrent neural networks,
with emphasis on their application to labelling and classification tasks. It also
introduces the sequential Jacobian as a tool for analysing the use of context
by RNNs.

Chapter 4 describes the LSTM architecture and introduces bidirec-
tional LSTM (BLSTM). Chapter 5 contains an experimental comparison of
BLSTM to other neural network architectures applied to framewise phoneme
classification. Chapter 6 investigates the use of LSTM in hidden Markov
model-neural network hybrids. Chapter 7 introduces connectionist temporal
classification, Chapter 8 covers multidimensional networks, and hierarchical
subsampling networks are described in Chapter 9.

Chapter 2

Supervised Sequence Labelling

This chapter provides the background material and literature review for su-
pervised sequence labelling. Section 2.1 briefly reviews supervised learning in
general. Section 2.2 covers the classical, non-sequential framework of super-
vised pattern classification. Section 2.3 defines supervised sequence labelling,
and describes the different classes of sequence labelling task that arise under
different assumptions about the label sequences.

2.1 Supervised Learning

Machine learning problems where a set of input-target pairs is provided for
training are referred to as supervised learning tasks. This is distinct from re-
inforcement learning, where only scalar reward values are provided for train-
ing, and unsupervised learning, where no training signal exists at all, and the
algorithm attempts to uncover the structure of the data by inspection alone.
We will not consider either reinforcement learning or unsupervised learning
in this book.

A supervised learning task consists of a training set S of input-target
pairs (x, z), where x is an element of the input space X and z is an element
of the target space Z, along with a disjoint test set S′. We will sometimes
refer to the elements of S as training examples. Both S and S′ are assumed
to have been drawn independently from the same input-target distribution
DX×Z . In some cases an extra validation set is drawn from the training
set to validate the performance of the learning algorithm during training;
in particular validation sets are frequently used to determine when training
should stop, in order to prevent overfitting. The goal is to use the training
set to minimise some task-specific error measure E defined on the test set.
For example, in a regression task, the usual error measure is the sum-of-
squares, or squared Euclidean distance between the algorithm outputs and
the test-set targets. For parametric algorithms (such as neural networks) the
usual approach to error minimisation is to incrementally adjust the algorithm
parameters to optimise a loss function on the training set, which is as closely
related as possible to E. The transfer of learning from the training set to

A. Graves: Supervised Sequence Labell. with Recur. Neur. Networks, SCI 385, pp. 5–13.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

6 2 Supervised Sequence Labelling

the test set is known as generalisation, and will be discussed further in later
chapters.

The nature and degree of supervision provided by the targets varies greatly
between supervised learning tasks. For example, training a supervised learner
to correctly label every pixel corresponding to an aeroplane in an image
requires a much more informative target than simply training it recognise
whether or not an aeroplane is present. To distinguish these extremes, people
sometimes refer to weakly and strongly labelled data.

2.2 Pattern Classification

Pattern classification, also known as pattern recognition, is one of the most
extensively studied areas of machine learning (Bishop, 2006; Duda et al.,
2000), and certain pattern classifiers, such as multilayer perceptrons (Rumel-
hart et al., 1986; Bishop, 1995) and support vector machines (Vapnik, 1995)
have become familiar to the scientific community at large.

Although pattern classification deals with non-sequential data, much of the
practical and theoretical framework underlying it carries over to the sequen-
tial case. It is therefore instructive to briefly review this framework before
we turn to sequence labelling.

The input space X for supervised pattern classification tasks is typically
RM ; that is, the set of all real-valued vectors of some fixed length M . The
target spaces Z is a discrete set of K classes. A pattern classifier h : X �→ Z
is therefore a function mapping from vectors to labels. If all misclassifications
are equally bad, the usual error measure for h is the classification error rate
Eclass(h, S′) on the test set S′

Eclass(h, S′) =
1

|S′|
∑

(x,z)∈S′

{
0 if h(x) = z

1 otherwise
(2.1)

2.2.1 Probabilistic Classification

Classifiers that directly output class labels, of which support vector machines
are a well known example, are sometimes referred to as discriminant func-
tions. An alternative approach is probabilistic classification, where the con-
ditional probabilities p(Ck|x) of the K classes given the input pattern x are
first determined, and the most probable is then chosen as the classifier output
h(x):

h(x) = argmax
k

p(Ck|x) (2.2)

One advantage of the probabilistic approach is that the relative magnitude
of the probabilities can be used to determine the degree of confidence the
classifier has in its outputs. Another is that it allows the classifier to be
combined with other probabilistic algorithms in a consistent way.

2.2 Pattern Classification 7

2.2.2 Training Probabilistic Classifiers

If a probabilistic classifier hw yields a conditional distribution p(Ck|x,w) over
the class labels Ck given input x and parameters w, we can take a product
over the independent and identically distributed (i.i.d.) input-target pairs in
the training set S to get

p(S|w) =
∏

(x,z)∈S

p(z|x,w) (2.3)

which can be inverted with Bayes’ rule to obtain

p(w|S) = p(S|w)p(w)
p(S)

(2.4)

In theory, the posterior distribution over classes for some new input x can
then be found by integrating over all possible values of w:

p(Ck|x, S) =
∫

w

p(Ck|x,w)p(w|S)dw (2.5)

In practice w is usually very high dimensional and the above integral, referred
to as the predictive distribution of the classifier, is intractable. A common
approximation, known as the maximum a priori (MAP) approximation, is to
find the single parameter vector wMAP that maximises p(w|S) and use this
to make predictions:

p(Ck|x, S) ≈ p(Ck|x,wMAP) (2.6)

Since p(S) is independent of w, Eqn. (2.4) tells us that

wMAP = argmax
w

p(S|w)p(w) (2.7)

The parameter prior p(w) is usually referred to as a regularisation term.
Its effect is to weight the classifier towards those parameter values which
are deemed a priori more probable. In accordance with Occam’s razor, we
usually assume that more complex parameters (where ‘complex’ is typically
interpreted as ‘requiring more information to accurately describe’) are inher-
ently less probable. For this reason p(w) is sometimes referred to as an Occam
factor or complexity penalty. In the particular case of a Gaussian parameter
prior, where p(w) ∝ |w|2, the p(w) term is referred to as weight decay. If, on
the other hand, we assume a uniform prior over parameters, we can remove
the p(w) term from (2.7) to obtain the maximum likelihood (ML) parameter
vector wML

wML = argmax
w

p(S|w) = argmax
w

∏

(x,z)∈S

p(z|x,w) (2.8)

From now on we will drop the explicit dependence of the classifier outputs on
w, with the understanding that p(z|x) is the probability of x being correctly
classified by hw.

8 2 Supervised Sequence Labelling

2.2.2.1 Maximum-Likelihood Loss Functions

The standard procedure for finding wML is to minimise a maximum-
likelihood loss function L(S) defined as the negative logarithm of the proba-
bility assigned to S by the classifier

L(S) = − ln
∏

(x,z)∈S

p(z|x) = −
∑

(x,z)∈S

ln p(z|x) (2.9)

where ln is the natural logarithm (the logarithm to base e). Note that, since
the logarithm is monotonically increasing, minimising − ln p(S) is equivalent
to maximising p(S).

Observing that each example training example (x, z) ∈ S contributes to a
single term in the above sum, we define the example loss L(x, z) as

L(x, z) = − ln p(z|x) (2.10)

and note that

L(S) =
∑

(x,z)∈S

L(x, z) (2.11)

∂L(S)
∂w

=
∑

(x,z)∈S

∂L(x, z)
∂w

(2.12)

It therefore suffices to derive L(x, z) and ∂L(x,z)
∂w to completely define a

maximum-likelihood loss function and its derivatives with respect to the net-
work weights.

When the precise form of the loss function is not important, we will refer
to it simply as L.

2.2.3 Generative and Discriminative Methods

Algorithms that directly calculate the class probabilities p(Ck|x) (also known
as the posterior class probabilities) are referred to as discriminative. In some
cases however, it is preferable to first calculate the class conditional densities
p(x|Ck) and then use Bayes’ rule, together with the prior class probabilities
p(Ck) to find the posterior values

p(Ck|x) = p(x|Ck)p(Ck)

p(x)
(2.13)

where
p(x) =

∑

k

p(x|Ck)p(Ck) (2.14)

2.3 Sequence Labelling 9

Fig. 2.1 Sequence labelling. The algorithm receives a sequence of input data,
and outputs a sequence of discrete labels.

Algorithms following this approach are referred to as generative, because the
prior p(x) can be used to generate artificial input data. One advantage of
the generative approach is that each class can be trained independently of
the others, whereas discriminative methods have to be retrained every time
a new class is added. However, discriminative methods typically give better
results for classification tasks, because they concentrate all their modelling
effort on finding the correct class boundaries.

This book focuses on discriminative sequence labelling. However, we will
frequently refer to the well-known generative method hidden Markov models
(Rabiner, 1989; Bengio, 1999).

2.3 Sequence Labelling

The goal of sequence labelling is to assign sequences of labels, drawn from a
fixed alphabet, to sequences of input data. For example, one might wish to
transcribe a sequence of acoustic features with spoken words (speech recogni-
tion), or a sequence of video frames with hand gestures (gesture recognition).
Although such tasks commonly arise when analysing time series, they are also
found in domains with non-temporal sequences, such as protein secondary
structure prediction.

For some problems the precise alignment of the labels with the input data
must also be determined by the learning algorithm. In this book however, we
limit our attention to tasks where the alignment is either predetermined, by
some manual or automatic preprocessing, or it is unimportant, in the sense
that we require only the final sequence of labels, and not the times at which
they occur.

If the sequences are assumed to be independent and identically distributed,
we recover the basic framework of pattern classification, only with sequences
in place of patterns (of course the data-points within each sequence are
not assumed to be independent). In practice this assumption may not be

10 2 Supervised Sequence Labelling

Fig. 2.2 Three classes of sequence labelling task. Sequence classification,
where each input sequence is assigned a single class, is a special case of segment
classification, where each of a predefined set of input segments is given a label. Seg-
ment classification is a special case of temporal classification, where any alignment
between input and label sequences is allowed. Temporal classification data can be
weakly labelled with nothing but the target sequences, while segment classification
data must be strongly labelled with both targets and input-target alignments.

entirely justified (for example, the sequences may represent turns in a spoken
dialogue, or lines of text in a handwritten form); however it is usually not too
damaging as long as the sequence boundaries are sensibly chosen. We further
assume that each target sequence is at most as long as the corresponding
input sequence. With these restrictions in mind we can formalise the task of
sequence labelling as follows:

Let S be a set of training examples drawn independently from a fixed
distribution DX×Z . The input space X = (RM)∗ is the set of all sequences
of size M real-valued vectors. The target space Z = L∗ is the set of all
sequences over the (finite) alphabet L of labels. We refer to elements of L∗

as label sequences or labellings. Each element of S is a pair of sequences
(x, z) (From now on a bold typeface will be used to denote sequences). The
target sequence z = (z1, z2, ..., zU) is at most as long as the input sequence
x = (x1, x2, ..., xT), i.e. |z| = U ≤ |x| = T . Regardless of whether the data
is a time series, the distinct points in the input sequence are referred to
as timesteps. The task is to use S to train a sequence labelling algorithm
h : X �→ Z to label the sequences in a test set S′ ⊂ DX×Z , disjoint from S,
as accurately as possible.

In some cases we can apply additional constraints to the label sequences.
These may affect both the choice of sequence labelling algorithm and the
error measures used to assess performance. The following sections describe
three classes of sequence labelling task, corresponding to progressively looser
assumptions about the relationship between the input and label sequences,
and discuss algorithms and error measures suitable for each. The relationship
between the classes is outlined in Figure 2.2.

2.3 Sequence Labelling 11

2.3.1 Sequence Classification

The most restrictive case is where the label sequences are constrained to be
length one. This is referred to as sequence classification, since each input
sequence is assigned to a single class. Examples of sequence classification
task include the identification of a single spoken work and the recognition
of an individual handwritten letter. A key feature of such tasks is that the
entire sequence can be processed before the classification is made.

If the input sequences are of fixed length, or can be easily padded to a
fixed length, they can be collapsed into a single input vector and any of the
standard pattern classification algorithms mentioned in Section 2.2 can be
applied. A prominent testbed for fixed-length sequence classification is the
MNIST isolated digits dataset (LeCun et al., 1998a). Numerous pattern clas-
sification algorithms have been applied to MNIST, including convolutional
neural networks (LeCun et al., 1998a; Simard et al., 2003) and support vector
machines (LeCun et al., 1998a; Decoste and Schölkopf, 2002).

However, even if the input length is fixed, algorithm that are inherently se-
quential may be beneficial, since they are better able to adapt to translations
and distortions in the input data. This is the rationale behind the application
of multidimensional recurrent neural networks to MNIST in Chapter 8.

As with pattern classification the obvious error measure is the percent-
age of misclassifications, referred to as the sequence error rate Eseq in this
context:

Eseq(h, S′) =
100

|S′|
∑

(x,z)∈S′

{
0 if h(x) = z

1 otherwise
(2.15)

where |S′| is the number of elements in S′.

2.3.2 Segment Classification

Segment classification refers to those tasks where the target sequences consist
of multiple labels, but the locations of the labels—that is, the positions of the
input segments to which the labels apply—are known in advance. Segment
classification is common in domains such as natural language processing and
bioinformatics, where the inputs are discrete and can be trivially segmented.
It can also occur in domains where segmentation is difficult, such as audio
or image processing; however this typically requires hand-segmented training
data, which is difficult to obtain.

A crucial element of segment classification, missing from sequence classi-
fication, is the use of context information from either side of the segments
to be classified. The effective use of context is vital to the success of seg-
ment classification algorithms, as illustrated in Figure 2.3. This presents a
problem for standard pattern classification algorithms, which are designed to
process only one input at a time. A simple solution is to collect the data on
either side of the segments into time-windows, and use the windows as input

12 2 Supervised Sequence Labelling

Fig. 2.3 Importance of context in segment classification. The word ‘defence’
is clearly legible. However the letter ‘n’ in isolation is ambiguous.

patterns. However as well as the aforementioned issue of shifted or distorted
data, the time-window approach suffers from the fact that the range of useful
context (and therefore the required time-window size) is generally unknown,
and may vary from segment to segment. Consequently the case for sequential
algorithms is stronger here than in sequence classification.

The obvious error measure for segment classification is the segment error
rate Eseg, which simply counts the percentage of misclassified segments.

Eseg(h, S′) =
1

Z

∑

(x,z)∈S′
HD(h(x), z) (2.16)

Where

Z =
∑

(x,z)∈S′
|z| (2.17)

and HD(p,q) is the hamming distance between two equal length sequences
p and q (i.e. the number of places in which they differ).

In speech recognition, the phonetic classification of each acoustic frame
as a separate segment is often known as framewise phoneme classification.
In this context the segment error rate is usually referred to as the frame
error rate. Various neural network architectures are applied to framewise
phoneme classification in Chapter 5. In image processing, the classification
of each pixel, or block of pixels, as a separate segment is known as image
segmentation. Multidimensional recurrent neural networks are applied to
image segmentation in Chapter 8.

2.3.3 Temporal Classification

In the most general case, nothing can be assumed about the label sequences
except that their length is less than or equal to that of the input sequences.
They may even be empty. We refer to this situation as temporal classification
(Kadous, 2002).

The key distinction between temporal classification and segment classifi-
cation is that the former requires an algorithm that can decide where in the
input sequence the classifications should be made. This in turn requires an
implicit or explicit model of the global structure of the sequence.

2.3 Sequence Labelling 13

For temporal classification, the segment error rate is inapplicable, since
the segment boundaries are unknown. Instead we measure the total number
of substitutions, insertions and deletions that would be required to turn one
sequence into the other, giving us the label error rate Elab:

Elab(h, S′) =
1

Z

∑

(x,z)∈S′
ED(h(x), z) (2.18)

Where ED(p,q) is the edit distance between the two sequences p and q (i.e.
the minimum number of insertions, substitutions and deletions required to
change p into q). ED(p,q) can be calculated in O(|p||q|) time (Navarro,
2001). The label error rate is typically multiplied by 100 so that it can
be interpreted as a percentage (a convention we will follow in this book);
however, unlike the other error measures considered in this chapter, it is not
a true percentage, and may give values higher than 100.

A family of similar error measures can be defined by introducing other
types of edit operation, such as transpositions (caused by e.g. typing errors),
or by weighting the relative importance of the operations. For the purposes
of this book however, the label error rate is sufficient. We will usually refer
to the label error rate according to the type of label in question, for example
phoneme error rate or word error rate. For some temporal classification
tasks a completely correct labelling is required and the degree of error is
unimportant. In this case the sequence error rate (2.15) should be used to
assess performance.

The use of hidden Markov model-recurrent neural network hybrids for
temporal classification is investigated in Chapter 6, and a neural-network-
only approach to temporal classification is introduced in Chapter 7.

Chapter 3

Neural Networks

This chapter provides an overview of artificial neural networks, with emphasis
on their application to classification and labelling tasks. Section 3.1 reviews
multilayer perceptrons and their application to pattern classification. Sec-
tion 3.2 reviews recurrent neural networks and their application to sequence
labelling. It also describes the sequential Jacobian, an analytical tool for
studying the use of context information. Section 3.3 discusses various issues,
such as generalisation and input data representation, that are essential to
effective network training.

3.1 Multilayer Perceptrons

Artificial neural networks (ANNs) were originally developed as mathematical
models of the information processing capabilities of biological brains (McCul-
loch and Pitts, 1988; Rosenblatt, 1963; Rumelhart et al., 1986). Although
it is now clear that ANNs bear little resemblance to real biological neurons,
they enjoy continuing popularity as pattern classifiers.

The basic structure of an ANN is a network of small processing units, or
nodes, joined to each other by weighted connections. In terms of the original
biological model, the nodes represent neurons, and the connection weights
represent the strength of the synapses between the neurons. The network is
activated by providing an input to some or all of the nodes, and this acti-
vation then spreads throughout the network along the weighted connections.
The electrical activity of biological neurons typically follows a series of sharp
‘spikes’, and the activation of an ANN node was originally intended to model
the average firing rate of these spikes.

Many varieties of ANNs have appeared over the years, with widely varying
properties. One important distinction is between ANNs whose connections
form cycles, and those whose connections are acyclic. ANNs with cycles
are referred to as feedback, recursive, or recurrent, neural networks, and are
dealt with in Section 3.2. ANNs without cycles are referred to as feedforward
neural networks (FNNs). Well known examples of FNNs include perceptrons
(Rosenblatt, 1958), radial basis function networks (Broomhead and Lowe,

A. Graves: Supervised Sequence Labell. with Recur. Neur. Networks, SCI 385, pp. 15–35.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

16 3 Neural Networks

Fig. 3.1 A multilayer perceptron.The S-shaped curves in the hidden and output
layers indicate the application of ‘sigmoidal’ nonlinear activation functions.

1988), Kohonen maps (Kohonen, 1989) and Hopfield nets (Hopfield, 1982).
The most widely used form of FNN, and the one we focus on in this section,
is the multilayer perceptron (MLP; Rumelhart et al., 1986; Werbos, 1988;
Bishop, 1995).

As illustrated in Figure 3.1, the units in a multilayer perceptron are ar-
ranged in layers, with connections feeding forward from one layer to the next.
Input patterns are presented to the input layer, then propagated through the
hidden layers to the output layer. This process is known as the forward pass
of the network.

Since the output of an MLP depends only on the current input, and not on
any past or future inputs, MLPs are more suitable for pattern classification
than for sequence labelling. We will discuss this point further in Section 3.2.

An MLP with a particular set of weight values defines a function from
input to output vectors. By altering the weights, a single MLP is capable
of instantiating many different functions. Indeed it has been proven (Hornik
et al., 1989) that an MLP with a single hidden layer containing a sufficient
number of nonlinear units can approximate any continuous function on a
compact input domain to arbitrary precision. For this reason MLPs are said
to be universal function approximators.

3.1.1 Forward Pass

Consider an MLP with I input units, activated by input vector x (hence
|x| = I). Each unit in the first hidden layer calculates a weighted sum of the
input units. For hidden unit h, we refer to this sum as the network input to
unit h, and denote it ah. The activation function θh is then applied, yielding
the final activation bh of the unit. Denoting the weight from unit i to unit j
as wij , we have

3.1 Multilayer Perceptrons 17

Fig. 3.2 Neural network activation functions. Note the characteristic ‘sig-
moid’ or S-shape.

ah =

I∑

i=1

wihxi (3.1)

bh = θh(ah) (3.2)

Several neural network activation functions are plotted in Figure 3.2. The
most common choices are the hyperbolic tangent

tanh(x) =
e2x − 1

e2x + 1
, (3.3)

and the logistic sigmoid

σ(x) =
1

1 + e−x
(3.4)

The two functions are related by the following linear transform:

tanh(x) = 2σ(2x)− 1 (3.5)

This means that any function computed by a neural network with a hidden
layer of tanh units can be computed by another network with logistic sigmoid
units and vice-versa. They are therefore largely equivalent as activation func-
tions. However one reason to distinguish between them is that their output
ranges are different; in particular if an output between 0 and 1 is required
(for example, if the output represents a probability) then the logistic sigmoid
should be used.

An important feature of both tanh and the logistic sigmoid is their nonlin-
earity. Nonlinear neural networks are more powerful than linear ones since
they can, for example, find nonlinear classification boundaries and model
nonlinear equations. Moreover, any combination of linear operators is itself a

18 3 Neural Networks

linear operator, which means that any MLP with multiple linear hidden lay-
ers is exactly equivalent to some other MLP with a single linear hidden layer.
This contrasts with nonlinear networks, which can gain considerable power
by using successive hidden layers to re-represent the input data (Hinton et al.,
2006; Bengio and LeCun, 2007).

Another key property is that both functions are differentiable, which allows
the network to be trained with gradient descent. Their first derivatives are

∂tanh(x)

∂x
= 1− tanh(x)2 (3.6)

∂σ(x)

∂x
= σ(x)(1 − σ(x)) (3.7)

Because of the way they reduce an infinite input domain to a finite out-
put range, neural network activation functions are sometimes referred to as
squashing functions.

Having calculated the activations of the units in the first hidden layer,
the process of summation and activation is then repeated for the rest of the
hidden layers in turn, e.g. for unit h in the lth hidden layer Hl

ah =
∑

h′∈Hl−1

wh′hbh′ (3.8)

bh = θh(ah) (3.9)

3.1.2 Output Layers

The output vector y of an MLP is given by the activation of the units in
the output layer. The network input ak to each output unit k is calculated
by summing over the units connected to it, exactly as for a hidden unit.
Therefore

ak =
∑

h∈HL

whkbh (3.10)

for a network with L hidden layers.
Both the number of units in the output layer and the choice of output

activation function depend on the task the network is applied to. For binary
classification tasks, the standard configuration is a single unit with a logistic
sigmoid activation (Eqn. (3.4)). Since the range of the logistic sigmoid is the
open interval (0, 1), the activation of the output unit can be interpreted as
the probability that the input vector belongs to the first class (and conversely,
one minus the activation gives the probability that it belongs to the second
class)

p(C1|x) = y = σ(a)

p(C2|x) = 1− y (3.11)

3.1 Multilayer Perceptrons 19

The use of the logistic sigmoid as a binary probability estimator is sometimes
referred as logistic regression, or a logit model. If we use a coding scheme for
the target vector z where z = 1 if the correct class is C1 and z = 0 if the
correct class is C2, we can combine the above expressions to write

p(z|x) = yz(1− y)1−z (3.12)

For classification problems with K > 2 classes, the convention is to have K
output units, and normalise the output activations with the softmax function
(Bridle, 1990) to obtain the class probabilities:

p(Ck|x) = yk =
eak

∑K
k′=1 e

ak′
(3.13)

which is also known as a multinomial logit model. A 1-of-K coding scheme
represent the target class z as a binary vector with all elements equal to zero
except for element k, corresponding to the correct class Ck, which equals
one. For example, if K = 5 and the correct class is C2, z is represented by
(0, 1, 0, 0, 0). Using this scheme we obtain the following convenient form for
the target probabilities:

p(z|x) =
K∏

k=1

yzkk (3.14)

Given the above definitions, the use of MLPs for pattern classification is
straightforward. Simply feed in an input vector, activate the network, and
choose the class label corresponding to the most active output unit.

3.1.3 Loss Functions

The derivation of loss functions for MLP training follows the steps outlined
in Section 2.2.2. Although attempts have been made to approximate the
full predictive distribution of Eqn. (2.5) for neural networks (MacKay, 1995;
Neal, 1996), we will here focus on loss functions derived using maximum
likelihood. For binary classification, substituting (3.12) into the maximum-
likelihood example loss L(x, z) = − ln p(z|x) described in Section 2.2.2.1, we
have

L(x, z) = (z − 1) ln(1− y)− z ln y (3.15)

Similarly, for problems with multiple classes, substituting (3.14) into (2.10)
gives

L(x, z) = −
K∑

k=1

zk ln yk (3.16)

See (Bishop, 1995, chap. 6) for more information on these and other MLP
loss functions.

20 3 Neural Networks

3.1.4 Backward Pass

Since MLPs are, by construction, differentiable operators, they can be trained
to minimise any differentiable loss function using gradient descent. The basic
idea of gradient descent is to find the derivative of the loss function with re-
spect to each of the network weights, then adjust the weights in the direction
of the negative slope. Gradient descent methods for training neural networks
are discussed in more detail in Section 3.3.1.

To efficiently calculate the gradient, we use a technique known as backprop-
agation (Rumelhart et al., 1986; Williams and Zipser, 1995; Werbos, 1988).
This is often referred to as the backward pass of the network.

Backpropagation is simply a repeated application of chain rule for partial
derivatives. The first step is to calculate the derivatives of the loss function
with respect to the output units. For a binary classification network, dif-
ferentiating the loss function defined in (3.15) with respect to the network
outputs gives

∂L(x, z)
∂y

=
y − z

y(1− y)
(3.17)

The chain rule informs us that

∂L(x, z)
∂a

=
∂L(x, z)

∂y

∂y

∂a
(3.18)

and we can then substitute (3.7), (3.11) and (3.17) into (3.18) to get

∂L(x, z)
∂a

= y − z (3.19)

For a multiclass network, differentiating (3.16) gives

∂L(x, z)
∂yk

= −zk
yk

(3.20)

Bearing in mind that the activation of each unit in a softmax layer depends
on the network input to every unit in the layer, the chain rule gives us

∂L(x, z)
∂ak

=

K∑

k′=1

∂L(x, z)
∂yk′

∂yk′

∂ak
(3.21)

Differentiating (3.13) we obtain

∂yk′

∂ak
= ykδkk′ − ykyk′ (3.22)

and we can then substitute (3.22) and (3.20) into (3.21) to get

∂L(x, z)
∂ak

= yk − zk (3.23)

3.1 Multilayer Perceptrons 21

where we have the used the fact that
∑K

k=1 zk = 1. Note the similarity
to (3.19). The loss function is sometimes said to match the output layer
activation function when the output derivative has this form (Schraudolph,
2002).

We now continue to apply the chain rule, working backwards through the
hidden layers. At this point it is helpful to introduce the following notation:

δj
def
=

∂L(x, z)
∂aj

(3.24)

where j is any unit in the network. For the units in the last hidden layer, we
have

δh =
∂L(x, z)

∂bh

∂bh
∂ah

=
∂bh
∂ah

K∑

k=1

∂L(x, z)
∂ak

∂ak
∂bh

(3.25)

where we have used the fact that L(x, z) depends only on each hidden unit
h through its influence on the output units. Differentiating (3.10) and (3.2)
and substituting into (3.25) gives

δh = θ′(aj)
K∑

k=1

δkwhk (3.26)

The δ terms for each hidden layerHl before the last one can then be calculated
recursively:

δh = θ′(ah)
∑

h′∈Hl+1

δh′whh′ (3.27)

Once we have the δ terms for all the hidden units, we can use (3.1) to calculate
the derivatives with respect to each of the network weights:

∂L(x, z)
∂wij

=
∂L(x, z)

∂aj

∂aj
∂wij

= δjbi (3.28)

3.1.4.1 Numerical Gradient

When implementing backpropagation, it is strongly recommended to check
the weight derivatives numerically. This can be done by adding positive and
negative perturbations to each weight and calculating the changes in the loss
function:

∂L
∂wij

=
L(wij + ε)− L(wij − ε)

2ε
+O(ε2) (3.29)

This technique is known as symmetrical finite differences. Note that setting ε
too small leads to numerical underflows and decreased accuracy. The optimal
value therefore depends on the floating point accuracy of a given implemen-
tation. For the systems we used, ε = 10−5 generally gave best results.

22 3 Neural Networks

Fig. 3.3 A recurrent neural network

Note that for a network with W weights, calculating the full gradient using
(3.29) requires O(W 2) time, whereas backpropagation only requires O(W)
time. Numerical differentiation is therefore impractical for network training.
Furthermore, it is recommended to always the choose the smallest possible
exemplar of the network architecture whose gradient you wish to check (for
example, an RNN with a single hidden unit).

3.2 Recurrent Neural Networks

In the previous section we considered feedforward neural networks whose
connections did not form cycles. If we relax this condition, and allow cyclical
connections as well, we obtain recurrent neural networks (RNNs). As with
feedforward networks, many varieties of RNN have been proposed, such as
Elman networks (Elman, 1990), Jordan networks (Jordan, 1990), time delay
neural networks (Lang et al., 1990) and echo state networks (Jaeger, 2001).
In this chapter, we focus on a simple RNN containing a single, self connected
hidden layer, as shown in Figure 3.3.

While the difference between a multilayer perceptron and an RNN may
seem trivial, the implications for sequence learning are far-reaching. An
MLP can only map from input to output vectors, whereas an RNN can
in principle map from the entire history of previous inputs to each output.
Indeed, the equivalent result to the universal approximation theory for MLPs
is that an RNN with a sufficient number of hidden units can approximate any
measurable sequence-to-sequence mapping to arbitrary accuracy (Hammer,
2000). The key point is that the recurrent connections allow a ‘memory’
of previous inputs to persist in the network’s internal state, and thereby
influence the network output.

