
Chapter 10

Modularizing Ontologies

Mathieu d’Aquin

Abstract As large monolithic ontologies are difficult to handle and maintain, the

activity of modularizing an ontology consists in identifying components (modules)

of this ontology that can be considered separately while they are interlinked with

other modules. The end benefit of modularizing an ontology can be, depending on

the particular application or scenario, (a) to improve performance by enabling the

distribution or targeted processing, (b) to facilitate the development and mainte-

nance of the ontology by dividing it in loosely coupled, self-contained components

or (c) to facilitate the reuse of parts of the ontology. In this chapter, we present a

brief introduction to the field of ontology modularization. We detail the approach

taken as a guideline to modularize existing ontologies and the tools available in

order to carry out this activity.

10.1 Motivation

In complex domains such as medicine, ontologies can contain thousands of

concepts. Examples of such large ontologies are the NCI (National Cancer Institute)

Thesaurus1 with about 27,500 and the Gene Ontology2 with about 22,000 concepts.

However, problems with large monolithical ontologies in terms of reusability,

scalability, and maintenance have led to an increasing interest in techniques for

dividing ontologies into sets of cohesive, self-contained modules; for extracting

modules from ontologies relevant to a sub-domain or a task; as well as for

M. d’Aquin (*)

Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes,

MK7 6AA, UK

e-mail: m.daquin@open.ac.uk

1 http://ncit.nci.nih.gov/
2 http://www.geneontology.org/

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_10, # Springer-Verlag Berlin Heidelberg 2012

213

mailto:m.daquin@open.ac.uk
http://ncit.nci.nih.gov/
http://www.geneontology.org/


combining and manipulating ontology modules. We observe however that there is

no universal way to modularize an ontology and that the choice of a particular

technique or approach should be guided by the requirements of the application or

scenario relying on modularization.

In particular, ontologies that contain thousands of concepts cannot be created

and maintained by a single person. The broad coverage of such large ontologies

normally requires a team of experts. In many cases, these experts will be located in

different organizations and will work on the same ontology in parallel. In other

situations, large ontologies are mostly created to provide a standard model of a

domain to be used by developers of individual solutions within that domain. While

existing large ontologies often cover a complete domain, the providers of individual

solutions are often only interested in a specific part of the overall domain.

Also, the nature of ontologies as reference models for a domain requires a high

degree of quality of the respective model. Representing a consensus model, it is also

important to have proposed models validated by different experts. In the case of large

ontologies, it is often difficult, if not impossible, to understand the model as a whole.

On a technical level, very large ontologies cause serious scalability problems.

The complexity of reasoning about ontologies is well known to be critical even for

smaller ontologies. In the presence of ontologies like the NCI Thesaurus, not only

reasoning engines but also modelling and visualization tools reach their limits.

Currently, there is no modelling tool that can provide convenient modelling support

for ontologies of the size of the NCI Thesaurus.

All these problems are a result of the fact that a large ontology is treated as a

single monolithic model. Most problems would disappear if the overall model

consists of a set of coherent modules about a certain sub-topic that can be used

independently of the other modules while still containing information about its

relation to these other modules.

In the next sections, we describe a general guideline to the modularization

of ontologies and tools that can be used to support this activity. We identify

three approacheswhich can be involved in realizing themodularization of an ontology:

ontology partitioning, ontology module extraction and ontology module composition.

10.2 Ontology Modularization

We consider an ontology O as a set of axioms (sub-class, equivalence, instantiation,

etc.) and the signature Sig(O) of an ontology O as the set of entity names occurring

in the axioms of O, that is, its vocabulary. As described in the NeOn Glossary

(Suárez-Figueroa 2010), ontology modularization refers to the activity of

identifying one or more modules in an ontology. A module is considered to be a

significant and self-contained sub-part of an ontology. Therefore, a module Mi(O)

of an ontology O is also a set of axioms (an ontology), with the minimal constraint

that Sig(Mi(O))� Sig(O). Note that, while it may often be desirable, it is not always

the case that Mi(O) � O.

214 M. d’Aquin



10.2.1 Ontology Partitioning

The activity of partitioning an ontology consists of splitting up the set of axioms

into a set of modules {M1, � � �, Mk} such that each Mi is an ontology, and the union

of all modules is semantically equivalent to the original ontology O (see Fig. 10.1).

Note that some approaches being labelled as partitioning methods do not actually

create partitions, as the resulting modules may overlap. There are several methods

for ontology partitioning that have been developed for different purposes.

The method of MacCartney et al. (2003) aims at improving the efficiency of

inference algorithms by localizing reasoning. For this purpose, this technique

minimizes the shared language (i.e. the intersection of the signatures) of pairs of

modules. A message passing algorithm for reasoning over the distributed ontology

is proposed for implementing resolution-based inference in the separate modules.

Completeness and correctness of some resolution strategies is preserved, and others

trade completeness for efficiency.

