
Chapter 15

Customizing Your Interaction with Kali-ma

Alessandro Adamou and Valentina Presutti

Abstract This chapter presents the Kali-ma NeOn Toolkit plugin, which exploits

the versatility of the C-ODO Light model to assist ontology engineers and project

managers in locating, selecting, and accessing other plugins through a unified,

shared interaction mode. Kali-ma offers reasoning methods for classifying and

categorizing ontology design tools with a variety of criteria, including collaborative

aspects of ontology engineering and activities that follow the NeOn Methodology.

Furthermore, it provides means for storing selections of tools and associating them

directly to development projects so that they can be shared and ported across

systems involved in common engineering tasks. In order to boost Kali-ma support

for third-party plugins, we are also offering an online service for the semiautomatic

generation of C-ODO Light–based plugin descriptions.

A. Adamou (*)

Semantic Technology Lab, Institute of Cognitive Sciences and Technologies (National Research

Council – CNR), Via Nomentana 56, 00161 Rome, Italy

Department of Computer Science, Alma Mater Studiorum Università di Bologna, Mura Anteo

Zamboni 7, 40126 Bologna, Italy

e-mail: alessandro.adamou@istc.cnr.it; adamou@cs.unibo.it

V. Presutti

Semantic Technology Lab, Institute of Cognitive Sciences and Technologies (National Research

Council – CNR), Via Nomentana 56, 00161 Rome, Italy

e-mail: valentina.presutti@cnr.it

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_15, # Springer-Verlag Berlin Heidelberg 2012

319

mailto:alessandro.adamou@istc.cnr.it
mailto:adamou@cs.unibo.it
mailto:valentina.presutti@cnr.it


15.1 Introduction

Being an Eclipse RCP1-based ontology engineering platform, the NeOn Toolkit has

an openly extensible feature set. Third parties may add custom functionalities in the

form of software modules called plugins. Although the NeOn Toolkit provides its

own set of specific extension points for manipulating ontology project hierarchies,

most of those commonly provided by the Eclipse platform are supported. As with

other Eclipse platforms, NeOn Toolkit plugins are maintained in dedicated

repositories, called update sites. A pointer to one such update site, which was

described in Chap. 13, is hardcoded in the core toolkit, but since the platform is

open, anyone may set up their own update sites and use them as sources for

additional plugins.

The RCP takes the burden of integrating plugins from the user interface per-

spective, e.g., by adding menus and toolbar buttons, populating the lists of views

and perspectives, or adding new types of items that can be created via wizards.

However, it is usually up to the developer to facilitate conceptual integration of her
plugin by characterizing the goals of its features. The ways for doing so in the

Eclipse platforms are little more than giving appropriate names and assigning

categories to the UI contributions provided by their plugins. Performing this task

can be tricky if the platform is supported by a large community, whose each

member develops a plugin not knowing what others are doing. As a result,

developers may arbitrarily add whatever categories, items, and labels they see fit

for their plugins regardless of the rest. For example, two developers can create

multiple categories for views, give them unique identifiers but label them both as

Visualization independently on one another. As a result, end users will see two

Visualization categories grouping different UI elements. Again, one developer

could name a category after the plugin providing the corresponding UI elements,

while another could name it after an arbitrarily named task supported by her plugin.

In other words, when a contributor develops a plugin for the NeOn Toolkit, as well

as for most plugin-based frameworks, she projects her own interpretation of the

implicit metamodel of the user interface. Moreover, the uncontrolled proliferation

of features (Damian and Chisan 2006) can clutter the user interface, e.g., if each

plugin adds its own menu simply because no common agreement is reached as to

which menus should be used for adding entries or submenus.

An instance of the scenarios described above is shown in Fig. 15.1. Here, a NeOn

Toolkit user who has installed a large number of plugins from different sources is

presented with this two-level tree list upon selecting the Show View menu entry.

The names of views and the categories grouping them are widely varying in this

example: some views, such as Evolva Main View, OntoConto, and SearchPoint, are

named after the plugin that provides them; others, such as Partitioning, Relationship

1Eclipse Rich Client Platform, the software development toolkit originally written for the Eclipse
integrated development environment (IDE).

320 A. Adamou and V. Presutti

http://dx.doi.org/10.1007/978-3-642-24794-1_13


Visualization, and Repair and Diagnose a Single Ontology, are named after the

functionalities they provide; others, such as Gantt, refer to the structure of the view

itself. Since there are no set rules about the naming of categories and interface

components, there is no right or wrong with any of these rationales. However,

Fig. 15.1 An example of a view selection menu in a very crowded NeOn Toolkit

15 Customizing Your Interaction with Kali-ma 321



because they come from different interpretations that each developer had of the user

interface model, the overall picture may appear confused and cluttered. It is a goal

of Kali-ma to try and bring some order into this confusion.

Kali-ma is a NeOn Toolkit plugin that aids developers and end users alike in

creating a conceptually harmonized view on other known NeOn Toolkit plugins

(and, more in general, tools that support the life cycle of ontologies). Kali-ma

implements a user interface paradigm alternative to the Eclipse Workbench

(and which can be switched with the latter in real time). This interface groups all

UI contributions and access methods by the plugins issuing them and, with rela-

tively little development effort, the plugins themselves by categories best

representing the goals they are targeted at. It also adds a set of collaboration-

oriented functionalities for end users, such as a metadata search feature, a white-

board for executing dynamic plugin assemblies, and dedicated real-time chat

support for ontology projects.

The remainder of this chapter provides an insight on the plugin as a whole, its

functionalities, and the rationale behind them. Section 15.2 guides the reader

through the plugin features and is structured so that the reader can concentrate on

the section for end users (Sect. 15.2.1) or the one for developers (Sect. 15.2.2),

depending on the reader’s role. Developers are however advised to read both

subsections in order to gain an understanding on the effects of their Kali-ma

extensions on the interaction experience. Section 15.2.3 focuses on the underlying

software architecture and how it combines standard components in Java with others

in OWL (namely an extended version of the C-ODO Light ontology described in

Chap. 4), thus being of interest for software engineers and ontology specialists

alike.

