
Chapter 4

The NeOn Ontology Models
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Abstract Interoperability on multiple levels, concerning both the ontologies them-

selves and their engineering activities, is a key requirement for ontology networks

to be efficient, with minimal redundancy and high reuse. This requirement has

a strict binding for software tools that can support some interoperability levels, yet

they can be hindered by a lack of shared models and vocabularies describing the

resources to be handled, as well as the ways of handling them. Here, three examples

of metalevel vocabularies are proposed, each covering at least one peculiar
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interoperability aspect: OMV for modeling the artifacts themselves, LIR for man-

aging a multilingual layer on top of them, and C-ODO Light for modeling collabo-

ration-supportive life cycle management tasks and processes. All of these models

lend themselves to handling by dedicated software tools and are all being employed

within NeOn products.

4.1 Introduction

Authoring ontologies and modeling domains of interest are only part of an ontology

life cycle management process. If these activities are carried out in a monolithic

fashion, from scratch and without reusing readily available knowledge models, this

may lead to costly “reinventions of the wheel” and contradicts the Semantic Web

philosophy of an open knowledge world. On the other hand, even when the

intention and sentiment to follow this philosophy are present, they might not be

encouraged by appropriate tool support. This, in turn, depends on the availability of

formal models of processes and artifacts in ontology design, i.e., their metalevel.
This model may sometimes be implicitly hardwired in the software itself, but if it is

not, then it may be useful to share and exploit it for the sake of interoperability, be it

conceptual, linguistic, functional, or social.

This chapter focuses on three contributions to the practice of ontology design by

metalevel handling. Each contribution, presented itself as an ontology network,

covers a specific design perspective, i.e., reuse (OMV), localization (LIR), and

collaborative engineering (C-ODO Light). By the end of the chapter, the reader will

have a practical insight as to how a model of the ontology metalevel can be

employed to build effective software tools to automate engineering tasks.

4.2 Ontology Metadata Vocabulary (OMV)

Ontologies have undergone an enormous development and have been applied in

many domains within the last years, especially in the context of the Semantic

Web. Currently, however, efficient knowledge sharing and reuse, a prerequisite

for the realization of the Semantic Web vision, is a difficult task. It is hard to find

and share existing ontologies because of the lack of standards for documenting

and annotating ontologies with metadata information. Without ontology-specific

metadata, developers are not able to reuse existing ontologies, which leads to

interoperability problems, as well as duplicate efforts. In order to provide a basis

for an effective access and exchange of ontologies across the web, it is necessary

to agree on a standard for ontology metadata. This standard then provides a

common set of terms and definitions describing ontologies and is called metadata
vocabulary.
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Limitations. The need for a metadata vocabulary for describing ontologies has

been acknowledged in the past by previous efforts (e.g., Dublin Core 1998, Reference

Ontology 2000, Ontology Metaontology (OMO) 2003, and DogmaModeler

Ontology 2005). However, at the moment, most of the current ontologies exist in

pure form without any additional information, e.g., domain of interest, authorship

information, and statistic information (Ungrangsi and Simperl 2008). This is due in

part to the lack of standards or community-accepted vocabularies for documenting

and annotating ontologies with metadata information. Moreover, most of the

previous efforts carried out on this issue provide only a list of property-value
pairs for describing ontologies (e.g., Arpı́rez et al. 2000; Jarrar 2005), limiting

the processing capabilities and the related relevant information that can be

described. Similarly, ontology metadata are in many of the existing systems

and repositories (e.g., DAML Ontology Library1, SchemaWeb Directory2, and

SWOOGLE3), not based on agreed standards, which makes them difficult to

integrate or reuse. Finally, general-purpose standards, such as Dublin Core, are
not appropriate for capturing information about ontologies because of the

differences between arbitrary information sources and ontologies. For instance,

aspects related to the application scenario, scope, purpose, or evaluation results are

essential when describing ontologies. Additionally, besides structural and technical

information, ontologies have to be described in terms of descriptive metadata, such

as provenance information, ontology categorizations, underlying methodologies, or

knowledge representation paradigms that are specific for ontologies.

Thereupon, in this chapter we describe our contribution to the alleviation of this

situation: the ontology metadata standard OMV (Ontology Metadata Vocabulary),

which specifies reusability-enhancing ontology features for human- and machine-

processing purposes. It allows to clarify the relations between the available ontologies

so that they are easy to search, to characterize, and to maintain. Moreover, it provides

the means for making explicit the virtual and implicit network of ontologies.

Ontology Metadata Requirements. As a result of a systematic survey of the state

of the art in the area of ontology reuse, we have elaborated an inventory of

requirements for the metadata model. Besides analytical activities, we conducted

extensive literature research focused on theoretical methods (Pinto and Martins

2001; Gangemi et al. 1999; Lozano-Tello and Gómez-Pérez 2004) and also on case

studies on reusing existing ontologies (Uschold et al. 1998; Russ et al. 1999; Paslaru

Bontas et al. 2005). Our aim was to identify the real-world needs of the community

with respect to a descriptive metadata format for ontologies. Further on, the

requirement analysis phase was complemented by a comparative study of existing

(ontology-independent) metadata models and tools such as ontology repositories

and libraries that (implicitly) make use of some form of ontology metadata.

1 http://www.daml.org/ontologies/
2 http://www.schemaweb.info/
3 http://swoogle.umbc.edu/
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Several aspects to be considered in ontology metadata representation are defi-

nitely similar to those of other more general metadata standards such as Dublin

Core. Differences arise, however, if we consider the semantic nature of ontologies,

which are much more than plain web information sources. The main requirements

identified in this process are the following:

Accessibility. Metadata should be accessible and processable for both humans and

machines. Whereas the human-driven aspects are ensured by the usage of natural

language concept names, the machine-readability requirement can be

implemented by the usage of web-compatible representation languages (such

as XML or Semantic Web languages, see below). Furthermore, having metadata

in processable format will facilitate the implementation of tools that use or

manage ontology-related metadata (e.g., ontology changes).

