
Chapter 3

Pattern-Based Ontology Design

Valentina Presutti, Eva Blomqvist, Enrico Daga, and Aldo Gangemi

Abstract In this chapter, we present ontology design patterns (ODPs), which are

reusable modeling solutions that encode modeling best practices. ODPs are the

main tool for performing pattern-based design of ontologies, which is an approach

to ontology development that emphasizes reuse and promotes the development of

a common “language” for sharing knowledge about ontology design best practices.

We put specific focus on content ODPs (CPs) and show how they can be used within

a particular methodology. CPs are domain-dependent patterns, the requirements of

which are expressed by means of competency questions, contextual statements, and

reasoning requirements. The eXtreme Design (XD) methodology is an iterative and

incremental process, which is characterized by a test-driven and collaborative

development approach. In this chapter, we exemplify the XD methodology for

the specific case of CP reuse. The XD methodology is also supported by a set of

software components named XD Tools, compatible with the NeOn Toolkit, which

assist users in the process of pattern-based design.

3.1 Introduction

One of the most challenging and neglected areas of ontology design is reusability,

which is getting more and more important partly due to the increased spread of the

Linked Data concept (Bizer et al. 2009). The notion of “pattern” has proved useful

in design, as exemplified in diverse areas, such as software engineering (Gamma

et al. 1994). In this chapter, we introduce the notion of ontology design patterns

(ODPs) along with a description of their different types and characteristics.

V. Presutti (*) • E. Blomqvist • E. Daga • A. Gangemi

Semantic Technologies Lab, Institute of Cognitive Sciences and Technologies (National Research

Council – CNR), Via Nomentana 56, 00161 Rome, Italy

e-mail: valentina.presutti@cnr.it; eva.blomqvist@istc.cnr.it; enrico.daga@cnr.it;

aldo.gangemi@cnr.it

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_3, # Springer-Verlag Berlin Heidelberg 2012

35

mailto:valentina.presutti@cnr.it
mailto:eva.blomqvist@istc.cnr.it
mailto:enrico.daga@cnr.it
mailto:aldo.�gangemi@cnr.it


Then we focus on content ODPs (CPs), which are domain-dependent practices of

modeling, encoded as reusable computational components.

ODPs have recently been the subject of a series of workshops (Blomqvist et al.

2009b, 2010b), and they are collected in online repositories such as the ODP

portal1. Section 3.2 defines and describes ODPs, their types and characteristics,

while in Sect. 3.3, we describe how CPs can be reused by means of a set of

operations, such as import, specialization, and composition. In the second part of

the chapter, i.e., Sect. 3.4, we introduce a pattern-based ontology design approach

and describe a particular iterative and incremental method named eXtreme Design

(XD), supporting this practice with a collaborative and test-driven approach. At the

end of Sect. 3.4, we show a set of tools that provide software support to XD in the

NeOn Toolkit environment, before we summarize some conclusions in Sect. 3.5.

3.2 What Are Ontology Design Patterns (ODPs)?

During the past decade, as remarked by (Gangemi and Presutti 2009), an average

user that is trying to build or reuse an ontology, or an existing knowledge resource,

has typically been left with very limited assistance in using unfriendly logical

structures, some large, hardly comprehensible ontologies, and a bunch of good

practices that must be discovered from the literature. A typical usage scenario

includes, for instance, a large set of web ontologies that are evaluated (usually in

an implicit way, e.g., by inspecting them) against the intended domain and tasks of

the ontology that is needed. The selected ontology (if any) is reused, and then an

adaptation process is started in order to cope with the implicit requirements

underlying the ontology project that originally created the reused ontology2. This

scenario is costly in many cases. As noted by (Rector and Stevens 2008), usability

of large OWL ontologies from a human perspective is often low, and automatic

selection mechanisms do not help with the adaptation process.

Another typical scenario includes so-called “reference” or “core” ontologies that

are supposed to be directly reused and specialized. Unfortunately, even if well

designed, they are usually large and cover more knowledge than what a designer

might need. In this case, it is hard to reuse only the “useful pieces” of the ontology,

and consequently, the cost of reuse can be higher than developing a new ontology

from scratch. On the other hand, the success of very simple and small ontologies,

such as FOAF3 and SKOS (Miles and Bechhofer 2009), shows the potential of

1 http://www.ontologydesignpatterns.org
2 Even in cases when ontology requirements are explicitly expressed, e.g., as described in Chap. 5,

there are commonly other implicit domain assumptions that need to be addressed at reuse time. In

our experience, it is also quite rare that explicit requirements are distributed together with their

corresponding ontology.
3 See the FOAF project website: http://www.foaf-project.org/

36 V. Presutti et al.

http://www.ontologydesignpatterns.org
http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://www.foaf-project.org/


really portable or “sustainable” ontologies. These lessons learned support a new

approach to ontology design, which is sketched here.

Under the assumption that there exist classes of problems that can be solved by

applying common solutions (as has been experienced in software engineering), it is

suggested to support reusability on the design side specifically. We need a way to

express commonly applicable solutions and “best practices” and what ontological

requirements they solve (see Chap. 5); this is where ODPs come into play. An ODP

is a modeling solution to a recurrent ontology design problem (Gangemi and

Presutti 2009). However, with the term ODP we refer to a wide range of modeling

solution types. ODPs can be grouped into six types, or families, each addressing

different kinds of modeling problems:

Structural ODPs include Logical ODPs and Architectural ODPs. Logical ODPs are
compositions of logical constructs that solve a problem of expressivity. They

help solving design problems when the used representation language does not

directly support certain logical constructs, such as representing n-ary relations in
OWL (Noy and Rector 2004). Architectural ODPs are defined in terms of

compositions of Logical ODPs and affect the overall shape of the ontology,

e.g., a certain OWL 2 profile could be viewed as an Architectural ODP.
Correspondence ODPs include Re-engineering ODPs and Alignment ODPs. Re-

engineering ODPs provide designers with solutions to the problem of

transforming a conceptual model, which can be either an ontology or a non-

ontological resource4. to an ontology, e.g., transforming an OWL ontology in

order to make it comply with a certain vocabulary, transforming a classification

scheme to an OWL ontology, and so on. Alignment ODPs are patterns for

creating semantic associations between two existing ontologies. They provide

designers with solutions to align two ontologies without changing the logical

types of the ontology entities involved, e.g., relating two ontologies both defin-

ing the concept “author,” one by a class and the other by a property (Scharffe and

Fensel 2008).

Reasoning ODPs are procedures that perform automatic inference. Examples of

Reasoning ODPs are so-called normalizations (Vrandečić and Sure 2007).

Other Reasoning ODPs include common reasoning tasks, such as classification,
subsumption, inheritance, materialization, de-anonymizing, etc.

Presentation ODPs deal with usability and readability of ontologies from a human

perspective. They are best practices facilitating ontology evaluation and selec-

tion, hence supporting reuse. Examples of Presentation ODPs are so-called

Naming ODPs, which identify best practices for naming, i.e., naming con-

ventions (Svátek et al. 2009).

Lexico-Syntactic ODPs are linguistic structures consisting of a sequence of types of
words associated with an assessment of the meaning they express (Aguado de

Cea et al. 2009). For example, the sequence of two noun phrases connected by

4 For further details, and a definition of “non-ontological resource”, see Chap. 6 of this book.

3 Pattern-Based Ontology Design 37

http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_6


the verb be such as “Dolphins are warm blooded mammals” often identifies a

“subClassOf” relation between a class that represents dolphins and a class that

represents warm-blooded mammals.

Content (or domain) ODPs (CPs) are instantiations (and compositions) of Logical
ODPs. They have an explicit non-logical vocabulary for a specific domain of

interest, i.e., they are content (domain) dependent, although the domain might be

very general. An example of a Content ODP is depicted in Fig. 3.1. It represents

the concept of a “time interval” as a class of things characterized by an arbitrary

number of “dates” (i.e., points in time), but which has exactly one start date and

one end date.