The method of Cuenca Grau et al. (2005) partitions an ontology into a set of

modules connected by e-connections. This approach aims at preserving the com-

pleteness of local reasoning within all created modules. This requirement is sup-

posed to make the approach suitable for supporting selective use and reuse since

every module can be exploited independently of the others.

A tool that produces sparsely connected modules of reduced size was presented

in Stuckenschmidt and Klein (2004). The goal of this method is to support mainte-

nance and use of very large ontologies by providing the possibility to individually

inspect smaller parts of the ontology. The algorithm operates with a number of

parameters that can be used to tune the result to the requirements of a given

application.

Later in this chapter, we describe a method for ontology partitioning based on

enforcing good properties in the dependency graph between the resulting modules.

Fig. 10.1 Ontology partitioning

10 Modularizing Ontologies 215



10.2.2 Ontology Module Extraction

Ontology module extraction consists in reducing an ontology to the sub-part, the

module, that covers a particular sub-vocabulary. This activity has been called seg-

mentation in Seidenberg and Rector (2006) and traversal view extraction in Noy and

Musen (2004). More precisely, given an ontology O and a set SV � Sig(O) of terms

from the ontology, amodule extractionmechanism returns amoduleMSV, supposed to

be the relevant part of O that covers the sub-vocabulary SV (Sig(MSV) � SV, see

Fig. 10.2). Techniques for module extraction often rely on the so-called traversal

method: starting from the elements of the input sub-vocabulary, relations in the

ontology are recursively ‘traversed’ to gather relevant (i.e. related) elements to be

included in the module.

Such a technique has been integrated in the PROMPT tool (Noy and Musen

2004), to be used in the Protégé environment. This method recursively follows the

properties around a selected class of the ontology until a given distance is reached.

The user can exclude certain properties in order to adapt the result to the needs of

the application.

The mechanism presented in Seidenberg and Rector (2006) starts from a set of

classes of the input ontology and extracts related elements on the basis of class

subsumption and OWL restrictions. Some optional filters can also be activated to

reduce the size of the resulting module. This technique has been implemented to be

used in the Galen project and relies on the Galen upper ontology.

In Stuckenschmidt (2006), the author defines a viewpoint as being a sub-part

of an ontology that only contains the knowledge concerning a given sub-vocabulary

(a set of concept and property names). The computation of a viewpoint is based on

the definition of a viewpoint-dependent subsumption relation.

Inspired from the previously described techniques, d’Aquin et al. (2006) define

an approach for the purpose of the dynamic selection of relevant modules from

online ontologies. The input sub-vocabulary can contain classes, properties or

individuals. The mechanism is fully automatized, is designed to work with different

kinds of ontologies (from simple taxonomies to rich and complex OWL

ontologies), and relies on inferences during the modularization process.

Fig. 10.2 Ontology module extraction

216 M. d’Aquin



Finally, the technique described in Doran et al. (2007) is focussed on ontology

module extraction for aiding an ontology engineer in reusing an ontology module.

It takes a single class as input and extracts a module about this class. The approach

it relies on is that, in most cases, elements that (directly or indirectly) make

reference to the initial class should be included.

One important issue related to ontology module extraction is that different

scenarios and applications require different ways to modularize ontologies

(d’Aquin et al. 2007b). To facilitate the selection, combination and adaptation of

the various existing module extraction techniques, d’Aquin et al. (2007a) describe a

parametric approach for module extraction. The principle is to describe module

extraction techniques under a common framework that can be parameterized

according to the modularization technique that is most suited for the application.

This framework relies on a graph transformation engine. Ontologies to be modular-

ized are represented as graphs, and modularization techniques re-formulated as

graph transformation rules. In this way, existing modularization technique can be

implemented in the same tool, making it easier to compare, adapt and combine

them, and new modularization techniques can easily be implemented in the form of

modularization rules. The paper (d’Aquin et al. 2007a) described the reformulation

of several existing techniques for modularization, but an operational implementa-

tion of the tool has not been made available.

Very similar ideas to the one described in d’Aquin et al. (2007a) are at the basis

of another approach for parametric modularization (Doran et al. 2008) which,

instead of a graph transformation framework, employs a mechanism that recur-

sively execute SPARQL queries over the ontology to build a sub-set of it. The

parameters of this framework are the sets of SPARQL queries that represent

modularization techniques. In the same line of ideas, we describe later in this

chapter a tool that relies on a set of specific extraction operators that can be

combined to extract modules from ontologies in a way that is customized to the

application at hand.

10.2.3 Ontology Module Composition

In Wiederhold (1994), Wiederhold defines a simple ontology algebra, with the main

purpose of facilitating ontology-based software composition. He defines a set of

operators applying set-related operations on the entities described in the input

ontologies and relying on equality mappings (¼) between these entities. More

precisely, the three operators are defined as shown in Table 10.1.