Usability. A metadata model should (1) reflect the needs of the majority of ontology

users, as reported by existing case studies in ontology reuse, but at the same time (2)

allow proprietary extensions and refinements in particular application scenarios (e.

g., ontology change management). From a content perspective, usability can be

maximized by taking into account multiple metadata types, which correspond to

specific viewpoints on the ontological resources and are applied in various appli-

cation tasks. Despite the broad understanding of the metadata concept and the use

cases associated to each definition, several key aspects of metadata information

have already been established across computer science fields (NISO 2004):

• Structural metadata relate to statistical measures on the graph structure under-

lying an ontology. In particular, we mention the number of specific ontological

primitives (e.g., number of classes and individuals). The availability of struc-

tural metadata influences the usability of an ontology in concrete application

scenarios, because size and structure parameters constrain the type of tools

and methods that are applied to aiding the reuse process. For instance, as it has

been analyzed in the past (e.g., Gardiner et al. 2006), most ontology reasoners

have still scalability issues when dealing with large ontologies. Furthermore,

structural metadata provide core information to identify when an ontology

changes (e.g., a different number of classes or individuals).

• Descriptive metadata relate to the domain modeled in the ontology in the

form of keywords, topic classifications, textual descriptions of the ontology

contents, etc. This type of metadata plays a crucial role in the selection of

appropriate reuse candidates, a process that includes requirements with

respect to the domain of the ontologies to be reused. Moreover, descriptive

metadata are highly useful when identifying ontology changes from a high-

level point of view (e.g., the domain has been specialized and the description

has been updated).

• Administrative metadata provide information to help manage an ontology,

such as when and how it was created, rights management, file format,

and other technical information. Obviously, information like the date of modi-

fication of the ontology is also useful to identify when an ontology has

changed.
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Interoperability. Similar to the ontology it describes, metadata information should

be available in a form that facilitates metadata exchange among applications.

While the syntactical aspects of interoperability are covered by the usage of

standard representation languages (see ‘Accessibility’), the semantic interopera-

bility among machines handling ontology metadata information can be ensured

by means of a formal and explicit representation of the meaning of the metadata

entities (by conceptualizing the metadata vocabulary itself as an ontology).

4.2.1 OMV Overview

This section presents the ontology metadata vocabulary (OMV); the first part

provides an overview of the core design principles applied to the development of

the OMV metadata model; then, we describe in detail the core of such a model;

next, we present implementation and practical aspects; finally, we provide an

introduction to the OMV extensions.

4.2.1.1 Core and Extensions

Following the usability constraints identified during the requirements analysis,

we decided to design the OMV schema modularly, distinguishing between the

OMV core and various OMV extensions. The former captures information that is

expected to be relevant to the majority of ontology reuse settings. However, in order

to allow ontology developers and users to specify task-or application-specific

ontology-related information, we allowed for the development of OMV extension

modules, which are separated from the core schema while remaining compatible to

it. That is, the terms are supposed to mean the same thing in the core and the exten-

sions. Essentially, extensions reuse the core knowledge and provide specialized

information for different ontology aspects.

4.2.1.2 Metadata Organization and Categorization

In the following, we present the organization and categorization of metadata

(entities) in two dimensions, which provide a structured overview of the OMV

ontology:

Property Appropriation. We organize metadata entities according to the impact on

the prospected reusability of the described ontological content as presented in

the following list:

• Required – mandatory metadata elements. Any missing entry in this category

leads to an incomplete description of the ontology.

• Optional – important metadata facts, but not strongly required.
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• Extensional – specialized metadata entities, which are not considered to be

part of the core metadata schema.

Property Categorization. Orthogonal to the previous classification, we organize the
metadata elements according to the type and purpose of the information

contained as follows:

• General – elements providing general information about the ontology.

• Availability – information about the location of the ontology (e.g., its URI or

the URL where the ontology is published on the web).

• Applicability – information about the intended usage or scope of the

ontology.

• Format – information about the physical representation of the resource.

In terms of ontologies, these elements include information about the repre-

sentation language(s) in which the ontology is formalized.

• Provenance – information about the organizations contributing to the creation

of the ontology.

• Relationship – information about relationships to other resources. This cate-

gory includes versioning, as well as conceptual relationships such as

extensions, generalization/specialization, and imports.

• Statistics – various metrics on the underlying graph topology of an ontology

(e.g., number of classes).

• Other – information not covered in the categories listed above.

Note that the classification dimensions introduced above (appropriation and

categorization) are intended to be considered when implementing several metadata

support facilities. The first dimension is relevant for a metadata creation service,

since it ensures a minimal set of useful metadata entries for each of the described

resources. The second can be used in various settings, mainly to reduce the user-

perceived complexity of the metadata schema, whose elements can be structured

according to the corresponding categories.

4.2.1.3 OMV Core Metadata Entities

The main classes and properties of the OMV ontology are illustrated in Fig. 4.14.

Besides the main class Ontology, the metadata model contains elements describ-

ing various aspects related to the creation, management, and usage of an ontology.

