
Chapter 11

Ontology Evolution

Raúl Palma, Fouad Zablith, Peter Haase, and Oscar Corcho

Abstract Ontologies are dynamic entities that evolve over time. There are several

challenges associated with the management of ontology dynamics, from the ade-

quate control of ontology changes to the identification and administration of

ontology versions. Moreover, ontologies are increasingly becoming part of a

network of complex relationships and dependencies, where they reuse and extend

other ontologies, have associated metadata in order to ease sharing and reuse, are

used to integrate heterogeneous knowledge bases, etc. Under these circumstances, a

change in an ontology does not only affect the ontology itself but may also have

consequences in all its related artifacts. In this chapter, we propose methodological

guidelines for carrying out the ontology evolution activity. We target different

scenarios, supporting users in the process of ontology evolution from a generic

perspective and on how to use tools that semiautomatically assist them in discover-

ing, evaluating, and integrating domain changes to evolve ontologies. To illustrate

their applicability, we describe how such guidelines have been used in real example

applications.

R. Palma (*)

Poznan Supercomputing and Networking Center, ul Dabrowskiego 79a, 60-529 Poznan, Poland

e-mail: rpalma@man.poznan.pl

F. Zablith

Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes

MK7 6AA, UK

e-mail: f.zablith@open.ac.uk

P. Haase

fluid Operations AG, Altrottstr. 31, 69190 Walldorf, Germany

e-mail: peter.haase@fluidops.com

O. Corcho

Ontology Engineering Group, Facultad de Informática, Universidad Politécnica de Madrid,

Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid, Spain

e-mail: ocorcho@fi.upm.es

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_11, # Springer-Verlag Berlin Heidelberg 2012

235

mailto:rpalma@man.poznan.pl
mailto:f.zablith@open.ac.uk
mailto:peter.haase@fluidops.com
mailto:ocorcho@fi.upm.es

11.1 Motivation

Ontologies are fundamental building blocks of the Semantic Web and are often

used as the knowledge backbones of advanced information systems. As such, the

growing use and application of ontologies in many different areas during the last

years has led to an increasing interest of both researchers and industry in the

construction of ontologies and the reuse of existing ones. Reusing existing

ontologies instead of creating new ones from scratch has many benefits: it lowers

the time and cost of developing new ontologies, avoids duplicate efforts, eases

interoperability, etc. As a consequence, complex networks of ontologies are being

created where each ontology may depend on several others and may also be related

to other artifacts (e.g., individuals, mappings, applications, and metadata).

Nevertheless, this situation also brings about new issues. Ontologies (like many

other system components) are dynamic entities. An ontology, defined as a formal,

explicit specification of a shared conceptualization (Studer et al. 1998), may change

whenever any of the elements of this definition changes. For instance, domains are

not static or fixed: they may evolve when non-existing elements become part of the

domain or when some elements become obsolete, among others. Additionally,

ontologies need to be kept up to date in order to reflect the changes that affect the

life cycle of the underlying systems (e.g., changes in the underlying data sets, need

for new functionalities, etc.). A similar situation occurs with shared conceptua-

lizations, which may change, for example, when the domain experts involved in

modeling acquire additional knowledge about the domain. Finally, the formal

specification may change because new ontology languages or new versions of the

existing ones become available, for example.

The management of ontology dynamics raises many challenges such as the

identification and administration of different ontology versions or the flow control

of ontology changes (i.e., when and how an ontology can change). Moreover,

dealing with ontology changes involves the execution of many related tasks.

Most of these tasks are already identified in the context of the ontology evolution

process, defined in (Stojanovic 2004) as the timely adaptation of an ontology to the

arisen changes and the consistent management of these changes. For example,

among these tasks are the capturing and formal representation of ontology changes,

the verification of the ontology consistency after the changes are performed, and the

propagation of those changes to the ontology related entities. The distributed nature

of a network of ontologies where complex relations can exist between ontologies

and other artifacts demands the necessity to propagate ontology changes to the

distributed ontology-dependent artifacts (e.g., related ontologies, ontology indivi-

duals, mappings, and metadata). For instance, a change in a wine ontology (e.g., add

a new class for a type of wine) may require one or more updates in its related

metadata (e.g., increase the number of classes by one, add an additional key class,

add an additional contributor, and update the date of the last modification) or its

mappings to other similar ontologies (e.g., create a new correspondence between

the new class and another class representing the same type of wine in another

236 R. Palma et al.

ontology). Moreover, the ontology and its related artifacts may be distributed in

different places across the web.

While it seems necessary to apply the ontology evolution activity consistently

for most ontology-based systems, it is often a time-consuming and knowledge-

intensive activity, as it requires a knowledge engineer to identify the need for

change, perform appropriate changes on the base ontology, and manage its various

versions. While existing evolution frameworks normally include a description of

the life cycle, this description is neither meant nor suited to replace guidelines.

Therefore, we propose here methodological guidelines for supporting ontology

developers during the evolution of the ontologies and for supporting them in

exploiting tools to facilitate the evolution of their ontologies.

It is worth noting that both ontology evolution and ontology versioning deal with

the management of ontology changes. However, they differ in their focus: ontology

evolution focuses on the modification of an ontology, possibly preserving its

consistency, whereas ontology versioning focuses on creating and managing differ-

ent versions of the ontology.

We argue that in order to provide a comprehensive support for ontology evolu-

tion, targeted at users and ontology engineers, we need two types of guidelines: one

that guides users in the process of ontology evolution from a generic perspective

and another that provides guidelines on how to use tools that semiautomatically

assist users in discovering, evaluating, and integrating domain changes to evolve

ontologies.