Much more important than the type of a pattern is its nature of being a reusable

modeling solution. Ideally, an ontology project can be completely developed by

reusing existing solutions, i.e., ODPs, by appropriately combining them – however,

this ideal situation will most likely be very rare in practice, whereby we need to

combine the approach presented here with the ones targeted in other chapters of this

book. An interesting question is nevertheless: How can we make ODP reuse as easy

and useful as possible? In order to identify candidate ODPs for reuse in a certain

ontology project, ODPs and the specific ontology design problems to be addressed

have to be comparable, i.e., need to be described in a similar way. For instance, we

need to know what requirements a certain ODP helps us to solve, as well as what

requirements are present in our current ontology design project.

Figure 3.2 depicts the idea of pattern-based design. The ontology development

project is divided into two spaces: (1) the problem space, which contains a set of

requirements (explicitly represented, e.g., as competency questions (CQs), as

discussed in Chap. 5) that describe the ontology design problems to be addressed,

and (2) the solution space, which contains all available ODPs, where each ODP

should be well documented, e.g., described through what ontological requirements

it solves. First, the requirements of the current project (problem space) are com-

pared with the requirements of the available ODPs (solution space), and a set of

candidate matching ODPs are identified. Second, the most appropriate ODPs

among the candidate ones are selected for reuse, as illustrated by “dropping them

into the project basket” in Fig. 3.2.

Fig. 3.1 UML-like diagram showing the OWL encoding of the time interval CP taken from the

online catalog of CPs (http://www.ontologydesignpatterns.org/wiki/Submissions:TimeInterval)

38 V. Presutti et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://(http://www.ontologydesignpatterns.org/wiki/Submissions:TimeInterval)


One of the most important raison d’être of ODPs is to enable this matching and

selection task for supporting reuse. Hence, regardless of its type, an ODP is

associated with a set of requirements, explicitly represented, which describes the

problem it provides a solution for. For example, the requirements associated with

the CP shown in Fig. 3.1 refer to the problem of representing time intervals, their

start and end points. If expressed in the form of CQs, the requirements of that CP

include “What is the starting point of a particular interval?” and “What is the end

point of a particular interval?”. Another example is the Logical ODP for expressing

“n-ary relations,” the requirements of which indicate the issue of representing

relations with n arguments through a logical language including only primitives

for expressing binary relations, e.g., a language such as OWL. The format and

extent of formality of requirement representation depends on the type of ODP. In

this chapter, we will focus on content ODPs (CPs) and how to use them for

developing ontologies through the application of a particular pattern-based method,

as well as its specific tool support.

3.3 Content Ontology Design Patterns (CPs)

CPs solve design problems for the domain classes and properties that populate an

ontology; therefore, they solve content – domain-specific – problems (Gangemi and

Presutti 2009). According to the general notion of ODP (see Sect. 3.2), each CP is

Fig. 3.2 The idea of pattern-based design. The ontology project is divided into the problem and

solution spaces. The problem space contains a set of requirements (see Chap. 5), while the solution
space contains a set of ODPs. The two spaces are compared in order to identify ODPs matching the

requirements (matches are illustrated by arrows). A number of those ODPs are selected for reuse in

the ontology project, i.e., dropped in the project basket

3 Pattern-Based Ontology Design 39

http://dx.doi.org/10.1007/978-3-642-24794-1_5


associated with a set of requirements, which represents the problem it provides a

solution for. Such requirements are usually represented in three different forms: (1)

competency questions (CQs), i.e., based on work by (Gruninger and Fox 1994),

(2) contextual statements, i.e., general axioms that hold within the domain, and (3)

reasoning requirements. CQs indicate typical queries that a knowledge base will be

able to answer if it is based on that CP. Contextual statements are general axioms

that apply within the domain, which indicate conditions that hold for (and between)

certain concepts encoded by the CP. Finally, reasoning requirements indicate what

inferences are enabled by the CP, e.g., if it perhaps allows some form of classifica-

tion or consistency checking of facts.

The time interval CP shown earlier, in Fig. 3.1 (Sect. 3.2), which is a very simple

but useful CP, is associated with the following competency questions:

• When does a certain time interval start?
• When does a certain time interval end?
• What are the points in time that belong to a certain time interval?

Typically, a CP can also be associated with a set of SPARQL queries that

formally encode its competency questions. This is very useful for an ontology

designer who wants to test an ontology containing a CP against sample data since

the SPARQL queries can be used to test the coverage of the CQs.

The time interval CP (see Fig. 3.1, Sect. 3.2) is also associated with the following

contextual statement:

• A time interval always has exactly one starting point and exactly one end point.

This requirement is, in the OWL realization of the CP, addressed by cardinality

restrictions on the data type properties that identify the start and the end of a time

interval.

Finally, this CP is also associated with the following reasoning requirements:

• The start and end dates of a time interval belong to the interval.
• Two time intervals with the same start and end dates should be recognized to be

the same interval.

The first reasoning requirement is, in the OWL realization of the CP, addressed

by defining the two data type properties startDate and endDate as sub-

properties of hasDate, which is the property indicating that something belongs

to the interval. This enables ontologies reusing the CP to also include the start and

end date of an interval, when the model is queried for dates belonging to the

interval, using the hasDate property. The second reasoning requirement is

addressed by defining a hasKey[startDate, endDate] axiom, on the

class TimeInterval. This enables an inference engine to infer that the owl:
sameAs property holds between two instances of TimeIntervalwhenever they

have the same start and end date values.

Where do CPs come from? This is a highly relevant question since we need a

considerable catalog of CPs in order for them to be useful in practice. A CP can

emerge from existing conceptual models as well as from data. It can be extracted

40 V. Presutti et al.



from foundational (Masolo et al. 2005), core (Gangemi and Borgo 2004), or

domain ontologies, re-engineered from other conceptual models (e.g., data model

patterns (Hay 2000)). Informally, the distinction between foundational, core, and

domain ontologies relates to the generality of the domain they address and to the

extent of domain coverage: (1) foundational ontologies, e.g., DOLCE5 and SUMO

(Niles and Pease 2001), axiomatize general concepts and relations and are reusable

across any domain; (2) core ontologies (Masolo et al. 2005), such as the Core

Ontology of Fishery (Gangemi et al. 2004) and the Core Legal Ontology (Gangemi

et al. 2005), focus on a specific domain without being restricted to specific

applications or specific sub-areas. The latter can be built as extensions of founda-

tional ontologies or based on general principles and well-founded methodologies;

and (3) domain ontologies, such as the Gene ontology6 and the Unified Medical

Language System (UMLS)7, deal extensively with a specific domain of interest,

deepen the coverage of a certain area of a domain or address a specific use case

within a domain. Informally, such general ontologies can be viewed as com-

positions of numerous CPs, and by modularizing such ontologies, i.e., decoupling

certain “pieces” from the rest of their often large overall structure, the formal

representation of those CPs can be extracted.

CPs can also be extracted from Linked Data (Bizer et al. 2009), i.e., in a more

bottom-up fashion, where they emerge from the way data is actually modeled. By

analyzing recurring semantic structures (if any) within the same, as well as across

different, datasets addressing some domain of interest, CPs may be detected.

CPs can also be created by composing or specializing other CPs or by expanding

them (see Sect. 3.3.1 describing operations on CPs). Figure 3.3 shows a composed

CP. This CP allows to represent the relation between an information object, such as

a novel, and its realizations, e.g., a book, an HTML page, etc., and to index this

relation based on the place where and time when it holds. This CP reuses the time
interval CP shown in Fig. 3.1 (Sect. 3.2) and combines it with two other CPs, the

information realization CP8 and the place CP9. The composition is realized by

specializing a fourth CP, the situation CP10. which is a CP corresponding to the

n-ary relation Logical ODP.