3.2.1 Forward Pass

The forward pass of an RNN is the same as that of a multilayer perceptron
with a single hidden layer, except that activations arrive at the hidden layer

3.2 Recurrent Neural Networks 23

from both the current external input and the hidden layer activations from
the previous timestep. Consider a length T input sequence x presented to an
RNN with I input units, H hidden units, and K output units. Let xt

i be the
value of input i at time t, and let atj and btj be respectively the network input
to unit j at time t and the activation of unit j at time t. For the hidden units
we have

ath =

I∑

i=1

wihx
t
i +

H∑

h′=1

wh′hb
t−1
h′ (3.30)

Nonlinear, differentiable activation functions are then applied exactly as for
an MLP

bth = θh(a
t
h) (3.31)

The complete sequence of hidden activations can be calculated by starting at
t = 1 and recursively applying (3.30) and (3.31), incrementing t at each step.
Note that this requires initial values b0i to be chosen for the hidden units,
corresponding to the network’s state before it receives any information from
the data sequence. In this book, the initial values are always set to zero.
However, other researchers have found that RNN stability and performance
can be improved by using nonzero initial values (Zimmermann et al., 2006a).

The network inputs to the output units can be calculated at the same time
as the hidden activations:

atk =

H∑

h=1

whkb
t
h (3.32)

For sequence classification and segment classification tasks (Section 2.3) the
MLP output activation functions described in Section 3.1.2 (that is, logistic
sigmoid for two classes and softmax for multiple classes) can be reused for
RNNs, with the classification targets typically presented at the ends of the
sequences or segments. It follows that the loss functions in Section 3.1.3
can be reused too. Temporal classification is more challenging, since the
locations of the target classes are unknown. Chapter 7 introduces an output
layer specifically designed for temporal classification with RNNs.

3.2.2 Backward Pass

Given the partial derivatives of some differentiable loss function L with re-
spect to the network outputs, the next step is to determine the derivatives
with respect to the weights. Two well-known algorithms have been devised
to efficiently calculate weight derivatives for RNNs: real time recurrent learn-
ing (RTRL; Robinson and Fallside, 1987) and backpropagation through time
(BPTT; Williams and Zipser, 1995; Werbos, 1990). We focus on BPTT
since it is both conceptually simpler and more efficient in computation time
(though not in memory).

24 3 Neural Networks

Like standard backpropagation, BPTT consists of a repeated application of
the chain rule. The subtlety is that, for recurrent networks, the loss function
depends on the activation of the hidden layer not only through its influence
on the output layer, but also through its influence on the hidden layer at the
next timestep. Therefore

δth = θ′(ath)

(
K∑

k=1

δtkwhk +

H∑

h′=1

δt+1
h′ whh′

)
(3.33)

where

δtj
def
=

∂L
∂atj

(3.34)

The complete sequence of δ terms can be calculated by starting at t = T
and recursively applying (3.33), decrementing t at each step. (Note that
δT+1
j = 0 ∀j, since no error is received from beyond the end of the sequence).
Finally, bearing in mind that the same weights are reused at every timestep,
we sum over the whole sequence to get the derivatives with respect to the
network weights: d

∂L
∂wij

=

T∑

t=1

∂L
∂atj

∂atj
∂wij

=

T∑

t=1

δtjb
t
i (3.35)

3.2.3 Unfolding

A useful way to visualise RNNs is to consider the update graph formed by
‘unfolding’ the network along the input sequence. Figure 3.4 shows part of an
unfolded RNN. Note that the unfolded graph (unlike Figure 3.3) contains no
cycles; otherwise the forward and backward pass would not be well defined.

Viewing RNNs as unfolded graphs makes it easier to generalise to networks
with more complex update dependencies. We will encounter such a network
in the next section, and again when we consider multidimensional networks
in Chapter 8 and hierarchical networks in Chapter 9.

3.2.4 Bidirectional Networks

For many sequence labelling tasks it is beneficial to have access to future
as well as past context. For example, when classifying a particular written
letter, it is helpful to know the letters coming after it as well as those
before. However, since standard RNNs process sequences in temporal
order, they ignore future context. An obvious solution is to add a time-
window of future context to the network input. However, as well as increasing
the number of input weights, this approach suffers from the same problems as

3.2 Recurrent Neural Networks 25

Fig. 3.4 An unfolded recurrent network. Each node represents a layer of
network units at a single timestep. The weighted connections from the input layer
to hidden layer are labelled ‘w1’, those from the hidden layer to itself (i.e. the
recurrent weights) are labelled ‘w2’ and the hidden to output weights are labelled
‘w3’. Note that the same weights are reused at every timestep. Bias weights are
omitted for clarity.

the time-window methods discussed in Sections 2.3.1 and 2.3.2: namely in-
tolerance of distortions, and a fixed range of context. Another possibility is
to introduce a delay between the inputs and the targets, thereby giving the
network a few timesteps of future context. This method retains the RNN’s
robustness to distortions, but it still requires the range of future context to
be determined by hand. Furthermore it places an unnecessary burden on the
network by forcing it to ‘remember’ the original input, and its previous con-
text, throughout the delay. In any case, neither of these approaches remove
the asymmetry between past and future information.

Bidirectional recurrent neural networks (BRNNs; Schuster and Paliwal,
1997; Schuster, 1999; Baldi et al., 1999) offer a more elegant solution. The
basic idea of BRNNs is to present each training sequence forwards and back-
wards to two separate recurrent hidden layers, both of which are connected
to the same output layer. This structure provides the output layer with
complete past and future context for every point in the input sequence, with-
out displacing the inputs from the relevant targets. BRNNs have previously
given improved results in various domains, notably protein secondary struc-
ture prediction (Baldi et al., 2001; Chen and Chaudhari, 2004) and speech
processing (Schuster, 1999; Fukada et al., 1999), and we find that they con-
sistently outperform unidirectional RNNs at sequence labelling.

An unfolded bidirectional network is shown in Figure 3.5.
The forward pass for the BRNN hidden layers is the same as for a uni-

directional RNN, except that the input sequence is presented in opposite
directions to the two hidden layers, and the output layer is not updated until
both hidden layers have processed the entire input sequence:

26 3 Neural Networks

for t = 1 to T do
Forward pass for the forward hidden layer, storing activations at each
timestep

for t = T to 1 do
Forward pass for the backward hidden layer, storing activations at each
timestep

for all t, in any order do
Forward pass for the output layer, using the stored activations from both
hidden layers

Algorithm 3.1 BRNN Forward Pass

Similarly, the backward pass proceeds as for a standard RNN trained with
BPTT, except that all the output layer δ terms are calculated first, then fed
back to the two hidden layers in opposite directions:

for all t, in any order do
Backward pass for the output layer, storing δ terms at each timestep

for t = T to 1 do
BPTT backward pass for the forward hidden layer, using the stored δ
terms from the output layer

for t = 1 to T do
BPTT backward pass for the backward hidden layer, using the stored δ
terms from the output layer

Algorithm 3.2 BRNN Backward Pass

Fig. 3.5 An unfolded bidirectional network. Six distinct sets of weights are
reused at every timestep, corresponding to the input-to-hidden, hidden-to-hidden
and hidden-to-output connections of the two hidden layers. Note that no informa-
tion flows between the forward and backward hidden layers; this ensures that the
unfolded graph is acyclic.

3.2 Recurrent Neural Networks 27

3.2.4.1 Causal Tasks

One objection to bidirectional networks is that they violate causality. Clearly,
for tasks such as financial prediction or robot navigation, an algorithm that
requires access to future inputs is unfeasible. However, there are many prob-
lems for which causality is unnecessary. Most obviously, if the input sequences
are spatial and not temporal there is no reason to distinguish between past
and future inputs. This is perhaps why protein structure prediction is the
domain where BRNNs have been most widely adopted (Baldi et al., 2001;
Thireou and Reczko, 2007). However BRNNs can also be applied to tempo-
ral tasks, as long as the network outputs are only needed at the end of some
input segment. For example, in speech and handwriting recognition, the data
is usually divided up into sentences, lines, or dialogue turns, each of which
is completely processed before the output labelling is required. Furthermore,
even for online temporal tasks, such as automatic dictation, bidirectional al-
gorithms can be used as long as it is acceptable to wait for some natural
break in the input, such as a pause in speech, before processing a section of
the data.

3.2.5 Sequential Jacobian

It should be clear from the preceding discussions that the ability to make use
of contextual information is vitally important for sequence labelling.

It therefore seems desirable to have a way of analysing exactly where and
how an algorithm uses context during a particular data sequence. For RNNs,
we can take a step towards this by measuring the sensitivity of the network
outputs to the network inputs.

For feedforward neural networks, the Jacobian J is the matrix of partial
derivatives of the network output vector y with respect to the input vector
x:

Jki =
∂yk
∂xi

(3.36)

These derivatives measure the relative sensitivity of the outputs to small
changes in the inputs, and can therefore be used, for example, to detect
irrelevant inputs. The Jacobian can be extended to recurrent neural net-
works by specifying the timesteps at which the input and output variables
are measured

J tt′
ki =

∂ytk
∂xt′

i

(3.37)

We refer to the resulting four-dimensional matrix as the sequential Jacobian.
Figure 3.6 provides a sample plot of a slice through the sequential Jacobian.

In general we are interested in observing the sensitivity of an output at one
timestep (for example, the point when the network outputs a label) to the
inputs at all timesteps in the sequence. Note that the absolute magnitude
of the derivatives is not important. What matters is the relative magnitudes

28 3 Neural Networks

Fig. 3.6 Sequential Jacobian for a bidirectional network during an online
handwriting recognition task. The derivatives of a single output unit at time
t = 300 are evaluated with respect to the two inputs (corresponding to the x and
y coordinates of the pen) at all times throughout the sequence. For bidirectional
networks, the magnitude of the derivatives typically forms an ‘envelope’ centred
on t. In this case the derivatives remains large for about 100 timesteps before and
after t. The magnitudes are greater for the input corresponding to the x coordinate
(blue line) because this has a smaller normalised variance than the y input (x tends
to increase steadily as the pen moves from left to right, whereas y fluctuates about
a fixed baseline); this does not imply that the network makes more use of the x
coordinates than the y coordinates.

of the derivatives to each other, since this determines the relative degree to
which the output is influenced by each input.

Slices like that shown in Figure 3.6 can be calculated with a simple modifi-
cation of the RNN backward pass described in Section 3.2.2. First, all output
delta terms are set to zero except some δtk, corresponding to the time t and
output k we are interested to. This term is set equal to its own activation
during the forward pass, i.e. δtk = ytk. The backward pass is then carried
out as usual, and the resulting delta terms at the input layer correspond to
the sensitivity of the output to the inputs over time. The intermediate delta
terms (such as those in the hidden layer) are also potentially interesting, since
they reveal the responsiveness of the output to different parts of the network
over time.

The sequential Jacobian will be used throughout the book as a means
of analysing the use of context by RNNs. However it should be stressed
that sensitivity does not correspond directly to contextual importance. For

3.3 Network Training 29

example, the sensitivity may be very large towards an input that never
changes, such as a corner pixel in a set of images with a fixed colour back-
ground, or the first timestep in a set of audio sequences that always begin in
silence, since the network does not ‘expect’ to see any change there. However,
this input will not provide any useful context information. Also, as shown in
Figure 3.6, the sensitivity will be larger for inputs with lower variance, since
the network is tuned to smaller changes. But this does not mean that these
inputs are more important than those with larger variance.

3.3 Network Training

So far we have discussed how neural networks can be differentiated with
respect to loss functions, and thereby trained with gradient descent. However,
to ensure that network training is both effective and tolerably fast, and that
it generalises well to unseen data, several issues must be addressed.

3.3.1 Gradient Descent Algorithms

Most obviously, we need to decide how to follow the error gradient. The
simplest method, known as steepest descent or just gradient descent, is to
repeatedly take a small, fixed-size step in the direction of the negative error
gradient of the loss function:

Δwn = −α
∂L
∂wn

(3.38)

where Δwn is the nth weight update, α ∈ [0, 1] is the learning rate and wn

is the weight vector before Δwn is applied. This process is repeated until
some stopping criteria (such as failure to reduce the loss for a given number
of steps) is met.

A major problem with steepest descent is that it easily gets stuck in local
minima. This can be mitigated by the addition of a momentum term (Plaut
et al., 1986), which effectively adds inertia to the motion of the algorithm
through weight space, thereby speeding up convergence and helping to escape
from local minima:

Δwn = mΔwn−1 − α
∂L
∂wn

(3.39)

where m ∈ [0, 1] is the momentum parameter.
When the above gradients are calculated with respect to a loss function

defined over the entire training set, the weight update procedure is referred to
as batch learning. This is in contrast to online or sequential learning, where
weight updates are performed using the gradient with respect to individual

30 3 Neural Networks

training examples. Pseudocode for online learning with gradient descent is
provided in Algorithm 3.3.

while stopping criteria not met do
Randomise training set order
for each example in the training set do

Run forward and backward pass to calculate the gradient
Update weights with gradient descent algorithm

Algorithm 3.3 Online Learning with Gradient Descent

A large number of sophisticated gradient descent algorithms have been de-
veloped, such as RPROP (Riedmiller and Braun, 1993), quickprop (Fahlman,
1989), conjugate gradients (Hestenes and Stiefel, 1952; Shewchuk, 1994) and
L-BFGS (Byrd et al., 1995), that generally outperform steepest descent at
batch learning. However steepest descent is much better suited than they are
to online learning, because it takes very small steps at each weight update
and can therefore tolerate constantly changing gradients.

Online learning tends to be more efficient than batch learning when large
datasets containing significant redundancy or regularity are used (LeCun
et al., 1998c). In addition, the stochasticity of online learning can help to
escape from local minima (LeCun et al., 1998c), since the loss function is
different for each training example. The stochasticity can be further increased
by randomising the order of the sequences in the training set before each pass
through the training set (often referred to as a training epoch). Training set
randomisation is used for all the experiments in this book.

A recently proposed alternative for online learning is stochastic meta-
descent (Schraudolph, 2002), which has been shown to give faster conver-
gence and improved results for a variety of neural network tasks. However
our attempts to train RNNs with stochastic meta-descent were unsuccess-
ful, and all experiments in this book were carried out using online steepest
descent with momentum.

3.3.2 Generalisation

Although the loss functions for network training are, of necessity, defined on
the training set, the real goal is to optimise performance on a test set of pre-
viously unseen data. The issue of whether training set performance carries
over to the test set is referred to as generalisation, and is of fundamental
importance to machine learning (see e.g. Vapnik, 1995; Bishop, 2006). In
general the larger the training set the better the generalisation. Many meth-
ods for improved generalisation with a fixed size training set (often referred
to as regularisers) have been proposed over the years. In this book, how-
ever, only three simple regularisers are used: early stopping, input noise and
weight noise.

3.3 Network Training 31

Fig. 3.7 Overfitting on training data. Initially, network error decreases rapidly
on all datasets. Soon however it begins to level off and gradually rise on the
validation and test sets. The dashed line indicates the point of best performance
on the validation set, which is close, but not identical to the optimal point for the
test set.

3.3.2.1 Early Stopping

For early stopping, part of the training set is removed for use as a validation
set. All stopping criteria are then tested on the validation set instead of the
training set. The ‘best’ weight values are also chosen using the validation
set, typically by picking the weights that minimise on the validation set the
error function used to assess performance on the test set. In practice the two
are usually done in tandem, with the error evaluated at regular intervals on
the validation set, and training stopped after the error fails to decrease for a
certain number of evaluations.

The test set should not be used to decide when to stop training or to
choose the best weight values; these are indirect forms of training on the test
set. In principle, the network should not be evaluated on the test set at all
until training is complete.

During training, the error typically decreases at first on all sets, but after a
certain point it begins to rise on the test and validation sets, while continuing
to decrease on the training set. This behaviour, known as overfitting, is
illustrated in Figure 3.7.

Early stopping is perhaps the simplest and most universally applicable
method for improved generalisation. However one drawback is that some of
the training set has to be sacrificed for the validation set, which can lead to
reduced performance, especially if the training set is small. Another problem
is that there is no way of determining a priori how big the validation set
should be. For the experiments in this book, we typically use five to ten
percent of the training set for validation. Note that the validation set does not
have to be an accurate predictor of test set performance; it is only important
that overfitting begins at approximately the same time on both of them.

32 3 Neural Networks

3.3.2.2 Input Noise

Adding zero-mean, fixed-variance Gaussian noise to the network inputs dur-
ing training (sometimes referred to as training with jitter) is a well-established
method for improved generalisation (An, 1996; Koistinen and Holmström,
1991; Bishop, 1995). The desired effect is to artificially enhance the size
of the training set, and thereby improve generalisation, by generating new
inputs with the same targets as the original ones.

One problem with input noise is that it is difficult to determine in advance
how large the noise variance should be. Although various rules of thumb exist,
the most reliable method is to set the variance empirically on the validation
set.

A more fundamental difficulty is that input perturbations are only effec-
tive if they reflect the variations found in the real data. For example, adding
Gaussian noise to individual pixel values in an image will not generate a
substantially different image (only a ‘speckled’ version of the original) and
is therefore unlikely to aid generalisation to new images. Independently per-
turbing the points in a smooth trajectory is ineffectual for the same reason.
Input perturbations tailored towards a particular dataset have been shown
to be highly effective at improving generalisation (Simard et al., 2003); how-
ever this requires a prior model of the data variations, which is not usually
available.

Figure 3.8 illustrates the distinction between Gaussian input noise and
data-specific input perturbations.

Input noise should be regenerated for every example presented to the net-
work during training; in particular, the same noise should not be re-used for
a given example as the network cycles through the data. Input noise should
not be added during testing, as doing so will hamper performance.

3.3.2.3 Weight Noise

An alternative regularisation strategy is to add zero-mean, fixed variance
Gaussian noise to the network weights (Murray and Edwards, 1994; Jim
et al., 1996). Because weight noise or synaptic noise acts on the network’s
internal representation of the inputs, rather than the inputs themselves, it
can be used for any data type. However weight noise is typically less effec-
tive than carefully designed input perturbations, and can lead to very slow
convergence.

Weight noise can be used to ‘simplify’ neural networks, in the sense of
reducing the amount of information required to transmit the network (Hinton
and van Camp, 1993). Intuitively this is because noise reduces the precision
with which the weights must be described. Simpler networks are preferable
because they tend to generalise better—a manifestation of Occam’s razor.

3.3 Network Training 33

Fig. 3.8 Different Kinds of Input Perturbation. A handwritten digit from
the MNIST database (top) is shown perturbed with Gaussian noise (centre) and
elastic deformations (bottom). Since Gaussian noise does not alter the outline of
the digit and the noisy images all look qualitatively the same, this approach is
unlikely to improve generalisation on MNIST. The elastic distortions, on the other
hand, appear to create different handwriting samples out of the same image, and
can therefore be used to artificially extend the training set.

Algorithm 3.4 shows how weight noise should be applied during online
learning with gradient descent.

while stopping criteria not met do
Randomise training set order
for each example in the training set do

Add zero mean Gaussian noise to weights
Run forward and backward pass to calculate the gradient
Restore original weights
Update weights with gradient descent algorithm

Algorithm 3.4 Online Learning with Gradient Descent and Weight Noise

As with input noise, weight noise should not be added when the network
is evaluated on test data.

34 3 Neural Networks

3.3.3 Input Representation

Choosing a suitable representation of the input data is a vital part of any
machine learning task. Indeed, in some cases it is more important to the
final performance than the algorithm itself. Neural networks, however, tend
to be relatively robust to the choice of input representation: for example, in
previous work on phoneme recognition, RNNs were shown to perform almost
equally well using a wide range of speech preprocessing methods (Robinson
et al., 1990). We report similar findings in Chapters 7 and 9, with very
different input representations found to give roughly equal performance for
both speech and handwriting recognition.

The only requirements for neural network input representations are that
they are complete (in the sense of containing all information required to suc-
cessfully predict the outputs) and reasonably compact. Although irrelevant
inputs are not as much of a problem for neural networks as they are for algo-
rithms suffering from the so-called curse of dimensionality (see e.g. Bishop,
2006), having a very high dimensional input space leads to an excessive num-
ber of input weights and poor generalisation. Beyond that the choice of
input representation is something of a black art, whose aim is to make the
relationship between the inputs and the targets as simple as possible.

One procedure that should be carried out for all neural network input data
is to standardise the components of the input vectors to have mean 0 and
standard deviation 1 over the training set. That is, first calculate the mean

mi =
1

|S|
∑

x∈S

xi (3.40)

and standard deviation

σi =

√
1

|S|
∑

x∈S

(xi −mi)2 (3.41)

of each component of the input vector, then calculate the standardised input
vectors x̂ using

x̂i =
xi −mi

σi
(3.42)

This procedure does not alter the information in the training set, but it
improves performance by putting the input values in a range more suitable
for the standard activation functions (LeCun et al., 1998c). Note that the
test and validation sets should be standardised with the mean and standard
deviation of the training set.

Input standardisation can have a huge effect on network performance, and
was carried out for all the experiments in this book.

3.3 Network Training 35

3.3.4 Weight Initialisation

Many gradient descent algorithms for neural networks require small, random,
initial values for the weights. For the experiments in this book, we initialised
the weights with either a flat random distribution in the range [−0.1, 0.1]
or a Gaussian distribution with mean 0, standard deviation 0.1. However,
we did not find our results to be very sensitive to either the distribution or
the range. A consequence of having random initial conditions is that each
experiment must be repeated several times to determine significance.

Chapter 4

Long Short-Term Memory

As discussed in the previous chapter, an important benefit of recurrent neu-
ral networks is their ability to use contextual information when mapping
between input and output sequences. Unfortunately, for standard RNN ar-
chitectures, the range of context that can be in practice accessed is quite
limited. The problem is that the influence of a given input on the hidden
layer, and therefore on the network output, either decays or blows up ex-
ponentially as it cycles around the network’s recurrent connections. This
effect is often referred to in the literature as the vanishing gradient prob-
lem (Hochreiter, 1991; Hochreiter et al., 2001a; Bengio et al., 1994). The
vanishing gradient problem is illustrated schematically in Figure 4.1

Numerous attempts were made in the 1990s to address the problem of
vanishing gradients for RNNs. These included non-gradient based training
algorithms, such as simulated annealing and discrete error propagation (Ben-
gio et al., 1994), explicitly introduced time delays (Lang et al., 1990; Lin
et al., 1996; Plate, 1993) or time constants (Mozer, 1992), and hierarchical
sequence compression (Schmidhuber, 1992). The approach favoured by this
book is the Long Short-Term Memory (LSTM) architecture (Hochreiter and
Schmidhuber, 1997).

This chapter reviews the background material for LSTM. Section 4.1 de-
scribes the basic structure of LSTM and explains how it tackles the vanishing
gradient problem. Section 4.3 discusses an approximate and an exact algo-
rithm for calculating the LSTM error gradient. Section 4.4 describes some
enhancements to the basic LSTM architecture. Section 4.2 discusses the ef-
fect of preprocessing on long range dependencies. Section 4.6 provides all the
equations required to train and apply LSTM networks.

4.1 Network Architecture

The LSTM architecture consists of a set of recurrently connected subnets,
known as memory blocks. These blocks can be thought of as a differentiable
version of the memory chips in a digital computer. Each block contains one or
more self-connected memory cells and three multiplicative units—the input,

A. Graves: Supervised Sequence Labell. with Recur. Neur. Networks, SCI 385, pp. 37–45.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

38 4 Long Short-Term Memory

Fig. 4.1 The vanishing gradient problem for RNNs. The shading of the
nodes in the unfolded network indicates their sensitivity to the inputs at time one
(the darker the shade, the greater the sensitivity). The sensitivity decays over
time as new inputs overwrite the activations of the hidden layer, and the network
‘forgets’ the first inputs.

output and forget gates—that provide continuous analogues of write, read
and reset operations for the cells.

Figure 4.2 provides an illustration of an LSTM memory block with a sin-
gle cell. An LSTM network is the same as a standard RNN, except that the
summation units in the hidden layer are replaced by memory blocks, as illus-
trated in Fig. 4.3. LSTM blocks can also be mixed with ordinary summation
units, although this is typically not necessary. The same output layers can
be used for LSTM networks as for standard RNNs.

The multiplicative gates allow LSTM memory cells to store and access
information over long periods of time, thereby mitigating the vanishing gra-
dient problem. For example, as long as the input gate remains closed (i.e.
has an activation near 0), the activation of the cell will not be overwrit-
ten by the new inputs arriving in the network, and can therefore be made
available to the net much later in the sequence, by opening the output gate.
The preservation over time of gradient information by LSTM is illustrated in
Figure 4.4.

Over the past decade, LSTM has proved successful at a range of synthetic
tasks requiring long range memory, including learning context free languages
(Gers and Schmidhuber, 2001), recalling high precision real numbers over
extended noisy sequences (Hochreiter and Schmidhuber, 1997) and various
tasks requiring precise timing and counting (Gers et al., 2002). In particular,
it has solved several artificial problems that remain impossible with any other
RNN architecture.

Additionally, LSTM has been applied to various real-world problems, such
as protein secondary structure prediction (Hochreiter et al., 2007; Chen and
Chaudhari, 2005), music generation (Eck and Schmidhuber, 2002),

4.1 Network Architecture 39

Fig. 4.2 LSTM memory block with one cell. The three gates are nonlinear
summation units that collect activations from inside and outside the block, and
control the activation of the cell via multiplications (small black circles). The input
and output gates multiply the input and output of the cell while the forget gate
multiplies the cell’s previous state. No activation function is applied within the
cell. The gate activation function ‘f’ is usually the logistic sigmoid, so that the gate
activations are between 0 (gate closed) and 1 (gate open). The cell input and output
activation functions (‘g’ and ‘h’) are usually tanh or logistic sigmoid, though in some
cases ‘h’ is the identity function. The weighted ‘peephole’ connections from the cell
to the gates are shown with dashed lines. All other connections within the block
are unweighted (or equivalently, have a fixed weight of 1.0). The only outputs from
the block to the rest of the network emanate from the output gate multiplication.

40 4 Long Short-Term Memory

Fig. 4.3 An LSTM network. The network consists of four input units, a hid-
den layer of two single-cell LSTM memory blocks and five output units. Not all
connections are shown. Note that each block has four inputs but only one output.

4.2 Influence of Preprocessing 41

Fig. 4.4 Preservation of gradient information by LSTM. As in Figure 4.1 the
shading of the nodes indicates their sensitivity to the inputs at time one; in this case
the black nodes are maximally sensitive and the white nodes are entirely insensitive.
The state of the input, forget, and output gates are displayed below, to the left and
above the hidden layer respectively. For simplicity, all gates are either entirely open
(‘O’) or closed (‘—’). The memory cell ‘remembers’ the first input as long as the
forget gate is open and the input gate is closed. The sensitivity of the output layer
can be switched on and off by the output gate without affecting the cell.

reinforcement learning (Bakker, 2002), speech recognition
(Graves and Schmidhuber, 2005b; Graves et al., 2006) and handwriting recog-
nition (Liwicki et al., 2007; Graves et al., 2008). As would be expected, its
advantages are most pronounced for problems requiring the use of long range
contextual information.

4.2 Influence of Preprocessing

The above discussion raises an important point about the influence of pre-
processing. If we can find a way to transform a task containing long range
contextual dependencies into one containing only short-range dependencies
before presenting it to a sequence learning algorithm, then architectures such
as LSTM become somewhat redundant. For example, a raw speech signal
typically has a sampling rate of over 40 kHz. Clearly, a great many timesteps
would have to be spanned by a sequence learning algorithm attempting to
label or model an utterance presented in this form. However when the signal
is first transformed into a 100 Hz series of mel-frequency cepstral coefficients,
it becomes feasible to model the data using an algorithm whose contextual
range is relatively short, such as a hidden Markov model.

Nonetheless, if such a transform is difficult or unknown, or if we simply
wish to get a good result without having to design task-specific preprocessing
methods, algorithms capable of handling long time dependencies are essential.

42 4 Long Short-Term Memory

4.3 Gradient Calculation

Like the networks discussed in the last chapter, LSTM is a differentiable func-
tion approximator that is typically trained with gradient descent. Recently,
non gradient-based training methods of LSTM have also been considered
(Wierstra et al., 2005; Schmidhuber et al., 2007), but they are outside the
scope of this book.

The original LSTM training algorithm (Hochreiter and Schmidhuber, 1997)
used an approximate error gradient calculated with a combination of Real
Time Recurrent Learning (RTRL; Robinson and Fallside, 1987) and Back-
propagation Through Time (BPTT; Williams and Zipser, 1995). The BPTT
part was truncated after one timestep, because it was felt that long time
dependencies would be dealt with by the memory blocks, and not by the
(vanishing) flow of activation around the recurrent connections. Truncating
the gradient has the benefit of making the algorithm completely online, in
the sense that weight updates can be made after every timestep. This is
an important property for tasks such as continuous control or time-series
prediction.

However, it is also possible to calculate the exact LSTM gradient with
untruncated BPTT (Graves and Schmidhuber, 2005b). As well as being more
accurate than the truncated gradient, the exact gradient has the advantage of
being easier to debug, since it can be checked numerically using the technique
described in Section 3.1.4.1. Only the exact gradient is used in this book,
and the equations for it are provided in Section 4.6.

4.4 Architectural Variants

In its original form, LSTM contained only input and output gates. The
forget gates (Gers et al., 2000), along with additional peephole weights (Gers
et al., 2002) connecting the gates to the memory cell were added later to give
extended LSTM (Gers, 2001). The purpose of the forget gates was to provide
a way for the memory cells to reset themselves, which proved important for
tasks that required the network to ‘forget’ previous inputs. The peephole
connections, meanwhile, improved the LSTM’s ability to learn tasks that
require precise timing and counting of the internal states.