The remainder of this chapter is organized as follows: First, we introduce high-

level guidelines for carrying out the ontology evolution activity. This would give an

overall picture of the required tasks and possible options to handle each one,

supported by an example in the fishery domain of FAO. Second, we provide

guidelines for how to support users in exploiting and customizing tools that support

users in evolving ontologies from external domain data using semiautomatic

techniques. This is also supported by an applied example in the academic domain.

11.2 Guidelines for Ontology Evolution

In this section, we present the guidelines set out to help ontology developers in the

ontology evolution activity. Such guidelines have been created in the context of the

NeOn Methodology for building ontology networks. This methodology takes into

account the existence of multiple ontologies in ontology networks, the collaborative

ontology development, the dynamic dimension, and the reuse and reengineering of

knowledge-aware resources.

According to the NeOn Glossary of Processes and Activities (Suárez-Figueroa

and Gómez-Pérez 2008), ontology evolution refers to the activity of facilitating the

modification of an ontology by preserving its consistency; it can be seen as a

consequence of different activities during the development of the ontology.

11 Ontology Evolution 237

Thus, in the framework of the NeOn Methodology we propose the filling card for

the ontology evolution, presented in Fig. 11.1, which includes the definition, goal,

input, output, who carries out the activity, and when the activity should be carried out.

11.2.1 Ontology Evolution Tasks

Figure 11.2 illustrates the methodological guidelines for carrying out the ontology

evolution activity, showing the main tasks involved, their inputs, outputs, and

actors. The tasks shown in the figure are explained below. They are based on the

generic activities discussed in (Bennett and Rajlich 2000) for the process of making

changes to any type of artifact that is subject to changes, customized to the case of

ontology evolution (e.g., Leenheer and Mens 2007) in the context of ontology

networks.

Ontology Evolution

Definition

Ontologies evolution refers to the activity of facilitating the modification of an ontology
by preserving its consistency; it can be seen as a consequence of different activities
during the development of the ontology.

Goal

The goal of ontology evolution is to provide a defined process (potenially with tool
support) to perform updates and changes to one or multiple ontologies.

Input Output

An ontology in a consistant state.
A ontology in a consistant state with the
proposed changes implemented.

Who

When

Normally it occurs after the ontology has been deployed and needs to be updated.
Changes during the initial creation would be part of the ontology engineering process.

All ontology engineers that have to perform changes/updates to a deployed ontology.

Fig. 11.1 Ontology evolution filling card

238 R. Palma et al.

Task 1 Requesting a Change

This is the initial task in the evolution of an ontology. In order for ontology

evolution to have the desired outcome, it is important that the input ontology is in

a consistent state. If the ontology is not in a consistent state, it has to be repaired

first, using one of the different ontology diagnosis and repair tools (e.g., RaDON,

Fig. 11.2 Tasks for ontology evolution activity

11 Ontology Evolution 239

see Chap. 17) or techniques before starting the evolution process. Note that we

require the input ontology to be in a consistent state because dealing with an

inconsistent ontology may produce unexpected results. For instance, the propaga-

tion of changes may produce inconsistencies in related artifacts. This requirement is

also in accordance to existing ontology evolution approaches (e.g., Stojanovic

(2004)). Besides, the main goal of ontology evolution is to adapt an ontology to

arisen needs (e.g., changes in the domain, changes in the experts knowledge, etc.),

not to repair an inconsistent ontology. Therefore, the input of the evolution process

is an ontology that correctly models a particular domain/task, before new needs

arise. However, the repairing of an inconsistent ontology before starting the onto-

logy evolution process can be seen as a preprocessing task. The first step of this

task is basically initiating the change process. Changes can either be requested from

users or developers, who feel that the ontology is not adequate in its current form,

or changes can be discovered. In literature (Stojanovic 2004), change discovery

is distinguished into top-down and bottom-up change discovery. Top-down

(deductive/explicit) changes are often the results from knowledge elicitation tech-

niques that are used to acquire knowledge directly from human experts (e.g.,

domain experts or end users). Bottom-up changes are typically the result from

machine learning techniques, which use different methods to infer patterns from

the sets of examples (e.g., structure/data/usage-driven change discovery).

Once changes are discovered or requested, they have to be represented in a formal

and explicit way. Typically, a change ontology is used to model proposed/requested

changes (e.g., Stojanovic 2004; Klein and Noy 2003; Noy et al. 2006; Palma

et al. 2009). This formal representation of ontology changes makes them machine-

understandable, which supports and facilitates many evolution activities: their

propagation to ontology related entities, the synchronization of distributed copies

of the same ontology, their integration with information related to the process of the

ontology development (e.g., accept/reject changes), the identification of conflicts,

etc. Moreover, having changes formally represented makes them usable by other

ontology evolution systems as well as exploitable for supplementary functionality of

an ontology evolution system such as learnability. Finally, it allows to keep track

of the ontology changes by generating a log that maintains the history (and order)

of applied changes as a sequence of individuals of the proposed model.

In contrast to previous approaches in the literature, in NeOn, a layered approach for

the representation of ontology changes was proposed (Palma et al. 2007, 2009), which

consists of a generic ontology, independent of the underlying ontology model that

models generic operations in a taxonomy of changes that are expected to be supported

by any ontology language. Furthermore, the model can be specialized for different

ontology languages, allowing the reuse and refinement for specific needs. Also, the

model extends previous taxonomies of changes with a more granular classification

that considers the actual atomic changes that can be performed in an ontology.