Since CPs can be represented as reusable building blocks, e.g., OWL modules, a

natural question is how they are distinguished from any other small ontology. CPs

show a number of pragmatic characteristics that allow to distinguish them from

other ontologies. CPs are:

5 DOLCE – Project Home Page: http://dolce.semanticweb.org
6 See http://www.geneontology.org/
7 See http://www.nlm.nih.gov/research/umls/
8 http://ontologydesignpatterns.org/wiki/Submissions:Information_realization
9 http://ontologydesignpatterns.org/wiki/Submissions:Place
10 http://ontologydesignpatterns.org/wiki/Submissions:Situation

3 Pattern-Based Ontology Design 41

http://dolce.semanticweb.org
http://www.geneontology.org/
http://www.nlm.nih.gov/research/umls/
http://ontologydesignpatterns.org/wiki/Submissions:Information_realization
http://ontologydesignpatterns.org/wiki/Submissions:Place
http://ontologydesignpatterns.org/wiki/Submissions:Situation


• Computational components. They are represented and encoded in a computa-

tional logic language, e.g., OWL, so that they can be processed and reused as

building blocks in ontology design, e.g., through the OWL import construct.

• Small, autonomous components. Smallness and autonomy of CPs facilitate the

design of ontology networks, because they enforce modularization; by compos-

ing CPs, designers can better govern the complexity of the whole resulting

ontology as opposed to governing a monolithic ontology.

• Inference enabling components. Each CP allows some logical conclusions to be

drawn from the model. This means that a single element, e.g., a single class

without any associated axioms, cannot be a CP since it does not enable any

inferences (even simple ones) to be made.

• Hierarchical components. All CPs participate in a partial order, where the

ordering relation is called specialization (see Sect. 3.3.1). Specialization requires
that at least one entity of the more specific pattern, e.g., a class or property, is

subsumed by at least one entity of another, more general, pattern. Figure 3.4

shows an example of CP specialization: (a) shows the part-of CP11, which
defines a transitive property between objects for representing parthood rela-

tionships between them; (b) shows the componency CP12, which specializes

part-of by defining object properties for representing direct parts of objects as

sub-properties of the transitive parthood relation.

• Cognitively relevant components. CP visualization must be intuitive and com-

pact and should catch relevant, “core” notions of a domain13.

• Best practices of ontology modeling. How to evaluate the quality of a CP, e.g., to

determine if it is truly a best practice is currently an open issue (Hammar and

Sandkuhl 2010); hence at the moment, the quality of a CP can only be assessed

through the personal experience of ontology designers and through its prove-

nance. Additional criteria are evidence from reusability across different projects

and large-scale applications such as Linked Data.

Fig. 3.3 UML-like diagram showing the OWL encoding of the time and place indexed informa-
tion realization CP present in the online catalog of CPs

11 http://ontologydesignpatterns.org/wiki/Submissions:PartOf
12 http://ontologydesignpatterns.org/wiki/Submissions:Componency
13 Independently of the generality at which a CP is singled out, it must contain the central notions

that “make rational thinking move” for an expert in a given domain for a given task.

42 V. Presutti et al.

http://ontologydesignpatterns.org/wiki/Submissions:PartOf
http://ontologydesignpatterns.org/wiki/Submissions:Componency


Additionally, CPs often match linguistic structures called frames. This could be

formulated as an additional characteristic of being linguistically relevant, and the

essence of most CPs can be expressed quite straightforward in natural language.

The richest repository of frames is FrameNet (Baker et al. 1998). Informally,

a frame is a lexically founded ontology design pattern. Frames typically

encode argument structures for verbs, e.g., the frame Desiring defines associations

between elements (or “semantic roles”) such as Experiencer, Event,
FocalParticipant, LocationOfEvent, etc. Frames can be used for

validating CPs with respect to lexical coverage, for lexicalizing them, and can be

re-engineered in order to populate a CP catalog such as the ODP portal.

As opposed to the concept of CP, there is that of AntiCP. AntiCPs are ontologies
that implement wrong modeling practices, e.g., examples of bad practices or

common mistakes. In other words, they are based on erroneous assumptions or

rationales. For example, modeling transitive parthood relationships through sub-

sumption, e.g., City rdfs:subClassOf Country, is considered an AntiCP.

AntiCPs produce the side effect of inferring wrong or undesired knowledge, e.g.,

Rome rdf:type Country, or of preventing the capability to infer the desired

knowledge. It is important to distinguish between ontologies that are not CPs and

AntiCPs, i.e., only a subset of ontologies that are not CPs are AntiCPs.

Fig. 3.4 Example of CP specialization: (a) depicts the part-of CP, which is specialized by the

componency CP, shown in (b)

3 Pattern-Based Ontology Design 43



3.3.1 Operations on Content Patterns

CPs are a special kind of ontologies, as discussed above, and their creation and

usage rely on a set of operations that can be summarized as follows:

Cloning consists of duplicating an ontology entity (possibly into a new namespace),

which can be reused in a CP or used as a prototype for the definition of a new

ontology entity defined in a CP. This operation is, for instance, used when

extracting CPs from foundational and core ontologies, i.e., a part of the larger

structure becomes a CP through being cloned and given a new namespace.

Composition relates two CPs and results in a new ontology (which could in turn be a

CP – as seen in Fig. 3.3, Sect. 3.3). The resulting ontology includes the union of

the sets of ontology entities and axioms from the two CPs plus the ontology

entities and axioms that are defined locally in the new ontology in order to relate

the two CPs, e.g., disjointness axioms. Figure 3.5 depicts an example of a CP

composition. At the left of the figure, the two CPs are shown separately, one CP

(top left) represents membership relationships between persons and music

bands, the other CP (bottom left) models objects and the roles they play. The

axioms that are added for composing the two CPs are shown at the right side of

the figure. The class Person is defined to be subclass of Object, and both

Person and Band are defined to be disjoint with Role.
Specialization defines a new ontology (which could in turn be a CP) by specializing

entities of an existing one, e.g., a CP. Specialization introduces a partial order

between CPs, based on subsumption relations holding between their respective

ontological entities. Specialization relies on rdfs:subClassOf and owl:
subPropertyOf constructs. Figure 3.4 in Sect. 3.3, as mentioned previously,

shows an example of specialization: the component CP (Fig. 3.4b) specializes

part-of (Fig. 3.4a) by defining the object properties directPart and

directPartOf as sub-properties of hasPart and partOf, respectively.
Import is the basic mechanism for explicit CP reuse, as well as a way to reuse

ontologies in general. It is also the only operation described here that is directly

Fig. 3.5 Example of CP composition: A CP representing membership relationships between

persons and bands (top left) is composed with the CP object-role (bottom left), which represents

objects and the roles they play, and the result can be seen to the right

44 V. Presutti et al.



supported in the OWL vocabulary, through owl:imports. By importing a CP,

the ontology includes all the axioms of the CP and hence ensures the set of

inferences that the CP enables in its corresponding knowledge base.

3.4 eXtreme Design: An Agile Methodology for Pattern-Based

Ontology Development

With the name eXtreme Design (XD), we refer to a family of methods that support

the pattern-based design approach as depicted in Fig. 3.2 (Sect. 3.2), i.e., the

matching between problem and solution spaces in order to reuse solution

components, such as ODPs (Presutti et al. 2009). When XD is based on CPs, the

problem space is expressed by means of competency questions (CQs), contextual
statements, and reasoning requirements, as described at the beginning of Sect. 3.3,

and the solution space contains CPs and their associated requirements, i.e., simi-

larly expressed through CQs, contextual statements, and reasoning requirements.

Hence, the matching process is performed through finding similarities between CQs

as well as between the other two types of requirements, as exemplified in Fig. 3.6.