Since LSTM is entirely composed of simple multiplication and summation
units, and connections between them, it is straightforward to create further
variants of the block architecture. Indeed it has been shown that alternative
structures with equally good performance on toy problems such as learning
context-free and context-sensitive languages can be evolved automatically
(Bayer et al., 2009). However the standard extended form appears to be a
good general purpose structure for sequence labelling, and is used exclusively
in this book.

4.5 Bidirectional Long Short-Term Memory 43

4.5 Bidirectional Long Short-Term Memory

Using LSTM as the network architecture in a bidirectional recurrent neural
network (Section 3.2.4) yields bidirectional LSTM (Graves and Schmidhuber,
2005a,b; Chen and Chaudhari, 2005; Thireou and Reczko, 2007). Bidirec-
tional LSTM provides access to long range context in both input directions,
and will be used extensively in later chapters.

4.6 Network Equations

This section provides the equations for the activation (forward pass) and
BPTT gradient calculation (backward pass) of an LSTM hidden layer within
a recurrent neural network.

As before, wij is the weight of the connection from unit i to unit j, the
network input to unit j at time t is denoted atj and activation of unit j at
time t is btj . The LSTM equations are given for a single memory block only.
For multiple blocks the calculations are simply repeated for each block, in
any order. The subscripts ι, φ and ω refer respectively to the input gate,
forget gate and output gate of the block. The subscripts c refers to one of
the C memory cells. The peephole weights from cell c to the input, forget
and output gates are denoted wcι, wcφ and wcω respectively. stc is the state of
cell c at time t (i.e. the activation of the linear cell unit). f is the activation
function of the gates, and g and h are respectively the cell input and output
activation functions.

Let I be the number of inputs, K be the number of outputs and H be
the number of cells in the hidden layer. Note that only the cell outputs btc
are connected to the other blocks in the layer. The other LSTM activations,
such as the states, the cell inputs, or the gate activations, are only visible
within the block. We use the index h to refer to cell outputs from other
blocks in the hidden layer, exactly as for standard hidden units. As with
standard RNNs the forward pass is calculated for a length T input sequence
x by starting at t = 1 and recursively applying the update equations while
incrementing t, and the BPTT backward pass is calculated by starting at
t = T , and recursively calculating the unit derivatives while decrementing t
to one (see Section 3.2 for details). The final weight derivatives are found by
summing over the derivatives at each timestep, as expressed in Eqn. (3.35).
Recall that

δtj
def
=

∂L
∂atj

(4.1)

where L is the loss function used for training.
The order in which the equations are calculated during the forward and

backward passes is important, and should proceed as specified below. As with
standard RNNs, all states and activations are initialised to zero at t = 0, and
all δ terms are zero at t = T + 1.

44 4 Long Short-Term Memory

4.6.1 Forward Pass

Input Gates

atι =

I∑

i=1

wiιx
t
i +

H∑

h=1

whιb
t−1
h +

C∑

c=1

wcιs
t−1
c (4.2)

btι = f(atι) (4.3)

Forget Gates

atφ =

I∑

i=1

wiφx
t
i +

H∑

h=1

whφb
t−1
h +

C∑

c=1

wcφs
t−1
c (4.4)

btφ = f(atφ) (4.5)

Cells

atc =

I∑

i=1

wicx
t
i +

H∑

h=1

whcb
t−1
h (4.6)

stc = btφs
t−1
c + btιg(a

t
c) (4.7)

Output Gates

atω =

I∑

i=1

wiωx
t
i +

H∑

h=1

whωb
t−1
h +

C∑

c=1

wcωs
t
c (4.8)

btω = f(atω) (4.9)

Cell Outputs

btc = btωh(s
t
c) (4.10)

4.6.2 Backward Pass

εtc
def
=

∂L
∂btc

εts
def
=

∂L
∂stc

Cell Outputs

εtc =

K∑

k=1

wckδ
t
k +

H∑

h=1

wchδ
t+1
h (4.11)

Output Gates

δtω = f ′(atω)
C∑

c=1

h(stc)ε
t
c (4.12)

4.6 Network Equations 45

States

εts = btωh
′(stc)ε

t
c + bt+1

φ εt+1
s + wcιδ

t+1
ι + wcφδ

t+1
φ + wcωδ

t
ω (4.13)

Cells

δtc = btιg
′(atc)ε

t
s (4.14)

Forget Gates

δtφ = f ′(atφ)
C∑

c=1

st−1
c εts (4.15)

Input Gates

δtι = f ′(atι)
C∑

c=1

g(atc)ε
t
s (4.16)

Chapter 5

A Comparison of Network

Architectures

This chapter presents an experimental comparison between various neural
network architectures on a framewise phoneme classification task (Graves
and Schmidhuber, 2005a,b). Framewise phoneme classification is an example
of a segment classification task (see Section 2.3.2). It tests an algorithm’s
ability to segment and recognise the constituent parts of a speech signal,
requires the use of contextual information, and can be regarded as a first
step to continuous speech recognition.

Context is of particular importance in speech recognition due to phenom-
ena such as co-articulation, where the human articulatory system blurs to-
gether adjacent sounds in order to produce them rapidly and smoothly. In
many cases it is difficult to identify a particular phoneme without knowing
the phonemes that occur before and after it. The main conclusion of this
chapter is that network architectures capable of accessing more context give
better performance in phoneme classification, and are therefore more suitable
for speech recognition.

Section 5.1 describes the experimental data and task. Section 5.2 gives an
overview of the various neural network architectures and Section 5.3 describes
how they are trained, while Section 5.4 presents the experimental results.

5.1 Experimental Setup

The data for the experiments came from the TIMIT corpus (Garofolo et al.,
1993) of prompted speech, collected by Texas Instruments. The utterances
in TIMIT were chosen to be phonetically rich, and the speakers represent a
wide variety of American dialects. The audio data is divided into sentences,
each of which is accompanied by a phonetic transcript.

The task was to classify every input timestep, or frame in audio parlance,
according to the phoneme it belonged to. For consistency with the literature,
we used the complete set of 61 phonemes provided in the transcriptions. In
continuous speech recognition, it is common practice to use a reduced set of

A. Graves: Supervised Sequence Labell. with Recur. Neur. Networks, SCI 385, pp. 47–56.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

48 5 A Comparison of Network Architectures

phonemes (Robinson, 1991), by merging those with similar sounds, and not
separating closures from stops.

The standard TIMIT corpus comes partitioned into training and test
sets, containing 3,696 and 1,344 utterances respectively. In total there were
1,124,823 frames in the training set, and 410,920 in the test set. No speak-
ers or sentences exist in both the training and test sets. 184 of the training
set utterances (chosen randomly, but kept constant for all experiments) were
used as a validation set for early stopping. All results for the training and
test sets were recorded at the point of lowest error on the validation set.

The following preprocessing, which is standard in speech recognition was
used for the audio data. The input data was characterised as a sequence of
vectors of 26 coefficients, consisting of twelve Mel-frequency cepstral coeffi-
cients (MFCC) plus energy and first derivatives of these magnitudes. First
the coefficients were computed every 10ms over 25ms windows. Then a Ham-
ming window was applied, a Mel-frequency filter bank of 26 channels was
computed and, finally, the MFCC coefficients were calculated with a 0.97
pre-emphasis coefficient. The preprocessing was carried out using the Hid-
den Markov Model Toolkit (Young et al., 2006).

5.2 Network Architectures

We used the following five neural network architectures in our experiments
(henceforth referred to by the abbreviations in brackets):

• Bidirectional LSTM, with two hidden LSTM layers (forwards and back-
wards), both containing 93 memory blocks of one cell each (BLSTM)

• Unidirectional LSTM, with one hidden LSTM layer, containing 140
one-cell memory blocks, trained backwards with no target delay, and
forwards with delays from 0 to 10 frames (LSTM)

• Bidirectional RNN with two hidden layers containing 185 sigmoid units
each (BRNN)

• Unidirectional RNN with one hidden layer containing 275 sigmoid units,
trained with target delays from 0 to 10 frames (RNN)

• MLP with one hidden layer containing 250 sigmoid units, and symmet-
rical time-windows from 0 to 10 frames (MLP)

The hidden layer sizes were chosen to ensure that all networks had roughly the
same number of weightsW (≈ 100, 000), thereby providing a fair comparison.
Note however that for the MLPs the number of weights grew with the time-
window size, and W ranged from 22,061 to 152,061. All networks contained
an input layer of size 26 (one for each MFCC coefficient), and an output layer
of size 61 (one for each phoneme). The input layers were fully connected to
the hidden layers and the hidden layers were fully connected to the output
layers. For the recurrent networks, the hidden layers were also fully connected

5.2 Network Architectures 49

to themselves. The LSTM blocks had the following activation functions:
logistic sigmoids in the range [−2, 2] for the input and output activation
functions of the cell (g and h in Figure 4.2), and in the range [0, 1] for the
gates. The non-LSTM networks had logistic sigmoid activations in the range
[0, 1] in the hidden layers. All units were biased.

Figure 5.1 illustrates the behaviour of the different architectures during
classification.

5.2.1 Computational Complexity

For all networks, the computational complexity was dominated by the O(W)
feedforward and feedback operations. This means that the bidirectional net-
works and the LSTM networks did not take significantly more time per
training epoch than the unidirectional or RNN or (equivalently sized) MLP
networks.

5.2.2 Range of Context

Only the bidirectional networks had access to the complete context of the
frame being classified (i.e. the whole input sequence). For MLPs, the amount
of context depended on the size of the time-window. The results for the MLP
with no time-window (presented only with the current frame) give a baseline
for performance without context information. However, some context is im-
plicitly present in the window averaging and first-derivatives included in the
preprocessor.

Similarly, for unidirectional LSTM and RNN, the amount of future context
depended on the size of target delay. The results with no target delay (trained
forwards or backwards) give a baseline for performance with context in one
direction only.

5.2.3 Output Layers

For the output layers, we used the cross entropy error function and the soft-
max activation function, as discussed in Sections 3.1.2 and 3.1.3. The softmax
function ensures that the network outputs are all between zero and one, and
that they sum to one on every timestep. This means they can be interpreted
as the posterior probabilities of the phonemes at a given frame, given all the
inputs up to the current one (with unidirectional networks) or all the inputs
in the whole sequence (with bidirectional networks).

Several alternative error functions have been studied for this task (Chen
and Jamieson, 1996). One modification in particular has been shown to have
a positive effect on continuous speech recognition. This is to weight the
error according to the duration of the current phoneme, ensuring that short

50 5 A Comparison of Network Architectures

MLP 10 Frame Time-Window

windowaat

silowddclnixwahdxaeq

Targets

BLSTM

BLSTM Duration Weighted Error

BRNN

Fig. 5.1 Various networks classifying the excerpt “at a window” from
TIMIT. In general, the networks found the vowels more difficult than the con-
sonants, which in English are more distinct. Adding duration weighted error to
BLSTM tends to give better results on short phonemes, (e.g. the closure and stop
‘dcl’ and ‘d’), and worse results on longer ones (‘ow’), as expected. Note the more
jagged trajectories for the MLP; this is a consequence of not having a recurrent
hidden layer, and therefore calculating each output independently of the others.

5.3 Network Training 51

phonemes are as significant to training as longer ones. We will return to the
issue of weighted errors in the next chapter.

5.3 Network Training

For all architectures, we calculated the full error gradient using BPTT for
each utterance, and trained the weights using online steepest descent with
momentum. The same training parameters were used for all experiments:
initial weights chosen from a flat random distribution with range [−0.1, 0.1],
a learning rate of 10−5 and a momentum of 0.9. Weight updates were car-
ried out at the end of each sequence and the order of the training set was
randomised at the start of each training epoch.

Keeping the training algorithm and parameters constant allowed us to
concentrate on the effect of varying the architecture. However it is possible
that different training methods would be better suited to different networks.

Note that, other than early stopping, no techniques for improved generali-
sation were used. It is likely the addition of either input noise (Section 3.3.2.2)
or weight noise (Section 3.3.2.3) would have lead to better performance.

5.3.1 Retraining

For the experiments with varied time-windows or target delays, we iteratively
retrained the networks, instead of starting again from scratch. For example,
for LSTM with a target delay of 2, we first trained with delay 0, then took
the best network and retrained it (without resetting the weights) with delay
1, then retrained again with delay 2. To find the best networks, we retrained
the LSTM networks for 5 epochs at each iteration, the RNN networks for
10, and the MLPs for 20. It is possible that longer retraining times would
have given improved results. For the retrained MLPs, we had to add extra
(randomised) weights from the input layers, since the input size grew with
the time-window.

Although primarily a means to reduce training time, we have also found
that retraining improves final performance (Graves et al., 2005a; Beringer,
2004). Indeed, the best result in this chapter was achieved by retraining (on
the BLSTM network trained with a weighted error function, then retrained
with normal cross-entropy error). The benefits presumably come from es-
caping the local minima that gradient descent algorithms tend to get caught
in.

The ability of neural networks to benefit from this kind of retraining
touches on the more general issue of transferring knowledge between different
tasks (usually known as transfer learning or meta-learning) which has been
widely studied in the neural network and general machine learning literature
(see e.g. Giraud-Carrier et al., 2004).

52 5 A Comparison of Network Architectures

Table 5.1 Framewise phoneme classification results on TIMIT. The error
measure is the frame error rate (percentage of misclassified frames). BLSTM results
are means over seven runs ± standard error.

Network Train Error (%) Test Error (%) Epochs

MLP (no window) 46.4 48.6 835
MLP (10 frame window) 32.4 36.9 990
RNN (delay 0) 30.1 35.5 120
LSTM (delay 0) 29.1 35.4 15
LSTM (backwards, delay 0) 29.9 35.3 15
RNN (delay 3) 29.0 34.8 140
LSTM (delay 5) 22.4 34.0 35
BLSTM (Weighted Error) 24.3 31.1 15
BRNN 24.0 31.0 170
BLSTM 22.6±0.2 30.2±0.1 20.1±0.5
BLSTM (retrained) 21.4 29.8 17

5.4 Results

Table 5.1 summarises the performance of the different network architectures.
For the MLP, RNN and LSTM networks we give both the best results, and
those achieved with least contextual information (i.e. with no target delay
or time-window). The complete set of results is presented in Figure 5.2.

The most obvious difference between LSTM and the RNN and MLP net-
works was the number of epochs required for training, as shown in Figure 5.3.
In particular, BRNN took more than eight times as long to converge as
BLSTM, despite having more or less equal computational complexity per
timestep (see Section 5.2.1). There was a similar time increase between the
unidirectional LSTM and RNN networks, and the MLPs were slower still
(990 epochs for the best MLP result). A possible explanation for this is that
the MLPs and RNNs require more fine-tuning of their weights to access long
range contextual information.

As well as being faster, the LSTM networks were also slightly more ac-
curate. However, the final difference in score between BLSTM and BRNN
on this task is quite small (0.8%). The fact that the difference is not larger
could mean that very long time dependencies are not required for this task.

It is interesting to note how much more prone to overfitting LSTM was
than standard RNNs. For LSTM, after only fifteen to twenty epochs the
performance on the validation and test sets would begin to fall, while that on
the training set would continue to rise (the highest score we recorded on the
training set with BLSTM was 86.4%). With the RNNs on the other hand,
we never observed a large drop in test set score. This suggests a difference

5.4 Results 53

 50

 52

 54

 56

 58

 60

 62

 64

 66

 68

 70

 72

 0 2 4 6 8 10

%
 F

ra
m

es
 C

or
re

ct
ly

 C
la

ss
ifi

ed

Target Delay / Window Size

Framewise Phoneme Classification Scores

BLSTM Retrained
BLSTM
BRNN

BLSTM Weighted Error
LSTM
RNN
MLP

Fig. 5.2 Framewise phoneme classification results on TIMIT. The num-
ber of frames of added context (time-window size for MLPs, target delay size for
unidirectional LSTM and RNNs) is plotted along the x axis. The results for the
bidirectional networks (which don’t require any extra context) are plotted at x=0.

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0 50 100 150 200 250 300 350 400

%
 F

ra
m

es
 C

or
re

ct
ly

 C
la

ss
ifi

ed

Training Epochs

Learning Curves for Three Architectures

BLSTM training set
BLSTM test set

BRNN training set
BRNN test set

MLP training set
MLP test set

Fig. 5.3 Learning curves on TIMIT for BLSTM, BRNN and MLP with
no time-window. For all experiments, LSTM was much faster to converge than
either the RNN or MLP architectures.

54 5 A Comparison of Network Architectures

Table 5.2 Comparison of BLSTM with previous network. The error mea-
sure is the frame error rate (percentage of misclassified frames).

Network Train Error (%) Test Error (%)

BRNN (Schuster, 1999) 17.9 34.9
RNN (Robinson, 1994) 29.4 34.7
BLSTM (retrained) 21.4 29.8
RNN (Chen and Jamieson, 1996) 30.1 25.8

in the way the two architectures learn. Given that in the TIMIT corpus no
speakers or sentences are shared by the training and test sets, it is possible
that LSTM’s overfitting was partly caused by its better adaptation to long
range regularities (such as phoneme ordering within words, or speaker specific
pronunciations) than normal RNNs. If this is true, we would expect a greater
distinction between the two architectures on tasks with more training data.

5.4.1 Previous Work

Table 5.2 shows how BLSTM compares with the best neural network results
previously recorded for this task. Note that Robinson did not quote framewise
classification scores; the result for his network was recorded by Schuster, using
the original software.

Overall BLSTM outperformed all networks found in the literature, apart
from the one described by Chen and Jamieson. However this result is ques-
tionable as a substantially lower error rate is recorded on the test set than on
the training set. Moreover we were unable to reproduce their scores in our
own experiments.

In general it is difficult to compare with previous neural network results
on this task, owing to variations in network training (different preprocess-
ing, gradient descent algorithms, error functions etc.) and in the task itself
(different training and test sets, different numbers of phoneme labels etc.).

5.4.2 Effect of Increased Context

As is clear from Figure 5.2 networks with access to more contextual infor-
mation tended to get better results. In particular, the bidirectional networks
were substantially better than the unidirectional ones. For the unidirectional
networks, LSTM benefited more from longer target delays than RNNs; this
could be due to LSTM’s greater facility with long time-lags, allowing it to
make use of the extra context without suffering as much from having to store
previous inputs throughout the delay.

5.4 Results 55

Reverse Net Only

Forward Net Only

sil sil f ay vsil w ah n ow

Bidirectional Output

Target

one oh five

sil

Fig. 5.4 BLSTM network classifying the utterance “one oh five”. The
bidirectional output combines the predictions of the forward and backward hidden
layers; it closely matches the target, indicating accurate classification. To see how
the layers work together, their contributions to the output are plotted separately.
In this case the forward layer seems to be more accurate. However there are places
where its substitutions (‘w’), insertions (at the start of ‘ow’) and deletions (‘f’)
appear to be corrected by the backward layer. The outputs for the phoneme ‘ay’
suggests that the layers can work together, with the backward layer finding the
start of the segment and the forward layer finding the end.

56 5 A Comparison of Network Architectures

Interestingly, LSTM with no time delay returns almost identical results
whether trained forwards or backwards. This suggests that the context in
both directions is equally important. Figure 5.4 shows how the forward and
backward layers work together during classification.

For the MLPs, performance increased with time-window size, and it ap-
pears that even larger windows would have been desirable. However, with
fully connected networks, the number of weights required for such large input
layers makes training prohibitively slow.

5.4.3 Weighted Error

The experiment with a weighted error function gave slightly inferior frame-
wise performance for BLSTM (68.9%, compared to 69.7%). However, the
purpose of error weighting is to improve overall phoneme recognition, rather
than framewise classification. As a measure of its success, if we assume a per-
fect knowledge of the test set segmentation (which in real-life situations we
cannot), and integrate the network outputs over each phoneme, then BLSTM
with weighted errors gives a phoneme error rate of 25.6%, compared to 28.8%
with normal errors.

Chapter 6

Hidden Markov Model Hybrids

In this chapter LSTM is combined with hidden Markov models (HMMs) to
form a hybrid sequence labelling system (Graves et al., 2005b). HMM-neural
network hybrids have been extensively studied in the literature, usually with
MLPs as the network component. The basic idea is to use the HMM to model
the sequential structure of the data, and the neural networks to provide
localised classifications. The HMM is able to automatically segment the
input sequences during training, and it also provides a principled method for
transforming network classifications into label sequences. Unlike the networks
described in previous chapters, HMM-ANN hybrids can therefore be directly
applied to ‘temporal classification’ tasks with unsegmented target labels, such
as speech recognition.

We evaluate the performance of a hidden Markov model-bidirectional
long short-term memory (HMM-BLSTM) hybrid for phoneme recognition,
and find that it outperforms both a standard HMM and a hybrid with
unidirectional LSTM. This suggests that the advantages of using network
architectures with improved contextual processing carry over to temporal
classification.

Section 6.1 reviews the previous work on hybrid HMM-neural network
systems. Section 6.2 presents experimental results on a phoneme recognition
task.

6.1 Background

Hybrids of hidden Markov models (HMMs) and artificial neural networks
(ANNs) were proposed by several researchers in the 1990s as a way of over-
coming the drawbacks of HMMs (Bourlard and Morgan, 1994; Bengio, 1993;
Renals et al., 1993; Robinson, 1994; Bengio, 1999). The introduction of ANNs
was intended to provide more discriminative training, improved modelling of
phoneme duration, richer, nonlinear function approximation, and perhaps
most importantly, increased use of contextual information.

In their simplest form, hybrid methods used HMMs to align the segment
classifications provided by the ANNs into a temporal classification of the

A. Graves: Supervised Sequence Labell. with Recur. Neur. Networks, SCI 385, pp. 57–60.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

58 6 Hidden Markov Model Hybrids

entire label sequence (Renals et al., 1993; Robinson, 1994). In other cases
ANNs were used to estimate transition or emission probabilities for HMMs
(Bourlard and Morgan, 1994), to re-score the N-best HMM labellings ac-
cording to localised classifications (Zavaliagkos et al., 1993), and to extract
observation features that can be more easily modelled by an HMM (Bengio
et al., 1995, 1992). In this chapter we focus on the simplest case.

Although most hybrid HMM-ANN research has focused on speech recog-
nition, the framework is equally applicable to other sequence labelling tasks,
such as online handwriting recognition (Bengio et al., 1995).

The two components in a the hybrid can be trained independently, but
many authors have proposed methods for combined optimisation (Bengio
et al., 1992; Bourlard et al., 1996; Hennebert et al., 1997; Trentin and Gori,
2003) which typically yields improved results. In this chapter we follow an
iterative approach, where the alignment provided by the HMM is used to
successively retrain the neural network (Robinson, 1994).

A similar, but more general, framework for combining neural networks
with other sequential algorithms is provided by graph transformer networks
(LeCun et al., 1997, 1998a; Bottou and LeCun, 2005). The different modules
of a graph transformer network perform distinct tasks, such as segmentation,
recognition and the imposition of grammatical constraints. The modules are
connected by transducers, which provide differentiable sequence to sequence
maps, and allow for global, gradient based learning.

Most hybrid HMM-ANN systems use multilayer perceptrons, typically
with a time-window to provide context, for the neural network component.
However there has also been considerable interest in the use of RNNs (Robin-
son, 1994; Neto et al., 1995; Kershaw et al., 1996; Senior and Robinson, 1996).
Given that the main purpose of the ANN is to introduce contextual infor-
mation, RNNs seem a natural choice. However, their advantages over MLPs
remained inconclusive in early work (Robinson et al., 1993).

6.2 Experiment: Phoneme Recognition

To assess the potential of LSTM and BLSTM for hybrid HMM-ANN systems
we compared their performance on the TIMIT speech corpus to that of a
standard HMM system. The data preparation and division into training, test
and validation sets was identical to that described in Section 5.1. However
the task was no longer to phonetically label individual frames, but instead
to output the complete phonetic transcription of the sequence. The error
measure was therefore the phoneme error rate (label error rate with phonemes
as labels—see Section 2.3.3).

We evaluated the performance of standard HMMs with and without con-
text dependent phoneme models, and hybrid systems using BLSTM, LSTM
and BRNNs. We also evaluate the effect of using the weighted error signal
described in Section 5.2.3.

6.2 Experiment: Phoneme Recognition 59

6.2.1 Experimental Setup

Traditional HMMs were developed with the HTK Speech Recognition Toolkit
(http://htk.eng.cam.ac.uk/). Both context independent (mono-phone) and
context dependent (triphone) models were trained and tested. Both were
left-to-right models with three states. Models representing silence (h#, pau,
epi) included two extra transitions, from the first to the final state and vice-
versa, to make them more robust. Observation probabilities were modelled
by eight Gaussian mixtures.

Sixty-one context-independent models and 5491 tied context-dependent
models were used. Context-dependent models for which the left/right con-
text coincide with the central phoneme were included since they appear in
the TIMIT transcription (e.g. “my eyes” is transcribed as /m ay ay z/). Dur-
ing recognition, only sequences of context-dependent models with matching
context were allowed.

To ensure a fair comparison of the acoustic modelling capabilities of the
systems, no prior linguistic information (such as a phonetic language model)
was used.

For the hybrid systems, the following networks were used: unidirectional
LSTM, BLSTM, and BLSTM trained with weighted error. 61 models of
one state each with a self-transition and an exit transition probability were
trained using Viterbi-based forced alignment. The frame-level transcription
of the training set was used to provide initial estimates of transition and
prior probabilities. The networks already trained for the framewise classifi-
cation experiments in Chapter 5 were re-used for this purpose. The network
architectures were therefore identical to those described in Section 5.2.

After initialisation, the hybrid system was trained in an iterative fashion.
At each step, the (unnormalised) likelihoods of the ‘observations’ (i.e. input
vectors) conditioned on the hidden states were found by dividing the posterior
class probabilities defined by the network outputs by the prior class proba-
bilities found in the data. These likelihoods were used to train the HMM.
The alignment provided by the trained HMM was then used to define a new
framewise training signal for the neural networks, and the whole process was
repeated until convergence. During retraining the network parameters were
the same as in Section 5.3, except that Gaussian input noise with a standard
deviation of 0.5 was added to the inputs.

For both the standard HMM and the hybrid system, an insertion penalty
was optimised on the validation set and applied during recognition.

6.2.2 Results

From Table 6.1, we can see that HMM-BLSTM hybrids outperformed both
context-dependent and context-independent HMMs. We can also see that
BLSTM gave better performance than unidirectional LSTM, in agreement
with the results in Chapter 5. The best result was achieved with the

60 6 Hidden Markov Model Hybrids

Table 6.1 Phoneme recognition results on TIMIT. The error measure is the
phoneme error rate. Hybrid results are means over 5 runs, ± standard error. All
differences are significant (p < 0.01).

System Parameters Error (%)

Context-independent HMM 80K 38.85
Context-dependent HMM >600K 35.21
HMM-LSTM 100K 39.6 ± 0.08
HMM-BLSTM 100K 33.84 ± 0.06
HMM-BLSTM (weighted error) 100K 31.57 ± 0.06

HMM-BLSTM hybrid using a weighted error signal. This is what we would
expect, since the effect of error weighting is to make all phonemes equally
significant, as they are to the phoneme error rate.

Note that the hybrid systems had considerably fewer free parameters than
the context-dependent HMM. This is a consequence of the high number of
states required for HMMs to model contextual dependencies.

The networks in the hybrid systems were initially trained with hand seg-
mented training data. Although the experiments could have been carried out
with a flat segmentation, this would probably have led to inferior results.

Chapter 7

Connectionist Temporal Classification

This chapter introduces the connectionist temporal classification (CTC) out-
put layer for recurrent neural networks (Graves et al., 2006). As its name sug-
gests, CTC was specifically designed for temporal classification tasks; that is,
for sequence labelling problems where the alignment between the inputs and
the target labels is unknown. Unlike the hybrid approach described in the pre-
vious chapter, CTCmodels all aspects of the sequence with a single neural net-
work, and does not require the network to be combined with a hidden Markov
model. It also does not require presegmented training data, or external post-
processing to extract the label sequence from the network outputs. Experi-
ments on speech and handwriting recognition show that a BLSTM network
with a CTC output layer is an effective sequence labeller, generally outper-
forming standardHMMs andHMM-neural network hybrids, as well asmore re-
cent sequence labelling algorithms such as large margin HMMs (Sha and Saul,
2006) and conditional random fields (Lafferty et al., 2001).

Section 7.1 introduces CTC and motivates its use for temporal classifi-
cation tasks. Section 7.2 defines the mapping from CTC outputs onto la-
bel sequences, Section 7.3 provides an algorithm for efficiently calculating
the probability of a given label sequence, Section 7.4 derives the CTC loss
function used for network training, Section 7.5 describes methods for de-
coding with CTC, experimental results are presented in Section 7.6, and a
discussion of the differences between CTC networks and HMMs is given in
Section 7.7.

7.1 Background

In 1994, Bourlard and Morgan identified the following reason for the failure of
purely connectionist (that is, neural-network based) approaches to continuous
speech recognition:

There is at least one fundamental difficulty with supervised train-
ing of a connectionist network for continuous speech recognition:
a target function must be defined, even though the training is

A. Graves: Supervised Sequence Labell. with Recur. Neur. Networks, SCI 385, pp. 61–93.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

62 7 Connectionist Temporal Classification

0l
ab

el
 p

ro
ba

bi
lit

y

""" """

1

0

1

n dcl d ix v

Framewise

the sound of

Waveform

CTC

dh ax s aw

Fig. 7.1 CTC and framewise classification networks applied to a speech
signal. The coloured lines are the output activations, corresponding to the proba-
bilities of observing phonemes at particular times. The CTC network predicts only
the sequence of phonemes (typically as a series of spikes, separated by ‘blanks’, or
null predictions, whose probabilities are shown as a grey dotted line), while the
framewise network attempts to align them with the manual segmentation (vertical
lines).

done for connected speech units where the segmentation is gen-
erally unknown. (Bourlard and Morgan, 1994, chap. 5)

In other words, neural networks require separate training targets for every
segment or timestep in the input sequence. This has two important conse-
quences. Firstly, it means that the training data must be presegmented to
provide the targets. Secondly, since the network only outputs local classifica-
tions, the global aspects of the sequence, such as the likelihood of two labels
appearing consecutively, must be modelled externally. Indeed, without some
form of post-processing the final label sequence cannot reliably be inferred
at all.