15.2 Kali-ma Plugin Features

By the end of this section, the reader will have learned about the functionalities

exposed by the Kali-ma plugin for facilitating interaction with and configuration of

software components in the NeOn Toolkit. An insight is also provided, as well as

documented, as to which steps the user needs to perform in order to activate and

interact with these functionalities.

Although the Kali-ma plugin is oriented toward providing alternate modalities

for end users to interact with the functionalities provided by the NeOn Toolkit, the

rule body and several other aspects by which these modalities are provided

are customizable. Some of such features are configurable at runtime by end users,

while others are available by applying simple extensions to plugins by their

respective developers. By this distinction, the remainder of this section is structured

so as to allow a neat separation between functionalities that refer to end users for

direct consumption and functionalities that refer to developers for their plugins to

322 A. Adamou and V. Presutti

http://dx.doi.org/10.1007/978-3-642-24794-1_4


provide alternate interaction paths. In particular, the next section will also focus on

what features can be configured by end users prior to launching the Kali-ma plugin

on a running NeOn Toolkit platform.

15.2.1 Functionalities for End Users

When the Kali-ma plugin is activated, a desktop-integrated graphical user interface

(GUI), called Dashboard, replaces the traditional Eclipse Workbench-based NeOn

Toolkit interface. The constituents of this user interface, an example of which is

shown in Fig. 15.2, are lightweight graphical elements, or widgets. A single widget

represents either a built-in functionality provided by Kali-ma or a group of

functionalities provided by some other NeOn Toolkit plugin.

Kali-ma provides a number of functionalities aimed at end users and aids them in

the configuration of, and rapid access to, selected sets of tools apt for completing

certain classes of tasks. These are as follows:

• Tool organization and selection based on preferred criteria.

• Quick plugin access that groups most functionalities of a plugin into a single

widget.

• Profile management for bookmarking sets of plugins and associating them with

ontology projects, thereby managing profiles.
• Project-based real-time chat that allows remote collaborating parties to share

metadata of a common ontology project.

• Advanced search for ontology data and metadata.

• Pipeline assembly, for broadcasting the output of a plugin to other listening

plugins in order to accomplish complex tasks.

• Assistant, for obtaining real-time guidance.

15.2.1.1 Preliminary Configuration

As with most NeOn Toolkit plugins, Kali-ma is configurable in several aspects

concerning its way to handle interaction with the framework. While it does make

sense to customize some of these aspects only once the Kali-ma dashboard has been

activated, other features require prior configuration, as they affect the way dash-

board elements are constructed. This section discusses the latter set of features and

the steps to follow for configuring them.

Kali-ma comes with a “safe” default setup, in that all the plugin functionalities

can be activated with no alteration of the default settings, granted an available

internet connection. The only exception is the chat functionality, which requires the

user to set the hostname of a Jabber/XMPP chat server where she has an account

already registered.

All the settings of the Kali-ma plugin are grouped under a single Kali-ma entry

in the NeOn Toolkit Preferences category. Remember that the Preferences panel

15 Customizing Your Interaction with Kali-ma 323



F
ig
.
1
5
.2

T
h
e
K
al
i-
m
a
d
as
h
b
o
ar
d
o
f
w
id
g
et
s.
S
o
rt
ed

b
y
co
lu
m
n
,
to
p
to

bo
tt
om

,
th
en

le
ft
to

ri
gh

t:
th
e
co
do

or
ga

ni
ze
r;
th
e
he
lp
er

w
id
ge
t;
w
id
g
et
s
re
p
re
se
n
ti
n
g

th
e
fo
ll
o
w
in
g
p
lu
g
in
s:
C
ic
er
o
,
g
O
n
tt
,
X
D
es
ig
n
T
o
o
ls
an
d
W
at
so
n
;
th
e
do

ck
w
id
g
et

w
it
h
p
la
ce
h
o
ld
er
s
fo
r
fi
v
e
m
o
re

p
lu
g
in

w
id
g
et
s;
th
e
pr
ofi

le
m
an

ag
er
;
th
e

sw
it
ch

w
id
g
et

fo
r
re
tu
rn
in
g
to

th
e
N
eO

n
T
o
o
lk
it
w
o
rk
b
en
ch

324 A. Adamou and V. Presutti



can be accessed in different ways, depending on the operating system used. For

example, Windows users will find it in theWindow top menu, while OS X users will

find it in the NeOn Toolkit top menu.

Due to their intrinsic heterogeneity, the configuration parameters are in turn

grouped into four categories:

1. Appearance is the category of customizable cosmetic aspects of the Kali-ma user

interface.

• Open profiles docked is an optional override for the docking options of each

plugin widget in a user profile. When this option is checked, if the user opens

a Kali-ma user profile, all of its plugin widgets will be minimized to the

Kali-ma dock on startup, even if set otherwise in the profile itself. This option

is preferable for users who wish to start with a dashboard as clear as possible.

• Widget background policy determines what background color should be used

for each plugin widget. Depending on the setting, the color can be either the

one used for a category that classifies the plugin or one set by the user for that

specific plugin.

2. Network deals with how Kali-ma exploits online resources. Currently, all the

settings in this category are related to the built-in XMPP chat service.

• XMPP Host and Port locate the resource where the XMPP messaging service

is provided, e.g., for GTalk use Host talk.google.com and Port 5222.
• XMPP Service name, the identifier of the XMPP service on the host, if

different from the host name, e.g., jabber.org.
• Multiuser chat service, the identifier of the Multiuser Chat (MUC) service on

the host, e.g., conference.jabber.org. Although not all XMPP-based

services come with this functionality, this is required for the Kali-ma chat to

work.

3. Reasoning enables the user to configure the parameters by which Kali-ma should

locate and classify ontology design tools. These settings can have a significant

impact on startup performance, but their default values are relatively safe on that

respect. Note that changes to this configuration will only take effect the next time

the Kali-ma dashboard is launched.

• Plugin address book location is the physical URI of the ontology that

indicates where the OWL descriptions of each plugin should be fetched

from. Its default value is a plugin registry maintained by the Ontology Design

Patterns portal2 (Presutti et al. 2008).

• Criterion for tool classification selects which property should be used as a

criterion for classifying ontology design tools. Currently selectable criteria

are Design aspects, Processes and activities, and Design functionalities.

