
Chapter 12

Methodological Guidelines for Matching

Ontologies

Jérôme Euzenat and Chan Le Duc

Abstract Finding alignments between ontologies is a very important operation for

ontology engineering. It allows for establishing links between ontologies, either to

integrate them in an application or to relate developed ontologies to context. It is

even more critical for networked ontologies. Incorrect alignments may lead to

unwanted consequences throughout the whole network, and incomplete alignments

may fail to provide the expected consequences. Yet, there is no well-established

methodology available for matching ontologies. We propose methodological

guidelines that build on previously disconnected results and experiences.

12.1 Motivation

Ontologymatching is the activity of establishing correspondences between ontologies.

Correspondences express relationships supposed to hold between entities in

ontologies, for instance, that a ‘district’ in one ontology is the same as a ‘kreis’ in

another one or that ‘fishery’ in an ontology is a subclass of ‘company’ in another one.

An alignment may be used to link an ontology with its background, i.e. set it in a more

general context: This is typically what is achieved by providing an alignment with an

upper-level ontology. An alignment can also be used to link an ontology with its

previous versions or alternative ontologies in other applications.

We use interchangeably the terms matching operation (focussing on the input

and result), matching task (focussing on the goal and the insertion of the task in

a wider context) and matching activity (focussing on the internal processing).

J. Euzenat (*)

INRIA & LIG, F-38330 Montbonnot Saint-Martin, France

e-mail: Jerome.Euzenat@inria.fr

C. Le Duc

Université Paris 8, 93200 Saint-Denis, France

e-mail: Chan.Leduc@iut.univ-paris8.fr

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_12, # Springer-Verlag Berlin Heidelberg 2012

257

mailto:Jerome.Euzenat@inria.fr
mailto:Chan.Leduc@iut.univ-paris8.fr

The ontology matching process may be summarised as in Fig. 12.1 by a process

taking two ontologies (o and o0) as input and returning an alignment (A0), i.e. a set of
correspondences. In addition, this process can take as input an initial alignment and

various parameters. Ontology matching can be used with more than two ontologies.

However, in this chapter, we restrict ourselves to matching two ontologies. As

simple as it seems, ontology matching is an unsolved problem and a delicate

activity which requires care (Euzenat and Shvaiko 2007). Many matching methods

exist, and not one fits all needs.

Ontology matching is a very important operation in modern ontology engineer-

ing because of the networked environment in which ontologies are engineered and

supposed to work. Methodologically, it is worthwhile to express relations between

ontologies because this allows (1) for working with small and self-sufficient

modules instead of monolithic ontologies, (2) for expressing the links between

two versions of the same ontology and thus to upgrade data from one ontology to

another or (3) for putting back an ontology in the context of an upper-level

ontology, allowing it to play better with other ontologies. Networked ontologies

are sets of ontologies together with alignments relating the entities of these

ontologies. These ontologies may be related because they are complementary,

two independent domain ontologies, e.g. sales and tyres, refinement, a domain

ontology specialising a top-level ontology, or supplementary, a version replacing

another version or two ontologies about the same domain. In networked ontologies,

alignments are as important as the ontologies themselves because relationships

between ontologies are the basis of networks.

Hence, methodological guidance for ontology matching is particularly required

and needs to be supported for helping ontology engineers to develop semantic

applications. Contrary to ontology building which is an open-ended (design) activ-

ity, ontology matching is an inductive activity bounded by the ontology to be

matched. Hence, it requires a more focussed methodology.

Yet, very little support exists for such an activity at the methodological or at the

tool level. Even in the database field, where similar but simpler problems have

existed for years, there is no consensus methodology on how schema matching can

be conducted. This chapter provides guidance for matching ontologies based on

existing partial guidelines and overall experience collected so far in the field.

We do not consider ontology matching as an independent activity. On the

contrary, we consider it as related to ontology management: When ontologies

evolve, alignments must follow this evolution. Moreover, as proposed in the work

o

o′

A matching A′

parameters

resources

Fig. 12.1 The matching

activity (From Euzenat

and Shvaiko 2007)

258 J. Euzenat and C. Le Duc

of Euzenat et al. (2008), ontology matching should be considered in a dynamic

perspective in which the result of matching has its own life cycle and will have to be

maintained and evolved. This is illustrated by Fig. 12.2, representing the alignment

life cycle. This life cycle takes into account the evolution of alignments as well as

the importance of considering alignment as first-class objects which can be shared.

As such, alignments can be manipulated to better suit the needs of users. We

consider this ontology alignment life cycle and further investigate the methodolog-

ical guidelines for supporting it. In the spirit of NeOn (see Chap. 1), these

guidelines put the emphasis on networks of ontologies as well as reusing ontologies

and alignments.

In what follows, we first introduce synthetic descriptions of the ontology

matching activity (Sect. 12.2). Then, we discuss the issue of the format in which

alignments have to be delivered in order to support reusable matching (Sect. 12.3)

before considering step by step the proposed methodological guidelines

(Sect. 12.4). Then we present support offered by tools for the proposed methodo-

logical guidelines (Sect. 12.5). Finally, examples are given (Sect. 12.6) before

concluding.

12.2 Ontology Matching Filling Cards

We present below two different ontology matching activities. These depend on the

time at which ontology matching is supposed to take place. If ontology matching is

supposed to occur at design time, then its goal is to match two ontologies for

connecting them in a network; if it is to occur at runtime, then the goal of the

activity is to generate a matching process that achieves ontology matching at

runtime.

This distinction between runtime and design time ontology matching is very

important in practice because the output of the two operations is not the same. At

design time, the resulting alignment is used for relating the different ontologies

which will be used at runtime, for instance, for transforming queries. At runtime,

enhancement

creation

AA

evaluation

communication

A exploitation

Fig. 12.2 The ontology alignment life cycle (Adapted from Euzenat et al. 2008)

12 Methodological Guidelines for Matching Ontologies 259

http://dx.doi.org/10.1007/978-3-642-24794-1_1

ontology matching is used for finding alignments between ontologies which were

not known at design time. This could be for composing semantic web services using

different ontologies, for instance.