In the same line of ideas, but in a more formalized and sophisticated way, Melnik

et al. (2004) describe a set of operators for model management, as defined in the

Rondo platform (Melnik et al. 2003). The goal of model management is to facilitate

and automatize the development of metadata-intensive applications by relying on

the abstract and generic notion of model of the data, as well as on the idea of

mappings between these models. An essential part of a platform for model

10 Modularizing Ontologies 217



management is a set of operators to manipulate and combine these models and

mappings. Melnik et al. (2004) focus on formalizing a core set of operators: Match,

Compose, Merge, Extract, Difference and Confluence. Match is particular in this

set. It takes two models as an input and returns a mapping between these models.

It inherently does not have a formal semantics as it depends on the technique used

for matching, as well as on the concrete formalism used to describe the models and

mappings. Merge intuitively corresponds to the Union operator in Wiederhold

(1994): it takes two models and a mapping and creates a new model that contains

the information from both input models, relying on the input mapping. It also

creates two mappings from the created model to the two original ones. Extract

creates the sub-model of a model that is involved in a mapping, and Difference, the

sub-model that is not involved in a mapping. Finally, compose and confluence are

mapping manipulation operators, creating mappings by merging or composing

other mappings.

Kaushik et al. (2006) define operators for combining ontologies created by

different members of a community and written in RDF. This paper first provides

a formalization of RDF to describe set-related operators such as Intersection, Union

and Difference. It also adds other kinds of operators, such as the quotient of two

ontologies O1 and O2 (collapsing O2 into one entity and pointing all the properties

of O1 to entities of O2 to this particular entity) and the product of two ontologies

(inversely, extending the properties from O1 to O2 to all the entities of O2). It is

worth mentioning that such operators can be related to the ones of relational

algebras used in relational database systems.

Note finally that the OWL tools3 that are part of the KAON24 framework include

operators such as Difference, Merge and Filter, working at the level of ontology

axioms. For example, merge creates an ontology as the union of the axioms

contained in the two input ontologies. The NeOn Toolkit plugin for ontology

module composition presented in Sect. 10.5.3 relies on similar simple operators

and is integrated with the other tools for module extraction and ontology

partitioning.

Table 10.1 Set of operators

Intersection(O1, O2) ! O Creates an ontology O containing the common (mapped)

entities in O1 and O2

Union(O1, O2) ! O Creates an ontology O containing the entities of O1

and O2 and merging the common ones

Difference(O1, O2) ! O Creates an ontology O containing only the

entities in O1 that are not mapped to entities in O2

3 http://km.aifb.kit.edu/projects/owltools/
4 http://kaon2.semanticweb.org/

218 M. d’Aquin

http://km.aifb.kit.edu/projects/owltools/
http://kaon2.semanticweb.org/


10.3 A General Approach to Modularizing Ontologies

As we mentioned in Sect. 10.1, the goal of ontology modularization is to obtain a

module or a set of modules from an ontology, which fit the requirements of a

particular application or a particular scenario. Especially due to the large number of

different techniques that can be used and combined to achieve these goals, there is a

need for methodological guidelines to help ontology developers in selecting and

applying the appropriate techniques for modularization, depending on the goal of

modularization.

Note that, as opposed to a single, monolithic ontology, an ontology network is

essentially a modular ontology, made of components (the individual ontologies)

interacting with each other in a particular context. The approach presented here is

applied on individual ontologies (possibly networked) to create either networks of

ontologies or elements for networks of ontologies.

Generalizing and clarifying the description above, we specify the definition of

ontology modularization, as provided by the NeOn Glossary (Suárez-Figueroa

2010), as the activity that takes as an input an ontology and that has for goal to

identify a set of modules for this ontology, effectively creating a modular version of

it, for the purpose of supporting maintenance and reuse (see Fig. 10.3).

Modularization offers a way to cut down potentially large ontologies into smaller,

more manageable modules. It is generally realized by the ontology engineer or the

ontology engineering team, preferably with the help of domain experts.

Figure 10.4 shows the workflow and the tasks for carrying out the ontology

modularization activity. As can be seen in this figure, we see this activity as an

iterative process, potentially combining different methods and techniques for mod-

ule extraction and partitioning, and combining their results through the use of

module composition operators.

Task 1. Identifying the Purpose of Modularization
As discussed earlier, the modularization of an ontology strongly depends on the

application relying on the modularization and the context in which the ontology is

developed. It is therefore crucial to start by identifying the reasons for modularizing

the ontologies and the expected benefits, to guide the rest of the process.

Commonly considered benefits (and thus drivers) of ontology modularization

are:

• Improving performance by enabling the distribution of reasoning or by

exploiting only the relevant modules of a large ontology (see Suntisrivaraporn

et al. (2008) for an example in inference justification)

• Facilitating the development and maintenance of the ontology by dividing it in

loosely coupled, self-contained components, which can be managed separately

• Facilitating the reuse of (parts of) the ontology by extracting modules of the

ontology that have a specific application or purpose for being reused

• Customizing ontologies by application developers to flexibly extract and com-

bine modules relevant to a particular application or to provide different modules

10 Modularizing Ontologies 219



to different groups of users (see Lopez et al. (2009) for an example in managing

access rights in a distributed question answering system)

Identifying the purpose of modularization is essential for the next tasks, in

particular to select the appropriate modularization technique and criteria to maxi-

mize the expected benefit of modularization.