2 The Ontology Design Patterns portal, http://www.ontologydesignpatterns.org

15 Customizing Your Interaction with Kali-ma 325

http://www.ontologydesignpatterns.org


• Perform online update denotes when Kali-ma should check for updates to the

online plugin address book. Available options are “Each run,” “Only on next

run,” and “Never.” Note that if the address book has not been fetched yet

(e.g., on the first run of Kali-ma ever), the update will be performed even if

the “Never” option is set.

• Cache plugin classification indicates whether Kali-ma should materialize all

inferences about plugins and store them into a local cache ontology. Because

inferencing is a lengthy and highly CPU-intensive task, it is recommended to

set this option unless major changes in the plugin registry occur. Note that this

option only indicates whether the cache should be built, not whether it should
be used: it will always be used if present. To force-rebuild the cache, the user
can clear all the local data by clicking the Clear now button. This button is

grayed out if there are no such local data.

4. Toolkit integration manages the way Kali-ma handles the standard NeOn

Toolkit user interface along with its own. Users will configure these parameters

according to their will to be provided with both interfaces altogether.

• Stick dashboard to main window. If this option is set, the Kali-ma UI will

appear on top of the standard NeOn Toolkit window, and its behavior will

mimic the one of that window. Thus, when the NTK window is minimized,

hidden, or maximized, so will be the Kali-ma widgets. Note that the Kali-ma

dashboard is not modal; therefore, the NTK UI components in the back-

ground can still be interacted with.

• Main window behavior allows the user to set how the main NTK window

should appear or disappear when the Kali-ma dashboard is activated or

deactivated. The user can opt for the main window to be hidden or minimized

or neither. This option is only available when the “Stick dashboard to main

window” option is unchecked.

Example 15.1. This and all the examples in this chapter are based on a run-

through scenario extracted from the case study described in Chap. 20. The

Semantic Nomenclature of pharmaceutical products was carried out using the

NeOn Methodology and related software support. Therefore, in order to use

Kali-ma to carry out the activities specified in this methodology, an engineer will

select Processes and activities from the Reasoning ! Criterion for tool classi-
fication configuration panel.

15.2.1.2 Activating the Dashboard

Unlike most other NeOn Toolkit plugins, which support specific tasks in the

engineering of networked ontologies and are therefore integrated with the platform,

Kali-ma provides a GUI that runs in parallel with the standard one. For this reason,

Kali-ma integration is limited to the preferences panel and the commands for

326 A. Adamou and V. Presutti

http://dx.doi.org/10.1007/978-3-642-24794-1_20


activating its own user interface, called the dashboard. These commands are

located:

• In the Launch Dashboard menu entry in the Kali-ma top menu

• In the NeOn Toolkit top bar as the Launch Dashboard button (an open perspec-

tive is required for displaying the button)

When one of these two actions is performed, the reasoning and plugin discovery

tasks for preparing the dashboard are started as a background job. In particular, the

following actions are performed:

1. The local tool descriptions and cache ontology are checked. If neither is present,

or the online update parameter is set, plugin descriptions are fetched from the

locations indicated in the online registry.

2. If variations between the local plugin ontology and the online registry are

detected, the user is notified about these changes and prompted to choose

whether to apply them or not. If changes are applied, any local cache is

invalidated.

3. Plugins are classified by the designated criterion in one of the following ways:

• If a valid local cache is present, it is queried directly.

• If no valid cache is present but Kali-ma is configured to build one, it will first

do so then query the cache it just built. This task is highly CPU intensive but

will not have to be performed again as long as the cache remains valid.

• If no valid cache is present and Kali-ma is not configured to build one, it will
use a reasoner to classify plugins. This task is CPU intensive and will have to

be run on every dashboard startup unless a cache is built.

4. The Kali-ma dashboard is activated and displayed in its default state. The NeOn

Toolkit main window is hidden from view if set to do so.

Example 15.2. The project manager of the Semantic Nomenclature case study

creates a new NeOn Toolkit ontology project called “SemanticNomenclature” and

shares it with engineers using a version control tool such as CVS or Subversion.

When the Dashboard is activated using the Launch Dashboard button, Kali-ma

becomes aware of this project and can store profiles and configurations in its

directory.

Recall that the dashboard is an aggregate of basic user interface components

called widgets, whose look-and-feel exploits the capabilities offered by the GUI

toolkit of the host operating system. Every widget identifies a functionality, or set of

functionalities, in the NeOn Toolkit. Widgets can be grouped in two major

categories: native widgets denote built-in interaction-oriented functionalities

offered by the Kali-ma plugin itself and are always available regardless of what

tools are installed on the platform; plugin widgets are representatives for plugins

that are installed on the system, and they offer quick access to the functionalities

available due to these plugins being installed. Widgets belonging to this latter

15 Customizing Your Interaction with Kali-ma 327



category are available upon user request when the corresponding plugin is installed

on the NeOn Toolkit platform, no matter what the canonical interaction paths to

access them.

15.2.1.3 Organizing the Plugin Space

The heart of the Kali-ma approach for organizing the NeOn Toolkit as a function-

ality provider resides in the classification of its plugins by a unique, design-centered

criterion that is nonetheless customizable. Therefore, its core functionality is to

present end users with an overview of the plugins that are available in their running

instance of the NTK and to help them select the one(s) whose coverage best suits

the tasks that need to be performed.

The C-ODO organizer is the widget used for presenting this aggregate overview
of plugins. This widget is named after C-ODO Light, the design ontology that is the

base for all the classification criteria adopted by default in Kali-ma. Recall that an

overview of the goal, rationale, and architecture of the C-ODO Light ontology

network was given in Chap. 5.

The C-ODO organizer is the tool browser provided by Kali-ma. Users are free to

choose from time to time, whether they wish to explore the plugin space as a tree or

as a graph, by switching between the Tree View and theWheel View tabs. The Tree

View is organized as a simple Category ! Plugin two-level tree; i.e., by

expanding a category it is possible to view all and only the plugins that fall under

that category. This also implies that a plugin that encompasses more than one

category will appear as a child of multiple nodes in the taxonomy. The Wheel

View, so called after the shape adopted by the category set, provides the same

information in a graph. Although it takes up more space than the Tree View, it

displays more useful information altogether. When a category is selected in the

Wheel View, all and only the plugins under that category are displayed as in the

Tree View. However, for each shown plugin, an edge appears for every other
category it falls under.