In the following sections, we describe the XD method, inspired by software

engineering’s eXtreme Programming (XP) (Shore and Warden 2007) and experi-
ence factory (Basili et al. 1994), for building ontologies through intensive CP reuse.

XD is test-driven, i.e., testing is a central part of the development; it applies a

divide-and-conquer approach similarly to XP and promotes pair design, which is

analogous to pair programming.

3.4.1 eXtreme Design Principles

Similarly to XP, XD has evolved around a set of main principles. The principles

both describe the essence of XD and act as guidelines when performing the design

process.

The first principle is named customer involvement and feedback. Ideally, the
customer should be involved in the ontology development team continuously.

Fig. 3.6 The XD (eXtreme Design) approach with CPs, exemplified for CQ matching

3 Pattern-Based Ontology Design 45



This means that the customer should identify representatives that can be easily

contacted during the development for quick feedback. Such representatives have to

be aware of all parts, and needs, of the project. Here, depending on the project

configuration, the “customer” could be either the organization containing the end

users of the system to be built (including the ontology) or simply the software

developers needing the ontology in order to perform some particular functionality

in the overall system.

The second principle states that all requirements should be based on customer
stories, from which CQs, contextual statements, and reasoning requirements are

derived. The customer representatives describe the ontology requirements and the

ontology tasks in terms of small stories. Designers work on those small stories and

transform them into more rigorous and precise requirements, e.g., in the form of

CQs, contextual statements, and reasoning requirements.

Next, an important principle is that of iterative development. XD is an iterative

and incremental process. Each iteration produces a number of modules that con-

tribute to an incremental release, produced through an integration phase.

Test-driven design means, in the case of XD, that testing is used as an integrated

means for completing the modules. Stories, CQs, reasoning requirements, and

contextual statements are used in order to develop unit tests, e.g., CQs can be

transformed into SPARQL queries. By deciding how the query should be formed, a

developer is actually partly designing the model, hence, the notion “test-driven”

design. The ontology module representing a customer story can be passed to the

integration phase, i.e., to be included in the next release, only if all its associated

unit tests run successfully. This principle also enforces the task-oriented approach

of the method, i.e., the principle that modules should realize exactly what is

required (their intended task), nothing more and nothing less.

It has to be noted that ontology unit testing, first introduced by (Vrandečić and

Gangemi 2006), has a different meaning than software unit testing. An ontology

module developed for addressing (part of) a user story is tested by developing unit

tests, i.e., dedicated ontology modules containing sample facts and appropriately

documented with testing metadata, each importing the ontology module to be

tested, based on one of the following three approaches: (1) through verification
tests to test the fulfillment of basic requirements, i.e., SPARQL queries based on

CQs that are run against valid sample data in order to check if expected results are

returned by the SPARQL engine, (2) inference tests, i.e., through inference materi-

alization performed on sample data which is expected to cause certain inferences to

be materialized in accordance with the reasoning requirements and (3) through

stress tests, e.g., through consistency checking performed on invalid sample data

violating the contextual statements, thus expecting to provoke inconsistencies.

While (1) and (2) are mainly intended for verifying the correct implementation of

requirements, (3) could be viewed as more similar to the kind of software testing

when a system is fed random or erroneous data, to make sure such cases are handled

correctly, and there are no unexpected side effects or crashes.

One of the core principles of XD is ODP reuse, which inherently leads to a

modular design. Iterations are based on identifying reusable CPs through matching

46 V. Presutti et al.



CQs and other requirements. Every time there is a positive match, the identified CPs

are considered for reuse. If the solution space does not provide an adequate ready-

to-use CP, a specific solution is developed in a modular way, preferably in the form

of a new CP so that it can be shared with the team (and ideally on the web) for future

reuse. This principle favors the creation of a common “language” based on shared

patterns and eases both the understandability and the integration of developed

modules. In addition, the divide-and-conquer paradigm leads to a natural

modularisation of the problem, which facilitates a distributed ontology develop-

ment, and assists in scoping the modeling issues that are addressed within a single

iteration.

To handle this incremental ontology development, collaboration and integration
are two essential principles. Integration is a key aspect of XD, as the ontology is

developed in a distributed, modular, and collaborative way. Collaboration and

continuous sharing of knowledge is needed when running an XD project. The result

of each iteration, i.e., one or more ontology modules, is integrated with the rest of

the ontology modules before releasing an increment. Typically, a sub-team of

designers is devoted to the integration task.

As mentioned previously, task-oriented design is another main principle. The

XD approach is based on developing a task-oriented ontology, covering only part of

a domain of knowledge according to a specific application task. This is opposed to

the more philosophically oriented approach of formal ontology design, where the

aim is to comprehensively cover a certain domain of knowledge. XD proposes to

provide solutions to the exact requirements stated, in the sense that the concepts

should be defined according to the intended task of the ontology, rather than in

some common sense notion of their “true” nature. Each XD iteration focuses on a

specific part of the domain requirements, expressed in terms of a user story.

On the more organizational side, XD promotes pair design. The team of

designers is organized in pairs. This practice is analogous to the pair programming

of XP. While pair programming has empirically been proven efficient in software

development, it still remains to rigorously test the efficiency for ontology engineer-

ing. Currently, this has to be considered a hypothesis, based on experience and

observations made through collecting feedback of trainees and developers, through

informal discussions and questionnaires after the execution of XD with different

teams. Most of them felt that they benefit from on-the-fly brainstorming, and

perceived to improve the effect of learning-by-doing within the pair design setting.

3.4.2 The eXtreme Design Process

Figure 3.7 shows the complete XD process for CP reuse. The process starts with the

XD team, including the customer representatives, making themselves familiar with

the knowledge domain, with the aim of identifying the scope of the ontology

project, based on the desired application tasks (Step 1. Project initiation and
scoping). The objective is twofold: (1) to make the customer representatives

3 Pattern-Based Ontology Design 47



(domain experts) aware of what the XD team expects from them and (2) to provide

the ontology design team with an overview of the problem from a domain expert

perspective, its scope, and agree on initial terminology. The result of this step is the

setup of a collaborative environment where the customer representatives and

ontology designers will share documentation and collect argumentation and

motivations of modeling issues, including terminology, e.g., through deploying a

wiki for the project. Following this starting activity, the XD team identifies the

sources of CPs to be used during the ontology project (Step 2. Identify CP catalogs);
however, such a set can be extended during the process.

The customer representatives are then invited to write stories, preferably from

real, documented scenarios, which act as samples of the typical facts that should be

stored in the resulting ontology, and exemplify how these facts are connected and

used (Step 3. Collecting requirement stories). All stories are organized in terms of

priority, and possible dependencies between them are identified and made explicit.

Each story is described by means of a small card, like the one depicted in Table 3.1,

which includes the unique title of the story, a list of other stories that it depends on,

a description in natural language, i.e., the story itself, and a priority value. The

customer can add stories during the whole project life cycle, depending on how

formal contracts and other commitments are formulated. Nevertheless, if a new

requirement emerges, new stories can be written.

Once a sufficient number of stories for starting the development have been

collected, each pair of designers selects a story that will be the focus of their

work for the next iteration (Step 4. Eliciting requirements and constructing mod-
ule(s) from CPs). The selection is based on the experience and competencies of the

design pair and on the priority of the story. A new wiki page for the story is created,

and its content is set up based on the information reported on the card. By

performing this task, a pair enters a development iteration (the dashed rectangle

in Fig. 3.7, which is detailed in Fig. 3.8).