Task 2. Selecting a Modularization Approach
As explained at the beginning of this chapter, there are two main approaches to

obtain modules from ontologies: ontology partitioning and ontology module extrac-

tion. It is generally easy to decide which one to choose according to the

modularization purpose:

• Whenever the purpose relates to the entire ontology (i.e. improving mainte-

nance, and in some cases performance), a partitioning approach should be

considered.

• Whenever the purpose relates to extracting specific parts of an ontology (e.g. to

customize it or reuse it partially), module extraction should be considered.

Ontology Modularization 

Definition 

Ontology Modularization refers to the activity of identifying one or more modules in 
an ontology with the purpose of supporting reuse or maintenance.

Goal

The modularization activity offers a way to cut-down potentially large ontologies into 
smaller, more manageable modules. 

Input Output

An ontology. A module or a set of modules from the input ontology. In 
practice, ontology modules are themselves ontologies. 

Who

Ontology engineer (ontology development team), curator of the ontology, preferably 
with the help of domain experts. 

When

To facilitate ontology reuse, as part of the re-engineering process, as part of a restruc-
turing activity. 

Fig. 10.3 Ontology modularization filling card

220 M. d’Aquin



Of course, this needs to be considered in the context of the overall iterative

process that constitutes ontology modularization. In general, when the purpose is to

obtain a set of modules to cover the entire ontology, in a first iteration, partitioning

Task 1. Identifying purpose of 
modularization

Task 2. Selecting a 
modularization approach

Task 3. Defining modularization 
criteria

Task 5. Parametrizing the 
tecnique and applying it

Is it satisfactory

No

Yes

Task 8. Finalizing modularization

Users, Domain Experts and ODT

Task 4. Selecting a base 
modularization technique

Task 6. Combining results

Ontology Development Team

Users, Domain Experts and
Ontology Development Team (ODT)

Users, Domain Experts and ODT

Ontology 
Module(s)OUTPUT

Ontology

IN
P

U
T

Ontology Development Team

Ontology Development Team

Ontology Development Team

Task 7. Evaluating 
modularization

Ontology Development Team

Fig. 10.4 Tasks for modularizing ontologies

10 Modularizing Ontologies 221



should be considered. In subsequent iterations, intermediary modules might need to

be further partitioned, or specific modules be extracted.

Task 3. Defining Modularization Criteria
The modularization criteria define the basic characteristics that the resulting

modules should have, that is, what should go into a module. In d’Aquin et al.

(2009), a set of criteria typically employed for modularization is given (e.g. logical

completeness and correctness with respect to the original ontology, size, relation

between modules). The criteria to emphasize should be decided, depending on the

purpose of modularization (as defined in Task 1). For example, if the goal is to

improve the reasoning procedure, logical criteria should be favoured. In d’Aquin

et al. (2009), we showed that the great variety of techniques for modularization all

implement different criteria, meaning that this task is essential for choosing the

appropriate technique, or combination of techniques. Unfortunately, while work in

d’Aquin et al. (2009) provides a list of common criteria, and insights on their

importance in different scenarios, the choice of the right criteria to apply is highly

dependent on a particular situation and has to be left to the ontology engineers to

decide.

Task 4. Selecting a Base Modularization Technique
As mentioned in previous sections, there is a great variety of techniques and tools

for ontology modularization. In d’Aquin et al. (2007b, 2009), we showed that these

techniques implement a different intuition about what should be in a module, and

so, there is no universal definition of what an ontology module should contain. In

other words, it is necessary to select the most appropriate technique, depending on

the criteria to apply. There is currently no comprehensive list of techniques that

could be applied for modularization. However, authors in d’Aquin et al. (2009)

provide a description of the major techniques and experiments, demonstrating how

they realize some possible criteria.

Task 5. Parametrizing the Technique and Applying It
Depending on the technique that has been selected by Task 4, there may be various

parameters required to obtain interesting and useful results. For example, module

extraction techniques generally require identifying a sub-vocabulary of the original

ontology, defining a particular area of interest. Partitioning techniques may require

indications, for example, about the minimal/maximal size of a module. In such

cases, the ontology engineer can only refer to guidelines and manual of the

individual tool to establish the best parameters in his/her context. Most of the

techniques would, in principle, be applied in the same way, taking the original

ontology as input and creating modules in the form of smaller ontologies, allowing

in this way to process the resulting modules iteratively, in the same way as the

original ontology.