The categories used for classifying plugins have a variable dependency on

C-ODO Light, yet they are all based on this ontology for modeling the notion of

an ontology design tool. The criterion used for identifying these categories can be

selected from the Reasoning panel of the Kali-ma preferences (entry “Criterion for

tool classification”) prior to launching the plugin. The available criteria are as

follows:

1. Custom design functionalities. These denote specific tasks and operations

involved in the design of networked ontologies. They are arbitrarily defined by

plugin developers, so the set of design functionalities can be highly fine grained,

depending on the choices of developers. “Create project,” “Cast vote,” or

“Delete annotation” are examples of such design functionalities. This criterion

is enabled by selecting “implements (Design Functionality)” from the Reasoning
preferences. End users should expect a sparse classification, with many

328 A. Adamou and V. Presutti

http://dx.doi.org/10.1007/978-3-642-24794-1_5


categories each with a limited number of plugins, yet with high redundancy

across multiple categories, roughly one for each functionality implemented in

that plugin.

2. NeOn Methodology refers to the fixed set of activities that are part of the NeOn

Methodology canon as defined in Chap. 2. For this criterion, the categories are

established a priori, and whether a plugin supports an activity in the methodology,

this reflects the rationale used for selecting such plugins in gOntt (cf. Chap. 14).

This criterion is enabled by selecting “supports activity (Activity)” from the

Reasoning preferences.
3. Ontology design aspects is a limited, fixed set of generic design functionalities

that aggregate the most common aspects of designing networked ontologies in a

collaborative environment. The categories are set and very limited in order to

provide dense classification of design tools. Also, it is the only case where the

categories to which plugins belong are not explicitly defined but are instead

obtained by inferencing over other features defined by the developers, namely

the types of knowledge their plugins consume and produce. This criterion is

enabled by selecting “has aspect (Design Aspect)” from the Reasoning
preferences.

Both the Tree View and the Wheel View in the C-ODO organizer can be filtered

by means of the funnel-shaped icon opposite the tabs. The filtering feature is due to

the fact that the ABoxes describing ontology design tools, as well as their registries,

are not bundled with the actual tools. In fact, they do not reside locally on the host

platform in general but are instead exposed on the web. Moreover, they are not

necessarily limited to NeOn Toolkit plugins but can span across several frameworks

and architectural paradigms, such as plugins for other platforms, stand-alone

applications, web applications, and web services.

Thus, three filters are available and can be cascaded: “Show only NeOn Toolkit

plugins” will exclude all those design tools that, according to their ontological

descriptions, do not qualify as plugins for the NeOn Toolkit. “Show only installed

tools” will apply the previous filter and skim all the NeOn Toolkit plugins that are

known to exist but are not detected as installed on the host platform. Finally, “Hide

empty categories” will remove all the nodes representing categories to which no

design tools are known to belong, regardless of the status of the other filters.

Example 15.3. The Semantic Nomenclature project manager has to select plugins

for the implementation phase of the use case. The C-ODO organizer Tree View

shows all the activities in the NeOn Methodology that come with software support.

The ODEMapster plugin is selected (by double-clicking) from the “Non-Ontological

Resource Reuse” activity, the OWLDoc plugin from the “Ontology Documenta-

tion” activity, the Watson plugin from the “Ontology Reuse” activity, and the

RaDON plugin from the “Ontology Validation” activity. To create a schedule for

all the activities to be performed in the phase, the gOntt plugin widget is also

selected from the “Scheduling” activity. When each plugin is selected, its

corresponding widget is displayed.

15 Customizing Your Interaction with Kali-ma 329

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://dx.doi.org/10.1007/978-3-642-24794-1_14


15.2.1.4 Interaction with Plugins

The standard mechanism by which a plugin is integrated with the Eclipse Rich

Client Platform is by implementing extension points. An extension point allows a

plugin to provide a contribution to the hosting platform, both on the functional level

and on the user interface level3. The latter in particular includes a set of standard

user interface objects that a plugin can implement to enrich the interactive experi-

ence with the platform. Some of them, such as wizards, views, or perspectives, can

be stand-alone elements that can be displayed without any need for prior action

upon other user interface or content items. For example, a wizard for exporting a

given resource in a given format might depend on the user having previously

selected the resource to export, but it might also allow the user to select that

resource from a browser within the wizard instead. Conversely, other extension

points contribute to the user interface by providing items that strictly depend on the

interaction context. For example, context menu items will require the user to

request a context menu on an item (typically by right-clicking on it). Therefore,

running the action associated with a context menu item with no prior selection

would make little sense and would in fact be unlikely to even work.

The current version of the Kali-ma plugin allows users to run NeOn Toolkit

plugins through the following stand-alone access methods:

1. Views are single panels within the Eclipse workbench that serve as containers for
arbitrary user interface controls. Multiple views can be aggregated in container

objects, called Folders, which are essentially tabbed panes where each tab allows

displaying one view at a time within the same folder. Views are usually

associated to single-use cases, such as displaying the results of a SPARQL

query, and can be manually moved across folders.

2. Perspectives are named composite panels that combine a group of folders and

views in a predefined fashion. View combinations are usually associated to

entire functionalities, which can be performed by interacting with the user

interface elements in each view. Single views can only be shown within a

perspective, and the NeOn Toolkit provides a default perspective for authoring

OWL ontologies.

3. New Wizards are paged dialogs for guided creation operations. The list of

available NewWizards in a system can be accessed from the “New” item in

the “File” menu. Examples of this access method allow users to create ontology

development projects, ontologies, and gOntt schedules. While we cannot rule

out cases where new resources have to be created from existing ones (e.g.,

ontologies need to be created within an existing project), many New Wizards

are associated to stand-alone use cases for creating new resources from scratch.

3 http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

330 A. Adamou and V. Presutti

http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F


Figure 15.3 shows an example selection of access methods for the gOntt plugin

(whose widget sports a white-to-rust gradient background, as this is the graphical

feature assigned to the Project Management design aspect). The gOntt plugin

contributes to the NeOn Toolkit by means of both a Perspective and a New Wizard

for creating new schedules. A user can select either access method for launching the

gOntt plugin once the “Open” button is clicked.