In case there are multiple change requests for an ontology, the requested changes

have to be prioritized. In order to determine which change should be implemented

first, one can rely on the status of the person requesting the change, or have an

ontology engineer review the requested changes and rank them according to

240 R. Palma et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_17

urgency. It is also important that dependencies are considered when ranking the

requested changes. It could be that changes are dependent on each other or even

contradict each other.

Finally, this task may include the use of a well-defined process (a workflow) for

coordinating change proposals (see Palma et al. 2008a, b). This process is respon-

sible for determining who (depending on the user permissions) can do what (what

kind of actions) and when (depending on the state of the ontology element (e.g.,

classes, properties and individuals), and the permissions of the user).

Tool Support in the NeOn Toolkit

• RaDON plugin is an ontology diagnosis and repair tool that can be used before

starting the evolution activity, i.e., before applying changes.

• Tools supporting the request/discovery of changes:

– The workflow feature supports the process that coordinates the proposal of

changes in a collaborative environment. It supports a top-down/explicit

discovery method, i.e., when changes are requested by users/developers.

– The Evolva plugin supports the discovery of changes from external data

sources (e.g., text, folksonomies, or RSS feeds). Changes are integrated and

evaluated by relying on background knowledge such as online ontologies. In

the next section, we present in details the guidelines for how to exploit such

tool to apply the identified changes on the ontology and produce a new

ontology version.

Task 2 Planning the Change

In this task, the change request is analyzed, and it is determined why the change

needs to be made and which part of the ontology is affected by the change.

For that purpose, one uses impact analysis, where all potential consequences

(side effects) of a change are identified along with an estimation of what needs to be

modified to accomplish a change (Arnold 1996; Bohner 1996). As we noted in the

introduction, ontologies may depend on several others and may also be related to

other artifacts (e.g., individuals, mappings, applications, metadata, etc.). Hence, for

the analysis of the impact of a change, a complete list of all implications to the

ontology and its dependent artifacts should be presented to the ontology engineer

(Plessers 2006).

The previous analysis is also helpful to estimate the cost of evolution. Based on

this cost, the ontology engineer can decide whether or not to propagate a change to a

dependent artifact (Plessers 2006).

As a result of the analysis performed during this task, the ontology engineer may

decide to implement the change, or if the change has many side effects or if the cost

of implementation is too high, he may defer the change request to a later time or not

implement it at all.

Once the ontology developer team has decided which changes will be

implemented and how they have to be implemented, the next phase of ontology

evolution, namely change implementation, is entered.

11 Ontology Evolution 241

Tool Support in the NeOn Toolkit

• The NeOn Toolkit provides simple support when deciding whether to make a

change or not. In particular, when a user wants to delete an ontology element, the

list of related axioms (the side effect) is shown to the editor, which permits him

to verify the cost of implementing the change.

Task 3 Implementing the Change

Implementing the changes is of varying difficulty, depending on the impact of the

requested change. While some change can be as easy as adding or removing a

subclass, other changes can require complex operations and restructuring of the

ontology.

One of the first and foremost important features is change logging, which allows

to track which changes have been made, and also allows for an easy undo, in case

something goes wrong. The change log can also be published to inform people

using the ontology on the updates.

If the requested change turns out to be too difficult to be implemented, the

ontology may need to be restructured first, before the actual desired change can be

implemented (Chikofsky and Cross 1990). Depending on the complexity of the

task, an ontology engineer can be chosen to perform the restructuring and the

subsequent implementation of the changes. For instance, in (Proper and Halpin

2004), the authors distinguish three reasons to apply transformation: (1) to select an

alternative conceptual schema which is regarded as a better representation of the

domain, (2) to enrich the schema with derivable parts creating diverse alternative

views on the same conceptual schema as a part of the original schema, and (3) to

optimize a finished conceptual schema before mapping it to a logical design.

One important issue to take into consideration when implementing a change is the

management of inconsistencies that this changemay introduce in the ontology. In case

an inconsistency occurs, it has to be decided how to address it.While some approaches

try to keep the ontology in consistent state at all cost by even disallowing changes

introducing inconsistencies, others claim that the inconsistencies are inevitable and

hence we have to deal with them. Regardless of the approach, the inconsistencies have

to be identified and resolved, possibly using some tools as it was mentioned in the

introduction. In the literature, this activity has been introduced in (Stojanovic 2004) as

the semantics of the change (originally proposed in the area of data schema evolution

in Banerjee et al. 1987) and includes the computation of additional changes that

guarantee the transition of the ontology into another consistent state. It enables

the resolution of induced changes in a systematic manner, ensuring the consistency

of the whole ontology. In particular, the author focuses on the structural

inconsistencies that arise when the ontology model constraints are invalidated after

a change request. Additionally, the author introduces evolution strategies to choose

how a change should be resolved based on the structure of the ontology, the complex-

ity of the process, the frequency of the strategy use, or on an explicitly given state of

the instances to be achieved (given by the ontology engineer).

Furthermore, another important issue that has to be addressed during the imple-

mentation of the change(s) is the management of the ontology version. After the

242 R. Palma et al.

ontology changes, the ontology engineer should decide whether the resulting

ontology constitutes a new version of the ontology and hence it should have a

different version information. Some recommendations on the use of URIs can be

found. For instance, in (Klein and Fensel 2001), the authors propose to use an URI

for ontology identification with a two-level numbering scheme: major and minor.