We will briefly discuss these in the following text. In a typical ontology engineering

process, person(s) or organization(s) develop ontologies. We group these two

classes under the generic class Party by a subclass-of relation. A Party can have

several locations by referring to a Location individual and can create and contribute

4 Please notice that not all classes and properties are included. The ontology is available for

download in several ontology formats at http://omv.ontoware.org/
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to ontological resources, i.e., Ontology class. Review details and further informa-

tion can be captured in an extensional OMV module. Further on we provide

information about the engineering process the ontology originally resulted from in

terms of the classes OntologyEngineeringMethodology, OntologyEn-
gineeringTool, and the attributes version, status, creationDate, and
modificationDate. Again these can be elaborated as an extension of the core

metadata schema. The usage history of the ontology is modeled by classes such as

Fig. 4.1 OMV core overview
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the OntologyTask and LicenceModel. The scheme also contains

a representation of the most significant intrinsic features of an ontology. Details

on ontology languages are representable with the help of the classes

OntologySyntax, OntologyLanguage, and KnowledgeRepresenta-
tionParadigm. Ontologies might be categorized along a multitude of

dimensions. One of the most popular classifications differentiates among applica-

tion, domain, core, task, and upper-level ontologies. A further classification relies

on their level of formality and types of Knowledge Representation (KR) primitives

supported, introducing catalogs, glossaries, thesauri, taxonomies, frames, etc., as

types of ontologies. The former categories can be modeled as individuals of the

class OntologyType, while generic formality levels are introduced with the help

of the class FormalityLevel. The domain the ontology describes is represented

by the class OntologyDomain that references a predefined topic hierarchy such

as the DMOZ hierarchy. Further content information can be provided as values of

the attributes description, keywords, and documentation. Moreover, the metadata

schema provides information about the imported ontologies (useImports) and
versioning relations (hasPriorVersion, isBackwardCompatibleWith,
and isIncompatibleWith) – analogously to the OWL ontology properties.

Finally, OMV gives an overview of the graph topology of an Ontology with the help

of several graph-related metrics represented as integer values of the attributes

numberOfClasses, numberOfProperties, numberOfAxioms, and

numberOfIndividuals.

4.2.1.4 Ontological Representation

Following the accessibility and interoperability requirements, as well as the nature

of the metadata, which are intended to describe ontologies, the conceptual model

designed in the previous steps was implemented in OWL25. With OWL being

established as the standard to represent ontologies, it was only logical to opt for

representing ontology metadata using the same language. As a consequence, the

same tooling for processing the ontologies can also be used for processing the

ontology metadata.

Additionally, a metadata element is modeled either by means of classes and

individuals or by means of valued properties. The former alternative, represented

using additional classes linked by object properties, was chosen to model those

metadata elements representing entities that can be referred to. The latter alter-

native, represented using datatype properties, was chosen to model metadata

elements with value/content that can be easily mapped to conventional data types

(numerical, literal, list values).

5 In the remainder of this chapter, when OWL appears without any version information, it refers to

OWL1. As opposed, when referring to OWL2, we explicitly note it.
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Finally, OMV implements the appropriate properties of metadata entities by

different means: The required and optional metadata entities are implemented in

OMV core with the appropriate cardinality restrictions, while the extensional

metadata entities are implemented in the different OMV extensions.

4.2.1.5 OMV Extensions

The OMV core metadata is intended to evolve toward a commonly agreed schema

for Semantic Web ontologies. In contrast to this ambitious goal, we are aware that

for specific domains, tasks, or communities, extensions in any direction might be

required. These extensions should be compatible to the OMV core, but at the same

time, they should fulfill the requirements of a domain-, task-, or community-driven

setting.

The character of an OMV extension is a metadata ontology itself that imports the

OMV core ontology. There are no restricting modeling guidelines to be met.

However, developers are encouraged to follow the design principles described

above (see Sects. 4.2.1.2 and 4.2.1.3), as well as to follow a basic set of guidelines

for naming ontology terms (Palma et al. 2008).

Some of the existing OMV extensions were developed in collaboration with

different institutions. The available extensions6 are: the generic change ontology,

which models changes to an ontology (Palma 2009); the lexOMV extension

(Montiel-Ponsoda et al. 2007) that models the linguistic or multilingual data

contained in the ontology; the modules extension that represents the description

of ontology modules (d’Aquin et al. 2008); the peer extension that captures

information of peers sharing metadata about ontologies and related entities

(e.g., mappings and modules) (Wang et al. 2007); and the mapping extension that

describes mappings between heterogeneous ontologies.

4.2.2 Uses and Benefits

OMV plays an important role in the ontology reuse task by facilitating the discov-

ery and exchange of ontologies, fostering the widespread dissemination of ontol-

ogy-driven technologies and the development of full-fledged ontology repositories

and registries on the web. Furthermore, applications that work with the creation or

(re)use of ontologies can benefit from having a standard schema for ontology

metadata. By using the same vocabulary to describe ontology metadata, applications

can exchange this information easily.

6 OMV extensions are also available at http://omv.ontoware.org
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Several applications are already using OMV to describe ontology metadata. In

this section, we present a selection of these applications that use OMV at various

stages of the ontology development life cycle. First, the NeOn Toolkit7 (c.f. Part III

of this book) includes a set of OMV-related plugins that either use OMV or provide

access to OMV-enabled registries (e.g., Oyster, Centrasite). Oyster8 is an open-

source ontology registry that uses the metadata for retrieval and selection tasks and

can also export OMV data for other applications. Similarly, the commercial registry

Centrasite9 provides an OMV-specialized web service to support the management

of ontology metadata. Also, BioPortal10 and Cupboard11 are two ontology

repositories that use OMV for the description of ontologies. The Semantic Web

gateway Watson12 can generate OMV annotations for the ontologies discovered.

Finally, applications such as the Protege MetaAnalysis plugin13 allow to calculate

various metadata for ontologies and facilitate the export of that metadata to the

OMV.

Oyster (Palma and Haase 2005) is a distributed registry that exploits Semantic

Web techniques in order to provide a solution for exchanging and reusing onto-

logies and related entities (e.g., ontology developers, ontology mappings, ontology

changes, etc.). To achieve this goal, Oyster uses OMV to describe ontologies and

related entities.