15.2.1.5 Profile Management

A selection of plugins to be displayed as widgets in the Kali-ma dashboard could be

of much more use than simply assisting a single user during a single engineering

session. If an open dashboard were just a volatile object that had to be manually

rebuilt from scratch every time the NeOn Toolkit is restarted, not only would it be

awkward to share in a collaborative context (which is assumed to be recurrent in

NeOn-compliant ontology engineering), it would also discourage users and project

managers from adopting Kali-ma to support medium- and long-term phases in an

ontology engineering project.

In order to counter these preposterous potential shortcomings, Kali-ma offers a

profile management functionality, which is concretely available as a native widget

by its own right. The Profile manager widget, depicted in Fig. 15.4, allows users to
store, open, and manage dashboard profiles.

A dashboard profile is essentially a named sorted set of plugins that can be

serialized as an XML element and lives in the scope of both NeOn Toolkit

workspaces and single ontology projects. Having performed a selection of plugins,

all of which have a corresponding widget open in the Kali-ma dashboard, the user is

able to retain this selection of plugins for sharing or future reuse. To do so, it is

sufficient to type a name for the new profile in the top area of the widget and click

the “Save widgets to Profile” button in the bottom area. This done, the current set of

plugins is stored locally in the kalima_profiles.xml file in the workspace

metadata directory for the Kali-ma plugin. Profiles can be listed, renamed, or

deleted and one at a time can be set as active and displayed on screen by opening

Fig. 15.3 Access method selection for the gOntt plugin

15 Customizing Your Interaction with Kali-ma 331



the corresponding set of widgets. These operations are made available through

context menu actions on the table occupying the middle portion of the widget.

Although dashboard profiles exist by their own right in a given NeOn Toolkit

workspace, it is possible to bind them to one or more ontology development

projects. This operation is also available as a context menu action, and its effects

are visible on the second column of the table in the center of the widget, which

displays the names of the ontology projects to which a profile is bound to. Binding a

profile to one or more ontology projects results in saving a copy of that profile in

another kalima_profiles.xml file, this time placed in the project directory.

This action implies the ability to carry profiles along with a single project when it is

exported to another system, as it is a common practice to share entire projects in

Eclipse environments.

Example 15.4. The Semantic Nomenclature project manager wishes to share the

tools for the Implementation phase selected earlier with all the ontology engineers

who are set to perform each activity. A profile named “Implementation phase” is

created and bound to the “SemanticNomenclature” ontology development project

in the NeOn Toolkit. Because all participants are synchronized on this project, they

will all get a copy of the new profile the next time they update their working copy of

the project.

15.2.1.6 Dashboard Control and Docking

To counter the risks of ending up with a screen overcrowded by widgets, Kali-ma

comes with an additional interface element called the Dock. As its name suggests,

the Dock is conceptually inspired by a consolidated praxis in modern operating

systems, which provide a user interface feature for quickly switching between

applications. In our interpretation, the Kali-ma Dock provides a compact user

Fig. 15.4 Profile manager

widget. Three profiles have

been stored and are displayed

in the profile table. Two of

them (named Implementation
phase and Reuse phase) are
bound to the Semantic
Nomenclature ontology
project

332 A. Adamou and V. Presutti



interface for holding references to elements of the dashboard that are not of

immediate interest, yet it still makes sense to hold in the current view of the system.

For example, the user may want to remember having selected a certain plugin but

does not need to access it in that particular instant. Every widget that supports

docking comes with a toolbar button that, when clicked, instructs the dashboard

controller to hide that widget and add a corresponding entry in the Kali-ma Dock.

A dock entry is a very simple interface element that serves a placeholder for a

docked widget. Each entry consists of a label with the plugin identifier and an arrow

button for restoring the docked widget to its original position.

The Dock widget itself responds to the same screen overcrowding issue that

holds for plugin widgets and other dashboard widgets; therefore, it is not visible on

screen at all times. The Dock hides itself every time the last docked widget is

restored (i.e., there are no more dock entries) and becomes visible again once a

widget is docked (i.e., a dock entry is added). This is due to the fact that, at this

stage, the Dock serves the sole purpose of holding references to widgets that are

hidden from view. This behavior may vary as further functionalities are added to the

Kali-ma Dock in the future.

15.2.1.7 Project-Based Real-Time Chat

Several phases of the articulated ontology life cycle management process are

conceived with user collaboration in mind, and as such should they be carried out

(Holsapple and Joshi 2002). Activities such as the collective argumentation of

ontologies, or portions thereof, can be performed asynchronously, i.e., no different

than by posting comments on message boards and the like. There may be cases,

however, where multiple users collaborating on the same ontology project may

require to coordinate their efforts in real-time, in order not to bottleneck one

another. One such circumstance may involve two ontology engineers developing

separate modules of an ontology network, whose entities need to be related via

equivalence statements nonetheless. In such a situation, the user who needs to

perform the alignment will need to know the name of the alignment target as

soon as possible, and this can be significantly sped up by synchronous

communication.

Kali-ma includes a lightweight real-time chat system to support synchronous

communication in an environment where users can instantly share references to

resources in a common ontology project. Through the Chat widget, a single user can
join one or more dedicated virtual chat rooms, each named after an ontology project

she has in common with other users. Additionally, for each project, it is possible to

send the identifiers of any OWL entity loaded within that project with just a few

keystrokes.

Example 15.5. The project manager and engineers that share the “SemanticNo-

menclature” project and have the same XMPP Chat configuration in the Kali-ma

15 Customizing Your Interaction with Kali-ma 333



preferences will all be presented with an option to join the “SemanticNo-

menclature” chat room and discuss their engineering activities there.

As with other optional widgets, the Kali-ma chat interface can be activated by

means of the Dock widget by simply clicking the balloon-shaped icon on its toolbar.