Task 6. Combining Results
As mentioned earlier, we favour an iterative process where the adequate modules

are produced by refining and combining the results obtained with various

parameters, techniques and approaches. Therefore, at every iteration, everytime a

new (set of) module(s) is produced, it is necessary to integrate it – that is, to

combine it – with the modules that were produced at previous iterations. The way

222 M. d’Aquin



to combine depends on the criteria for modularization and on the modules already

produced. Two possibilities are:

• If some modules were too small or not logically complete and the current

iteration produced complementary modules, then the results should be merged.

• If modules from a previous iteration were too big because the employed tech-

nique did not consider some of the criteria, and a new technique is applied that

implements the missing criteria, then the common part from the results of both

iteration should be considered.

Operators for combining modules should be employed here to derive new

modules from the results of partitioning or extraction techniques, or from different

iterations for the process. The three common operators should be applied in the

following situations:

• Intersection: when two or more modules have been produced that are comple-

mentary in the sense that they are too broad and should be reduced in relation

with each other

• Union: when two or more modules have been produced that are complementary

in the sense that they are too narrow and should be integrated with each other

• Difference: when two or more modules have been produced that are comple-

mentary in the sense that one should be narrowed down so that it does not

overlap with the other

Task 7. Evaluating Modularization
The evaluation of the result of the modularization (meaning the complete set of

generated modules to be included in the modular ontology) is a crucial part of the

iterative process. Indeed, it depends on this evaluation whether a new iteration is

necessary, applying a new set of criteria and a new technique, or if the current (set

of) modules are satisfactory, considering the application scenario. There are two

ways in which the modularization could be evaluated:

• By checking the criteria: Evaluating whether the criteria defined for

modularization have been realized as expected by the modularization technique

is useful both for checking if the results match the requirements of the applica-

tion and for establishing a new set of criteria in case another iteration is required.

• By testing against the purpose of modularization: If the defined criteria have all

been realized, it is important to check whether or not the obtained modulari-

zation actually realizes the expected improvement compared to the original

ontology. For example, if the goal was to facilitate the maintenance of the

ontology, the ontology engineers and domain experts should check whether

the structure of the new, modular ontology has been created in a sensible way

according to this purpose. Another example could be when the goal is to better

support an application; in these cases, further guidelines about how to perform

an application-based ontology evaluation can be found in Chap. 9.

10 Modularizing Ontologies 223

http://dx.doi.org/10.1007/978-3-642-24794-1_9


There can be three outcomes for this task. It can establish by evaluation that:

• The modularization is satisfactory, so that the created modules can be finalized

and deployed (Task 8).

• The modularization is incomplete, so that a new iteration should be carried on,

using another set of criteria and another technique to produce complementary

results.

• The modularization is improper, so that a new iteration is required, re-consider-

ing the set of criteria and the technique to employ in order to produce modules

that better match the purpose of modularization.

Note that in different iterations, only the purpose of modularization cannot

change. In particular, even if the approach (extraction or partitioning) generally

does not change, it is not hard to imagine scenarios in which a partitioning

technique is first applied, followed by extraction procedures on the previously

created modules, as showed by the example in Sect. 10.4.

Task 8. Finalizing Modularization
Once the produced modularization is judged satisfactory, an additional step can

be required for it to be deployed and exploited in an application. For example, it is

usually necessary to revise the identifiers of each of the modules so that they follow

the conventions employed in the target application, to re-establish links between

modules, or simply to deploy the resulting modules in a way that it is made

accessible in the target application and the editorial workflow.

10.4 Example

We consider the scenario where a large monolithic ontology has been developed in

the past, and this needs to be modularized in order to facilitate its maintenance. The

purpose of the modularization has therefore been clearly identified (Task 1). In this

case, it is clear that what is required is to produce a set of modules that together

cover the entire ontology. Thus, in Task 2, the partitioning approach is selected.

Considering that the purpose is to facilitate maintenance, the major criteria (Task 3)

to take into account are:

• The sizes of the modules, which should be small enough to be easily manageable

but not too small so that the ontology curator does not have to handle too many

different modules for a particular management task

• The relations betweenmodules, which should favour awell-structured organization

in the dependency of the modules

Considering both criteria above, it is decided to apply the NeOn Toolkit plugin

for ontology partitioning (see Sect. 10.5), which works on the dependency graph of

modules and intends to provide good structures for this dependency graph (Task 4).

The only parameter for this technique is the minimum size of a module (Task 5),

which is chosen according to the size of the initial ontology. The resulting partition

224 M. d’Aquin



is described in Fig. 10.5. Even if there are no previous results yet, some modules

produced by the partitioning technique can already be combined together (Task 6).

Indeed, small modules can be judged too small and might contain information that

is considered relevant for other modules. Therefore, these modules can be merged

using the NeOn Toolkit plugin for module combination and employing the Union

operator. This is depicted for our example in Fig. 10.5.

Now that a first result has been produced, it can be evaluated (Task 7) by the

ontology development team, the domain experts and the users. In this example,

there is one module that is considered too big and covering two different topics that

should be separated. A second iteration is necessary.