In Chapter 6 we showed how RNNs could be used for temporal classifi-
cation by combining them with HMMs in hybrid systems. However, as well
as inheriting the disadvantages of HMMs (which are discussed in depth in
Section 7.7), hybrid systems do not exploit the full potential of RNNs for
long-range sequence modelling. It therefore seems preferable to train RNNs
directly for temporal classification tasks.

Connectionist temporal classification (CTC) achieves this by allowing the
network to make label predictions at any point in the input sequence, so
long as the overall sequence of labels is correct. This removes the need for
presegmented data, since the alignment of the labels with the input is no
longer important. Moreover, CTC directly outputs the probabilities of the
complete label sequences, which means that no external post-processing is
required to use the network as a temporal classifier.

Figure 7.1 illustrates the difference between CTC and framewise classifi-
cation applied to a speech signal.

7.2 From Outputs to Labellings 63

7.2 From Outputs to Labellings

For a sequence labelling task where the labels are drawn from an alphabet
A, CTC consists of a softmax output layer (Bridle, 1990) with one more
unit than there are labels in A. The activations of the first |A| units are
the probabilities of outputting the corresponding labels at particular times,
given the input sequence and the network weights. The activation of the
extra unit gives the probability of outputting a ‘blank’, or no label. The
complete sequence of network outputs is then used to define a distribution
over all possible label sequences of length up to that of the input sequence.

Defining the extended alphabet A′ = A ∪ {blank}, the activation ytk of
network output k at time t is interpreted as the probability that the network
will output element k of A′ at time t, given the length T input sequence x.
Let A′T denote the set of length T sequences over A′. Then, if we assume
the output probabilities at each timestep to be independent of those at other
timesteps (or rather, conditionally independent given x), we get the following

conditional distribution over π ∈ A′T :

p(π|x) =
T∏

t=1

ytπt
(7.1)

From now on we refer to the sequences π over A′ as paths, to distinguish
them from the label sequences or labellings l over A. The next step is to
define a many-to-one function F : A′T �→ A≤T , from the set of paths onto
the set A≤T of possible labellings of x (i.e. the set of sequences of length
less than or equal to T over A). We do this by removing first the repeated
labels and then the blanks from the paths. For example F(a − ab−) =
F(−aa − −abb) = aab. Intuitively, this corresponds to outputting a new
label when the network either switches from predicting no label to predicting
a label, or from predicting one label to another. Since the paths are mutually
exclusive, the probability of some labelling l ∈ A≤T can be calculated by
summing the probabilities of all the paths mapped onto it by F :

p(l|x) =
∑

π∈F−1(l)

p(π|x) (7.2)

This ‘collapsing together’ of different paths onto the same labelling is what
makes it possible for CTC to use unsegmented data, because it allows the
network to predict the labels without knowing in advance where they occur.
In theory, it also makes CTC networks unsuitable for tasks where the location
of the labels must be determined. However in practice CTC tends to output
labels close to where they occur in the input sequence. In Section 7.6.3
an experiment is presented in which both the labels and their approximate
positions are successfully predicted by a CTC network.

64 7 Connectionist Temporal Classification

7.2.1 Role of the Blank Labels

In the original formulation of CTC there were no blank labels, and F(π) was
simply π with repeated labels removed. This led to two problems. Firstly,
the same label could not appear twice in a row, since transitions only oc-
curred when π passed between different labels. And secondly, the network
was required to continue predicting one label until the next began, which
is a burden in tasks where the input segments corresponding to consecutive
labels are widely separated by unlabelled data (for example, in speech recog-
nition there are often pauses or non-speech noises between the words in an
utterance).

7.2.2 Bidirectional and Unidirectional Networks

Given that the label probabilities used for CTC are assumed to be condi-
tioned on the entire input sequence, it seems natural to prefer a bidirectional
RNN architecture. If the network is unidirectional the label probabilities at
time t only depend on the inputs up to t. The network must therefore wait
until after a given input segment is complete (or at least sufficiently complete
to be identified) before emitting the corresponding label. This returns us to
the issues of past and future context discussed in Chapter 5. Recall that for
framewise classification, with a separate target for every input, one way of
incorporating future context into unidirectional networks was to introduce a
delay between the inputs and the targets. Unidirectional CTC networks are
in a somewhat better position, since the delay is not fixed, but can instead
be chosen by the network according to the segment being labelled. In prac-
tice the performance loss incurred by using unidirectional rather bidirectional
RNNs does indeed appear to be smaller for CTC than for framewise classi-
fication. This is worth bearing in mind for applications (such as real time
speech-recognition) where bidirectional RNNs may be difficult or impossible
to apply. Figure 7.2 illustrates some of the differences between unidirectional
and bidirectional CTC networks.

7.3 Forward-Backward Algorithm

So far we have defined the conditional probabilities p(l|x) of the possible label
sequences. Now we need an efficient way of calculating them. At first sight
Eqn. (7.2) suggests this will be problematic: the sum is over all paths corre-
sponding to a given labelling, and the number of these grows exponentially
with the length of the input sequence (more precisely, for a length T input

sequence and a length U labelling, there are 2T−U2+U(T−3)3(U−1)(T−U)−2

paths).
Fortunately the problem can be solved with a dynamic-programming algo-

rithm similar to the forward-backward algorithm for HMMs (Rabiner, 1989).

7.3 Forward-Backward Algorithm 65

Fig. 7.2 Unidirectional and Bidirectional CTC Networks Phonetically
Transcribing an Excerpt from TIMIT. The spectrogram (bottom) represents
the start of a TIMIT utterance, with the hand segmented phoneme boundaries
marked by vertical black lines, and the correct phonetic labels shown underneath.
Output phoneme probabilities are indicated by solid coloured lines, while the dashed
grey lines correspond to ‘blank’ probabilities. Both the unidirectional network (mid-
dle) and the bidirectional network (top) successfully label the data. However they
emit the labels at different times. Whereas the unidirectional network must wait
until after the corresponding segments are complete (the exceptions are ‘sil’ and ‘s’,
presumably because they require less context to identify) the bidirectional network
may emit the labels before, after or during the segments. Another difference is that
bidirectional CTC tends to ‘glue together’ successive labels that frequently co-occur
(for example ‘ah’ and ‘z’, which combine to give the rhyming sound in ‘was’, ‘does’
and ‘buzz’).

66 7 Connectionist Temporal Classification

The key idea is that the sum over paths corresponding to a labelling l can
be broken down into an iterative sum over paths corresponding to prefixes of
that labelling.

To allow for blanks in the output paths, we consider a modified label
sequence l′, with blanks added to the beginning and the end of l, and inserted
between every pair of consecutive labels. If the length of l is U , the length of
l′ is therefore U ′ = 2U + 1. In calculating the probabilities of prefixes of l′

we allow all transitions between blank and non-blank labels, and also those
between any pair of distinct non-blank labels.

For a labelling l, the forward variable α(t, u) is the summed probability of
all length t paths that are mapped by F onto the length u/2 prefix of l. For
some sequence s, let sp:q denote the subsequence sp, sp+1, ..., sq−1, sq, and let
the set V (t, u) = {π ∈ A′t : F(π) = l1:u/2, πt = l′u}. We can then define
α(t, u) as

α(t, u) =
∑

π∈V (t,u)

t∏

i=1

yiπi
(7.3)

where u/2 is rounded down to an integer value. As we will see, the forward
variables at time t can be calculated recursively from those at time t− 1.

Given the above formulation, the probability of l can be expressed as the
sum of the forward variables with and without the final blank at time T .

p(l|x) = α(T, U ′) + α(T, U ′ − 1) (7.4)

All correct paths must start with either a blank (b) or the first symbol in l
(l1), yielding the following initial conditions:

α(1, 1) = y1b (7.5)

α(1, 2) = y1l1 (7.6)

α(1, u) = 0, ∀u > 2 (7.7)

Thereafter the variables can be calculated recursively:

α(t, u) = ytl′u

u∑

i=f(u)

α(t− 1, i) (7.8)

where

f(u) =

{
u− 1 if l′u = blank or l′u−2 = l′u
u− 2 otherwise

(7.9)

Note that
α(t, u) = 0 ∀u < U ′ − 2(T − t)− 1 (7.10)

because these variables correspond to states for which there are not enough
timesteps left to complete the sequence (the unconnected circles in the top
right of Figure 7.3). We also impose the boundary condition

α(t, 0) = 0 ∀t (7.11)

7.3 Forward-Backward Algorithm 67

Fig. 7.3 CTC forward-backward algorithm. Black circles represent blanks,
and white circles represent labels. Arrows signify allowed transitions. Forward
variables are updated in the direction of the arrows, and backward variables are
updated against them.

The backward variables β(t, u) are defined as the summed probabilities of all
paths starting at t+1 that complete l when appended to any path contribut-
ing to α(t, u). Let W (t, u) = {π ∈ A′T−t : F(π̂ + π) = l ∀π̂ ∈ V (t, u)}.
Then

β(t, u) =
∑

π∈W (t,u)

T−t∏

i=1

yt+i
πi

(7.12)

The rules for initialisation and recursion of the backward variables are as
follows

β(T, U ′) = β(T, U ′ − 1) = 1 (7.13)

β(T, u) = 0, ∀u < U ′ − 1 (7.14)

β(t, u) =

g(u)∑

i=u

β(t + 1, i)yt+1
l′i

(7.15)

where

g(u) =

{
u+ 1 if l′u = blank or l′u+2 = l′u
u+ 2 otherwise

(7.16)

Note that

β(t, u) = 0 ∀u > 2t (7.17)

as shown by the unconnected circles in the bottom left of Figure 7.3, and

β(t, U ′ + 1) = 0 ∀t (7.18)

68 7 Connectionist Temporal Classification

7.3.1 Log Scale

In practice, the above recursions will soon lead to underflows on any digital
computer. A good way to avoid this is to work in the log scale, and only
exponentiate to find the true probabilities at the end of the calculation. A
useful equation in this context is

ln(a+ b) = ln a+ ln
(
1 + eln b−ln a

)
(7.19)

which allows the forward and backward variables to be summed while re-
maining in the log scale. Note that rescaling the variables at every timestep
(Rabiner, 1989) is less robust, and can fail for very long sequences.

7.4 Loss Function

Like the standard neural network loss functions discussed in Section 3.1.3, the
CTC loss function L(S) is defined as the negative log probability of correctly
labelling all the training examples in some training set S:

L(S) = − ln
∏

(x,z)∈S

p(z|x) = −
∑

(x,z)∈S

ln p(z|x) (7.20)

Because the function is differentiable, its derivatives with respect to the
network weights can be calculated with backpropagation through time (Sec-
tion 3.2.2), and the network can then be trained with any gradient-based
nonlinear optimisation algorithm (Section 3.3.1).

As in Chapter 2 we also define the example loss

L(x, z) = − ln p(z|x) (7.21)

and recall that

L(S) =
∑

(x,z)∈S

L(x, z) (7.22)

∂L(S)
∂w

=
∑

(x,z)∈S

∂L(x, z)
∂w

(7.23)

We now show how the algorithm of Section 7.3 can be used to calculate and
differentiate L(x, z), and hence L(S).

Setting l = z and defining the setX(t, u) = {π ∈ A′T : F(π) = z, πt = z′u},
Eqns. (7.3) and (7.12) give us

α(t, u)β(t, u) =
∑

π∈X(t,u)

T∏

t=1

ytπt
(7.24)

Substituting from (7.1) we get

α(t, u)β(t, u) =
∑

π∈X(t,u)

p(π|x) (7.25)

7.4 Loss Function 69

From (7.2) we can see that this is the portion of the total probability p(z|x)
due to those paths going through z′u at time t. For any t, we can therefore
sum over all u to get

p(z|x) =
|z′|∑

u=1

α(t, u)β(t, u) (7.26)

Meaning that

L(x, z) = − ln

|z′|∑

u=1

α(t, u)β(t, u) (7.27)

7.4.1 Loss Gradient

To find the gradient of L(x, z), we first differentiate with respect to the
network outputs ytk:

∂L(x, z)
∂ytk

= −∂ ln p(z|x)
∂ytk

= − 1

p(z|x)
∂p(z|x)
∂ytk

(7.28)

To differentiate p(z|x) with respect to ytk, we need only consider those paths
going through label k at time t, since the network outputs do not influence
each other. Noting that the same label (or blank) may occur several times
in a single labelling, we define the set of positions where label k occurs in z′

as B(z, k) = {u : z′u = k}, which may be empty. Observing from (7.24)
that

∂α(t, u)β(t, u)

∂ytk
=

{
α(t,u)β(t,u)

yt
k

if k occurs in z′

0 otherwise,
(7.29)

we can differentiate (7.26) to get

∂p(z|x)
∂ytk

=
1

ytk

∑

u∈B(z,k)

α(t, u)β(t, u). (7.30)

and substitute this into (7.28) to get

∂L(x, z)
∂ytk

= − 1

p(z|x)ytk
∑

u∈B(z,k)

α(t, u)β(t, u). (7.31)

Finally, to backpropagate the gradient through the output layer, we need the
loss function derivatives with respect to the outputs atk before the activation
function is applied:

∂L(x, z)
∂atk

= −
∑

k′

∂L(x, z)
∂ytk′

∂ytk′

∂atk
(7.32)

70 7 Connectionist Temporal Classification

(b)

erroroutput

(c)

(a)

Fig. 7.4 Evolution of the CTC error signal during training. The left column
shows the output activations for the same sequence at various stages of training
(the dashed line is the ‘blank’ unit); the right column shows the corresponding error
signals. Errors above the horizontal axis act to increase the corresponding output
activation and those below act to decrease it. (a) Initially the network has small
random weights, and the error is determined by the target sequence only. (b) The
network begins to make predictions and the error localises around them. (c) The
network strongly predicts the correct labelling and the error virtually disappears.

where k′ ranges over all the output units. Recalling that for softmax outputs

ytk =
ea

t
k

∑
k′ e

at
k′

⇒ ∂ytk′

∂atk
= ytk′δkk′ − ytk′ytk (7.33)

we can substitute (7.33) and (7.31) into (7.32) to obtain

∂L(x, z)
∂atk

= ytk −
1

p(z|x)
∑

u∈B(z,k)

α(t, u)β(t, u) (7.34)

which is the ‘error signal’ backpropagated through the network during train-
ing, as illustrated in Figure 7.4.

7.5 Decoding 71

7.5 Decoding

Once the network is trained, we would ideally label some unknown input
sequence x by choosing the most probable labelling l∗:

l∗ = argmax
l

p(l|x) (7.35)

Using the terminology of HMMs, we refer to the task of finding this labelling
as decoding. Unfortunately, we do not know of a general, tractable decoding
algorithm for CTC. However we now present two approximate methods that
work well in practice.

7.5.1 Best Path Decoding

The first method, which refer to as best path decoding, is based on the as-
sumption that the most probable path corresponds to the most probable
labelling

l∗ ≈ F(π∗) (7.36)

where π∗ = argmaxπ p(π|x). Best path decoding is trivial to compute, since
π∗ is just the concatenation of the most active outputs at every timestep.
However it can lead to errors, particularly if a label is weakly predicted for
several consecutive timesteps (see Figure 7.5).

Fig. 7.5 Problem with best path decoding. The single most probable path
contains no labels, and best path decoding therefore outputs the labelling ‘blank’.
However the combined probabilities of the paths corresponding to the labelling ‘A’
is greater.

72 7 Connectionist Temporal Classification

Fig. 7.6 Prefix search decoding on the alphabet {X,Y}. Each node either
ends (‘e’) or extends the prefix at its parent node. The number above an extending
node is the total probability of all labellings beginning with that prefix. The number
above an end node is the probability of the single labelling ending at its parent. At
every iteration the extensions of the most probable remaining prefix are explored.
Search ends when a single labelling (here ‘XY’) is more probable than any remaining
prefix.

7.5.2 Prefix Search Decoding

The second method (prefix search decoding) relies on the fact that, by mod-
ifying the forward variables of Section 7.3, we can efficiently calculate the
probabilities of successive extensions of labelling prefixes.

Prefix search decoding is a best-first search (see e.g. Russell and Norvig,
2003, chap. 4) through the tree of labellings, where the children of a given
labelling are those that share it as a prefix. At each step the search ex-
tends the labelling whose children have the largest cumulative probability
(see Figure 7.6).

Let γ(pn, t) be the probability of the network outputting prefix p by time
t such that a non-blank label is output at t, let γ(pb, t) be the probability of
the network outputting prefix p by time t such that the blank label is output
at t, and let the set Y = {π ∈ A′t : F(π) = p}. Then

γ(pn, t) =
∑

π∈Y :πt=p|p|

p(π|x) (7.37)

γ(pb, t) =
∑

π∈Y :πt=blank

p(π|x) (7.38)

Thus, for a length T input sequence x, p(p|x) = γ(pn, T) + γ(pb, T). Also
let p(p . . . |x) be the cumulative probability of all labellings not equal to p of
which p is a prefix:

p(p . . . |x) =
∑

l�=∅
p(p+ l|x) (7.39)

7.5 Decoding 73

where ∅ is the empty sequence. With these definitions is mind, the pseu-
docode for prefix search decoding is given in Algorithm 7.1.

Given enough time, prefix search decoding always finds the most probable
labelling. However, the maximum number of prefixes it must expand grows
exponentially with the input sequence length. If the output distribution is
sufficiently peaked around the mode, it will still finish in reasonable time.
But for many tasks, a heuristic is required to make its application feasible.

Observing that the outputs of a trained CTC network tend to form a
series of spikes separated by strongly predicted blanks (see Figure 7.1), we
can divide the output sequence into sections that are very likely to begin
and end with a blank. We do this by choosing boundary points where the
probability of observing a blank label is above a certain threshold. We then
apply Algorithm 7.1 to each section individually and concatenate these to
get the final transcription.

In practice, prefix search works well with this heuristic, and generally
outperforms best path decoding. However it still makes mistakes in some
cases, for example if the same label is predicted weakly on both sides of a
section boundary.

7.5.3 Constrained Decoding

For certain tasks we want to constrain the output labellings according to some
predefined grammar. For example, in speech and handwriting recognition,
the final transcriptions are usually required to form sequences of dictionary
words. In addition it is common practice to use a language model to weight
the probabilities of particular sequences of words.

We can express these constraints by altering the label sequence probabili-
ties in (7.35) to be conditioned on some probabilistic grammar G, as well as
the input sequence x

l∗ = argmax
l

p(l|x, G) (7.40)

Absolute requirements, for example that l contains only dictionary words,
can be incorporated by setting the probability of all sequences that fail to
meet them to 0.

At first sight, conditioning on G would seem to contradict a basic as-
sumption of CTC: that the labels are conditionally independent given the
input sequences (see Section 7.2). Since the network attempts to model the
probability of the whole labelling at once, there is nothing to stop it from
learning inter-label transitions direct from the data, which would then be
skewed by the external grammar. Indeed, when we tried using a biphone
model to decode a CTC network trained for phoneme recognition, the error
rate increased. However, CTC networks are typically only able to learn local
relationships such as commonly occurring pairs or triples of labels. Therefore
as long as G focuses on long range label dependencies (such as the proba-
bility of one word following another when the outputs are letters) it doesn’t

74 7 Connectionist Temporal Classification

1: Initialisation:

2: 1 ≤ t ≤ T

{
γ(∅n, t) = 0

γ(∅b, t) =
∏t

t′=1 y
t′
b

3: p(∅|x) = γ(∅b, T)
4: p(∅ . . . |x) = 1− p(∅|x)
5: l∗ = p∗ = ∅
6: P = {∅}
7:

8: Algorithm:
9: while p(p∗ . . . |x) > p(l∗|x) do

10: probRemaining = p(p∗ . . . |x)
11: for all labels k ∈ A do
12: p = p∗ + k

13: γ(pn, 1) =

{
y1k if p∗ = ∅
0 otherwise

14: γ(pb, 1) = 0
15: prefixProb = γ(pn, 1)
16: for t = 2 to T do

17: newLabelProb = γ(p∗
b , t− 1) +

{
0 if p∗ ends in k

γ(p∗
n, t− 1) otherwise

18: γ(pn, t) = ytk (newLabelProb+ γ(pn, t− 1))
19: γ(pb, t) = ytb (γ(pb, t− 1) + γ(pn, t− 1))
20: prefixProb += ytk newLabelProb
21: p(p|x) = γ(pn, T) + γ(pb, T)
22: p(p . . . |x) = prefixProb− p(p|x)
23: probRemaining −= p(p . . . |x)
24: if p(p|x) > p(l∗|x) then
25: l∗ = p
26: if p(p . . . |x) > p(l∗|x) then
27: add p to P
28: if probRemaining ≤ p(l∗|x) then
29: break
30: remove p∗ from P
31: p∗ = argmaxp∈P p(p . . . |x)
32:

33: Termination:
34: output l∗

Algorithm 7.1 Prefix Search Decoding Algorithm

7.5 Decoding 75

interfere with the dependencies modelled internally by CTC. This argument
is supported by the experiments in Sections 7.6.4 and 7.6.5.

Applying the basic rules of probability we obtain

p(l|x, G) =
p(l|x)p(l|G)p(x)

p(x|G)p(l)
(7.41)

where we have used the fact that x is conditionally independent of G given
l. If we assume that x is independent of G, (7.41) reduces to

p(l|x, G) =
p(l|x)p(l|G)

p(l)
(7.42)

This assumption is in general false, since both the input sequences and the
grammar depend on the underlying generator of the data, for example the
language being spoken. However it is a reasonable first approximation, and
is particularly justifiable in cases where the grammar is created using data
other than that from which x was drawn (as is common practice in speech and
handwriting recognition, where separate textual corpora are used to generate
language models).

If we further assume that, prior to any knowledge about the input or the
grammar, all label sequences are equally probable, (7.40) reduces to

l∗ = argmax
l

p(l|x)p(l|G) (7.43)

Note that, since the number of possible label sequences is finite (because both
A and S are finite), assigning equal prior probabilities does not lead to an
improper prior.

7.5.3.1 CTC Token Passing Algorithm

We now describe an algorithm, based on the token passing algorithm for
HMMs (Young et al., 1989), that finds an approximate solution to (7.43) for
a simple grammar.

Let G consist of a dictionaryD containing W words, and an optional set of
W 2 bigrams p(w|ŵ) that define the probability of making a transition from
word ŵ to word w. The probability of any label sequence that does not form
a sequence of dictionary words is 0.

For each word w, define the modified word w′ as w with blanks added at the
beginning and end and between each pair of labels. Therefore |w′| = 2|w|+1.
Define a token tok = (score, history) to be a pair consisting of a real valued
‘score’ and a ‘history’ of previously visited words. The history corresponds
to the path through the network outputs the token has taken so far, and the
score is the log probability of that path. The basic idea of the token passing
algorithm is to pass along the highest scoring tokens at every word state,
then maximise over these to find the highest scoring tokens at the next state.
The transition probabilities are used when a token is passed from the last

76 7 Connectionist Temporal Classification

state in one word to the first state in another. The output word sequence
is then given by the history of the highest scoring end-of-word token at the
final timestep.

At every timestep t of the length T output sequence, each segment s of
each modified word w′ holds a single token tok(w, s, t). This is the highest
scoring token reaching that segment at that time. Define the input token
tok(w, 0, t) to be the highest scoring token arriving at word w at time t, and
the output token tok(w,−1, t) to be the highest scoring token leaving word
w at time t. ∅ denotes the empty sequence.

Pseudocode for the algorithm is provided in Algorithm 7.2.

7.5.3.2 Computational Complexity

If bigrams are used, the CTC token passing algorithm has a worst-case com-
plexity of O(TW 2), since line 19 requires a potential search through all W
words. However, because the output tokens tok(w,−1, T) are sorted in or-
der of score, the search can be terminated when a token is reached whose
score is less than the current best score with the transition included. The
typical complexity is therefore considerably lower, with a lower bound of
O(TWlogW) to account for the sort.

If no bigrams are used, the single most probable output token at the pre-
vious timestep will form the new input token for all the words, and the
worst-case complexity reduces to O(TW).

7.5.3.3 Single Word Decoding

If the number of words in the target sequence is fixed, Algorithm 7.2 can be
constrained by forbidding all tokens whose history already contains that many
words from transitioning to new words. In particular, if the target sequences
are constrained to be single words, then all word-to-word transitions are
forbidden (and bigrams are clearly not required).

In general the extension from finding the single best transcription to the
N -best transcriptions is complex. However in the special case of single word
decoding, the N -best transcriptions are simply the (single word) histories of
the N -best output tokens when the algorithm terminates.

Another straightforward extension to single word decoding occurs when
the same word has several different label transcriptions. This happens, for
example, when pronunciation variants are considered in speech recognition,
or spelling variants are allowed in handwriting recognition. In that case all
variants should be considered separate words until the termination of Algo-
rithm 7.2 (lines 34 and 34); at that point the scores of all variant transcrip-
tions of each word should be added together in the log scale (that is, using
Eqn. (7.19)); thereafter the best or N -best words should be found as usual.

Several tasks requiring N -best single word transcriptions, both with and
without transcription variants, are presented in Chapter 9.

7.5 Decoding 77

1: Initialisation:
2: for all words w ∈ D do
3: tok(w, 1, 1) = (ln y1b , (w))
4: tok(w, 2, 1) = (ln y1w1

, (w))
5: if |w| = 1 then
6: tok(w,−1, 1) = tok(w, 2, 1)
7: else
8: tok(w,−1, 1) = (−∞, ∅)
9: tok(w, s, 1) = (−∞, ∅) for all other s

10:

11: Algorithm:
12: for t = 2 to T do
13: if using bigrams then
14: sort output tokens tok(w,−1, t− 1) by ascending score
15: else
16: find single highest scoring output token
17: for all words w ∈ D do
18: if using bigrams then
19: w∗ = argmaxŵ [tok(ŵ,−1, t− 1).score + ln p(w|ŵ)]
20: tok(w, 0, t) = tok(w∗,−1, t− 1)
21: tok(w, 0, t).score += ln p(w|w∗)
22: else
23: tok(w, 0, t) = highest scoring output token
24: add w to tok(w, 0, t).history
25: for segment s = 1 to |w′| do
26: P = {tok(w, s, t− 1), tok(w, s− 1, t− 1)}
27: if w′

s �= blank and s > 2 and w′
s−2 �= w′

s then
28: add tok(w, s− 2, t− 1) to P
29: tok(w, s, t) = token in P with highest score
30: tok(w, s, t).score += ln ytw′

s

31: tok(w,−1, t) = highest scoring of {tok(w, |w′|, t), tok(w, |w′| − 1, t)}
32:

33: Termination:
34: w∗ = argmaxw tok(w,−1, T).score
35: output tok(w∗,−1, T).history

Algorithm 7.2 CTC Token Passing Algorithm

78 7 Connectionist Temporal Classification

7.6 Experiments

In this section bidirectional LSTM (BLSTM) networks with CTC output
layers are evaluated on five temporal classification tasks: three related to
speech recognition, and two related to handwriting recognition.

For the handwriting tasks, a dictionary and language model were present,
and results are recorded both with and without the constrained decoding
algorithm of Section 7.5.3.1. For the speech experiments there was no dic-
tionary or language model, and the output labels (whether phonemes or
whole words) were used directly for transcription. For the experiment in Sec-
tion 7.6.1, we compare prefix search and best path decoding (see Section 7.5).

As discussed in Chapter 3, the choice of input representation is crucial to
any machine learning algorithm. Most of the experiments here use standard
input representations that have been tried and tested with other sequence
learning algorithms, such as HMMs. The experiment in Section 7.6.4 is dif-
ferent in that the performance of BLSTM-CTC is compared using two dif-
ferent input representations. As usual, all inputs were standardised to have
mean 0 and standard deviation 1 over the training set.

For all the experiments, the BLSTM hidden layers were fully connected
to themselves, and to the input and output layers. Each memory block
contained a single LSTM cell, with tanh used for the activation functions g
and h and the logistic sigmoid σ(x) = 1/(1 + e−x) used for the activation
function f of the gates (see Figure 4.2). The sizes of the input and output
layers were determined by the numbers of inputs and labels in each task. The
weights were randomly initialised from a Gaussian distribution with mean 0
and standard deviation 0.1. Online steepest descent with momentum was
used for training, with a learning rate 10−4 and a momentum of 0.9. All
experiments used separate training, validation and testing sets. Training
was stopped when 50 epochs had passed with no reduction of error on the
validation set.

The only network parameters manually adjusted for the different tasks
were (1) the number of blocks in the LSTM layers and (2) the standard
deviation of the input noise added during training. These are specified for
each experiment.

As discussed in Section 3.3.2.2, Gaussian input noise is only effective if it
mimics the true variations found in the data. This appears to be the case for
the MFC coefficients commonly used for speech recognition, but not for the
other data types considered below. Therefore input noise was only applied
for the speech recognition experiments.

For all experiments, the error measure used to evaluate performance was
the label error rate defined in Section 2.3.3, applied to the test set. Note
however that the measure is renamed according to the type of labels used:
for example phoneme error rate was used for phoneme recognition, and word
error rate for keyword spotting. For the handwriting recognition tasks, both
the character error rate for the labellings provided by the CTC output layer,
and the word error rate for the word sequences obtained from the token

7.6 Experiments 79

Table 7.1 Phoneme recognition results on TIMIT with 61 phonemes.
The error measure is the phoneme error rate. BLSTM-CTC and hybrid results are
means over 5 runs, ± standard error. All differences were significant (p < 0.01),
except that between HMM-BLSTM with weighted errors and CTC with best path
decoding.

System Error (%)

HMM 35.21
HMM-BLSTM hybrid (weighted error) 31.57 ± 0.06
BLSTM-CTC (best path decoding) 31.47 ± 0.21
BLSTM-CTC (prefix search decoding) 30.51 ± 0.19

passing algorithm are evaluated. All the experiments were repeated several
times and the results are quoted as a mean ± the standard error. The mean
and standard error in the number of training epochs before the best results
were achieved is also provided.