Moreover, Oyster uses ontologies extensively to provide its main metadata

management functions (registry metadata, formulating queries, routing queries,

and processing answers). The ontology metadata entries are aligned and formally

represented according to two ontologies: (1) the OMV that describes the properties

of the ontology and (2) a topic hierarchy to define the domain of the ontology

(c.f. Sect. 4.3).

NeOn Applications. The NeOn Toolkit includes different OMV-related plugins.

The Oyster-API plugin enables programmatic access to all Oyster registry

functionalities within any other NeOn Toolkit plugin. This plugin can either use

a local or remote Oyster instance. Similarly, the Oyster-GUI plugin provides

a graphical user interface to interact with Oyster servers and other OMV-enabled

servers (e.g., Centrasite) implementing the OMV-based web service. This plugin

allows submitting, updating, and removing instances ofOMV core classes, submitting

queries to search ontologies based on different criteria and importing from the Internet

ontologies matching the search criteria. Furthermore, the change-capturing plugin

implements methods and strategies for the capturing and synchronization of ontology

changes that are formally represented as instances of the change ontology (an OMV

7http://www.neon-toolkit.org/
8 http://oyster2.ontoware.org
9 http://www.infoq.com/zones/centrasite/
10 http://bioportal.bioontology.org
11 http://cupboard.open.ac.uk:8081/cupboard
12 http://watson.kmi.open.ac.uk/
13 http://protegewiki.stanford.edu/wiki/MetaAnalysis
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extension). This OMV extension is also used by several other plugins, such as Cicero

plugin (to enable discussions on changes), Evolva plugin (to represent the changes

proposed by the plugin based on background knowledge) and GATE Web service

plugin (to represent the changes generated from textual sources).

Additionally, the Cupboard system produced in NeOn for ontology publishing,

sharing, and reuse also relies on OMV to implement some of its features. Besides

letting users add their ontologies in a personal space – hosting, indexing, linking,

and exposing them through APIs and SPARQL – Cupboard is designed to be

a community tool. It helps ontology users and practitioners (including ontology

developers) in finding and reusing ontologies, through the use of rich ontology

metadata (thanks to Oyster and OMV) and advanced ontology review mechanisms.

Finally, the latest update produced in NeOn of the collaborative ontology design

ontology (C-ODO), called codolight (c.f. Sect. 4.4), has been aligned with OMV.

Compared to the original C-ODO ontology design metamodel, codolight is now

linked to requirements and application tasks, has been used for tool descriptions, is

aligned to external vocabularies, is lighter in complexity, and improves association

between the social and software layers of ontology design aspects. From a design

viewpoint, the metadata provided by OMV have a semantics that is potentially

compatible to that of other metamodels, and this alignment helps with metadata

interoperability.

Protege Plugin. The Protege MetaAnalysis plugin calculates various metadata

for ontologies and facilitates the export of those metadata to the OMV. The plugin

is a tab widget consisting of four panels: the numbers panel, the design panel, the

OWL panel, and the extras panel. The plugin computes metadata for a given

ontology and displays them in these panels. The ontology metadata can be exported

to an extension of the OMV. If the ontology already exists in OMV, the metadata

for that ontology are updated. Otherwise, a new instance of the ontology is created

in OMV and populated with the computed metadata.

BioPortal. While Oyster is a distributed ontology repository, BioPortal is

a centralized repository of biomedical ontologies, where authors submit their

ontologies. As part of the submission process, authors also fill in the form to

describe their metadata. In the future, it is planned to add the capability for the

authors simply to point to the location of an OWL file that has the OMV individuals

and to have BioPortal import the information from that file.

BioPortal uses the ontology metadata in ontology search and navigation. Users

can specify, e.g., whether they want their search term to appear only in concept

definitions or in metadata as well. BioPortal will also use OMV extensions. For

example, one of the functions of BioPortal is to be a repository of mappings

between concepts in biomedical ontologies. Each mapping comes with its own

set of metadata (e.g., the mapping author, the algorithms used, the application

context in which the mapping is valid, etc.) (Fridman Noy et al. 2008). It is planned

to represent the mapping metadata as an OMV extension.

Another feature of BioPortal is the use of peer reviews for ontology evaluation.

Ontology users can rate BioPortal ontologies along different dimensions, such as

coverage and degree of formality, based on their experience with the ontology in
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their own applications (Fridman Noy et al. 2005). The evaluation extension will

also be an OMV extension.

The Watson Semantic Web gateway contains a repository of ontologies and

provides export of their metadata in the OMV format. When Watson users search

for ontologies, they can click on an ontology URI from the search results, and then

on the overview page for that, click on “Get OMV” for the metadata export.

OMEGA is an algorithm that addresses the problem of populating metadata

elements (Ungrangsi and Simperl 2008). It generates automatically metadata

about arbitrary ontologies on the web and is available as a web application and

a REST web service. It takes an ontology as input and automatically populates

certain metadata information such as domain, level of formality, and statistics,

using an ontology metadata schema, which is part of the OMV standard.

4.3 Linguistic Information Repository (LIR)

The symbiosis between ontologies and natural language has proven more and more

relevant in the light of the growing interest and use of Semantic Web technologies.

Ontologies that are well-documented in a natural language not only provide humans

with a better understanding of the world model they represent, but also a better

exploitation by the systems that may use them. This “grounding in natural lan-

guage” is believed to provide improvements in tasks such as ontology-based

information extraction, ontology learning, and population from text or ontology

verbalization (Buitelaar et al. 2009).

Nowadays, there is a growing demand for ontology-based applications that need

to interact with information in different natural languages, i.e., with multilingual

information. This is the case of numerous international organizations currently

introducing semantic technologies in their information systems, such as the Food

and Agriculture Organization or the World Health Organization, to mention just

a few. Such organizations have to manage information and resources available

in more than a dozen of different natural languages and have to customize the

information they produce to a similar number of linguistic communities.