The goal of the second iteration is to extract from one of the modules produced

previously, the elements related to one particular topic. Thus, we chose to follow the

extraction approach (Task 2). The criteria here are mainly that the extracted module

should contain ontological elements relevant to this particular topic (Task 3). A

specific ontology module extraction technique is selected for this (Task 4) and used

to generate relevant modules on the basis of a set of core terms defining the topic

(Task 5). The result is depicted in Fig. 10.6. Now that one module has been extracted

for one of the topic covered by the original module, the one for the second topic has

to be created in the combination task (Task 6). This is achieved by using the

Difference operator in the module combination plugin of the NeOn Toolkit (see

Fig. 10.6). In this way, the original module has then been divided into two modules,

one being the complement of the other.We then obtain a new set of modules that can

be evaluated, and if judged adequate, can replace the original, monolithic ontology.

Fig. 10.5 First iteration in our example modularization process

10 Modularizing Ontologies 225



10.5 Tool Support

The abstract example presented above provides an illustration of the overall activity

of modularizing an existing ontology, using the iterative method we propose, based

on different modularization approaches, and combining results from different

techniques. Ideally, the tools necessary to achieve this activity of modularizing

should be integrated within the same ontology engineering environment in which

the ontologies are developed. Here, we present the tools integrated in the NeOn

Toolkit in order to realize ontology partitioning, ontology module extraction and

ontology module composition. Together with the NeOn Toolkit, these tools repre-

sent an integrated environment for creating and manipulating ontology modules.

10.5.1 Ontology Partitioning

Our method for ontology partitioning is based on basic requirements concerning the

resulting modularization and its structure. We consider that the result of the

partitioning process should not only be a bag of modules but should also provide

the relations between them in terms of dependency. In addition, some good

properties for this structure should be enforced in order to facilitate the manipula-

tion and maintenance of the modularization.

As our approach is based on the dependency structure of modules, we need to

define this relation of dependency. We consider a module M1 to be dependent on a

module M2 if there is at least one entity in M1 whose definition or description

depends on at least one entity in M2. The definition or the description of an entity

Fig. 10.6 Second iteration in our example modularization process

226 M. d’Aquin



A depends on an entity B whenever B participates in the axioms defining or

describing A.

From this definition, we can see that if a module M1 depends on a module M2, it

means that M1 should import M2. The main particularity of our approach is that we

want the dependency structure of the resulting modularization to have good

properties in order to be efficient in facilitating further engineering of the obtained

modular ontology. In other terms, as shown in Fig. 10.7, we do not want this

structure to be any arbitrary (directed) graph, but to respect two major rules:

1. Rule 1 (no cycle): There should not be any cycle in the dependency graph of the

resulting modularization. The rationale for this rule is that we are trying to

reproduce the natural situation where modules would be reused. Creating bidi-

rectional interdependencies between reused modules is a bad practice as it

introduces additional difficulties in case of an update of one of the modules or

when distributing modules (Parnas 1978).

2. Rule 2 (no transitive dependency): If a module reuses another one, it should not

directly or indirectly reuse a module on which the reused one is dependent.

Indeed, when this situation arises, it means that the organization of modules into

layers has not been enforced, so that a module is reusing other modules at

different levels of the same branch of the dependency graph. Besides producing

unnecessary redundancies in the dependency structure, this could also cause

difficulties for the evolution and distribution of the module by creating ‘concur-

rent propagation paths,’ leading to the same module.

In addition, in order to ensure not only that the structure of the modularization

respects good properties but also that individual modules are easy to manage and to

handle, we add two rules on the characteristics of each module:

1. Rule 3 (size of the modules): A module should not be smaller than a given

threshold. Indeed, initial experiments have shown that applying only the two

rules above can result in very small modules. Too small modules can be hard to

manage, as it can result in having to consider too many different modules for a

given task (e.g. update) (d’Aquin et al. 2007b). Note that, even if it could

sometimes be useful, a rule based on the maximum size of a module would

not be applicable, as it would contradict rules 1 or 2. In this case, it would be

Fig. 10.7 Graphs illustrating dependency structures between ontology modules

10 Modularizing Ontologies 227



recommended to use the extraction techniques described in Sect. 10.5.2 to

reduce the size of the modules considered too big.

2. Rule 4 (intra-connectedness): Entities within a module should be connected with

each other. This is a very simple and natural rule to follow. Indeed, there is no

reason for entities that are completely disconnected, directly or indirectly, to end

up in the same module.

Having the above rules defined, our algorithm for partitioning ontologies is

reasonably straightforward. It basically consists in starting from an initial

modularization with as many modules as entities in the ontology. From this initial

modularization, the algorithm iteratively enforces rules 1 and 2, merging modules

when necessary. At the end of this step, a modularization that respects rules 1, 2 and

4 is obtained. The last task consists in merging modules that are too small according

to the given threshold, ensuring that this merging ends up in modules that respect

both rules 3 and 4.