7.6.1 Phoneme Recognition 1

The experiment in this section compares BLSTM-CTC with the best HMM
and HMM-BLSTM hybrid results given in Chapter 6 for phoneme recognition
on the TIMIT speech corpus (Garofolo et al., 1993). The task, data and
preprocessing were identical to those described in Section 5.1.

7.6.1.1 Experimental Setup

The network had 26 input units and 100 LSTM blocks in both the forward
and backward hidden layers. It had 62 output units, one for each phoneme
plus the ‘blank’, giving 114, 662 weights in total. Gaussian noise with mean
0 and standard deviation 0.6 was added to the inputs during training. When
prefix search decoding was used, the probability threshold for the boundary
points was 0.9999.

7.6.1.2 Results

Table 7.1 shows that, with prefix search decoding, BLSTM-CTC outper-
formed both an HMM and an HMM-RNN hybrid with the same RNN archi-
tecture. It also shows that prefix search gave a small improvement over best
path decoding.

Note that the best hybrid results were achieved with a weighted error sig-
nal. Such heuristics are unnecessary with CTC, as the loss function depends
only on the sequence of labels, and not on their duration or segmentation.

Input noise had a greater impact on generalisation for BLSTM-CTC than
the hybrid system, and a slightly higher level of noise was found to be optimal

80 7 Connectionist Temporal Classification

Table 7.2 Folding the 61 phonemes in TIMIT onto 39 categories (Lee
and Hon, 1989). The phonemes in the right column are folded onto the corre-
sponding category in the left column (‘q’ is discarded). All other phonemes are left
unchanged.

aa aa, ao
ah ah, ax, ax-h
er er, axr
hh hh, hv
ih ih, ix
l l, el
m m, em
n n, en, nx
ng ng, eng
sh sh, zh
sil pcl, tcl, kcl, bcl, dcl, gcl, h#, pau, epi
uw uw, ux
— q

(standard deviation 0.6 for the CTC network and 0.5 for the hybrid). The
mean training time for BLSTM-CTC was 60.0 ± 7 epochs.

7.6.2 Phoneme Recognition 2

This section considers a variant of the previous task, where the number of
distinct phoneme labels is reduced from 61 to 39 (Fernndez et al., 2008).
In addition, only the so-called core test set of TIMIT is used for evalua-
tion. These modifications allow a direct comparison with other results in the
literature.

7.6.2.1 Data and Preprocessing

In most previous studies, a set of 48 phonemes were selected for modelling
during training, and confusions between several of these were ignored during
testing, leaving an effective set of 39 distinct labels (Lee and Hon, 1989).
Since CTC is discriminative, using extra phonemes during training is unnec-
essary (and probably counterproductive), and the networks were therefore
trained with 39 labels. The folding of the original 61 phoneme labels onto 39
categories is shown in table 7.2.

The TIMIT corpus was divided into a training set, a validation set and a
test set according to (Halberstadt, 1998). As in our previous experiments, the
training set contained 3696 sentences from 462 speakers. However in this case
the test set was much smaller, containing only 192 sentences from 24 speakers,
and the validation set, which contained 400 sentences from 50 speakers, was
drawn from the unused test sentences rather than the training set. This

7.6 Experiments 81

left us with slightly more sentences for training than before. However this
advantage was offset by the fact that the core test set is harder than the full
test set.

As before, the speech data was transformed into Mel frequency cepstral
coefficients (MFCCs) using the HTK software package (Young et al., 2006).
Spectral analysis was carried out with a 40 channel Mel filter bank from 64Hz
to 8 kHz. A pre-emphasis coefficient of 0.97 was used to correct spectral tilt.
Twelve MFCCs plus the 0th order coefficient were computed on Hamming
windows 25ms long, every 10ms. In this case the second as well as first
derivatives of the coefficients were used, giving a vector of 39 inputs in total.

7.6.2.2 Experimental Setup

The BLSTM-CTC network had an input layer of size 39, the forward and
backward hidden layers had 128 blocks each, and the output layer was size
40 (39 phonemes plus blank). The total number of weights was 183,080.
Gaussian noise with a standard deviation of 0.6 was added to the inputs
during training. When prefix search was used, the probability threshold was
0.9999.

7.6.2.3 Results

The performance of the network is recorded in table 7.3, along with the best
results found in the literature. There is no significant difference between the
error rate of BLSTM-CTC with prefix search decoding and that of At the
time when the experiment was performed there was no significant difference
between the BLSTM-CTC results and that of either of the best two results
found in the literature (by Yu et al and Glass). However the benchmark
has since been substantially lowered by the application of improved language
modelling techniques (Sainath et al., 2009) and Deep Belief Networks (Mo-
hamed et al., 2011).

Nonetheless the BLSTM-CTC score remains a good result for a general
purpose sequence labelling system with very little tuning towards speech
recognition.

7.6.3 Keyword Spotting

The task in this section is keyword spotting, using the Verbmobil speech cor-
pus (Verbmobil, 2004). The aim of keyword spotting is to identify a particular
set of spoken words within (typically unconstrained) speech signals. In most
cases, the keywords occupy only a small fraction of the total data. Discrimina-
tive approaches are interesting for keyword spotting, because they are able to
concentrate on identifying and distinguishing the keywords, while ignoring the
rest of the signal. However, the predominant method is to use hidden Markov
models, which are generative, and must therefore model the unwanted speech,
and even the non-speech noises, in addition to the keywords.

82 7 Connectionist Temporal Classification

Table 7.3 Phoneme recognition results on TIMIT with 39 phonemes. The
error measure is the phoneme error rate. Results for BLSTM-CTC are averages ±
standard error over 10 runs. The average number of training epochs was 112.5 ±
6.4.

System Error (%)

Conditional Random Fields (Morris and Lussier, 2006) 34.8
Large Margin HMM (Sha and Saul, 2006) 28.7
Baseline HMM (Yu et al., 2006) 28.6
Triphone Continuous Density HMM (Lamel and Gauvain, 1993) 27.1
Augmented Conditional Random Fields (Hifny and Renals, 2009) 26.7
RNN-HMM Hybrid (Robinson, 1994) 26.1
Bayesian Triphone HMM (Ming and Smith, 1998) 25.6
Near-miss Probabilistic Segmentation (Chang, 1998) 25.5
BLSTM-CTC (best path decoding) 25.2 ± 0.2
Monophone HTMs (Yu et al., 2006) 24.8
BLSTM-CTC (prefix search decoding) 24.6 ± 0.2
Heterogeneous Classifiers (Glass, 2003) 24.4
Discriminative BMMI Triphone HMMs (Sainath et al., 2009) 22.7
Monophone Deep Belief Network (Mohamed et al., 2011) 20.7

In many cases one seeks not only the identity of the keywords, but also
their approximate position. For example, this would be desirable if the goal
were to further examine those segments of a long telephone conversation in
which a keyword occurred. In principle, locating the keywords presents a
problem for CTC, since the network is only trained to find the sequence of
labels, and not their position. However we have observed that in most cases
CTC predicts labels close to the relevant segments of the input sequence.
The following experiments confirm this observation by recording the word
error rate both with and without the requirement that the network find the
approximate location of the keywords (Fernández et al., 2007).

7.6.3.1 Data and Preprocessing

Verbmobil consists of dialogues of noisy, spontaneous German speech, where
the purpose of each dialogue is to schedule a date for an appointment or
meeting. It comes divided into training, validation and testing sets, all of
which have a complete phonetic transcription. The training set includes 748
speakers and 23,975 dialogue turns, giving a total of 45.6 hours of speech.
The validation set includes 48 speakers, 1,222 dialogue turns and a total of
2.9 hours of speech. The test set includes 46 speakers, 1,223 dialogue turns
and a total of 2.5 hours of speech. Each speaker appears in only one of the
sets.

The twelve keywords were: April, August, Donnerstag, Februar, Frank-
furt, Freitag, Hannover, Januar, Juli, Juni, Mittwoch, Montag. Since the

7.6 Experiments 83

Table 7.4 Keyword spotting results on Verbmobil. The error measure is the
keyword error rate. Results are a mean over 4 runs, ± standard error.

System Error (%)

BLSTM-CTC (approx. location) 15.5 ± 1.2
BLSTM-CTC (any location) 13.9 ± 0.7

dialogues are concerned with dates and places, all of these occurred fairly
frequently in the data sets. One complication is that there are pronunciation
variants of some of these keywords (e.g. “Montag” can end either with a /g/
or with a /k/). Another is that several keywords appear as sub-words, e.g. in
plural form such as “Montags” or as part of another word such as “Ostermon-
tag” (Easter Monday). The start and end times of the keywords were given
by the automatic segmentation provided with the phonetic transcription.

In total there were 10,469 keywords on the training set with an average
of 1.7% keywords per non-empty utterance (73.6% of the utterances did not
have any keyword); 663 keywords on the validation set with an average of
1.7% keywords per non-empty utterance (68.7% of the utterances did not
have any keyword); and 620 keywords on the test set with an average of 1.8
keywords per non-empty utterance (71.1% of the utterances did not have any
keyword).

The audio preprocessing was identical to that described in Section 5.1,
except that the second order derivatives of the MFCC coefficients were also
included, giving a total of 39 inputs per frame.

7.6.3.2 Experimental Setup

The BLSTM-CTC network contained 128 single-memory-cell LSTM blocks
in the forward and backward hidden layers. The output layer contained 13
units and the input layer contained 39 units, giving 176,141 weights in total.
Gaussian noise with a mean of 0 and a standard deviation of 0.5 was added
during training.

We considered the network to have successfully found the approximate
location of a keyword if it predicted the correct label within 0.5 seconds of
the boundary of the keyword segment. The experiment was not repeated
for the approximate location results: the output of the network was simply
re-scored with the location constraint included.

7.6.3.3 Results

Table 7.4 shows that the network gave a mean error rate of 15.5%. Per-
formance was only slightly better without the constraint that it find the
approximate location of the keywords. This shows in most cases it aligned
the keywords with the relevant portion of the input signal.

84 7 Connectionist Temporal Classification

 0

 1
K

ey
w

o
rd

 p
ro

b
ab

il
it

y

Time

montag donnerstag freitag montag freitag

Fig. 7.7 CTC outputs for keyword spotting on Verbmobil

δ
(o

u
tp

u
t)

 /
 δ

(i
n
p
u
t)

Time

donnerstag (0.9 seconds)

Fig. 7.8 Sequential Jacobian for keyword spotting on Verbmobil

Although we don’t have a direct comparison for this result, a benchmark
HMM system performing full speech recognition on the same dataset achieved
a word error rate of 35%. We attempted to train an HMM system specifically
for keyword spotting, with a single junk model for everything apart from the
keywords, but found that it did not converge. This is symptomatic of the
difficulty of using a generative model for a task where so much of the input
is irrelevant.

The mean training time for the network was 91.3 ± 22.5 epochs.

7.6.3.4 Analysis

Figure 7.7 shows the CTC outputs during a dialogue turn containing several
keywords. For a zoomed in section of the same dialogue turn, Figure 7.8
shows the sequential Jacobian for the output unit associated with the key-
word “Donnerstag” at the time step indicated by an arrow at the top of the
figure. The extent (0.9 s) and location of the keyword in the speech signal is
shown at the top of the figure. As can be seen, the output is most sensitive to

7.6 Experiments 85

the first part of the keyword. This is unsurprising, since the ending, “tag”,
is shared by many of the keywords and is therefore the least discriminative
part.

7.6.4 Online Handwriting Recognition

The task in this section is online handwriting recognition, using the IAM-
OnDB handwriting database (Liwicki and Bunke, 2005b)1. In online hand-
writing recognition, the state and position of the pen is recorded during
writing, and used as input to the learning algorithm.

For the CTC experiments (Liwicki et al., 2007; Graves et al., 2008, 2009),
the character error rate is obtaining using best-path decoding, and the word
error rate using constrained decoding. For the HMM system, only the word
error rate is given.

We compare results using two different input representations, one hand
crafted for HMMs, the other consisting of raw data direct from the pen
sensor.

7.6.4.1 Data and Preprocessing

IAM-OnDB consists of pen trajectories collected from 221 different writers
using a ‘smart whiteboard’ (Liwicki and Bunke, 2005a). The writers were
asked to write forms from the LOB text corpus (Johansson et al., 1986), and
the position of their pen was tracked using an infra-red device in the corner
of the board. The original input data consists of the x and y pen coordinates,
the points in the sequence when individual strokes (i.e. periods when the pen
is pressed against the board) end, and the times when successive position
measurements were made. Recording errors in the x, y data was corrected by
interpolating to fill in for missing readings, and removing steps whose length
exceeded a certain threshold.

The character level transcriptions contain 80 distinct target labels (capital
letters, lower case letters, numbers, and punctuation). A dictionary consist-
ing of the 20, 000 most frequently occurring words in the LOB corpus was
used for decoding, along with a bigram language model. 5.6% of the words
in the test set were not contained in the dictionary. The language model was
optimised on the training and validation sets only.

IAM-OnDB is divided into a training set, two validation sets, and a test
set, containing respectively 5364, 1,438, 1,518 and 3,859 written lines taken
from 775, 192, 216 and 544 forms. For our experiments, each line was assumed
to be an independent sequence (meaning that the dependencies between suc-
cessive lines, e.g. for a continued sentence, were ignored).

Two input representations were used for this task. The first consisted
simply of the offset of the x, y coordinates from the top left of the line, along
with the time from the beginning of the line, and an extra input to mark the

1 Available for public download at http://www.iam.unibe.ch/∼fki/iamondb/

http://www.iam.unibe.ch/~fki/iamondb/

86 7 Connectionist Temporal Classification

Table 7.5 Character recognition results on IAM-OnDB. The error measure
is the character error rate. Results are a mean over 4 runs, ± standard error.

Input Error (%)

Raw 13.9 ± 0.1
Preprocessed 11.5 ± 0.05

points when the pen was lifted off the whiteboard (see Figure 7.9). We refer
to this as the raw representation.

The second representation required a large amount of sophisticated pre-
processing and feature extraction (Liwicki et al., 2007). We refer to this as
the preprocessed representation. Briefly, in order to account for the variance
in writing styles, the pen trajectories were first normalised with respect to
such properties as the slant, skew and width of the letters, and the slope
of the line as a whole. Two sets of input features were then extracted, one
consisting of ‘online’ features, such as pen position, pen speed, line curvature
etc., and the other consisting of ‘offline’ features derived from a two dimen-
sional window of the image reconstructed from the pen trajectory. Delayed
strokes (such as the crossing of a ‘t’ or the dot of an ‘i’) are removed by the
preprocessing because they introduce difficult long time dependencies.

7.6.4.2 Experimental Setup

The network contained 100 LSTM blocks in the forward and backward hidden
layers. The output layer contained 81 units. For the raw representation, there
were 4 input units, giving 100,881 weights in total. For the preprocessed
representation, there were 25 input units, giving 117,681 weights in total. No
noise was added during training.

The HMM setup (Liwicki et al., 2007) contained a separate, linear HMM
with 8 states for each character (8 ∗ 81 = 648 states in total). Diagonal
mixtures of 32 Gaussians were used to estimate the observation probabilities.
All parameters, including the word insertion penalty and the grammar scale
factor, were optimised on the validation set.

7.6.4.3 Results

Table 7.6 shows that with a language model and the preprocessed input repre-
sentation, BLSTM-CTC gives a mean word error rate of 20.4%, compared to
35.5% with a benchmark HMM. This is an error reduction of 42.5%. More-
over, even without the language model or the handcrafted preprocessing,
BLSTM-CTC clearly outperforms HMMs.

The mean training time for the network was 41.3 ± 2.4 epochs for the
preprocessed data, and 233.8 ± 16.8 epochs for the raw data. This disparity

7.6 Experiments 87

Fig. 7.9 BLSTM-CTC network labelling an excerpt from IAM-OnDB,
using raw inputs. The ‘:’ label in the outputs is an end-of-word marker. The
‘Reconstructed Image’ was recreated from the pen positions stored by the sensor.
Successive strokes have been alternately coloured red and black to highlight their
boundaries. Note that strokes do not necessarily correspond to individual letters:
this is no problem for CTC because it does not require segmented data. This
example demonstrates the robustness of CTC to line slope, and illustrates the need
for context when classifying letters (the ‘ri’ in ‘bring’ is ambiguous on its own, and
the final ‘t’ could equally be an ‘l‘).

88 7 Connectionist Temporal Classification

Table 7.6 Word recognition on IAM-OnDB. The error measure is the word
error rate. LM = language model. BLSTM-CTC results are a mean over 4 runs, ±
standard error. All differences were significant (p < 0.01).

System Input LM Error (%)

HMM Preprocessed � 35.5
BLSTM-CTC Raw ✗ 30.1 ± 0.5
BLSTM-CTC Preprocessed ✗ 26.0 ± 0.3
BLSTM-CTC Raw � 22.8 ± 0.2
BLSTM-CTC Preprocessed � 20.4 ± 0.3

reflects the fact that the preprocessed data contains simpler correlations and
shorter time-dependencies, and is therefore easier for the network to learn.
It is interesting to note how large the variance in training epochs was for the
raw data, given how small the variance in final performance was.

7.6.4.4 Analysis

The results with the raw inputs, where the information required to identify
each character is distributed over many timesteps, demonstrate the ability of
BLSTM to make use of long range contextual information. An indication of
the amount of context required is given by the fact that when we attempted
to train a CTC network with a standard BRNN architecture on the same
task, it did not converge.

Figures 7.10 and 7.11 show sequential Jacobians for BLSTM-CTC net-
works using respectively the raw and preprocessed inputs for a phrase from
IAM-OnDB. As expected, the size of the region of high sensitivity is con-
siderably larger for the raw representation, because the preprocessing creates
localised input features that do not require as much use of long range context.

7.6.5 Offline Handwriting Recognition

This section describes an offline handwriting recognition experiment, using
the IAM-DB offline handwriting corpus (Marti and Bunke, 2002)2. Offline
handwriting differs from online in that only the final image created by the
pen is available to the algorithm. This makes the extraction of relevant input
features more difficult, and usually leads to lower recognition rates.

The images were transformed into one-dimensional feature sequences be-
fore being presented to the network. Chapter 9 describes a network capable
of directly transcribing offline handwriting images, without requiring any
preprocessing.

2 Available for public download at http://www.iam.unibe.ch/∼fki/iamDB

http://www.iam.unibe.ch/~fki/iamDB

7.6 Experiments 89

Fig. 7.10 BLSTM-CTC Sequential Jacobian from IAM-OnDB with raw
inputs. For ease of visualisation, only the derivative with highest absolute value is
plotted at each timestep. The Jacobian is plotted for the output corresponding to
the label ‘i’ at the point when ‘i’ is emitted (indicated by the vertical dashed lines).
Note that the network is mostly sensitive to the end of the word: this is possibly
because ‘ing’ is a common suffix, and finding the ‘n’ and ‘g’ therefore increases the
probability of identifying the ‘i’. Note also the spike in sensitivity at the very end
of the sequence: this corresponds to the delayed dot of the ‘i’.

90 7 Connectionist Temporal Classification

Fig. 7.11 BLSTM-CTC Sequential Jacobian from IAM-OnDB with pre-
processed inputs. As before, only the highest absolute derivatives are shown, and
the Jacobian is plotted at the point when ‘i’ is emitted. The range of sensitivity is
smaller and more symmetrical than for the raw inputs.

7.7 Discussion 91

7.6.5.1 Data and Preprocessing

The IAM-DB training set contains 6,161 text lines written by 283 writers, the
validation set contains 920 text lines by 56 writers, and the test set contains
2,781 text lines by 161 writers. No writer in the test set appears in either
the training or validation sets.

Substantial preprocessing was used for this task (Marti and Bunke, 2001).
Briefly, to reduce the impact of different writing styles, a handwritten text
line image is normalised with respect to skew, slant, and baseline position
in the preprocessing phase. After these normalisation steps, a handwritten
text line is converted into a sequence of feature vectors. For this purpose a
sliding window is used which is moved from left to right, one pixel at each
step. Nine geometrical features are extracted at each position of the sliding
window.

A dictionary and statistical language model, derived from the same three
textual corpora as used in Section 7.6.4, were used for decoding (Bertolami
and Bunke, 2007). The integration of the language model was optimised
on a validation set. As before, the dictionary consisted of the 20,000 most
frequently occurring words in the corpora.

7.6.5.2 Experimental Setup

The HMM-based recogniser was identical to the one used in (Bertolami and
Bunke, 2007), with each character modelled by a linear HMM. The number
of states was chosen individually for each character (Zimmermann et al.,
2006b), and twelve Gaussian mixture components were used to model the
output distribution in each state.

The network contained 100 LSTM blocks in the forward and backward
hidden layers. There were 9 inputs and 82 outputs, giving 105,082 weights
in total. No noise was added during training.

7.6.5.3 Results

From Table 7.7 it can be seen that BLSTM-CTC with a language model gave
a mean word error rate of 25.9%, compared to 35.5%with a benchmark HMM.
This is an error reduction of 27.0%. Without the language model however,
the network did not significantly outperform the HMM. The character error
rate for BLSTM-CTC was 18.2 ± 0.6%.

The mean training time for the network was 71.3 ± 7.5 epochs.

7.7 Discussion

For most of the experiments in this chapter, the performance gap between
BLSTM-CTC networks and HMMs is substantial. In what follows, we discuss
the key differences between the two systems, and suggest reasons for the
network’s superiority.

92 7 Connectionist Temporal Classification

Table 7.7 Word recognition results on IAM-DB. The error measure is the
word error rate. LM = language model. BLSTM-CTC results are a mean over 4
runs, ± standard error.

System LM Error (%)

HMM � 35.5
BLSTM-CTC ✗ 34.6 ± 1.1
BLSTM-CTC � 25.9 ± 0.8

Firstly, HMMs are generative, while an RNN trained with CTC is dis-
criminative. As discussed in Section 2.2.3, the advantages of the generative
approach include the ability to add extra models to an already trained system,
and the ability to generate synthetic data. However, discriminative methods
tend to give better results for classification tasks, because they focus entirely
on finding the correct labels. Additionally, for tasks where the prior data
distribution is hard to determine, generative approaches can only provide
unnormalised likelihoods for the label sequences. Discriminative approaches,
on the other hand, yield normalised label probabilities, which can be used to
assess prediction confidence, or to combine the outputs of several classifiers.

A second difference is that RNNs, and particularly LSTM, provide more
flexible models of the input features than the mixtures of diagonal Gaussians
used in standard HMMs. In general, mixtures of Gaussians can model com-
plex, multi-modal distributions; however, when the Gaussians have diagonal
covariance matrices (as is usually the case) they are limited to modelling dis-
tributions over independent variables. This assumes that the input features
are decorrelated, which can be difficult to ensure for real-world tasks. RNNs,
on the other hand, do not assume that the features come from a particular
distribution, or that they are independent, and can model nonlinear relation-
ships among features. However, RNNs generally perform better using input
features with simpler inter-dependencies.

A third difference is that the internal states of a standard HMM are dis-
crete and single valued, while those of an RNN are defined by the vector
of activations of the hidden units, and are therefore continuous and multi-
variate. This means that for an HMM with N states, only O(logN) bits of
information about the past observation sequence are carried by the internal
state. For an RNN, on the other hand, the amount of internal information
grows linearly with the number of hidden units.

A fourth difference is that HMMs are constrained to segment the input
sequence in order to determine the sequence of hidden states. This is of-
ten problematic for continuous input sequences, since the precise boundary
between units, such as cursive characters, can be ambiguous. It is also an
unnecessary burden in tasks such as keyword spotting, where most of the
inputs should be ignored. A further problem with segmentation is that, at
least with standard Markovian transition probabilities, the probability of

7.7 Discussion 93

remaining in a particular state decreases exponentially with time. Exponen-
tial decay is in general a poor model of state duration, and various measures
have been suggested to alleviate this (Johnson, 2005). However, an RNN
trained with CTC does not need to segment the input sequence, and there-
fore avoids both of these problems.

A final, and perhaps most crucial, difference is that unlike RNNs, HMMs
assume the probability of each observation to depend only on the current
state. A consequence of this is that data consisting of continuous trajecto-
ries (such as the sequence of pen coordinates for online handwriting, and the
sequence of window positions in offline handwriting) are difficult to model
with standard HMMs, since each observation is heavily dependent on those
around it. Similarly, data with long range contextual dependencies is trou-
blesome, because individual sequence elements (such as letters or phonemes)
are influenced by the elements surrounding them. The latter problem can be
mitigated by adding extra models to account for each sequence element in all
different contexts (e.g., using triphones instead of phonemes for speech recog-
nition). However, increasing the number of models exponentially increases
the number of parameters that must be inferred which, in turn, increases the
amount of data required to reliably train the system. For RNNs on the other
hand, modelling continuous trajectories is natural, since their own hidden
state is itself a continuous trajectory. Furthermore, the range of contextual
information accessible to an RNN during a particular output prediction can
in principle extend to the entire input sequence.

Chapter 8

Multidimensional Networks

Recurrent neural networks are an effective architecture for sequence learn-
ing tasks where the data is strongly correlated along a single axis. This
axis typically corresponds to time, or in some cases (such as protein sec-
ondary structure prediction) one-dimensional space. Some of the properties
that make RNNs suitable for sequence learning, such as robustness to input
warping and the ability to learn which context to use, are also desirable in
domains with more than one spatio-temporal dimension. However, standard
RNNs are inherently one dimensional, and therefore poorly suited to multi-
dimensional data. This chapter describes multidimensional recurrent neural
networks (MDRNNs; Graves et al., 2007), a special case of directed acyclic
graph RNNs (DAG-RNNs; Baldi and Pollastri, 2003), extend the potential
applicability of RNNs to vision, video processing, medical imaging and many
other areas, while avoiding the scaling problems that have plagued other mul-
tidimensional models. We also introduce multidimensional Long Short-Term
Memory, thereby bringing the benefits of long range contextual processing to
multidimensional tasks.

Although we will focus on the application of MDRNNs to supervised la-
belling and classification, it should be noted that the same architecture could
be used for a wide range of tasks requiring the processing of multidimensional
data.

Section 8.1 provides the background material and literature review for
multidimensional algorithms. Section 8.2 describes the MDRNN architecture
in detail. Section 8.3 presents experimental results on two image classification
tasks.

8.1 Background

Recurrent neural networks were originally developed as a way of extending
feedforward neural networks to sequential data. The addition of recurrent
connections allows RNNs to make use of previous context, as well as making
them more more robust to warping along the time axis than non-recursive
models. Access to contextual information and robustness to warping are also

A. Graves: Supervised Sequence Labell. with Recur. Neur. Networks, SCI 385, pp. 95–108.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

96 8 Multidimensional Networks

important when dealing with multidimensional data. For example, a face
recognition algorithm should use the entire face as context, and should be
robust to changes in perspective, distance etc. It therefore seems desirable
to apply RNNs to such tasks.

However, the standard RNN architectures are inherently one dimensional,
meaning that in order to use them for multidimensional tasks, the data must
be preprocessed to one dimension, for example by presenting one vertical
line of an image at a time to the network. Perhaps the best known use
of neural networks for multidimensional data has been the application of
convolutional networks (LeCun et al., 1998a) to image processing tasks such
as digit recognition (Simard et al., 2003). One disadvantage of convolutional
networks is that, because they are not recurrent, they rely on hand specified
kernel sizes to introduce context. Another disadvantage is that they do not
scale well to large images. For example, sequences of handwritten digits must
be presegmented into individual characters before they can be recognised by
convolutional networks (LeCun et al., 1998a).

Other neural network based approaches to two-dimensional data (Pang
and Werbos, 1996; Lindblad and Kinser, 2005) have been structured like cel-
lular automata. A network update is performed at every timestep for every
data-point, and contextual information propagates one step at a time in all
directions. This provides an intuitive solution to the problem of simultane-
ously assimilating context from all directions. However the computational
cost of accessing long-range context is a serious drawback: if the data con-
tains a total of T points then O(NT) weight updates are required to access
information N steps away.

A more efficient way of building multidimensional context into recurrent
networks is provided by directed acyclic graph RNNs (DAG-RNNs; Baldi
and Pollastri, 2003; Pollastri et al., 2006). DAG-RNNs are networks whose
update order is determined by an arbitrary directed acyclic graph. The fact
that the update graph is acyclic ensures that the network can process the
entire sequence in one pass, making the diffusion of context information as
efficient as it is for ordinary RNNs. Various forms of DAG-RNN appeared
in publications prior to Baldi’s (Goller, 1997; Sperduti and Starita, 1997;
Frasconi et al., 1998; Hammer, 2002). However these works mostly focused
on networks with tree-structured update graphs, whereas we are interested in
the case where the graph corresponds to an n-dimensional grid. If 2n distinct
hidden layers are used to process the grid along all possible directions, and all
of these layers feed forward to the same output layer, the resulting network
is termed the ‘canonical’ n-dimensional generalisation of bidirectional RNNs
by Baldi. In two dimensions, this structure has been successfully used to
evaluate positions in the board game ‘Go’ (Wu and Baldi, 2006) and to
determine two dimensional protein contact maps (Baldi and Pollastri, 2003).
The multidimensional networks discussed in this chapter are equivalent to
n-dimensional canonical DAG-RNNs, although the formulation is somewhat
different.

8.2 Network Architecture 97

Fig. 8.1 MDRNN forward pass Fig. 8.2 MDRNN backward pass

Various statistical models have been proposed for multidimensional data,
notably multidimensional hidden Markov models. However, multidimen-
sional HMMs suffer from two serious drawbacks: (1) the time required to
run the Viterbi algorithm, and thereby calculate the optimal state sequences,
grows exponentially with the size of the data exemplars, and (2) the number
of transition probabilities, and hence the required memory, grows exponen-
tially with the data dimensionality. Numerous approximate methods have
been proposed to alleviate one or both of these problems, including pseudo
2D and 3D HMMs (Hülsken et al., 2001), isolating elements (Li et al., 2000),
approximate Viterbi algorithms (Joshi et al., 2005), and dependency tree
HMMs (Jiten et al., 2006). However, none of these methods exploit the full
multidimensional structure of the data.