Once a story has been completely modeled, it is carefully documented and released

internally for integration into the next release (Step 5. Releasing module(s)). This
task constitutes the end of a story iteration for a pair, and the result is one or

more ontology modules, i.e., small ontologies. Before releasing a module, it is

important to make sure that all tests run successfully and that the module is well

documented, both in the shared wiki as well as through annotations in the module

itself. All ontological elements have to have appropriate labels, they have to be

commented (as well as the module itself), and the module should be associated with

a description of its purpose, the requirements it solves, and even links to the unit

Table 3.1 A requirement story card, here exemplified through a story from the fishery domain

Title Tuna observation

Depends on Exploitation values, tuna areas

Description In 2004, the resource of species “tuna” in water area 24 was observed

to be fully exploited in the tropical zone at pelagic depth

Priority High

48 V. Presutti et al.



tests that have been used. The modules are assigned a URI and are shared by the

whole team. If a module can be publicly shared, and is considered highly reusable,

it can be published in open web registries, such as the ODP portal.

Once a new module is released, it has to be integrated with all the others that

constitute the current version of the ontology network (Step 6. Integrating partial
solutions, evaluating, and revising). Usually, one pair is in charge of performing the

integration and related tests. New unit tests are defined for the integrated ontology

network, and all existing ones (unit tests of individual modules) are again executed

Fig. 3.7 The overall XD process, for CP reuse

3 Pattern-Based Ontology Design 49



as regression tests before moving to next task. All contextual statements and

reasoning requirements are taken into account, and all necessary alignment axioms

are defined. The modules are now under the complete control and editing of the

team in charge of the integration, and refactoring of the ontology modules may

be performed in case inconsistent modeling choices are discovered. Integration can

be done in multiple fashions, and an integration policy should be defined at the start

of the project. For instance, if decoupling of modules is an essential feature of the

resulting ontology network, then a minimum of refactoring should be performed in

Fig. 3.8 Detailed breakdown of sub-steps in the design pair iteration (steps 4–5 in Fig. 3.7)

50 V. Presutti et al.



order to remove overlap between modules, instead integration should simply align

the modules. On the other hand, in some cases, a coherent and non-redundant model

is desired, whereby an alternative policy would be to refactor the modules, remove

as many redundant definitions as possible and instead add import dependencies

between them. The products of this step are new unit tests and alignment axioms,

and possibly a set of changes to the ontology modules (results of refactoring), all

properly documented in the wiki.

When all unit tests run successfully during the integration step, a new incremen-

tal version of the ontology network can be released (Step 7. Releasing new version
of ontology network). The ontology is given a new version number, it is appropri-

ately documented, and it is associated with its own version of the wiki documenta-

tion. It is important to note that the process depicted in Fig. 3.7 is usually not a

sequential one, i.e., in most cases the arrows indicate an input/output dependency

rather than a sequence of actions. For instance, the integration and release steps will

be ongoing activities during the complete project (as soon as the first modules are

ready); hence, integration will be performed in parallel with Steps 4–5 where new

modules are produced, to create a series of incremental releases.

Step 4 of the XD process identifies the core iteration performed by a design pair,

which is focused on the development of the ontology module(s) representing one

user story. Figure 3.8 depicts the main steps of a single iteration (i.e., a detailed

breakdown of the steps within the dashed rectangle of Fig. 3.7).

First, the development pair analyzes the selected user story and derives a set of

CQs, contextual statements and reasoning requirements from it (Step 4.1. Eliciting
requirements). In order to do that, designers could involve the customer for having

feedback and clarifications. For example, the story “Tuna observation” (see

Table 3.1) can be transformed into the following CQs, which are added to the

story’s wiki page:

• CQ1: What is the exploitation state observed and the vertical distance in a given

climatic zone for a certain resource?

• CQ2: What resources have been observed during a certain period in a certain

water area?

Additionally, assume that the following contextual statements and reasoning

requirements are derived based on a discussion with the customer representative:

• A resource contains one or more species.

• Species are associated to vertical distances. As a consequence, the vertical

distance of a resource is inferred through the vertical distance of its species.

The iteration continues by further breaking down the task, before starting to

address it through modeling. This is done by selecting one of the competency

questions, or a small set of them that constitutes a coherent modeling issue, and

then start matching them to the competency questions associated with available CPs

in order to identify candidates for reuse (Step 4.2. Matching and selecting patterns).
In our example, let CQ1 and CQ2 be the selected competency questions. Candidate

CPs for reuse would be situation and time interval. The competency question of

3 Pattern-Based Ontology Design 51



situation – “What entities are in the setting of a certain situation?” – can be said to

match the observation of the resource and the parameters that are in the setting of

that observation. Additionally, the time interval CP may be seen as matching the

question of what period a certain observation was made (CQ2), although this could

also be solved with just a simple data type property.

The following step is to select which of those patterns should actually be used for

solving the modeling problem. In our case, there are only two patterns, and neither

is an alternative solution to the other, but in many cases, this step involves making

some modeling choices, i.e., deciding which pattern is most suitable for the

particular case. Nevertheless, in our example, we still need to decide if both patterns

are really needed or if they add too much overhead to our model. For instance, we

may decide that time interval adds too many extra elements to the model since

perhaps our customer simply wants to store the year of the observation, rather than

an exact period of dates, in which case we will only select situation.
After selecting a set of CPs, it is time to start modeling, i.e., reusing the CPs

(Step 4.3. Reusing and integrating CPs). The term “reuse” here refers to the

application of typical operations that can be applied to CPs, i.e., import, specializa-
tion and composition (see Sect. 3.3.1). In some cases, one may also decide to clone a

CP, e.g., if it is desirable not to rely on imports external to the project, which would

result in replicating the modeling solution, but without importing the available

building block. The latter has both advantages, e.g., reducing the size of the module

in case the complete transitive closure of CP imports is not cloned, and

disadvantages, e.g., the loss of a common “language” by not referring to the pattern

explicitly and reduced support for automatic alignment with other pattern-based

modules.

In our example, we import and specialize situation in order to address CQ1, as

shown in Fig. 3.9. Our particular situation is an “observation,” and the thing

observed is an “aquatic resource.” Additionally, the exploitation state, climatic

zone, and vertical distance of the observation are also involved in the setting.

Thereby, we add a subclass of situation:Situation named AquaticRe-
sourceObservation and add the other entities as subclasses of owl:Thing.
In addition, we define sub-properties of the situation:isSettingFor and

Fig. 3.9 Specialization of the situation CP for modeling aquatic resource observations, as for

addressing CQ1

52 V. Presutti et al.



its inverse, for connecting the observations to the resources and the different

parameters. After iterating over all selected CPs (in our example, only one pattern

was selected) and integrating them into the current module, the module also has to

be extended to cover the complete set of CQs. In our example, no pattern was

selected to solve the time period issue in CQ2; hence, a data type property has to be

added to the module in order to cover the complete CQ.

The goal of the following task (Step 4.4. Testing module) is to validate the

ontology module against the requirements it is supposed to address, i.e., CQs,

contextual statements, and reasoning requirements, through developing and

executing verification tests, inference tests, and stress tests (see description of test

types in Sect. 3.4.1). The ontology modules are revised until all unit tests run

successfully. All unit tests are documented in the project wiki and are properly

linked to their motivating user story, and requirement(s), in order to document the

testing activity as well as to preserve the unit tests for the integration process. In our

example, a unit verification test associated with CQ2 could be the following

SPARQL query, retrieving the exploitation state (?exp), vertical distance (?dist),

climatic zone (?zone), and resources (?resource) of available observations (?obs):

SELECT ?exp ?dist ?resource ?zone
WHERE {

?obs a:AquaticResourceObservation.
?obs aboutAquaticResource ?resource.
?obs hasClimaticZone ?zone
?obs hasExploitationState ?exp.
?obs hasVerticalDistance ?dist

}

If all requirements derived from the story have been solved, and all tests run

successfully, the design pair proceeds to internally release the module(s) (Step 5.
Releasing module(s)), which are then ready for integration in the current overall

increment iteration.

3.4.3 Example: A Music Industry Ontology

To illustrate the process of creating ontologies through XD, a small hypothetical

project is described in this section. The domain, which is music industry, should be
intuitive to most readers. The example is not intended as a case for validating the

methodology, but merely as an illustration how it could be used in practice.