When ontology matching is performed at design time (see Fig. 12.3), only the

resulting alignment is available at runtime: no more matching is necessary. So,

there is no runtime constraint on matching. When it is performed at runtime, no

design time alignment is available; the matching will occur at runtime. So, the goal

of the designer is to design a matching process instead of an alignment (see

Fig. 12.4). In this case, runtime constraints (speed, memory) may apply to

matching.

However, functionally, these two operations can also be seen as the same since

they, in practice, generate an ontology matching process which is executed at

different moments. Hence, the guidelines that we apply are the same in both

cases because it consists of choosing software components which are applied at

different time.

Design time ontology matching

Definition

Goal

Input

Who

When

Output

Ontology matching (in design time) is the activity which finds alignments between ontologies.

Matching two ontologies.

Two ontologies to be matched.

When designing ontologies. In networked ontology applications, this activity can occur at any time.

Ontology engineers, who form the ontology development team (ODT), in collaboration with users and domain
experts.

An alignment between these two ontologies, which may
have been further transformed into a processable
element, e.g., query mediator, merged ontologies.

Fig. 12.3 Design time ontology matching

260 J. Euzenat and C. Le Duc

12.3 Alignments and Formats

Although formats should not be a main concern for methodology, it is here very

important because the input and output of most of the tasks is an alignment. Hence,

choosing a common alignment representation makes tasks interoperable and allows

for better sharing and reusing the product of the ontology matching activity.

Ontology alignments are sets of relationships between ontology entities.

Alignments may be expressed in various languages. For instance, the two relations

mentioned in the introduction can be expressed in OWL (Horrocks et al. 2003)

through owl:equivalentClass and rdfs:subClassOf, but they can also

be expressed in SKOS (Miles and Bechhofer 2009) through skos:exactMatch
and skos:broaderMatch. Other applications may mandate a different form like

views in databases, mediators in web services frameworks or even merged

ontologies. The advantage of such representations is that they can be processed.

However, application-specific output is not particularly interoperable. It is not

easy to transform a database view into OWL axioms or SKOS statements into

ODEDialect (Corcho and Gómez-Pérez 2007). Indeed, when the alignment is

Run time ontology matching

Definition

Ontology matching (in run time) is the activity which finds relationships between ontologies.

Goal

Designing a process for matching two ontologies.

The specification of a process for matching two
ontologies.

Semantic application designers.

When developing applications requiring run time matching.

Input Output

Who

When

The characteristics of the ontologies to match
and the context in which this matching
operation will occur.

Fig. 12.4 Runtime ontology matching

12 Methodological Guidelines for Matching Ontologies 261

expressed in OWL, its only possible use is to ‘merge’ two OWL ontologies. It

cannot easily be used to import data from one ontology to another or to translate

queries. Moreover, such formats are not easy to share and retrieve (see Sect. 12.4.7)

or to manipulate (see Sect. 12.4.6), e.g. for merging the results of several matchers

if they do not use a format that supports such manipulations.

Hence, in order to avoid early commitment to a particular type of usage, it is to

be preferred to keep the alignments in a declarative language. Such a language

allows for manipulating and composing alignments as well as for generating the

required representation (OWL, SKOS and others) when necessary.

Using a neutral and declarative representation (Euzenat 2004) provides the

opportunity to distribute and share alignments among applications. This is why,

in the remainder, only ‘alignments’ are considered.

12.4 Detailed Guidelines

Ontology matching has been the focus of a lot of attention in the recent years.

However, little work has been carried out on the methodological support for finding

alignments. We provide here the outline for such methodological guidelines. It can

be summarised by the workflow of Fig. 12.5. Each task of this workflow will be

described in subsections.

12.4.1 Identifying Ontologies and Characterising Needs

The first task in finding alignments is to identify the ontologies to be matched and to

characterise the need. Indeed, the type of required alignment will be different if the

Identifying ontologies,
characterising need

Finding existing
alignments

Selecting matcher

Matching

Evaluating

Enhancing

Storing and sharing

Rendering

not found

passed
failed

found

Fig. 12.5 The matching

methodology workflow.

It goes step by step through

characterising the problem,

selecting existing alignments,

selecting appropriate

matchers, running the

matchers, evaluating the

results and correcting the

choices made before

(matchers, parameters),

documenting and publishing

good results and finally using

them

262 J. Euzenat and C. Le Duc

goal is to merge two ontologies in a knowledge-based system or to add yet another

data source to a query mediator. In the former case, the alignment will have to be

strictly correct, otherwise the system may draw incorrect inferences, but the

relationships can be diverse: subsumption and disjointness assertions can be very

useful. In the latter case, lack of completeness is not a problem since other sources

may return the missing answers, but relations other than equivalence are not

straightforwardly used in query mediation. This first task is similar to Activity 3

of the work of Corcho (2005), called ‘design of [a] translation system’, which

specifies how to characterise source and target ontologies for ontology translation.

It is also useful to characterise the kind of ontologies: Are they labelled in the

same natural language? What is their expressiveness? Are individuals related to the

ontologies available?

Characterising the situation in which matching will be performed should not be

neglected. It will determine the choice of matchers or alignments as well as the

parameters to care for. Euzenat and Shvaiko (2007) identified several parameters:

• Are instances available at match time?

• Is matching performed under time constraints?

• Has matching to be performed automatically?

• Must the alignment be correct?

• Must the alignment be complete?

• What type of operation (merging ontologies, transforming queries) is to be

performed?