Minor numbers for backward compatible modifications (an ontology-URI ending

with aminor number identifies a specific ontology).Major numbers for incompatible

changes (an ontology-URI ending with a major number identifies a line of backward

compatible ontologies). In practice, however, it is common that ontologies do not

include any version information at all. As a consequence, usually it is not easy to

identify different versions of an ontology. The problem of identifying ontologies in

the Semantic Web is not a trivial issue (see Klein and Fensel 2001). For instance,

in (Palma et al. 2008c), a composite identification consisting of the URI plus version

(if available) plus the location of the ontology is used to identify an ontology.

Finally, as aforementioned, the change(s) have to be propagated to all the

ontology related artifacts (if the ontology engineer decided to do it in the previous

task based on the analysis of the cost and impact). In (Stojanovic 2004), the author

discusses the propagation of changes to dependent ontologies, individuals, and

applications and elaborates on the propagation to dependent ontologies using a

combination of push and pull mechanism. For the propagation to ontology

individuals, several mechanisms can be applied from the research in the area of

databases. For instance, in (Parsia et al. 2005), the authors discuss how changes can

be propagated to the individuals of the database by using four possible mechanisms:

immediate conversion (propagate changes as they happen), deferred conversion

(propagate changes at specific points in time), explicit deletion (when referenced

concepts are dropped), or filtering (for using different versions of the schema). In

NeOn, the propagation of changes has also been considered to (1) distributed copies

of the same ontology and (2) ontology metadata (Palma 2009; Palma et al. 2007,

2008b).

Tool Support in the NeOn Toolkit

• NeOn Toolkit ontology editor allows the manual application of changes to

ontologies.

• The change capturing plugin supports the logging of changes automatically from

the NeOn ontology editor. It also supports the application of logs generated by

other systems. Additionally, it is also in charge of propagating changes to the

distributed copies of the same ontology.

• RaDON plugin can be used for the management of inconsistencies.

Task 4 Verification and Validation

Before the ontology is considered evolved completely, the last step deals with

assessing questions whether the right ontology is built and whether it is built in the

right way. During this assessment, usually not only the ontology originally modified

is verified in isolation, but in general, this activity can include the verification of

other artifacts related to the ontology (as mentioned above) to ensure that they were

11 Ontology Evolution 243

not changed in a wrong way or they have an unexpected behavior. The verification

and validation step can include the following activities:

• Formal verification, such as state machines and temporal logics, to derive useful

properties of the system under study

• Testing by users or automatically to verify whether the system behaves as

expected

• Debugging for localizing and repairing errors found during the verification or

testing (usually performed by an ontology engineer) (for example Haase et al.

(2006))

• Quality assurance, which typically concerns non-functional qualities, like reus-

ability, adaptability, interoperability, etc.

• Justification of the changes, (for example Stojanovic 2004)

• Relevance of the changes with respect to the ontology under evolution (Zablith

et al. 2010)

In case problems are detected, these have to be fixed by moving back into Task 3,

and then returning to Task 4 to verify the corrected outcome.

Additionally, this task may include curation activities (e.g., approve/reject)

derived from the well-defined process (e.g., workflow) that coordinates the change

proposals (see Palma et al. 2008a, b). In this case, ontology engineers usually have

different roles, and only those with the required authority can accept or reject the

change proposals. If a change is rejected, the original author can modify the change

and start all over again since Task 1 or he can decide to discard it completely.

Tool Support in the NeOn Toolkit

• The Cicero plugin supports the justification of changes.

• The workflow feature supports the refining of activities (see Fig. 11.3).

• The Evolva plugin checks the relevance of a change with respect to an ontology

by relying on the analysis of ontological contexts and a set of identified rele-

vance patterns supported by a confidence-based ranking (Zablith et al. 2010).

Working with Networked Ontologies

The NeOn project deals with networks of ontologies and networked ontologies

(Haase et al. 2006), defined as a collection of ontologies related together via a

variety of different relationships such as mapping, modularization, version, and

dependency relationships.

Hence, it is worth remarking that the process described above can be applied to

networked ontologies since such a process takes into account the existing ontology

dependencies with other related artifacts, such as individuals, mappings, applica-

tions, and metadata, as we noted in each step. In a nutshell, such dependencies are

first considered during the analysis of the impact and cost in Task 2. Furthermore,

during the propagation of the changes in Task 3, all the ontology-related artifacts

are updated (if necessary), ensuring the consistency of the networked ontologies.

Finally, when assessing the correctness of the evolved ontology in Task 4, the

verification also takes into consideration the ontology-related artifacts to ensure that

244 R. Palma et al.

the whole network of ontologies is behaving as expected, i.e., it is consistent. So,

any conflict that may arise can be caught at an earlier stage of the ontology

evolution process, affecting, for instance, the decision of whether or not a change

should be implemented.

11.2.2 Example

To describe the proposed guidelines for the ontology evolution activity in a more

practical way, in this sectionwe illustrate how to perform this activity by describing an

experiment conducted in collaboration with a team of FAO ontology editors in charge

of the maintenance of ontologies in the fishery domain. The editors performed

collaboratively a set of typical changes and actions to a stable version of one fishery

ontology in order to reach a new stable version. In this scenario, a central server kept a

shared copy of the ontology and the related changes. In the remainder of this section,

we describe only the most relevant points. A detailed and complete description of the

experiment is presented in Palma (2009).

Fig. 11.3 Collaborative editorial workflow support in NeOn Toolkit

11 Ontology Evolution 245

Task 1 Requesting a Change

Initially, FAO experts in the fishery domain requested a set of changes to be applied

to the current version of the species ontology1 (v1.0 at the time the experiment was

conducted) – the ontology models a taxonomic classification of biological entities,

including classes such as Family, Group, Order, and Species. In this case, changes

were discovered using a top-down/explicit method as the knowledge came directly

from human experts. A total of 34 changes were requested using real information

according to the experts (see Palma 2009). Examples of those changes are: to add

Individual 31005–10001 (Species); to add Individual 31005–10001 DataProperty

hasNameScientific, value: Pterodroma wrong macroptera, type: string; to add Root

Class Speciation; and to add ObjectProperty hasScientificNameAuthor.