Step 1 – Project initiation and scoping. Let us assume that an ontology is needed in

an online community platform for people who want to discuss music, share

news, playlists, and music recommendations. The ontology will be used to store

and retrieve information about music recordings and artists, as well as to reason

3 Pattern-Based Ontology Design 53



over musical genres. As ontology developers, we are working closely together

with the software developers, implementing the online community software;

however, we also have access to some future administrators of the community,

who are used as the “customer representatives”, i.e., domain experts, during the

project. A wiki is set up for the development project, where all information is

stored and shared, both between developers and with the customer

representatives.

Step 2 – Identifying CP catalogs. Let us assume that we decide to focus on CP reuse

and to mainly reuse CPs from the ODP portal.

Step 3 – Collecting requirement stories. As soon as the project environment is set

up, we ask the customer representatives to start entering their stories into the

wiki. Some stories become examples of typical information that is to be stored

by the ontology, while other stories focus more on reasoning tasks of the

ontology, depending on how the customer representatives formulate them.

Each story is entered into the story template, e.g., given a title and priority,

and as soon as several stories are in place, they can be related to each other.

A collected story can be seen in Table 3.2, and another one in Table 3.3. The

“Albums”-story depends on the “Recordings of songs” story, since the notion of

recorded track appears also in the story about albums but is the main focus of

“Recordings of songs.”

Step 4 – Eliciting requirements and constructing modules from CPs. At this point,
the design team is divided into pairs, in order to develop the ontology modules

using pair design. One pair is dedicated to the integration task, i.e., proceed

directly to prepare Steps 6–7, while the rest of the pairs choose their first stories

from the pool of collected ones. Each story with high priority has to be solved

before the lower priority ones are addressed. Each pair then starts to elicit

requirements from their chosen story, i.e., tries to derive CQs, contextual

statements, and reasoning requirements.

Table 3.2 A requirement story from the music domain concerning albums

Title Albums

Depends on Recordings of songs

Description An album is a collection of recorded tracks. The genre(s) of an album should be

derived based on the genres of the tracks it contains

Priority High

Table 3.3 A requirement story from the music domain concerning songs and recordings

Title Recordings of songs

Depends on

Description Songs are recorded by artists. Many artists can record the same song. In the

web interface, users will click on songs and get to see the artists that have

recorded them and links to information on those recordings

Priority High

54 V. Presutti et al.



Let us imagine that you are part of the design pair who picks up the story in

Table 3.2. First, you start analyzing the story itself, to see if there are any

obvious CQs, indicating information that should be stored and retrieved. The

most obvious CQs are:

1. What are the tracks of this album?

2. What is the genre of this track or album?

There could however be other CQs possible; hence, the final list needs to be

agreed with a customer representative, in order to ensure appropriate coverage of

the domain and task and to avoid misinterpretations of the story. In addition, it is

evident from the way the story is written that a reasoning requirement is needed,

i.e., the following:

• An album should be automatically assigned all the genres of it contained

tracks.

In other cases, it may not be as self-evident what needs to be possible to infer;

however, in many cases, software requirements and interactions with the cus-

tomer can clarify such issues.

Additionally, contextual statements can be proposed based on common sense

knowledge, e.g., in our case:

• An album always has at least one track.

Other contextual statements may be given by the customer representative or

be implicit in the software requirements, e.g., limitations set by the way the

software will use the ontology. We have thus collected two CQs, one contextual

statement and one reasoning requirement, based on the story in Table 3.2 and our

interaction with the customer representatives.

Next, the pair proceeds to select a subset of the requirements, which represent

some particular modeling issue. When analyzing the CQs, we note that the first

one is focused on the album as a collection of tracks, while the second one adds

the notion of genre. These are actually quite separate concerns, and in order to

decouple these modeling issues, we decide to create one module for each CQ.

Choosing to start with the first CQ and the contextual statement, we now need

to match the CQ to the requirements covered by the CPs in the ODP portal.

When searching the portal’s CP submission table14, we find that there are several

interesting CPs, e.g., there is the collection CP15 for representing membership,

and the part of CP for part-whole relations. In this case, both patterns have

matching CQs, so the choice is instead based on how we wish to view the album,

i.e., as an object divided into parts or as a collection that is the sum of its

members. One of the main differences between the patterns is that the part of CP

14 http://ontologydesignpatterns.org/wiki/Submissions:ContentOPs
15 http://ontologydesignpatterns.org/wiki/Submissions:Collection

3 Pattern-Based Ontology Design 55

http://ontologydesignpatterns.org/wiki/Submissions:ContentOPs
http://ontologydesignpatterns.org/wiki/Submissions:Collection


defines the part-whole relation as transitive, while the membership relation in the

collection CP is not. Since we are not interested in creating a hierarchy of parts,

we decide on the collection CP and document this choice in the project wiki

(including our argumentation).

Then it is time to start modeling. Since we are creating a new module each

time, we start by creating an empty ontology, with a new namespace (following a

namespace convention agreed in Step 1). Next, we import the OWL building

block of the collection CP into our empty ontology and start specializing it. As a

subclass of collection:Collection, we create a new class Album, and
then another new class called Track (subclass of owl:Thing). To complete

the specialization, we create sub-properties of the pattern properties, with more

domain-specific names, e.g., containsTrack and containedInAlbum,
set them to be inverses, and define domain and range axioms. Figure 3.10

illustrates the result of this process. Each entity we create is commented, and

given a label, and we additionally extend the specialized CP, by adding the

contextual statement as a cardinality restriction over the containsTrack
property on the Album class.

When the design pair is satisfied, it is time to test the module they have

created. First, we formulate the CQ as a SPARQL query. Most often, missing

parts are discovered already when formulating the query since the query formu-

lation involves an inspection of the model. However, a new ontology (i.e., a “test

case”) is created, importing the ontology to be tested, and some test instances are

added in the test case ontology. If the SPARQL query gives the expected result,

based on our test data, then the test is successful. We can proceed to perform

some stress testing. In this case, we should add data that violates some con-

straint, e.g., a contextual statement, and see that the ontology is able to detect the

problem, e.g., through finding an inconsistency, and that there are no undesired

containsTrack/ 
containedInAlbum 

rdf:type
rdf:type

rdfs:subPropertyOf

rdfs:subPropertyOf

Fig. 3.10 Specialization of the collection CP

56 V. Presutti et al.



side effects. In our case, however, the open-world assumption of OWL makes it

hard to detect violations of our contextual statement.

When all tests run successfully, and the module is fully annotated and

documented in the wiki, it is time to proceed with the next set of requirements,

i.e., the second CQ and the reasoning requirement. Similarly as before, we start

by matching the requirements to the list of CPs in the ODP portal. This time, we

do not immediately find a match, i.e., there is no pattern for music genres;

however, there are patterns for expressing descriptions and parameters of a

concept. Nevertheless, let us assume that we find these too abstract for our

case, and instead choose to create the model on our own.

Just as in the previous iteration, we start by creating a new empty ontology with

its own namespace. However, this time we realize that we need the tracks and

albums that we just modeled in the previous module; hence, we import it into our

new ontology module. Then we add the class Genre and a property hasGenre
(including its inverse genreOf). The domain of hasGenre is set to the union

of Track and Album, while the range is set to the Genre class. In addition, to

solve the reasoning requirement, we add a property chain definition to the

hasGenre property, stating that hasGenre can be derived from the combi-

nation of the hasTrack and hasGenre properties, meaning that if an album

has a track which in turn has a certain genre, then that album should also be

directly connected to the same genre.