These characteristics of the situation are requirements for the ontology matching

process. There has been research attempting to refine such requirements. Mochol

(2009) gave a very precise description of the type of ontologies to be matched

depending on their size, expressiveness, language and role, e.g. domain ontology or

upper-level ontology.

12.4.2 Finding Existing Alignments

Finding existing alignments which satisfy the need of the application is the second

task. Alignments may be found on the web or through specialised directories.

Reusing existing alignments should be privileged because of the cost of generating

such alignments. For that purpose, the task of sharing (see Sect. 12.4.7) prepares

alignment retrieving.

Ideally, alignments should come with annotations characterising their level of

trustworthiness, the purpose for which they have been built and the type of relations

they use.

These alignments must concern the ontologies to be matched, and they have to

satisfy the constraints related to the alignment established in Sect. 12.4.1. In

particular, correctness and completeness are criteria to use for selecting among

various alignments.

12 Methodological Guidelines for Matching Ontologies 263

These criteria may be assessed manually, on a sample, or can be inferred through

the properties of their generation methods. In particular, one can use metadata

attached to such alignments. They can reveal the method used for matching the

ontologies (in particular, if these are automatic or manually generated alignments),

they can cover manual assessments about the alignment (people publishing them

can annotate the alignments to tell what they are good for) or they may contain

indications of their intended use which can be matched with that of the current

situation.

So, practically, selecting an alignment requires:

• Finding alignment repositories

• Finding those alignments between the ontologies to match

• Assessing the capacity of these alignments to address the needs previously

identified, either based on metadata, or on the content of the alignments

• Deciding for one alignment based on this assessment

If apparently suitable alignments are available, the user can directly go to the

validation task (Sect. 12.4.5). Otherwise, it is necessary to create a new alignment

from the ontologies, as is explained in Sect. 12.4.3.

12.4.3 Selecting a Matcher

In order to build a new alignment, a suitable matcher has to be found. Many

matchers have been developed over the years, and they provide different results

on different types of data sets and matching contexts. Hence, the criteria elicited in

the characterisation phase (Sect. 12.4.1) are also used for selecting the most

appropriate matcher.

There have been several studies about how to choose a matcher depending on the

characteristics of the ontologies and those of the expected alignments. They are

worth taking into account.

Euzenat et al. (2006) provide a simple method for weighting matcher capabilities

(speed, automaticity, precision and recall as measured in matcher evaluations)

against the application requirements defined as the answers to the questions of

Sect. 12.4.1.

The work of Mochol (2009) uses a deep classification of matchers and the

matching context in order to assess which matcher will be more adapted to a

particular context. This assessment is made using the Analytic Hierarchy Process

(AHP) which guides the decision process of choosing a matcher. It can work on

automatic or manual mode.

The OntoMas system (Huza et al. 2006) has been developed for helping and

teaching how to carry out matching. For choosing a matcher, it processes a set of

symbolic rules over a classification of tools and a characterisation of tasks.

The problem of such methods is that they require extensive information about

available matchers which is not always available or always accurate when the

264 J. Euzenat and C. Le Duc

assessment comes from the matcher developers. An important source of informa-

tion is the result of the various matcher evaluation campaigns that have been run.

The most important one is the Ontology Alignment Evaluation Initiative (OAEI)

campaigns1. They have evaluated many matchers in a variety of situations. So their

results can be taken into account when choosing a matcher. They are currently

further developed in the context of the SEALS project2.

So, in practice, choosing a matcher can be achieved by:

• Finding available matchers

• Assessing their capacity to generate alignments that fill the identified

requirements by reading their documentation or comparing their performances

in similar tasks during evaluations

• Deciding for one matcher based on this assessment

Other works try to automate this task, or the choice of matcher parameters, on

the fly (Sayyadian et al. 2005). Such work can be used in runtime matching

processes.

12.4.4 Matching Ontologies

The next task consists of running the matcher against the ontologies and collecting

the resulting alignment. It may seem like the simplest task, methodologically

speaking, because matchers have been designed exactly for this purpose.

But the user should not hesitate to run the matcher several times or to run several

matchers, trying different sets of parameters and different thresholds. It is also

useful to process matching incrementally by curating the returned alignment and

feeding it again to the matcher for improving it.

In fact, all the procedure that can be applied at the enhancing phase (see

Sect. 12.4.6) can also be directly applied during the matching phase without any

prior evaluation.

Hence, this task can be further decomposed into a more complex sub-workflow

(see Fig. 12.6). Section 12.4.6 provides some refinements of the matching

workflow.

12.4.5 Evaluating Alignments

Once an alignment has been obtained, it is necessary to perform a final screening

and validation. Evaluation can be applied on alignments that have been retrieved as

1 http://oaei.ontologymatching.org
2 http://www.seals-project.eu

12 Methodological Guidelines for Matching Ontologies 265

http://oaei.ontologymatching.org
http://www.seals-project.eu

well. This task corresponds to the evaluation task of Fig. 12.2. Very precise

methodological guidelines for evaluation of ontology networks are provided in

Chap. 9 which may be applied here as well (note that the ‘identify evaluation

criteria and frame of reference’ task corresponds to our ‘identifying ontologies and

characterising needs’ task, see Sect. 12.4.1). We consider here what is specific to

alignment evaluation during the matching activity. The evaluate/enhance loop in

Fig. 12.5 corresponds to the feedback after evaluation in Fig. 12.2.

Evaluation consists of assessing properties of the obtained alignment. It can be

performed either manually or automatically. Manual evaluation can be achieved by

running a dry test of the final application or by asking an independent expert to

assess the quality of the alignment and perform some manual assessment. For that

purpose, graphical tools which allow to navigate quickly both in the alignment and

in the ontologies are invaluable.

An often overlooked functionality of matching algorithms is their ability to give

explanation for the provided alignments. Explanations can be obtained by

interacting with the matcher or by accessing metadata about a stored alignment.