In this scenario, different ontology editors, with different roles (Subject Experts,

and Validator), were working collaboratively in the implementation of the changes

and hence it was not necessary to prioritize them (prioritization of multiple

changes).

Each of the proposed changes was represented as an individual of the change

ontology proposed in Palma et al. (2009) – representation of changes. For this

experiment, ontology editors were using the NeOn Toolkit with the collaborative

infrastructure. Hence, the representation of the changes was performed automati-

cally whenever a new change was captured by the change capturing plugin of NeOn

Toolkit.

Furthermore, in this scenario, the ontology editors were following a well-defined

process (workflow) for the coordination of the change proposals. As a consequence,

during this task the system created for any new change proposal, the appropriate

workflow action automatically (insert, update, delete).

Task 2 Planning the Change

For this experiment, it was necessary to implement the requested changes regard-

less of the side effects. Therefore, it did not perform any analysis of the impact or

cost. In fact, the idea of the experiment was to assess the efficiency of the system to

support the development of an ontology in a collaborative scenario, not the time or

cost of implementing a change.

Task 3 Implementing the Change

For this task, no restructuring of the change(s) was necessary, because on the one

hand the changes were not too difficult to implement due to the ontology structure,

and on the other hand, the cost of implementing was not an issue.

Additionally, for this task, the system (change capturing plugin of NeOn

Toolkit) took care of logging automatically all of the proposed changes (change

logging), maintaining the chronological history of the events.

1 Available at http://aims.fao.org/en/website/Fisheries-ontologies-/sub2#species

246 R. Palma et al.

http://aims.fao.org/en/website/Fisheries-ontologies-/sub2#species

In this experiment, the change(s) did not introduce any inconsistencies in the

ontology. However, in case it would be necessary to manage inconsistencies, the

RaDON plugin for NeOn Toolkit could have been used to detect and fix them.

As we introduced at the beginning of this section, for this experiment, the

ontology and related changes were centralized in a server. Furthermore, the ontol-

ogy used for the experiment was not related to other artifacts at the moment. Hence,

it was not necessary any propagation of changes.

Task 4 Verification and Validation

During this task, the ontology editors analyzed every change to ensure that the

resulting ontology was as expected using the visualization plugins of the NeOn

Toolkit.

Additionally, this task was one of the most important of the experiment as it

included all the curation activities derived from the workflow that coordinates the

proposal of changes. Hence, in this task, an ontology validator was in charge of

accepting and rejecting changes as necessary by using the appropriate workflow

plugins of the NeOn Toolkit. Finally, at the moment of the experiment, there was no

support for the justification of changes.

11.3 Guidelines for Exploiting Tools in Ontology Evolution

In this section, we propose a methodological guideline for supporting users in

identifying new and relevant domain changes from external data sources. Such

guidelines aim to facilitate the process on evolving ontologies to reflect the latest

changes in certain domains by analyzing various data sources. This guideline

complements the tool-based support provided by the Evolva ontology evolution

framework (discussed next), with concrete guidance on how to realize the various

tasks of the evolution activity, using semiautomatic techniques in an efficient way.

11.3.1 The Evolva Framework

The Evolva ontology evolution framework (Zablith 2009) relies on the hypothesis

that various forms of data corpus (texts, folksonomies, RSS feeds, etc.) can be used

to detect the need for an evolution and initiate it (see Fig. 11.4). Evolva also relies

on the idea that, in order to integrate new pieces of information extracted from the

exploited sources into the current ontology, evolution systems can rely on the

automated use of external background knowledge sources, which can be supplied

by online ontologies, lexical resources (e.g., WordNet, Fellbaum 1998), or the web.

An additional use of background knowledge comes at the level of online ontologies

used to assess the relevance of statements with respect to the ontology in focus.

11 Ontology Evolution 247

While the goal of the Evolva framework is to reduce, as much as possible,

human intervention within the evolution process, user input is required at the level

of evolution management and for fine-tuning of various parts of the framework. The

role of the user is needed to properly parameterize the components, select the right

sources of information and of background knowledge, validate the results of

various steps, and, generally, guide the evolution process to obtain high-quality

results. These tasks are not trivial, as they depend a lot on the particular ontology to

be evolved, the domain covered, the applications relying on the ontology, and the

reasons for its evolution. The experience of the knowledge engineer and his/her

knowledge of the ontology and of the exploitable sources of information are

therefore essential.

11.3.2 Tasks

The tasks for performing a semiautomatic ontology evolution can be seen in the

workflow shown in Fig. 11.5. In this context, the starting point is an existing

ontology (depicted as V1 in Fig. 11.5 and base ontology in Fig. 11.4, see

Sect. 11.3.1), which the user aims to evolve based on available domain data sources.

The selection of the appropriate sources from which new ontology entities are

identified depends on the evolution use case and the availability of such sources in

the domain in focus. In the rest of this section, we present the details of the tasks

involved in semiautomatically evolving the ontology.