For all these reasons, solutions have to be provided to model multiple natural

language descriptions in ontologies. Such an undertaking needs to consider several

requirements imposed by the characteristics of the domain of knowledge modeled

in the ontology and by the type of linguistic descriptions that are required by the

final application.

Requirements. Although the number of multilingual ontologies is still quite

small compared with the total amount of ontologies available in the web14, we

have conducted a survey of the state of the art of modeling options to represent

multilingual information in ontologies (Montiel-Ponsoda et al. 2010). This survey

14 The Semantic Web search engine Watson provides data about the language of ontology labels

that shows that around 80% of ontologies have literals only in English (http://watson.kmi.open.ac.

uk/blog/2007/11/20/1195580640000.html)
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has revealed the existence of three modeling options, which are briefly explained in

the following:

• Including multilingual labels in the ontology model

• Combining the ontology model with a mapping model between different natural

languages or a common interlingua

• Associating the ontology model with an external linguistic model

The first modeling option relies on the RDF(S) and OWL properties rdfs:
label and rdfs:comment to associate word forms and descriptions to ontology

elements. The main disadvantage of this option is that it is not possible to define any

relation among the linguistic annotations, so that the linguistic information is

restricted and the model is difficult to scale. The second option assumes the

existence of several ontologies in the same domain with labels expressed in

different natural languages, which are mapped to each other in a pairwise fashion,

or through a common conceptualization or interlingua. This option has been

considered in projects such as EuroWordNet (Vossen 1998). The risk of this option
is that a lot of effort has to be put in developing one conceptualization per language

and also in establishing mappings or links among conceptualizations. Finally, the

third modeling option allows the association of an external model of linguistic

descriptions to the ontology. The main advantages of this modeling option have to

do with the capability of the linguistic model of evolving into a complex model of

linguistic descriptions that can be accommodated to account for the needs of the

final applications. Models that follow this approach include LingInfo (Buitelaar

et al. 2006), LexOnto (Cimiano et al. 2007) or LexInfo (Buitelaar et al. 2009).

Whereas some models have been explicitly designed to enrich ontologies with

linguistic information, such as the ones mentioned above, they mainly focus on

morphosyntactic descriptions of ontological entities and have not handled multilin-

gualism issues, as the ones that arise when aiming at reusing the same ontology in

different linguistic and cultural settings. This is particularly relevant in the case of

ontologies that represent categorizations of reality that are not completely valid for

all the cultures and languages involved. In this context, we have to consider the

possibility of providing relations among the linguistic descriptions in different

languages associated to the same ontology elements.

Finally, we refer to the need for encoding the linguistic descriptions captured in

the linguistic model according to standard models in order to guarantee interopera-

bility, reuse, and commitment to best practices. The potential integration of termi-

nological and lexical knowledge bases into our model requires interoperability with

existing and proposed standards. In this sense, we have analyzed some

standardization initiatives that have been developed in order to capture linguistic

information that can be reused for various purposes. As the most important

initiatives, we mention a number of standards from the International Organization

for Standardization (ISO) and the World Wide Web Consortium (W3C) that

capture terminological and lexical information. We are referring to Terminological

Markup Framework (TMF) (ISO 2003), the Lexical Markup Framework (LMF)

(ISO 2006), and Simple Knowledge Organization Systems (SKOS) (Miles et al.
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2005). After the analysis of the state of the art and considering the needs of a model

that aims at providing ontologies with multilingual information, we identified the

following set of requirements:

Independence: the possibility for providing independent and complex models of

linguistic information that can be self-contained and from which information can

be inferred. The independence between the ontology and the linguistic model

guarantees the full development of both without one restricting the other.

In particular, in the case of the linguistic model, this allows the existence of a

complex model that contains as much linguistic information as required by the

final application and, additionally, in different languages.

Localization: the capability for providing a subset of linguistic descriptions to

account for the linguistic realization of an ontology in different natural

languages and representing term variants within one language and cultural

specificities among different languages.

Interoperability: the flexibility of interoperating with existing standards for the

representation of lexical and terminological information. By interoperating with

standard models, there also exists the possibility for the model of interchanging

knowledge with the standards and being extended with further linguistic descrip-

tion elements, if so required by the final application.

Accessibility: the fact of being implemented in a syntax or representation language

that can provide tool support available to manage it, as well as access to external

resources from which information can be obtained to semi-automatically support

the model.

4.3.1 LIR Overview

This section presents the Linguistic Information Repository or LIR, a model that has

been created with the twofold purpose of fulfilling the needs of portability and

association of multilingual information to domain ontologies, on the one hand, and

adapting ontologies to the needs of the languages involved in the localization

activity, on the other.

The LIR has been implemented as an ontology in OWL. Its main purpose is not

to provide a model for a lexicon of a language but to cover a subset of linguistic

description elements that account for the linguistic realization of a domain ontology

in different natural languages. A complete description of the current version of the

LIR can be found in (Montiel-Ponsoda et al. 2008; Montiel-Ponsoda 2011).

The lexical and terminological information captured in the LIR is organized

around the LexicalEntry class. Lexical entry is considered a union of word

form (Lexicalization) and meaning (Sense). This ground structure has been
inspired by the Lexical Markup Framework (LMF). The compliance with this

standard is important for two main reasons: (a) Links to lexicons modeled

according to this standard can be established, and (b) the LIR can be flexibly

78 A. Adamou et al.



extended with modular extensions of the LMF (or standard-compliant) modeling

specific linguistic aspects, such as deep morphology or syntax, not dealt by LIR in

its present stage. For more details on the interoperability of the LIR with further

standards see (Peters et al. 2010).