Automated quantitative evaluation can be performed by using techniques for

evaluating alignments used in matcher evaluation campaigns such as OAEI1 or

SEALS2. These would require to extract samples from the results and computing

measures like precision and recall which would provide an approximation of

correctness and completeness.

There is no definitive answer as to what is a good result for evaluation. The

evaluation must be performed so as to assess evaluation criteria. The characterisation

of the problem (Sect. 12.4.1) aims at defining such success criteria. For some

applications, high recall is required, while for some others, recall is not important.

Moreover, the meaning of ‘high’ is not the same for all applications: A critical

application which can break if some correspondence is missing will require 100%

recall while a non critical application may be satisfied with 98%.

Modifying
parameters

Matching

Checking
consistency

Triming Composing

parameters

alignment

Fig. 12.6 The sub-workflow of fine-tuning matchers (all tasks but matching are optional). After

matching, it is possible to apply automatically some alignment manipulation that can trim the

alignment under a threshold, check and restore the consistency of an alignment or compose

the alignment with another alignment. The result of these manipulations can be fed back as

input to the matching operation or can be the final result of the workflow. Alternatively, it is

possible to modify the parameters of the matcher and to run it again. These operations can be

triggered manually or automatically

266 J. Euzenat and C. Le Duc

http://dx.doi.org/10.1007/978-3-642-24794-1_9

If the evaluation results are positive, i.e. the alignment satisfies these success

criteria, then the obtained alignment can go through the next task, storing and sharing

(Sect. 12.4.7); otherwise, the alignment can be improved (Sect. 12.4.6) before being

input to the matcher and/or another matcher and/or parameters can be chosen.

12.4.6 Enhancing Alignments

Enhancement can be obtained either through manual modification of the alignment,

e.g. with the help of an alignment editor, or the application of refinement

procedures, e.g. selecting correspondences by applying thresholds. This enhancing

task can lead to:

• The selection of another matcher, as in Fig. 12.5, by going back to Sect. 12.4.3

• The selection of another set of parameters to use with the same matcher, as in

Fig. 12.6

• The manipulation of the alignment through trimming under a particular thresh-

old or combining several alignments, as in Fig. 12.6

Among these procedures, the most straightforward one consists of trimming the

alignment under some thresholds. There are many different ways to apply auto-

matic thresholds (Euzenat and Shvaiko 2007). Some work has introduced double

thresholding: Above the upper threshold, correspondences are selected, under the

lower threshold, they are discarded, and the remaining correspondences are brought

to the attention of the user (Lambrix and Liu 2009).

It may also restore consistency when the resulting alignment has been detected

inconsistent in the evaluation (Sect. 12.4.5). By consistency checking, we do not

necessarily mean logical consistency checking, but rather that the result does not

violate particular constraints which may be:

• Acyclicity

• Syntactic anti-patterns (Roussey et al. 2009)

• Full logical consistency

Enhancing may then consist of selecting a subset of the correspondences in an

alignment which satisfies the constraints. Algorithms developed in (Meilicke and

Stuckenschmidt 2009) are particularly suited for that purpose.

Alignments obtained from various sources, such as other matchers or alignment

libraries, may be composed in a single alignment through various operators:

composition, meet, join and union.

12.4.7 Storing and Sharing

An extra task is to save and share the obtained alignment in a declarative format and

to give it proper annotations to record its provenance and purpose. This task is very

12 Methodological Guidelines for Matching Ontologies 267

often overlooked but it is vital if one wants to find alignments in the corresponding

task (Sect. 12.4.2): carefully annotating alignments will help others to reuse

them. This task corresponds to the communication task of Fig. 12.2, and the dotted

arrow in Fig. 12.5 corresponds to the availability of stored alignments after

communication.

When an alignment is deemed worth publishing, then it can be annotated, stored

and communicated to other parties interested in such an alignment.

Annotations of alignments should record the information that is useful for the

‘finding existing alignment’ task (Sect. 12.4.2). In particular, what is the purpose of

this alignment, what is the assessment of its quality? Noy et al. (2008) discuss

various kinds of metadata that are useful to record with correspondences. There are

a few normalised vocabularies for doing this, and in particular the ontology

metadata vocabulary (Hartmann et al. 2005). Other useful information like the

algorithm used for computing it, the time it took or the source alignments and the

date of matching can generally be recorded automatically.

Below is a sample of metadata associated with an alignment in the Alignment

API:

dc:date 2009/10/23
align:method fr.inrialpes.exmo.align.impl.methods.StringDistAlignment

align:time 421
omwg:purpose Query mediation

align:creator JohnDoe
while correspondence annotations can be:

align:measure .7768
align:note "manualy validated"

Storing an alignment requires some type of persistent storage. This is usually

achieved through the use of a database management system, but a web site based on

a file system may be sufficient. However, alignments must be properly indexed to

retrieve them when necessary on various characteristics (one ontology, pairs of

ontologies, arity, etc.). Indexing can be direct through a URI identifying alignments

or indirect through queries looking for alignments based on their metadata. In

general, it is preferable that both access modes be available.

Finally, these alignments may be shared by interested communities. For that

purpose, they should be accessible on the web through HTML interfaces or web

services.

There are several software supporting sharing alignments on the web. The

Alignment server3 and Cupboard (d’Aquin et al. 2009) are general-purpose servers

providing alignments in the Alignment format. BioPortal4 is specialised in biomed-

ical ontologies and provides individual correspondences (called mappings in this

system).

3 http://alignapi.gforge.inria.fr
4 http://bioportal.bioontology.org

268 J. Euzenat and C. Le Duc

http://alignapi.gforge.inria.fr
http://bioportal.bioontology.org

12.4.8 Rendering Alignments

Finally, the alignment is transformed into another form or interpreted for

performing actions like mediation or merging.