IE / OL /
NER

Extracted
Schema/
Instances

Relation
Discovery

Evolved
Ontology

Relations
List

Consistency
Check

Approved
Ontology

Recording
Changes

Admin
Control

Change
Propagation

Transform-
ation

Quality
Check

Raw Data
+Transform

ation

Information
Discovery

Data
Validation

Ontological
Changes

Evolution
Management

Translation

Duplication
Check

Evolution
Validation

Temporal
Reasoning

Un-
structured

Data

External
Ontologies

Databases
Background
Knowledge

Base
Ontology

= I/O Data

= Processes

Schema/
Instances
Changes

Performing
Changes

Quality
Check

Fig. 11.4 Evolva’s ontology evolution framework

248 R. Palma et al.

Task 1 Identify the Part of Ontology to Evolve

The first task required by the ontology development team is to select the part of the

ontology to evolve. The evolution can be applied either on the entire ontology or on

a certain part of it. In many cases, ontologies may include a significant amount of

statements, causing the evolution to take a long processing time. In such cases, after

specifying the evolution purpose, the user may choose the part of the ontology to

evolve through selecting the set of concepts to be handled by the process.

Task 2 Set the Data Sources and Extraction Parameters

Depending on the domain, domain experts should prepare the data sources that

contain relevant information to the ontology context. Such data sources could be in

the form of text documents, folksonomies, databases, or even other ontologies.

Based on the decision of the ontology development team to evolve the ontology

either in terms of schema, individuals, or both, the extraction should be customized

Task 1: Identify the part of
ontology to Evolve

Task 2: Set the data sources and
extraction parameters

Task 3: Validate extracted data

Task 4: Setup relation discovery
and quality check

Task 5: Generate ontology
changes and new ontology version

Task 6: Validate new ontology
and manage changes

Task 7: Deploy new ontology
version

Is the new
ontology valid?

Are the relations
relevant?

Users, Domain Experts
and ODT

Users, Domain Experts
and ODT

Users and Domain
Experts

No

Yes

Is the data
relevant?

No

Yes

No

Yes

Ontology Development
Team

Ontology Development
Team

Ontology Development
Team

Ontology Development
Team

Ontology
V2

Ontology
V1

Input

Output

Fig. 11.5 Tasks for ontology evolution supported by semiautomatic tools

11 Ontology Evolution 249

accordingly. For example, in the case of schema evolution, the user may choose to

extract concepts for the data sources, without dealing with individuals. While in the

case of individuals, the evolution process could omit the extraction of schema

elements. Choosing between schema and individuals evolution could be biased

by the ontology functionalities and domain nature, i.e., when many ontology-

dependent components exist (e.g., various applications or other aligned ontologies),

evolving the ontology schema may be costly, and the ontology development team

may choose to perform this operation less frequently. While in environments where

ontology components are easily controllable and where a lot of new information is

generated leading to a frequent generation of new concepts, schema evolution

would be required.

Task 3 Validate Extracted Data

After extracting knowledge elements from the data sources, noise and irrelevant

entities should be excluded. The user is supported by manual and automated

validation techniques with customizable parameters. For the manual validation,

the domain expert would serve as one of the best quality checkers as he/she is the

most knowledgeable about the ontology context. This task is completed after

checking that all the data are valid to be processed further by the system.

Task 4 Setup Relation Discovery and Quality Check

The role of the user, after the data validation task, is to prepare the automated

relation discovery process. The relation discovery process links the validated data

to the ontology. This requires the user to select the various types of background

knowledge sources to be used. The choice of background knowledge is directly

dependent on the type of domain the ontology represents. If the domain were

specialized, the user would choose domain-specific background knowledge sources

(e.g., specialized thesauri). This would improve the quality of relations and increase

the system precision. While if the domain is generic, using online ontologies or

generic thesauri would perform well. In addition to the selection of sources, the user

should fine-tune the parameters of the relation discovery process, such as the

settings related to the automatic relevance checking, or specify the maximum

depth to explore. In addition to the supplied automatic quality checking methods,

for example, in terms or relevance, domain experts should additionally check the

quality of relations, before using them later in the system.

Task 5 Generate Ontology Changes and New Ontology Version

Based on the approved relations in the previous task, ontology changes are

generated and applied on the new ontology version. Users should specify where

to apply the changes, i.e., directly on the initial ontology or on a detached copy. The

choice of where to perform changes depends on the environment and the ontology

development team approach. The team should be aware that applying changes on

the initial ontology would directly affect the dependent components. If this is not

feasible, or designers prefer to keep the initial ontology intact while reviewing the

changes, creating a detached ontology version would be more appropriate.

250 R. Palma et al.

Task 6 Validate New Ontology and Manage Changes

The user should control the changes performed on the new ontology version. With

the new evolved ontology, problems such as inconsistencies and duplication are

likely to emerge. Users in this task specify the checking methods to be applied on

the new ontology version using reasoners, for example, in addition to manually

control the recorded ontology changes.

Task 7 Deploy New Ontology Version

Once the new version is approved, users should control the propagation of the new

ontology version to the dependent components. Links to the previous ontology

version should be checked and whether the new ontology has been successfully

saved and accessible.

11.3.3 Example

In this part, we highlight an example of ontology evolution scenario using the

Evolva plugin for the NeOn Toolkit, following the guidelines presented in the

previous section. We run our example in an environment where the NeOn Toolkit

and Evolva plugin2 are operational.

Consider the case of evolving the latest version of the SWRC ontology3 in the

academic context. We first load the ontology in the NeOn Toolkit and start Evolva.

In our simple case where the ontology has a limited number of concepts and time is

not an issue, we choose to evolve all the ontology (Task 1). This choice can be

specified in the first step of the process (called Ontology) in Fig. 11.6.