The rest of the classes that make up the LIR are Language, Definition,
Source, Note, and UsageContext (see Fig. 4.2). These can be linked to the

Lexicalization and Sense classes. Each lexicalization is associated to one

sense. The sense class represents the meaning of the ontology concept in a given

language. It has been modeled as an empty class because its purpose is to point to

other resources in which that sense is captured. The meaning of the concept in a

certain language (which may not completely overlap with the formal description of

the concept in the ontology) is “materialized” in the definition class, i.e., is

expressed in natural language. The UsageContext gives us information about

how a word behaves syntactically in a certain language by means of examples.

Source information can be attached to any class in the model (Lexicalization,
Definition, etc.), and, finally, the Note class has been meant to include any

information about language specificities, connotations, style, register, etc., and can

be related to any class. By determining the Language of a lexical entry, we can

ask the system to display only the linguistic information associated to the ontology

belonging to a given language.

Fig. 4.2 Diagram of LIR ancillary classes
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4.3.2 Uses and Benefits

The main benefit of the LIR model is that it provides a very granular specification

of relationships between elements of an ontology. In particular, it identifies

well-defined relationships among the linguistic descriptions used to represent

ontological concepts, specifically:

• Well-defined relations within lexicalizations in one language

• Well-defined relations within lexicalizations across languages

Both cases are illustrated in the following. The example in Fig. 4.3 concerns the

establishment of relations among term variants belonging to the same language.

Specifically, this case exemplifies the use of various acronyms and full forms

attached to one and the same concept. Three lexical entries (01:LexicalEntry, 02:

LexicalEntry, and 03:LexicalEntry) are associated with the same concept (C21:

Class), which means that they are terms that identify one and the same concept.

Two lexical entries (01:LexicalEntry and 02:LexicalEntry) belong to English,

whereas the third lexical entry (03:LexicalEntry) belongs to French. The two

English lexical entries are considered synonyms, and both are translations of the

Fig. 4.3 LIR example usage within a single language

80 A. Adamou et al.



French lexical entry. Each lexical entry contains two lexicalizations. For example,

01:LexicalEntry includes 011:Lexicalization and 0111:Lexicalization, whose

labels are FAO and Food and Agriculture Organization, respectively. FAO is the

acronym for Food and Agriculture Organization, and, moreover, it is considered the

main entry. FAO of the UN and Food and Agriculture Organization of the United

Nations are deemed synonyms of FAO and Food and Agriculture Organization.

Both lexical entries (01:LexicalEntry and 02:LexicalEntry) are translations of OAA

and Organisation des Nations Unies pour l’Alimentation et l’Agriculture in the

French language. Thanks to LIR it is possible to retrieve synonyms within the same

language associated with the same concept and distinguish different term types

such as acronyms and full forms.

The second example highlights the possibility given by the LIR model to

represent scientific names and use them across languages (scientific names are in

Latin and are internationally accepted over scientific communities). Variants in the

same language (e.g., Buffaloes (syncerus)) can therefore be connected to the same

scientific term, such as the English and Japanese translations. We have illustrated in

Fig. 4.4 how the concept buffaloes (C133:Class) has four lexical entries associated

(01:LexicalEntry, 02:LexicalEntry, 03:LexicalEntry, and 04:LexicalEntry). Two of

them belong to the English language and contain synonymous lexicalizations (011:

Lexicalization and 021:Lexicalization).

Then, we have a lexicalization in Latin that represents the scientific name, and it

is accordingly related with the rest of lexical entries by means of the object property

hasScientificName. Finally, 04:LexicalEntry belongs to the Japanese language,
which is also the common denomination in Japanese of the Syncerus caffer scientific
name and, at the same time, the translation of the two lexicalizations in English.

To conclude, we refer to the LabelTranslator NeOn plugin, a translation-

supporting tool (Espinoza et al. 2008) that provides semi-automatically translations

Fig. 4.4 LIR example of cross-language usage
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for ontology lexicalizations. Currently, the languages supported by the plugin are

Spanish, English, and German. Once translations are obtained for the labels of the

original ontology, they are stored in the LIR. However, if the system does not

support the language combination in which we are interested, we can still use this

system to take advantage of the LIR application programming interface or API

implemented in the NeOn Toolkit. In this sense, the needed linguistic information

can be introduced manually.

4.4 Collaborative Ontology Design Ontology (C-ODO) Light

Authoring and maintaining Semantic Web ontologies is generally not an individual,

monolithic activity but is intrinsically grounded on social and collaborative pro-

cesses, more so when ontologies are configured in a networked architecture.

Continuous interaction between knowledge engineers and domain experts is key

and so is that with resource providers whenever reuse or re-engineering enters the

life cycle.

However, without dedicated tool support, collaboration may occur across gen-

eral-purpose software tools and communication channels, in which case a manual

effort is required to coordinate and bring the outcome of these activities together.

Thus, on one hand, tool support to ontology engineering activities (e.g., reusing
existing ontologies and design patterns; re-engineering thesauri, lexica, and data-

base schemas; validating the outcome) is required. On the other hand, tools are

often unable to support these activities in a collaborative setting, e.g., aiding the

discussion and consensus-based assessment of an ontology element and the ratio-

nale behind it. Among other reasons, this can also be ascribed to an inadequate

requirement analysis describing the actual processes and data involved therein, and

the lack of a conceptual framework that formally expresses these notions so that

they can be unified and reasoned upon.

4.4.1 C-ODO Light Overview

C-ODO Light (aka codolight) is one such formal knowledge framework. It is a

pattern-based OWL-DL ontology network that provides a metamodel for describing

collaborative ontology projects (Gangemi et al. 2007). C-ODO Light was designed

so as to take into account requirements deriving from the experience with formal

models for describing ontology projects and tools, as well as existing controlled

vocabularies.