As we will see, MDRNNs bring the benefits of RNNs to multidimensional
data, without suffering from the scaling problems described above.

8.2 Network Architecture

The basic idea of MDRNNs is to replace the single recurrent connection
found in standard RNNs with as many recurrent connections as there are
dimensions in the data. During the forward pass, at each point in the data
sequence, the hidden layer of the network receives both an external input
and its own activations from one step back along all dimensions. Figure 8.1
illustrates the two dimensional case.

Note that, although the word sequence usually denotes one dimensional
data, we will use it to refer to independent data exemplars of any dimension-
ality. For example, an image is a two dimensional sequence, a video is a three
dimensional sequence, and a series of fMRI brain scans is a four dimensional
sequence.

Clearly, the data must be processed in such a way that when the network
reaches a point in an n-dimensional sequence, it has already passed through
all the points from which it will receive its previous activations. This can be
ensured by following a suitable ordering on the set of points {(p1, p2, ..., pn)}.
One example of such an ordering is (p1, . . . , pn) < (p′1, . . . , p

′
n) if ∃ m ∈

(1, . . . , n) such that pm < p′m and pd = p′d ∀ d ∈ (1, . . . ,m − 1). Note that
this is not the only possible ordering, and that its realisation for a particular
sequence depends on an arbitrary choice of axes. We will return to this point

98 8 Multidimensional Networks

Fig. 8.3 Sequence ordering of 2D data. The MDRNN forward pass starts at
the origin and follows the direction of the arrows. The point (i,j) is never reached
before both (i-1,j) and (i,j-1).

in Section 8.2.1. Figure 8.3 illustrates the above ordering for a 2 dimensional
sequence.

The forward pass of an MDRNN can then be carried out by feeding forward
the input and the n previous hidden layer activations at each point in the
ordered input sequence, and storing the resulting hidden layer activations.
Care must be taken at the sequence boundaries not to feed forward activations
from points outside the sequence.

Note that the ‘points’ in the input sequence will in general be multivalued
vectors. For example, in a two dimensional colour image, the inputs could
be single pixels represented by RGB triples, or groups of pixels, or features
provided by a preprocessing method such as a discrete cosine transform.

The error gradient of an MDRNN (that is, the derivative of some loss
function with respect to the network weights) can be calculated with an
n-dimensional extension of backpropagation through time (BPTT; see Sec-
tion 3.1.4 for more details). As with one dimensional BPTT, the sequence
is processed in the reverse order of the forward pass. At each timestep, the
hidden layer receives both the output error derivatives and its own n ‘fu-
ture’ derivatives. Figure 8.2 illustrates the BPTT backward pass for two
dimensions. Again, care must be taken at the sequence boundaries.

Define apj and bpj respectively as the network input to unit j and the
activation of unit j at point p = (p1, . . . , pn) in an n-dimensional sequence
x. Let wd

ij be the weight of the recurrent connection from unit i to unit j
along dimension d. Consider an n-dimensional MDRNN with I input units,
K output units, and H hidden summation units. Let θh be the activation
function of hidden unit h. Then the forward pass up to the hidden layer for
a sequence with dimensions (D1, D2, . . . , Dn) is given in Algorithm 8.1.

Note that units are indexed starting at 1, while coordinates are indexed
starting at 0. For some unit j and some differentiable loss function L, define

δpj
def
=

∂L
∂apj

(8.1)

Then the backward pass for the hidden layer is given in Algorithm 8.2.

8.2 Network Architecture 99

for p1 = 0 to D1 − 1 do
for p2 = 0 to D2 − 1 do

. . .
for pn = 0 to Dn − 1 do
for h = 1 to H do
aph =

∑I
i=1 x

p
i wih

for d = 1 to n do
if pd > 0 then

aph +=
∑H

h′=1 b
(p1,...,pd−1,...,pn)
h′ wd

h′h
bph = θh(a

p
h)

Algorithm 8.1 MDRNN Forward Pass

for p1 = D1 − 1 to 0 do
for p2 = D2 − 1 to 0 do

. . .
for pn = Dn − 1 to 0 do
for h = 1 to H do
eph =

∑K
k=1 δ

p
kwhk

for d = 1 to n do
if pd < Dd − 1 then

eph +=
∑H

h′=1 δ
(p1,...,pd+1,...,pn)
h′ wd

hh′

δph = θ′h(e
p
h)

Algorithm 8.2 MDRNN Backward Pass

Defining p−
d

def
= (p1, . . . , pd − 1, . . . , pn) and p+

d

def
= (p1, . . . , pd + 1, . . . , pn),

the above procedures can be compactly expressed as follows:

Forward Pass

aph =

I∑

i=1

xp
i wih +

n∑

d=1:
pd>0

H∑

h′=1

b
p−

d

h′ w
d
h′h (8.2)

bph = θh(a
p
h) (8.3)

Backward Pass

δph = θ′h(a
p
h)

⎛

⎜⎝
K∑

k=1

δpkwhk +

n∑

d=1:
pd<Dd−1

H∑

h′=1

δ
p+

d

h′ w
d
hh′

⎞

⎟⎠ (8.4)

100 8 Multidimensional Networks

Fig. 8.4 Context available at (i,j) to a unidirectional MDRNN

Since the forward and backward pass require one pass each through the data
sequence, the overall complexity of MDRNN training is linear in the number
of data points and the number of network weights.

In the special case where n = 1, the above equations reduce to those of a
standard RNN (Section 3.2).

8.2.1 Multidirectional Networks

At some point (p1, . . . , pn) in the input sequence, the network described above
has access to all points (p′1, . . . , p′n) such that p′d ≤ pd ∀ d ∈ (1, . . . , n). This
defines an n-dimensional ‘context region’ of the full sequence, as illustrated in
Figure 8.4. For some tasks, such as object recognition, this would in principle
be sufficient. The network could process the image according to the ordering,
and output the object label at a point when the object to be recognised is
entirely contained in the context region.

However it is usually preferable for the network to have access to the
surrounding context in all directions. This is particularly true for tasks where
precise localisation is required, such as image segmentation. As discussed in
Chapter 3, for one dimensional RNNs, the problem of multidirectional context
was solved by the introduction of bidirectional recurrent neural networks
(BRNNs). BRNNs contain two separate hidden layers that process the input
sequence in the forward and reverse directions. The two hidden layers are
connected to a single output layer, thereby providing the network with access
to both past and future context.

BRNNs can be extended to n-dimensional data by using 2n separate hidden
layers, each of which processes the sequence using the ordering defined above,
but with a different choice of axes. The axes are chosen so that each one has
its origin on a distinct vertex of the sequence. The 2 dimensional case is
illustrated in Figure 8.5. As before, the hidden layers are connected to a
single output layer, which now has access to all surrounding context (see
Figure 8.6). Baldi refers to this structure as the “canonical” generalisation
of BRNNs (Baldi and Pollastri, 2003).

Clearly, if the size of the hidden layers is held constant, the complexity of
the multidirectional MDRNN architecture scales as O(2n) for n-dimensional

8.2 Network Architecture 101

Fig. 8.5 Axes used by the 4 hidden layers in a multidirectional MDRNN.
The arrows inside the rectangle indicate the direction of propagation during the
forward pass.

Fig. 8.6 Context available at (i,j) to a multidirectional MDRNN

data. In practice however, the computing power of the network is governed
by the overall number of weights, rather than the size of the hidden layers,
because the data processing is shared between the layers. Since the com-
plexity of the algorithm is linear in the number of parameters, the O(2n)
scaling factor can be offset by simply using smaller hidden layers for higher
dimensions. Furthermore, the complexity of a task, and therefore the number
of weights likely to be needed for it, does not necessarily increase with the
dimensionality of the data. For example, both the networks described in this
chapter have less than half the weights than the one dimensional networks
we applied to speech recognition in Chapters 5–7. We have also found that
using a multidirectional MDRNN tends to give better results than a unidi-
rectional MDRNN with the same overall number of weights; this is in keeping
with the advantage of bidirectional RNNs over normal RNNs demonstrated
in Chapter 5.

In fact, the main scaling concern for MDRNNs is that there tend to be many
more data points in higher dimensions (e.g. a video sequence contains far more
pixels than an image). This can be partially alleviated by gathering together
the inputs into multidimensional ‘windows’—for example 8 by 8 by 8 pixels
for a video. A more powerful approach to the problem of very large sequences,
based on hierarchical subsampling, is described in the next chapter.

For a multidirectional MDRNN, the forward and backward passes through
an n-dimensional sequence can be summarised as follows:

102 8 Multidimensional Networks

1: For each of the 2n hidden layers choose a distinct vertex of the sequence,
then define a set of axes such that the vertex is the origin and all sequence
coordinates are ≥ 0

2: Repeat Algorithm 8.1 for each hidden layer
3: At each point in the sequence, feed forward all hidden layers to the output

layer

Algorithm 8.3 Multidirectional MDRNN Forward Pass

1: At each point in the sequence, calculate the derivative of the loss function
with respect to the activations of output layer

2: With the same axes as above, repeat Algorithm 8.2 for each hidden layer

Algorithm 8.4 Multidirectional MDRNN Backward Pass

8.2.1.1 Symmetrical Layers

In general different weights are used for the connections to and from each
hidden layer in a multidirectional MDRNN. However if the data is known to
be symmetrical about some axis it may be advantageous to reuse the same
weights across pairs of layers. For example images of natural scenes look
qualitatively the same when mirrored about the vertical axis (but not about
the horizontal axis). It would therefore make sense to process such images
with an MDRNN where the two downward-scanning layers (layer 1 and layer
3 in Figure 8.6) share the same weights, and the two upward-scanning layers
(layers 2 and 4) share a different set of weights.

8.2.2 Multidimensional Long Short-Term Memory

The standard formulation of LSTM is explicitly one-dimensional, since the
cell contains a single recurrent connection to its own previous value; further-
more this connection is modulated by a single forget gate. However we can
easily extend LSTM to n dimensions by using n recurrent connections (one
for each of the cell’s previous states along every dimension) with n forget
gates. The suffix ι, d denotes the forget gate corresponding to connection d.
As before, peephole connections lead from the cells to the gates. Note how-
ever that the input gates ι is connected to previous cell c along all dimensions
with the same weight (wcι) whereas each forget gate d is only connected to
cell c along dimension d, with a separate weight wc(ι,d) for each d. The peep-
hole to the output gate receives input from the current state, and therefore
requires only a single weight.

Combining the above notation with that of Sections 4.6 and 8.2, the equa-
tions for training multidimensional LSTM can be written as follows:

8.2 Network Architecture 103

8.2.2.1 Forward Pass

Input Gates

apι =
I∑

i=1

xp
i wiι +

n∑

d=1:
pd>0

(
H∑

h=1

b
p−

d

h wd
hι +

C∑

c=1

wcιs
p−

d
c

)
(8.5)

bpι = f(apι) (8.6)

Forget Gates

apφ,d =

I∑

i=1

xp
i wi(φ,d) +

n∑

d′=1:
pd′>0

H∑

h=1

b
p−

d′
h wd′

h(φ,d) +

{∑C
c=1 wc(φ,d)s

p−
d

c if pd > 0

0 otherwise

(8.7)

bpφ,d = f(apφ,d) (8.8)

Cells

apc =

I∑

i=1

xp
i wic +

n∑

d=1:
pd>0

H∑

h=1

b
p−

d

h wd
hc (8.9)

spc = bpι g(a
p
c) +

n∑

d=1:
pd>0

s
p−

d
c bpφ,d (8.10)

Output Gates

apω =

I∑

i=1

xp
i wiω +

n∑

d=1:
pd>0

H∑

h=1

b
p−

d

h wd
hω +

C∑

c=1

wcωs
p
c (8.11)

bpω = f(apω) (8.12)

Cell Outputs
bpc = bpωh(s

p
c) (8.13)

8.2.2.2 Backward Pass

εpc
def
=

∂L
∂bpc

εps
def
=

∂L
∂spc

(8.14)

Cell Outputs

εpc =

K∑

k=1

δpkwck +

n∑

d=1:
pd<Dd−1

H∑

h=1

δ
p+

d

h wd
ch (8.15)

104 8 Multidimensional Networks

Output Gates

δpω = f ′(apω)
C∑

c=1

εpc h(s
p
c) (8.16)

States

εps = bpωh
′(spc)ε

p
c + δpωwcω +

n∑

d=1:
pd<Dd−1

(
ε
p+

d
s b

p+
d

φ,d + δ
p+

d
ι wcι + δ

p+
d

φ,dwc(φ,d)

)

(8.17)

Cells

δpc = bpι g
′(apc)ε

p
s (8.18)

Forget Gates

δpφ,d =

{
f ′(apφ,d)

∑C
c=1 s

p−
d

c εps if pd > 0

0 otherwise
(8.19)

Input Gates

δpι = f ′(apι)
C∑

c=1

g(apc)ε
p
s (8.20)

8.3 Experiments

8.3.1 Air Freight Data

The Air Freight database (McCarter and Storkey, 2007) is a ray-traced colour
image sequence that comes with a ground truth segmentation into the differ-
ent textures mapped onto the 3-d models (Figure 8.7). The sequence is 455
frames long and contains 155 distinct textures. Each frame is 120 pixels high
and 160 pixels wide.

The advantage of ray-traced data is that the true segmentation can be
determined directly from the 3D models. Although the images are not real,
they are at least somewhat realistic with shadows, reflections and highlights
that make the segmentation challenging to determine.

We used the individual frames in the video sequence to define a 2D image
segmentation task, where the aim was to assign each pixel in the input data
to the correct texture class. We divided the data at random into a 250 frame
train set, a 150 frame test set and a 55 frame validation set. We could instead
have defined a 3D task where the network processed segments of the video as
independent sequences. However, this would have left us with fewer examples
for training and testing.

8.3 Experiments 105

Fig. 8.7 Frame from the Air Freight database. The original image is on the
left and the colour-coded texture segmentation is on the right.

For this task we used a multidirectional 2D RNN with LSTM hidden lay-
ers. Each of the 4 layers consisted of 25 memory blocks, each containing 1
cell, 2 forget gates, 1 input gate, 1 output gate and 5 peephole weights. This
gave a total 600 hidden units. The input and output activation function of
the cells was tanh, and the activation function for the gates was the logistic
sigmoid. The input layer was size 3 (one each for the red, green and blue
components of the pixels) and the output layer was size 155 (one unit for each
texture). The network contained 43,257 trainable weights in total. The soft-
max activation function was used at the output layer, with the cross-entropy
loss function (Section 3.1.3). The network was trained using online gradient
descent (weight updates after every training sequence) with a learning rate
of 10−6 and a momentum of 0.9.

The final pixel classification error rate, after 330 training epochs, was 7.1%
on the test set.

8.3.2 MNIST Data

The MNIST database (LeCun et al., 1998a) of isolated handwritten digits
is a subset of a larger database available from NIST. It consists of size-
normalised, centred images, each of which is 28 pixels high and 28 pixels
wide and contains a single handwritten digit. The data comes divided into a
training set with 60,000 images and a test set with 10,000 images. We used
10,000 of the training images for validation, leaving 50,000 for training.

The task on MNIST is to label the images with the corresponding digits.
This is a widely-used benchmark for pattern classification algorithms.

We trained the network to perform a slightly modified task where each
pixel was classified according to the digit it belonged to, with an additional
class for background pixels. We then recovered the original task by choosing
for each sequence the digit whose corresponding output unit had the highest
cumulative activation over the entire sequence.

To test the network’s robustness to input warping, we also evaluated it on
an altered version of the MNIST test set, where elastic deformations had been

106 8 Multidimensional Networks

Fig. 8.8 MNIST image before and after deformation

Table 8.1 Classification results on MNIST. The error measure is the image
misclassification rate

Network Clean Error (%) Warped Error (%)

Convolutional 0.9 11.3
MDRNN 0.9 7.1

applied to every image (see Figure 8.8). The deformations were the same as
those recommended by Simard (2003) to augment the MNIST training set,
with parameters σ = 4.0 and α = 34.0, and using a different initial random
field for every sample image.

We compared our results with the convolutional neural network that has
achieved the best results so far on MNIST (Simard et al., 2003). Note that we
re-implemented the convolutional network ourselves, and we did not augment
the training set with elastic distortions, which gives a substantial improve-
ment in performance.

The MDRNN for this task was identical to that for the Air Freight task
with the following exceptions: the sizes of the input and output layers were
now 1 (for grayscale pixels) and 11 (one for each digit, plus background)
respectively, giving 27,511 weights in total, and the learning rate was 10−5.

Table 8.1 shows that the MDRNN matched the convolutional network on
the clean test set, and was considerably better on the warped test set. This
suggests that MDRNNs are more robust to input warping than convolutional
networks. For the MDRNN, the pixel classification error rates (as opposed
to the image classification error rates) were 0.4% on the clean test set and
3.8% on the warped test set.

One area in which the convolutional net greatly outperformed the MDRNN
was training time. The MDRNN required 95 training epochs to converge,
whereas the convolutional network required 20. Furthermore, each training
epoch took approximately 3.7 hours for the MDRNN compared to under ten
minutes for the convolutional network, using a similar processor. The total
training time for the MDRNN was over two weeks.

8.3 Experiments 107

Fig. 8.9 MDRNN applied to an image from the Air Freight database.
The hidden layer activations display one unit from each of the layers. A common
behaviour is to ‘mask off’ parts of the image, exhibited here by layers 2 and 3.

8.3.3 Analysis

One benefit of two dimensional tasks is that the operation of the network
can be easily visualised. Figure 8.9 shows the network activations during a
frames from the Air Freight database. As can be seen, the network segments
this image almost perfectly, in spite of difficult, reflective surfaces such as the
glass and metal tube running from left to right. Clearly, classifying individual
pixels in such a surface requires the use of contextual information.

Figure 8.10 shows the absolute value of the sequential Jacobian of an out-
put during classification of an image from the MNIST database. It can be
seen that the network responds to context from across the entire image, and

Fig. 8.10 Sequential Jacobian of an MDRNN for an image from MNIST.
The white outputs correspond to the class ‘background’ and the light grey ones to
‘8’. The black outputs represent misclassifications. The output pixel for which the
Jacobian is calculated is marked with a cross. Absolute values are plotted for the
Jacobian, and lighter colours are used for higher values.

108 8 Multidimensional Networks

seems particularly attuned to the outline of the digit. Note that the high
sensitivity to the very corners of the image is irrelevant, since these pixels are
always black in MNIST; this illustrates the need for caution when interpreting
the sequential Jacobian.

Chapter 9

Hierarchical Subsampling Networks

So far we have focused on recurrent neural networks with a single hidden
layer (or set of disconnected hidden layers, in the case of bidirectional or
multidirectional networks). As discussed in Section 3.2, this structure is in
principle able to approximate any sequence-to-sequence function arbitrarily
well, and should therefore be sufficient for any sequence labelling task. In
practice however, it tends to struggle with very long sequences. One problem
is that, because the entire network is activated at every step of the sequence,
the computational cost can be prohibitively high. Another is that the infor-
mation tends to be more spread out in longer sequences, and sequences with
longer range interdependencies are generally harder to learn from.

The effect of sequence length is particularly apparent when the same data
is represented in different ways. For example, in the speech recognition ex-
periments we have considered so far the audio data has been pre-processed
into sequences consisting of one feature vector for every 10ms of audio. Were
we to use raw audio data instead, with a sampling rate of, say, 48KHz, each
utterance would be 480 times as long, and the network would therefore need
to have approximately 1/480 times the number of weights to process the data
at the same speed. Clearly we could not expect comparable performance from
such a network. And even given an equally large network, the typical spac-
ing between related inputs would be 480 times as long, which would greatly
increase the demands on the network’s memory.

A common way to reduce the length of data sequences is to subsample
them: that is, gather together consecutive timesteps into blocks or windows.
Given a hierarchy of sequence processors, where the output of the processor
at one level is the input of the processor at the next, we can progressively
reduce the length by subsampling each output sequence before passing it up
the hierarchy. So-called hierarchical subsampling is commonly used in fields
such as computer vision where the volume of data is too great to be processed
by a ‘flat’ architecture (LeCun et al., 1998b; Reisenhuber and Poggio, 1999).
As well as reducing computational cost, it also reduces the effective dispersal
of the data, since inputs that are widely separated at the bottom of the
hierarchy are transformed to features that are close together at the top.

A.Graves: Supervised Sequence Labell. with Recur. Neur. Networks, SCI 385, pp. 109–131.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

110 9 Hierarchical Subsampling Networks

Fig. 9.1 Information flow through an HSRNN. The input sequence is sub-
sampled and then scanned by a recurrent hidden layer. The sequence of hidden
layer activations is subsampled again and scanned by the next hidden layer. The
activations of the final hidden layer are fed without subsampling to the output
layer. Note the progressive shortening of the sequence as it moves up the hierarchy.

This chapter introduces hierarchical subsampling recurrent neural networks
(HSRNNs; Graves and Schmidhuber, 2009) for large data sequences. Al-
though we will focus on the application of HSRNNs to sequence labelling,
the architecture is quite general and should be applicable to many sequence
learning problems.

Section 9.1 describes the architecture in detail, and Section 9.2 provides
experimental results for speech and handwriting recognition.

9.1 Network Architecture

A hierarchical subsampling recurrent neural network (HSRNN) consists of
an input layer, an output layer and multiple levels of recurrently connected
hidden layers. The output sequence of each level in the hierarchy is used as
the input sequence for the next level up. All input sequences are subsampled
using subsampling windows of predetermined width, apart from the input
to the output layer. The overall flow of information through an HSRNN is
sketched in Figure 9.1, while Figure 9.2 provides a more detailed view of an
unfolded HSRNN. The structure is similar to that used by convolutional net-
works (LeCun et al., 1998b), except with recurrent, rather than feedforward,
hidden layers.

For each layer in the hierarchy, the forward pass equations are identical
to those for a standard RNN (see Section 3.2), except that the sum over
input units is replaced by a sum of sums over the subsampling window. For
a hidden layer with H units, an ‘input’ layer (i.e. the next layer down in
the hierarchy) with I units, and a size S subsampling window, the hidden
activations bth for 1 ≤ t ≤ T can be calculated as follows:

9.1 Network Architecture 111

ath =

S∑

s=1

I∑

i=1

ws
ihb

u
i +

H∑

h′=1

wh′hb
t−1
h′ (9.1)

bth = θh(a
t
h) (9.2)

where ws
ih is the weight from input unit i to hidden unit h in step s of the

subsampling window, u = S(t − 1) + s is the timestep where the window
begins in the unsubsampled input sequence and θh is a nonlinear activations
function (which can be replaced with an LSTM block using the equations
in Section 4.6). If the input sequence length is not an exact multiple of the
window width, it is padded with zeros at the end. Note that different weights
are used for each step of the window, giving a total of SIH weights between
the two layers. This provides a more flexible notion of subsampling than is
usually applied in sequence processing, where the elements of the subsample
window are collapsed to a single vector using a fixed operation (typically an
average or maximum).

Fig. 9.2 An unfolded HSRNN. The same weights are reused for each of the
subsampling and recurrent connections along the sequence, giving 10 distinct weight
groups (labelled ‘w1’ to ‘w10’). In this case the hierarchy has three hidden level
and three subsampling windows, all of size two. The output sequence is one eighth
the length of the input sequence.

The complete network is differentiated by first calculating the derivatives
of the loss function with respect to the output units (exactly as for normal
RNNs) then passing the error gradient backwards through the hierarchy.
The gradient for each recurrent layer can be calculated with backpropagation
through time, as described in Section 3.2.2, with the δtk terms provided by the
layer above. The gradient must also pass through the subsampling windows
between the hidden levels. For a hidden layer with H units, an ‘output’ layer

112 9 Hierarchical Subsampling Networks

(i.e. the next layer up in the hierarchy) with K units, the unit derivatives
can be calculated as follows:

δth = θ′h

(
K∑

k=1

wn
hkδ

s
k +

H∑

h′=1

whh′δt+1
h′

)
(9.3)

where t is in the timestep in the unsubsampled sequence, n = (t+1) mod S is
the offset within the subsampling window, s = (t/S)+1 (with (t/S) rounded
down to the nearest integer) is the timestep in the subsampled output se-

quence and δti
def
= ∂O

∂at
i
as usual. If LSTM is used for the hidden layers, the

derivatives θ′h with respect to the activation functions should be replaced
with the LSTM derivatives given in Section 4.6.

9.1.1 Subsampling Window Sizes

Each subsampling operation decreases the length of the output sequence by
a factor of the window width. This reduces both the computational cost
of the higher levels in the hierarchy, and the effective separation between
points in the input sequence. However care must be taken not to make the
windows too large. For one thing the output sequence of the network must
be long enough for the target sequence, a point we will discuss further in
Section 9.1.5. Another issue is that the networks robustness to sequential
distortions is incrementally lost as the window size increases. In the limit
where the window is as long as the original sequence, a recurrent network
reduces to a feedforward network. The windows must therefore be carefully
chosen to match the data and the task. For the experiments in this chapter,
the basic recipe was to try to keep the window sizes roughly equal at each level
(or if necessary, slightly larger at the lower levels), while ensuring that the
output sequence was long enough for all the target sequences in the dataset.

Hierarchical subsampling is often carried out with overlapping subsample
windows. This has the benefit of including surrounding context in each win-
dow. However RNNs are able to supply the context themselves using their
recurrent connections, making the overlaps redundant. Furthermore, using
overlaps increases both the computational cost and the effective distance be-
tween input events—the motivations to use hierarchical subsampling in the
first place. Therefore overlapped windows are not used in this book.

9.1.2 Hidden Layer Sizes

The hidden layer sizes can be varied independently of the subsampling win-
dow sizes. This means that the amount of information in the hidden layer
sequences can increase, decrease or remain the same as we move up the hi-
erarchy. More precisely if a hidden layer has H units, the layer below has I
units and the subsampling window is size S, then the output sequence of the
higher layer contains HS

I as many bits as that of the lower layer. This is in

9.1 Network Architecture 113

contrast to the usual notion of subsampling in signal processing, where the
vectors in the subsampled sequence are always the same size as the vectors
in the input sequence. However traditional subsampling is primarily carried
to to reduce the bit rate of the signal, whereas with HSRNNs we we are more
concerned with reducing the lengths of the sequences, and may even want to
increase the bit rate.

As with all neural network architectures, the performance of HSRNNs
generally increases as the hidden layers get bigger (at least if early stopping or
some other regularisation method is used to prevent overfitting). A good rule
of thumb is to choose the layer sizes so that each level consumes roughly half
the processing time of the level below. For example, if the first hidden layer
contains I units (requiring approximately I2 weight operations per timestep),
and is subsampled into width S windows, give the next hidden level H units
such that

H2 ≈ SI2

2
(9.4)

This method, which ensures that the total processing time is never much more
than twice that of the lowest hidden layer alone, leads to larger layers at the
top of the hierarchy than at the bottom. The network therefore progresses
from a few high resolution features to many low resolution features, as is
typical for hierarchical subsampling systems.

9.1.3 Number of Levels

It has been repeatedly noted that training neural networks with many layers
using gradient descent is difficult (Hinton et al., 2006; Bengio et al., 2007).
This is essentially a restatement of the vanishing gradient problem for RNNs:
the sensitivity of the output layer to a given hidden layer tends to decrease
the more hidden layers there are between them, just as the sensitivity of an
RNN output to a past input decreases as the number of timesteps between
them grows. There is therefore a tradeoff between the gain in efficiency
and compactness afforded by adding extra hidden levels, and the increased
difficulty of training the network. In practice three layers seems to gives good
performance for a wide range of data and tasks, and all the experiments in
this chapter use three-layer networks.

9.1.4 Multidimensional Networks

The extension of HSRNNs to the multidimensional networks covered in the
previous chapter is straightforward: the one-dimensional subsampling win-
dows are replaced by multidimensional windows. The sum over timesteps
in the subsampling window in (9.1) is therefore replaced with a multidimen-
sional sum over points, and the derivative calculation is modified accordingly.
Borrowing the terminology of convolutional networks, we will sometimes refer
to the output sequences of two-dimensional network levels as feature maps.

114 9 Hierarchical Subsampling Networks

9.1.4.1 Multidirectional Networks

Hierarchical subsampling with the multidirectional MDRNNs described in
Section 8.2.1 (of which bidirectional RNNs—Section 3.2.4—are a special case)
is somewhat complicated by the fact that each level of the hierarchy requires
2n hidden layers instead of one. To connect every layer at one level to every
layer at the next therefore requires O(22n) weights. One way to reduce the
number of weights is to separate the levels with nonlinear feedforward layers,
which reduces the number of weights between the levels to O(2n)—the same
as standard MDRNNs.

The flow of information through a multidirectional HSRNN with feedfor-
ward layers is illustrated in Figure 9.3.

Fig. 9.3 Information flow through a multidirectional HSRNN. Each hidden
level consists of two recurrent layers scanning in opposite directions. Each pair
of hidden levels is separated by a feedforward layer (with no scanning arrow).
Subsampling is carries out at the places indicated with a ‘*’. Note that the outputs
of the final hidden level are neither subsampled nor passed through a feedforward
layer before being fed to the output layer.

As with the hidden layers, the sizes of the feedforward layers should to be
chosen to balance performance against computation time. The feedforward
layers act as a bottleneck to the information reaching the higher levels, and
making them too small can hamper the network. As a rule of thumb, giving
each feedforward layer between half and one times as many units as the
combined hidden layers in the level below appears to work well in practice.
However we have found it beneficial to tune the precise number of feedforward
units separately for every experiment.

9.1 Network Architecture 115

Unlike the rest of the network, bias weights are not usually connected to the
feedforward layers, because they appear to make no difference to performance
(presumably the biases in the recurrent layers are able to compensate).