Figure 10.8 shows a screenshot of the ontology partitioning plugin integrated

with the NeOn Toolkit, which relies on the technique described above. Concretely,

this plugin takes the form of a view which allows the user to select the ontology to

modularize, specify the threshold for the minimum size of the modules, and execute

the algorithm. The result of the algorithm is then presented as a graph, with each

Fig. 10.8 Screenshot of the ontology partitioning plugin of the NeOn Toolkit

228 M. d’Aquin



node corresponding to a created module (details of the module are shown when

selecting the corresponding node). The plugin allows the user to save and integrate

to the current ontology project each module individually.

An interesting aspect of the implementation within the NeOn Toolkit is that it

allows a very flexible and customizable modularization process. Indeed, it is

possible to re-run the algorithm with different parameters, save only the modules

that are relevant according to the ontology engineer, and use the module composi-

tion plugin presented below to manipulate and customize the modularization until a

satisfactory, well-suited modularization is obtained.

10.5.2 Ontology Module Extraction

In d’Aquin et al. (2007a, and 2007b),we have shown through a number of experiments

that extracting a module from an ontology is an ill-defined task: the criteria used to

decide what should go in a module and what is a good, relevant module are highly

dependent on the specificity of the application scenario. In other terms, there is no

universal, generic module extraction approach. This appeared also very clearly in the

different use cases described in d’Aquin et al. (2008), where different users, in

different contexts, provided completely different perspectives about what should go

in a module. In general, what appeared from these use cases is that:

1. Users have different, more or less well-defined ideas about what module extrac-

tion should do, varying from very elementary cases (e.g. extract a branch) to

complex, abstract requirements (should extract everything that helps in

interpreting a particular entity). Hence, each of the scenarios we encountered

would require a different approach for module extraction.

2. Users want to keep in control of the way the module is created. It is required to

support the parameterization of the module extraction for the user to be able to

really ‘choose’ what goes into the module.

For these reasons, we implemented a plugin for the NeOn Toolkit to realize

module extraction, providing an interactive and iterative approach to this activity.

This plugin integrates a number of different ‘operators’ for module extraction, most

of them being relatively elementary: based on an initial set of entities, extract the

super-/sub-classes, entities they depend or that depend on them, common super-/

sub-classes, sub-/super-properties, all classes of instances, or all instances of

classes. The interface for this plugin (Fig. 10.9) allows the user to easily combine

these different elementary operators in an interactive way. An initial module can be

created, using particular parameters (here the recursion level), obtaining an initial

set of entities to be included. Then another operator can be used, on other entities

and other parameters, to refine the module and extend it with other entities until an

appropriate module is created. At any point of the process, previous operations can

be undone and the module cleared.

10 Modularizing Ontologies 229



In addition, the plugin provides straightforward functions to facilitate the selec-

tion of the entities to consider for module extraction. This includes restricting the

visualization to classes, properties or individuals and searching for entities

matching a specific string. Once a module is created, it can simply be saved as

part of the current ontology project and become itself processable as an ontology

(module) to be composed or partitioned using the other modularization plugins.

10.5.3 Ontology Module Composition

A simple module algebra (including operators for Intersection, Union and Differ-

ence of module) is implemented in a dedicated plugin, which is realized as a new

NeOn Toolkit view. As shown in Fig. 10.10, in this view, the user selects the two

ontologies that serve as input for the operators. In the field between the two

Fig. 10.9 Screenshot of the ontology module extraction plugin of the NeOn Toolkit

230 M. d’Aquin



ontologies, the user selects the operator to be applied. In addition to the combination

operators, the plugin also supports alignment as an operator, which allows relating

modules via mappings. Depending on the operator chosen, the result will be either a

new module (for Union, Difference, Intersection) or an alignment (for align).

Finally, the user can specify whether the application of the operators should be

sensitive to differences in the namespace. If not, the operators only consider local

names. This is for example relevant for the Difference operator applied to two

versions of the same ontology – as often, the namespace changes from one version

to another (and thus all elements in the ontology), a difference based on the fully

qualified names would not be very meaningful.

10.6 Conclusion

In this chapter, we motivated and gave an overview of the activity of ontology

modularization. We described a general approach for modularizing ontologies and

the tools that have been developed for the NeOn Toolkit ontology engineering

Fig. 10.10 Screenshot of the ontology module composition plugin of the NeOn Toolkit

10 Modularizing Ontologies 231



environment to support this approach. However, even with the provided tool and

methodological support, modularizing an ontology is still a very time-consuming

task, not only because of the expensive computation it requires but also because of

the expertise and experience needed from the ontology engineer to obtain the

desired result (which is very often very hard to establish). We described a simple

‘abstract’ example of ontology modularization. Further to this work, the empirical

analysis of existing modular ontologies and of the process of modularizing existing

ontologies could give us further insight into the broad notion of ontology

modularity.