In the default panel of this widget, it is sufficient for a user to type in her credentials

(set by the chat server administrator), freely choose an alternate label, or alias, and
log into the chat server. With this done, a combo box will display the list of

available chat rooms, each named after an ontology project in her NeOn Toolkit

workspace. Multiple chat rooms, one per project, can be joined at once, and a chat

room will be seamlessly created on the fly if it has not yet been configured by

another user. A user may send any free text message by simply typing it in a chat

room window. However, if a reference to an OWL class, property, or individual

needs to be broadcast to other users sharing the same project, it is sufficient to start

typing in part of its name (not necessarily a prefix) and invoke the autocompletion

key combination (usually Ctrl + Space) to select from a list of matching entities

that exist within that project. Multiple OWL entity references can be broadcast in a

single message by invoking autocompletion.

Any party is free to host a chat server compatible with Kali-ma. The plugin uses

the open standard instant messaging protocol XMPP (Extensible Messaging and

Presence Protocol)4, which sports numerous compatible instant messaging clients

as well as communication services (Google Talk5 and Jabber6 being two of them).

Anyone can set up an off-the-shelf XMPP server on a host and create accounts for

users, who can quickly configure Kali-ma on their clients (see Sect. 15.2.1.1) to

instantly use it for relaying their messages.

15.2.1.8 Obtaining Help

Kali-ma provides its own real-time help system, aimed at displaying appropriate

justification of each node appearing in the C-ODO Organizer taxonomy, and in

doing so, to take advantage of any metadata present in the ontologies describing

tools and classification criteria.

Real-time guidance is provided through the Helper widget. The Helper is

essentially a lightweight web browser capable of rendering HTML. However, it

also reacts to local events within the dashboard, such as a particular widget being

focused or a node being selected in the C-ODO organizer. While help messages

related to native functionalities are hardcoded, those deriving from metadata such

as OWL annotations derive from elements of the ontological component of Kali-ma,

which also include remote tool descriptions. For instance, when a node is selected

4XMPP, http://xmpp.org
5Google Talk, http://www.google.com/talk
6 Jabber, originator of the initial XMPP design and implementation, http://www.jabber.org

334 A. Adamou and V. Presutti

http://xmpp.org
http://www.google.com/talk
http://www.jabber.org


that represents a design aspect, NeOn Methodology activity, functionality, or

design tool, the Helper widget displays the rdfs:comment annotation for the

corresponding OWL individual.

15.2.2 Functionalities for Plugin Developers

One goal of Kali-ma is to reorganize the plugin space under a single, shared

criterion that can apply to the majority of plugins. To that end, it provides a set of

functionalities to aid developers in describing the features of their plugins so that

Kali-ma can elaborate on them and construct a single, harmonic view. These

functionalities belong to the following categories:

• Plugin description management guides users throughout the creation of the

ontology that describes how a plugin contributes to the life cycle management

of ontologies.

• The interoperability API allows developers to launch and customize a Dash-

board programmatically from the code of any plugin.

15.2.2.1 Plugin Description Management

As will be presented in Sect. 15.2.3.2, the Kali-ma infrastructure includes a

semantic layer involving components that are invariant in the domain of collabora-

tive ontology engineering, as is the C-ODO Light network, and others that can be

customized and adapted to new and refined taxonomies and criteria, such as the

rules for categorizing the tool space. Standing amid these two levels are the real-

world entities, i.e., the ABoxes where actual ontology design tools are instantiated

and facts are provided for them. Kali-ma has no built-in or prior knowledge of

which design tools exist, whether C-ODO Light–based ontologies describing them

are provided and what physical URIs should be dereferenced for locating these

descriptions. It does, however, provide a mechanism for locating such ontologies

from a single, configurable source. Coupled with this mechanism, we are offering

an online service for semiautomatic construction of C-ODO Light–based plugin

descriptions. The next section details the key functional characteristics of both

features mentioned above.

15.2.2.2 Plugin Description Generator

Knowledge of the ontology tool population is not delegated to a single online

repository. It is the plugin provider’s call to author pieces of structured knowledge

concerning their own products; thus, it is reasonable to expect them to remain

depositaries of this knowledge, while at the same time sharing it in an open

15 Customizing Your Interaction with Kali-ma 335



environment such as Linked Data. Concurrently, it was felt convenient to have

a system for aggregating references to these ontologies at disposal, rather than

crawling the whole Semantic Web.

In an effort to meet both demands, an interactive tool for constructing these

OWL tool manifests was devised as a service to be available anytime, anywhere.

A working prototype of this service was released as C-ODO-o-matic (simply

dubbed Codomatic throughout the remainder of the chapter)7, its name paying

homage to an inspiring online form for generating FOAF profiles. Codomatic is

a simple, single-page Ajax application for constructing C-ODO Light–based OWL

manifests of ontology design tools bearing the minimum set of axioms for allowing

a DL reasoner to categorize the tool with respect to any of the three supported

classification criteria explained in Sect. 15.2.1.3. The Codomatic service features

willfully essential styling so as to keep it open to embedding within Wiki pages or

web frames.

A sample of running Codomatic code generator for the Cicero argumentation

plugin (Dellschaft et al. 2008), depicted in Fig. 15.5, shows what minimum user

input is required and leveraged for the generation of the corresponding RDF code.

TheOntology base URI field provides the default namespace to be used for any new

entities asserted in the ontology to be generated and is advised to match the physical

URI to be dereferenced for locating the ontology itself. The Plugin name field,

along with its Camel syntax version, denote respectively the rdfs:label anno-

tation and the actual URI local name for the OWL individual that identifies the tool

itself, while the Plugin description field denote the English rdfs:comment

Fig. 15.5 The Codomatic tool description generator, after constructing the RDF code for an

argumentation management plugin called Cicero

7At the time of writing, the service is hosted at http://wit.istc.cnr.it:8080/codomatic

336 A. Adamou and V. Presutti

http://wit.istc.cnr.it:8080/codomatic


annotation for that individual. It is possible to state the tool in question to be a NeOn

Toolkit plugin, in which case its unique identifier must be supplied.

The list boxes that follow this field in the figure allow providers to include

functional specifications of their tools: through these interface objects, it is possible

to select an arbitrary number of knowledge types that the tool is known to consume

as input or produce as output, as well as the design functionalities and NeOn

processes and activities that it supports. For all fields but the NeOn processes and

activities one, an additional text box is available, where the provider can arbitrarily

instantiate new knowledge types and design functionalities, if the existing ones are

felt to fall short of accuracy or completeness in describing the tool in question.