This task corresponds to the exploitation task of Fig. 12.2. It is the natural

outcome of matching. The exploitation of the alignment may be denoted by a

different activity name, e.g. merging or query translating, taking directly the

alignment as input. However, it may happen that ontology matching is considered

as an activity in itself in which case it will deliver its output in an appropriate format

for another task. This is what is called ‘rendering’.

Rendering may deliver the alignment as such in RDF in order to be processed by

an interpreter such as a query mediator. But it also can be transformed, as discussed

in Sect. 12.3, into OWL axioms, SKOS relations or sets of owl:sameAs
statements.

The dotted arrow on Fig. 12.2 expresses the feedback after using the alignment

which may contribute to enhance it.

12.5 Support for Matching Ontologies

We think that methodological guidelines are more useful and better accepted if they

are supported by tools rather than delivered as rules to be applied. So far, existing

support is available in the alignment manipulation part rather than the requirement

analysis part.

12.5.1 Independent Tools

Some tools offer alignment manipulation that can be used for alignment enhance-

ment (Sect. 12.4.6).

Foam (Ehrig 2007) is a framework in which matching algorithms can be

integrated. It mostly offers matching and processor generation. It does not offer

online services or alignment editing, but it is available as a Protégé plugin and has

been integrated in the KAON2 ontology management environment. COMA++

(Aum€uller et al. 2005) and Harmony (Mork et al. 2008) are stand-alone (schema)

matching work benches that allow for integrating and composing matching

algorithms. They support matching, evaluating, editing, storing and, for COMA++,

processing alignments.

12 Methodological Guidelines for Matching Ontologies 269

The Alignment server, associated with the Alignment API5 (David et al. 2011),

offers matching ontologies, manipulating, evaluating, storing and sharing

alignments as well as processor generation. It can be accessed by clients through

an API, web services, agent communication languages or HTTP. It does not support

editing.

Most of the software developed for editing alignments are candidates for design

time matching. The same alignment editor can be used for manipulating more

precisely the obtained alignments. They should provide a convenient display of

the currently edited alignments and the opportunity to discard, modify or add

correspondences. Ideally, each design time function should be available from an

alignment editor. Since ontologies and alignments can be very large, it is very

challenging to offer intuitive alignment editing support. There exists such editor

prototype such as OnaGui6 or iMerge (El Jerroudi and Ziegler 2008).

12.5.2 Integrated Tools

Model management has been promoted in databases for dealing with data integra-

tion in a generic way. It offers a high-level view to the operations applied to

databases and their relations. Rondo7 is such a system (Melnik et al. 2003). It offers

operators for generating the alignments, composing them and applying them as data

transformation. It is a stand-alone programme with no editing functions.

Integrated tools integrate alignment management to ontology management.

The Web Service Modeling Toolkit (WSMT) (Kerrigan et al. 2007) is an

Integrated Development Environment (IDE) for Semantic Web services which

also provides ontology engineering capabilities. Among other capabilities,

WSMT proposes a set of tools for manually creating, editing and storing ontology

alignments. It offers a set of methods and techniques that assist ontology engineers

in their work, such as different graphical perspectives over the ontologies,

suggestions of the most related entities from the source and target ontology and

guidance throughout the matching process (Mocan et al. 2006). WSMT and the

ontology engineer work together in an iterative process which involves cycles

consisting of suggestions from the tool side and validation and creation of

correspondences from the user side.

Protégé is an ontology edition environment which offers design time support for

matching. In particular, it features Prompt8 (Noy and Musen 2003), an environment

that provides some matching methods and alignment visualisation. Prompt allows

to match, compare and merge ontologies. Since alignments are expressed in an

5 http://alignapi.gforge.inria.fr
6 http://sourceforge.net/projects/onagui/
7 http://infolab.stanford.edu/modman/rondo/
8 http://protege.stanford.edu/plugins/prompt/prompt.html

270 J. Euzenat and C. Le Duc

http://alignapi.gforge.inria.fr
http://sourceforge.net/projects/onagui/
http://infolab.stanford.edu/modman/rondo/
http://protege.stanford.edu/plugins/prompt/prompt.html

ontology, they can be stored and shared through the Protégé server mode. Prompt

can be extended through a plugin mechanism.

12.5.3 The NeOn Toolkit Alignment Plugin

The NeOn9 project produced a toolkit for ontology management (see Chap. 13)

which features runtime and design time ontology alignment support.

NeOn supports ontology alignments in both the NeOn Toolkit and the Cupboard

ontology server.

The NeOn Toolkit Alignment plugin works in two modes: an offline mode in

which the user can work locally on the alignments. The user can run the matchers

which are embedded in the toolkit against ontologies in the NeOn Toolkit and

manipulate alignments which are in the local environment. Figure 12.7 shows two

selected ontologies and a matching method that can be applied to them. It also

shows a local alignment between these two ontologies to which operations such as

trimming under a threshold or rendering in OWL (‘import’) can be applied.

The online mode connects the NeOn Toolkit to an alignment server allowing to

share ontologies and to apply these operations on alignments stored on the server.

Fig. 12.7 The NeOn Toolkit Alignment plugin interface

9 http://www.neon-project.org

12 Methodological Guidelines for Matching Ontologies 271

http://dx.doi.org/10.1007/978-3-642-24794-1_13
http://www.neon-project.org

Of course, alignments can move back and forth between the server and the local

environment.

Both online and offline modes provide the functions of the Alignment API:

retrieving alignments, matching ontologies, trimming alignments under various

thresholds, storing them in permanent stores and rendering them in numerous

output formats. These operations support the whole alignment life cycle (Fig. 12.5).