After preparing the ontology and identifying the part of ontology to evolve, we

move to select the data sources containing relevant information with a potentially

added value to our ontology (Task 2). This is implemented in Data Sources step of

Fig. 11.6. A relevant source of information we found was on the Leverhulme

website4 that contains text documents about research project and information

about people in the academic domain. We locate and download the relevant text

documents, then select the sources in Evolva for performing data extraction and

validation. Having no ontology-dependent components, a schema evolution would

not have any side effects on applications or other dependent elements. Thus, as

ontology developers in this use case, we test the extraction of concepts from the

data sources and integrate them in the ontology. Evolva includes extraction of

2Details on how to install and run Evolva can be found at: http://evolva.kmi.open.ac.uk/
3 The SWRC ontology can be downloaded from: http://ontoware.org/swrc/swrc/SWRCOWL/

swrc_updated_v0.7.1.owl
4 http://www.leverhulme.ac.uk/

11 Ontology Evolution 251

http://evolva.kmi.open.ac.uk/
http://ontoware.org/swrc/swrc/SWRCOWL/swrc_updated_v0.7.1.owl
http://ontoware.org/swrc/swrc/SWRCOWL/swrc_updated_v0.7.1.owl
http://www.leverhulme.ac.uk/

concepts from text documents and RSS feeds, as well as a list of raw terms. The

validation parameters incorporate term existence checking feature (based on a

similarity value) and a term length checker for removing terms under a specified

length.

We load the Leverhulme text documents and run the extraction and validation

process. A list of extracted concepts is returned, with Evolva automatically

identifying existing terms in the ontology and terms that fall below a length

threshold. If the automatic validation performs poorly overall, it is possible for

users to fine-tune the parameters and rerun the validation process again. In addition

to the automatic validation, users have the ability to go through the list of concepts

and manually select terms they find irrelevant (Task 3), implemented in the Data
Validation step in Fig. 11.6. Domain experts would play here a major role as they

are the most aware of the relevance of concepts with respect to the ontology.

After the data validation process and approving relevant data, we move to Task 5

of setting up the relation discovery process with the right background knowledge,

sources, and parameters. The SWRC ontology domain is, to some extent, a generic

academic purpose ontology. Thus, related information can be easily found through

online ontologies in which a lot of academic domain ontologies can be found, as

well as through WordNet, the generic thesaurus. Thus, we choose to perform the

Fig. 11.6 Screenshot of the Evolva plugin

252 R. Palma et al.

relation discovery process through exploiting online ontologies using Scarlet

(Sabou et al. 2008) (a Semantic Web–based relation discovery engine) and

WordNet.

Evolva automatically harvests the chosen background knowledge sources and

identifies how extracted concepts should be integrated in the ontology. If needed,

Evolva also provides the option to discover relations between new concepts, before

being integrated in the ontology. This has been implemented in the Relation
Discovery step in Fig. 11.6. To illustrate how background knowledge sources

integrate new concepts, Applicant and Website are two concepts extracted from

the Leverhulme text document. WordNet links Applicant as a subclass of Person,
an existing concept in the SWRC ontology, while online ontologies linkWebsite to
Organization through a hasWebsite relation. The length of relations to discover is

customizable. Thus, if the users find that the process is taking long, or lengthy

relations prove to be overall irrelevant, they can decrease the relation length

threshold and rerun the process again.

After the relations linking new concepts to existing concepts in the ontology,

Evolva relies on online ontologies from where the relation is identified to assess the

relevance of the relation with respect to the ontology. Using identified relevance

patterns, with pattern-specific confidence, relations are returned ranked to the user

with the highly relevant relations placed on top (Zablith et al. 2010). The user is

supplied with a customizable graphical visualization of the ontological contexts

(shown on top of Fig. 11.6), as a validation of the relevance calculation. In addition

to the visualization parameters, it is possible to change the weight of relevance

patterns, hence affecting the overall ranking of relations.

Once all relations are approved and relevant, they are used to generate the

ontology changes (last step in Fig. 11.6). If the user spots any unwanted changes,

it is possible to go back to the relation validation, remove the source relations, and

regenerate the ontology changes. Based on the ontology changes provided, it is

possible to apply the changes on the source ontology, or a new version with the

evolution date appended to the name of the new ontology version. Changes are

applied automatically within the NeOn Toolkit, and the user will instantly see the

updates in the ontology navigator of the toolkit (on the left of Fig. 11.6).

Our next task is to validate the new ontology version and manage the new

changes that the ontology has been subject to (Task 6). Evolva relies on the change

logging plugin (Palma et al. 2008b) based on the NeOn Toolkit. The user is given

all the functionalities to review changes after being applied on the ontology.

Inappropriate changes can be rolled back, or sent for further review, until reaching

a reliable new ontology version.

After approving the final ontology version, we deploy it by double-checking

the links to the previous ontology version that are automatically created by Evolva

(Task 7). We also check that the ontology has been saved correctly, and that it is

still accessible by doing some checks such as running queries and validating the

results.

11 Ontology Evolution 253

11.4 Conclusion

Ontology evolution is a tedious and time-consuming task. To successfully keep the

ontology up to date with domain changes, ontology engineers should be supplied

with the right guidelines and tool usage to make this task easier. For that, we

presented in this chapter guidelines for ontology evolution covering two aspects: a

high-level ontology evolution process and tool-oriented guidelines to semiauto-

matically identify, evaluate, and apply domain changes to ontologies.

The first aspect describes the tasks involved in the ontology evolution process

from a generic perspective and discusses guidelines in possible ways to achieve

each task. The second aspect aims to facilitate the process of identifying ontology

changes from external domain data, checking their quality, and integrating them in

the ontology, by using semiautomatic techniques. The guidelines in this case

include how to use and parameterize the involved tools to achieve the optimal

new ontology version.