References

Cuenca Grau B, Parsia B, Sirin E, Kalyanpur A (2005) Automatic partitioning of owl ontologies

using E-connections. In: Description logics, DL2005, Edinburgh

d’Aquin M, Sabou M, Motta E (2006) Modularization: a key for the dynamic selection of relevant

knowledge components. In: Workshop on modular ontologies, WoMO 2006, Athens

d’Aquin M, Doran P, Motta E, Tamma V (2007a) Towards a parametric ontology modularization

framework based on graph transformation. In: International workshop on modular ontologies,

K-CAP 2007, Whistler

d’Aquin M, Schlicht A, Stuckenschmidt H, Sabou M (2007b) Ontology modularization for

knowledge selection: experiments and evaluations. In: Database and expert systems

applications, 18th international conference, DEXA 2007. Springer, Berlin/Heidelberg/

New York

d’Aquin M, Haase P, Rudolph S, Euzenat J, Zimmermann A, Dzbor M, Iglesias M, Jacques Y,

Caracciolo C, Buil Aranda C, Gomez, JM (2008) D1.1.3 NeOn formalisms for modularization:

syntax, semantics, algebra. NeOn deliverable 1.1.3. NeOn project

d’Aquin M, Schlicht A, Stuckenschmidt H, Sabou M (2009) Criteria and evaluation for ontology

modularization technique criteria and evaluation for ontology modularization technique. In:

Stuckenschmidt H, Parent C, Spaccapietra S (eds) Modular ontologies: concepts, theories and

techniques for knowledge modularization. Springer, Berlin/Heidelberg/New York

Doran P, Tamma V, Iannone L (2007) Ontology module extraction for ontology reuse: an ontology

engineering perspective. In: Proceedings of the 2007 ACM CIKM international conference on

information and knowledge management, Lisbon

Doran P, Palmisano I, Tamma V (2008) SOMET: algorithm and tool for SPARQL based ontology

module extraction. In: International workshop on ontologies: reasoning and modularity

(WORM-08), ESWC 2008, Tenerife

Kaushik S, Farkas C, Wijesekera D, Ammann P (2006) An algebra for composing ontologies. In:

Formal ontology in information systems, FOIS 2006, Baltimore

Lopez V, Motta E, Dzbor M, d’Aquin M, Peroni S, Guidi D (2009) Final version of the question

answering system. Deliverable 8.6 of the OpenKnowledge project

MacCartney B, McIlraith S, Amir E, Uribe TE (2003) Practical partition-based theorem proving

for large knowledge bases. In: Proceedings of the international joint conference on artificial

intelligence, IJCAI 2003, Acapulco

Melnik S, Rahm E, Bernstein PA (2003) Rondo: a programming platform for generic model

management. In: Proceedings of the SIGMOD 2003, San Diego, pp 193–204

Melnik S, Bernstein PA, Halevy AY, Rahm E (2004) A semantics for model management

operators. Microsoft technical report

Noy NF, Musen MA (2004) Specifying ontology views by traversal. In: Proceedings of the

international semantic web conference, ISWC 2004, Hiroshima

232 M. d’Aquin



Parnas DL (1978) Designing software for ease of extension and contraction. In: Proceedings of the

3rd international conference on software engineering

Seidenberg J, Rector A (2006) Web ontology segmentation: analysis, classification and use.

In: Proceedings of the world wide web conference, WWW 2006, Edinburgh

Stuckenschmidt H (2006) Toward multi-viewpoint reasoning with OWL ontologies.

In: Proceedings of the European semantic web conference, ESWC 2006, Budva

Stuckenschmidt H, Klein M (2004) Structure-based partitioning of large concept hierarchies.

In: International semantic web conference, ISWC 2004, Hiroshima

Suárez-Figueroa MC (2010) NeOn Methodology for building ontology networks: specification,

scheduling and reuse. PhD thesis, Universidad Politécnica de Madrid, España. Available at

http://oa.upm.es/3879/

Suntisrivaraporn B, Guilin Q, Ji Q, Haase P (2008) A modularization-based approach to finding all

justifications for OWL DL entailments. In: Asian semantic web conference, ASWC 2008,

Bangkok

Wiederhold G (1994) An algebra for ontology composition. In: Monterey workshop on formal

methods, Monterey

10 Modularizing Ontologies 233

http://oa.upm.es/3879/

	Chapter 10: Modularizing Ontologies
	10.1 Motivation
	10.2 Ontology Modularization
	10.2.1 Ontology Partitioning
	10.2.2 Ontology Module Extraction
	10.2.3 Ontology Module Composition

	10.3 A General Approach to Modularizing Ontologies
	10.4 Example
	10.5 Tool Support
	10.5.1 Ontology Partitioning
	10.5.2 Ontology Module Extraction
	10.5.3 Ontology Module Composition

	10.6 Conclusion
	References