The Alignment plugin allows one to automatically compute and manage onto-

logy alignments. More precisely, it offers the following functionalities:

• Find alignments between ontologies or those available on the server

• Match ontologies

• Trim alignments by applying thresholds to existing alignments

• Retrieve and render alignments in a particular format

• Upload and store an alignment permanently on the server

Alignments stored in the server can be further shared through the Cupboard

ontology server. It allows for indexing alignments available from alignment

servers. Hence, these alignments can be available to each Cupboard user to be

stored in her cupboard and, as for ontologies, be rated and annotated. Cupboard

provides direct access to alignments as well as indirect access to the Alignment

server to generate new alignments when they are missing.

12.6 Examples

In this section, we consider a user having to connect an ontology designed for drug

and prescription to existing ontologies outside. These examples are closely related

to the application presented in Chap. 20.

12.6.1 Identifying Needs

More precisely, the newly proposed Semantic Nomenclature ontology (presented in

Chap. 20), designed from schemas of pharmacological firm databases, has to be

matched to ontologies available on the web. This could help searching for literature

about concerned drugs or exporting drug interactions as linked data for other

applications to take them into account.

The requirements for this matching activity allow it to be performed offline,

without time constraints, so the use of the NeOn Toolkit and user supervision is

perfectly suited. The ontologies, having been developed independently and for

different purposes, are not expected to match exactly. Correct correspondences

are expected, completeness is secondary. The type of operation to be performed

with the resulting alignments is data export (for exposing linked data) and query

translation (for connecting to the literature).

272 J. Euzenat and C. Le Duc

http://dx.doi.org/10.1007/978-3-642-24794-1_20
http://dx.doi.org/10.1007/978-3-642-24794-1_20

12.6.2 Identifying Ontologies

Watson (d’Aquin and Motta 2011) allows for finding further ontologies that may be

useful. These are:

• The LDIS Drug ontology10 which has been designed for prescription application

in hospitals (related with electronic patient record)

• The UMLS Semantic Network ontology11 which is well used for literature

indexing because of its extensive coverage

• The RxNorm ontology12 which is used for classifying drugs and is suited to

search the literature

A quick study of these ontologies shows the characteristics displayed in

Table 12.1.

More ontologies on this topic are available, and a comparison can be found in

Herrero Cárcel and Pariente (2009).

The ontologies are relatively homogeneous being in English (with some Spanish

comments in Semantic Nomenclature) and OWL. They have comparable sizes with

the notable exception of UMLS.

12.6.3 Finding Existing Alignments

Finding available alignments may be achieved by using an alignment server. In the

present case, there is no alignment available between these ontologies.

12.6.4 Selecting a Matcher

The user then proceeds by selecting a matcher suited to match these ontologies. In

this case, given that ontologies are about a very close and normalised domain, they

Table 12.1 Characteristics of the considered ontologies

Organisation Ontology Lang. Form. Classes Relations Properties

ATOS Semantic Nomenclature English OWL 67 20 26

UMLS Semantic Network English OWL 199 105 0

LDIS DrugOnt English OWL 28 26 32

NLM RX nomenclature English OWL 10 16 0

10 http://lsdis.cs.uga.edu/projects/asdoc/DrugOnt_schema.owl
11 http://swpatho.ag-nbi.de/owldata/umlssn.owl
12 http://www.nlm.nih.gov/research/umls/rxnorm/

12 Methodological Guidelines for Matching Ontologies 273

http://lsdis.cs.uga.edu/projects/asdoc/DrugOnt_schema.owl
http://swpatho.ag-nbi.de/owldata/umlssn.owl
http://www.nlm.nih.gov/research/umls/rxnorm/

are written in the same natural language; the user may select very simple matchers

based on the strings naming entities. There are several matchers available, either

under the NeOn Toolkit or the Alignment server; the best way is to try them and to

see the results (see Sect. 12.6.5).

In a second iteration, tests have been performed with more elaborate matchers

such as a simple use of WordNet which would use synonyms to match terms and

distance in the hypernym graph. Or it can use the Aroma matcher which will

attempt at determining association rules between concepts before extracting an

alignment between them (David et al. 2007).

12.6.5 Matching

The simple StringDistAlignment method with different string distances is run, and

results are displayed in Table 12.2.

The user first ran the method with Levenshtein measure (edit distance) and

SMOA measure which tries to better interpret the way people label things, e.g. by

using syntactic variations. The threshold has been put to .75 so as to avoid

considering far-reaching similarity between strings. Later, a threshold of .85 has

been applied in order to further ensure correctness (because a higher threshold will

eliminate unlikely matches).

12.6.6 Evaluating

There is no automatic way to evaluate these results. They have to be manually

looked into by the user to assess their quality (they can be displayed by alignments

editors).

Concerning the drug ontology, the small returns with the Levenshtein distance

are obviously correct. The use of SMOA provides mostly new correct matches,

such as interacts/hasInteraction. The only non–fully correct matches are the

matching of DrugInteraction and OtherInteraction to interaction. Using SMOA

with a .75 threshold provides reasonable results. Some more matches, such as

Table 12.2 Number of matched entities in Semantic Nomenclature depending on matching

method and threshold. The example has used two iterations displayed by the horizontal line

Method Threshold DrugOnto RxNorm UMLSSN

Levenshtein .85 3 3 9

– .75 3 4 11

SMOA .85 8 8 20

– .75 11 11 34

WordNet .75 5 6 12

Aroma 8 5 30

274 J. Euzenat and C. Le Duc

isIndicated/has_indication_text, could have been found, but not many. The small

number of matches can be explained as follows: Semantic Nomenclature is more

oriented towards the drug production and commerce processes, while the drug

ontology is targeting the consumption process.

Concerning UMLSSN and RxNorm, Levenshtein was better than SMOA which

was returning quite a lot of unwanted matches, such as isProducedBy/produces or

Clinical_Finding/Clinical_Drug. After a closer examination, there is no real reason

to find more correspondences than those provided by Levenshtein, so the user may

want to use these. Especially with UMLSSN, it seems that the labels have been

chosen so that they correspond to those of UMLS so they exactly match.