9.1.5 Output Layers

In principle HSRNNs can be trained with the same output layers as ordinary
RNNs. However care must be taken to ensure that the output sequence has
the correct shape for the corresponding loss function. For example, HSRNNs
are clearly unsuited to framewise classification or other tasks where a sepa-
rate output is required for every input, since this would make subsampling
impossible. An HSRNN trained with CTC (Chapter 7), on the other hand,
must output a one dimensional sequence at least as long as the target se-
quence, while an HSRNN used for sequence classification must emit a single
output per sequence.

If the dimensions of the input and output sequences are fixed, or even if
the relationship between them is fixed (for example if a single classification
is required for every fixed-length input segment) the subsample windows can
be chosen to ensure that the output sequences are the correct shape. How-
ever, the focus of this book is on problems where labels are applied to input
patterns of widely varying duration or shape. In what follows, we describe
a simple technique for ensuring that the outputs of an HSRNN can be used
for sequence and temporal classification.

9.1.5.1 Sequence Classification

Perhaps the most obvious way to classify complete sequences with an RNN
is to output a single classification at the end of the sequence. However this
is clearly impractical for bidirectional or multidirectional networks, where
the sequence ‘ends’ at different points for different layers. It also requires the
network to store the information required to make the classification until the
end of the sequence – which may be a long way from where that information
was received.

An alternative approach, used in the image classification experiment in
Section 8.3.2, is to classify each point in the output sequence independently,
then sum up the class probabilities to find the highest ranked class overall.
This approach is applicable to multidirectional networks, and allows the net-
work to make localised classifications based on the information it has just
received from the input sequence. However it requires the network to make
redundant classifications, and is therefore inconsistent with the notion of a
neural network as a single-valued function from input sequences to target
distributions.

The solution employed in this chapter is to first collapse the output se-
quence to a single point then classify that. This can be achieved by summing

116 9 Hierarchical Subsampling Networks

over the inputs to each output unit at all points p in the output sequence,
then applying the softmax function:

ak =
∑

p

apk (9.5)

yk =
eak

∑
p′ eak′ (9.6)

As well as allowing the network to choose where in the sequence to make
predictions, using summation permits different predictions to be made in
different places, then weighted against each other in the final classification
according to the confidence with which they were made.

9.1.5.2 Connectionist Temporal Classification

The reduction of long output sequences to short target sequences is built into
the CTC loss function, and in principle does not have to be provided by the
HSRNN. However for extremely long input sequences, such as raw speech
data, using subsampling to reduce the output sequence length to within a
factor of ten or so of the target sequence length is highly beneficial.

For multidimensional HSRNNs, the output sequence must be collapsed
along all but one of its dimensions before CTC can be applied. For example,
if the task is to transcribe images of handwritten text, the output sequence
should be collapsed vertically (at least for languages with horizontal writing).
If the task is to transcribe a video sequence of sign language gestures, the
output should be collapsed along the two spatial dimensions, leaving only the
time dimension.

If the shape of the input sequence is fixed along the dimensions to be
collapsed, a suitable output sequence can be ensured by choosing the right
subsample window sizes. In the case of video transcription this is quite
feasible, since the spatial dimensions of video data are usually fixed. If the
shape of the input sequences is variable, we can use the same summation
trick for the output unit activations as we used for sequence classification,
only with the sum running over all but one of the output sequence dimensions:

atk =
∑

p1

. . .
∑

pn−1

apk (9.7)

ytk =
ea

t
k

∑
p′ e

at
k′

(9.8)

where the nth dimension is the one along which CTC is applied.

9.1.6 Complete System

The combination of HSRNNs with a CTC or classification output layer
gives a flexible system for labelling large data sequences. The subsampling

9.2 Experiments 117

windows can be adjusted to suit a wide range of input resolutions, and the
dimensionality of the network can be chosen to match the dimensionality of
the data. Fig. 9.4 illustrates a complete two dimensional, multidirectional
HSRNN comprising MDLSTM layers, feedforward layers and a CTC output
layer, applied to offline Arabic handwriting recognition.

9.2 Experiments

This section assesses the practical efficacy of HSRNNs with experiments
on speech and handwriting recognition. the outstanding achievement of
HSRNNs so far is winning handwriting recognition competitions in three dif-
ferent languages at the 2009 International Conference on Document Analysis
and Recognition. These results are reviewed in Sections 9.2.1 to 9.2.4, while
Section 9.2.5 presents phoneme recognition results on the TIMIT database
using three different different representations of acoustic data.

HSRNNs contain considerably more hand-tuned parameters (subsampling
window sizes, multiple hidden layer sizes etc.) than the RNNs we have con-
sidered before. However the majority of these can be held constant for a wide
class of sequence labelling tasks. In what follows we distinguish three differ-
ent types of parameter: those that are fixed for all networks in the chapter;
those that are automatically determined by the task, data or by other param-
eters; and those that are hand-tuned for each network. Only the parameters
in the latter two categories will be specified for individual networks.

Fixed Parameters

• The hierarchy contained three levels.
• The three levels were separated by two feedforward layers with the tanh
activation function.

• Subsampling windows were applied in three places: to the input se-
quence, to the output sequence of the first hidden level, and to the
output sequence of the second hidden level.

• The network architecture was bidirectional LSTM (Section 4.5) for all
experiments with one-dimensional data, and multidirectional MDL-
STM (Section 8.2.1) for all experiments with two-dimensional data.
Each level of the hierarchy therefore contained 2 hidden layers for one-
dimensional data, and 4 hidden layers for two-dimensional data.

• The hidden layers were recurrently connected (all input units connected
to all hidden units, all hidden units connected to all output units and
all hidden units)

• The LSTM blocks contained one cell each.
• The LSTM gate activation function (f in Figure 4.2) was the logistic
sigmoid: f(x) = 1/(1+ e−x), while the cell input and output functions
(g and h in Figure 4.2) were both tanh.

• Online steepest descent was used for training with a momentum of 0.9
and a learning rate of 1e− 4.

118 9 Hierarchical Subsampling Networks

Fig. 9.4 HSRNN applied to offline Arabic handwriting recognition. The
input image, which consists of a single handwritten Arabic word, is subsampled
with a window three pixels wide and four pixels high. The subsampled image is
then scanned by four MDLSTM layers, each containing two cells. The feature maps
corresponding to the activations of the cells in each layer are displayed, with the
arrows in the corners indicating the scanning direction of the layer. The cell activa-
tions are again subsampled with a three by four window then fed to a feedforward
layer of six tanh units. The feature maps corresponding to the feedforward unit
activations are shown. The scanning and subsampling process is repeated until
the feature maps corresponding to the cell activations of the uppermost MDLSTM
layer are combined and collapsed to a single one-dimensional sequence of size 200
vectors, which is transcribed by a CTC layer containing 121 units. In this case all
characters are correctly labelled except the second last one.

9.2 Experiments 119

• A validation set was used for early stopping.
• The weights were randomly initialised from a Gaussian distribution
with mean 0 and standard deviation 0.1.

• The inputs were standardised to have mean 0 and standard deviation
1 on the training set.

• ‘White space’ was trimmed from all input images using the colour of
the top-left pixel.

Automatically Determined Parameters

• The size of the input layer (determined by the input representation).
• The size of the output layer (determined by the target representation).
• The total number of weights in the hierarchy (determined by the layer
sizes).

• The type of output layer (CTC or classification).
• The number of words in the dictionary used for CTC decoding. For all
the tasks in this chapter, dictionary decoding was restricted to single
words (Section 7.5.3.3). For dictionaries containing word variants the
size was recorded as ‘# words / # variants’.

Hand-Tuned Parameters

• The number of LSTM blocks in the recurrent layers in each level of the
hierarchy (note that each layer in the same level always has the same
number of blocks). If the layers contain a blocks in the first level, b
blocks in the second level and c blocks in the third layer, this will be
abbreviated to ‘Recurrent sizes: a, b, c.’ Since the LSTM blocks always
contain once cell, there will be a total a four hidden units per block for
one-dimensional layers, and five per block for two-dimensional layers.

• The sizes of the two feedforward layers separating the hidden levels,
abbreviated to ‘Feedforward sizes: a, b’.

• The dimensions of the three subsampling windows, expressed as a list
like [w1], [w2], [w3] for 1D networks and [w1, h1], [w2, h2], [w3, h3] for 2D
networks, where wi is the width of window i and hi is the height. (Note
that the distinction between width and height is somewhat arbitrary
in general, but for the imaged-based experiments in this chapter it can
be determined by the customary orientation of the image).

• The error measure used as the early-stopping criterion on the validation
set. In most cases this will be the label error rate (Eqn. (2.18)).

9.2.1 Offline Arabic Handwriting Recognition

The offline Arabic handwriting recognition competition at the 2009 Inter-
national Conference on Document Analysis and Recognition (ICDAR 2009)
(Märgner and Abed, 2009) was based on the publicly available IFN/ENIT
database of handwritten Arabic words (Pechwitz et al., 2002). The data

120 9 Hierarchical Subsampling Networks

Fig. 9.5 Offline Arabic word images

consists of 32,492 black-and-white images of individual handwritten Tunisian
town and village names, of which we used 30,000 for training, and 2,492
for validation. The images were extracted from forms filled in by over 400
Tunisian people. The forms were designed to simulate writing on a letter, and
contained no lines or boxes to constrain the writing style. Example images
are shown in Figure 9.5.

Each imagewas suppliedwith amanual transcription for the individual char-
acters, and the postcode of the corresponding town. There were 120 distinct
characters in total, including variant forms for initial, medial, final and isolated
characters. The task was to identify the postcode, froma list of 937 townnames
and corresponding postcodes. Many of the town names had transcription vari-
ants, giving a total of 1,518 entries in the complete postcode lexicon.

The test data (which is not published) was divided into sets ‘f’ and ‘s’.
The main competition results were based on set ‘f’. Set ‘s’ contains data
collected in the United Arab Emirates using the same forms; its purpose was
to test the robustness of the recognisers to regional writing variations. The
entries were ranked according to their performance on set ‘f’. In addition the
recognition time of each of the systems was recorded on two extra subsets,
labelled t and t1.

9.2.1.1 Experimental Setup

Three HSRNNs were entered for the competition, with slightly different pa-
rameters. Within the competition, they were referred to as ‘MDLSTM 9’,
‘MDLSTM 10’ and ‘MDLSTM 11’. The training parameters for the three
systems are listed in Table 9.1. Networks 9 and 10 were identical, except
that the label error rate was used for early stopping with the former, while
the CTC error was used with the latter (in fact they were created during the
same training run, with the weights recorded at different points). Network
11 had twice as many units in all the hidden layers as the other two networks
(giving more than three times as many weights overall).

9.2 Experiments 121

Table 9.1 Networks entered for the offline Arabic handwriting competi-
tion at ICDAR 2009

Competition ID MDLSTM 9 MDLSTM 10 MDLSTM 11

Dimensions 2 2 2
Input Size 1 1 1
Output Size 121 121 121
Feedforward Sizes 6, 20 6, 20 12, 40
Recurrent Sizes 2, 10, 50 2, 10, 50 4, 20, 100
Windows [3, 4], [3, 4], [2, 4] [3, 4], [3, 4], [2, 4] [3, 4], [3, 4], [2, 4]
Weights 159,369 159,369 583,289
Dictionary Size 937 / 1,518 937 / 1,518 937 / 1,518
Output Layer CTC CTC CTC
Stopping Error Label Error Rate CTC loss Label Error Rate

9.2.1.2 Results

The competition results are summarised in Table 9.2. The three HSRNNs
(group ID ‘MDLSTM’) outperformed all other entries, in terms of both recog-
nition rate and speed.

Table 9.2 ICDAR 2009 offline Arabic handwriting recognition competi-
tion results Results on test sets f and s are the percentage of correctly recognised
postcodes. The average recognition time in ms per image on subset t is shown in
the last column. Best results shown in bold.

Group-ID System-ID set f (%) set s (%) time (ms)

UOB-ENST

1 82.07 69.99 812.69
2 78.16 65.61 2365.48
3 79.55 67.83 2236.58
4 83.98 72.28 2154.48

REGIM 5 57.93 49.33 1564.75

Ai2A
6 85.58 70.44 1056,98
7 82.21 66.45 519,61
8 89.42 76.66 2583,64

MDLSTM
9 91.43 78.83 115.24
10 91.37 78.89 114.61
11 93.37 81.06 371.85

RWTH-OCR

12 85.51 71.33 17845.12
13 85.69 72.54 -
14 85.69 72.54 -
15 83.90 65.99 542.12

LITIS-MIRACL 16 82.09 74.51 143269.81
LSTS 17 15.05 11.76 612.56

122 9 Hierarchical Subsampling Networks

Fig. 9.6 Error curves during training of networks 9 and 10. The CTC error
is shown on the left, and the character error is shown on the left. In both plots the
solid line shows the error on the validation set, the dashed line shows the error on
the training set, and the vertical dotted line indicates the point of lowest error on
the validation set.

The overall difference in performance between networks 9 and 10 is negligi-
ble, suggesting that the choice of error measure used for early stopping is not
crucial (although using the CTC loss for early stopping tend to lead to shorter
training times). Of particular interest is that the performance on set s (with
handwriting from the United Arab Emirates) is about the same for both error
measures. The original motivation for comparing the two stopping criteria
was to see which would generalise better to test data drawn from a different
distribution. One hypothesis, which was not supported by the experiment,
was that using CTC loss as a stopping criterion would lead to less overfit-
ting (because it is minimised sooner) and therefore better generalisation to
different test data.

Network 11 gave about a 2% improvement n word recognition over net-
works 9 And 10. Although significant, this improvement comes at a cost of
a more than threefold increase in word recognition time. For applications
where time must be traded against accuracy, the number of units in the
network layers (and hence the number of network weights) should be tuned
accordingly.

Figure 9.6 shows the error curves for networks 9 and 10 during training.
Note that, by the time the character error is minimised, the CTC error is
already well past its minimum and has risen substantially. This is typical for
CTC networks.

Network 9 finished training after 86 epochs, network 10 after 49 epochs
and network 11 after 153 epochs.

9.2.2 Online Arabic Handwriting Recognition

The online Arabic handwriting recognition competition at ICDAR 2009 (Abed
et al., 2009) was based on the ADAB (Arabic DAtaBase) database of Arabic

9.2 Experiments 123

online handwritten words. The database consists of 15, 158 online pen traces,
corresponding to handwritten Arabic words from 130 different writers. The
pen traces are subdivided into individual strokes, with a list of x and y co-
ordinates (recorded at a rate of 125 samples per second) provided for each
stroke. The words were chosen from a dictionary of 984 Tunisian town and
village names and manual transcriptions were provided along with the train-
ing set. Unlike the transcriptions provided for the offline competition, these
were specified as unicode characters, with the distinction between medial,
initial and final characters inferred from their context. There were therefore
only 45 distinct characters in the transcriptions, as opposed to 120 for the
offline competition in the previous section.

The training set was divided into three sets, with a fourth (unpublished)
set was used for testing. The task was to correctly identify the town names
in the test set, using the 984 word dictionary. The recognition rate with the
top one, top five, and top ten answers was recorded by the organisers, and
the entries were ranked according to their performance with one answer. The
average recognition time per image on two subsets of the test set (‘t’ and ‘t1’)
was also recorded. 1, 523 of the training sequences were used as a validation
set for early stopping.

9.2.2.1 Experimental Setup

Two networks were submitted to the competition. For the first, ‘online’
network, the pen traces were fed directly into a one-dimensional HSRNN.
This representation required three input units: two for the x and y pen
coordinates, and one as an ‘end-of-stroke’ marker. For the second, ‘offline’
network, the pen traces were first transformed into a black-and-white image
which was then processed by a two-dimensional HSRNN. The transformation
was carried out by plotting straight lines between the pen coordinates in each
of the strokes, and overlaying the resulting shapes to form an image. An
illustration of the raw and offline representations is shown in Figure 9.7.

The network parameters are listed in Table 9.3. For both networks the
same labels were used for the initial, medial and final forms of the characters,
giving a total of 46 CTC output units. Better results would probably have
been achieved by using different labels for different forms (as was done for
the offline competition in Section 9.2.1).

9.2.2.2 Results

In this competition the two HSRNNs were surpassed, in terms of both accu-
racy and speed, by the recognition systems entered by VisionObjects. The
‘online’ network took 85 epochs to train, while the ‘offline’ network took 91
epochs.

124 9 Hierarchical Subsampling Networks

Fig. 9.7 Online Arabic input sequences. The offline image (above) was re-
constructed from the online trace (below) by joining up the pen coordinates in the
separate strokes.

Table 9.3 Networks entered for the online Arabic handwriting competi-
tion at ICDAR 2009

Name Online Offline

Dimensions 1 2
Input Size 3 1
Output Size 46 46
Feedforward Sizes 20, 60 8, 40
Recurrent Sizes 20, 60, 180 4, 20, 100
Windows [1], [2], [2] [4, 3], [4, 2], [4, 2]
Weights 423,926 550,334
Dictionary Size 984 984
Output Layer CTC CTC
Stopping Error Label Error Rate Label Error Rate

9.2.3 French Handwriting Recognition

The French handwriting recognition competition at ICDAR 2009 (Grosicki
and Abed, 2009) was based on a subset of the RIMES database (Grosicki et al.,
2009) of French mail snippets. 44, 195 hand-transcribed, isolated word images
were provided for training, with a further 7542 images to be used as a validation
set. Example images are shown in Figure 9.8. The transcriptions contained

9.2 Experiments 125

Table 9.4 ICDAR 2009 online Arabic handwriting recognition competi-
tion results Accuracy is % correctly recognised images on dataset 4. The average
recognition time in ms per image on subset t. Best results shown in bold.

System Accuracy (%) time (ms)

HSRNN (online) 95.70 1377.22
HSRNN (offline) 95.70 1712.45
VisionObjects-1 98.99 172.67
VisionObjects-2 98.99 69.41
REGIM-HTK 52.67 6402.24
REGIM-CV 13.99 7251.65
REGIM-CV 38.71 3571.25

Fig. 9.8 French word images

81 distinct characters, including upper and lower case letters (with andwithout
accents), numbers and punctuation. An additional (unpublished) test set of
7464 isolated words was used to assess performance.

Three tasks were defined on the test set, differing only in the dictionaries
used for decoding. The first, referred to as ‘WR1’, defined a different 100
word dictionary for each word in the test set. Each dictionary contained the
correct word plus 99 others randomly chosen from the test set. The second
task (‘WR2’) used a 1,612 word dictionary, composed of all words in the
test set. The third (‘WR3’) used a 5,534 word dictionary composed of all
words in the test and training sets. For any given word in the test set, the
‘WR1’ dictionary was therefore a subset of the ‘WR2’ dictionary, which was
a subset of the ‘WR3’ dictionary. Since adding incorrect words to a lexicon
can only make decoding harder, the difficulty of the tasks strictly increased
from ‘WR1’ to ‘WR2’ to ‘WR3’.

126 9 Hierarchical Subsampling Networks

Table 9.5 Network entered for the French handwriting competition at
ICDAR 2009

Dimensions 2
Input Size 1
Output Size 82
Feedforward Sizes 6, 30
Recurrent Sizes 4, 20, 100
Windows [2, 3], [2, 3], [2, 3]
Weights 531,842
Dictionary Size (WR1) 100
Dictionary Size (WR2) 1,612
Dictionary Size (WR3) 5,534
Output Layer CTC
Stopping Error Label Error Rate

9.2.3.1 Experimental Setup

A single, two-dimensional HSRNN was submitted to the competition, with
three different dictionaries (corresponding to the three tasks ‘WR1’, ‘WR2’
and ‘WR3’) used for decoding. Note that the network was only trained once,
since the dictionary does not influence the CTC loss function. The network
parameters are listed in Table 9.5.

9.2.3.2 Results

The competition results for the three tasks are summarised in Table 9.6.
The HSRNN performed best on all of them and won the competition. It was
trained for 66 epochs.

9.2.4 Farsi/Arabic Character Classification

The Farsi/Arabic character classification competition at ICDAR 2009 was
based on data drawn from the Holda (Khosravi and Kabir, 2007), Farsi CEN-
PARMI (Solimanpour et al., 2006) and Extended IFHCDB (Mozaffari et al.,
2006) databases. The competition was divided into two tasks: letter classifi-
cation and digit classification. In both cases a training set of hand-labelled
images of isolated characters was provided to the competitors while an (un-
published) test set was used by the organisers to evaluate the systems. There
were 34 distinct letters and 12 distinct digits. The training set for the letter
task contained 106, 181 images, of which 10, 619 were used as a validation set,
while the test set contained 107, 992 images. The training set for the digit
task contained 106, 000 images, of which 3, 008 were used as a validation set,
while the set contained 48, 000 images. Examples of both digit and letter
images are shown in Figure 9.9.

9.2 Experiments 127

Table 9.6 ICDAR 2009 French handwriting recognition competition re-
sults. Results are the percentage of correctly recognised images on the test set,
using the dictionaries corresponding to tasks ‘WR1’, ‘WR2’ and ‘WR3’. Best re-
sults are shown in bold.

System WR1 (%) WR2 (%) WR3 (%)

HSRNN 98.4 93.2 91.0
UPV 96.5 86.1 83.2
ParisTech(1) 86.4 80.2 76.3
IRISA 91.2 79.6 74.7
SIEMENS 95.3 81.3 73.2
ParisTech(2) 82.1 72.4 68.0
LITIS 92.4 74.1 66.7
ParisTech(3) 79.9 63.8 58.7
LSIS - - 52.37
ITESOFT 74.6 59.4 50.44

9.2.4.1 Experimental Setup

The images were preprocessed by padding them equally with white pixels on
all sides to have a minimum width of 77 pixels and a minimum height of
95 pixels; this was found to improve performance for very small characters.
The parameters for the networks used for the letter and digit classification
competitions are listed in Table 9.7. Since these were sequence classification
tasks (Section 2.3.1) a classification output layer was used instead of a CTC
layer.

9.2.4.2 Results

The competition results are summarised in Table 9.8. The HSRNN had the
highest classification accuracy for the letter dataset and was pronounced the
winner of the competition. The ‘letter’ network required 76 training epochs,
while the ‘digit’ network required 44.

9.2.5 Phoneme Recognition

This section compares the phoneme recognition accuracy of two HSRNNs and
one non-hierarchical RNN, each with different input representations. The
networks were evaluated on the TIMIT speech corpus (Garofolo et al., 1993),
using the core test set and the reduced alphabet of 39 phonemes described
in Section 7.6.2. The three input representations were:

128 9 Hierarchical Subsampling Networks

Fig. 9.9 Farsi character images

• Raw 16KHz sample sequences direct from the audio files.

• Spectrogram images.

• Mel-frequency cepstrum (MFC) coefficients.

The spectrograms were calculated from the sample sequences using the ‘spec-
gram’ function of the ‘matplotlib’ python toolkit (Tosi, 2009), based on
Welch’s ‘Periodogram’ algorithm (Welch, 1967), with the following parame-
ters: The Fourier transform windows were 254 samples wide with an overlap
of 127 samples (corresponding to 15.875ms and 7.9375ms respectively). The
MFC coefficients were calculated exactly as in Section 7.6.2. Figure 9.10
shows an example of the three representations for a single utterance from the
TIMIT database.

9.2.5.1 Experimental Setup

The parameters for the three networks, referred to as ‘raw’, ‘spectrogram’
and ‘MFC’, are listed in 9.9. All three networks were evaluated with and
without weight noise (Section 3.3.2.3) with a standard deviation of 0.075.
The raw network has a single input because the TIMIT audio files are ‘mono’
and therefore have one channel per sample. Prefix search CTC decoding
(Section 7.5) was used for all experiments, with a probability threshold of
0.995.

9.2 Experiments 129

Table 9.7 Networks entered for the Farsi/Arabic character classification
competition at ICDAR 2009

Name Letter Digit

Dimensions 2 2
Input Size 1 1
Output Size 34 12
Feedforward Sizes 9, 45 9, 45
Recurrent Sizes 4, 20, 100 4, 20, 100
Windows [3, 3], [3, 3], [3, 3] [3, 3], [3, 3], [3, 3]
Weights 562,754 553,932
Output Layer Classification Classification
Stopping Error Misclassification Rate Misclassification Rate

Table 9.8 ICDAR 2009 Farsi/Arabic character classification competition
results Results are the classification error rates in the letter and digit test sets.
Best results shown in bold.

System Letter Error (%) Digit Error (%)

CEMATER-JU 8.7 4.6
HSRNN 8.1 5.1
REGIM 11.7 5.7
ECA 10.5 4.1

Table 9.9 Networks for phoneme recognition on TIMIT

Name Raw Spectrogram MFC

Dimensions 1 2 1
Input Size 1 1 39
Output Size 40 40 40
Feedforward Sizes 20, 40 6, 20 -
Recurrent Sizes 20, 40, 80 2, 10, 50 128
Windows [6], [6], [6] [2, 4], [2, 4], [1, 4], -
Weights 132,560 139,536 183,080
Output Layer CTC CTC CTC
Stopping Error Label Error Rate Label Error Rate Label Error Rate

130 9 Hierarchical Subsampling Networks

“In wage negotiations the industry bargains as a unit with a single union.”

Fig. 9.10 Three representations of a TIMIT utterance. Both the MFC
coefficients (top) and the spectrogram (middle) were calculated from the raw se-
quence of audio samples (bottom). Note the lower resolution and greater vertical
and horizontal decorrelation of the MFC coefficients compared to the spectrogram.

9.2.5.2 Results

The results of the experiments are presented in Table 9.10. Unlike the exper-
iments in Section 7.6.1, repeated runs were not performed and it is therefore
hard to determine if the differences are significant. However the ‘spectro-
gram’ network appears to give the best performance, with the ‘raw’ and
‘MFC’ networks approximately equal.

The number of training epochs was much lower for the MFC networks than
either of the others; this echoes the results in Section 7.6.4, where learning
from preprocessed online handwriting was found to be much faster (but not
much more accurate) than learning from raw pen trajectories.

Table 9.10 Phoneme recognition results on TIMIT. The error measure is
the phoneme error rate.

Representation Weight Noise Error (%) Epochs

Raw ✗ 30.5 79
Raw ✔ 28.1 254
MFC ✗ 29.5 27
MFC ✔ 28.1 67
Spectrogram ✗ 27.2 63
Spectrogram ✔ 25.5 222

9.2 Experiments 131

For the MFC network, training with input, rather than weight noise gives
considerably better performance, as can be seen from Table 7.3. However
Gaussian input noise does not help performance for the other two represen-
tations, because, as discussed in Section 3.3.2.2, it does not reflect the true
variations in the input data. Weight noise, on the other hand, appears to be
equally effective for all input representations.

References

Abed, H.E., Margner, V., Kherallah, M., Alimi, A.M.: Online Arabic Handwrit-
ing Recognition Competition. In: 10th International Conference on Document
Analysis and Recognition, ICDAR 2009, pp. 1388–1392. IEEE Computer Society
(2009)

An, G.: The Effects of Adding Noise During Backpropagation Training on a Gener-
alization Performance. Neural Computation 8(3), 643–674 (1996) ISSN 0899-7667

Bakker, B.: Reinforcement Learning with Long Short-Term Memory. In: Advances
in Neural Information Processing Systems, vol. 14 (2002)

Baldi, P., Pollastri, G.: The Principled Design of Large-scale Recursive Neural Net-
work Architectures–DAG-RNNs and the Protein Structure Prediction Problem.
The Journal of Machine Learning Research 4, 575–602 (2003) ISSN 1533-7928

Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Exploiting the Past and
the Future in Protein Secondary Structure Prediction. Bioinformatics 15 (1999)

Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., Soda, G.: Bidirectional Dynam-
ics for Protein Secondary Structure Prediction. In: Sun, R., Giles, C.L. (eds.)
Sequence Learning. LNCS (LNAI), vol. 1828, pp. 80–104. Springer, Heidelberg
(2001)

Bayer, J., Wierstra, D., Togelius, J., Schmidhuber, J.: Evolving Memory Cell
Structures for Sequence Learning. In: Alippi, C., Polycarpou, M., Panayiotou,
C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5769, pp. 755–764. Springer,
Heidelberg (2009)

Bengio, Y.: A Connectionist Approach to Speech Recognition. International Jour-
nal on Pattern Recognition and Artificial Intelligence 7(4), 647–668 (1993)

Bengio, Y.: Markovian Models for Sequential Data. Neural Computing Surveys 2,
129–162 (1999)

Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. In: Bottou, L.,
Chapelle, O., DeCoste, D., Weston, J. (eds.) Large-Scale Kernel Machines. MIT
Press (2007)

Bengio, Y., De Mori, R., Flammia, G., Kompe, R.: Global Optimization of a
Neural Network–Hidden Markov Model Hybrid. IEEE Transactions on Neural
Networks 3(2), 252–259 (1992)

Bengio, Y., Simard, P., Frasconi, P.: Learning Long-Term Dependencies with Gra-
dient Descent is Difficult. IEEE Transactions on Neural Networks 5(2), 157–166
(1994)

Bengio, Y., LeCun, Y., Nohl, C., Burges, C.: LeRec: A NN/HMM Hybrid for
On-line Handwriting Recognition. Neural Computation 7(6), 1289–1303 (1995)

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy Layer-wise Training
of Deep Networks. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances
in Neural Information Processing Systems, vol. 19, pp. 153–160. MIT Press,
Cambridge (2007)

134 References

Beringer, N.: Human Language Acquisition in a Machine Learning Task. In: Inter-
national Conference on Spoken Language Processing (2004)

Bertolami, R., Bunke, H.: Multiple Classifier Methods for Offline Handwritten Text
Line Recognition. In: 7th International Workshop on Multiple Classifier Systems,
Prague, Czech Republic (2007)

Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press
(1995)

Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

Bottou, L., LeCun, Y.: Graph Transformer Networks for Image Recognition. In:
Proceedings of ISI (2005)

Bourlard, H., Morgan, N.: Connnectionist Speech Recognition: A Hybrid Ap-
proach. Kluwer Academic Publishers (1994)

Bourlard, H., Konig, Y., Morgan, N., Ris, C.: A new training algorithm for hybrid
HMM/ANN speech recognition systems. In: 8th European Signal Processing
Conference, vol. 1, pp. 101–104 (1996)

Bridle, J.S.: Probabilistic Interpretation of Feedforward Classification Network
Outputs, with Relationships to Statistical Pattern Recognition. In: Fogleman-
Soulie, F., Herault, J. (eds.) Neurocomputing: Algorithms, Architectures and
Applications, pp. 227–236. Springer, Heidelberg (1990)

Broomhead, D., Lowe, D.: Multivariate Functional Interpolation and Adaptive
Networks. Complex Systems 2, 321–355 (1988)

Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.Y.: A Limited Memory Algorithm for
Bound Constrained Optimization. SIAM Journal on Scientific Computing 16(6),
1190–1208 (1995)

Chang, J.: Near-Miss Modeling: A Segment-Based Approach to Speech Recogni-
tion. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (1998)

Chen, J., Chaudhari, N.: Protein Secondary Structure Prediction with bidirectional
LSTM networks. In: International Joint Conference on Neural Networks: Post-
Conference Workshop on Computational Intelligence Approaches for the Analysis
of Bio-data (CI-BIO) (August 2005)

Chen, J., Chaudhari, N.S.: Capturing Long-term Dependencies for Protein Sec-
ondary Structure Prediction. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN
2004, Part II. LNCS, vol. 3174, pp. 494–500. Springer, Heidelberg (2004)

Chen, R., Jamieson, L.: Experiments on the Implementation of Recurrent Neural
Networks for Speech Phone Recognition. In: Proceedings of the Thirtieth Annual
Asilomar Conference on Signals, Systems and Computers, pp. 779–782 (1996)

Decoste, D., Schölkopf, B.: Training Invariant Support Vector Machines. Machine
Learning 46(1-3), 161–190 (2002)

Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience
Publication (2000)

Eck, D., Schmidhuber, J.: Finding Temporal Structure in Music: Blues Improvi-
sation with LSTM Recurrent Networks. In: Bourlard, H. (ed.) Proceedings of
the 2002 IEEE Workshop on Neural Networks for Signal Processing XII, pp.
747–756. IEEE, New York (2002)

Elman, J.L.: Finding Structure in Time. Cognitive Science 14, 179–211 (1990)
Fahlman, S.: Faster Learning Variations on Back-propagation: An Empirical Study.