Testing this time involves testing the CQ using one or more SPARQL queries

but also to test the inferences produced based on the property chain, i.e., to

confirm that the reasoning requirement is fulfilled. To do the latter, we create a

new empty ontology, import our module to be tested and add some test data that

should produce the correct inference. For instance, an album instance can be

added, then associated to a track (through hasTrack), and the track’s genre set
to rock (through hasGenre). When the inferences are materialized, we

expect to see that the album is now also associated with the genre rock. As
soon as all tests run successfully, and the ontology module is appropriately

commented, we are now ready to release the complete solution of the customer

story in Table 3.2, consisting of our two ontology modules.

Step 5 – Releasing module(s). The modules, and all their wiki documentation, are

now made available to the pair in charge of integration.

Step 6 – Integrating partial solutions, evaluating, and revising. As soon as the

integration team have more than one solution to work with, i.e., more than one

story is covered, they start integrating the modules. Integration is a crucial part

and involves a trade-off between refactoring, to reduce overlap between

modules, and keeping the decoupling of modules to facilitate later changes

and reusability of individual modules. In some cases, integration is quite easy,

e.g., the modules can directly be imported into one new ontology, and tested

together, without any additional modeling, while in other cases, the integration

means to add some “glue” to resolve conflicts and make sure that the

requirements of the stories treated so far can be covered all together. However,

the use of CPs facilitates the integration since it makes explicit the modeling

3 Pattern-Based Ontology Design 57



choices made, assures that the development team has a shared vocabulary for

talking about modeling choices, and in some cases even makes the integration

semi-automatic, i.e., if the same CP is imported in several modules they are

inherently aligned.

While the integration pair starts their task, our design pair can now go back to the

list of remaining user stories, and select a new one, to start another development

iteration. This process is continued until no more stories are to be covered.

Step 7 – Releasing new version of ontology network. After each new module has

been integrated into the resulting ontology (i.e., ontology network), a new

release is created, letting the customer and other parties, e.g., software

developers, review and test the ontology at all stages of development.

3.4.4 Tool Support

In this section, we briefly present the ODP portal16 and the eXtreme Design Tools

(XD Tools), two resources that support XD. The ODP portal is a semantic wiki

dedicated to best practices of ontology design for the semantic web, with particular

focus on ODPs. The ODP portal supports the life cycle of ODPs, i.e., from their

proposal to their evaluation and possible certification. CP wiki pages can be created

automatically in the wiki by providing, as input, the CP OWL file properly

annotated. Currently, the ODP portal supports the life cycle of Content ODPs,
Re-engineering ODPs, Alignment ODPs, Logical ODPs, Architectural ODPs, and
Lexico-syntactic ODPs. The ODP portal is associated with a registry of CPs17.

While the ODP portal is meant to give community support to XD, the XD

Tools are meant to assist the execution of the XD methodology. XD Tools are a

set of software components released as an Eclipse plugin, accessible through a

perspective – eXtreme Design – compatible with Eclipse-based ontology design

environments, such as the NeOn Toolkit. Currently, XD Tools are comprised of five

main components that allow a user to browse a registry of CPs, search and import

them into a local ontology project. Although specialization is possible through

native NeOn Toolkit functionalities, XD Tools feature a wizard for specializing a

CP, for usability reasons. As a special feature, a service for analyzing an ontology

with respect to general modeling best practices is also included.

Figure 3.11 gives an overview of the XD Tools interface as it appears in the

NeOn Toolkit. The ODP Registry view (bottom left of Fig. 3.11 – enlarged view in

Fig. 3.12) exposes a tree-like view of a CP registry that can be browsed by a user.

The default registry used is the ODP portal registry, but others can be added

through customizing the plugin. When a CP is selected, the ODP Details view

16 The ODP portal main page, http://www.ontologydesignpattern.org
17 The ODP Portal pattern registry can be downloaded at: http://ontologydesignpatterns.org/

schemas/registry.owl

58 V. Presutti et al.

http://www.ontologydesignpattern.org
http://ontologydesignpatterns.org/schemas/registry.owl
http://ontologydesignpatterns.org/schemas/registry.owl


(to the right of the registry view in both figures) shows a description of it, based on

the annotations stored in the CP’s OWL file. By right clicking on a CP, its OWL

file can be downloaded through the “Get” command and put in a local ontology

project. The ODP Selector view (bottom right of Fig. 3.11 – enlarged view in

Fig. 3.13) provides a search service over the CP registry. By clicking on the

“Search” icon (highlighted by a small circle in Fig. 3.13), a user can type a natural

language query, e.g., a competency question, in a text field, and submit it to a set of

search services that return ranked lists of CPs, from which the user can select the

most appropriate one(s).

Fig. 3.11 Screenshot overview of XD Tools

Fig. 3.12 Screenshot depicting the ODP Registry view (left) and the ODP Details view (right)

3 Pattern-Based Ontology Design 59



The XD Analyzer view (top right of Fig. 3.11 – enlarged view in Fig. 3.14) can be

run through a contextual menu on a selected ontology and shows a list of messages,

each associated with a best practice criterion. A message indicates whether the

ontology satisfies a certain criterion or not. The XD Analyzer has a pluggable

architecture, allowing for easy extension of the set of heuristics that express “best

practices.” Three levels of messages can be produced: errors, warnings, and

suggestions (i.e., proposals for improvement). An error is, for instance, a missing type,

i.e., all instances should have an explicit class as its type (could be owl:Thing).

Fig. 3.13 Screenshot depicting the ODP Selector view and its search query interface

Fig. 3.14 Screenshot depicting the XD Analyzer, showing the results of the analysis in the list to

the right. Yellow triangles indicate warnings, while “i” stands for suggestion. The number of

occurrences is given within brackets

60 V. Presutti et al.



Examples of warnings are missing labels and comments, as well as proposals to

create an inverse for each object property that has no inverse so far in the

analyzed ontology. A suggestion could be a message to check the object

properties that lack domain and range definitions, i.e., such definitions are not

mandatory in a well-designed ontology, since they could be replaced by other

axioms; however, if they are missing, it could also indicate that the developer

has forgot to add them.

XD Tools also include a wizard for guiding users in the process of specializing a

CP. Figure 3.15a shows the Specialization wizard. CP specialization, as the primary

step of their reuse, can be challenging for an inexperienced user if it is done one

element at a time, without guidance. From a user perspective, CP specialization has

the following steps: (1) import the pattern into the working ontology, (2) define

subclasses/sub-properties for each of the (most specific) pattern entities needed and

(3) add any additional appropriate axioms. The specialization wizard provided

by XD Tools guides the user through this process. Finally, XD Tools provide a

so-called Annotation dialog – depicted in Fig. 3.15b – which supports annotation,

i.e., documentation, of an ontology based on customizable annotation vocabularies.

In addition, XD Tools provide several help functions, such as inline info boxes,

help sections in the Eclipse help center and “cheat sheets” describing the XD

methodology for CP reuse.

3.5 Conclusion

In this chapter, we have presented ontology design patterns (ODPs), which are

reusable modeling solutions that encode modeling best practices, by briefly

discussing their different types and characteristics. ODPs are the main tool for

Fig. 3.15 Part (a) shows the XD Specialization wizard and (b) the XD Annotation dialog

3 Pattern-Based Ontology Design 61



performing pattern-based design of ontologies, which is an approach to ontology

development that emphasizes reuse and promotes the development of a common

“language” for sharing knowledge about ontology design best practices. ODPs are

associated with a set of requirements that are explicitly expressed in order to favor

their selection through a matching procedure. Content ODPs (CPs) have been the

main focus of this chapter, which has shown through some examples how they can

be used for building an ontology according to a set of elicited requirements. CPs are

domain-dependent patterns, the requirements of which are expressed by means of

competency questions, contextual statements, and reasoning requirements. In order

to reuse CPs, we have defined a set of operations that include importing, speci-

alizing, and composing them to the aim of building a new ontology (or ontology

network).