Using the more elaborate matchers has confirmed this. They have only returned

plausible but not necessarily valid correspondences, such as Physical_Entity/

Physical_Object.

12.6.7 Enhancing

Enhancement may be achieved by two means: either by manual edition of the

resulting alignment or by running a new matcher, using new parameters or applying

different threshold to the results. This is what has been done by using different

thresholds and testing the more elaborate matchers, i.e. starting back to Sect. 12.6.4.

In the end, once the SMOA alignment with the drug ontology has been found

acceptable with respect to other results, this alignment is manually edited and

selected.

Both means can be interleaved: It is possible to edit an alignment and to use it as

further input for a matcher.

12.6.8 Storing and Sharing

Once an alignment of sufficient quality is established, especially if it has been

curated by hand, it must be better documented, for instance, by adding metadata

explaining how it has been obtained, who has curated it and what is the reached

confidence in each correspondence. This is illustrated in Sect. 12.4.7. Then, it can

be uploaded to an Alignment server so that it would be visible to other people (in

the previous step of Sect. 12.6.3).

12.6.9 Rendering

Finally, the obtained alignments have to be used. We have considered that the data

expressed in the Semantic Nomenclature ontology could be converted in the drug

ontology so as to communicate critical information about interaction. This may be

12 Methodological Guidelines for Matching Ontologies 275

achieved either by generating an XSLT transformation applying to the data

expressed in XML for obtaining the interactions under the drug ontology or

a more elaborate process may take advantage of the alignment to generate links

between instances of both ontologies.

On the other side, if RxNorm or UMLSSN is used to query bibliographical

databases, the alignments may be used for translating queries expressed with

respect to the Semantic Nomenclature into queries expressed in the two other

ontologies and eventually evaluate them in parallel.

12.7 Conclusions

Establishing relations between ontology entities is part of modern ontology engi-

neering and a very important activity for networked ontology engineering.

This activity remains difficult though there are many solutions for carrying it out.

We proposed methodological guidelines for ontology matching which integrates

with the alignment life cycle and can cooperate with ontology engineering

methodologies. In particular, we paid a particular attention to alignment sharing

and reuse. These guidelines are based on research work on particular tasks: Some of

these have been investigated in depth and others have not. Similarly, some tools

cover parts of these guidelines, but none is able to support them entirely.

Hence, more work is necessary to achieve a fully instrumented ontology

matching methodological support, and no doubt it will raise some demands for

improvement in the proposed methodological guidelines.

12.8 Further Readings

There are few methodological accounts of ontology matching. Mochol (2009) is the

exception: a whole thesis dedicated to matcher selection. Corcho (2005) has

considered more specifically the methodology for designing an ontology translation

method, including a matcher. Euzenat and Shvaiko (2007) covers many facets of

ontology matching, but not extensively methodology. It provides insights of most of

the tasks of the above methodological path. Euzenat et al. (2008) is more methodo-

logical but not focussed on the individual act of matching.

Acknowledgements We thank Pavel Shvaiko for his comments on a previous version of this

chapter. This work has been partly supported by the European Commission IST project NeOn

(IST-2006-027595).

276 J. Euzenat and C. Le Duc

References

Aum€uller D, Do H-H, Maßmann S, Rahm E (2005) Schema and ontology matching with COMA++.

In: Proceedings of the 24th international conference on management of data (SIGMOD),

software demonstration, Baltimore, MD, USA, pp 906–908

Corcho Ó (2005) A layered declarative approach to ontology translation with knowledge preser-

vation. Ios Press, Amsterdam

Corcho Ó, Gómez-Pérez A (2007) ODEDialect: a set of declarative languages for implementing

ontology translation systems. J Univers Comput Sci 13(12):1805–1834

d’Aquin M, Motta E (2011) Watson, more than a semantic web search engine. Semant Web J

2:55–63

d’Aquin M, Euzenat J, Le Duc C, Lewen H (2009) Sharing and reusing aligned ontologies with

cupboard. In: Proceedings of 5th ACM KCap poster session, Redondo Beach, CA, USA,

pp 179–180. URL ftp://ftp.inrialpes.fr/pub/exmo/publications/daquin2009a.pdf

David J, Guillet F, Briand H (2007) Association rule ontology matching approach. Int J Semant

Web Inf Syst 3(2):27–49

David J, Euzenat J, Scharffe F, Trojahn dos Santos C (2011) The Alignment API 4.0. Semant Web

J 2(1):3–10. URL http://iospress.metapress.com/content/4164891n48p5v826/

Ehrig M (2007) Semantic web and beyond: computing for human experience. In: Ontology

alignment: bridging the semantic gap. Springer, New York. Acitrezza, Italy, ISBN

0–387–32805-X

El Jerroudi Z, Ziegler J (2008) iMERGE: interactive ontology merging. In: Proceedings of the 16th

EKAW demonstration track, Acitrezza, Italy, pp 52–56

Euzenat J (2004) An API for ontology alignment. In: Proceedings of 3rd international semantic

web conference (ISWC), Hiroshima, Japan, Lecture notes in computer science, vol 3298.

Springer, Berlin/Heidelberg, pp 698–712

Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Heidelberg

Euzenat J, Ehrig M, Jentzsch A, Mochol M, Shvaiko P (2006) Case-based recommendation of

matching tools and techniques. Deliverable 1.2.2.2.1, knowledge web. URL ftp://ftp.inrialpes.

fr/pub/exmo/reports/kweb-126.pdf

Euzenat J, Mocan A, Scharffe F (2008) Ontology alignment: an ontology management perspec-

tive. In: Hepp M, De Leenheer P, De Moor A, Sure Y (eds) Ontology management: semantic

web, semantic web services, and business applications. Springer, New York, pp 177–206

Hartmann J, Palma R, Sure Y, Haase P, Suárez-Figueroa MC, Haase P, Gómez-Pérez A, Studer R

(2005) Ontology metadata vocabulary and applications. In: Meersman R, Tari Z, Herrero P

et al (eds) Proceedings of the International conference on ontologies, databases and

applications of semantics (ODBASE-2005), Lecture notes in computer science, vol 3762.