In: Touretzky, D., Hinton, G., Sejnowski, T. (eds.) Proceedings of the 1988
Connectionist Models Summer School, pp. 38–51. Morgan Kaufmann (1989)

References 135

Fernández, S., Graves, A., Schmidhuber, J.: An Application of Recurrent Neural
Networks to Discriminative Keyword Spotting. In: de Sá, J.M., Alexandre, L.A.,
Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 220–229.
Springer, Heidelberg (2007)

Fernandez, S., Graves, A., Schmidhuber, J.: Phoneme Recognition in TIMIT with
BLSTM-CTC. Technical Report IDSIA-04-08, IDSIA (April 2008)

Frasconi, P., Gori, M., Sperduti, A.: A General Framework for Adaptive Processing
of Data Structures. IEEE Transactions on Neural Networks 9, 768–786 (1998)

Fukada, T., Schuster, M., Sagisaka, Y.: Phoneme Boundary Estimation Using Bidi-
rectional Recurrent Neural Networks and its Applications. Systems and Comput-
ers in Japan 30(4), 20–30 (1999)

Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pallett, D.S., Dahlgren,
N.L.: DARPA TIMIT Acoustic Phonetic Continuous Speech Corpus CDROM
(1993)

Gers, F.: Long Short-Term Memory in Recurrent Neural Networks. PhD thesis,
Ecole Polytechnique Fédérale de Lausanne (2001)

Gers, F., Schraudolph, N., Schmidhuber, J.: Learning Precise Timing with LSTM
Recurrent Networks. Journal of Machine Learning Research 3, 115–143 (2002)

Gers, F.A., Schmidhuber, J.: LSTM Recurrent Networks Learn Simple Con-
text Free and Context Sensitive Languages. IEEE Transactions on Neural Net-
works 12(6), 1333–1340 (2001)

Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to Forget: Continual Predic-
tion with LSTM. Neural Computation 12(10), 2451–2471 (2000)

Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the Special Issue on
Meta-Learning. Machine Learning 54(3), 187–193 (2004)

Glass, J.R.: A Probabilistic Framework for Segment-based Speech Recognition.
Computer Speech and Language 17, 137–152 (2003)

Goller, C.: A Connectionist Approach for Learning Search-Control Heuristics for
Automated Deduction Systems. PhD thesis, Fakultät für Informatik der Tech-
nischen Universität München (1997)

Graves, A., Schmidhuber, J.: Framewise Phoneme Classification with Bidirectional
LSTM Networks. In: Proceedings of the 2005 International Joint Conference on
Neural Networks (2005a)

Graves, A., Schmidhuber, J.: Framewise Phoneme Classification with Bidirectional
LSTM and Other Neural Network Architectures. Neural Networks 18(5-6), 602–
610 (2005b)

Graves, A., Schmidhuber, J.: Offline Handwriting Recognition with Multidimen-
sional Recurrent Neural Networks. In: Koller, D., Schuurmans, D., Bengio, Y.,
Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 21,
pp. 545–552. MIT Press (2009)

Graves, A., Beringer, N., Schmidhuber, J.: Rapid Retraining on Speech Data with
LSTM Recurrent Networks. Technical Report IDSIA-09-05, IDSIA (2005a)

Graves, A., Fernández, S., Schmidhuber, J.: Bidirectional LSTM Networks for
Improved Phoneme Classification and Recognition. In: Duch, W., Kacprzyk,
J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 799–804.
Springer, Heidelberg (2005)

Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data with Recurrent Neural
Networks. In: Proceedings of the International Conference on Machine Learning,
ICML 2006, Pittsburgh, USA (2006)

Graves, A., Fernández, S., Schmidhuber, J.: Multi-dimensional Recurrent Neural
Networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.)
ICANN 2007. LNCS, vol. 4668, pp. 549–558. Springer, Heidelberg (2007)

136 References

Graves, A., Fernández, S., Liwicki, M., Bunke, H., Schmidhuber, J.: Unconstrained
Online Handwriting Recognition with Recurrent Neural Networks. In: Platt,
J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information
Processing Systems, vol. 20. MIT Press, Cambridge (2008)

Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber,
J.: A Novel Connectionist System for Unconstrained Handwriting Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence 31(5), 855–868
(2009)

Grosicki, E., Abed, H.E.: ICDAR 2009 Handwriting Recognition Competition.
In: 10th International Conference on Document Analysis and Recognition, pp.
1398–1402 (2009)

Grosicki, E., Carre, M., Brodin, J.-M., Geoffrois, E.: Results of the RIMES Evalu-
ation Campaign for Handwritten Mail Processing. In: International Conference
on Document Analysis and Recognition, pp. 941–945 (2009)

Halberstadt, A.K.: Heterogeneous Acoustic Measurements and Multiple Classifiers
for Speech Recognition. PhD thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology (1998)

Hammer, B.: On the Approximation Capability of Recurrent Neural Networks.
Neurocomputing 31(1–4), 107–123 (2000)

Hammer, B.: Recurrent Networks for Structured Data - a Unifying Approach and
Its Properties. Cognitive Systems Research 3, 145–165 (2002)

Hennebert, J., Ris, C., Bourlard, H., Renals, S., Morgan, N.: Estimation of Global
Posteriors and Forward-backward Training of Hybrid HMM/ANN Systems. In:
Proc. of the European Conference on Speech Communication and Technology
(Eurospeech 1997), pp. 1951–1954 (1997)

Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for Solving Linear
Systems. Journal of Research of the National Bureau of Standards 49(6), 409–
436 (1952)

Hifny, Y., Renals, S.: Speech Recognition using Augmented Conditional Random
Fields. Trans. Audio, Speech and Lang. Proc. 17, 354–365 (2009)

Hinton, G.E., van Camp, D.: Keeping Neural Networks Simple by Minimizing the
Description Length of the Weights. In: Conference on Learning Theory, pp. 5–13
(1993)

Hinton, G.E., Osindero, S., Teh, Y.-W.: A Fast Learning Algorithm for Deep Belief
Nets. Neural Computation 18(7), 1527–1554 (2006)

Hochreiter, S.: Untersuchungen zu Dynamischen Neuronalen Netzen. PhD thesis,
Institut für Informatik, Technische Universität München (1991)

Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computa-
tion 9(8), 1735–1780 (1997)

Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient Flow in Re-
current Nets: the Difficulty of Learning Long-term Dependencies. In: Kremer,
S.C., Kolen, J.F. (eds.) A Field Guide to Dynamical Recurrent Neural Networks.
IEEE Press (2001a)

Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in Re-
current Nets: the Difficulty of Learning Long-term Dependencies. In: Kremer,
S.C., Kolen, J.F. (eds.) A Field Guide to Dynamical Recurrent Neural Networks.
IEEE Press (2001b)

Hochreiter, S., Heusel, M., Obermayer, K.: Fast Model-based Protein Homology
Detection without Alignment. Bioinformatics (2007)

Hopfield, J.J.: Neural Networks and Physical Systems with Emergent Collective
Computational Abilities. Proceedings of the National Academy of Sciences of
the United States of America 79(8), 2554–2558 (1982)

References 137

Hornik, K., Stinchcombe, M., White, H.: Multilayer Feedforward Networks are
Universal Approximators. Neural Networks 2(5), 359–366 (1989)

Hülsken, F., Wallhoff, F., Rigoll, G.: Facial Expression Recognition with Pseudo-3D
Hidden Markov Models. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS,
vol. 2191, pp. 291–297. Springer, Heidelberg (2001)

Jaeger, H.: The “Echo State” Approach to Analysing and Training Recurrent Neu-
ral Networks. Technical Report GMD Report 148, German National Research
Center for Information Technology (2001)

Jim, K.-C., Giles, C., Horne, B.: An Analysis of Noise in Recurrent Neural Net-
works: Convergence and Generalization. IEEE Transactions on Neural Net-
works 7(6), 1424–1438 (1996)

Jiten, J., Mérialdo, B., Huet, B.: Multi-dimensional Dependency-tree Hidden
Markov Models. In: International Conference on Acoustics, Speech, and Signal
Processing (2006)

Johansson, S., Atwell, R., Garside, R., Leech, G.: The tagged LOB corpus user’s
manual; Norwegian Computing Centre for the Humanities (1986)

Johnson, M.T.: Capacity and Complexity of HMM Duration Modeling techniques.
IEEE Signal Processing Letters 12(5), 407–410 (2005)

Jordan, M.I.: Attractor dynamics and parallelism in a connectionist sequential
machine, pp. 112–127. IEEE Press (1990)

Joshi, D., Li, J., Wang, J.: Parameter Estimation of Multi-dimensional Hidden
Markov Models: A Scalable Approach. In: Proc. of the IEEE International Con-
ference on Image Processing (ICIP 2005), pp. 149–152 (2005)

Kadous, M.W.: Temporal Classification: Extending the Classification Paradigm to
Multivariate Time Series. PhD thesis, School of Computer Science & Engineering,
University of New South Wales (2002)

Kershaw, D., Robinson, A., Hochberg, M.: Context-Dependent Classes in a Hy-
brid Recurrent Network-HMM Speech Recognition System. In: Touretzky, D.S.,
Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing
Systems, vol. 8, pp. 750–756. MIT Press (1996)

Khosravi, H., Kabir, E.: Introducing a Very Large Dataset of Handwritten Farsi
Digits and a Study on their Varieties. Pattern Recogn. Lett. 28, 1133–1141 (2007)

Kohonen, T.: Self-organization and Associative Memory, 3rd edn. Springer, New
York (1989)

Koistinen, P., Holmström, L.: Kernel Regression and Backpropagation Training
with Noise. In: Moody, J.E., Hanson, S.J., Lippmann, R. (eds.) Advances in
Neural Information Processing Systems, vol. 4, pp. 1033–1039. Morgan Kauf-
mann (1991)

Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Sequence Data. In: Proceedings of
the Eighteenth International Conference on Machine Learning, ICML 2001, pp.
282–289. Morgan Kaufmann Publishers Inc. (2001)

Lamel, L., Gauvain, J.: High Performance Speaker-Independent Phone Recognition
Using CDHMM. In: Proc. Eurospeech (September 1993)

Lang, K.J., Waibel, A.H., Hinton, G.E.: A Time-delay Neural Network Architecture
for Isolated Word Recognition. Neural Networks 3(1), 23–43 (1990)

LeCun, Y., Bottou, L., Bengio, Y.: Reading Checks with Graph Transformer Net-
works. In: International Conference on Acoustics, Speech, and Signal Processing,
vol. 1, pp. 151–154. IEEE (1997)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-Based Learning Applied
to Document Recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998a)

138 References

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based Learning Applied
to Document Recognition. Proceedings of the IEEE, 1–46 (1998b)

LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr,
G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–50. Springer,
Heidelberg (1998)

Lee, K.-F., Hon, H.-W.: Speaker-independent Phone Recognition Using Hidden
Markov Models. IEEE Transactions on Acoustics, Speech, and Signal Process-
ing 37(11), 1641–1648 (1989)

Li, J., Najmi, A., Gray, R.M.: Image Classification by a Two-Dimensional Hidden
Markov Model. IEEE Transactions on Signal Processing 48(2), 517–533 (2000)

Lin, T., Horne, B.G., Tiño, P., Giles, C.L.: Learning Long-Term Dependencies in
NARX Recurrent Neural Networks. IEEE Transactions on Neural Networks 7(6),
1329–1338 (1996)

Lindblad, T., Kinser, J.M.: Image Processing Using Pulse-Coupled Neural Net-
works. Springer-Verlag New York, Inc. (2005)

Liwicki, M., Bunke, H.: Handwriting Recognition of Whiteboard Notes. In: Proc.
12th Conf. of the International Graphonomics Society, pp. 118–122 (2005a)

Liwicki, M., Bunke, H.: IAM-OnDB - an On-Line English Sentence Database Ac-
quired from Handwritten Text on a Whiteboard. In: Proc. 8th Int. Conf. on
Document Analysis and Recognition, vol. 2, pp. 956–961 (2005b)

Liwicki, M., Graves, A., Fernández, S., Bunke, H., Schmidhuber, J.: A Novel Ap-
proach to On-Line Handwriting Recognition Based on Bidirectional Long Short-
Term Memory Networks. In: Proceedings of the 9th International Conference on
Document Analysis and Recognition, ICDAR 2007 (September 2007)

MacKay, D.J.C.: Probable Networks and Plausible Predictions - a Review of Prac-
tical Bayesian Methods for Supervised Neural Networks. Network: Computation
in Neural Systems 6, 469–505 (1995)

Märgner, V., Abed, H.E.: ICDAR 2009 Arabic Handwriting Recognition Competi-
tion. In: 10th International Conference on Document Analysis and Recognition,
pp. 1383–1387 (2009)

Marti, U.-V., Bunke, H.: Using a Statistical Language Model to Improve the Perfor-
mance of an HMM-based Cursive Handwriting Recognition System. Int. Journal
of Pattern Recognition and Artificial Intelligence 15, 65–90 (2001)

Marti, U.-V., Bunke, H.: The IAM Database: An English Sentence Database for
Offline Handwriting Recognition. International Journal on Document Analysis
and Recognition 5, 39–46 (2002)

McCarter, G., Storkey, A.: Air Freight Image Segmentation Database (2007)
McCulloch, W.S., Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous

Activity, pp. 15–27. MIT Press (1988)
Ming, J., Smith, F.J.: Improved Phone Recognition Using Bayesian Triphone Mod-

els. In: ICASSP, vol. 1, pp. 409–412 (1998)
Mohamed, A., Dahl, G., Hinton, G.: Acoustic Modeling using Deep Belief Net-

works. IEEE Transactions on Audio, Speech, and Language Processing (99)
(2011)

Morris, J., Lussier, E.F.: Combining Phonetic Attributes Using Conditional Ran-
dom Fields. In: Proc. Interspeech 2006 (2006)

Mozaffari, S., Faez, K., Faradji, F., Ziaratban, M., Golzan, S.M.: Comprehensive
Isolated Farsi/Arabic Character Database for Handwritten OCR Research. In:
Lorette, G. (ed.) Tenth International Workshop on Frontiers in Handwriting
Recognition. Suvisoft (2006)

Mozer, M.C.: Induction of Multiscale Temporal Structure. In: Moody, J.E., Han-
son, S.J., Lippmann, R.P. (eds.) Advances in Neural Information Processing
Systems, vol. 4, pp. 275–282. Morgan Kaufmann Publishers (1992)

References 139

Murray, A.F., Edwards, P.J.: Enhanced MLP Performance and Fault Tolerance
Resulting from Synaptic Weight Noise During Training. IEEE Transactions on
Neural Networks 5, 792–802 (1994)

Navarro, G.: A guided tour to approximate string matching. ACM Computing
Surveys 33(1), 31–88 (2001)

Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (1996)
Neto, J., Almeida, L., Hochberg, M., Martins, C., Nunes, L., Renals, S., Robinson,

A.: Speaker Adaptation for Hybrid HMM-ANN Continuous Speech Recognition
System. In: Proceedings of Eurospeech 1995, vol. 1, pp. 2171–2174 (1995)

Pang, X., Werbos, P.J.: Neural Network Design for J Function Approxima-
tion in Dynamic Programming. Mathematical Modeling and Scientific Comput-
ing 5(2/3) (1996)

Pechwitz, M., Maddouri, S.S., Mrgner, V., Ellouze, N., Amiri, H.: IFN/ENIT -
Database of Handwritten Arabic Words. In: Colloque International Francophone
sur l’Écrit et le Document, pp. 129–136 (2002)

Plate, T.A.: Holographic Recurrent Networks. In: Giles, C.L., Hanson, S.J., Cowan,
J.D. (eds.) Advances in Neural Information Processing Systems, vol. 5, pp. 34–41.
Morgan Kaufmann (1993)

Plaut, D.C., Nowlan, S.J., Hinton, G.E.: Experiments on Learning by Back-
Propagation. Technical Report CMU–CS–86–126, Carnegie–Mellon University
(1986)

Pollastri, G., Vullo, A., Frasconi, P., Baldi, P.: Modular DAG-RNN Architec-
tures for Assembling Coarse Protein Structures. Journal of Computational Biol-
ogy 13(3), 631–650 (2006)

Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proc. IEEE 77(2), 257–286 (1989)

Reisenhuber, M., Poggio, T.: Hierarchical Models of Object Recognition in Cortex.
Nature Neuroscience 2(11), 1019–1025 (1999)

Renals, S., Morgan, N., Bourlard, H., Cohen, M., Franco, H.: Connectionist Prob-
ability Estimators in HMM Speech Recognition. IEEE Transactions Speech and
Audio Processing (1993)

Riedmiller, M., Braun, H.: A Direct Adaptive Method for Faster Backpropagation
Learning: The RPROP algorithm. In: Proc. of the IEEE Intl. Conf. on Neural
Networks, San Francisco, CA, pp. 586–591 (1993)

Robinson, A., Holdsworth, J., Patterson, J., Fallside, F.: A comparison of prepro-
cessors for the cambridge recurrent error propagation network speech recognition
system. In: Proceedings of the First International Conference on Spoken Lan-
guage Processing, ICSLP 1990 (1990)

Robinson, A.J.: Several Improvements to a Recurrent Error Propagation Network
Phone Recognition System. Technical Report CUED/F-INFENG/TR82, Univer-
sity of Cambridge (1991)

Robinson, A.J.: An Application of Recurrent Nets to Phone Probability Estimation.
IEEE Transactions on Neural Networks 5(2), 298–305 (1994)

Robinson, A.J., Fallside, F.: The Utility Driven Dynamic Error Propagation Net-
work. Technical Report CUED/F-INFENG/TR.1, Cambridge University Engi-
neering Department (1987)

Robinson, A.J., Almeida, L., Boite, J.-M., Bourlard, H., Fallside, F., Hochberg, M.,
Kershaw, D., Kohn, P., Konig, Y., Morgan, N., Neto, J.P., Renals, S., Saerens,
M., Wooters, C.: A Neural Network Based, Speaker Independent, Large Vocab-
ulary, Continuous Speech Recognition System: the Wernicke Project. In: Proc.
of the Third European Conference on Speech Communication and Technology
(Eurospeech 1993), pp. 1941–1944 (1993)

140 References

Rosenblatt, F.: The Perceptron: a Probabilistic Model for Information Storage and
Organization in the Brain. Psychological Review 65, 386–408 (1958)

Rosenblatt, F.: Principles of Neurodynamics. Spartan, New York (1963)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations

by Error Propagation, pp. 318–362. MIT Press (1986)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.

Prentice-Hall, Englewood Cliffs (2003)
Sainath, T., Ramabhadran, B., Picheny, M.: An Exploration of Large Vocabu-

lary Tools for Small Vocabulary Phonetic Recognition. In: IEEE Workshop on
Automatic Speech Recognition Understanding, ASRU 2009, pp. 359–364 (2009)

Schmidhuber, J.: Learning Complex Extended Sequences using the principle of
history compression. Neural Computing, 234–242 (1992)

Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F.: Training Recurrent Net-
works by Evolino. Neural Computation 19(3), 757–779 (2007)

Schraudolph, N.: Fast Curvature Matrix-Vector Products for Second-Order Gradi-
ent Descent. Neural Computation 14(7), 1723–1738 (2002)

Schuster, M.: On Supervised Learning from Sequential Data With Applications
for Speech Recognition. PhD thesis, Nara Institute of Science and Technology,
Kyoto, Japan (1999)

Schuster, M., Paliwal, K.K.: Bidirectional Recurrent Neural Networks. IEEE Trans-
actions on Signal Processing 45, 2673–2681 (1997)

Senior, A., Robinson, A.J.: Forward-Backward Retraining of Recurrent Neural
Networks. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances
in Neural Information Processing Systems, vol. 8, pp. 743–749. The MIT Press
(1996)

Sha, F., Saul, L.K.: Large Margin Hidden Markov Models for Automatic Speech
Recognition. In: Advances in Neural Information Processing Systems, pp. 1249–
1256 (2006)

Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain. Technical report, Carnegie Mellon University, Pittsburgh, PA,
USA (1994)

Simard, P.Y., Steinkraus, D., Platt, J.C.: Best Practices for Convolutional Neural
Networks Applied to Visual Document Analysis. In: ICDAR 2003: Proceedings
of the Seventh International Conference on Document Analysis and Recognition.
IEEE Computer Society (2003)

Solimanpour, F., Sadri, J., Suen, C.Y.: Standard Databases for Recognition of
Handwritten Digits, Numerical Strings, Legal Amounts, Letters and Dates in
Farsi Language. In: Lorette, G. (ed.) Tenth International Workshop on Frontiers
in Handwriting Recognition, Suvisoft (October 2006)

Sperduti, A., Starita, A.: Supervised Neural Networks for the Classification of
Structures. IEEE Transactions on Neural Networks 8(3), 714–735 (1997)

Thireou, T., Reczko, M.: Bidirectional Long Short-Term Memory Networks for Pre-
dicting the Subcellular Localization of Eukaryotic Proteins. IEEE/ACM Trans.
Comput. Biol. Bioinformatics 4(3), 441–446 (2007)

Tosi, S.: Matplotlib for Python Developers. Packt Publishing (2009)
Trentin, E., Gori, M.: Robust combination of neural networks and hidden Markov

models for speech recognition. IEEE Transactions on Neural Networks 14(6),
1519–1531 (2003)

Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc. (1995)

Verbmobil. Database Version 2.3 (2004)

References 141

Welch, P.: The Use of Fast Fourier Transform for the Estimation of Power Spectra:
a Method Based on Time Averaging over Short, Modified Periodograms. IEEE
Transactions on Audio and Electroacoustics 15(2), 70–73 (1967)

Werbos, P.: Backpropagation Through Time: What It Does and How to Do It.
Proceedings of the IEEE 78(10), 1550–1560 (1990)

Werbos, P.J.: Generalization of Backpropagation with Application to a Recurrent
Gas Market Model. Neural Networks 1 (1988)

Wierstra, D., Gomez, F.J., Schmidhuber, J.: Modeling systems with internal state
using evolino. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic
and Evolutionary Computation, pp. 1795–1802. ACM Press (2005)

Williams, R.J., Zipser, D.: Gradient-Based Learning Algorithms for Recurrent Net-
works and Their Computational Complexity. In: Chauvin, Y., Rumelhart, D.E.
(eds.) Back-Propagation: Theory, Architectures and Applications, pp. 433–486.
Lawrence Erlbaum Publishers (1995)

Wu, L., Baldi, P.: A Scalable Machine Learning Approach to Go. In: Schlkopf, B.,
Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems,
vol. 19, pp. 1521–1528. MIT Press (2006)

Young, S., Russell, N., Thornton, J.: Token Passing: A Simple Conceptual
Model for Connected Speech Recognition Systems. Technical Report CUED/F-
INFENG/TR38, Cambridge University Engineering Dept., Cambridge, UK
(1989)

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore,
G., Odell, J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.: The HTK
Book. Cambridge University Engineering Department, HTK version 3.4 edition
(December 2006)

Yu, D., Deng, L., Acero, A.: A Lattice Search Technique for a Long-Contextual-
Span Hidden Trajectory Model of Speech. Speech Communication 48(9), 1214–
1226 (2006)

Zavaliagkos, G., Austin, S., Makhoul, J., Schwartz, R.M.: A Hybrid Contin-
uous Speech Recognition System Using Segmental Neural Nets with Hidden
Markov Models. International Journal of Pattern Recognition and Artificial In-
telligence 7(4), 949–963 (1993)

Zimmermann, H.G., Grothmann, R., Schaefer, A.M., Tietz, C.: Identification and
Forecasting of Large Dynamical Systems by Dynamical Consistent Neural Net-
works. In: Haykin, S., Principe, J., Sejnowski, T., McWhirter, J. (eds.) New
Directions in Statistical Signal Processing: From Systems to Brain, pp. 203–242.
MIT Pres (2006a)

Zimmermann, M., Chappelier, J.-C., Bunke, H.: Offline Grammar-based Recog-
nition of Handwritten Sentences. IEEE Transactions on Pattern Analysis and
Machine Intelligence 28(5), 818–821 (2006b)

Acknowledgements

I would first like to thank my supervisor Jürgen Schmidhuber for his guidance
and support throughout the Ph.D. thesis on which this book was based. I
would also like to thank my co-authors Santiago Fernández, Nicole Beringer,
Faustino Gomez and Douglas Eck, and everyone else I collaborated with at
IDSIA and the Technical University of Munich, for making the stimulating
and creative places to work. Thanks to Tom Schaul for proofreading an early
draft of the book, and to Marcus Hutter for his assistance during Chapter 7.
I am grateful to Marcus Liwicki, Horst Bunke and Roman Bertolami for
their expert collaboration on handwriting recognition. A special mention
to all my friends in Lugano, Munich and elsewhere who made the whole
thing worth doing: Frederick Ducatelle, Matteo Gagliolo, Nikos Mutsanas,
Ola Svensson, Daniil Ryabko, John Paul Walsh, Adrian Taruttis, Andreas
Brandmaier, Christian Osendorfer, Thomas Rückstieß, Justin Bayer, Murray
Dick, Luke Williams, John Lord, Sam Mungall, David Larsen and all the
rest. But most of all I would like to thank my family, my wife Alison and my
children Liam and Nina for being there when I needed them most.

Alex Graves is a Junior Fellow of the Canadian Institute for Advanced
Research.

	Title

	Contents
	Introduction
	Structure of the Book

	Supervised Sequence Labelling
	Supervised Learning
	Pattern Classification
	Probabilistic Classification
	Training Probabilistic Classifiers
	Generative and Discriminative Methods

	Sequence Labelling
	Sequence Classification
	Segment Classification
	Temporal Classification

	Neural Networks
	Multilayer Perceptrons
	Forward Pass
	Output Layers
	Loss Functions
	Backward Pass

	Recurrent Neural Networks
	Forward Pass
	Backward Pass
	Unfolding
	Bidirectional Networks
	Sequential Jacobian

	Network Training
	Gradient Descent Algorithms
	Generalisation
	Input Representation
	Weight Initialisation

	Long Short-Term Memory
	Network Architecture
	Influence of Preprocessing
	Gradient Calculation
	Architectural Variants
	Bidirectional Long Short-Term Memory
	Network Equations
	Forward Pass
	Backward Pass

	A Comparison of Network
Architectures
	Experimental Setup
	Network Architectures
	Computational Complexity
	Range of Context
	Output Layers

	Network Training
	Retraining

	Results
	Previous Work
	Effect of Increased Context
	Weighted Error

	Hidden Markov Model Hybrids
	Background
	Experiment: Phoneme Recognition
	Experimental Setup
	Results

	Connectionist Temporal Classification
	Background
	From Outputs to Labellings
	Role of the Blank Labels
	Bidirectional and Unidirectional Networks

	Forward-Backward Algorithm
	Log Scale

	Loss Function
	Loss Gradient

	Decoding
	Best Path Decoding
	Prefix Search Decoding
	Constrained Decoding

	Experiments
	Phoneme Recognition 1
	Phoneme Recognition 2
	Keyword Spotting
	Online Handwriting Recognition
	Offline Handwriting Recognition

	Discussion

	Multidimensional Networks
	Background
	Network Architecture
	Multidirectional Networks
	Multidimensional Long Short-Term Memory

	Experiments
	Air Freight Data
	MNIST Data
	Analysis

	Hierarchical Subsampling Networks
	Network Architecture
	Subsampling Window Sizes
	Hidden Layer Sizes
	Number of Levels
	Multidimensional Networks
	Output Layers
	Complete System

	Experiments
	Offline Arabic Handwriting Recognition
	Online Arabic Handwriting Recognition
	French Handwriting Recognition
	Farsi/Arabic Character Classification
	Phoneme Recognition

	References
	Acknowledgements