In particular, the network displays the following features:

1. The ability to formalize ontology design tool descriptions in terms of input/

output data (knowledge types), functionalities, interface objects, and interaction

patterns
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2. Smooth integration between human-oriented and tool-oriented descriptions of

ontology design aspects

3. Alignment to existing vocabularies such as DOAP, OMV, etc.

4. Light axiomatization, e.g., no use of anonymous classes in restrictions

5. Modular development by pattern-based design (cf. Chap. 3), in compliance with

the ontologydesignpatterns.org practices

Additionally, the codolight core is extended to support specific ontology appli-

cation tasks, such as:

1. Browsing semantic data about ontology projects, tools, data, repositories,

solutions, discussion, evaluation, etc.

2. Searching and selecting design components based on design aspects, knowledge

types, individual needs, user profiles, etc.

3. Creating design configuration interfaces that aid or automate task 2

4. Help collecting ontology requirements, design functionalities, and ontology

application tasks for an ontology project

5. Providing a shared network of vocabularies to create/query/reason on

annotations and data related to ontology projects, including integration between

annotations of heterogeneous provenance, such as those coming from collabora-

tive discussions and change

It is here anticipated that part of these tasks are implemented within NeOn in the

form of the Kali-ma tool, to be described in Chap. 15.

4.4.2 Structure

The C-ODO Light network of ontologies is organized as a layered architecture,

where these layers are connected with different types of bindings. Besides the two

bottom layers that define the main structure, there are three additional layers that

bridge it with existing applications, vocabularies, and functionalities:

Pattern layer: It contains reusable content ontology design patterns (Content ODP)
(Presutti and Gangemi 2008) that include, e.g. sequence, partof, situation,
collectionentity, and so on. The patterns are reused in the design of the

ontologies constituting the core architecture of codolight.
Core codolight layer: It contains the nine modules of the codolight core network of

ontologies, centered around the codkernel module in the center, along with

modules coddata, codprojects, codworkflows, codarg, codsolutions, codtools,
codinterfaces, and codinteraction importing codkernel.

Plugin layer: It consists of the modules containing the descriptions of the NeOn

Toolkit plugins related to ontology design, formalized in OWL by reusing the

codolight vocabulary and some of the alignment modules.

Categorization layer: It consists of the modules containing the definition of the

design aspects according to which tools, knowledge types, and functionalities

are organized, as well as the closure of inferences derived by the application of

reasoners to the previous layers.
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Alignment layer: It consists of the modules containing mapping axioms between

codolight and related vocabularies, currently: OMV, DOAP, FOAF, NeOn

Access Rights model, NeOn OWL metamodel, NeOn OWL2 metamodel, and

the Software Ontology Model.

Each layer is in its turn an ontology network with its own architecture. In

particular, the core codolight layer network encodes the main aspects of ontology

design by following an architectural ontology design pattern called corolla. The
floral metaphor for the corolla pattern, shown in Fig. 4.5, suggests an overall shape

for the network composed of a kernel module, which includes the definition of core

concepts of the domain of interest, and a set of petal modules, each defining a

specific aspect of the same domain.

The corolla pattern minimizes dependencies and enforces loose coupling

between the modules of an ontology network: In the codolight core example, all

modules, but codinteraction (described below), directly depend on the kernel

module exclusively. Also, the modules are built so that their structure suggests an

organization of the network, by which different aspects of the domain of interest are

represented by each petal module. The criterion by which an ontology network can

be broken apart into a corolla can be: What are the main aspects of the domain
described by the ontology network?

The kernel module defines core concepts, shared by all aspects. As shown in

Fig. 4.6, axiomatization is minimal at the kernel level, i.e., although the basic

classes of collaborative ontology design are defined, only a minimum set of new

properties, or restrictions holding between them, is asserted. It is up to petal

modules to refine the axiomatization of at least one of the core concepts each,

thus adding details for at least one aspect.

All classes defined in the kernel module are specializations of classes from the

pattern layer (such as DesignFunctionality subsuming Task from the

taskrole pattern15 or KnowledgeResource, FormalExpression,

Fig. 4.5 Core C-ODO Light corolla architecture

15 http://www.ontologydesignpatterns.org/cp/owl/taskrole.owl
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IconicObject all subsuming InformationObject from the intensio-
nextension pattern16), thus inheriting the structure defined by equality over

shared classes.

The following petal modules are defined for codolight:

Data (coddata): contains the main notions that classify the data managed when

designing an ontology: ontologies, ontology elements, Knowledge Organization

Systems (KOS), KOS elements, rules, modules, encoding syntaxes, and more. For

each class of knowledge resources, a knowledge-type instance is provided.

Projects (codprojects): contains the minimal vocabulary for representing ontology

design projects and their executions. An ontology project is here taken as a social

entity, whose computational counterpart (e.g., a project created in the NeOn

Toolkit) is a software entity that collects resources and descriptions related to an

ontology project.

Workflows (codworkflows): contains classes and properties to represent workflows

from within ontology projects: collaborative workflows, accountable agents,

need for an agent or a design functionality, etc.

Fig. 4.6 C-ODO Light kernel class diagram

16 http://www.ontologydesignpatterns.org/cp/owl/intensionextension.owl
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Argumentation (codarg): contains the basic classes and properties to represent

argumentation concepts: arguments, threads, ideas, positions, rationales, etc.

Solutions (codsolutions): contains classes and properties to represent ontology

design solutions: competency questions, ontology design patterns, ontology

requirements, unit tests, etc.

Tools (codtools): contains classes and properties to represent ontology design tools:
tools, pieces of code, code entities, computational tasks, input and output data

relations, etc.