Springer, Berlin/Heidelberg/New York, pp 906–915

Herrero Cárcel G, Pariente T (2009) Revision of ontologies for semantic nomenclature: pharma-

ceutical networked ontologies. Deliverable 8.3.2, NeOn project

Horrocks I, Patel-Schneider P, van Harmelen F (2003) From SHIQ and RDFto OWL: the making

of a web ontology language. J Web Semant 1(1):7–26

Huza M, Harzallah M, Trichet F (2006) OntoMas: a tutoring system dedicated to ontology

matching. In: Proceedings of the 1st ISWC international workshop on ontology matching

(OM), Athens, GA, USA, pp 228–323

Kerrigan M, Mocan A, Tanler M, Fensel D (2007) The web service modeling toolkit – an

integrated development environment for semantic web services. In: Proceedings of the 4th

European semantic web conference (ESWC) system description track, Innsbruck, Austria,

pp 303–317

Meilicke C, Stuckenschmidt H (2009) An efficient method for computing alignment diagnoses. In:

Proceedings of the 3rd international conference on web reasoning and rule systems (RR-2009),

Chantilly, VA, USA, pp 182–196

12 Methodological Guidelines for Matching Ontologies 277

ftp://ftp.inrialpes.fr/pub/exmo/publications/daquin2009a.pdf
http://iospress.metapress.com/content/4164891n48p5v826/
ftp://ftp.inrialpes.fr/pub/exmo/reports/kweb-126.pdf
ftp://ftp.inrialpes.fr/pub/exmo/reports/kweb-126.pdf

Melnik S, Rahm E, Bernstein P (2003) Rondo: a programming platform for model management.

In: Proceedings of the 22nd international conference on management of data (SIGMOD), San

Diego, CA, USA, pp 193–204

Miles A, Bechhofer S (2009) SKOS simple knowledge organization system: reference. Recom-

mendation, W3C. URL http://www.w3.org/TR/skosreference

Mocan A, Cimpian E, Kerrigan M (2006) Formal model for ontology mapping creation. In:

Proceedings of the 5th international semantic web conference (ISWC), Athens, GA, USA,

Lecture notes in computer science, vol 4273. Springer, Berlin/Heidelberg/New York,

pp 459–472

Mochol M (2009) The methodology for finding suitable ontology matching approaches. PhD

thesis, Freie Universit€at Berlin. URL http://www.diss.fuberlin.de/diss/receive/

FUDISS_thesis_000000008124

Mork Peter, Seligman Len, Rosenthal Arnon, Korb Joel, Wolf Chris (2008) The harmony

integration workbench. J Data Semant XI:65–93

Noy N, Musen M (2003) The PROMPT suite: interactive tools for ontology merging and mapping.

Int J Hum-Comput Stud 59(6):983–1024. ISSN: 1071–5819. doi:http://dx.doi.org/10.1016/j.

ijhcs.2003.08.002

Noy N, Griffith N, Musen M (2008) Collecting community-based mappings in an ontology

repository. In: Proceedings of the 7th international semantic web conference (ISWC),

Karlsruhe, Germany, pp 371–386

Patrick Lambrix, Qiang Liu (2009) Using partial reference alignments to align ontologies. In:

Proceedings of the 6th European semantic web conference (ESWC 2009), Heraklion,

Germany, Lecture notes in computer science, vol 5554. Springer, Berlin/Heidelberg/New York,

pp 188–202

Roussey C, Corcho Ó, Vilches Blázquez LM (2009) A catalogue of owl ontology antipatterns. In:

Proceedings of the 5th international conference on knowledge capture (KCap-2009), Redondo

Beach, CA, USA, pp 205–206

Sayyadian M, Lee Y, Doan A-H, Rosenthal A (2005) Tuning schema matching software using

synthetic scenarios. In: Proceedings of the 31st international conference on very large data

bases (VLDB), Trondheim, Norway, pp 994–1005

278 J. Euzenat and C. Le Duc

http://www.w3.org/TR/skosreference
http://www.diss.fuberlin.de/diss/receive/FUDISS_thesis_000000008124
http://www.diss.fuberlin.de/diss/receive/FUDISS_thesis_000000008124
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijhcs.2003.08.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijhcs.2003.08.002

	Chapter 12: Methodological Guidelines for Matching Ontologies
	12.1 Motivation
	12.2 Ontology Matching Filling Cards
	12.3 Alignments and Formats
	12.4 Detailed Guidelines
	12.4.1 Identifying Ontologies and Characterising Needs
	12.4.2 Finding Existing Alignments
	12.4.3 Selecting a Matcher
	12.4.4 Matching Ontologies
	12.4.5 Evaluating Alignments
	12.4.6 Enhancing Alignments
	12.4.7 Storing and Sharing
	12.4.8 Rendering Alignments

	12.5 Support for Matching Ontologies
	12.5.1 Independent Tools
	12.5.2 Integrated Tools
	12.5.3 The NeOn Toolkit Alignment Plugin

	12.6 Examples
	12.6.1 Identifying Needs
	12.6.2 Identifying Ontologies
	12.6.3 Finding Existing Alignments
	12.6.4 Selecting a Matcher
	12.6.5 Matching
	12.6.6 Evaluating
	12.6.7 Enhancing
	12.6.8 Storing and Sharing
	12.6.9 Rendering

	12.7 Conclusions
	12.8 Further Readings
	References