In the second part of the chapter, we have described an agile methodology for

pattern-based ontology design named eXtreme Design (XD), an iterative and

incremental process, which is characterized by a test-driven and collaborative

development approach. The XD methodology is supported by a set of software

components named XD Tools, which assist users in the process of pattern-based

design.

The XD methodology has been tested in numerous ontology development

projects, including user-based experiments conducted in controlled environments.

The results of those experiments have been reported by Blomqvist and colleagues

(2009a) and by Blomqvist and colleagues (2010a). The participants were, for

instance, asked to assess how useful ODPs and XD were and how much overhead

it added to their work processes, as well if XD felt like a natural way of working,

i.e., if they were already working in a similar way before being introduced to the

methodology. Overall, the methodology was received well, and the participants felt

that it was a very natural way of working, without adding any unnecessary

restrictions to the process. Nevertheless, the objective evaluation of their modeling

results showed that the quality increased drastically, in particular with respect to a

number of common mistakes, when introducing the methodology. This could be

attributed to the testing focus of the methodology that enforces a rigorous evalua-

tion of each solution before its release. So even though the participants felt that the

methodology added nothing new, it actually helped them to structure their work and

provide better and more rigorously tested ontologies.

References

Aguado de Cea G, Gómez-Pérez A, Montiel-Ponsoda E, Suárez-Figueroa MC (2009) Using

linguistic patterns to enhance ontology development. In: Dietz J (ed) Proceedings of the

international conference on knowledge engineering and ontology development (KEOD),

Funchal, pp 206–213

Baker CF, Fillmore CJ, Lowe JB (1998) The Berkeley FrameNet project. In: Boitet C, Whitelock P

(eds) Proceedings of the 36th annual meeting of the Association for Computational Linguistics

62 V. Presutti et al.



and 17th international conference on computational linguistics, vol 1. Association for Compu-

tational Linguistics, Stroudsburg, PA, USA, pp 86–90

Basili V, Caldiera G, Rombach D (1994) The experience factory. In: Marciniak J (ed) Encyclope-

dia of software engineering. Wiley, New York, pp 469–476

Bizer C, Heath T, Berners-Lee T (2009) Linked data – the story so far. Int J Semant Web Inf Syst 5

(3):1–22

Blomqvist E, Gangemi A, Presutti V (2009a) Experiments on pattern-based ontology design. In:

Proceeding of K-CAP 2009, Los Angeles. ACM, New York

Blomqvist E, Sandkuhl K, Scharffe F, Svatek V (2009b) Proceedings of the workshop on ontology

patterns (WOP 2009), collocated with the 8th international semantic web conference (ISWC-

2009), Washington, DC, USA, 25 Oct, 2009, vol 516. CEUR

Blomqvist E, Presutti V, Daga E, Gangemi A (2010a) Experimenting with eXtreme design. In:

Proceedings of EKAW2010 – knowledge engineering and management by the masses, LNCS

6317. Springer, Berlin/Heidelberg/New York

Blomqvist E, Chaudhri V, Corcho O, Presutti V, Sandkuhl K (2010b) Proceedings of the 2nd

international workshop on ontology patterns – WOP2010, vol 671. CEUR

Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object-

oriented software. Addison-Wesley, Reading

Gangemi A, Borgo S (2004) Core ontologies in ontology engineering 2004. (Un) Successful cases

and best practices for ontology engineering: reusing well-founded ontologies for domain

content specification. In: Proceedings of the EKAW*04 workshop on core ontologies in

ontology engineering, Northamptonshire (UK), 8 Oct, 2004, vol 118. CEUR

Gangemi A, Presutti V (2009) Ontology design patterns. In: Staab S, Studer R (eds) Handbook on

ontologies, 2nd edn. Springer, Berlin, pp 221–243

Gangemi A, Fisseha F, Keizer J, Lehmann J, Liang A, Pettman I, Sini M, Taconet M (2004) A core

ontology of fishery and its use in the FOS project. In: EKAW 2004 workshop on core

ontologies in ontology engineering, Northamptonshire. CEUR

Gangemi A, Sagri MT, Tiscornia D (2005) A constructive framework for legal ontologies. In: Law

and the semantic web. Legal ontologies, methodologies, legal information retrieval, and

applications. 3369. Springer, Berlin/Heidelberg/New York

Gruninger M, Fox MS (1994) The role of competency questions in enterprise eEngineering. In:

IFIP WG5.7 workshop on benchmarking – theory and practice, Trondheim

Hammar K, Sandkuhl K (2010) The state of ontology pattern research: a systematic review of

ISWC, ESWC and ASWC 2005–2009. In: Blomqvist E, Chaudhri VK, Corcho O, Presutti V,

Sandkuhl K (eds) Proceedings of the 2nd International workshop on ontology patterns –

WOP2010. Workshop at the 9th international semantic web conference (ISWC2010) –

ISWC 2010 workshops, vol VIII. Shanghai, China, 8 Nov, 2010, vol 671. CEUR

Hay DC (2000) Data model patterns: conventions of thought. Dorset House Publishing, New York

Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A (2005) The wonderweb library of

foundational ontologies. Wonderweb deliverable D18. Laboratory for applied ontology (ISTC-

CNR)

Miles A, Bechhofer S (2009) SKOS simple knowledge organization system reference. W3C

Niles I, Pease A (2001) Towards a standard upper ontology. In: Welty C, Smith B (eds) 2nd

international conference on formal ontology in information systems (FOIS-2001), Ogunquit

Noy N, Rector A (2004) Defining N-ary relations on the semantic web: use with individuals. W3C

Presutti V, Daga E, Gangemi A, Blomqvist E (2009) eXtreme design with content ontology design

patterns. In: Blomqvist E, Sandkuhl K, Scharffe F, Svatek V (eds) Proceedings of the workshop

on ontology patterns (WOP 2009), collocated with the 8th international semantic web confer-

ence (ISWC-2009), Washington, DC, USA, 25 Oct 2009, vol 516. CEUR

Rector A, Stevens R (2008) Barriers to the use of OWL in knowledge driven applications. In:

Dolbear C, Ruttenberg A, Sattler U (eds) Proceedings of the fifth OWLED workshop on OWL:

experiences and directions collocated with the 7th international semantic web conference

(ISWC-2008) Karlsruhe, Germany, 26–27 Oct 2008, vol 432. CEUR

3 Pattern-Based Ontology Design 63



Scharffe F, Fensel D (2008) Correspondence patterns for ontology alignment. In: Gangemi A,

Euzenat J (eds) Proceedings of the 16th international conference, EKAW 2008, Acitrezza,

Italy. 5268. Springer, Berlin/Heidelberg/New York, pp 83–92

Shore J, Warden S (2007) The art of agile development. O’Reilly, Farnham

Svátek V, Sváb-Zamazal O, Presutti V (2009) Ontology naming pattern sauce for (human and

computer) gourmets. In: Workshop on ontology patterns at ISWC’09, Washington DC, 2009.

516. CEUR

Vrandečić D, Gangemi A (2006) Unit tests for ontologies. In: Proceedings of the 1st international

workshop on ontology content and evaluation in enterprise. Springer, Berlin/Heidelberg/New York

Vrandečić D, Sure Y (2007) How to design better ontology metrics. In: May W, Kifer M (eds) 4th

European semantic web conference (ESWC’07). Springer, Berlin/Heidelberg/New York

64 V. Presutti et al.


	Chapter 3: Pattern-Based Ontology Design
	3.1 Introduction
	3.2 What Are Ontology Design Patterns (ODPs)?
	3.3 Content Ontology Design Patterns (CPs)
	3.3.1 Operations on Content Patterns

	3.4 eXtreme Design: An Agile Methodology for Pattern-Based Ontology Development
	3.4.1 eXtreme Design Principles
	3.4.2 The eXtreme Design Process
	3.4.3 Example: A Music Industry Ontology
	3.4.4 Tool Support

	3.5 Conclusion
	References