However, while new design functionalities can immediately be exploited when

classifying a set of tools with respect to them, new knowledge types cannot

contribute to the rules for inferring supported design aspects, unless the providers

include additional defined classes that are restricted on the hasInputType or

hasOutputType properties for their new knowledge types.

The aforementioned statement supports the claim that by no means is Codomatic

intended to serve as a replacement for a full-fledged OWL editor. The service is

intended for the creation of minimal OWL manifests based on C-ODO Light,

and yet it leaves room for extension and refinement. Providers can use the NeOn

Toolkit OWL editor to add annotations for newly declared knowledge types and

functionalities and relate them to existing ones where need be, as well as define

additional rules for inferring supported design aspects from knowledge type

statements.

The “Generate code” button triggers an asynchronous remote procedure call to a

servlet that encapsulates submitted data and uses the same OWL API as Kali-ma’s

to output the corresponding ontology, whose source code is posted to the text area

below the button. This code includes all the necessary ontology imports and is

intended to be copied verbatim to an RDF document, which should then be

uploaded to a location of the provider’s choice. Codomatic does not pose

restrictions to tool providers as to what physical locations should be used for their

newly generated ontologies, nor does it store submitted base URIs or any other

information used for generating the OWL code. References to physical locations

can be submitted through the corresponding plugin pages on the NeOn Toolkit

Wiki, as documented in its plugin development and submission guide8. Being a

Semantic Media Wiki, it is then possible to export these references in RDF format

for Kali-ma to consume.

8 http://neon-toolkit.org/wiki/Plugin_HowTo

15 Customizing Your Interaction with Kali-ma 337

http://neon-toolkit.org/wiki/Plugin_HowTo


15.2.2.3 Interoperability API

In addition to supporting collaboration and interaction between end users, Kali-ma

as a plugin comes with additional developer features that allow other ontology

plugins to interoperate either with each other or with Kali-ma. There are two

distinct methods of allowing programmatic interoperability, which is achieved

through simple direct intervention on the plugin code. These two methods cover

separate interoperability aspects and can be implemented independently. They are:

1. Construction of Pipeline assemblies within widgets, for executing plugin

functionalities without switching to the plugin user interface for that plugin

2. External Dashboard control, for manipulating the contents of the Dashboard

Interoperability between plugins is achieved by construction of pipeline
assemblies, which are dynamic software structures where the output of one compo-

nent can be concatenated to one or more other components in the assembly in order

to execute complex computational tasks. For instance, a design pattern selection

service exposed by the eXtreme Design plugin (described in Chap. 3) could reuse

the output axioms of a search issued using theWatson plugin (described in Chap. 7) in
order to perform query expansion for broader pattern selection. Because the process

has no strict coupling at build time, such a scenario can be realized without either

plugin knowing a priori which other plugin it should expect its input from, or which

one should accept its output.

The other supported interoperability aspect is Dashboard control, i.e., the

programmatic manipulation of the Kali-ma user interface. This allows other

developers to construct custom dashboard configurations specific for the engineer-

ing activity supported by another tool. Among NeOn Toolkit plugins, the gOntt tool
for project scheduling supports Kali-ma dashboard interoperability, as it is possible

from within a gOntt schedule to launch a Kali-ma dashboard containing widgets for

all registered NeOn Toolkit plugins that support a given process, activity, or phase

in that schedule. This support is among the features showcased by the gOntt plugin

description in Chap. 14.

To reach either level of interoperability, a plugin must implement a simple Java

API exposed by Kali-ma itself. A developer who wishes a plugin functionality to be

directly called via its dashboard widget will simply have to implement an Eclipse

extension point, which is mapped to a simple Java interface, both provided by Kali-

ma. The developer will simply have to wrap a call to a plugin functionality into a Java

class that implements this interface and annotate the single public method with the

types of the parameters expected to be consumed and produced by that functionality.

The Dashboard control API is also simple and straightforward. It is enough for a

developer to invoke any static method of the DashboardLauncher class

exposed by the Kali-ma API, and a dashboard will be launched, containing widgets

for all the available plugins whose identifiers were passed as parameters. This

implementation may occur in a separate plugin, without any intervention on the

original plugin code.

338 A. Adamou and V. Presutti

http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_7
http://dx.doi.org/10.1007/978-3-642-24794-1_14


15.2.3 Architectural Design

The software architecture of the Kali-ma plugin, used for performing semantic

reorganization of the tool space, incorporates both procedural and logical

components. That is, although the plugin is essentially a Java program (or, to be

more precise, a set of OSGi bundles) like most other plugins, some functionalities

are not entirely encoded as procedures in the plugin code but instead rely on formal

semantics that describe their behavior. Although the entire knowledge needed for

managing the tool space is maintained in its original OWL formalism, this is treated

in a similar fashion as runtime software libraries. Ontologies that describe the

domain model, plugin space, and classification criteria are dynamically aggregated

and linked at runtime.

The sections that follow provide an insight on the software architecture of Kali-

ma. After a quick overview on the next section, Sect. 15.2.3.2 describes the actual

ontology network used by the tool. Section 15.2.3.3 describes the software modules

that handle and reason upon the ontology network in order to classify NeOn Toolkit

plugins. Finally, Sect. 15.2.3.4 provides a quick insight as to how the result is

presented to the user.

15.2.3.1 Basic Software Architecture

The heterogeneous representation of the Kali-ma components, as well as the

openness to possibly reusing the procedural components in engineering fields

other than ontologies, imply a layered infrastructure of the tool. This infrastructure

can be seen as split into three major components as depicted in Fig. 15.6: the

ontological component is responsible for providing Kali-ma with the necessary

knowledge about existing NTK plugins and the rules by which to classify them; the

reasoning component manages the extraction of such knowledge from the ontolog-

ical component, as well as the aggregation and classification of plugins; and lastly,

the presentation component generates the widgets and handles communication

between Kali-ma, NTK plugins, and the NTK core.