Interfaces (codinterfaces): contains classes and properties that represent some

typical user interface entities, such as interface objects, panes, and windows.

Interaction (codinteraction): contains classes and properties that represent some

typical entities related to human-computer and human-ontology interaction, e.g.,

user types, computational tasks, and workflows. These can in turn be combined

so as to construct interaction pattern models.

One advantage of employing this aspect-oriented architecture is selective exten-
sibility. A software application intended to exploit only a given subsystem of

ontology life cycle management, such as reasoning on the usage of interaction

patterns and user interface widgets, can import only the codinterfaces and

codinteraction modules. Possibly, they can also extend these modules with

ontologies that model further additional interaction patterns or GUI elements

originally not intended for the application domain at hand.

4.4.3 Alignments

This section provides an insight on some alignments that hold between codolight
and other vocabularies that are widely used on the Semantic Web or are introduced

as part of the methodology described by this book (c.f. Chap. 2), such as OMV that

is described in this very chapter.

OWL17. The alignments between codolight and the OWL language constructs

consider three different vocabularies:

• The original RDF, RDFS, and OWL vocabularies from the W3C

• The OWL1 metamodel designed for NeOn

• The OWL2 metamodel also designed for NeOn

The reason why so many different vocabularies represent entities from a same

language is mainly due to the pragmatic evolution of semantic technologies.

The original vocabularies by W3C are not extremely detailed in distinguishing

the constructs available in OWL (and RDF, RDFS); e.g., it is difficult to describe

existential restrictions explicitly, because these are just instances of owl:
Restriction. On the other hand, W3C vocabularies are implemented in all

APIs and tools for ontology engineering, so in order to maximize interoperability,

17 http://www.ontologydesignpatterns.org/cpont/codo/owl22codo.owl
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an ontology design vocabulary like codolight must be aligned to the main data

vocabularies. The OWL metamodels developed in NeOn try to overcome the

referential coarseness of OWL constructs, e.g., by providing the class

owlodm1:ExistentialRestriction. On the other hand, these metamodels

are not intended to be a replacement for the W3C OWL data model.

Ontology Metadata Vocabulary (OMV)18. The OMV described in this chapter is

a vocabulary for annotating ontologies with time, authors, tools, languages, etc.,

and it is used to provide support for ontology registries. However, from a design

viewpoint, the semantics of OMVmetadata are potentially compatible with those of

other metamodels, so this alignment aids metadata interoperability. Only subsump-

tion alignments occur, i.e., OMV classes and properties are subclasses or

subproperties of those from the codolight pattern and core layers. Aligned OMV

classes of interest include omv:OntologySyntax, omv:FormalityLevel,
omv:OntologyEngineeringTool, and omv:OntologyTask. Aligned

OMV properties of interest include omv:hasContributor, omv:
hasCreator, omv:useImports, and omv:isIncompatibleWith.

Description of a Project (DOAP)19. DOAP is a vocabulary for creating profiles

of software projects20 with time, authors, FOAF (Friend of a Friend) vocabulary

profiles, etc. The doap:Project notion addressed here is computational and

not social; therefore, it has been aligned as equivalent to codkernel:
Project. Subsumption mappings occur between doap:Repository and

collectionentity:Collection, and between doap:Version and

coddata:Annotation. Direct mappings occur between FOAF and the

codolight pattern layer, either by equivalence (foaf:Agent and agentrole:
Agent) or by subsumption (foaf:topic and topic:hasTopic; foaf:
Document and intensionextension:InformationObject; foaf:
member and collectionentity:hasMember).

NeOn Access Rights Model21. This ontology representing access control policies
and related entities uses three different vocabularies, i.e., accessRights22,
ar-entities23, and ar-agents24. Entities from these vocabularies, such as Action,
Agent, and Content, map to codolight via subsumption alignments. The

Right class, being a conceptualization of its holder in the access policies context,

subsumes the Description class from the description design pattern.

Software Ontology Model (SOM)25. The SOM is designed to represent entities in

the object-oriented programming model (Tappolet et al. 2010). Given the class

18 http://www.ontologydesignpatterns.org/cpont/codo/omv2codo.owl
19 http://www.ontologydesignpatterns.org/cpont/codo/doap2codo.owl
20 http://trac.usefulinc.com/doap
21 http://www.ontologydesignpatterns.org/cpont/codo/accessrights2codo.owl
22 http://www.uni-koblenz.de/~bercovici/owl/2008/7/accessRight.owl
23 http://www.uni-koblenz.de/~bercovici/owl/2008/7/entity.owl
24 http://www.uni-koblenz.de/~schwagereit/owl/agents.owl
25 http://www.ontologydesignpatterns.org/cpont/codo/som2codo.owl
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subtree for the som:Entity class, which includes functions, methods,

classes, and packages, the parent class aligns to codtools:CodeEntity by

equivalence.

4.5 Conclusions

A methodology for managing ontology networks is best designed if formal models

of the resources and processes involved come along with it. To that end, the NeOn

Methodology proposes three stand-alone models, i.e., the OMV, LIR, and C-ODO

Light ontologies, that can nonetheless be interconnected in order to represent and

reason on the structural, linguistic, and engineering aspects of ontology life cycle.

Ontology alignments are provided across these models to ensure logic interopera-

bility, without hampering their stand-alone usage possibilities. These ontologies

also serve as a back end for software applications provided as plugins for the NeOn

Toolkit (see Chaps. 13, 14, 15), which treat each ontology separately to serve

dedicated phases and processes in ontology management.
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Palma R, Haase P (2005) Oyster – sharing and re-using ontologies in a peer-to-peer community.

In: International semantic web conference, Galway, pp 1059–1062

Palma R, Hartmann J, Haase P (2008) OMV – ontology metadata vocabulary for the semantic web.
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