The two aspects work together to enable ontology engineers to understand the

complete picture and tasks involved in ontology evolution, to successfully move

from an existing ontology state to a new one with the appropriate representation of

domain changes that arise.

References

Arnold RS (1996) Software change impact analysis. IEEE Computer Society Press, Los Alamitos

Banerjee J, KimW, Kim HJ, Korth HF (1987) Semantics and implementation of schema evolution

in object-oriented databases. SIGMOD Rec 16(3):311–322

Bennett KH, Rajlich V (2000) Software maintenance and evolution: a roadmap. In: ICSE - future

of SE track, ACM, New York, pp. 73–87

Berners-Lee T, Fielding R, Masinter L (2005) RFC 3986, Uniform Resource Identifier (URI):

Generic syntax. Available at http://tools.ietf.org/html/rfc3986

Bohner SA (1996) Software change impact analysis for design evolution. In: Software change

impact analysis. IEEE Computer Society Press, Los Alamitos, pp 67–81

Chikofsky EJ, Cross JG (1990) Reverse engineering and design recovery: a taxonomy. IEEE Softw

7(1):13–17

Fellbaum C (1998) Wordnet: an electronic lexical database. MIT Press, Cambridge

Haase P, Rudolph S, Wang Y, Brockmans S, Palma R, Euzenat J, d’Aquin M (2006) NeOn

deliverable D1.1.1. Networked ontology model. Available at http://www.neon-project.org/

Klein M, Fensel D (2001) Ontology versioning for the semantic web. In: Proceedings of the

international semantic web working symposium (SWWS’01), Stanford University, Stanford,

CA, USA

Klein M, Noy N (2003) A component-based framework for ontology evolution. In: Proceedings of

the IJCAI’03 workshop: ontologies and distributed systems, Acapulco, Mexico

Leenheer PD, Mens T (2007) Ontology management. Semantic web, semantic web services, and

business applications. In: Ontology evolution. State-of the-art and future directions. Springer,

New York/London

Noy N, Chugh A, Liu W, Musen M (2006) A framework for ontology evolution in collaborative

environments. In: International semantic web conference, Athens, pp 544–558

254 R. Palma et al.

http://tools.ietf.org/html/rfc3986
http://www.neon-project.org/

Palma R (2009) Ontology metadata management in distributed environments. PhD thesis,

Departamento de Inteligencia Artificial, Facultad de Informatica, Universidad Politecnica de

Madrid

Palma R, Haase P, Wang Y, d’Aquin M (2007) D1.3.1 propagation models and strategies.

Technical report D1.3.1, UPM; NeOn deliverable. Available at http://www.neon-project.org/

Palma R, Haase P, Corcho O, Gómez-Pérez A (2008a) An editorial workflow approach for

collaborative ontology development. In: ASWC’08. Springer, Berlin

Palma R, Haase P, Jiu Q (2008b) D1.3.2 Evaluation of propagation models and strategies.

Technical report D1.3.2; NeOn deliverable

Palma R, Hartmann J, Haase P (2008c) OMV – ontology metadata vocabulary for the semantic

web. v. 2.4. Available at http://omv.ontoware.org/

Palma R, Haase P, Corcho O, Gómez-Pérez A (2009) Change representation for OWL

2 ontologies. In: Proceedings of the fifth international workshop OWL: experiences and

directions. In ISWC09, Chantilly, VA, USA

Parsia B, Sirin E, Kalyanpur A (2005) Debugging OWL ontologies. In: Proceedings of the 14th

international conference on world wide web. ACM Press, New York, pp 633–640

Plessers P (2006) An Approach to Web-based Ontology Evolution. PhD thesis, Department of

Computer Science, Vrije Universiteit Brussel, Brussel

Proper HA, Halpin TA (2004) Conceptual schema optimisation – database optimization before

sliding down the waterfall. Technical report, Department of Computer Science, University of

Queensland

Sabou M, d’Aquin M, Motta E (2008) Exploring the semantic web as background knowledge for

ontology matching. J Data Semant XI:156–190

Stojanovic L (2004) Methods and tools for ontology evolution. PhD thesis, University of Karlsruhe

(TH)

Studer R, Benjamins VR, Fensel D (1998) Knowledge engineering: principles and methods. Data

Knowl Eng 25(1–2):161–197

Suárez-Figueroa MC, Gómez-Pérez A (2008) First attempt towards a standard glossary of ontol-

ogy engineering terminology. In: Proceedings of 8th international conference on terminology

and knowledge engineering (TKE’08) Copenhagen, DENMARK, pp 1–15

Zablith F (2009) Evolva: a comprehensive approach to ontology evolution. In: Proceedings

of ESWC 2009: the semantic web: research and applications – PhD symposium, Heraklion,

pp 944–948

Zablith F, Sabou M, d’Aquin M, Motta E (2010) Using ontological contexts to assess the relevance

of statements in ontology evolution. In: Proceedings of the 17th conference on knowledge

engineering and knowledge management by the masses (EKAW), Lisbon, Portugal. Springer,

Berlin

11 Ontology Evolution 255

http://www.neon-project.org/
http://omv.ontoware.org/

	Chapter 11: Ontology Evolution
	11.1 Motivation
	11.2 Guidelines for Ontology Evolution
	11.2.1 Ontology Evolution Tasks
	11.2.2 Example

	11.3 Guidelines for Exploiting Tools in Ontology Evolution
	11.3.1 The Evolva Framework
	11.3.2 Tasks
	11.3.3 Example

	11.4 Conclusion
	References