15.2.3.2 Ontological Component

The ontological component, encoded in its entirety in OWL, is at the lowest level of

the stack. It is itself a layered subsystem, as the dependencies between its modules

are acyclic. The component as a whole can be seen as a large networked ontology,

although only the essential logical infrastructure is hardwired, whereas expert

ontology engineers can define categorization rules without an exhaustive knowl-

edge of the tool space, while leaving plugin contributors the liberty to author

descriptions for their tools and host them wherever they see fit.

15 Customizing Your Interaction with Kali-ma 339



The layers of the Kali-ma ontological component include:

• A foundational/domain layer, which is essentially the codolight model for

ontology design (described in Chap. 5). Its modularity and distinctive support

for collaborative life cycle management make it easily extensible with

specialized classes, additional primitives and rules, without any need for tainting

the whole model. What’s more, it is aligned to several widely used ontologies

describing the Semantic Web for computational and social interoperability.

• Sets of categorization rules, where the classification criteria used for providing a
taxonomy of tools in the Organizer widget are formalized. Recall that the default

criteria are implementation of design functionalities, support for NeOn Method-

ology processes and activities, and coverage of collaborative design aspects.
While applications of the first two criteria can be usually extracted without

resorting to reasoning tasks, inference will be required in order to determine

which design aspects are covered by a plugin.

• The tool space population model which includes C-ODO Light–based OWL

descriptions of NeOn Toolkit plugins, each describing what types of task a

certain plugin can help accomplish, what types of knowledge representation it

Fig. 15.6 The Kali-ma infrastructure and its main components

340 A. Adamou and V. Presutti

http://dx.doi.org/10.1007/978-3-642-24794-1_5


can handle, and so on. These are not hardwired in the built-in portion of the

ontological component and can be located anywhere on the web. Recall from

Sect. 15.2.2.2 that an online service is available for the automatic generation of

these tool descriptions.

15.2.3.3 Reasoning Component

In avoidance of the unwise practice of allowing the presentation component to

handle the knowledge base straight away, Kali-ma implements a dedicated subsys-

tem for extracting relevant knowledge. The ontological component provides such

knowledge that the reasoning component wraps into a Java object model, which can

then be accessed from the Dashboard controller in the presentation subsystem. This

lower-level component in the Kali-ma software architecture, and the intermediate

layer in the whole infrastructure, provides a software counterpart to the ontological

component.

The reasoning component comprises the following modules:

• The Kali-ma object model represents parts of the C-ODO Light network, along

with attached ontologies with additional categorization rules, in the form of Java

types. This model includes interfaces for design tool, knowledge type, NeOn

activity and design aspect OWL classes, and for generic annotated entities,

whose RDFS label and comment annotations are deemed significant in the

context of Kali-ma (i.e., they are presented to end users).

• The description visitor is responsible for instantiating the object model men-

tioned above from the ABoxes supplied by C-ODO Light–based plugin

descriptions and classification rule ontologies. This module includes

monitorable operations for initializing OWL managers and DL reasoners (both

supplied by external packages), loading them with fixed and user-defined

ontologies and querying them. This system can be configured to manage a

cache; thus, it does not necessarily query the DL reasoner on each Kali-ma run.

• A model registry is where the instantiated object model is stored and kept track

of. It stores wrapped OWL individuals and relationships between them and

allows changes to the model to be monitored through its own event system.

The model registry is ephemeral and does not need to be serialized, as it can be

completely rebuilt at runtime from the ontological component in reasonable

time.

Through the components of this subsystem, Kali-ma becomes aware of what

NeOn Toolkit plugins are known and/or installed in the running system, what are

the relevant relations in ontology design, and which of them are supported by

collected plugins. The Kali-ma application logic has no prior knowledge of such

relationships.

15 Customizing Your Interaction with Kali-ma 341



15.2.3.4 Presentation Component

The top-level component of the Kali-ma infrastructure, called presentation compo-
nent, implements both the user interface and its controller in the Model-View-
Controller (MVC) paradigm (Reenskaug 1979). This element is responsible for

leveraging the underlying C-ODO Light–based object model and presenting the

outcome of reasoning tasks performed thereupon. Widget factories, dashboard

management, and event handling support all belong to this component. Once

generated, widgets are deployed on the target view (typically, the operating system

desktop) and integrated among other operating system windows.

References

Damian D, Chisan J (2006) An empirical study of the complex relationships between requirements

engineering processes and other processes that lead to payoffs in productivity, quality, and risk

management. IEEE Trans Softw Eng 32(7):433–453

Dellschaft K, Engelbrecht H, Barreto JM, Rutenbeck S, Staab S (2008) Cicero: tracking design

rationale in collaborative ontology engineering. In: Bechhofer S, Hauswirth M, Hoffmann J,

Koubarakis M (eds) ESWC, Lecture notes in computer science, vol 5021. Springer, Berlin/

Heidelberg/New York, pp 782–786

Holsapple CW, Joshi KD (2002) A collaborative approach to ontology design. Commun ACM

45:42–47

Presutti V, Gangemi A, David S, de Cea GA, Suárez-Figueroa MC, Montiel-Ponsoda E, Poveda M

(2008) A library of ontology design patterns: reusable solutions for collaborative design of

networked ontologies. Deliverable D2.5.1, NeOn project

Reenskaug T (1979) Models – views – controllers. Technical report, Technical note, Xerox Parc

342 A. Adamou and V. Presutti


	Chapter 15: Customizing Your Interaction with Kali-ma
	15.1 Introduction
	15.2 Kali-ma Plugin Features
	15.2.1 Functionalities for End Users
	15.2.1.1 Preliminary Configuration
	15.2.1.2 Activating the Dashboard
	15.2.1.3 Organizing the Plugin Space
	15.2.1.4 Interaction with Plugins
	15.2.1.5 Profile Management
	15.2.1.6 Dashboard Control and Docking
	15.2.1.7 Project-Based Real-Time Chat
	15.2.1.8 Obtaining Help

	15.2.2 Functionalities for Plugin Developers
	15.2.2.1 Plugin Description Management
	15.2.2.2 Plugin Description Generator
	15.2.2.3 Interoperability API

	15.2.3 Architectural Design
	15.2.3.1 Basic Software Architecture
	15.2.3.2 Ontological Component
	15.2.3.3 Reasoning Component
	15.2.3.4 Presentation Component


	References


